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ABSTRACT

This dissertation presents two Null Convention Logic (NCL) applications of

asynchronous logic circuit design in nanotechnology and cryptographic security. The

first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture

(ANRCA); the second one is an asynchronous S-Box design for cryptographic system

against Side-Channel Attacks (SCA).

The following are the contributions of the first application:

1) Proposed a diode- and resistor- based ANRCA (DR-ANRCA). Three con-

figurable logic block (CLB) structures were designed to efficiently reconfigure a given

DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical archi-

tecture was also proposed to implement the higher level logic that requires a large

number of DR-PGMBs, such as multiple-bit NCL registers.

2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An

equivalent circuit simulation model has been presented in VHDL and simulated in

Quartus II. Meanwhile, the comparison between these two ANRCAs have been ana-

lyzed numerically.

3) Presented the defect-tolerance and repair strategies for both DR-ANRCA

and MLUT-ANRCA.

The following are the contributions of the second application:

1) Designed an NCL based S-Box for Advanced Encryption Standard (AES).

Functional verification has been done using Modelsim and Field-Programmable Gate

Array (FPGA).

2) Implemented two different power analysis attacks on both NCL S-Box and

conventional synchronous S-Box.

3) Developed a novel approach based on stochastic logics to enhance the re-

sistance against DPA and CPA attacks. The functionality of the proposed design

has been verified using an 8-bit AES S-box design. The effects of decision weight,

bitstream length, and input repetition times on error rates have been also studied.

Experimental results shows that the proposed approach enhances the resistance to

against the CPA attack by successfully protecting the hidden key.
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1. INTRODUCTION

Synchronous logic with clocked structures has dominated the digital design

over the past decades. As the decrease of feature sizes and the increase of the oper-

ating frequency of integrated circuits (IC), clock-related issues become more serious,

such as clock skews, increased power at the clock edges, extra area, and layout com-

plexity for clock distribution networks, and glitches. These motivate the research of

asynchronous (i.e., clockless) logic design which has benefits of eliminating all the

clock-related issues listed above.

Null Convention Logic (NCL) is a delay-insensitive (DI) logic that belongs to

the category of asynchronous logic. NCL was first proposed by Karl Fant and Scott

Brandt in 1994 [1, 2, 3], and further developed by Dr. Scott Smith’s research group

[4]. NCL initially aimed at designing Application Specific Integrated Circuit (ASIC)

and Very-large-scale Integration (VLSI) circuits with lower power, lower noise, and

lower electromagnetic interference (EMI). Various NCL based circuits have shown

these characteristics. An NCL based Motorola STAR08 processor [5] shows the power

and noise reduction up to 40% and 10dB, respectively, comparing to its synchronous

counterpart. In [6], an 8-operation NCL ALUs was designed as a benchmark. The

simulation result shows that the dual-rail NCL circuit consumes less power but re-

quires a larger area compared with the conventional Boolean logic version. Other

designs like NCL divider [7] and NCL multiply-and-accumulate unit [8] have shown

the benefits of speed improvement and reduction in power consumption, noise, and

EMI.

Designing an NCL circuit is less complex than designing the traditional asyn-

chronous circuit due to the absence of global clock and the property of DI, which

does not need worse-case delay analysis and extensive delay matching to synchronize

the datapath and control-path without a clock signal. The current research of NCL

mainly focuses on the formal design and optimization of NCL, such as the FPGA

implementations of NCL[9], Design For Test (DFT) techniques for NCL [10], speed

increase of NCL using cycle reduction techniques [11], and timing/gate optimization
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methods [12]. However, there is few study at the application level of NCL. And its

advantages are not fully investigated.

This dissertation proposes and demonstrates two NCL applications to explore

some other benefits of NCL. The first application is the Asynchronous Nanowire

Reconfigurable Crossbar Architecture (ANRCA). Potential benefits from ANRCA

include enhanced manufacturability, scalability, modularity, and robustness. The

second NCL application is an asynchronous S-Box design for cryptographic system

to resist side-channel attacks (SCA). This design demonstrates that NCL has the

advantage of securing cryptographic devices against various power analysis attacks,

including Simple Power Analysis (SPA), Differential Power Analysis (DPA), and Cor-

relation Power Analysis (CPA). In order to enhance security, scholastic bit streams

based logics were proposed. The stochastic bit streams method has good scalability

and it can be applied to many other devices when they require enhanced security.

1.1. OVERVIEW OF NCL

NCL uses dual-rail or quad-rail signaling methods to achieve the DI [4]. A

pair of dual-rail signals A0 and A1 could be either 10 (i.e., DATA0), 01 (i.e., DATA1),

or 00 (i.e., NULL); as 11 is considered invalid. Same for the quad-rail signaling

method but it uses four rails instead of two. The possible sets for quad-rail signaling

method would be DATA0 (1000), DATA1 (0100), DATA2 (0010), DATA3 (0001),

and NULL (0000). NCL uses two states, DATA (i.e., data representation) and NULL

(i.e., control representation) to synchronize itself and control the input and output,

eliminating the need of a reference clock signal. To mark the transition between the

NULL and DATA states, each NCL combination logic must be bracketed by input and

output DI registers, these registers have an input/output acknowledgment signal that

alternates between 0s and 1s to provide request-for-NULL (i.e.,RFN) and request-for-

DATA (i.e.,RFD), respectively. An example is shown in Figure 1.1. These signals are

used to initiate a delay insensitive handshaking protocol that handles timing locally.

The four-phase handshaking protocol includes: 1) The proper conditions are met

to provide DATA at the output of the registration element; 2) RFN goes back to its

previous state; 3) All of the inputs to the registration element are at NULL state; and

4) RFD is generated and it goes back to the previous state. The completion detection
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component is used to determine whether the corresponding pipeline stage is ready for

another DATA/NULL cycle. It consists a cascade of NCL AND gates at which the

output is fed back to the previous register. When it detects the current operation is

a complete DATA set or a complete NULL set, the output will be asserted to request

the next cycle. Therefore, the period of DATA-to-DATA cycle consists of four stages:

1. Time for NULL combinational evaluation (TNi → TRNi+1
);

2. Time for NULL completion acknowledgement (TNi+1
→ TRDi);

3. Time for DATA combinational evaluation (TDi → TRDi+1
);

4. Time for DATA completion acknowledgement (TDi+1
→ TRNi);

where TDi
and TDi+1

represent the propagation time of DATA in the current stage

and next stage, respectively. Similarly, TNi
and TNi+1

represent the propagation time

of NULL on the current stage and next stage, respectively. TRNi, TRDi, TRNi+1
and

TRDi+1
represent the acknowledge time of request for NULL/DATA on the current or

next stage, respectively.

Threshold gates provide the basic building block of NCL designs. There are

two types of NCL threshold gates: THmn and THmnWw1..wR, where n represents

the number of inputs and m is the threshold value of the gate [13]. This means

that at least m of the n inputs must be asserted before the output becomes asserted.

Available w1..wR are the integer weights of input1..inputR, respectively. For example,

a TH34w2 gate has n = 4 inputs and its weight of the first input is w1 = 2. In order

to assert its output, at least three of the four inputs must be asserted since m = 3.

Figure 1.2 shows the symbol of a TH34w2 gate [13]. The inputs and outputs of a

threshold gate can be one of two states, NULL or DATA. For example, the 1-bit NCL

register consists of two TH22n gates and a TH12 gate. A threshold gate starting

with its output in an NULL state will remain in the NULL state until the specified

number of inputs are placed in the DATA state. Once the gate reaches the DATA

state, it remains in this state until all of the inputs return to the NULL state. The

hysteresis in the threshold gate provides the threshold needed to keep from switching

during intermediate state when the number of inputs in the DATA state is between

zero and the threshold limit.
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Figure 1.1. Block diagram of NCL combinational logic with two DI registers.

Figure 1.2. Threshold gate TH34w2.

There are twenty-seven fundamental threshold gates (TH gates) with hys-

teresis capability [13]. Each uses no more than four inputs. The TH gate provides a

threshold for the output assertion condition and hysteresis for state-holding behavior.

This allows all the inputs to be incorporated before generating the outputs, ensuring

a complete transition. Any arbitrary logic(s) can be obtained by using different com-

binations of these TH gates [4]. For example, the Boolean equation of TH23 gate is

Z = AB + BC + CA + (A + B + C)Z∗ where AB + BC + CA is the threshold term,

A + B + C is the hold condition, and Z∗ is the previous output. Table 1.1 shows the

truth table of this gate. When Z∗ is 0, the updated output is the same result of the

threshold equation, but once it becomes 1, the output will remain 1 until all inputs

(i.e., A, B, C) become 0 eventually. This principle is designed in all TH gates that

are shown in Table 1.2.
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Table 1.1. Truth table of NCL TH23 gate.

Z∗ A B C Z Z∗ A B C Z

0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 1 1

0 0 1 0 0 1 0 1 0 1

0 0 1 1 1 1 0 1 1 1

0 1 0 0 0 1 1 0 0 1

0 1 0 1 1 1 1 0 1 1

0 1 1 0 1 1 1 1 0 1

0 1 1 1 1 1 1 1 1 1

In order to retain DI, NCL circuits should satisfy the condition of input-

completeness and observability [14]. Input-completeness requires that the transition

of all outputs in a combinational circuit should wait until all inputs have transitioned

from either NULL to DATA or DATA to NULL completely. In another word, all

outputs cannot transition before all inputs arrive. The observability condition ensures

that every gate transition is observable at the outputs, meaning that there is no

orphans could propagate through a gate [13]. For example, an incomplete NCL AND

function (Z = A • B) can be designed using a TH12 gate and a TH22 gate, where

Z1 = A1 • B1 and Z0 = A0 + B0. It is incomplete because the output can transfer

from NULL to DATA0 without both inputs are DATA, which breaks the condition of

input-completeness. To make it complete, the equation for DATA0 Z0 = A0 +B0 can

be changed to Z0 = A0(B0 + B1) + B0(A0 + A1) = A0B0 + A0B1 + A1B0; Therefore,

a complete NCL AND function could be designed using a THand0 gate and a TH22

gate.

1.2. ADVANTAGES OF USING NCL

NCL is an asynchronous logic, which eliminates the need for a global clock and

the clock distribution network. Therefore, timing design is easier than its synchronous

counterpart due to the lack of requirement to compensate clock skew, clock jitter, and

glitches. Unlike traditional asynchronous design techniques (i.e., Huffman circuits)
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Table 1.2. Twenty-seven NCL TH gates.
NCL TH Gate Boolean Equation NCL TH Gate Boolean Equation

TH12 A+B TH22 AB
TH13 A+B+C TH23 AB+AC+BC
TH33 ABC TH23w2 A+BC

TH33w2 AB+AC TH14 A+B+C+D
TH24 AB+AC+AD+BC+BD+CD TH34 ABC+ABD+ACD+BCD
TH44 ABCD TH24w2 A+BC+BD+CD

TH34w2 AB+AC+AD+BCD TH44w2 ABC+ABD+ACD
TH34w3 A+BCD TH44w3 AB+AC+AD
TH24w22 A+B+CD TH34w22 AB+AC+AD+BC+BD
TH44w22 AB+ACD+BCD TH54w22 ABC+ABD
TH34w32 A+BC+BD TH54w32 AB+ACD
TH44w322 AB+AC+AD+BC TH54w322 AB+AC+BCD
THxor0 AB+CD THand0 AB+BC+AD

TH24comp AC+BC+AD+BD

[15] that need timing analysis to achieve the delay matching so as to synchronize

the datapath and control path with the absence of a clock. NCL circuits do not

need such extensive timing analysis, which makes the design much less complex. In

another word, NCL has the potential to process at its maximum frequency due to the

fact that the data go through path with minimal delay. This allows a NCL circuit to

potentially operate faster than a Boolean asynchronous design.

Another benefit of NCL is the lower power consumption. The demonstration

could be found in section 3 that total power consumption of both synchronous S-Box

and NCL S-Box is compared based on the measurement results of EDA tools and

FPGA simulation. The rational is NCL’s monotonic transition between DATA wave

and NULL wave, creating an idle power state and eliminating the glitch power [13].

NCL circuits only switch when useful work is being performed, not every clock edge

like Boolean circuits. NCL systems also distribute the demand for power over time

and area, reducing the occurrence of hot spots, system noise, and peak power demand

[16]. According to [2], because of the DI, NCL is insensitive to the changes of physical

implementations and parameters, such as the scale changes, variations in propagation

delay, aging issues, temperature, manufacturing variations, and so on. Therefore, a

NCL circuit is anticipated to operating at a lower voltage with fast speed when the

high performance is not required. As discussed in later sections, the NCL’s power
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consumption characteristic has the benefit of increased security for cryptographic

devices.

This dissertation have explored more advantages of using NCL in two appli-

cation areas. They are: 1) NCL based nanowire crossbar architectures, which have

the benefit of enhanced manufacturability, scalability, modularity, and robustness. 2)

NCL based AES S-Box design that could successfully resist various SCAs, including

DPA and CPA. More specific explanations will be presented in Section 2 and Section

3, respectively.

1.3. WORKS SUMMARY

This dissertation consists of three projects.

The NCL-based nanowire crossbar reconfigurable architectures are presented

in Section 2. It studies two implementations of ANRCA and discusses the advantages

of using asynchronous logic for nanoscale crossbar structure. The proposed ANRCAs

are unique for two reasons: 1) It is based on asynchronous NCL, clock-related failures

can be removed; 2) It addresses design, test, and manufacturing issues in nanowire

crossbar architecture by designing hierarchical structure, introducing function test,

and presenting fault-tolerance and repair strategies. Part of Section 2 comes from the

following publications:

• Advances in Nanowire-Based Computing Architectures, a book chapter pub-

lished in Cutting Edge Nanotechnology, 2010.

• Latency/Area Analysis and Optimization of Asynchronous Nanowire Reconfig-

urable Crossbar System, Nano Communication Network 2010.

• Asynchronous Nanowire Reconfigurable Crossbar Architectures, submitted to

IEEE Transaction on Nanotechnology 2011.

• Area and Latency Measurement and Optimization of Clock-Free Nanowire Re-

configurable Crossbar Systems, IEEE I2MTC 2010.

• Memristor Lookup Table (MLUT)-Based Asynchronous Nanowire Crossbar Ar-

chitecture, IEEE Nanotechnology 2011.
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• Post-Configuration Repair Strategy for Asynchronous Nanowire Crossbar Sys-

tem, IEEE MWSCAS 2012.

• Configurable Logic Block (CLB) Design for Asynchronous Nanowire Crossbar

System, IEEE MWSCAS 2012.

Section 3 focuses on the development of NCL based AES S-Box. The objective

is to demonstrate NCL S-Box could effectively resist various SCAs and has lower total

power consumption than its synchronous counterpart. The hardware implementation

of NCL S-Box is designed in VHDL and simulated using both EDA tools and a SCA

evaluation FPGA board (SASEBO-GII). Part of Section 3 comes from the following

publications:

• Measurement and Evaluation of Power Analysis Attacks on Asynchronous S-

Box, accepted for publication in IEEE Transaction on Instrumentation and

Measurement 2012.

• FPGA-based Measurement and Evaluation of Power Analysis Attack Resistant

Asynchronous S-Box, IEEE I2MTC 2011.

• Asynchronous Nanowire Reconfigurable Crossbar Architectures, GLSVLSI 2010.

Section 4 presents a novel implementation of S-Box design that is based on

stochastic logic. By involving probabilistic bit streams in logic implementations,

power traces become more unpredictable and data independent. This highly ran-

domness property is helpful for cryptographic devices against power analysis attacks.

However, such nondeterministic encoding scheme might generate logic errors. There-

fore, different factors that would improve the accuracy have been analyzed in this

section, including the length of bit streams, the decision weight, and the repetition

times of the inputs. The enhanced security of stochastic logic-based AES S-Box has

been experimentally verified on the same SASEBO-GII board. Part of section 4 will

be submitted to IEICE Electronics Express (ELEX) 2012.

Finally, Section 5 discusses the contribution of this dissertation and suggestions

for future works.
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2. PROJECT I: ANRCA

2.1. BACKGROUND

Many challenges have arisen with continued scaling of Complementary Metal-

Oxide-Silicon (CMOS) technology, including the increase of integrated circuit com-

plexity, increase in frequency, power density, non-recoverable expenses, and so on.

These difficulties have made it troublesome to further progress with, leading nan-

otechnologies to take the forefront of continuing the technological advancement. One

of the most promising nanotechnologies is the nanowire crossbar-based architecture:

a two-dimensional array formed by the intersection of two orthogonal sets of parallel

and uniformly-spaced synthesized nanowires such as carbon nanotubes (CNTs) and

silicon nanowires (SiNWs) [17, 18, 19]. These wires can be aligned to construct an

array with nanometer-scale spacing and formed crosspoints of nanoscale wires that

can be used as functional logic devices. These devices include programmable diodes,

field-effect transistors (FETs), and memristors, depending on the nature of nanowires

and interlayer material. The resulting structures act like programmable logic arrays

to implement conventional logics. The memristors based nanowire crossbar could also

be used to build memories due to its non-volatile characteristic. A typical nanowire

crossbar structure is shown in Figure 2.1. Nanowire crossbars offer both opportunities

and challenges. One of the opportunities is to achieve ultra-high density which has

never been achieved by photolithography (a density of 1011 crosspoints per square

centimeters has been reported in [20]). The most important challenge is to make

them reliable enough in computational applications because of the high fabrication

defect densities (as high as 10%, are expected [21]).

Synthesizing nanowires can be done efficiently through bottom-up fabrication

paradigm, meaning that the CNTs and SiNWs are synthesized first, then assembled

into functional devices. The traditional top-down lithographic manufacturing would

not be practical [22]. Combined with fluidic flow techniques by Langmuir-Blodgett

(LB) [23], these wires can be aligned to construct arrays that can be used multiple

times to yield complex hierarchically assembled nano-systems. Unfortunately, this
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Figure 2.1. Typical nanowire crossbar structure.

technique can lead to random breaks between the ends of the nanowires from re-

arranging them to scale down the size. Thus, a hierarchical structure is better than a

monolithic structure for integrated nano-systems due to the fact that small amount of

defects would not cause system failure. Hewlett-Packard (HP)’s lab have successfully

fabricated 8 × 8 (i.e., 64 bits) crossbar memory arrays by using a fabrication technique

of nanoscale crossbar called nano-imprint lithography [24, 25]. The fabrication process

reveals that the amount of defects increases proportionally to the decrease in the size

of the memory arrays. Challenges still arise with the enhancement of lithographic

resolutions and defect tolerance even though these fabrication techniques produce

results that are quite favorable for synthesizing nanowires efficiently.

Until now, various nanowire crossbar structures have been proposed: Dehon

et al. [26] have developed an operational reconfigurable computing system, known

as NanoPLA, utilizing these nanowires and molecular-scale devices. HP [27, 28] an-

nounced a computational structure with a decoder scheme for addressing nanowires

with micro-scale wires. They have also recently demonstrated a nanoscale crossbar-

based memristor array [29]. An analysis of diode-resistor based nanoPLA was present

in [30]. Other nanoscale reconfigurable homogeneous architectures, such as NanoFab-

ric [31, 32, 33]; follow a similar principle; grouping multiple crosspoints together to
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serve as a memory device or logic element, and the CMOS/Nano hybrid structure

has been used to configure the interface.

2.2. ADVANTAGES OF ANRCA

Unlike those proposed nano-structures that are all based on synchronous op-

eration, the presented work proposes Asynchronous Nanowire Reconfigurable Cross-

bar Architectures (ANRCA). They have a distinct feature of asynchronous operation,

which is based on the NCL, a delay-insensitive data encoding and self-timed logic[14].

Potential benefits of using NCL for nanowire crossbar design include:

1. Easy for manufacturing because of the clock-less characteristic, eliminating all

clock-related hardware.

2. ANRCAs are designed in a bottom-up manner and integrated without the trou-

ble of synchronizing each module, which indicates better scalability and modu-

larity than its clocked counterparts because the timing complexity remains the

same as the circuit size increases.

3. The complemented primary inputs (e.g., A, B, C and D) used in NanoFabric

[31] and the Field Effect Transistor (FET) based inverters used in NanoPLA [26,

18] are no longer needed because they can be implemented simply by crossing

over the NCL dual-rail signals.

4. Due to non-determinism in the bottom-up self-assembly approach, exhibiting

variations in physical parameters in nanowire crossbar structures. These varia-

tions would have negative effects on the timing behavior of circuits. ANRCAs

are independent of timing issues, thus they are anticipated to have better ro-

bustness over the design parameter variations.

5. Stuck-at-1 faults are easy to detect, which relatively reduces testing complexity.

Once a fault has occurred, the NCL circuit will be halted because it interferes

with the transition from DATA (either 01 or 10) to NULL (00). Also, the dual-

rail signal 11 is invalid in NCL; therefore, any permanent or transient fault that

results in this invalid state can be easily detected.
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This section presents two implementations of ANRCA. One uses crosspoints

as programmable diodes that create AND/OR planes to implement logic gates (Sec-

tion 2.3). The other uses configurable memristors to realize nanoscale lookup tables

(LUTs)(Section 2.6). Discussions of defect issues and repair strategies for these two

optimization models are comprehensively studied. Comparisons between these two

optimization models have been analyzed in terms of area, programming steps, cross-

points utilization rate, and defect tolerance(Section 2.8). The above contributions

of this project are particularly beneficial in designing an optimized reconfiguration

hardware fabrication and in efficiently mapping any given complex logic.

2.3. DIODE- AND RESISTOR-BASED ANRCA (DR-ANRCA)

The primitive unit of DR-ANRCA is the Programmable Gate Macro Block

(PGMB), DR-PGMB for short. A single DR-PGMB is made of six horizontal nanowires

that cross over eleven vertical nanowires to form sixty-six crosspoints. These cross-

points are formed by programmable diodes to create an AND/OR logic plane. The

use of pull-up resistors on the vertical nanowires create the AND-plane, and pull-down

resistors on the horizontal wires create the OR-plane, enabling each DR-PGMB to

be programmed to realize any given NCL threshold gate function in sum-of-product

(i.e., SOP) form. For example, Figure 2.2 shows a DR-PGMB implementing a TH23

NCL gate, whose boolean expression is Z = AB +BC +CA+(A+B +C)Z∗, where

Z∗ represents the previous output value of the TH23 gate, which is fed back to the

input nanowire.

For the purpose of efficiently reconfiguring the given DR-PGMB as one of the

27 arbitrary NCL threshold gates, three configurable logic block (CLB) structures

were designed: CLB-1, CLB-2, and CLB-3. Figure 2.3 shows that the CLB-1 structure

consists of four DR-PGMBs which are surrounded by nanowires and demultiplexers.

The demultiplexers are used as the interface between microwires and nanowires since

they can use a small number of microwires to control a relatively large number of

nanowires. The input lines for addressing the demultiplexers are microwires, which

can be implemented on a CMOS substrate [34]. The output lines are nanowires that

are used to control crosspoints in DR-PGMBs. The number of input microwires (M)

and output nanowires (N) is expressed as N = 2M . The demultiplexers must be placed
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Figure 2.2. TH23 gate realized on a programmable gate macro block.

on the side of the rows and columns to program all the crosspoints to ON/OFF states

by applying positive or negative voltages. Assuming that the unselected outputs are

driven by ground, then the intersection of driven nanowires would have a voltage drop

that is different from other unselected crosspoints. This would allow the configuration

of crosspoints sensitivity to voltage to drop across them. For example, driving a

positive voltage on one of the column nanowires and a negative voltage on one of

the row nanowires, the rest of nanowires would be driven with ground, the selected

crosspoint is defined as the intersection of driven nanowires.

The CLB-1 shown in Figure 2.3 is configured to function as a NCL full adder.

Two TH23 gates and two TH34w2 gates are implemented in four PGMBs, then,

interconnected in the configurable interconnection grid. Three inputs X, Y , Ci and

two outputs S, Co are represented by X0, X1, Y 0, Y 1, Ci0, Ci1, Co0, Co1, S0, S1

encoded in dual-rail logic. The top demultiplexer is used to decode the input signals

from DR-PGMB to determine which nanowires are selected. The other demultiplexers

are used to select different DR-PGMBs to receive those input signals. The following

steps are used to program logic onto the CLB: 1) Use the top and right demultiplexers

to choose input crosspoints; 2) Use the bottom and right demultiplexers to map the

selected crosspoints to each DR-PGMB; 3) Program each DR-PGMB to the required

threshold gate. 4) Retrieve the generated output from the designated DR-PGMB.
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Figure 2.3. NCL full adder implemented in CMOS (left) and CLB-1 (right).

The three CLBs are distinguished by the number of demultiplexers on the right side:

CLB-1 has one, while CLB-2 and CLB-3 (Figure.2.4) have two and four, respectively.

The microwire address lines may be shared among multiple demultiplexers to allow

multiple crosspoints to be simultaneously accessed.

NCL delay-insensitive registers are needed to bracket the combinational logic

design to achieve the transition between DATA and NULL state. An 1-bit NCL

register can be implemented on a single CLB using two TH22 gates and a TH12

as shown in Figure 2.5. The schematic of an 1-bit NCL register has been shown in

Figure 1.1. I0, I1, O0 and O1 represent input and output data rails, respectively. Ki

and Ko are the handshaking signals. The complemented value of Ko can be designed

by crossing over the wires due to its dual-rail property. For the full adder design,

an 3-bit input register (i.e., three CLBs) and 2-bit output register (i.e., two CLBs)

are needed to provide the appropriate number of input/output signals. Thus, an

FPGA-like hierarchical architecture was proposed to implement the higher level logic

that requires a large number of DR-PGMBs, such as multiple bits full adder. Figure
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2.6 shows the structure of the two-level hierarchical architecture that can be used for

implementing a 4-bit adder. Compared with the nanowire crossbar 3-bit adder design

that was introduced in [35], although the proposed DR-ANRCA consumes more area,

it is relatively easier to reconfigure and unaffected from any timing variations because

of its delay-insensitivity.

2.4. NUMERICAL ANALYSIS OF DR-ANRCA

2.4.1. Area. The area-efficient demultiplexer designs reported in [36] are

used in the proposed CLB designs. Thus, the demultiplexers selected by the DR-

PGMB on the right are assumed to be allocated on the same column-wise area of the

substrate. According to the NanoPLA assembly parameters provided by Dehon[26],

the lithographic interconnect pitch can be estimated as 105nm for the 45nm node.

A 10nm nanowire pitch is acceptable for assembling the crosspoints between each

pair of crossed nanowires. Nanowire with 3nm diameters has been demonstrated.

Microwires have diameters of around 45nm [26]. The pitch between microwires and

nanowires is assumed to be a median of Pn and Pm, which is around 60nm. Thus, as
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shown in Figure 2.3, the overall area of each CLB can be estimated as the product of

the width and height (Area = Width × Height):
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Width = Pn × (Nv − 1) + Pm × (Mv − 1) + Pmn + Nv × Dn + Mv × Dm (1)

Height = Pn×(Nh−1)+Pm×(Mh−1)×2+Pmn×2+Nh×Dn +Mh×Dm×2 (2)

where: Nv and Nh represent the number of nanowires in vertical and horizontal direc-

tion, respectively; Mv and Mh represent the number of microwires for demultiplexers

in vertical and horizontal direction, respectively; Pn and Pm, Dn and Dm are the

pitch and diameter of the nanowires and microwires, respectively; and Pmn is the

pitch between microwires and nanowires. Thus, in calculating their areas using the

above equations, the estimated areas of the proposed CLB-1, CLB-2, and CLB-3 are

1.477um2, 1.265um2, and 1.053um2, respectively.

2.4.2. Programming Steps. The complexity of the logic mapping opera-

tion is another factor that should be considered to optimize the design. A program-

ming step is defined as selecting and programming a specific crosspoint in a given

CLB. The average programming step count is defined as the estimated number of

steps needed to program a given number (i.e., 2, 4, 8, or 10) of randomly distributed

crosspoints among DR-PGMBs. For example, say there are four crosspoints need

to be programmed and they are randomly distributing on the crossbar. If they are

programmed by the design of CLB-1, each point would be selected one by one since

there is only one PGMB select demultiplexer. Thus the programming step count in

this case is four. For CLB-2 and CLB-3, actual programming step count depends

on the geometric distribution of crosspoints being programmed because different de-

multiplexers are controlling the selection of rows. One extreme case is that the four

crosspoints happen to locate on the same column of each PGMB controlled by the

four demultiplexers of CLB-3. The total step of programming these four points is one

since four demultiplexers can select them simultaneously in this case. However, other

distributions should be considered too. Therefore, a numerical analysis program for

calculating the average steps has been implemented in MATLAB. A probabilistic al-

gorithm and a square curve fitting algorithm were developed to derive the average

number of steps. Figure 2.7 shows the relationship between the number of crosspoints

to be programmed and the average number of steps required to fully program them.
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Figure 2.7. Curve fitting results of programming steps for various CLBs.

2.4.3. Latency. Latency is defined as the total time required to process

input to generate output. System latency for the proposed ANRCA consists of two

parts: the cycle of combinational logic implemented by the CLBs and the cycle of

NULL and DATA handshaking feedback signal propagation. A single cycle in one

DR-PGMB of CLB evaluates both input (i.e., in AND-plane) and output (i.e., in

OR-plane). The total time for a single input/output plane is estimated based on

the following equations: the latency for the input plane and output plane can be

estimated as

TinP lane = Nci × Td (3)

ToutP lane = Nco × Td (4)

and the latency for a demultiplexer is estimated as

Tpropagation = Np × Tp (5)
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thus the overall latency is

Tcycle = TinP lane + ToutP lane + Tpropagation

= (Nci + Nco) × Td + Np × Tp (6)

where: Nci and Nco represent the number of input and output crosspoints of an

DR-PGMB, respectively; Td is the processing time of demultiplexers; Tp is the prop-

agation delay of programming one crosspoint on its DR-PGMB. Np represents the

total number of crosspoints on an DR-PGMB. The comparison for the latency of

different CLBs, is dependent on the logic that is implemented on it. A full adder

design is used as a benchmark to make a simple comparison of the latency among

three CLBs: CLB-1, CLB-2, and CLB-3 is 18Td + 90Tp, 10Td + 54Tp, and 5Td +

37Tp, respectively.

Generally, a single NCL cycle comprises the propagation delay of NULL/DATA

and the acknowledge time of a request for DATA/NULL [37] as Figure 2.8 shows.

Data(i) 

propagation
Request 

NULL

Request 

DATA(i+1)

NULL

propagation

Time

Figure 2.8. A single NCL cycle of DATA-to-DATA latency.

The proposed ANRCA also follows this rule since it is based on NCL. There-

fore, the DATA-to-DATA latency is given by:

TDitoDi+1
= TDi

+ TRNi + TNi
+ TRDi+1

(7)
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where TDi
and TNi

represent the propagation time of DATA and NULL in the current

stage, respectively; TRNi is the acknowledge time of request for NULL in the current

stage; TRDi+1
is the acknowledge time of request for DATA in the next stage.

2.5. DEFECT/FAULT ISSUES OF DR-ANRCA

One of the main problems with nanoscale crossbar architecture is the high

inherent defect density that is caused by the bottom-up self-assembly fabrication

technique[38]. The conventional fault-tolerance and reliable design are not adequate

in nanoscale integration because of the increased defect and fault rates. Therefore,

fault-tolerance techniques for nanowire crossbar structure is critically needed. Sev-

eral test algorithms have been developed by our research group, including defect-

unaware, defect-aware, and function test algorithm (FTA) [39, 40]. This dissertation

uses FTA to detect defective crosspoint locations, focuses on the development of post-

configuration repair technique, and fault-tolerance techniques to increase the reliabil-

ity of the proposed ANRCAs. The fault-tolerance approaches include permutation,

commutative method, and redundancy. There are three ways to tolerate defects in a

DR-PGMB:

1. Reconfigure the order of primary inputs utilizing the demultiplexer that is des-

ignated to select inputs. The number of combinations for rearranging the order

of inputs can be determined from factorial of the number of inputs.

2. Rearrange the order of columns of the given DR-PGMB base on the commuta-

tive law since the product terms in the sum-of-product (SOP) of TH gates can

be rearranged.

3. Include redundant rows and columns in each DR-PGMB to increase the chances

of generating the correct output by forcing the desired logic.

Using a TH23 gate (i.e., Z = AB+BC +AC +(A+B+C)Z∗) as an example,

the above defect tolerance methods are demonstrated in Figure 2.9. It shows a side-

by-side comparison of a defective DR-PGMB with a corrected DR-PGMB that is

based upon the respective methods described above. Figure 2.9(a) shows the matrix

implementation of a TH23 gate on a DR-PGMB with defects on the intersection of
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Figure 2.9. Demonstration of defect tolerance methods.

(2,1) and (3,2). To avoid these defective crosspoints, the input order can be simply

changed from A,B,C to B,C,A. Figure 2.9(b) shows the defective crosspoints located

at (2,2) and (1,3); in this case, the SOP can be rearranged from Z = AB + BC +

AC + (A + B + C)Z∗ to Z = AB + AC + BC + (A + B + C)Z∗. Figure 2.9(c) shows

the defective crosspoints located at (1,1) and (2,1). The product term of the TH23

gate can not be mapped on the first column without using extra rows. Therefore,

the solution is to use extra rows or columns. If the number of defective crosspoints

are too large to be tolerated by the selected DR-PGMB, the worst-case scenario is to

discard the selected DR-PGMB and use another one to reprogram the given TH gate

function.

FTA uses a test tuple that combines the input patterns and the previously

asserted output patterns to list all possible faults for the mapped TH gate. Based on

FTA, a new post-configuration repair technique was derived to provide a balanced

combination of tolerable repair time and acceptable repair performance [39, 40]. Test

tuples having one-to-one correspondence with defective crosspoints are applied first to

detect and then isolate DR-PGMB rows and columns that are needed to be repaired.
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Consider a TH34w2 gate shown in Figure 2.10. The black dots represent

programmed-ON crosspoints and crosses represent defective crosspoints. The combi-

nation of both symbols represents defective crosspoints that affect the functionality

of the gate. To implement a TH34w2 gate on a DR-PGMB, a total of 25 crosspoints

must be programmed on the specific locations. In this case, there are 7 defective cross-

points among a total of 66 crosspoints. The defect rate is approximately 10% and five

of the defective crosspoints, (2,4), (4,8), (6,1), (6,5), (6,8) affect the functionality of

the TH34w2 gate and three of them are located on the OR plane. Thus, according to

the functionality of TH34w2 (i.e., Z = AB +AC +AD+BCD+(A+B +C +D)Z∗)

and its specific coordinates shown in Figure 2.10 part (a), a test tuple table (see

Table 2.1) was generated for TH34w2 to sort the test vectors for related defective

crosspoints. The OR plane takes the priority because it reflects the various results

from the AND plane [40]. The initial state of input is assumed to be 0000 so that the

output Z will be 0 as well. Any stuck-at-1 crosspoints in the OR plane could be tested

using this test vector. Although test tuple 0000 could be used to test all the required

crosspoints, it takes a long time to go through all the required crosspoints (i.e., 25

in this example). Therefore, a combinations of various inputs could make the testing

more efficient. For example, the input 0001 with Z∗ = 0 (i.e., Z∗ is the previous

output) could be used to test the defective crosspoints with coordinates (1,3), and

(5,8). According to the functionality of TH34w2, the correct result would be 0 when

input is 0001 and Z∗ is equal to 0. However, it becomes 1 since the crosspoints (1,3) is

defective. A similar testing algorithm could be used for other crosspoints required to

implement a TH34w2 gate. Thus the fault location has been detected whenever the

observed output does not match the desired one. Using this method, all 25 required

crosspoints could be covered within 20 steps.

Once the location of the defective crosspoints have been confirmed, the repair

strategy could be developed to avoid the defective crosspoints by either rearranging

the mapping or using extra rows or columns. As Figure 2.10 part (b) shows, with

column 4 moved to column 10 and column 8 moved to column 9, the remaining two

defective crosspoints with initial locations (6,1) and (6,5) are moved to (7,1) and (7,5),

respectively. The existing defective crosspoints could be avoided. However, another

round of FTA should be used to test the new location of these crosspoints to ensure
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Figure 2.10. A case study of successfully realized on a defective DR-PGMB of TH34w2
gate.

the functionality of TH34w2 would work property. The algorithm could be modified

to test other TH gates on the DR-PGMB.

2.6. MEMRISTOR LOOK-UP-TABLE BASED ANRCA

Memristor, another promising technology for nanoscale computation systems,

is considered as the fourth fundamental circuit element [41]. It is expected to have

advantages in building nanoelectronic memories, computer logic, and neuromorphic

computer architectures [42]. It is also capable of replacing programmable resistors or

rectifying devices to yield configurable crossbar junctions (i.e., crosspoints). There

are two important properties of memristors[43] : (a) as a memory storage element,

each memristor crosspoint can be programmed independently into a low-conductance

(Logic 0) or a high-conductance (Logic 1) as normal resistive switching elements. (b)

as a switche, low-conductance (OFF-state) and high-conductance (ON-state) refer

to the unconnected state and the connected state, respectively. Various research

papers describe the way to write/read memristor based nanowire crossbar[44, 45, 46].

A tutorial of using memristor-based crossbars has been presented in [47]. Using the

properties of memristors, this work proposes another implementation of ANRCA that

relies on configurable memristors to realize nanoscale look-up-tables (LUTs).
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Table 2.1. Test Tuples for TH34w2 gate.

Test Tuples (input bits) Required Crosspoints Coordinates

0000 OR Plane and F(1,5), (2,6), (3,7), (4,8)

0001 F(1,3), F(5,8)

0010 F(1,2), F(5,7)

0011 F(2,4), F(1,3), F(1,2)

0100 F(1,1), F(5,6)

0101 F(1,1), F(1,3), F(3,4)

0110 F(1,1), F(1,2), F(4,4)

0111 F(1,1), F(1,2), F(1,3)

1000 F(2,1), F(3,2), F(4,3), (5,5)

1001 F(2,1), F(3,2)

1010 F(2,1), F(4,3)

1011 F(2,1), F(2,4)

1100 F(3,2), F(4,3)

1101 F(3,2), F(3,4)

1110 F(4,4), F(4,3)

1111 N/A

The basic unit of MLUT-ANRCA is the MLUT based PGMBs, MLUT-PGMB

for short. A single MLUT-PGMB consists of eight horizontal nanowires crossing over

four vertical nanowires that are surrounded by column/row demultiplexers and a

multiplexer (see Figure 2.11). It can be programmed to realize any given NCL gate

by directly implementing the truth table of the given gate function using MLUT with

the hysteresis (i.e., state-holding behavior) that is required to achieve the proposed

delay-insensitivity via a feedback interconnect.

Figure 2.11 shows the implementation of a MLUT-PGMB programmed to

function as an NCL TH23 gate. The demultiplexers located at the row and column
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Figure 2.11. TH23 gate realized on a MLUT-PGMB.

of the MLUT-PGMB are utilized to select a programmable memristor junction. Light-

colored dots represent the memristor crosspoints programmed as 0, while the dark-

colored dots are 1. A feedback signal is sent to provide Z∗ to the row demultiplexers

for hysteresis behavior. If Z∗ is equal to 0, then the top half of the LUT is selected

to provide the output setting logic. If Z∗ is equal to 1, the bottom half of the LUT

is selected to provide the output resetting logic. An equivalent circuit simulation

has been presented in [48]. As shown in this example, a single MLUT-PGMB can

be programmed to function as a TH gate. Likewise, multiple MLUT-PGMBs can

be programmed and interconnected via a reconfigurable interconnection network to

form a higher level circuit in nanoscale. This is similar to the hierarchal architecture

presented in DR-ANRCA section. Another benefit of the MLUT-PGMB design is

that it simplifies the reading procedure by assuring that the memristors at each

crosspoints are required to be programmed either ON or OFF state (i.e., 1 or 0 in

Boolean) so that the LUT could be setup. This eliminated the need of using the

adaptive measurement algorithm proposed in [43]. Because the comparison of two

different states is only necessary. Also, for any TH gate, the initial crosspoint (1,1)

(i.e., all inputs are 0) is always programmed to 0 and the last crosspoint (8,4) (i.e.,

all inputs are 1) is always programmed to 1, therefore they are used as references to

determine the value of a selected output.
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The functionality of the proposed MLUT-PGMB’s threshold and hysteresis

behaviors were verified by implementing a structural model in VHDL. A timing sim-

ulation is also performed using the design automation tool. The simulation waveform

is shown in Figure 2.12. Output F becomes ’1’ when ABC becomes ’011’ (i.e., thresh-

old behavior), then maintains this value until ABC resets back to ’000’ (i.e., hysteresis

behavior). The results demonstrate that the structural model’s functionality accu-

rately matches the logic of the TH23 gate.

Figure 2.12. Waveform of TH23 gate.

2.7. DEFECT/FAULT ISSUES OF DR-MLUT

To address the high inherent defect density in the context of MLUT-ANRCA

design, this study focuses on a MLUT-PGMB as a basic unit of MLUT-ANRCA

to realize the proposed defect-tolerance methods. There are three states in which

a defective crosspoint can be detected: nonprogrammable, stuck-at-1, or stuck-at-0.

A crosspoint in a non-programmable state can not be changed to an ON or OFF

state. A comparison method is used to detect whether or not a crosspoint is in this

a state. This method utilizes the initial crosspoint (1,1) and the last crosspoint (8,4)

as references for comparing a selected crosspoint. If the selected crosspoint does not

match either of the reference values, it can be considered as a nonprogrammable

crosspoint. This method is based on the assumption that the reference crosspoints

are programmed properly. The crosspoints with stuck-at-0 or stuck-at-1 faults can

be simply detected by programming opposite values on them and then utilize the

proposed comparison method to determine whether it is reconfigurable.
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Tolerance for these defective crosspoints can be attained by the use of redun-

dancy, replacement, or a passive approach. Redundancy is the basic method in the

fault-tolerance system, it involves the use of spare wires to reprogram copies of se-

lected logic. The area provided by the MLUT-PGMB allows crosspoints on specific

rows to be available for redundancy based on the number of inputs for the mapped

TH gate. For example, consider the worst case scenario of a 10% defect rate. The

left part of Figure 2.13 shows a defective MLUT-PGMB implementing a given TH23

function. The crosspoints (1,3), (3,4), and (5,2) are crossed out to indicate that there

are defects. The right part of Figure 2.13 shows a repaired version of the same gate.

Crosspoints (2,3), (4,4), (6,2) have been used to replace those defective crosspoints.

The same method can be applied to other four inputs TH gates by adding extra wires

to increase the number of rows/columns. Relatively high defect rates can be tolerated

using this method, especially for the three/two inputs TH gates which require a lower

number crosspoints to be programmed on a 8×4 MLUT-PGMB. Defect rates of 50%

or even 75% can be tolerated without increasing the size of the MLUT-PGMB.
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Figure 2.13. A defective MLUT-PGMB and a version repaired using the redundancy
method.

The hysteresis function of NCL determines that the number of crosspoints

programmed to 1 is more than the number of crosspoints programmed to 0, because

the asserted output will become 0 only when all inputs become 0. Based on this

observation, we can use a passive approach to deal with stuck-at-1 faults. If these

faults occur at the crosspoints that are originally going to be programmed to 1, they
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can be ignored because the desired functionality can still be achieved. Figure 2.14

shows a bar graph that indicates the percentage of crosspoints that are programmed

to 1 for each TH gate. It shows that more than 50% of the crosspoints on TH gates are

programmed to 1. Thus, this method can be used to tolerate most of stuck-at-1 faults

on MLUT-PGMBs. The same method can be applied to stuck-at-0 faults, however,

the number of crosspoints that are programmed to 0 for each TH gate is relatively

low. To deal with the faults that cannot be ignored, the wires can be rearranged by

changing the switching function of the demultiplexer to tolerate them. This approach

rearranges the programmed crosspoints to a position where the faults do not interfere

with the functionality of the desired TH gate. Alternatively, redundant rows can be

used to replace the defective row.
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Figure 2.14. Percentage of crosspoints that are programmed to 1 for each TH gate.

2.8. COMPARISON BETWEEN DR-ANRCA AND MLUT-ANRCA

The two designs introduced in this dissertation present novel implementations

of ANRCA that achieve the goal of eliminating the dependency of a global clock by

implementing the NCL on nanowire crossbar architectures. The DR-ANRCA utilizes
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crosspoints as programmable diodes that create an AND/OR plane to implement TH

gates. MLUT-ANRCA, on the other hand, uses configurable memristors to realize

nanoscale lookup tables (LUTs) to represent each TH gate. The comparison of both

in terms of structure, control method, and defect-tolerance analysis are introduced in

this section to realize the pros and cons of each method.

The structure of a DR-PGMB consists of 6 × 11 nanowires to create a total

of 66 crosspoints to implement any TH gate, whereas a MLUT-PGMB consists of

8× 4 nanowires to create a total of 32 crosspoints to perform the same functionality.

Clearly, MLUT-PGMB requires fewer crosspoints to provide the same functionality.

Another benefit of the MLUT-PGMB structure is that it has a better utilization rate

of crosspoints than DR-PGMB when implementing the same TH gate function. For

example, to program a TH23 gate on both designs, a DR-PGMB requires 18 out of

66 crosspoints, whereas a MLUT-PGMB requires 16 out of 32. The utilization rate

is 27.3% versus 50%. Figure 2.15 shows the comparison of crosspoints utilization

rate between these two designs for all TH gates. This work also compares the two

ANRCAs in terms of area, programming latency, and defect tolerance. The structure

of these two designs are different. DR-ANRCA utilizes a combination of three or more

demultiplexers to effectively control and program DR-PGMBs in a CLB. Each MLUT-

PGMB needs two demultiplexers and one multiplexer to program a TH gate. Similar

to DR-ANRCA, it can be managed by a switching matrix to communicate with other

MLUT-PGMBs in a CLB. Therefore, a DR-ANRCA uses fewer demultiplexers to

implement a CLB, making it relatively easier to be reconfigured than MLUT-CLBs

do. According to the NanoPLA assembly parameters provided in [26], 10nm nanowire

pitch is acceptable for assembling the crosspoints between each crossed nanowire

and 3nm nanowire diameters have also been demonstrated. The area of a single

DR-PGMB nano-array and a MLUT-PGMB nano-array is 9, 044nm2 and 7, 276nm2,

respectively. As Figure 2.15 shows, for most of the TH gates that are implemented

in MLUT-PGMB, the crosspoints utilization rate is 100% since all 32 crosspoints will

be programmed to achieve its functionality, where the same TH gates require fewer

crossponits (up to 50%) to be implemented on a DR-PGMB. Therefore, assuming the

latency of programming a crosspoint is the same for both PGMBs (i.e., ts), the total

time required to program a MLUT-PGMB would be considerably greater than that
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needed to program a DR-PGMB. Figure 2.16 demonstrates a scatter graph that plots

the propagation time of programming each TH gate on both PGMBs. The order of

TH gates on the x-axis are done in ascending order according to the number of inputs.
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Figure 2.15. Crosspoints utilization comparison.
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Introducing redundancy is a common method that has been widely used in

the field of fault-tolerance and reliability. Usually there are two types of redundancy

methods: spatial redundancy and temporal redundancy [27]. This work utilized the

spatial redundancy method for tolerating these defective crosspoints in the proposed

ANRCAs. The cost of spatial redundancy is that larger areas will be consumed when

the crossbar scales up. In this regard, MLUT-PGMBs are more flexible in the replace-

ment of a defective crosspoints than DR-PGMBs are because the latter must rely on

the AND/OR functions when using the redundancy crosspoints, and the defective

crosspoints cannot be fully replaced without increasing the size of each PGMB. How-

ever, the defective crosspoints in MLUT-PGMB, especially when it is implementing

a two- or three-input TH gate, can be ignored or replaced by adjacent crosspoints, as

explained in section 2.7. The comparison made here are based on theoretical designs;

a more detailed comparison can be made by evaluating the performance of diodes

and memristors.

2.9. CONCLUSIONS

This section has presented two different implementations of ANRCA: DR-

ANRCA and MLUT-ANRCA. Both of them are based on NCL that intrinsically

eliminate many clock-related issues caused by complex clock distribution networks.

Synthesizing nanowires is based on bottom-up fabrication paradigm. The integrated

nano-systems prefer using a hierarchical structure over monolithic structure. The

studies of ANRCAs start with its primitive configurable logic unit (PGMB), then

three versions of CLB for reconfiguration, and finally an FPGA-like hierachical ar-

chitecture. With all these features, ANRCAs are anticipated to have the advantages

of improved manufacturability, scalability, modularity, and robustness.

Comparisons between different designs are discussed in terms of of area, pro-

gramming steps, and latency. Due to the high inherent defect density in nanowire

crossbar caused by the self-assembly fabrication techniques, the conventional fault-

tolerance methods are not adequate for ANRCAs. This research have proposed some

defect-tolerance and repair strategies for both ANRCAs, including FTA based post-

configuration, permutation and commutative method, spatial redundancy, replace-

ment, and passive strategy.
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3. PROJECT II: NCL S-BOX DESIGN

3.1. BACKGROUND

In relation to the market of digital information security, crypto-hardware de-

vices that have enhanced security measures while being energy efficient are in high

demand. The growth of innovation for these devices can be seen in today’s mobile

phones and portable devices and computer/network security in industrial control sys-

tems [49]. In order to reach this demand of low powered devices with high security

features, researchers generally focus around the actually cryptographic algorithm im-

plemented in the hardware itself to encrypt and decrypt information. Thus, securing

cryptographic devices against various side channel attacks (SCA) has become a very

attractive research topic in recent years along with the developments of information

technologies. SCAs explore the security information (i.e., secret key) by monitoring

the emitted outputs from physical cryptosystems. These outputs include execution

timing, power consumptions, electromagnetic leaks, and even thermal/acoustic ema-

nations [50]. Accurate measurement and estimation of these outputs is the key point

of a successful attack. The measurement should be based on the hardware gate-level

approach rather than the software instruction-level estimation [51, 52, 53, 54]. Also,

for the power consumption measurement, the focus would be the dynamic power con-

sumption that is dissipated during the transistors switching rather than static leakage

power consumption [55]. Advanced Encryption Standard (AES) was announced with

the intention of being a faster and more secure encryption algorithm over others since

its algorithm is comprised of multiple processes used to encrypt information with

supports of up to 256 bits key and block sizes, making an exhaustive search impos-

sible to check all 2256 possibilities. Usually the hardware AES implementation has a

higher reliability than software since it is difficult to be read or modified by attackers

and less prone to reverse engineering. Unfortunately, AES is still vulnerable to SCA

[56, 57]. The published SCA include simple power analysis (SPA), differential power

analysis (DPA), correlation power analysis (CPA) [50, 58], collision attack[59], and
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leakage power analysis (LPA) [60]. Among them, DPA and CPA are the most pop-

ular and effective attack that has been reviewed by numerous researchers on various

crypto-systems during these years [50]. In the meantime, many countermeasures for

resisting SCA attacks were proposed as well. Most of the countermeasures designed

for hardware implementations of AES are based on securing the logics cells to balance

the power consumption of the system and make it independent of the processing data.

This process of adjusting the basic units of the system makes the overall design less

vulnerable to attacks. The hardware implementation of AES essentially has higher

reliability than software because it is difficult to be read or modified by the attackers

and less prone to reverse engineering [61]. These countermeasures can be separated

into two categories based on the framework of the circuit they are implemented on,

synchronous and asynchronous.

3.2. EXISTING COUNTERMEASURES

The countermeasures for synchronous circuits include Sense Amplifier Basic

Logic (SABL) [62], an improved two-spacer alternating dual rail circuit [63], Wave

Dynamic Differential Logic (WDDL) [64], a dynamic voltage and frequency switching

approach [65], masked logic styles [66, 67], using Fourier Transform [68], Random

Switching Logic (RSL) [69] with its simplified version Dual-rail random-switching

logic [70], and recently proposed Masked Dual-Rail Pre-charged Logic (MDPL) and its

improved version [71, 72]. These works are centered around resisting DPA attacks and

introduce methods on how to effectively reduce the impact of DPA attack. However,

they are fundamentally based on synchronized circuits, which either requires a precise

control of timing or suffer from some timing related issues, such as glitches [71, 73],

hazard, and early propagation [73, 72, 74], which still could leak some side-channel

information to the attackers.

Asynchronous circuits, on the other hand, have natural advantages in terms

of SCA resistance. The clock-related information leakage can be either eliminated

or significantly reduced, which extensively increases the difficulties of attack due to

the lack of timing references. The countermeasures based on asynchronous circuits

include Balanced delay insensitive method [75], GALS module [76], and 1-of-n data

encoded speed independent (SI) circuit [77, 78]. However, the increased security does
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not come for free. The area required to implement them are potentially larger than

their synchronized counterparts. The benefits in terms of total power consumption

and speed are still questionable. In addition, some of the countermeasures are based

on the EDA tool simulation results or theoretical analysis, which may not effectively

prove that these methods could resist real SCA attacks experimentally.

From these existing countermeasures, the dual-rail encoding[63, 79], with the

pre-charge method, spacers, or return to zero (RTZ) protocols are frequently used in

both synchronous and asynchronous designs. The dual-rail encoding provides better

data independence with the power consumption since the Hamming weights of each

data set are the same. A RTZ, spacer, or pre-charge method is used to achieve the

monotonic transition to enhance the security. Our proposed Null Conventional Logic

(NCL) based S-Box design essentially matches all these important security proper-

ties: asynchronous, dual-rail encoding, and an intermediate state (i.e., NULL). Un-

like other asynchronous designs, NCL adheres to the monotonic transitions between

DATA (i.e., data representation) and NULL (i.e., control representation), which uti-

lizes dual-rail and quad-rail signaling methods to achieve the delay-insensitivity [9].

This would significantly reduce the design complexity. With the absence of a clock,

the NCL system is proved to reduce the power consumption, noise, and electromag-

netic interference [80, 81]. Furthermore, this work has demonstrated that NCL could

also resist SCA without worrying about the glitches and power supply variations

[82]. This work provides an extension to what has been presented in [82]. Besides

the DPA attack, a CPA attack has been also applied to both synchronous and NCL

S-Box design to demonstrated that the proposed NCL S-Box is capable of resisting

CPA attack as well.

Usually, there are four methods to conduct the power measurement experi-

ments: 1) use computer-aided design (CAD) tools [61], 2) use regular FPGA board

[64], 3) use the SASEBO-GII FPGA board, and 4) use a taped-out ASIC chip. The

procedures of taping out a chip include the front-end verification using CAD tools

and FPGA board. They are complicated, time consuming, and expensive. Therefore,

in order to prove the proposed idea in a more effective way, the first three methods

have been tried and the experimental results show that the third method is the most

effective one among these three methods. The rational behind lies as follows: 1) while
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CAD-tool-based simulation shows the synchronous S-Box design is indeed vulnerable

to the DPA attacks, the DPA attacks could not be successfully implemented on the

NCL S-Box by such simulation due to too much regularity in the simulated power

traces. The reason is that the CAD tools approximate the simulation results. 2)

There are many constraints on using regular FPGA board for this experiment. All

the decoupling capacitors related to the core power supply should be removed to in-

crease the chance of successful attacks. Also, a current probe is needed to measure

the current consumed by the core of the FPGA chip. However, the bandwidth of

current probes is usually lower than that of voltage probes, which might not be able

to capture the high-frequency AC current variations caused by data transients. 3) A

stable power supply is critically important for power analysis experiments. Therefore,

using the SASEBO-GII FPGA board is the most effective way because it is designed

for the purpose of SCA experiment and it solves all the issues that a regular FPGA

board has. In summary, this work provides a general testing procedure to do SCA

attacks on the SASEBO-GII FPGA board.

3.3. NCL AES S-BOX DESIGN

AES algorithm consists of a number of rounds that are dependent on the key

size. For both cipher and decipher of AES algorithm, each round consists of linear

operation (i.e., AddRoundKey, ShiftRows, and MixColumns steps) and non-linear

operation (i.e., SubBytes step). SubBytes step is the first step of AES round. Each

byte in the array is updated by an 8-bit substitution box (S-Box), derived from

the multiplicative inverse over GF (28). AES S-Box is constructed by combining the

inverse function with an invertible affine transformation in order to avoid attacks

based on mathematics. The S-Box is one the of most critical components in the

implementation of AES hardwares. It consumes the majority of power and is also

the most vulnerable component to SCAs. A block diagram of AES S-Box is shown

in Figure 3.1. The block diagram of multiplicative inversion over GF (28) component

where MM is modular multiplication, and XOR is exclusive-or operation [83].

The hardware implementation of AES S-Box adapted in this research follows

the combinational logic circuit architecture presented in [83], but uses NCL gates
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(a) (b)

Figure 3.1. Block diagram of a combinational S-Box with encryption and decryption
datapaths.

instead of Boolean logic gates. The affine transformation and inverse affine transfor-

mation components follow a series of Boolean equations given in Table 3.1, where i

and q represents the 8-bit input and output, respectively. Both transformations re-

quire many XOR gates. The multiplicative inversion in GF (28) follows the procedure

shown in Figure 3.1 part (b). 1) Map operation converts the 8-bit input into elements

of GF (24) (i.e. ah and al); 2) Calculate the square of ah and al. It should be no-

ticed that multiplication in GF (24) is done by multiplying the polynomial ah(x)ah(x)

followed by a modular reduction; 3) A series of multiplication and XOR operations

were implemented to extend the field GF (24) to the field GF (28). To implement

this conventional S-Box using NCL, the XOR, AND, and MUX operation in dual-rail

NCL gates are required [61].

NCL has a total of 27 threshold gates to realize various logic functions. In

order to achieve the input-completeness and observability, it is important to choose

appropriate threshold gates. For example, in the design of a two-to-one multiplexer,

according to the Karnaugh map in Figure 3.2(a), the sum-of-product (SOP) functions

can be simplified as follows:
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Table 3.1. Boolean equations for affine transformation and inverse affine transforma-
tion components.

q = aff trans(i) q = aff trans−1(i)
q0 = (i0 ⊕ i4) ⊕ (i5 ⊕ i6) ⊕ (i7 ⊕ 1) q0 = i2 ⊕ i5 ⊕ i7 ⊕ 1
q1 = i1 ⊕ i5 ⊕ i6 ⊕ i7 ⊕ i0 ⊕ 1 q1 = i0 ⊕ i3 ⊕ i6
q2 = i2 ⊕ i6 ⊕ i7 ⊕ i0 ⊕ i1 q2 = i1 ⊕ i4 ⊕ i7 ⊕ 1
q3 = i3 ⊕ i7 ⊕ i0 ⊕ i1 ⊕ i2 q3 = i2 ⊕ i5 ⊕ i0
q4 = i4 ⊕ i0 ⊕ i1 ⊕ i2 ⊕ i3 q4 = i1 ⊕ i3 ⊕ i6
q5 = i1 ⊕ i5 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ 1 q5 = i2 ⊕ i4 ⊕ i7
q6 = i6 ⊕ i2 ⊕ i3 ⊕ i4 ⊕ i5 ⊕ 1 q6 = i0 ⊕ i3 ⊕ i5 ⊕ 1
q7 = i7 ⊕ i3 ⊕ i4 ⊕ i5 ⊕ i6 q7 = i1 ⊕ i4 ⊕ i6

Z0 = A0S0 + S1B0; (8)

Z1 = A1S0 + S1B1; (9)

After modifying both functions for input-completeness, new SOP functions are

obtained:

Z0 = A0S0(A0 + A1)(B0 + B1) + S1B0(A0 + A1)(B0 + B1); (10)

Z1 = A1S0(A0 + A1)(B0 + B1) + S1B1(A0 + A1)(B0 + B1); (11)

and both of them can be mapped to a NCL circuit with a TH24comp gate, a THand0

gate, and a TH22 gate. The finalized NCL MUX logic diagram is shown in Figure

3.2(b).

Likewise, two TH24comp gates can be used to implement an XOR logic func-

tion. A THand0 and a TH22 gate are used to implement an AND logic function. The

logic diagrams are shown in Figure 3.3.
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Figure 3.2. An input-complete NCL multiplexer design.

Figure 3.3. Input-complete NCL XOR (left) and NCL AND (right) functions for the
proposed NCL S-Box.

3.4. FUNCTIONAL VERIFICATION

The proposed NCL S-box has been implemented in VHDL and simulated with

ModelSim by Mentor Graphics. By referring to the waveform shown on Figure 3.4, the

initial value of the input and output is NULL and DATA0, respectively, as previous

input registers are reset to NULL and output registers are reset to DATA0. As soon as

the resets fall down to 0, Ko from the output register becomes 1 and Ki from the input

register connected to Ko becomes 1. As Ki rises, the input is changed to the waiting

input signal, 0101010101010101 in dual-rail signaling which means 00000000 in binary
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(0x00 in hexadecimal). The output arrives later due to the propagation delay, the

output becomes 0110100101011010 in NCL which means 01100011 in binary and 0x63

in hexadecimal. The input signals are cumulative from 0 to 255, increment by 1 in

each cycle. As shown in Figure 3.4, the input signal increases from 0x00 to 0x02

and the corresponding output signals are 0x63, 0x7C, and 0x77, respectively. The

results are matching with the standard S-Box announced by the NIST [84]. As every

bit of the output signal changes from NULL to DATA , Ko falls to 0, which means

that the output register has received the proper output DATA signal. Every single

component (i.e. affine and inverse affine transformation, multiplicative inversion) has

been verified separately. All the input/output date were extracted using the VHDL

textio package, then, a scripting program was written to verify each of the output

date, ensuring they function correctly. Table 3.2 shows the encryption and decryption

simulation results for both synchronous S-Box and NCL S-Box using 10 arbitrary

sample inputs, 5 for encryption and 5 for decryption, respectively. On the NCL S-

Box output column, the results are shown as 16 bits, which are the extended dual-rail

signals. For example, for input 158, the NCL S-Box output is 0101010110011010, and

this dual-rail encoded data word is equivalent to 00001011 in binary which is equal

to the output of the conventional synchronous S-Box.

Figure 3.4. ModelSim waveform for the proposed NCL S-Box with input signals
changing from 0d to 3d.
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Table 3.2. Simulation results for 10 arbitrary samples from conventional synchronous
S-Box and the proposed NCL S-Box.

Simulation Results

Mode Input
Output

S-Box NCL S-Box

Encrypt

9 00000001 0101010101010110
26 10100010 1001100101011001
106 00000010 0101010101011001
122 11011010 1001101001101001
158 00001011 0101010110011010

Decrypt

32 01010100 0110011001100101
51 01100110 0110100101101001
156 00011100 0101011010100101
185 11011011 1010011010011010
203 01011001 0110011010010110

Besides ModelSim simulation, the Field-Programmable Gate Array (FPGA)

based verification has also been done on both synchronous S-Box and NCL S-Box

designs. Figure 3.5 is an oscilloscope screen image of the NCL S-Box hardware im-

plementation with the embedded key 11010100. The 16 digital signals represent the

dual-rail outputs of NCL S-Box. The blue waveform (Channel 1) is the voltage across

a shunt resistor of the FPGA core. It is used to measure the current of the FPGA,

which represents the power consumption of the FPGA core. The green (Channel 2)

and purple (Channel 3) waveforms are used to set the triggers to ease data alignment

for SCA programming. The falling edge of the green signal means that all 256 input

data have been processed and the last one would be Binary 11111111. Since the key is

11010100, after the bit-wise XOR function, the actual input goes to the S-Box would

be 00101011. According to the standard S-Box table[84], the corresponding output

is 11110001, which is 1010101001010110 in NCL or 0xF1 in hexadecimal as shown

in the Figure 3.5. Following that, the input signal is incremented to 00000000 and

the S-Box input becomes 00000000
⊕

11010100 = 11010100, which generates the cor-

responding output 01001000 (i.e. 0x48). Similarly, hexadecimal numbers 0x03 and

0xF6 shown in the Figure 3.5 can be derived as well. All 256 inputs with different
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Figure 3.5. Power waveform of NCL S-Box design.

keys have been verified during the power analysis programming using Matlab. The

correct behavior of the function is the prerequisite for a successful power attack.

3.5. POWER MEASUREMENT EXPERIMENT

FPGA provides an effective platforms for fast and highly reconfigurable pro-

totyping of integrated circuits. Various instrumentation and measurements meth-

ods were implemented or demonstrated on FPGAs [85, 86]. A power measurement

methodology for FPGA was also presented to break down the power consumption of

different elements inside the logic [87], allowing attackers to get detailed information

inside the circuit. This section goes into detail on the procedures used for the author’s

experiments and the results obtained from the power measurement associated to the

comparison of the synchronous AES S-Box. The total power consumption has been

measured using the MG tools in [61] and Table 3.3 presents the measurement results

on both designs. It shows the proposed NCL S-Box has 22% to 26% lower total power

consumption than synchronous S-Box. Figure 3.6 shows the SASEBO-GII board [88]
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that is used as the basic platform in this experiment. There are two FPGA cores in

this board that can be utilized; the AES S-Box circuit is implemented in the cryp-

tographic circuit and the configuration circuit is programmed into the configuration

FPGA. The purpose of separating these two circuits is to prevent the power trace of

the configuration circuit from interfering with the power trace of the cryptographic

circuit, so that the measurements of making/resisting power analysis attacks can be

done fairly. Two different power analysis attacks were conducted on both synchronous

and NCL designs: Differential Power Analysis (DPA) and Correlation Power Analysis

(CPA).

Table 3.3. Power simulation results for synchronous AES S-Box and NCL AES S-Box
using Accusim and AdvanceMS.

Temperature: 27◦C Synch S-Box NCL S-Box
VDD: 1.8V

Total Power Dissipation 2.474E-08 1.934E-08
(Watts) - Accusim+Eldo

Total Power Dissipation 2.686E-08 1.981E-08
(Watts) - AdvanceMS

3.6. DIFFERENTIAL POWER ANALYSIS

DPA is a traditional power analysis attack that was first proposed by Kocher

et al. [89] in 1999. DPA is a more effective and sophisticated form of a power analysis

attack than SPA is. DPA utilizes a statistical method to analyze the relationship

between the key and the power consumption, even when the power consumption vari-

ations are so small that SPA could not deal with [89]. Once the logic circuits were

programmed into the FPGAs, measurements on the power waveform were performed

using an oscilloscope (i.e.,Tektronix MSO 4054 for this study). Figure 3.5 indicates

that most of the power consumption from the S-box occurs during the transition

between the DATA and NULL process in NCL logic. A trigger signal was designed
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Figure 3.6. Specified side channel attack standard evaluation FPGA board (SASEBO-
GII).

to check the cycle of operation encompassing 256 ascending inputs. Following that,

experimental data were collected between two trigger pulses. The experimental data

consisted of 1 million points of the FPGA core current (representing power consump-

tion) and the digital output data along a time span of 400µs. The resolution time is

thereby 4ns. Thus, 165 points have been sampled for each input data.

The sampled data are then processed in Matlab to implement a DPA attack.

There are 256 outputs of data, each of which is related to a specific input datum.

Figure 3.7 illustrates the steps to this statistical analysis. In this figure, the solid

lines represent the path of the security key traveling through the system, while the

dash lines represents the hypothetical keys moving through the system. The process

of DPA consist of the following steps:
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Figure 3.7. Block diagram illustrating the DPA attack steps.

1. The average current corresponding to each output data are calculated in Matlab

using root mean square (RMS) algorithm.

Ap =

√

√

√

√

1

Nsample

Nsample
∑

k=0

x2
i (12)

Ap is the average of Nsample sampled current for output data i;
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2. Two groups are defined according to the select function when the secret key is

used (Detailed explanation could be found in[89]).

A0,x =
1

N0

Gx,0,i
∑

Ap,i (13)

A1,x =
1

N1

Gx,1,j
∑

Ap,j (14)

Gx,0,i and Gx,1,j are two sets of average current, respectively, and they are

grouped according to an arbitrary bit in the output.

3. The average power in each group is calculated using the results of the first two

steps and then the difference in average power between these two groups is the

result of the DPA process.

dx = |A0,x − A1,x| (15)

A0,x and A1,x are the average currents of 0-group and 1-group, respectively, for

a hypothetical key x; dx is the difference between the average currents.

This DPA process has been implemented on both synchronous S-Box and

NCL S-Box with 256 keys. Figure 3.8 part (a) is the result of the DPA attack on

the synchronous S-Box design; the correct key (16d) is clearly identifiable since the

power peak is much higher than other hypothesized keys. Figure 3.8 part (b) shows

the result of the DPA attack on the same S-Box design using NCL. The attacker

can not identify the correct key since its power peak is not prominent compared to

others. Due to the limited amount of space, only three other randomly selected keys

are shown here. The DPA attack results show that the selected keys can not be

identified from other assumption keys. Therefore, the proposed NCL S-Box design

significantly improves security against DPA attacks.

3.7. CORRELATION POWER ANALYSIS

A more effective way to find the secret key of a cryptographic device is to ana-

lyze the correlative relationship between the plain-text/cipher-text and instantaneous
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Figure 3.8. Power peaks for various key assumptions for a DPA attack on synchronous
S-Box design and NCL S-Box design.

power consumption of the device. Pearson correlation coefficient is the most familiar

measure of dependence between two quantities. Correlation power analysis (CPA) is

an improvement of DPA [90, 72, 91, 92]. In CPA, a power model is used to predict
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the power consumption in terms of hypothetical keys and various input/output data;

the predicted power is then compared with the measured power using a correlation

coefficient algorithm [93, 94, 95]. If the hypothetical key is the secret key, its cor-

relation coefficient with the measured power will be significantly higher than other

incorrect hypothetical keys.

Before introducing the detailed steps of CPA, an experimental setup (hardware

configuration) is described below, which is important for obtaining a sufficient number

of power traces to execute a successful attack. Similar to the DPA experiment, CPA

was implemented in the S-Box design, which is downloaded into the SASEBO-GII

FPGA board. The core current of the cryptographic FPGA was measured through

a shunt resistor in the core power supply and it represents the instantaneous power

consumption.

The output of the S-box was sampled for the attacks attempts. A one bit

digital signal from the configuration FPGA is also sampled. Its falling edge represents

the instant when an input datum is fed to the cryptographic FPGA. In this way the

current measurement (analog signal) can be easily aligned with the output of the

S-box (digital signals). Such alignment is crucial for successful CPA attacks[93].

All analog and digital signals were measured using a Tektronix 500 MHz-bandwidth

oscilloscope MSO4054. The total number of data for one set of measurement is 10

million samples. The main clock for the FPGA board is 24 MHz and an input data

are sent to the cryptographic FPGA every 16 clock cycles. Therefore, the rate of

data is 24/16 = 1.5 MHz and the time span for each data is 1

1.5 MHz
= 666.67 ns. The

sampling rate of the oscilloscope is 2.5 GHz for analog signals and 500 MHz for digital

signals, which are the maximum settings for MSO4054 oscilloscope. Therefore, the

length of instantaneous power measurement is 2500 GHz

24 MHz
× 16 = 1666 samples for each

of datum

Unlike the DPA experiment, where the power consumption of all possible keys

(including the hypothetical keys and the secret key) are required to collect from the

FPGA board, CPA only requires the power consumption of the cryptographic device

to be collected while the secret key is embedded within it. The power consumption of

other hypothetical keys could be predicted using a power model; a Hamming Weight
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(HW) model is used in this experiment [93]. The steps for revealing a secret key using

CPA is described as follows:

1. Retrieve a set of expected cipher-texts (O) (the output of the S-Box in this case)

that are generated by a set of plain texts (I) and a set of hypothetical keys (K).

Let Ii be an element in I (i ∈ [1, nd] and nd is the number of plain texts) and

Kj be an element in K (j ∈ [1, nk]] and nk = 256 is the number of possible key

for an 8-bit S-box). Define the S-box as a function name O(·) = SBox(·). Then

an element in O matrix is calculated as

Oi,j = SBox(IixorKj). (16)

By applying (16), the O matrix is given by

Outputnd,nk =















O1,1 O1,2 · · · O1,nk

O2,1 O2,2 · · · O2,nk

...
...

. . .
...

Ond,1 Ond,2 · · · Ond,nk.















(17)

2. Apply a power consumption mode and build a hypothetical power consumption

matrix HW from the cipher-text matrix O. In this work, the Hamming weight

of a given cipher-text (the output of the S-box) is used as the power consumption

model.

HWi,j = HammingWeight(Oi,j). (18)

By applying (18), the HW matrix is given by

HWnd,nk =















HW1,1 HW1,2 · · · HW1,nk

HW2,1 HW2,2 · · · HW2,nk

...
...

. . .
...

HWnd,1 HWnd,2 · · · HWnd,nk.















(19)
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3. Measure the real power consumption of the cryptographic device for nd number

of inputs. As explained above, the instantaneous current consumption during

DATA transitions is the most important information for CPA. Therefore, this

experiment needs the transients power between the outputs rather than the

steady power. The alignment between the measured power and its correspond-

ing data is another critical fact for a successful CPA attack. As a result, each

data window is defined as from 100 samples before a transient to 1500 sample

points after a transient (a total of 1600 samples per data window). The transient

signal is the falling edge from the configuration FPGA, as discussed before. In

this way the digital sampling data can be accurately aligned with the measured

analog power. According to previous discussion, each datum has 1666 sampled

real power consumption points. There are 66 points discarded because they

are all in steady-state so that they play an insignificant role in CPA attacks.

Therefore, the windows length for each datum nt = 1600. A total number of

nd × nt sampled points are re-organized into a real power consumption matrix

RP. At the end of this step, a real power consumption matrix RPnd,nt of S-Box

should be generated, which is given by

RPnd,nt =















RP1,1 RP1,2 · · · RP1,nt

RP2,1 RP2,2 · · · RP2,nt

...
...

. . .
...

RPnd,1 RPnd,2 · · · RPnd,nt.















(20)

4. Compare the HW matrix with the RP matrix using the correlation coefficient

formula to find out the correct key that has the highest correlation value. There

are a total number of nk ∗ nt correlation coefficients to be calculated. In each

round of calculation, take one column Xj (j ∈ [1, nk]) of the HW matrix

Xj =
[

HW1,j HW2,j · · · HWnd,j

]T

(21)

take one column Yt (t ∈ [1, nt]) of the RP matrix

Yt =
[

RP1,t RP2,t · · · RPnd,t

]T

(22)
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and calculate an element of the correlation coefficient matrix Corr as

Corr(Xj, Yt) =
Cov(Xj, Yt)

√

V ar(Xj) · V ar(Yt)
. (23)

The correlation coefficient is defined as equation (23). It is used to estimate

the relationship between two vectors Xj and Yt. Cov(Xj, Yt) represents the

covariance between Xj and Yt. V ar(Xj) and V ar(Yt) represent the standard

deviations of Xj and Yt, respectively. The Pearson correlation coefficient esti-

mator r between Xj and Yt could be written in equation (24) for a series of n

measurements, where x̄ and ȳ represent the mean value of Xj and Yt, respec-

tively.

r =

∑n

i=1
(xi − x̄) · (yi − ȳ)

√

∑n

i=1
(xi − x̄)2 ·

∑n

i=1
(yi − ȳ)2

(24)

By applying (23), the correlation coefficient matrix is give by

Corrnk,nt =















Corr1,1 Corr1,2 · · · Corr1,nt

Corr2,1 Corr2,2 · · · Corr2,nt

...
...

. . .
...

Corrnk,1 Corrnk,2 · · · Corrnk,nt.















(25)

Figure 3.9 shows the results of CPA attacks on the synchronous S-Box design

and NCL S-Box design, respectively. The X-axis represents the length of a data

window and Y-axis represents the correlation value for each key hypothesis. There

would be total 28 = 256 possibilities from 0 to 255 for a 8-bit key. Thus, there are

256 correlation values in Y-axis for every sampled point in the data window. Correct

Keys are plotted in black, while the other key assumptions are plotted in grey. The

highest correlation peaks happened during the time of data transition. Therefore,

for synchronous S-Box design, the highest correlation value occurs at 200 ÷ 2.5e9 =

80(ns), which is around the 80 ns

666.67 ns
× nt = 191th data point for a data window (as

shown in Figure 3.9(a)). This result shows that the CPA attack on the synchronous
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S-Box is successful. For the NCL S-Box design, there are two significant correlation

peaks in Figure 3.9(b) due to the transition between two data units being processed

as DATA1 to NULL, then NULL to DATA2. Using the similar method mentioned

previously, the two data transition points are around the 300th data point and the

1200th data point for a data window. The correct key (247d) is plotted in black,

while other key hypothesis are plotted in grey. Figure 3.9(a) shows that the correct

key (247d) is clearly revealed by observing the highest correlation value, while it can’t

be observed in Figure 3.9(b) because it is buried by other keys. Similarly, three other

random keys are selected for the CPA attacks, but none of the keys have the highest

correlation coefficient. Therefore, the NCL S-Box design is resistant to CPA attacks.

3.8. NUMBER OF TRACES

Besides proper data alignment, another important factor is to get enough

number of power traces to conduct a successful DPA or CPA attack. The more traces

are measured, the more elements are in the RP matrix, the measurement noises

would cause less affect, and the correlation between the measurement power and

power model would be more precise. However, too many power traces would increase

the time to gather data and the time to process the data. Therefore, it is interesting

to analyze the effect of number of power traces on the success of CPA attacks. For

a given set of number of trace ntr ∈ [1, 500] and a given key kj ∈ K, In the HW

matrix, take the column corresponding to the key kj for ntr number of traces,

X
′

j =
[

HW1,j HW2,j · · · HWntr,j.
]T

(26)

In the RP matrix, take the column when transients happen (column 191 for syn-

chronous S-box and column 300 for NCL S-box, respectively, as discussed previously)

Y
′

t =
[

RP1,tran RP2,tran · · · RPntr,tran.
]T

(27)

And calculate the correlation coefficient between vectors X
′

j and Y
′

t . Repeat the

above process for all possible combinations of ntr and kj , the results are shown in

Figure 3.10 part (a) and part (b), for synchronous S-box and NCL S-box, respectively.
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Figure 3.9. CPA result for synchronous S-Box design and NCL S-Box design.

Figure 3.10 provides the threshold of how many traces are needed for attackers on

both designs at the instant of data transients.

The X-axis represents the number of traces and Y-axis represents the correla-

tion value at the time of data transients. The correct key (247d) is plotted in black,

and other keys are plotted in grey. For the synchronous S-Box, when the number of

power traces is small (ie. less than 25), the correlation coefficient of the correct key
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Figure 3.10. The number of traces needed for a successful CPA attack.

is buried by the correlation coefficient of other keys. This means that CPA would

fail when the number of power traces is too small. When there is enough number of

power traces (ie, more than 50), the correlation coefficient of the correct key begins

to stand out from others. CPA attack in this case will be successful. However, for

the NCL S-Box design, the correct key does not stand out from other keys even the
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number of traces pass 500. Therefore, it demonstrated that NCL makes the attack

more difficult.

3.9. CONCLUSIONS

In this section, a hardware implementation of the proposed low power SCA

resistant asynchronous S-Box design for the AES crypto-system is revealed to be suc-

cessfully resisting DPA and CPA attacks. The asynchronous S-Box design is based

on a self-timing logic referred to as NCL, which supports beneficial properties for

resisting DPA/CPA: clock-free, dual-rail signal, and monotonic transitions. These

beneficial properties make it difficult for attackers to decipher secret keys embedded

within the cryptographic circuit of the FPGA board. Utilizing the two FPGAs in-

cluded in the SASEBO-GII board, the configuration and cryptographic functions are

able to be performed separately to ensure that the power trace measurements for the

analysis attacks do not interfere with each other. Experimental results of the original

design against the proposed S-Box revealed that the asynchronous design decreased

the amount of information leaked from both DPA and CPA attack. Results also re-

vealed that the proposed design showed benefits of flatter power peaks and 22% to

26% lower total power consumption during regular operation.

The proposed DPA and CPA attacks procedure based on power measurement

is comprehensive and general, not limited to SASEBO-GII board. It can be revised

and used for studying SCAs on other devices.
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4. PROJECT III: STOCHASTIC BITSTREAMS COMPUTATION

4.1. BACKGROUND

Unlike most digital circuits that are designed to transfer definite inputs into

definite outputs. (i.e., Boolean, integer, and real value). Stochastic logic operates on

probabilistic bitstreams, where the signal is encoded by the probability of obtaining a

one or a zero from a given input signal [96]. An illustration of a stochastic bitstream

is shown in Figure 4.1 [97]. A real value x = 3/8 ( 0 ≤ x ≤ 1) is represented as a

bitstream with three bits are one.

Figure 4.1. A stochastic bitstream with value 3/8.

Stochastic logic can be adapted to any combinational circuits, with stochastic

bitstreams as inputs and/or outputs. Therefore, logical computation in the determin-

istic Boolean number domain is transformed into probabilistic computation in the real

number domain. Figure 4.2 [97] shows an AND gate with bitstreams as inputs and

outputs, the probabilities of obtaining a one in the input streams are 0.8 and 0.5.

The probability of obtaining a one in the output stream is 0.4, which is 0.8 × 0.5.

The benefits of using stochastic logic are:

1. A complex operations in Boolean logic can be designed in a simple way using

stochastic logic. For example, the multiplication operation can be implemented

using a single AND gate as shown in Figure 4.2[97]. In contrast, conventional

digital multiplier design needs a much complex design. More complex functions
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Figure 4.2. An AND gate to implement multiplication.

such as the Taylor expansion of an exponential function and the square root

function can also be implemented using stochastic methodology [98, 99].

2. Stochastic logic circuits are highly tolerant to errors in signal processing where

small fluctuations can be tolerated but large errors are catastrophic [100]. For

example, if a single bit occasionally flipped into its complementary value (i.e.,

logic one becomes logic zero or vice-versa), the probability of occurrence of zeros

and ones are not substantially changed. But if the same thing happened to a

conventional circuit, bit flips can be a serious problem.

3. Stochastic representation of data could be either serial streaming on a single

wire or in parallel on a bundle of wires. The parallel bitstreams can be synthe-

sized into nanowire crossbar arrays [101]. The high fault-tolerance is also very

important for nanoscale computation.

4. The highly randomness property of stochastic logic is helpful for cryptographic

devices against power analysis attacks and thus, to enhance hardware security.

This work has addressed this advantage by implementing an 8-bit AES S-Box

with stochastic bitstreams.

However, things always come with tradeoffs. Comparing with conventional bi-

nary radix encoding, the stochastic logic encoding generates a large delay in obtaining

the computation results [96]. A binary encoding can represent 2n numbers with only

n bits, while to present real numbers with a resolution of 2−n, numbers of the form

x
2n for integers x between 0 and 2n, a stochastic encoding requires a stream of 2n
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bits. Stochastic logic uses probabilistic bitstreams to represent the binary logic state.

Thus, the random fluctuation will generate some errors during the logic computation.

In Figure 4.2, if the input stream A changes to 0,1,0,1,1,1,1,1,1 (a=0.8), while input

stream B remain the same, the output bitstream will become 0,0,0,1,0,0,1,0,0,1, which

is 0.3, not 0.4 any more. Therefore, the 100% accuracy in stochastic bitstreams is

difficult to achieve.

4.2. STOCHASTIC CRYPTOGRAPHIC DEVICES

Utilizing the concept of stochastic bitstreams, a novel approach to enhance the

security of cryptographic devices against power analysis attacks has been presented

in this work. The proposed structure has good compatibility that could be used

in different combinational logic core of encryption standards. To demonstrate the

methodology, a MATLAB simulink based simulation was designed to show the idea.

Following that, a VHDL hardware implementation of an 8-bit AES S-Box was built

to verify the resistance of power analysis attacks.

4.2.1. MATLAB Simulink Structure. For a given combinational logic

(i.e., a two-input AND gate followed by a two-input OR gate in this case), an encoder

with a random number generator is needed to generate the bitstreams. The output

of the combinational logic is bitstreams, therefore a decoder is needed to convert

the bitstreams to binary numbers for logic verification. The system structure of this

MATLAB Simulink based simulation is shown in Figure 4.3.

The simulation model includes three encoders for each input signal, a given

combinational logic, and a decoder for output. The block diagram of an encoder is

shown in Figure 4.4. It consists of a build-in random number generator (RNG) with

sampling rate of 100 KHz, a decision function, and a comparator. RNG generates a

random number (RN) in the range of 0 to 1. The expression of decision function is

P = 0.25 + 0.5 × x, where x represents the input. P is the design weight; P = 0.25

when x = 0, meaning that the probability of 0s in the bitstreams is 25%; similarly,

the probability of 1s in the bitstreams is 75%. The output becomes 1 if RN ≤ P ,

and 0 if RN > P . The generated bitstreams can be seen in Figure 4.5. The top two

signals (i.e., andin1, andin2) represent the two input bitstreams of the AND gate, and

the bottom signal (i.e., andout) is the output bitstreams of the AND gate.
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Figure 4.3. Stochastic implementation of a combinational logic in simulink.

Figure 4.4. Encoder block.

Figure 4.6 shows the block diagram of a decoder. The input of the decoder is

the output of stochastic logic blocks, which is in the form of stochastic bitstreams.

The up-counter counts the number of 1s in the bitstream and the probability of 1s

is calculated by dividing the counter value by the length of the bitstream window.

The comparator determines the output state, by comparing the calculated possibility

with 0.5. If the calculated probability is larger than 0.5, the output is considered as

1 in conventional logic. On the other hand, it is considered as 0 in conventional logic

if the probability is less than 0.5.
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Figure 4.5. Generated bitstreams waveform of AND function.

The final output of the MATLAB simulink based simulation is shown in Figure

4.7. It shows that output is exactly matching with this combinational logic function

OUT ⇐ (In1 • In2) + In3;

This simulation model has demonstrated the idea of utilizing encoder and

decoder to convert signals between stochastic bitstreams and conventional binary

signals for a given combinational logic. However, in order to do the power analysis

attack, a synthesizable hardware model of a cryptosystem need to be designed, so the

power traces can be measured using the SASEBO-GII FPGA board.
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Figure 4.6. Decoder block.

4.2.2. Hardware Implementation of Bitstream Based AES S-Box.

This subsection presents the hardware implementation of an 8-bit AES S-Box that

is based on stochastic bitstreams. As mentioned earlier, S-Box is the most critical

component of AES cryptographic devices because it is the most vulnerable component

to SCA. Its Boolean logic implementation has been presented in Section 3.3. In a

stochastic logic system, encoders and decoders are needed. The system diagram of

the proposed structure is shown in Figure 4.8. In this work, the author defines HIGH

and LOW to represent two possible states in a binary encoded bit in the input and

output, while 1s and 0s to represent bits in the stochastic bitstreams. For clarity, in

Figure 4.8, the solid lines represent the conventional logic states, while the dash lines

represent the stochastic bitstreams.

The input (i.e., plaintext) and output (i.e., ciphertext) of the proposed design

are in standard boolean logic. As Figure 4.8 shows, there are eight encoders, which

generate stochastic bitstreams for each bit of the input data. The inputs of encoders

are one bit from the input data and a 32-bit fixed-point random number (RN), which

is ranging from 0 to 1. The random numbers are generated by combining the design

of linear feedback shift register (LFSR) and cellular automata shift register (CASR)

based pseudo-random number generators. This combined Random Number Generator

(RNG) has better bit independence, longer cycle length, and enhanced unpredictable

randomness [102]. The equation of encoders is
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Figure 4.7. Final output waveform.

Eo(i) =











1, (x = HIGH ∧ P1 ≥ RN) ∨ (x = LOW ∧ P0 ≥ RN)

0, (x = HIGH ∧ P1 < RN) ∨ (x = LOW ∧ P0 < RN)
(28)

where x represents the input bit, P1 and P0 are the decision weight of the encoders,

which dictate the probability of 1s and 0s in the bitstreams, respectively, when input

is HIGH. Note that P1 + P0 = 1 (P1 > 0, P0 > 0). The distribution of P1 and P0

defines the decision weight of encoders, which affects the performance of the proposed
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structure. The outputs of each encoder (Eo) are stochastic bitstreams that has the

probability of P1 to be ’1’ when its input is HIGH and the probability of P0 to be ’1’

when its input is LOW. RN represents the random number that is generated by the

RNGs.

The outputs of all encoders combine together to form an 8-bit bitstream (i.e.,

Eo(0) to Eo(7) ), contain information of the plaintext and are fed into a combinational

logic S-box. The outputs of the S-box are the encrypted information, which is also in

bitstreams. Therefore, decoders are needed to obtain the ciphertext, which count the

number of 1s to determine whether the present bitstream represents HIGH or LOW

logic. The equation of decoder is

Do(i) =











HIGH, Na=1

Nclk
≥ 0.5,

LOW, Na=1

Nclk
< 0.5,

(29)

where Na=1 is the number of 1s in the input bitstreams of a decoder and Nclk is the

number of bitstream bits for an input logic state. Do is the output of decoder. The
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following sections will discuss two aspects of the proposed stochastic logic S-box: (1)

functionality and (2) resistance to power analysis attacks.

4.3. LOGIC VALIDATION

Stochastic logic injects randomness and uncertainty into the data flow, which

helps in resisting power analysis attacks, but errors are inherently inevitable due to

probabilistic nature of it. For cryptographic devices, 100% encryption/decryption

accuracy is important. Thus, the accuracy of the implemented combinational logic

should be analyzed and verified. In general, three factors may affect the accuracy of

stochastic logic devices: the length of bitstreams for a given logic state, the decision

weight of the encoders, and the repetition times of an input.

The proposed design has been implemented in VHDL and simulated using

ModelSim. The output data are exported to a text file using the VHDL textio pack-

age, and then, compared with the correct output responses using a script. In this

way, errors can be located and the error rate can be calculated as well. An intuitive

method to decrease the likelihood of error is to repeat the input data. A given input

datum is repeated by Nr times. The decoder side takes Nr number of output data and

takes the one that appears most the times as the output. Given a total number of M

input data, the error rate Er is defined as Er = Mwrong

M
, where Mwrong is the number

of error outputs, which are defined as the output of the decoder is different from the

expected output value, among M input data. Figure 4.9 shows numerous error rate

curves obtained by varying decision weight, bitstream length and repetition times.

For each bitstream length, the error rate increases as P0 increases. Increase in the

difference between P0 and P1 means the resulting bitstreams exhibit less randomness.

P0 = P1 = 0.5 means complete randomness (i.e., the bitstreams contain no informa-

tion), while P0 = 0, P1 = 1 means no randomness (same as the conventional binary

logic). In Figure 4.9, more randomness results in a higher error rate. The longer the

bitstream for an input state is, the lower the error rate is. The more repetition times

for an input, the lower the error rate is.

Based on the simulation results, there are several patterns lead the proposed

structure to achieve near 100% accuracy. For example, two possible patterns are: 1)
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Decision weight of P0 = 0.1, P1 = 0.9 with bitstream length of 512 or more, and 2)

P0 = 0.05, P1 = 0.95 with bitstream length of 256 or more.

Figure 4.9. Error rate of stochastic bitstream S-box.

4.4. CPA RESULTS

Besides ModelSim simulation, the proposed stochastic bitstream S-Box has

been also verified using a specified SCA standard evaluation FPGA board (SASEBO-

GII). It includes two FPGA cores to implement cryptographic logic and configuration

logic separately. So the power traces from cryptographic core would not be affected

by configuration circuit. Figure 4.10 compares the power traces between regular S-

box (Top) and stochastic S-box (Bottom) design. It shows that switching power is

much less in the stochastic S-box design.

Among various SCA methods, CPA is considered to be more advanced and

effective. CPA calculates the correlation coefficients between an estimated power

model and the real measured power consumption. Since the power consumption

of an integrated circuit can be estimated by the Hamming Distance (HD) between

the current state and its consequential state [73]. The estimated power model is

the Hamming Weight (HW) matrix of all outputs for all possible hypothesis keys.
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Figure 4.10. Power traces comparison between regular S-box (Top) and stochastic
S-box (Bottom) design.

Once the correlation coefficients between the HW matrix and the measured power

consumption matrix are calculated. The trace with the highest correlation coefficient

is chosen to be the correct secret key. A detailed procedure of carrying a CPA attack

has been reported in [103].

Figure 4.11 shows the result of an attempted CPA attack on the proposed

design. The X-axis represents the length of a data window and Y-axis represents the

correlation value for each key hypothesis. There would be total of 256 possibilities

for an 8-bit key. The correct key (63d) is plotted in black, while other hypothesis

keys are plotted in grey. The correct key is buried by the other keys. There is no

correlation coefficient trace that is significantly higher than the others. Therefore,

it is statistically infeasible to reveal the correct secret key in the given case. This
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indicates that the stochastic bitstream S-box design is resistant to the CPA attacks.

The same CPA has conducted to a regular Boolean S-box design in [103], the attack

was found to be successful. The proposed stochastic bitstream method can enhance

security against power analysis attacks without the need to completely re-design the

core logic functional blocks. Therefore, the method in this work can be applied to

many other devices when they require enhanced security.

Figure 4.11. CPA results of stochastic bitstream S-box.

4.5. CONCLUSIONS

This section presents a novel approach to enhance the security of cryptographic

devices against the power analysis attacks. The proposed approach uses stochastic

logic, which utilizes probabilistic bitstreams to represent cryptographic information.

The stochastic bitstream is generated by encoders with combination of CASR and

LFSR based random number generators. The input and output signals of the core

cryptographic component are the stochastic bitstreams and their randomness makes

it difficult to carry out power analysis attacks. The output bitstreams are converted
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back to the conventional binary logic signals by decoders to ensure compatibility with

other logic functions. The functionality of the proposed design has been verified us-

ing an 8-bit AES S-box design. The effects of decision weight, bitstream length, and

input repetition times on error rates have been also studied. Experimental results

obtained from a SASEBO-GII crypto-hardware evaluation board shows that the pro-

posed approach enhances the resistance to against the CPA attack by successfully

protecting the hidden key.
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5. SUMMARY AND CONCLUSIONS

5.1. SUMMARY OF CONTRIBUTIONS

The objective of this dissertation is to study and analyze two applications of

NCL and to explore more benefits of asynchronous NCL circuits and related system.

NCL is an asynchronous logic with the feature of delay-insensitivity and dual-rail

logic representation. Various NCL circuits have been designed with the purpose of

improving power consumption and reducing noise and EMI. However, NCL designs

require a much larger area than conventional Boolean logic designs, which might not

be optimal for the applications like potable digital devices. Therefore, in order to

fully demonstrate the merits of NCL, and to locate the appropriate applications for

it, this dissertation introduces two applications.

The first one is NCL-based ANRCAs for nano-scale computing. With the ab-

sent of clock distribution network, ANRCAs are anticipated to make the nanowire

crossbar design much more flexible and fault tolerant for manufacturing. The author

has proposed two implementations of ANRCA, DR-ANRCA and MLUT-ANRCA,

both of which have the advantages of eliminating clock-related issues, good scalabil-

ity, and high reliability. Starting with primitive configurable logic unit (PGMB), a

number of different reconfigurable CLBs, the fundamental building blocks of FPGA-

like hierarchical architectures, have been designed and analyzed. The author also has

compared different design schemes in terms of area, programming steps, and latency.

Finally, defect-tolerance and repair strategies have been presented and discussed. All

these together provide the backbones for the future development of nano-scale asyn-

chronous logic, especially reconfigurable devices.

The second contribution of this dissertation is NCL-based cryptographic de-

vices for enhanced security against SCAs. An 8-bit AES S-Box, the core compo-

nents of AES cryptographic devices, is used as demonstration. The NCL-based asyn-

chronous S-Box design has a number of features that help improve the resistance to

SCAs, such as clock-free, dual-rail signals, and monotonic transitions. Such novel
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S-Box designs has been implemented in VHDL and tested in both software simula-

tion and hardware experiment. The detail procedure to carry out two popular SCAs,

DPA and CPA, is provided. It has been demonstrated that the proposed NCL-based

S-Box has the ability to resist various SCAs, and to have lower total power con-

sumption, by comparing with its synchronous counterparts. As more people become

concerned with cyber-security recently, the contribution in this section presents a

security enhancement approach in the circuit design level.

Security of cryptographic devices would also be improved by using stochastic

logic, which uses probabilistic bit streams to represent cryptographic information.

This dissertation proposes a encoder/decoder scheme to use probabilistic bit streams

without re-writing everything from scratch. The core component, in stochastic bit

streams, has the feature of randomness to make SCAs very difficult. Meanwhile,

the proposed design ensures compatibility with other logic functions. The author

has studied the effects of a number of parameters on the performance of the pro-

posed design scheme. Hardware demonstration on an 8-bit AES S-box confirms the

enhancement against CPA attacks.

5.2. FUTURE WORK

The future work includes but is not limited to the following topics:

1) One topic is to develop an experimental prototype of the proposed ANR-

CAs using existing nanowire fabrication strategies. As discussed in Section 2, two

approaches are possible, including bottom-up or hybrid bottom-up/top-down ap-

proaches [104, 105]. DR-ANRCA, MLUT-ANRCA, and some other design techniques

developed in this dissertation have the potential in the application of the prototype

nanowire-based integrated circuit. Silicon Nanowires (SiNWs) has been extensively

studied by many researchers [106] because silicon is the dominant material of the ex-

isting semiconductor industry. On the other hand, Germanium Nanowires (GeNWs)

has also been studied to implement high performance tunnel diodes recently [107],

which could be a good candidate to implement the proposed DR-ANRCAs. The

studies of memristor materials are updated frequently with different features [47].

The state-of-the-art in memristors uses titanium dioxide (TiO2) as resistive mate-

rial, which is sandwiched between platinum electrodes. A silicon-based memristor
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was proposed in [108]. ANRCAs experimental prototype can be developed using dif-

ferent materials. Then, the device characterization data would be collected for the

performance comparison.

2) Nanowire-based integrated circuit, because of its bottom-up structure, re-

quires major innovation in Computer-Aid Design (CAD) tools. An automated design

optimization tool could be developed for the FPGA-like hierarchical ANRCAs. The

tool should be able to maximize the utility of PGMBs, optimize programming steps,

and take care of the inherent fabrication defect issues.

3) The NCL-based S-Box design can be extended to a full 14 rounds of 256-bit

AES design. The first step would be to test the full NCL AES on the FPGA board.

And then a NCL-based AES core processor prototype could also be in the process

of taping out. Various SCAs are applied to the ASIC to verify its resistance against

SCAs. It would be interesting to study and to analyze the practical issues to do

successful SCAs on ASIC-based chips. It is also necessary to study the effect of ASIC

layout on the chance of successful SCAs.

4) Another enhanced security strategy is to involve a Spatial and Tempo-

ral Random Dynamic Voltage Scaling (STRDVS) technology, which can provide

additional resistance to SCAs and to further reduce the power consumption [109].

STRDVS can be implemented inside the NCL-base crypto-processor with different

voltage levels. Scaling down the supply voltage will have impacts on the chip perfor-

mance, such as speed and fault tolerance. Therefore, a series of numerical analysis is

needed to determine the boundary of voltage scaling range. And the issue of fault-

tolerance in high-speed low-voltage digital integrated circuits has become attractive

recently. It is interesting to see how fault-tolerance calculation is related to NCL-

based crypto-processors.

5) The proposed scholastic bit streams based encoder/decoder scheme needs

further optimization to eliminate the errors generated by randomness. The regular

error detection and repair strategy is no longer applicable to cryptographic applica-

tions due to the fact that the errors in the ciphertext are unpredictable. An automatic

scholastic analysis tool could be developed to find the proper distribution between

scholastic logic and conventional logic functions.
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