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ABSTRACT 

 
In this dissertation, the nonlinear control of nonholonomic mobile robot 

formations and unmanned aerial vehicle (UAV) formations is undertaken and presented 

in six papers.  In the first paper, an asymptotically stable combined kinematic/torque 

control law is developed for leader-follower based formation control of mobile robots 

using backstepping.  A neural network (NN) is introduced along with robust integral of 

the sign of the error (RISE) feedback to approximate the dynamics of the follower as well 

as its leader using online weight tuning. Subsequently, in the second paper, a novel NN 

observer is designed to estimate the linear and angular velocities of both the follower and 

its leader robot and a NN output feedback control law is developed.  

On the other hand, in the third paper, a NN-based output feedback control law is 

presented for the control of an underactuated quad rotor UAV, and a NN virtual control 

input scheme is proposed which allows all six degrees of freedom to be controlled using 

only four control inputs.  The results of this paper are extended to include the control of 

quadrotor UAV formations, and a novel three-dimensional leader-follower framework is 

proposed in the fourth paper.  Next, in the fifth paper, the discrete-time nonlinear optimal 

control is undertaken using two online approximators (OLA’s) to solve the infinite 

horizon Hamilton-Jacobi-Bellman (HJB) equation forward-in-time to achieve nearly 

optimal regulation and tracking control. In contrast, paper six utilizes a single OLA to 

solve the infinite horizon HJB and Hamilton-Jacobi-Isaacs (HJI) equations forward-in-

time for the near optimal regulation and tracking control of continuous affine nonlinear 

systems.  The effectiveness of the optimal tracking controllers proposed in the fifth and 

sixth papers are then demonstrated using nonholonomic mobile robot formation control. 
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SECTION 
 
 

1.  INTRODUCTION 
 

 
In the past decade, social biological organisms such as ants, fish, and birds have 

inspired researchers to explore control objectives. For instance, the use of adaptive neural 

networks (NN’s) in closed-loop feedback control systems has been motivated by 

biological processes such as the nervous system and its basic unit, the neuron.   

Consider the social creatures shown in Fig. 1.1.  The leaf cutter ants work 

together to harvest fresh plant matter to grow food to sustain and expand the colony.  The 

fish swim in schools as a defense mechanism from predators and to aid in foraging for 

food, and the birds fly in formation to reduce the drag force that each bird experiences 

compared to if it was flying alone.  While the objectives of each group of organisms are 

quite different, they share the same underlying theme.  That is, by working together, the 

task or objective at hand can be completed more quickly and efficiently than if the task 

were undertaken alone.  Recognizing these benefits, researchers have applied the lessons 

learned from nature to the control and coordination of multiple agents which include 

robots and unmanned aerial vehicles (UAVs), and the coordination of multiple agents has 

become known as robotic formation control where each robot or UAV in the group seeks 

to orient itself relative to its neighbor or a leader. 

Just as the social organisms described above orient themselves relative to one  
 
another to complete there respective objectives more effectively, the concept of formation  
 
control is to arrange the robot or UAVs relative to each other so that the mission is  
 
successfully completed more quickly and efficiently.  For example, the robots or UAVs 



 2

 

  
 

Fig 1.1 Leaf cutter ants1, school of fish2, and birds flying in formation3. 
 

 

may be equipped with sensors that have limited sensing capabilities.  If a single agent 

were assigned to sweep a large area using its limited sensing, the task could take a very 

long time.  However, by increasing the number of robots or UAVs and strategically 

arranging them, the formation of robots and UAVs can complete the task quicker and 

more efficiently than a single robot or UAV acting along can.   

 Thus, the benefits of controlling a team of robots or UAVs over controlling a 

single agent have stimulated the interests of many researchers, and the attention has 

shifted from the control of a single robot or UAV to controlling formations of robots or 

                                                           
1 Photo courtesy of: http://dsc.discovery.com/news/2008/09/10/gallery/leaf-cutter-ants-324x205.jpg 
2 Photo courtesy of:  http://photography.nationalgeographic.com/staticfiles/NGS/Shared/StaticFiles/ 

Photography/Images/POD/f/fish-and-coral-tuamotu-513704-xl.jpg 
3 Photo courtesy of:  http://www.wunderground.com/data/wximagenew/r/Ralfo/561.jpg 
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UAVs.   Next, several applications of formation control of robots and UAV’s are 

considered, and the benefits over controlling a single agent are discussed. 

 

1.1   APPLICATIONS OF FORMATION CONTROL 
 

  A team of mobile robots or unmanned aerial vehicles (UAVs) working together is 

often more effective than a single agent acting alone in applications like surveillance, 

search and rescue, perimeter security, and exploration of unknown and/or hazardous 

environments to name a few.  In addition to redundancy, a team of robots each with a 

variety of sensors offers the opportunity for increased sensor coverage when compared to 

a single mobile sensor or multiple stationary sensors. Therefore, mobile sensor networks 

are preferred over a single suite of sensors. 

  For example, in January 2004, the National Aeronautics and Space 

Administration (NASA) successfully landed two identical rovers on Mars known as 

Spirit and Opportunity, and shown in Fig. 1.2.  For more than five years, the two robots 

have accumulated more than 15 miles in total odometry [2].  Had NASA only deployed a 

single rover, the total odometry could have been as low as 5 miles [2] (approximate total 

distance traveled by Spirit rover as of July 15, 2009).  In contrast, by deploying a fleet of 

rovers to the surface of Mars, the unknown terrain could have been systematically 

divided and explored autonomously while providing scientists with an increased amount 

and wider variety of data from the Martian surface compared to the amount of data 

provided by just two rovers.  In addition, increasing the number of robots provides 

redundancy and decreases the chances of complete mission failure. 

  In addition to exploring foreign planets, formation control can also be applied to 

satellite formation flying where multiple smaller satellites work together to perform the 



 4

 

Fig. 1.2. NASA’s twin Mars rovers, Spirit and Opportunity4. 

 

 

task normally accomplished by one larger and more expensive satellite [3].  Not only are 

the smaller satellites often cheaper and quicker to build, they provide an increase in the 

resolution that can be achieved by a single satellite, and they have the ability to view 

targets from multiple angles or at multiple times. These qualities make them ideal for 

meteorological, environmental, astronomy, and communications applications [3].  In 

addition, increasing the number of satellites adds redundancy and robustness for 

successfully completing the desired tasks. 

 A well known example of formation control is a squadron of fighter jets flying in 

formation as shown in Fig. 1.3 where the formation traditionally consists of jets flown by  

                                                           
4 Photo courtesy of: http://www.jpl.nasa.gov/images/missions/Mer640.jpg 
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Fig. 1.3. Formation of fighter jets5. 

 

 

well-trained pilots.  Now, recent advances in technology have paved the way for 

unmanned jets to fly in formation with both manned and unmanned aircraft [4] where 

objectives include flying in tight formations so that a reduction in the formation’s 

induced drag is achieved [5].  By reducing the drag incurred on the formation, the team of 

UAV’s reduces their fuel consumption, and thus, they can achieve longer flight durations 

[5].  However, as a result of a follower UAV flying in close proximity to its leader, the 

follower must not only consider its own dynamics, but also the dynamics of its leader.  

That is, the formation dynamics must be considered. 

The examples above have illustrated three of the many possible applications of 

robotic formation control.  In addition, these examples have brought to light several 

benefits of formation control over employing a single agent as well as several 

                                                           
5 Photo courtesy of: http://www.baseops.net/militarypilot/at38_formation.jpg 
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considerations that should be taken into account in the design of formation control laws.  

That is, the designed formation control laws must ensure that the formation errors are 

small to ensure the success of the mission as well as the stability of the formation.  In 

addition, the dynamic effects of the leader on the follower robot (formation dynamics) 

should be explicitly considered.  Observing that autonomous robots and UAV’s are often 

powered by batteries, the task of achieving and maintaining the desired formation should 

also be completed in an optimal manner to extend the duration of a mission and thus 

reduce the risk of mission failure due to depleted power.  The optimal use of system 

resources becomes especially important in tasks such as the Mars rover and satellite 

formation examples described above where simply replacing batteries is not an option.  

  Next, an overview of current methodologies for robotic and UAV formation 

control is presented, and their shortcomings are exposed.  Subsequently, the organization 

of this dissertation is presented. 

 

1.2   OVERVIEW OF FORMATION CONTROL METHODOLOGIES 
 
  For the formation control of wheeled mobile robots shown in Fig. 1.4, many 

researchers [1] have simplified their approaches by considering only the kinematic 

system of the robot thereby ignoring the robot and formation dynamics.   As observed 

from robot arm control, the dynamics must be considered in practice to guarantee that the 

robots track a desired velocity while avoiding the use of large control gains which would 

become necessary to dominate the neglected dynamics in order to ensure an acceptable 

performance [6].  Similarly, experimental studies have illustrated the need for dynamical 

controllers for wheeled mobile robots with high inertia, high operating speeds, significant 

unmodeled dynamics, or high system noise [7]. 
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  Likewise, the control of quadrotor UAVs, similar to the UAV shown in Fig. 1.5, 

is often accomplished by making small angle approximations and considering simplified 

dynamics.  However, experimental studies have shown that the above simplifications are 

valid only at very low speeds such as hovering while the aerodynamic effects can become 

significant even at moderate velocities causing instability of the UAV [8].  In addition, 

for the formation control of UAV’s, cylindrical coordinates and contributions from 

wheeled mobile robot leader follower formation control [1] have been extended for 

aircrafts by assuming the dynamics are known [9].  However, it is desirable to solve the 

UAV formation control problem without requiring full knowledge of the system 

dynamics while in a coordinate system that is better suited for a three-dimensional (3D) 

formation, such as spherical coordinates, since the type of sensor measurements required 

to solve the 3D-formation control problem are often in a spherical coordinate system. 

 

 

 

 
Fig 1.4. Missouri S&T autonomous trucks. 
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Fig. 1.5 Missouri S&T quadrotor UAV. 
 
 
 
 

  In addition, the stability of the wheeled mobile robot or UAV is often the sole 

consideration of many existing formation control schemes [1],[9].  However, as described 

above, optimal use of system resources if often required so as to extend the duration of 

the mission while improving the likelihood completing the task at hand.  Thus, the 

control laws derived in this dissertation seek to address the shortcomings described 

above. 

 

1.3   ORGANIZATION OF THE DISSERTATION 
 
  In this dissertation, the control of nonholonomic mobile robot formations and 

UAV formations is undertaken while relaxing the above common assumptions and 

simplifications.   This dissertation is presented in six papers, and their relation to one 

another is illustrated in Fig. 1.6.  The common theme of each paper is the formation 

control of wheeled mobile robots and UAV’s.  The first two papers deal with wheeled 
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mobile robots and address the asymptotic stability of the formation and output feedback 

controller designs, respectively, when the dynamics of the robots and formation are 

unknown.  The third and forth papers consider the output feedback control of a single 

quadrotor UAV and state feedback control of formations of quadrotor UAVs, 

respectively, in the presence of unknown dynamics.  The final two papers of the 

dissertation consider solving the Hamilton-Jacobi-Bellman (HJB) equation in both 

discrete and continuous time frameworks, respectively.  Additionally, the contributions of 

the final paper are extended to solve the Hamilton-Jacobi-Isaacs (HJI) equation 

commonly used in H∝ optimal control.  The effectiveness of the optimal control laws 

derived in the final two papers is demonstrated using wheeled mobile robots. 

 

 

 

 

 
 

Fig 1.6.  Dissertation outline. 
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  In the first paper, an asymptotically stable combined kinematic/torque control law 

is developed for leader-follower based formation control of mobile robots using 

backstepping in order to accommodate the complete dynamics of the robots and the 

formation.  A NN is introduced along with robust integral of the sign of the error (RISE) 

feedback to approximate the dynamics of the follower as well as its leader using online 

weight tuning, and Lyapunov theory guarantees that the tracking errors are 

asymptotically stable as opposed to uniformly ultimately bounded (UUB) stability which 

is typical with most NN controllers.   In comparison to our previous work [10], the RISE 

method achieves asymptotic stability by using the integral of a high-gain term whereas 

the method in [10] attained asymptotic stability through a robust adaptive term.  

Subsequently, a NN output feedback control law is developed requiring minimal 

communication in the second paper. Further, a novel NN observer is designed to estimate 

the linear and angular velocities of both the follower robot and its leader.    

  In the third paper, a novel NN output feedback control law is presented for the 

control of an underactuated quad rotor UAV.  Although a quadrotor UAV is 

underactuated, a novel NN virtual control input scheme is proposed which allows all six 

degrees of freedom of the UAV to be controlled using only four control inputs.  

Furthermore, a NN observer is introduced to estimate the translational and angular 

velocities of the UAV. In paper four, we extend the results of paper three to include the 

control of UAV formations, and a new leader-follower formation control framework is 

proposed for UAVs based on spherical coordinates where the desired trajectory of a 

follower UAV is specified using a desired- separation, angle of incidence, and bearing , 

ds , dα , dβ , respectively, relative to its leader.  In the proposed formation control 
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formulation, the desired separation, angle of incidence and bearing angle will be utilized 

to define a desired trajectory of a follower UAV relative to its leader, so as to convert the 

formation control problem into a tracking control problem.  

Our previous work [11] explored solving the HJB equation using offline training 

and NN’s.  For the approach in [11], an additional NN was utilized to relax the need of 

exact knowledge of the system dynamics.  In contrast, direct dynamic programming 

techniques are utilized in paper five to solve the infinite horizon Hamilton Jacobi-

Bellman (HJB) equation online and forward-in-time time for the optimal control of 

general affine nonlinear discrete-time systems.  The proposed approach, referred 

normally as adaptive dynamic programming, uses online approximators (OLA’s) to solve 

the infinite horizon optimal regulation and tracking control of affine nonlinear discrete-

time systems in the presence of unknown internal dynamics and a known control 

coefficient matrix.  Novel tuning laws for the OLA’s are derived, and all parameters are 

tuned online.  Lyapunov techniques are used to show that all signals are UUB and that the 

approximated control signals approach the optimal control inputs with small bounded 

error. The effectiveness of proposed nearly optimal tracking controller scheme is verified 

using a nonholonomic mobile robot.  In addition, the online optimal control scheme is 

applied to the formation control of nonholonomic mobile robots in [12]. 

In the final paper, a novel single online approximator (SOLA)-based scheme is 

designed to solve the optimal regulation and tracking control problems for continuous 

nonlinear affine systems with known dynamics.  The SOLA-based adaptive approach is 

designed to learn the infinite horizon continuous time HJB equation and the 

corresponding optimal control input that minimizes the HJB equation forward-in-time.  
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Subsequently, the SOLA architecture is extended to learn the HJI equation commonly 

used in H∝ optimal control.  Novel tuning algorithms are derived which not only ensures 

the optimal cost (HJB or HJI) function and control input are achieved, but also ensures 

the system states remain bounded during the online learning process.  Lyapunov 

techniques are used to show that all signals are UUB and that the approximated control 

signals approach the optimal control inputs with small bounded error. In the absence of 

OLA reconstruction errors, an optimal control is demonstrated.   

 

1.4 CONTRIBUTIONS OF THE DISSERTATION 
 

This dissertation provides contributions to the field of robot and UAV formation 

control as well as to the control of general nonlinear systems.  The control laws 

developed in this dissertation in the context of formation control explicitly compensate 

for the dynamics of the individual agents as well as the dynamics of the entire formation, 

and the stability of the formation is demonstrated in each case.  Further, the contributions 

of paper 2 illustrate how the formation control objective can be achieved using limited 

communication and minimal sensor measurements by using output feedback.  For the 

control of UAV’s and UAV formations, the control laws derived in this dissertation are 

independent of a specific operating point and do not require any small angle 

approximations. Although a UAV underactuated, the control of all system states is 

achieved using a novel virtual controller structure.  Additionally, the formation control 

laws derived in this work do not require complete knowledge of the system or formation 

dynamics as the NN’s learn them all online. 
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In addition to robot formations, the NN/RISE feedback method developed in 

paper 1 allows the asymptotic stability of general nonlinear affine systems to be shown in 

the presence of uncertainties and disturbances that have time varying upper bounds.   

Asymptotic stability is a much stronger result than the boundedness results which 

typically arise in presence of bounded uncertainties and disturbances [13].  The 

contributions of papers 5 and 6 also pertain to general nonlinear affine systems in 

discrete- and continuous-time, respectively, and both provide novel online optimal 

control schemes to learn the HJB or HJI equations forward in time in contrast to optimal 

control methods which develop backwards in time [14].  Additionally, the schemes in 

papers 5 and 6 explicitly consider the approximation and OLA reconstruction errors in 

the stability proofs which is not typical of current approaches. 
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PAPER 1 
 
 

Neural Network Control of Mobile Robot Formations using 
RISE Feedback1 

 
 

Travis Dierks and S. Jagannathan 
 
 

Abstract—In this paper, an asymptotically stable combined kinematic/torque control law 

is developed for leader-follower based formation control using backstepping in order to 

accommodate the complete dynamics of the robots and the formation, and a neural 

network (NN) is introduced along with robust integral of the sign of the error (RISE) 

feedback to approximate the dynamics of the follower as well as its leader using online 

weight tuning. It is shown using Lyapunov theory that the errors for the entire formation 

are asymptotically stable and the NN weights are bounded as opposed to uniformly 

ultimately bounded (UUB) stability which is typical with most NN controllers.  

Additionally, the stability of the formation in the presence of obstacles is examined using 

Lyapunov methods, and by treating other robots in the formation as obstacles, collisions 

within the formation do not occur.  The asymptotic stability of the follower robots as well 

as the entire formation during an obstacle avoidance maneuver is demonstrated using 

Lyapunov methods, and numerical results are provided to verify the theoretical 

conjectures. 

   
Keywords:  Neural network, formation control, Lyapunov method, kinematic/dynamic 
controller, RISE. 
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I. INTRODUCTION 
 
 

For complex tasks like search and rescue operations, mapping unknown or 

hazardous environments, security and bomb sniffing, a team of robots working together 

offers many advantages over employing a single robot.  Recognizing these benefits, 

robotic formation control has become the focus of many research efforts [1-18], and 

several different approaches to the problem have been proposed including behavior-

based, generalized coordinates, virtual structures, and leader-follower, to name a few [1].  

Separation-separation and separation-bearing [2-3] are two popular techniques in leader-

follower formation control, and in this work, the latter will be considered where the 

followers stay at a specified separation and bearing from its designated leader.  

Many formation control works [2-7] have proposed kinematic based control laws 

to keep the formation.  Thus, perfect velocity tracking assumptions are required to ensure 

the desired formation is achieved as well as guarantee the stability of the formation.  

Therefore, numerous works [8-16] have proposed solution to formation control problem 

which include the robot dynamics.  In [8], a neural network (NN) is introduced to learn 

the dynamics of the follower robots.  The work in [9], [10], and [11] propose 

decentralized approaches based on virtual points, potential functions, and the abilities of 

the individual robots, respectively; however, in each case, only the inertial matrix of the 

robots is considered, and dynamics like the centripetal and coriolis matrix and the friction 

vector are ignored.  In [12], a centralized control scheme is developed, and a PD 

controller is proposed to ensure velocity tracking; however, the derivative of the control 

velocity is neglected.  Alternatively, the work in [13] proposes a dynamical control 

scheme for leader-follower based formation control which considers the dynamics of the 
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robots and guarantees collisions do not occur among them.  However, this control scheme 

is derived using potential as well as bump functions which must be at least three times 

differentiable.  In each of these works [8-13], the dynamics of the follower robots are 

considered whereas the effect of the dynamics of the leader on the follower (formation 

dynamics) is still ignored. 

Our previous work [14] demonstrated that the dynamics of the lead robot are 

incorporated into the torque control inputs of the follower robots through the derivative 

of the follower's kinematic control velocity which was found to be a function of its 

leader's velocity.  Consequently, in a formation of robots where a follower robot follows 

another robot directly in front of it, by considering its leader's dynamics, a robot 

inherently considers the dynamics of the robots in front of them.  The dynamical 

extension in [14] provided a rigorous method of taking into account specific robot and 

formation dynamics; however, the dynamics of each robot were considered known.  

Therefore, in our previous work [15], a NN was introduced to learn the unknown 

dynamics of each robot as well as the dynamics of its respective leader, and the formation 

errors were shown to be Uniformly Ultimately Bounded (UUB) [20].   

 By contrast, the contribution of this work lies in a new asymptotically stable NN 

torque control law using a NN combined with the recently developed robust integral of 

sign of the error feedback method originating in [18] and referred to as RISE feedback in 

[19].  The asymptotic stability of the entire formation as well as the boundedness of the 

NN weights is shown using Lyapunov methods as opposed to UUB, a result common in 

the NN controls literature [15],[20].  The RISE method [19] is designed to reject bounded 

unmodeled disturbances, like NN functional reconstruction errors, to yield asymptotic 
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tracking.  An approach to blend a multilayer NN with RISE feedback for a single rigid 

robot control is taken in [19] where the boundedness of the actual NN weights is shown 

separately using projection algorithm while the convergence of the tracking errors is then 

demonstrated by using constant controller gains.  Selection of the predefined convex set 

in the projection algorithm to prevent the NN weights from diverging is a challenging 

task since the convex set must be carefully chosen to contain the ideal weights.   

 By contrast, in this work, a novel weight tuning is used in this work instead of the 

projection algorithm [19], and the constant bounds and gains in [19] are replaced here for 

formation control with time varying functions allowing bounds and gains to be 

determined with more certainty.  Further, Lyapunov analysis is presented to show the 

asymptotic convergence of the tracking errors and boundedness of the NN weights 

simultaneously.  The bounds and gains developed here are also applicable to single rigid 

robot control [19] besides formation control.   

 Finally, it is shown that the proposed formation controller achieves stability even 

in the presence of obstacles by integrating the RISE method into a simple, but effective 

obstacle avoidance scheme which allows each follower robot to navigate around 

obstacles while simultaneously tracking its leader.  When an obstacle is encountered, the 

desired separation and bearing of the follower robot are modified so that the follower 

navigates around the obstacle.  Similar to [13], collisions within the formation are 

avoided in this work too, but without the need of the additional assumption that higher 

order derivatives are available.  Other works that have considered the formation in the 

presence of obstacles include [8] and [10] where potential functions were utilized.  

Additionally, the concept of potential trenches was applied in [16] whereas the dynamic 
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window approach was utilized [17].    Therefore, the contributions of this  manuscript 

include: a) development of a novel formation control law by incorporating the dynamics 

of the leader, follower and formation; b) proof of asymptotic stability using Lyapunov 

stability even with using NN for approximating the leader and follower dynamics and 

their interactions; and c) simplified scheme to avoid collisions among the robots and with 

obstacles. 

 This paper is organized as follows.  First, in Section II, the leader-follower 

formation control problem is introduced, and required background information is 

presented.  Then, the NN/RISE feedback control law is developed for the follower robots 

as well as the formation leader, and the stability of the overall formation is presented 

along with a general formation controller structure. In Section III, a leader-follower 

obstacle avoidance scheme is developed, and Section IV presents numerical simulations.  

Section V provides some concluding remarks. 

II. LEADER-FOLLOWER FORMATION CONTROL 

 Background information on leader-follower formation control is introduced next. 

Throughout the development, follower robots will be denoted with a subscript 'j' while 

the leader will be denoted by the subscript 'i'.  The goal of separation-bearing formation 

control is to find a velocity control input such that 

 0)(lim =−
∞→ ijijdt

LL  and 0)(lim =Ψ−Ψ
∞→ ijijdt

              (1) 

where ijL  and ijΨ are obtained using local sensory information and denote the measured 

separation and bearing of the follower j with respect to leader i while ijdL and 

ijdΨ represent desired distance and angles, respectively [2-3], as shown in Fig.  1.  
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Fig.  1.  Separation-bearing formation control. 

 
 
 
 

 The kinematic equations for the front of the jth follower robot, ),( jj yx , can be 

written as 
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where jd is the distance from the rear axle to the to front of the robot, T
jjjj yxq ][ θ=  

denotes the actual Cartesian position for the front of the robot and orientation, 

respectively, jv , and jω  represent linear and angular velocities, respectively, 

and T
jjj vv ][ ω= .  Many robotic systems can be characterized as a system having an n-

dimensional configuration space C with generalized coordinates ),...( 1 nqq subject to l  

constraints [23].  Applying the transformation [23], the dynamics of the mobile robots are 

given by 

                                      jdjjjjjmjjj jvFvqqVvM ττ =+++
____

)(),( &&                       (3) 
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where ρρx
jM ℜ∈ is a constant positive definite inertia matrix, ρρx

mjV ℜ∈ is the bounded 

centripetal and coriolis matrix, ρℜ∈jF is the friction vector, ρτ ℜ∈dj  represents 

unknown bounded disturbances such that Mdj d≤τ and Mdd d ′≤ττ &&& for known 

constants Md and Md ′ , ρρx
jB ℜ∈ is a constant, nonsingular input transformation matrix, 

ρττ ℜ∈= jjj B is the input vector, and ρτ ℜ∈j is the control torque vector.  For complete 

details on (3) and the parameters that comprise it, see [23].    It should be noted that for 

the nonholonomic system of (2) and (3) with n  generalized coordinates q , l  

independent constraints, and ρ actuators, the number of actuators is equal to l−n , and 

for this work 3=n , 1=l , 2=ρ .  We will also apply the assumption from [23] that the 

linear and angular velocities are bounded for all time, t. 

A.  Backstepping Controller Design 

 The complete description of the behavior of a mobile robot is given by (2) and 

(3).  The NN/RISE controller is introduced so that the specific torque )(tjτ may be 

calculated in order that (2) and (3) exhibit the desired behavior for a given control 

velocity )(tv jc  without knowing the complete dynamics of the formation.  

 In this work, a two-layer NN consisting of one layer of randomly assigned 

constant weights axLV ℜ∈   in the input layer and one layer of tunable weights LxbW ℜ∈  

in the output layer, with a  inputs, b  outputs, and L  hidden neurons are considered.  The 

universal approximation property for NN [20] states that for any smooth function )(xf , 

there exists a NN such that εσ += )()( xVWxf TT  for some ideal weights ,W V , whereε  

is the NN functional approximation error, and La ℜ→ℜ⋅ :)(σ is the activation function 
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in the hidden layers.  It has been shown that by randomly selecting the input layer 

weights V , the activation function )()( xVx Tσσ = forms a stochastic basis, and thus the 

approximation property holds for all inputs, ax ℜ∈ , in the compact set S [20].  Also, the 

functional approximation error is bounded such that Nεε < where Nε is a known bound 

and dependent on S [20].  The sigmoid activation function is considered here.  For 

complete details of the NN and its properties, see [20].     

 Remark 1:  Throughout this paper, ⋅  and 
F
⋅ will be used interchangeably as the 

Frobenius vector and matrix norms, respectively [20].  

B. Leader-Follower Tracking Control   

  To complete the separation-bearing formation control objective (1), contributions 

from single robot control frameworks such as [23] are extended to leader-follower 

formation control. Consider the tracking controller error system from [23] for a single 

robot as 
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where jrx , jry , jrθ , and T
jrjrjr vv ][ ω= are the Cartesian position in the x and y direction, 

orientation and the linear and angular velocities, respectively, of a virtual reference robot 

for robot j [23].  In a single robot control, a steering control input )(tv jc is designed to 

solve three basic problems: path following, point stabilization, and trajectory following 

such that 0)(lim =−∞→ jjrt qq and 0)(lim =−∞→ jjrt vv [23].  If the mobile robot 
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controller can successfully track a class of smooth velocity control inputs, then all three 

problems can be solved with the same controller [23].   

  To extend the contributions from single robot control frameworks such as (4) to 

leader-follower formation control, we begin by replacing the virtual reference cart with a 

physical mobile robot acting as the leader i for follower j subject to kinematics and 

dynamics that are defined similarly to (2) and (3), respectively.  Then, define a reference 

position at a desired separation ijdL and a desired bearing ijdΨ  for follower j  with respect 

to the rear of leader i  as 

)sin(sin),cos(cos iijdijdiiijriijdijdiiijr LdyyLdxx θθθθ +Ψ+−=+Ψ+−=           (5) 

as well as a reference orientation, jrθ that will be defined in the proceeding discussion.  

Next, define the actual position and orientation of follower j as 

jjiijijiiijiijijiiij LdyyLdxx θθθθθθ =+Ψ+−=+Ψ+−= ),sin(sin),cos(cos   (6) 

where ijL and ijΨ are the actual separation and bearing of follower j  measured relative to 

the rear of the leader i .  Substitution of (5) and (6) into the error system (4), and applying 

basic trigonometric identities, the kinematic error for leader-follower formation control is 

obtained as 
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      (7) 

where jiij θθθ −= and jrθ is the reference orientation.  Due to the nonholonomic constraint 

as well as the separation-bearing formation control objective, the orientations of each 

robot in the formation will not be equal while the formation is turning, and thus, the 

reference orientation of each robot cannot be chosen such that ijr θθ = .  However, 
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choosing the reference orientation relative to the leader satisfying the differential 

equation  

( )22)sin()cos(1
jjijriijijdijdi

j
jr ekvL

d
+++= θθψωθ& ,     (8) 

the asymptotic stability of all three error states can be shown, where 

],[ ππθθθ −∈−= jriijr  and 2jk is a positive design constant. Further, it can be shown that 

the reference orientation of the follower will become equal the orientation of the leader 

( 0=− jri θθ ) after formation errors have converged to zero and when 0>iv and 0=iω  

which is a desirable attribute.  The transformed error system (7) now acts as a formation 

tracking controller which not only seeks to remain at a fixed desired distance ijdL with a 

desired angle ijdΨ  relative to the leader robot i , but also will achieve a relative orientation 

with respect to the leader.  By taking the desired separation and bearing, ijdL and ijdΨ , as 

constants similar to other works, and observing the derivatives of the separation and 

bearing, ijL& and ijΨ& defined in [2], the error dynamics of (7) are found to be 
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 To stabilize the kinematic system, we propose the following velocity control 

inputs which are derived using Lyapunov methods for follower robot j to achieve the 

desired position and orientation with respect to leader i  as 

( )
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where T
jjjj kkkK ][ 321= is a vector of positive design constants.  Next, define the 

velocity tracking error as 

T
jj

T
jcjcjjc

T
jjjc vvvvveee ][][][ 2154 ω−=−==      (11) 

 Observing jcjcj evv −= , substituting the control velocity (10) into the error 

dynamics of (9) and applying basic trigonometric identities reveals that 
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Examining the closed loop error dynamics (12), it is clear that the stability of the 

kinematic system is dependent on the velocity tracking error. Additionally, the origin 

0=je and 0=jce  consisting of the position, orientation and velocity tracking errors for 

follower j, is an equilibrium point of the closed loop kinematic error dynamics (12). 

C.  Dynamical NN/RISE Controller Design 

 In the previous section, it was shown that the stability of the kinematic error 

system depends on the velocity tracking error.  Therefore, the dynamics of the mobile 

robot are now considered, and a velocity tracking loop is designed to 

ensure jcj vv → asymptotically. 

 To begin the development, define the velocity filtered tracking errors as 

jcjjcj eter )(α+= &                                                       (13) 

where )(tjα  is a time varying real function greater than zero defined as )()( 10 tt jjj ααα +=  

where 0jα is a constant and )(1 tjα is a time varying term.  Multiplying both sides of (13) 
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by jM , adding and subtracting jcm vV
j

and )( jcj vF , and substituting the robot dynamics 

(3) allows (13) to be rewritten as 

jdjdjj jj
TfrM ττ −++=                                              (14) 

where  

    )( jcjjcmjcjd vFvVvMf
jj

++= & ,  )()())(( jcjjjmjjjcj vFvFVMteT
j

−+−= α      (15) 

 Differentiating (14) then yields the filtered tracking error dynamics 

jdjdjjjj jj
TfrMrM ττ &&&&&& −+++−= .                                    (16) 

Using the universal approximation property for NN's [20], define 

jjd
T
j

T
jd xVWf

j
εσ += )(&  where T

j
T
j VW , are bounded constant ideal weights such that 

MFj WW ≤  for a known constant MW , jε is the bounded NN reconstruction error such 

that jMjjMj εεεε ′≤≤ &, for known constants jMε and jMε ′ , and T
jjcjcjcdj vvvx ]1[ θ&&&= .  

Examining the definition of the NN input, djx , reveals jcv& and jcv&& are necessary; however, 

recalling jcv in (10) is a function of the leader's velocity 

reveals ),,,,,( jjiiiijjc eevvfv &&&& ωω= where )(•jf is the function describing jcv& .  The 

leader i's dynamics written in the form of (3) can be rewritten as ( )imiiiiii vVvFMv −−= − )(1 τ& , and 

substituting iv&  and (9) into )(•jf  results in the kinematic error dynamics of follower j 

and the dynamics of leader i to become apart of jcv&  as 

),,,,,( jjjiiijjc evvfv θτθ=& .                                            (17) 

 It is not difficult to observe that iv&& , jcv , and jcv& are also smooth functions since 

the leader and follower robots' dynamics are sufficiently smooth.  As a 
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consequence, jcv&& can be approximated with relatively small error by the standard second 

order backwards difference equation for a small sample period tΔ as 

  )2()(2)(ˆ ttvttvtvv jcjcjcjc Δ−+Δ−−=&&                                    (18) 

Using (18) and forming jcv& under the assumption that 0=iv&  as well as including the 

terms ,, iiv θ and iτ of the function defined in (17), the estimated input to the NN djx̂  takes 

the form of TT
ji

T
iij

T
jcv

T
jc

T
jcdj evvvvx

i
]ˆ1[ˆ

0
θτθ&&&

& =
= so that the dynamics of the leader i can 

be estimated by the NN, and the terms of jcv& omitted by assuming 0=iv&  can be 

accounted for.  

 Remark 3:  In the formation of estimated NN input djx̂ , the terms i
T
iiv θτ ,, are 

considered available via a wireless communication link which is a standard assumption; 

see [13].  

  The NN approximation of 
jdf&  is now defined as 

)ˆ(ˆˆ
dj

T
j

T
jd xVWf

j
σ=&                                                        (19) 

where T
jŴ is the NN estimate of the ideal weight matrix T

jW , and the control torque is now 

defined similarly [19] to be 

jdj j
f μτ += ˆ                                                        (20) 

where jμ is the RISE feedback term defined similarly to [18] and [19] as 

dssesseskektek
t

jcjjjcjjsjcjsjcjsj ))](sgn())(()()()1[()0()1()()1(
0

21∫ +++++−+= ββαμ   (21)  
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such that )sgn())(()1( 21 jcjjjjsj etrk ββμ +++=& with )(1 tjβ  a positive, time varying gain 

real function, jsk and 2jβ  positive real constants,  and )sgn(•  the signum function. 

 Remark 4:  The projection algorithm is not used in this work to tune the NN 

weights as in [19], and as a result, the constant gains of [19] become time varying.  

Here )(1 tjβ  and )(tjα  are time varying functions to facilitate in defining the upper 

bounds necessary for the RISE aspects of the NN/RISE controller which will be 

discussed in the proceeding development and in the Appendix in comparison to [18-19].  

Further, the constant term 2jβ is not same as constant term 2β from [18] and [19] and is 

included here to aid in the forthcoming stability analysis.   

    Next, substituting the derivative of (20), as well as adding and subtracting jce  and 

)ˆ(ˆ dj
T
j

T
j xVW σ into (16) yields 

)sgn())(()1(~
2
1

2121 jcjjjjsjcBjBjjjjjj etrkeNNNrMrM ββ +−+−−+++−= &&                (22) 

where 

                              
jcjjjj eTrMN ++−= &&

2
1~                                                  (23) 

j
T
jdjBj WN

j
στε ~

1 ++= & ,       j
T
jdj

T
j

T
jBj WxVWN σσ ˆ~)ˆ(~

2 ==                            (24) 

and jjj WWW ˆ~ −= , )ˆ()(~
dj

T
jdj

T
jj xVxV σσσ −= .  An upper bound for jN~ can be obtained 

using the Mean Value Theorem as [18] and [19] 

jjj zzN )(~ ρ≤                                                       (25) 

where TT
j

T
jcj rez ][= and )( jzρ  is a positive, globally invertible, non-decreasing 

function.   
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 Lemma 1:  The expressions in (24) and their derivatives are upper bounded 

according to: 

11 2 jhMMNBj NWdN ςε ≡+′+≤                                          (26) 

    ( ) )()( 1211 teCCNNdN jjhhMNBj ςε ′≡+++′+′≤&                               (27) 

( ) )(ˆ
22 tNWWN jhFjMBj ς≡+≤                                         (28) 

( ) )()()ˆ( 2232 ttcWWNNeCN jFjMhhjcBj ς ′≡+++≤&      (29)             

where 321 ,, CCC  are known positive constants and c2(t) is a positive time-varying 

function based on djx&̂ .   

 Proof: See Appendix. 

 To aid in the forthcoming stability analysis and to facilitate time varying gains, 

we define an auxiliary function as  

jcjjojcj
T
jcjcjBj

T
jcjcjBjBj

T
jj eeeeNeeNNrL 2212121 )sgn())sgn(( βαβββ −−−−−+= && . 

 Lemma 2:  Given the auxiliary function jL , let )(1 tjβ  and 2jβ  be chosen 

according to 

 jcjecFjjjWejjeFjjWjj eKWeKeKWKKt ++++≥ ˆˆ)(1 ββ ,          02 >jβ      (30) 

with jecjWejejWj KKKKK ,,,,β known positive constants, then 

j

t

j dssL γ≤∫
0

)(  

where ( ) 0)0()0()0()0( 321 ≥−+= Bj
T
jcjjjcj Nee ββγ  with 213 BjBjBj NNN += . 

 Proof: See Appendix. 
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 Before proceeding, it is important to note that ,0,0 == jcj er and 0~ =T
jW  are 

equilibrium points of (22) in the absence of disturbances and NN functional 

reconstruction error ( 01 =BjN ).  Proof of this claim is straight forward through 

examination of (13) and (22). 

  Theorem 1:  (Follower Dynamic Control)   Given the nonholonomic robot system 

consisting of (2) and (3) along with the leader follower criterion of (1), let a smooth 

velocity control input )(tv jc  for follower j be given by (10), and the torque control for 

follower j given by (20) be applied to (3).  Let the NN weight tuning law be given as 

T
jcjjj eFW σ̂ˆ =&                                                         (31) 

where 0>= T
jj FF is a design parameter.  Then there exists a vector of positive 

constants T
jjjj kkkK ][ 321= , positive constants 02 ,, jjjsk αβ , and positive time varying 

functions )(),(1 tt jj αβ , such that the position, orientation, and velocity tracking 

errors je and jce are asymptotically stable, and the neural network weight estimate errors 

jW~ are bounded for follower j  provided that )(1 tjβ and 2jβ are selected as in (30). 

 Proof :  See Appendix. 

D.  Leader Control Structure 

 In every formation, there is a formation leader i whose kinematics and dynamics 

are defined similarly to (2) and (3), respectively.  From [23], the leader tracks a virtual 

reference robot, and the tracking error for the leader and its derivative are found to be 
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where irx , iry , irθ irv  and irω  are the states of a virtual reference robot for leader i defined 

as in (4).  In this work, the virtual leader's velocity irv is defined by a time varying 

function that is twice differentiable.  The leader's control velocity )(tvic is then defined 

similarly to [23] as 

⎥
⎦

⎤
⎢
⎣

⎡
++
+

=⎥
⎦

⎤
⎢
⎣

⎡
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ic ekkevk

ekev
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                                   (33) 

where T
iiii kkkK ][ 321= is a vector of positive constants, and the third term of 2icv in (33) 

has been altered from [23] to facilitate in the stability analysis to come.  To construct the 

dynamical NN/RISE controller for the leader i , define the velocity tracking and filtered 

tracking errors as 

iicic vve −= ,       iciici eter )(α+= &                                       (34) 

  Using similar steps and justifications used to form (14) for follower j , construct 

the error system for leader i to be ididii ii
TfrM ττ −++= where

idf and iT are defined 

similarly to (15).  The control torque, iτ , for leader i can be defined similarly to 

follower sj' as 

                                  idi i
f μτ += ˆ                                                         (35) 

where
idf̂ is the estimate of 

idf , iμ is the RISE feedback term defined similarly the 

follower's in (19)-(21).  The NN input vector for leader i is defined as 

TT
iiiiv

T
ic

T
ic

T
icdi vvvvx

i
]1[ˆ

0
τωθ

=
=

&
&&&  where the term T

icv& is available while the term T
icv&& is 

not due to its dependence on iv&  which is not known.  As a result T
icv&& is calculated 
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assuming 0=iv& , and including the terms T
iiiv τθ ,,  in dix̂ so that the unknown dynamics 

can be accounted for by the NN similarly to the treatment of (17).    

 Using the same steps and justifications used to form (22), the closed loop error 

system for the for the lead robot i can be formed as 

( ) )sgn()()1(~
2
1

2121 iciiiisicBiBiiiiii etrkeNNNrMrM ββ +−+−−+++−= &&           (36) 

where isk is a positive control gain parameter, and iN~ , 1BiN and 2BiN are defined similarly to 

(23), and (24), respectively, and are bounded similarly to the bounds defined in (25)-(29).  

Further, ,0,0 == ici er and 0~ =T
iW  are equilibrium points of (36) in the absence of 

disturbances and NN functional reconstruction error ( 01 =BiN ). 

 Theorem 2: (Leader Stability) Let the smooth velocity control input for leader i 

be given by (33) and let the toque control input defined by (35) be applied to the leader 

robot i, defined similarly to (3).  Let the NN tuning law for leader i be defined similarly 

to (31).  Then there exists a vector of positive constants T
iiii kkkK ][ 321= , positive constants 

,, 2iisk β  0iα , and positive time varying functions )(),(1 tt ii αβ , such that the position, 

orientation, and velocity tracking errors ie and ice are asymptotically stable, and the NN 

weight estimate errors iW~ are bounded for follower j provided that )(1 tiβ and 2iβ are selected 

similarly to (30). 

 Proof : See Appendix. 

 Next, the stability of the entire formation is demonstrated in the following 

theorem. 
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E.  Formation Stability 

  Theorem 3:  (Formation Stability) Consider a formation of N+1 robots consisting 

a leader i and N followers, and let the hypotheses of Theorems 1 and 2 hold.  Then the 

formation error TT
jc

T
j

T
ic

T
iij eeeee ][=  where )1)(( Nn

ije ++ℜ∈ ρ represents the augmented 

position, orientation and velocity tracking error systems for the leader i and N followers, 

respectively, is asymptotically stable,  and the NN weight estimation 

errors T
j

T
i WW ~,~ , Nj ,...2,1=  for the leader i and N followers, respectively, are bounded.   

  Proof: See Appendix. 

  Remark 5:  The stability of the entire formation for the case when follower j 

becomes a leader to follower j+1 follows directly from Theorem 1 and selecting a 

Lyapunov candidate to be the sum of the Lyapunov candidates for follower j and follower 

j+1, respectively.  In this case, follower j becomes the reference for follower j+1, and 

thus the dynamics of follower j must be considered by follower j+1.  Since the dynamics 

of follower j incorporates the dynamics of leader i, follower j+1 inherently brings in the 

dynamics of leader i by considering the dynamics of follower j. 

  A general formation controller structure is shown in Fig.  2 which includes the 

controller structures for the leader i and multiple followers.  Additionally, communication 

between the robots is indicated. In the figure, leader i communicates its velocity, 

orientation, and control torque to follower j, and follower j communicates its velocity, 

orientation, and control torque to follower j+2, but it is not necessary for follower j to 

relay the states of leader i to follower j+2.   Also note that in a formation of robots, each 

robot may have more than one follower. 
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Fig.  2.  General formation controller structure. 

 
 
 
 

III. LEADER-FOLLOWER OBSTACLE AVOIDANCE 

 Next, a simple but effective obstacle avoidance scheme is proposed that will 

allow follower j to track its leader while simultaneously avoiding obstacles. To 

accomplish this, the desired separation and bearing are no longer considered to be 

constants but are considered to be time varying, and through the incorporation of RISE 

feedback, each follower in the formation asymptotically tracks the new reference position 

while avoiding obstacles.  In this section, the time varying desired separation and bearing 
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will be denoted as )(tLijd  and )(tijdΨ while the constant desired separation and bearing will 

be written as ijdL  and ijdΨ . Furthermore, the distance from the center of follower j to an 

obstacle, js , and relative angle of the obstacle, jsθ , are considered measurable while the 

velocity vector, T
ooo vv ][ ω= , and orientation, oθ , of the obstacle are unavailable.  It is 

standard to assume that the formation leader i utilizes a path planning scheme such that by 

tracking the virtual reference cart described in [23], the lead robot i  navigates around any 

encountered obstacles.  

 To begin, consider the configuration shown in Fig.  3 where it is desirable that the 

follower robot j  maintains a safe distance, ds , from the closest obstacle.  When the 

nearest edge of an obstacle is detected at an angle jsθ and distance js  relative to center of 

follower j such that dj ss < , the desired separation and bearing, )(tLijd  and )(tijdΨ , are 

modified to ensure the follower is steered away from obstacle by  

j
dj

ijdijdijdjs
dj

Lijdijd ss
Kt

ss
KLtL ξθ

22
11

2
1)(),sgn(11

2
1)( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+Ψ=ΨΨ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= Ψ        (37) 

where )sgn()sgn( ijdjsijdj ΨΨ= θξ , with sgn is the signum function and LK  and ψK  are 

positive design constants.   Examining (37), one can see that the shifts introduced to the 

desired separation and bearing are similar to repulsive potential functions commonly used 

in robotic path planning [22].    Here we use the potential like function to push the 

desired set point of the follower robot j away from the encountered obstacle thus steering 

the robot around the obstruction.  Incorporation of )sgn( ijdjsΨθ  allows obstacles to be 

avoided on the left or the right, depending on where the follower is located in the  

 



 
36

 
Fig.  3.  Obstacle avoidance. 

 
 
 
 

formation and where the obstacle is located relative to the follower.  This term also 

allows collisions to be avoided within the formation by considered neighboring robots as 

obstacles. 

 With the introduction of obstacle avoidance schemes, the orientation of the 

follower j will vary from its reference orientation as a result of avoiding an obstacle that 

was in the path of the follower j but not its leader.  Therefore, while avoiding an obstacle, 

it is logical for follower j to track a reference point, but no specific orientation with 

respect to its leader. Thus, consider the formation tracking control error system presented 

in (7), but rewritten to include only the normal and tangential position error components 

as 
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The dynamics of (38) can be found in a similar manner as that of (9), and written as 
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where 

                  
))(cos()()())(sin()(

))(sin()()())(cos()(

2

1

ijijdijdijdijijdijdjo

ijijdijdijdijijdijdjo

ttLtttLe

ttLtttLe

θθ

θθ

+ΨΨ++Ψ=

+ΨΨ−+Ψ=
&&&

&&&
.             (40) 

 The dynamics of the desired separation and bearing, )(tLijd  and )(tijdΨ  in (37), 

respectively, are necessary in the calculation of (40), and therefore, the derivative js& is 

also required.  The measured distance js can be written in terms of the x and y 

components of js   as 222
jyjxj sss +=  where ojjx xxs −=  and ojjy yys −=  and 

ox and oy are the coordinates of the obstacle.  Note that the obstacle is not necessarily 

stationary, and therefore assume that the obstacle can be described using the kinematic 

model as ooo vx θcos=& and ooo vy θsin=& .  Using this information along with (2), it is 

evident that the derivative of js is a function of the velocity jv and orientation jθ of 

follower j as well as the velocity ov  and orientation, oθ , of the encountered obstacle.  

Since the velocity ov and orientation oθ of the obstacle are not available to follower j, 

js& must be estimated, and as a result, )(tLijd
&  and )(tijdΨ& must also be estimated. Assuming 

that js is a smooth function, define the aforementioned estimates to be 

,ˆ111)sgn()(ˆ
2 j
jdj

Lijdjsijd s
sss

KtL &&
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−Ψ= θ j

jdj
jijd s

sss
Kt && ˆ111)(ˆ

2⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=Ψ ψξ ,      (41) 

and )()(ˆ ttstss jjj Δ−−=&  is the estimate of js&  for an arbitrarily small time interval, tΔ .   

        In order to show that the obstacle avoidance method is asymptotically stable in 

the presence of uncertainties, the RISE method described in the previous section will 
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again be utilized.  To use the RISE method, we begin by defining a filtered tracking error 

as 

jojoj ee κϑ += &                                                             (42) 

whereκ is a positive, real design constant.  Utilizing the error dynamics (39) and (40), the 

filtered tracking error (42) can be rewritten as 

jojjjjj evEHJ κϑ +−+=                                             (43) 

where    
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and js& is the real dynamics of js .  To stabilize the filtered tracking error dynamics in the 

presence of an obstacle, the following velocity control input for follower robot j is 

proposed  

( ) 2

0

1 )sgn()(ˆ ℜ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++= ∫−

t

jojojojojjjjco dseeGeGJHEv βκκ                     (46) 

where jĴ  is the estimate of jJ as a result of using js&̂ , andG , joβ  are positive, real design 

constants.  For analysis purposes, we will assume jjj JJ ζ+= ˆ where jζ is the error in 

estimation.  Furthermore, we assume that the estimation error and its derivative are 

bounded by a positive real values Mζ and Mζ ′ , respectively, such 

that Mj ζζ ≤ and Mj ζζ ′≤′ for all time.  
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  Defining the velocity tracking error jcoe identically to (11), substituting 

jcojcoj evv −=  into (43) and taking the derivative, the close loop kinematic filtered 

error dynamics can be written as 

jcojjojojjj eEeG +−+−= )sgn(βζϑϑ& ,                                       (47) 

and when there is zero estimation error, 0=jζ , the origin 0=jϑ , 0=joe and 0=jcoe is an 

equilibrium point of jϑ& . To aid in the stability analysis of the follower robot in the 

presence of obstacles, an auxiliary function is defined as ))sgn(()( jojoj
T
jj etR βζϑ −= . 

  Lemma 3:  Given the auxiliary function )(tR j , then 

 )0()0()0()(
0

j
T
jojojo

t

j eedssR ζβ −≤∫  

provided joβ is selected as 

MMjo ζ
κ

ζβ ′+≥
1           (48) 

  Proof:  See Appendix. 

  Theorem 4: (Follower Obstacle Avoidance) Let the hypothesis of Theorem 1 hold 

with (10) replaced by (46). Then, there exists positive constantsG , joβ LK  and ψK  such 

that position and velocity tracking errors for the follower are asymptotically stable in the 

presence of obstacles provided joβ is selected as (48). 

 Proof:  See Appendix. 

  Remark 6:  Since leader robot i does not track a physical robot, any existing 

asymptotically stable obstacle avoidance method can be utilized by the leader to ensure 

the stability of the entire formation in the presence of obstacles. The path planning 
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algorithm for the leader i is beyond the scope of this paper and therefore is not included 

here. 

  Remark 7:  The stability of a formation of N+1 robots consisting of a leader i and 

N followers in the presence of obstacles follows directly by combining the results of 

Theorem 2 and Theorem 4 for Nj ,...3,2,1= , respectively.  Further, the stability of a 

formation in the presence of obstacles for the case when follower j becomes a leader to 

follower j+1   follows directly from Theorem 4 and combining the Lyapunov candidates 

for follower j and follower j+1 into a single Lyapunov function. 

  Remark 8:   The proposed obstacle avoidance scheme is observed to have 

potential limitations.  Since the scheme only considers the closest obstruction, it is 

possible that in a highly cluttered environment there may be more than one obstacle 

within the robot's safety zone; one of which could potentially be another robot in the 

formation.  In this case, the follower may exhibit an oscillatory behavior between 

multiple obstructions located within the safety zone which is not ideal; however, the goal 

of the obstacle avoidance scheme is still achieved in that collisions are avoided.  In the 

event that two or more obstacles are located at the same distance from follower j, the 

obstacle which poses the greatest immediate threat of collision is considered.  Future 

efforts will work to remove these limitations and the obstacle avoidance is not the focus 

of this effort. 

  Remark 9:  The control velocity (46) can be applied for any obstacle avoidance 

scheme in which the desired separation and bearing are modified to steer the robot around 

the obstruction.  The only required modified to the control velocity (46) is with respect to 

the vector jJ  in (44) which contains the dynamics of )(tLijd  and )(tijdΨ , respectively. 
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  Remark 10:  By the design of the obstacle avoidance scheme, the follower robot 

continues to track its leader while it navigates around an obstacle through the use of the 

time varying desired separation and bearing.  As the robot navigates around the 

obstruction and the obstruction leaves the robot's safety zone, the time varying desired 

separation and bearing naturally return to the constant desired values.  Thus, the robot 

itself returns to its location in the formation. 

IV. SIMULATION RESULTS 

 A formation of identical nonholonomic mobile robots is considered where the 

leader's trajectory is the desired formation trajectory and simulations are carried out in 

MATLAB under two scenarios: with and without obstacles.  In the first scenario, the NN 

controller which renders Uniformly Ultimately Bounded (UUB) in [15] is considered, and 

then the NN/RISE controller which has been shown to be asymptotically stable (AS) in 

this paper is tested.  The torque controller developed in [15] is similar the torque control 

of (20), but without the extra RISE terms added in (21) and takes the form of 

jcjsjjcjsj
T

jj ekfekxW )1(ˆ)1()(ˆ ++=++= στ where jf̂ is the NN estimate of an 

unknown function.   

 An additional difference between the torque control of this work and that of [15] 

is the fact that the NN estimates the derivative of an unknown function in this work. In 

both cases, unmodeled dynamics are introduced in the form of friction 

as T
jjjjjjjjj signvvsignF ])(,)([ 4321 ωμωμμμ ++= where jiμ are the coefficients of friction 

and summarized in Table I.  Additionally, disturbance and sensor noise terms are added 

to the robot dynamics and state measurements, respectively.  Disturbances are added to  
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TABLE I:  Friction Coefficients 
 L F1 F2 F3 F4 

1μ  0.5 0.05 0.01 0.015 0.025 

2μ  0.75 0.75 0.65 0.15 0.50 

3μ  0.25 0.025 0.025 0.05 0.015 

4μ  0.03 0.30 0.20 0.25 0.03 

 

 

the robot dynamics and are generated from a normal distribution with mean zero, 

variance one and standard deviation one.  The magnitude of the disturbances is taken as 

two.   

 Sensor noise is also generated from an identical normal distribution with 

magnitudes of 05.0,1.0,25.0 === Ψηηη Lv where Ψηηη ,, Lv  for the velocity, 

separation, and bearing measurements, respectively.  In the second scenario, obstacles are 

added in the path of the follower robots and the obstacle avoidance scheme of Theorem 4 

is demonstrated, and both a static and dynamic obstacle environment is considered. 

  In the simulations, followers 1 and 2 track the leader while followers 3 and 4 track 

followers 1 and 2, respectively, as depicted in Fig.  4.  The following parameters are 

considered for the leader and its followers: kgm 5= , 23kgI = , mR 175.= , mr 08.0= , 

and md 4.0= .  The control gains for the leader were selected as 101 =ik , 52 =ik , 

43 =ik , 35=isK , and for each follower, gains were selected as 51 =jk , 

52 =jk , 5.163 =jk and 35=jsK , respectively.  Five hidden layer neurons are considered 

in the NN for the leader and each follower such that 5=hN , and the NN parameters for 

both the leader and each follower were selected as, 10== ij FF .  In addition, the RISE 

terms are selected according to (30) with 10,15,8,15,8 ===== ecWeeW KKKKK β , 
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and the filtered tracking error gain )(tα is selected as 

( )( )eeNFWeKeKeKeFNKt chFWeeecchW ++++++++= ˆ)5.28()5.28()5.210(15)(
2β

α with 202 =β . 

  Remark 11:  In the proceeding analysis, ,3,2,1, FFFL and 4F will be used to 

denote the leader, follower 1, follower 2, follower 3, and follower 4, respectively.   

 A.  Scenario I:  Obstacle Free Environment  

 In this scenario, the leader follows a virtual robot traveling at a constant linear 

velocity of smvir /5=  with a time varying reference angular velocity, and the NN 

controller of our previous work and the NN/RISE controller are tested.  The formation is 

selected to be a wedge shape as in Fig.  4 where each follower is to track its leader at a 

desired separation of 2=ijdL meters with a bearing of °±=Ψ 120ijd  depending on the 

follower's location, and for illustrative purposes, a fifth follower has been added to track 

follower 2.   

 Fig.  5 displays the formation trajectories for both controllers as the formation 

performs a sharp turn while navigating around a barrier.  Examining the trajectories 

reveals that both controllers successfully perform the maneuver; however upon closer 

 

 

 
Fig.  4.  Formation structure. 
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examination, formation errors are seen propagating throughout the formation for the case 

when the NN controller is used.  The evidence of the error propagation is best seen in the 

trajectories of the robots on the inside of the turn which have been enlarged to facilitate 

viewing.  Examining the trajectories in the bottom right corner of Fig.  5, small errors can 

been seen in the path of follower 2 while larger errors are seen in the path of follower 5 

for the case when the NN controller is applied.  On the other hand, evidence of this error 

propagation is not present in the paths of either robot when the NN/RISE controller is 

applied.  Thus, the theoretical conjectures of Theorem 1 are verified in that the formation 

achieves asymptotic tracking in the presence of bounded disturbances. 

 

 

 

Fig.  5:  Formation trajectories. 
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  Fig.  6 displays the steady-state formation errors of each follower in the 

formation. The improved performance of the NN/RISE controller over the NN controller 

is again observed, especially in the formation errors for follower 1, 2, and 3, respectively, 

and the strength of AS over UUB is revealed.  The average formation errors for each 

follower are shown in Table II where it is observed that the average error was reduced for 

each follower when the NN/RISE controller was utilized.  In some cases, as with follower 

1, errors were reduced by 50%, while marginal error reduction was observed for follower 

5.  Reducing the formation errors for the robots near the front of the formation helps 

prevent formation errors from propagating through the formation, which was observed 

for the case with the NN controller was applied.  

  Remark 12:  The reference position of each robot in the formation is defined with 

respect to its respective leader, not the leader of the entire formation.  As a result, the 

movement of each robot propagates to its followers, a phenomenon observed in Fig.  5 

 

 

Fig.  6.  Formation errors. 
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TABLE II.  Average Steady State Formation Errors. 

 Average 
Errors 

NN/RISE Controller NN Controller 

 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 
Separation 
error (m) 

0.0048 0.0117 0.0029 0.0066 0.0442 0.0094 0.0179 0.0048 0.077 0.0462 

Bearing 
error (rad) 

0.0030 0.0069 0.0037 0.0049 0.0449 0.0036 0.0089 0.0041 0.0093 0.0467 

 

 

with followers 2 and 5 for the case when the NN control was applied.  Additionally, it 

was observed in Table II that formation errors for follower 5 were marginally reduced 

when the NN/RISE controller was applied; however, although the reduction in the error 

was small, the improved performance in the NN/RISE controller over the standard NN 

controller is still significant since the oscillatory movements observed for the NN 

controller in Fig.  5 are not observed for the case when the NN/RISE control was applied. 

 B.  Scenario II: Obstacle Ridden Environment 

 Now, consider stationary and moving obstacles for the wedge formation along 

with the controller gains outlined above along with 9.=LK , 5.1=ψK , 5.0=oβ , 

and 2=κ .  The robots are initialized so that they must avoid one another while 

attempting to reach their desired location in the formation. 

  Fig.  7 depicts the formation trajectories in the presence of both stationary and 

moving obstacles, and examining this figure, it is evident that the robots are able avoid 

collisions with their neighbors and maneuver around the encountered obstacles while 

simultaneously tracking their leaders.  Because the followers on the outside of the 

formation track the robots in the inner formation, the movements of the robots in the 

interior of the formation propagate to followers on the exterior of the formation.  Thus, 
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when a robot on the interior of the formation performs an obstacle avoidance maneuver, 

their movements are mimicked by their followers, which is evident in Fig.  7. As 

previously identified, the obstacle avoidance scheme poses potential short comings in 

heavily cluttered environment.  However, as illustrated in Fig.  7, the obstacle avoidance 

scheme can be effective in undemanding environments as well as ensure collisions 

between robots in the formation do not occur. 

 

 
Fig.  7.  Formation obstacle avoidance. 

 
 
 
 

V. CONCLUSIONS 
 

 In the absence of obstacles, an asymptotically stable NN tracking controller for 

leader-follower based formation control was presented that considers the dynamics of the 

leader and the followers using backstepping with RISE feedback.  The feedback control 

scheme is valid even when the dynamics of the followers and their leader are unknown 

since the NN learns them all online.  Numerical results were presented and the 

asymptotic stability of the system was verified.  Simulation results verify the theoretical 
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conjecture and reveal the strength of asymptotic stability over the common result of most 

NN literature, UUB. The asymptotic stability of the formation in the presence of 

obstacles was also demonstrated by applying the RISE method to a leader-follower 

obstacle avoidance scheme.  The control was shown to be effective in both a static and 

dynamic obstacle environment, and numerical results were presented. Further, by treating 

robots in the formation as obstacles, collisions within the formation were guaranteed not 

to occur.  The stability of the system was verified, and the simulation results verified the 

theoretical conjecture.   

 Future efforts will address a more comprehensive obstacle avoidance scheme for 

leader-follower formation control.  This work will focus on alleviating the previously 

observed limitations of the current obstacle avoidance scheme so that multiple objects 

and more complex environments can be navigated while completing the leader-follower 

formation control objective. 
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APPENDIX 

 Remark A.1:  To begin, certain bounds must be established, and for generality, 

the subscripts i and j will be not be used here. First, bounds on NN quantities will be 

frequently used as 

chM
F

hhhMF
eNFWNNNWW ≤+≤−≤≤ &̂,)1(,, σσσ       (A.1) 

where ce refers to the velocity tracking error, Nh is the  constant number of hidden layer 

neurons, MW is the upper bound of the ideal NN weights W , and 
FM FF = is a constant. 

Next, bounds relating the physical robotic system are written as 

M
TT

MM Vvvvq Τ≤≤≤ ][,][, ττωωωθ &&&&&&&        (A.2) 
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where MMM TVq ,, are known constants relating to the physical capabilities of the mobile 

robot.   Additionally, bounds on the velocity control (10) and its derivatives can be 

established as 

eCCvvvv T
c

T
c

T
c

T
c 54][ +≤&&&&&&                             (A.3) 

where [ ]321 eeee = refers to the position and orientation tracking errors 

with 5,4, =iCi  computable constants dependant on (A.2) and the selection of the velocity 

control gains in (10).  Since the backwards difference equation (18) is utilized to estimate 

the higher order derivatives of the control velocity (10), the following bound must also be 

established 

eCCvvvv T
c

T
c

T
c

T
c 76]ˆˆ[ +≤&&&&&&                          (A.4) 

with 7,6, =iCi computable constants.   Now, the bounds on the derivative of the ideal 

NN input dx as well as the derivative of the estimated NN input dx̂ are found to be 

)(ˆ),( 21110198 tceCCxtceCCx dd ≡+≤≡+≤ &&          (A.5) 

with 11,10,9,8, =iCi computable constants.  Proof of (A.5) is straight forward using 

(A.2), (A.2), (A.3) and (A.4) along with using similar steps described in [20]. 

 Lemma 1:  Upper bounds for 1BN and 2BN in (24) as well as their derivatives can 

be defined as in (26), (27), (28), and (29). 

 Proof:  Recalling Nεε ≤ , M
T
d

T
d d ′≤][ ττ &&&  as well as observing (A.1) reveals 

(26).  Next, differentiating 1BN reveals στε &&&&& ~
1

T
dB WN ++= .  Then, recalling Nεε ′≤&  and 

again applying the bounds in (A.1) reveals σε && ~
1 MMNB WdN +′+′≤ , and the bound in 
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(27) follows by observing σσσ ˆ~ −=  and applying the chain rule for derivatives written 

as  

( )( ) ( ) ( )( )eCCNNtctcNNxxNN hhhhddhh 2121 ))()((ˆ~ ++=++=++≤ &&&σ  

with 1081 CCC += and 1192 CCC += . 

  Now, considering 2BN , recalling WWW ˆ~ −= , and applying (A.1) reveals the 

bound in (28). 

  Finally, differentiating 2BN  reveals σσ &&& ˆ~ˆ~
2

TT
B WWN += , and observing WW && ˆ~ −= , 

utilizing the NN weight update law (31), and applying (A.1) 2BN& is bounded as shown in 

(29) with hM NFC =3 . 

 Lemma 2:  Given the auxiliary function 

cc
T
ccB

T
ccBB

T eeeeNeeNNrL 20212121 )sgn())sgn(( βαβββ −−−−−+= && ,             (A.6) 

let )(1 tβ  and 2β  be chosen according to (30), then 

                            γ≤∫
t

dssL
0

)(                                                            (A.7) 

where ( ) 0)0()0()0()0( 321 ≥−+= B
T
cc Nee ββγ  with 213 BBB NNN += . 

  Proof:  Integrating both sides of (A.6), substituting (13) and defining 

213 BBB NNN +=  yields   

( )( )

∫∫

∫∫∫

−−

⎟⎟
⎠

⎞
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⎝

⎛
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⎛
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t
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t

c

t
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c

t
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T
c

t

dsedse

dse
t

NNetdseNedsL

0 200 1

0 1210 2130
)sgn(

)(
11)()sgn(

βαβ

β
α

αββ

&

&
(A.8) 

Using integration by parts, the first term can be written as 
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( )( ) ( )( ) ( )∫∫ −−+−=+−
t

cB
T
c

t
cB

T
c

t

cB
T
c dseNeeNedseNe

0 1302130 213 )sgn()sgn()sgn( βββββ &&& , (A.9) 

and substituting (A.9) into (A.8) reveals 

( )( ) t
cB

T
c

t B
BBc

t
eNeds

tt

N

t
NNetdsL

02130 2
0

1
3
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)sgn(
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11)( βββ
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. (A.10) 

Recalling )()( 10 tt ααα +=  substituting the bounds (26), (27), (28), and (29) into (A.10) 

and rearranging allows the terms to be written as 

( ) t
c

t

B
T
c

t

c

t
eNeds

tt
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t
tetdsL
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Next, observing 0)( αα ≥t , 
0

1
)(

1
αα

≤
t

, and 1
)(

110 <−≤
tα

for 10 ≥α , (A.11) can be 

rewritten to reveal 
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Examining the first term on the right side of (A.12), it can be concluded that 

0))()(( 2121 ≤−−+ ββςς ttec if 

 )()( 2121 tt ςςββ +≥+ .                                              (A.13) 

If the inequality of (A.13) is satisfied, then the constant term 

( ) )0()0()0()0( 321 B
T
cc Nee −+ ββ is guaranteed to be greater than zero.  Next, the last term in 

(A.12) is less than zero provided 

0

21
212

0
1
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αβ ttt

t
t
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++≥+ .             (A.14) 
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Finally, selecting ( ) 021211 )()()()( αςςςςβ tttt ′+′++≥  and 02 >β  and, the inequalities of 

(A.13) and (A.14) both hold.  Through expansion of the bounds in (26), (27), (28), and 

(29), the gain terms defined in (30) are revealed to be 

( ) ( )( )
( ) ( )( )( ) 01011011

030112010

,

,,

αεςα

ααα

β CWCNNdNWKCNNK

CKCWCNNKNNCNK

MhhMNhMhhWe

ecMhhehhhW

+++′+′++=+=

=++=++=

 

  Remark A.2:  In the proof of the following theorems, the subscripts i and j will be 

reinstated. 

  Proof of Theorem 1: (Follower Dynamic Control) Consider the following 

positive definite Lyapunov candidate 

jNNjjjoj VVV Λ+=′ α                                                  (A.15) 

where 0)( 322 >++=Λ jjjjj kkdk , 2
3

32
2

2
1

2

2
)(

2 j
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j e
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ee
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V ++=  and  

jjjj
T
jjc

T
jcjNN QPrMreeV +++=

2
1
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1                                        (A.16) 

  ( ) ∫−−+=
t
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jcjjjcj dssLNeeP

0
321 )()0()0()0()0( ββ                    (A.17) 

                             )~~{
2
1 1

jj
T
jj WFWtrQ −=                                                     (A.18) 

and )(tL j  is defined in (A.6).  By Lemma 2, it can be concluded that 0≥jP .  Before 

proceeding, it is important to observe the existence of the 

functions )(1 jyU and )(2 jyU such that 

                            )()( 21 jjj yUVyU ≤′≤                                                (A.19) 
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where ( )12][ ++ℜ∈= rn
jj

T
j

T
jc

T
jj QPreey , )(1 jyU  and )(2 jyU  are defined by 

2

11 )( jjj yyU λ= and 2

22 )( jjj yyU λ= , respectively, with 

},,,min{
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3211 jjjojjojjj kdkm ααλ ΛΛ= , },,
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jj kdkm ααλ
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Λ=  and 

21, mm  are known positive constants satisfying 

2
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2

1 jjj
T
jj ymyMyym ≤≤ . 

  Differentiating jV , and substitution of the kinematic error dynamics (12) 
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Noting that 33 )2/sin( jj ee ≤ for all ],[3 ππ−∈je , jV&  takes the form of  

( ) ( ) 53322412max3322
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2
3

2
2

2
2

2
112 2 jjjjjjjjjijjjjjjjjjjjj eekekdeekvkeekekekekkV +++++−−−≤&   (A.20) 

In the next step, it is desired to select 3jk such that ( ) 3max3 22 jij kvk <+ , and for any 0>viε , 

selecting viij vk ε+= max3 2 ensures this inequality holds.  Specifically, we select 332 jkvi kεε =  

where )2/1,0(3∈kε so that )21/(2 3max3 kij vk ε−= , and selecting 3jk in this way allows jV&  to be 

written as 

( ) ( ) 53322412

2

22333
2
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2
33

2
2

2
23

2
112 )1( jjjjjjjjjjjjjkjjkjjkjjjj eekekdeekekekekekekkV +++−−−−−−≤ εεε& .  (A.21) 

 Next, differentiating (A.16), noting jj LP −=&  , utilizing the definition of the filtered 

tracking error (13), and substituting the filter tracking error dynamics and the derivatives 

of (A.17) and (A.18) reveals 



 
56

( )
)~~{

)sgn()sgn()(~)1()(
1

2121

j
T
jj

jcj
T
jjcj

T
jBjBj

T
jj

T
jj

T
jjsjc

T
jcjjNN

WFWtrL

eretrNNrNrrrkeetV
&

&

−+−

−−++++−−= ββα
 

 Then, substitution of the NN weight tuning law (31) and )(tL j  in (A.6) reveals 
 

( ) jcjjjcjjjjjjjsjcjjNN eetNrrketV 2021

22
)(~)1()( βαβαβα +−+++−−≤ &&   (A.22) 

Recalling )()( 10 tt jjj ααα +=  and selecting 211 )()( jjj tt ββα &≥ , allows (A.22) to be 

rewritten as  

jjjjsjcjjNN NrrkeV ~)1(
22

0 ++−−≤ α&                                     (A.23) 

Next, combining (A.21) and (A.23) and completing the squares with respect to 

,, 21 jj ee and 3je    yields 
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where ( ) ( ) ( ) 0)2,2,21min( 33333223123 >−−−= kjjjkkjjjkjjj dkkdkkkk εεεελ  and 

provided ,)2(,21 321 kjjj dkk ε>> and )2( 33 kjj dk ε> , and 

( ) 02)(),(2min 3223224 >++++= jjjjjjjjj kkdkkkdkλ .  Recalling )21/(2 3max3 kij vk ε−= , the 

third inequality can be rewritten as 
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 or ( )jijk dvd 24 max3 +>ε , and it is 

worth noting )2/1,0(3 ∈kε as required since 0max >iv .  Next, completing the square with 

respect to jr  and recalling the bound defined in (25), jV&′  becomes 
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where ),min( 405 jjjj Λ= λαλ and greater than zero provided 00 >jα .  The third term in 

(A.24) is always less than or equal to zero, so consider the first, second and fourth terms 

in the following inequality 
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where [ ] 2
)( T

j
T
jj zecyU =  is a continuous positive-semi-definite function for some real 

positive constant c defined on the domain D such that 

)( jj yUV −≤′&  for })4(|{ 5
1)1(2

jjsjj
rn

j kyyD Λ≤ℜ∈= −++ λρ .                  (A.26) 

  The inequalities in (A.19) and (A.26) can be used to show that ∞<′jV and 

bounded in D , and therefore je , jce , jr , jP and jQ are also bounded in D .  Continuing this 

way by observing the boundedness of je , jce and jr in D, standard linear analysis methods 

can be used to prove that all of the quantities in (7), (9), (10), (11), (13), (14), (20), and 

(22) are also bounded in D .  Therefore, using the definitions for )( jyU and )(tz j  it can be 

concluded that )( jyU is uniformly continuous. For complete details of the steps to draw 

this conclusion, see [19]. 

  Let DS ⊂ denote a region of attraction such that 

{ }2
5

1
22 ))4(())((|)( jjsjjjj ktyUDtyS Λ<⊂= − λρλ .                        (A.27) 

Applying Theorem 8.4 of [21], it can be concluded [ ] 0
2
→T

j
T
j zec  as   ∞→t    

Sy j ∈∀ )0( .    Thus, 0→je  as ∞→t , and from the definition of )(tz j , it is clear that 
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0→jce  as ∞→t  for all Sy j ∈)0(  thus illustrating the asymptotic stability of the 

tracking errors and the boundedness of the neural network weight estimates.   

 Remark A.3:  The region of attraction (A.27) can be made arbitrarily large to 

include a larger set of initial conditions by increasing the gain jsk .  Also, the boundedness 

jŴ does not guarantee that the estimates converge to the ideal W unless certain signals 

are persistently excited [20].  

 Proof of Theorem 2:  (Leader Stability) Consider the Lyapunov candidate 

iNNiiii VVV Λ+=′ 0α            (A.28) 

where 211 ii k+=Λ , 
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2
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1 .                                      (A.29) 

where iP and iQ are defined similarly to (A.17) and (A.18), respectively.   

  First, taking the derivative of iV  and substitution of the error dynamics (32), 

control velocity (33) and velocity tracking error (34) reveals the following after 

simplification 

5
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3
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2
3

2
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sinsin ic
i

i
iciiiiii e

k
eeeekekV ++−−=&         (A.30) 

Then, examining (A.29), one can see that it is defined similarly to the Lyapunov function 

(A.16) defined for follower j .  Exploiting these similarities and applying steps and 

justifications similar to the ones used to derive (A.22)-(A.27), it is straight forward to 

show that there exists a domain iD and region of attraction iS such that )( iiNN yUV −≤&  and 

thus iNNV& is uniformly continuous provided 211 >ik and )2(1 23 ii kk > .  Therefore, again 
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applying Theorem 8.4 of [21], it can be concluded 

[ ] 0][
2

31

2

31 →= T
i

T
iciii

T
iiii reeeczeec  as   ∞→t    ii Sy ∈∀ )0(  where ic  is a 

positive real constant.    Thus [ ] 031 →ii ee , and from the definition of )(tzi , it is clear 

that 0→ice  as ∞→t  for all ii Sy ∈)0( and thus 0→iNNV& as ∞→t . 

  Using the knowledge [ ] 031 →ii ee  and examining (31) and the definition of ice , 

it is then straight forward to verify that 02 →ie as ∞→t .  Thus, the asymptotic stability 

of the position and velocity tracking errors and the boundedness of the NN weight 

estimates for leader i follows. 

 Proof of Theorem 3:  (Formation Stability)  Consider the following Lyapunov 

candidate 

i

N

jij VVV ′+′= ∑
1

                                                 (A.31) 

where jV ′  is defined by (A.15), iV ′ is defined in (A.28). Taking the derivative of (A.31) 

yields i

N

jij VVV ′+′= ∑ &&&
1

, and using the results of Theorems 1 and 2,  there exists a region of 

attraction ijS defined similarly to (A.27) such that the positions, orientation, and velocity 

tracking errors for the entire formation are asymptotically stable and the NN weights 

remain bounded. 

 Lemma 3:  If joβ is chosen according to (45) so that MMjo ζ
κ

ζβ ′+≥
1 , then  

)0()0()0()(
0

j
T
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t
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  Proof:  Define ))sgn(()( jojoj
T
jj etR βζϑ −= .  Integrating both sides and using 

(38) yields 
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Then, applying integration by parts to the second term on the right side of (A.33) reveals 
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Recalling Mj ζζ ≤ and Mj ζζ ′≤′ and selecting joβ according to (45), the inequality of 

(A.32) follows. 

  Proof of Theorem 4:  (Follower Obstacle Avoidance)  Consider the Lyapunov 

candidate jNNjojojjo VVV Λ+=′ 0α where jjo d+=Λ 1 , jj
T
jjo

T
jojo eeV Γ++= ϑϑ

2
1

2
1 , jNNV  as 

defined in (A.16) with jce  and jr  replaced by jcoe  and jor , respectively, and 

∫−−=Γ
t

jj
T
jojojj dssRee

0
3 )()0()0()0( ζβ . By Lemma 3, it can be concluded that 0≥Γ j .  

Taking the time derivative of joV  and utilizing (42) and (47) yields 
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Noting that j
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j eeeee ϑϑϑϑϑ +≤+≤ )(

2
1 and using the definition of jE in (45), 

(A.35) can be rewritten as 

5241)1()1( jcojjjcojj
T
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T
jojo edeGeeV ϑϑϑϑκ ++−−−−≤&                    (A.36) 

Then, differentiating jNNV  and applying steps and justifications similar to the ones used to 

derive (A.22)-(A.27) except completing the squares with respect to jϑ instead of je  , it is 



 
61

straight forward to show the asymptotic stability of the position and velocity tracking 

errors and the boundedness of the NN weight estimates provided 

1>κ and ),1max()2/1(1 jdG +> . 
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2.  Neural Network Output Feedback Control of Robot 
Formations1 

 
 

Travis Dierks and S. Jagannathan 
 
 

Abstract—In this paper, a combined kinematic/torque output feedback control law is 

developed for leader-follower based formation control using backstepping in order  to 

accommodate the dynamics of the robots and the formation in contrast with kinematic-

based formation controllers. A neural network (NN) is introduced to approximate the 

dynamics of the follower as well as its leader using online weight tuning.  Further, a 

novel NN observer is designed to estimate the linear and angular velocities of both the 

follower robot and its leader.  It is shown using Lyapunov theory that the errors for the 

entire formation are uniformly ultimately bounded while relaxing the separation 

principle. Additionally, the stability of the formation in the presence of obstacles is 

examined using Lyapunov methods, and by treating other robots in the formation as 

obstacles, collisions within the formation are prevented.  Numerical results are provided 

to verify the theoretical conjectures. 

 
Keywords: Formation Control, Output Feedback, Backstepping Control, Lyapunov 
Stability, Obstacle Avoidance  
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I. INTRODUCTION 

 There are several methodologies [1] to robotic formation control such as 

behavior-based, generalized coordinates, virtual structures, and, perhaps the most popular 

and intuitive approach, leader-follower, to name a few.  Separation-separation and 

separation-bearing [2-3] are two popular techniques in leader-follower formation control, 

and the latter will be considered in this work where the followers stay at a specified 

separation and bearing from its designated leader.  

  A characteristic that is common in many formation control schemes [2-6] is the 

design of a kinematic controller to keep the formation which requires a perfect velocity 

tracking assumption.  Thus, where only velocity commands are treated [2-6], the stability 

of the formation is entirely dependent on the assumption that the robot perfectly tracks 

the designed control velocity.  In practice, the individual robot and formation dynamics 

must be considered to ensure that not only the robots track a desired velocity but also the 

formation errors go to zero. 

 As observed from robot arm control [16], the dynamics must be considered in 

practice to guarantee that the robots track a desired velocity while avoiding the use of 

large control gains which would become necessary to dominate the neglected dynamics 

in order to ensure an acceptable performance.  Similarly, the work in [17] illustrates the 

need for dynamical controllers for wheeled mobile robots with high inertia, high 

operating speeds, significant unmodeled dynamics, or high system noise.  Therefore, in 

[7], a neural network (NN) is introduced to learn the dynamics of the follower robots to 

achieve formation stability using state feedback.  Similarly, the work in [8] proposes a 

decentralized state feedback formation controller based on virtual points for the robots to 
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track in the formation; however, only the inertial matrix of the robots is considered.  In 

[9], a leader-follower based state feedback formation control scheme is recently 

introduced using potential as well as bump functions which must be at least three times 

differentiable and by considering the dynamics of the robots while guaranteeing that 

collisions do not occur among them.  On the other hand, in [10], the robot dynamics are 

considered using linear parameterization and input-output feedback linearization, and a 

centralized state feedback formation controller is developed.  However, only a basic PD 

controller is utilized to ensure velocity tracking, and the derivatives of the control 

velocities are neglected.  In each of these works [7-10], the follower dynamics are 

considered alone whereas the effects of the leader’s dynamics on the followers (formation 

dynamics) are still ignored. 

 Consequently, in our previous work [11], it was shown that the dynamics of the 

leader become an important part of its follower robots.  In addition, in a string formation 

of robots where a robot follows another robot directly in front of it, by considering its 

leader's dynamics, a robot inherently considers the dynamics of the robots in front of 

them.  The dynamical extension in [11] provides a rigorous method of taking into account 

the specific robot and formation dynamics to convert a steering system command into 

control inputs via the backstepping approach, and a state feedback controller by assuming 

that the leader communicates all of its states to its followers is developed using a NN 

combined with a robustifying feedback term.   

 By contrast, in this paper, we develop an NN output feedback controller for 

leader-follower based formation control.  The universal approximation property of NN is 

utilized to learn the complete dynamics of the follower robots and the formation using 
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online weight tuning.  Then, a NN observer is introduced to estimate the linear and 

angular velocity of the follower as well as its leader so that a specific torque command 

for the follower robots can be calculated using local sensor measurements with minimal 

communication between the leader and its followers as opposed to communicating 

leader's orientation, linear and angular velocities and their control torque [11].  In this 

work, only the orientation of the leader is assumed available while the separation 

principle is relaxed.  Finally, it is shown that the proposed output feedback controller 

achieves stability even in the presence of obstacles.  Similar to [9], collisions within the 

formation are avoided in this work too, but without the need of the additional assumption 

that higher order derivatives are available. 

 This paper is organized as follows.  In Section II, the leader-follower formation 

control problem and required background information is introduced.  Then, a NN output 

feedback control law is developed for the follower robots by designing a NN observer 

followed by the design of a NN torque control input, and the stability of the combined 

systems is examined.  Next, a NN output feedback control law and its stability are 

presented for the leader robot.  Finally, the stability of the overall formation is presented, 

and a general formation controller structure is given which shows the controllers for the 

leader and followers as well as the interactions between them.  In Section III, the NN 

output feedback control law for the followers is integrated with the leader-follower 

obstacle avoidance scheme of our previous work [11], and the stability of the modified 

obstacle avoidance scheme is presented.  Section IV presents numerical simulations, and 

Section V provides some concluding remarks. 
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II. LEADER-FOLLOWER FORMATION CONTROL 

 
 Background information on leader-follower formation control is introduced next. 

Throughout the development, follower robots will be denoted with a subscript 'j' while 

the formation leader will be denoted by the subscript 'i'.  The goal of separation-bearing 

formation control is to find a velocity control input such that 

 0)(lim =−
∞→ ijijdt

LL  and 0)(lim =Ψ−Ψ
∞→ ijijdt

              (1) 

where ijL  and ijΨ are the measured separation and bearing of the follower j with respect to 

leader i, and ijdL and ijdΨ represent desired distance and angles [2-3], respectively, as 

shown in Fig. 1.  Note that limited sensing capabilities restrict the types of achievable 

formation topologies.  Therefore, care must be taken during the selection of the desired 

separation and bearing, ijdL and ijdΨ , respectively, to ensure follower j can detect its 

leader.   

 The kinematic equations for the front of the jth follower robot can be written as 
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where jd is the distance from the rear axle to the to front of the robot, T
jjjj yxq ][ θ=  

denotes the actual Cartesian position and orientation of the physical robot, jv , and jω  

represent linear and angular velocities, respectively, and T
jjj vv ][ ω= .  Many robotic 

systems can be characterized as a system having an n-dimensional configuration space C 

with generalized coordinates ),...( 1 nqq subject to l  constraints [12].  Applying the 

transformation [12], the dynamics of the mobile robots are given by 
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Fig. 1.  Separation-bearing formation control. 

 
 
 
 

jdjjjjjmjjj jvFvqqVvM ττ =+++
____

)(),( &&                        (3) 
 

where ρρx
jM ℜ∈ is a constant positive definite inertia matrix, ρρx

mjV ℜ∈ is the bounded 

centripetal and coriolis matrix, ρℜ∈jF is the friction vector, ρτ ℜ∈dj  represents 

unknown bounded disturbances such that Mdj d≤τ  for a known constant, Md , 

ρρx
jB ℜ∈ is a constant, nonsingular input transformation matrix, ρττ ℜ∈= jjj B is the 

input vector, and ρτ ℜ∈j is the control torque vector.  For complete details on (3) and the 

parameters that comprise it, see [12].    For this work 3=n , 1=l , 2=ρ , and the inertial 

and input transformation matrices are considered to be known while centripetal, friction, 

and coriolis forces are considered unknown. We will also apply the assumption from [12] 

that the linear and angular velocities of each robot are bounded for all time, t.  Robotic 

systems satisfy the following properties [12]: 

 1.  Boundedness: jM , the norm of mjV , and djτ are all bounded. 
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 2.  Skew Symmetric:  The matrix mjj VM 2−&  is skew-symmetric. 
 

A.  Backstepping Controller Design 

 The complete description of the behavior of a mobile robot is given by (2) and 

(3).  The NN output feedback controller is introduced so that the specific torque )(tjτ may 

be calculated so that the alternative control velocity )(tv jc derived in [11] can be tracked 

without knowing the complete dynamics of the formation while minimizing 

communication requirements and relaxing the availability of state variables.  In this work, 

each robot is not aware of its velocity or the velocity of its leader.  In addition, each robot 

only has knowledge of its constant inertial and input transformation matrices and no 

knowledge of its leader's dynamics.   Thus, each robot has many challenging 

uncertainties that must be overcome in order to complete its control objective.  The NN in 

the observer and controller will overcome these problems. 

 In this work, a two-layer NN consisting of one layer of randomly assigned 

constant weights axLV ℜ∈   in the input layer and one layer of tunable weights LxbW ℜ∈  

in the output layer, with a  inputs, b  outputs, and L  hidden neurons are considered.  The 

universal approximation property for NN [13] states that for any smooth function )(zf , 

there exists a NN such that εσ += )()( zVWzf TT  for some ideal weights ,W V , whereε  

is the NN functional approximation error, and La ℜ→ℜ⋅ :)(σ is the activation function in 

the hidden layers.  It has been shown that by randomly selecting the input layer 

weights V , the activation function )()( zVz Tσσ = forms a stochastic basis, and thus the 

approximation property holds for all inputs, az ℜ∈ , in the compact set S [13].  The 
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sigmoid activation function is considered here.  For complete details of the NN and its 

properties, see [13].     

 Remark 1:  Throughout this paper, ⋅  and 
F
⋅ will be used as the vector and 

Frobenius matrix norms, respectively [13].  

 Before we proceed, the following definition and assumptions which are standard 

in leader-follower formation control [4],[6],[9] and NN literature [13] will be revisited. 

 Definition 1:  An equilibrium point ex is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS ℜ⊂ so that for all initial states Sx ∈0 there exists 

a bound B and a time ),( oxBT  such that Bxtx e ≤−)( for all Ttt +≥ 0 [13]. 

  Assumption 1.  The separation ijL and bearing ijΨ  [4], [6], and the position and 

orientation [12] of all the robots are measured whereas velocity measurements are not 

available. 

  Assumption 2.   Leader i  communicates its orientation iθ  to its followers [9]. 

  Assumption 3. On any compact subset of nℜ , the target NN weights jW and 

reconstruction errors jε are bounded by known positive values for all 

followers Nj ,...2,1= such that MFj WW ≤ and Nj εε < , respectively, and all 

disturbances are bounded such that Mdj d≤τ [13].   

 Remark 2: Ideally, we would like to solve the leader-follower formation control 

problem using minimal communication.  If the follower robots can measure or estimate 

the orientation of their respective leader, then the proposed output feedback scheme could 

be implement in a decentralized manner.  However, in this work we assume that follower 
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robots cannot directly detect the orientation of their respective leader, and thus, the 

orientation of the leader must be communicated to its follower.  In addition, this work is 

developed under the assumption that the velocity vector of each robot is not measureable.  

As a result, the leader cannot communicate its velocity vector to its followers unless it 

uses the velocity estimate generated by its observer.  Therefore, the follower robots’ 

control laws would be reliant on the accuracy of the leader’s observer and susceptible to 

the leader’s observer estimation errors.  Since each robot estimates its leader’s velocity 

vector online locally, the risk of observer estimation errors propagating throughout a 

formation is removed. 

B. Leader-Follower Tracking Control   

 In [11], single robot control frameworks such as [12] were extended to leader-

follower formation control subject to the kinematics and dynamics defined by (2) and (3), 

respectively.  Then, a reference position at a desired separation ijdL and bearing ijdΨ  for 

follower j  with respect to the rear of leader i  was defined, and the kinematic error 

system was found to be [11] 
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where jiij θθθ −= and jrθ is the reference orientation.  The reference orientation for 

follower j is defined relative to the leader satisfying the differential equation as 

( ) jjjijriijijdijdijr dekvL 22)sin()cos( +++Ψ= θθωθ& ,     (5) 

where ],[ ππθθθ −∈−= jriijr  and 2jk is a positive design constant.  It is noted in our 

previous work [11] that due to the nonholonomic constraint [12] as well as the 
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separation-bearing formation control objective, the orientations of each robot in the 

formation will not be equal while the formation is turning, and thus, the reference 

orientation of each robot cannot be chosen such that ijr θθ = .  However, defining jrθ by 

(5), allows the stability of all three error states to be shown.  It can be shown that the 

reference orientation, jrθ , converges to the orientation of leader i  when 0=iω (traveling 

in a straight path) and formation errors have converged to zero.  

 The transformed error system (4) now acts as a formation tracking controller 

which not only seeks to remain at a fixed desired distance ijdL with a desired angle ijdΨ  

relative to the leader robot i , but also will achieve a relative orientation with respect to 

the leader.  Further, the orientation of the follower will become the orientation of the 

leader when 0=iω .  Finally, the error dynamics of (4) are found to be [11] 
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 To stabilize the kinematic system, the following velocity control inputs for 

follower robot j were derived using Lyapunov theory [11] to achieve the desired position 

and orientation with respect to leader i  as 
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)sin()cos(
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θθω
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where T
jjjj kkkK ][ 321= is a vector of positive design constants.   Examining (7), one 

can see that the linear and angular velocities of leader i must be available in order to 

calculate jcv . However, given only the orientation of the leader (Assumption 2), each 

follower must estimate the velocity vector of its respective leader online. 
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C.  Leader-Follower NN Observer Design 

 In order to estimate the linear and angular velocities of the leader, the follower 

must be able to measure either its jx and jy coordinates or its own linear velocity jv .   If 

neither the position nor the velocity information of the follower is available, only the 

relative linear velocity between the leader and its follower ji vv − , can be recovered.  In 

this work, the velocity vector of the follower, jv  is considered not measurable, therefore, 

the position measurements will be used.  If the linear velocity of the follower was directly 

measurable, the observer could easily be modified to recover the linear and angular 

velocities of the leader. 

 To begin the development of the NN observer, we define the auxiliary system 

states as 14
1 ]cos[ xT

jjiijijj yxLX ℜ∈Ψ−= θ and 14
2 ][ xT

jjiij vvX ℜ∈= ωω .  Note that 1jX is 

available under Assumptions 1-2, while 2jX  is not.  The dynamics of ijL and ijΨ can be 

written as [2] 

ijiijijijjjijijjijiij

ijijjjijiijijjij

LLdvv

dvvL

))cos()sin(sin(

)sin(cos)cos(

ωθωθ

θωθ

−+Ψ++Ψ−Ψ=Ψ

+Ψ+Ψ−+Ψ=
&

&
            (8) 

 Differentiating (8), the dynamics of the leader can be written in terms of the 

formation dynamics and the dynamics of the follower as 
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Using (2), (3), (8), and (9), the dynamics of the auxiliary error system can now be written 

as 
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XXAX

ζ
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&

&
              (10) 

where )( 1jj XA is an invertible, time varying, nonlinear matrix formulated from (2) and 

(8) and comprised of measurable terms as 
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⎥
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where 2,1,14 =ℜ∈ kx
jokζ represents unknown but bounded measurement errors and 

disturbances such that 2,1, =≤ kjoBjok ζζ , TT
jo

T
jojo

x
jjjo fffXXf ][),( 21

14
21 ==ℜ∈ is the 

vector of robot dynamics formed from (9) and (3) as 12
1

x
ijo vf ℜ∈= &  and 

( ) 121
2 )( x

jjjmjjjo vFvVMf ℜ∈+= − , respectively, 24 x
jog ℜ∈ is a known constant matrix 

defined as 1−= jjo MDg  where 24xD ℜ∈ is the constant matrix [ ]TD 1000;0100= , 

and 12 x
jjou ℜ∈=τ  is the control torque for follower j .   

 Examining the definition of 1jX , it is observed that 

0cos =ΨijijL when 2/π±=Ψij .  Further, the dynamics (9) contain a singularity 

when 2/π±=Ψij .  The singularity problem in (9) is avoided in (10) by using a NN to 

estimate iv&  and is described in detail in the subsequent development; however, in order 

to avoid the first term in 1jX from becoming zero, formations defined by 2/π±=Ψijd are 

not allowed. 

 Before proceeding, some useful properties of jA should be highlighted.  First, in 

the presence of limited sensing capabilities, there exists a maximum measurable 
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separation distance maxijL ; therefore, both jA and its inverse are bounded by computable 

constants jMA and I
jMA , respectively.  Also, the terms 21

1 jj AAIc &−± and 21
2

−± jj AAIc &  

are shown to be positive definite using Sylvester's criterion for any choice of real positive 

constants, 1c and 2c . 

 Next, we define a change of variables as 11 jj Xz ≡ and 22 jjj XAz ≡  and the new 

system dynamics are given by 

( )22

121

jojojojojj

jojj

ugfAz

zz

ζ

ζ

++=

+=

&

&
        (11) 

where 2
11

jjjjjojo zAAAff −−+= & .  According to the universal approximation property of 

NN, there exist target weights jojo VW ,  and a NN approximation error joε  such that 

jojo
T
jo

T
jojo zVWf εσ += )(  where joz is the NN input.  Then, the NN estimate 

)ˆ(ˆˆ
jo

T
jo

T
jojo zVWf σ=  can be defined where joŴ is the NN estimate of joW and joẑ is the NN 

input defined using the estimated states of the observer which will be identified later. 

 Remark 3:  In [14] and [15], observers were proposed utilizing adaptive fuzzy 

logic and a NN, respectively, and by defining a change of variable.  In both these 

approaches, jA is the identity matrix, while in this work, jA is an invertible, time varying, 

nonlinear matrix. 

 The NN observer is now defined as 

( ) 122

1121

~ˆˆ

~ˆˆ

jjojjojojojj

jjojj

zKugfAz

zKzz

+++=

+=

γ&

&
              (12) 
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where 1joK and 2joK are positive design constants, jγ is a robustifying term, 

and 111 ˆ~
jjj zzz −= is the error between the measured and observed states.  The observer 

estimation error dynamics are found by subtracting (12) from (11) and adding and 

subtracting )ˆ( jo
T
jo

T
joj zVWA σ to 2

~
jz&  to yield 

( ) 122

11121

~ˆ~~

~~~

jjojojjo
T
jojj

jojjojj

zKWAz

zKzz

−+−=

+−=

δγσ

ζ
&

&
           (13) 

where jojojo WWW ˆ~ −=  is the weight estimation error, )ˆ(ˆ jo
T
jojo zVσσ =  is the hidden-layer 

activation function vector, and ( ))ˆ()(2 jo
T
jojo

T
jo

T
jojojojo zVzVW σσεζδ −++= .  Utilizing 

Assumption 3 along with properties of the sigmoid activation function [13], it is straight 

forward to show jBjo δδ ≤ for all time t  where 0>jBδ is a computable constant. 

 The robot velocity estimates 2
ˆ

jX are then defined as 

( )132
1

2
~ˆˆ

jjojjj zKzAX += −  

where 3joK is a positive design constant. The estimation errors for the auxiliary system 

(10) are defined as 11
~~

jj zX = and 1322
~~~

jjojjj zKzXA −= .  

Differentiating 1
~

jX and 2
~

jj XA yields the error dynamics of the auxiliary system as 

( ) ( ) jojjojojojjjjojjo
T
jojjjjoj

jojjjjojoj

XKKKAXAKWXAAIKX

XAXKKX

δγσ
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1
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1
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1
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121311

~~ˆ~~~

~~)(~

&&

&

  (14) 

where jojojojjo KA δζδ +=′ −
13

1 and jBjo δδ ′≤′ where jBδ ′ is another computable constant.  

Finally, the observer NN input can be defined as ]ˆˆˆˆˆ1[ˆ 21 ijijijijijij
T
j

T
jjo LLLXXz &&&&&& ΨΨΨ= , 
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where ,ˆ,ˆ,ˆ
ijijij L ΨΨ &&&& and ijL&&̂ are the estimates and derivative estimates of (8), respectively, 

which are estimated using the observer velocity estimates. 

 Theorem 1:  (Follower Robot NN Observer) Given the auxiliary system (10), and 

NN observer (12) for follower j , and let Assumptions 1-3 hold. Define the robustifying 

signal  

1133
1 ~)( jjojojojj XKKKA −−= −γ          (15) 

with the NN update law for the observer given by 

( ) joFjoFjjoo
T
jFjjoojo WAAXFXAFW ˆ~~ˆˆ

2
1

111
1 κκσ +−= −−&     (16) 

where 0>= T
oo FF and 0, 21 >oo κκ are design parameters. Then there exists positive 

design parameters ,, 21 jojo KK and 3joK  such that the observer estimation errors 1
~

jX , 2
~

jX  

and the NN observer weight estimation errors, joW~ , are UUB. 

  Please see the Appendix for proof of Theorem 1. 

D.  Dynamical NN Torque Controller 

 In this work, the velocity vectors of each mobile robot are not available.  

Therefore, the control laws must be defined using the velocity estimates of the NN 

observer derived in the previous section. To begin, the control velocity (7) is estimated 

using the observed velocities of the leader and written as 
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where 4joK is a positive design constant, and 11
~

jX and 12
~

jX are the first and second 

elements of the observer error vector 1
~

jX , respectively.  Next, we define the actual and 

estimated velocity tracking errors, jce and jcê , respectively, as 

jjc
T

jj
T

jcjc
T

jjjc vvvvveee −=−== ][][][ 2154 ω      (18) 

and 

jjc
T

jj
T

jcjc
T

jjjc vvvvveee ˆˆ]ˆˆ[]ˆˆ[]ˆˆ[ˆ 2154 −=−== ω .     (19) 

 Defining jjj vvv ˆ~ −= , observing jjcjcj vevv ~ˆˆ +−= , and substituting this along 

with the control velocity (17) into (6), reveals the closed loop kinematic error dynamics 

as 
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where 
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and 2jX% is the observer estimation error vector of the velocities of the robots. 

 Remark 4:  Recall that the reference orientation dynamics (5) are defined in terms 

of the linear and angular velocities of the leader; therefore, the reference orientation must 

be rewritten in terms of the observer velocity estimates.  Thus, the observer estimation 

errors are not present in the dynamics of the third error state, 3je& .  Note that the stability 

of the kinematic error system now depends on the estimated velocity tracking errors, 

demonstrating the necessity for a dynamical velocity tracking control loop.   
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 Moving on and observing jjj vvv ~ˆ += ,  and 12
~~ˆ jjjcjc XXvv ′−′+=  where 
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jce and jcê  can be related by 

jjjjcjc vXXee ~~~ˆ 12 +′+′−=          (21) 

 To form the error dynamics of (19), we first find the error dynamics of (18).  To 

begin, add and subtract jcj vM & and jcmjvV to (3), and substitute (18) and its derivative into 

(3) to reveal the actual velocity tracking error dynamics to be 

djjjjjcmjjcjjcmjjcj vFvVvMeVeM ττ +−+++−= )(&& .                 (22) 

Then, multiplying both sides of (21) by jM and taking its first derivative with respect to 

time as well as substituting (22) into the derivative of (21) reveals the dynamics of the 

estimated velocity tracking error to be 

djjjjjcmjjcj zfeVeM ττ +−+−= )(ˆ&̂        (23) 

where )~~~()~~~()()( 1212 jjjmjjjjjjjjcmjjcjjj vXXVvXXMvFvVvMzf −′−′+−′−′−++= &&&&  and 

TT
j

T
j

T
j

T
j

T
j

T
j

T
j

T
jc

T
jcj vXXvXXvvvz ]~,~,~,~,~,~,,,[ 1212

&&&& ′′′′= .  The nonlinear function )( jj zf  brings in 

the dynamics of leader i through jcv& as given by ),,,( jjiicjvjc eevvfv &&& &= where )(•cjvf & is 

the nonlinear function that relates jcv& .   

 According the NN universal approximation property, there exists constant, 

bounded, ideal weights jj VW , , such that MFj WW ≤  and 

jj
T
j

T
jjj zVWzf εσ += )()( where jε is the bounded NN approximation error such 
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that Mj εε ≤ [13].  Since the complete dynamics (3) are not known, the universal 

approximation property will be invoked to estimate the function )( jj zf  and thus estimate 

the dynamics of follower j  by j
T
jj

T
j

T
jjj WzVWzf σσ ˆˆ)ˆ(ˆ)ˆ(ˆ ==  where )ˆ(ˆ

jj zf and jŴ are the NN 

approximations of )( jj zf and jW , respectively.   In order to accommodate the dynamics of 

the follower and the formation, the estimated NN input, jẑ , is defined as 

TT
j

T
jci

T
ij

T
j

T
jc

T
jcj eevvvvz ]ˆˆˆˆˆ1[ˆ θθ&= where T

jcv&̂ is the estimate of T
jcv&  calculated using the 

observer velocity estimates and their dynamics. Then, the torque control input for 

follower j can be written as 

jjjjcjj uzfeK ++= )ˆ(ˆˆ4τ         (24) 

where ju is a robustifying term defined as 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
)( 3322

12

jjjjj

jj
jj ekekd

ek
u α              (25) 

and jα is a positive design constant. 

 Substitution of (24) into the error dynamics (23) as well as adding and subtracting 

j
T
jW σ̂  reveals 

( ) jj
T
jjjcmjjjcj WueVKeM ζσ ++−+−= ˆ~ˆˆ 4

&              (26) 

where jjj WWW ˆ~ −= , jdjj
T
jj W ετσζ ++= ~  and jjj σσσ ˆ~ −= .  It is noted that 

jMj ζζ ≤ for a computable constant MMcMjM dNW εζ ++= 2  where cN is the number 

of hidden layer neurons in the control NN and the relation cj N2~ ≤σ  [15] was 

utilized.  Note in the absence of disturbances, observer estimation errors, and NN 
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approximation errors, the origin 0]ˆ[ˆ == TT
jc

T
jj eee is an equilibrium point of (20) and 

(26). 

 Remark 5:  Note that the robust term ju  (25) is not necessary to prove the 

stability of the error system for the follower robot and the entire formation.  However, 

investigating the control torque (24) one can see ju is the only term that is well known 

and measurable.  As a result, the reliable signal ju is included in the control input (24). 

 Next, the stability of the combined NN observer and output feedback controller is 

established in Theorem 2 using Lyapunov analysis methods without the need of the 

separation principle where it will be shown that the observer estimation errors, position 

errors, and estimated velocity tracking errors are all UUB.  

 Theorem 2:  (Follower Output Feedback Control):  Given the nonholonomic 

robot system consisting of (2) and (3), the leader follower criterion of (1) as well as the 

auxiliary system for follower j given by (10) and the NN observer defined by (12), let 

Assumptions 1-3 hold.  Let a smooth velocity control input, jcv̂ , and torque control, jτ , 

for the follower j be given by (17) and (24), respectively, along with the robustifying 

term be given by (25).  Consider the NN observer update law (16) and dynamic NN 

controller update law as 

( ) jj
T
jcjj WeFeFW ˆˆˆˆ

21 κκσ +−=&              (27) 

where 0>= TFF and 01 >κ , 02 >κ  are small design parameters.  Then, there exist 

positive constants 321 ,, jojojo KKK and 4joK , a vector of positive constants, 

T
jjjj kkkK ][ 321= , 4jk ,and jα  such that the NN observer estimation errors 1

~
jX , 2

~
jX  
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and its weight estimation errors joW~ , the origin 0ˆ =je , consisting of the position, 

orientation and estimated velocity tracking errors, and the control NN weight estimation 

errors jW~ , for follower j  are all UUB.  

  Please see the Appendix for proof of Theorem 2. 

 Remark 6:  Recalling the relationship between the actual velocity tracking error 

and the estimated velocity tracking error defined in (21), it is clear that the convergence 

of the observer estimation errors and the estimated velocity tracking error to a compact 

set guarantees the convergence of jce . 

E.  Leader Control Structure 

 The kinematics and dynamics of the formation leader i  are defined similarly to 

(2) and (3), respectively, for follower j . From [12], the leader tracks a virtual reference 

robot, and the tracking error for the leader and its derivative are found to be 
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where irx , iry , irθ irv  and irω  are the Cartesian position in the x and y direction, 

orientation and the linear and angular velocities, respectively, of a virtual reference robot 

for leader i .   

 Since leader i  tracks a virtual robot, it has knowledge of the velocities of the 

reference robot; however, under Assumption 1, the leader cannot measure its own linear 

and angular velocities, and thus, an observer must be utilized.  Similarly to the observer 

development for follower j , we define an auxiliary system consisting of a measurable 
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term 13
1 ][ xT

iiii yxX ℜ∈= θ  and an immeasurable term 12
2 ][ xT

iii vX ℜ∈= ω .  The 

dynamics of 1iX and 2iX are then written as 
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−
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1cossin
0sincos

)( 1 θθ
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 , ( ))(),(
__

1
21 iiimiiiiio vFvVMXXf += − , 

iiiio Mug τ1−=  are formulated from the kinematics and dynamics of robot i  and 

13
1

x
io ℜ∈ζ  and 12

2
x

io ℜ∈ζ  represent unknown but bounded disturbances.  It is useful to 

point out i
T
i SSIc &±3  is positive definite for any choice of a positive 

constant 3c and I being the identity matrix of appropriate dimension. 

 Similar to the observer design for follower j , a change of coordinates is defined 

as 13
11

x
ii Xz ℜ∈≡ and 13

22
x

iii XSz ℜ∈≡  for convenience, and an observer for the 

leader i can be realized as 
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zKzz
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where 1ioK are 2ioK real positive design constants, 111 ˆ~
iii zzz −= , and iγ is a robustifying 

signal defined as ( )( )1133
~

iioioio
T
ii XKKKS −−=γ .  The NN universal approximation 

property is also utilized to estimate the unknown dynamics of leader 

i in 13
2

x
iiioiio XSfSf ℜ∈+= & , and the NN takes the form of )ˆ(ˆˆ

io
T

io
T

ioio zVWf σ=  where 

T
ioŴ  is the estimate of the target observer weights T

ioW , and ioẑ is the input to the NN 

defined using the observer velocity estimates as TT
i

T
iio XXz ]ˆ1[ˆ 21= .  The estimate of the 
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leader's velocities can now be defined as )~ˆ(ˆ
1322 iioi

T
ii zKzSX += where 3ioK is a positive 

design constant. 

 From (28) and the definitions of 1iz and 2iz , the dynamics of the estimation errors 

1
~

iX  and 2
~

iX  are found similarly to (14) as 
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ioio
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ioioio
T
iio KzVzVWS 31323 ))ˆ()(( δζσσεζδ ≤−−++=  with Bi3δ  being a 

computable constant, and ioε is the NN approximation error. 

 Moving on, the control laws for the leader can now be presented.  The control 

velocity )(tvic can be defined similarly to [12] as 
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where 1ik , 2ik , 3ik  are design constants. Next, define the estimated velocity tracking error 

as 
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Defining iii vvv ˆ~ −= , manipulating (31) to reveal iicici vevv ~ˆ +−=  and substituting this 

relation into ie&  above yields the closed loop kinematic tracking error dynamics written to 

include the estimated velocity tracking errors as well as the observer estimation errors as 
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 In the absence of observer estimation errors, 0]ˆ[ˆ == T
ic

T
ii eee  is an equilibrium 

point of (32).  Using similar steps as that of (23), the error system for the leader can be 

obtained similar to follower j.  The torque input iτ for the leader is defined as 

iiiicii uzfeK ++= )ˆ(ˆˆ4τ              (33) 

where 12 x
iu ℜ∈ is a robustifying term defined as 

⎥⎦
⎤

⎢⎣
⎡=

23

1

)sin( ii

i
ii ke

e
u α               (34) 

with iα being a positive design constant and IkK ii 44 =  for a positive design constant 4ik  . 

Here the NN universal approximation property has been used to estimate the nonlinear 

function ii
T

i
T

iii zVWzf εσ += )()( , which is defined similar to )( jj zf for follower j (23).   The 

NN estimate is then written as )ˆ(ˆ)ˆ(ˆ
i

T
i

T
iii zVWzf σ=  where iŴ is the approximation of the 

target NN weights, iW  , and TT
i

T
ici

T
i

T
ic

T
ici eevvvz ]ˆˆ1[ˆ θ&=  is the NN input written in terms 

of the observer state estimates. 

 Remark 7:  Similarly to follower j, the stability of leader i can be proven without 

the robustifying term (34), but is included in (33) since it is a reliable signal whereas the 

other terms in (33) are all being estimated. 

 Using (33), the closed loop error system for leader i can be formed similarly to 

the closed loop error system for the follower (26) as 

( ) ii
T

iiicmiiici WueVKeM ζσ ++−+−= ˆ~ˆˆ 4
&                                    (35) 

where iMi ζζ ≤ for a computable constant iMζ defined similarly to jMζ .  Examining (34) 

and (35), it can be concluded that 0]ˆ[ˆ == T
ic

T
ii eee  is an equilibrium point (35) in the 

absence of disturbances and NN approximation errors. 
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 Theorem 3 (Leader Robot Control): Given the kinematic and dynamic system for 

leader i  (defined similar to (2) and (3), respectively), let 0>irv  and irω be bounded.  

Consider the NN observer defined by (28) with its weight update defined by 

( ) ioioiioio
T
iioioio WXFXFW ˆ~~ˆˆ

2111 κκσ +−=&         (36) 

where 0>= T
ioio FF , 01 >ioκ and 02 >ioκ are design parameters.  Let a smooth velocity 

control input )(tvic  (30) and NN torque control (33) be applied, and the NN controller 

weight update law be given by 

( ) iiiii
T
iciii WeFeFW ˆˆˆˆ

21 κκσ +′−=&             (37) 

where 0>= T
ii FF , 01 >iκ and 02 >iκ are small design parameters, 

and ]ˆsin[ˆ
31

T
jcjji eeee =′ is an auxiliary error signal.  Then there exists positive 

constants 1ioK , 2ioK , 3ioK , 1ik , 2ik , 3ik , 4ik , and iα  such that the observer estimation 

errors 1
~

iX , 2
~

iX , the position, orientation and velocity tracking errors iê , and the NN 

weight estimation errors of the observer and the dynamic controller, ioW~ , iW~ , 

respectively, are all UUB. 

 Please see the Appendix for proof of Theorem 3. 

 Remark 8:  Observing iicic vee ~ˆ −= , it is clear that the convergence of the 

observer estimation errors and the estimated velocity tracking error to a compact set 

guarantees the convergence of ice .  Next the stability of the formation is introduced. 

F. Formation Stability 

 It has been shown that the dynamics of leader i are incorporated into the control 

torque of follower j.  Similarly, in a formation topology where follower j becomes a 
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leader to follower j+1, the dynamics of follower j become incorporated into the control 

torque of follower j+1, and since the dynamics of follower j incorporates the dynamics of 

leader i, follower j+1 inherently brings in the dynamics of leader i by considering the 

dynamics of follower j. As a result, the formation error dynamics of a formation 

consisting of one leader and N followers can be captured by taking the sum of the 

individual Lyapunov candidates for leader i and follower j, Nj ,...2,1= as demonstrated 

in the following theorem. 

 Theorem 4 (Formation Stability):  Let the hypotheses of Theorems 2 and 3 hold.  

Then, the formation errors consisting of leader and follower states are UUB.   

 Please see the Appendix for proof of Theorem 4. 

  The overall formation controller is now presented in Fig. 2.  In the figure, the 

complete control structures for follower j and leader i are labeled as (a) and (b), 

respectively, where the generalized functions ( )•ejf , ( )•eif , ( )•vjcf and ( )•vicf  describe the 

kinematic error system and the control velocity for follower j and leader i , respectively.  

For both the leader and follower control structures, the kinematic and dynamic control 

blocks along with the observer block were drawn according to the mathematical 

equations derived in this work.  In the figure, the follower observer structure was drawn 

according equation (12), the follower kinematic controller was drawn according equation 

(17), and the torque control input for the follower was drawn according to equation (24). 

Similarly, the observer, kinematic controller, and dynamic controller for the leader were 

each drawn according to equations (28), (30), and (33), respectively.  Using wireless 

communication, shown in (c), the leader communicates its orientation to its followers.   
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Fig. 2.  Formation controller structure. 

 

 

All other required information is obtained locally by the follower using the NN observer 

and local sensory information as shown. 

  Remark 9: To implement the proposed output feedback control scheme, two 

NN’s are required.  Although this appears to be a computationally demanding algorithm, 

our previous work [18] on the control of spark ignition engines has demonstrated that 

three NN’s can be successfully implemented in hardware simultaneously with promising 

results.   In fact, it was found that the total time required to compute the controller 

calculations was less than sec100μ . 
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III. LEADER-FOLLOWER OBSTACLE AVOIDANCE 

 In [11], an obstacle avoidance scheme was proposed that allowed follower j to 

track its leader while simultaneously avoiding obstacles. To accomplish this, the desired 

separation and bearing were no longer considered to be constants but were considered to 

be time varying.  In this section, only an overview of the obstacle avoidance scheme is 

presented.  The obstacle avoidance scheme from [11] has to be modified and the stability 

has to be revisited due to the addition of the observer and output feedback control.  In this 

section, the time varying desired separation and bearing will be denoted as )(tLijd  

and )(tijdΨ while the constant desired separation and bearing will be written as ijdL  

and ijdΨ . 

 Furthermore, the distance, js , from follower j to an obstacle and relative angle of 

the obstacle, jsθ , are considered measurable while the velocity, T
ooo vv ][ ω= , and 

orientation, oθ , of the obstacle are unavailable.  It is also assumed that leader i utilizes a 

 

 

 
Fig. 3. Obstacle avoidance. 



 

 

89

path planning scheme such that by tracking the virtual reference cart described in [12], 

the lead robot i  navigates around any encountered obstacles.   

 In the configuration shown in Fig. 3, it is desirable that the follower robot j  

maintains a safe distance, ds , from all obstacles.  Therefore, when the nearest edge of an 

obstacle is detected at an angle jsθ and distance js  relative to follower j such that dj ss < , 

the desired separation and bearing, )(tLijd  and )(tijdΨ , are modified to ensure the follower 

is steered away from the obstacle by 

j
dj

ijdijdijdjs
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where )sgn()sgn( ijdjsijdj ΨΨ= θξ , sgn is the signum function, and LK  and ψK  are design 

constants.  In [11], the error dynamics in the presence of obstacles were found to be 
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⎛
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)()(ˆ ttstss jjj Δ−−=&  is the estimate of js&  for an arbitrarily small time interval, tΔ .  The 

estimate js&̂ is used because velocity vector ov and orientation oθ of the obstacle are not 

available to follower j.  Utilizing the observer estimates iv̂ , the following velocity control 

inputs for follower robot j are proposed to stabilize the error dynamics (39) in the 

presence of an obstacle 
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where 4joK , 11
~

jX , and 12
~

jX were previously defined in Section II.D while 1jk  and 2jk  

are positive design constants.  Next, define the velocity tracking error in the presence of 

obstacles  similarly to (19) as  jjcojco vve ˆˆˆ −= .  Then, substituting (41) into the error 

dynamics of (39) while observing jjcojcoj vevv ~ˆˆ +−= reveals  
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where 1joΩ and 2joΩ are matrices defined by 
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which are shown to be upper bounded such that MjoFjo 11 Ω≤Ω and MjoFjo 22 Ω≤Ω for 

some computable constants Mjo1Ω and Mjo2Ω , respectively, and 111
ˆ~

jojojo eee &&& −=  and 

222
ˆ~

jojojo eee &&& −=  are the bounded estimation errors for the estimates in (40) such that 

jMojojojo eee ε≤= ]~~[~
21

&&&  with 0>jMoε  being a constant.  Whenever there is zero 

estimation error, 0]ˆ[ == TT
jco

T
jojo eee is an equilibrium point for (42).   It is observed that 

the dynamic controller (24), error system (26), and NN weight update law (27) are valid 

in the presence of obstacles with jcê replaced with jcoê .  Next the performance of the 

follower in the presence of obstacles is introduced. 

 Theorem 5 (Follower Obstacle Avoidance):  Given the nonholonomic system 

consisting of (2) and (3), the leader follower criterion of (1), and the auxiliary system for 
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follower j given by (10), let Assumptions 1-3 hold.  In the presence of obstacles, 

consider the NN observer defined by (14), and let a smooth velocity control input, jcov̂ , 

and torque control, jτ , for the follower j be given by (41) and (24), respectively.  Select 

the robustifying term as T
jojjojojo edeu ][ 21α=  where joα is a positive constant, and let 

the update law for the NN observer and controller be given by (16) and (27), respectively.  

Then, there exists positive constants, LK , ψK , 321 ,, jojojo KKK , 4joK , 1jk , 2jk , 4jk , and 

joα such that the position and velocity tracking errors for the follower j , the NN weight 

estimation errors jW~ ,  the observer estimation errors 1
~

jX , 2
~

jX  and the NN observer 

weight estimation errors, joW~ ,are all UUB in the presence of obstacles. 

 Please see the Appendix for proof of Theorem 5. 

IV. SIMULATION RESULTS 

 A wedge formation of five identical nonholonomic mobile robots is considered 

where the trajectory of the leader is the desired formation trajectory, and simulations are 

carried out in MATLAB under two scenarios.  First, in the absence of obstacles, the NN 

output feedback controllers developed in this work for the leader and its followers is 

considered with non-ideal sensor measurements.  The linear velocity of the leader's 

reference robot is smvir /5.0=  while the reference angular velocity is selected 

as sradtir /)5.0cos(025.0−=ω .   In the second scenario, obstacles are added in the path 

of the follower robots, and the obstacle avoidance scheme of Theorem 5 is demonstrated 

under both a static and dynamic obstacle environment.   
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  A wedge formation is considered such that follower j should track its leader at 

separation of 2=ijdL meters with a bearing of °±=Ψ 120ijd  depending on the follower's 

location, and the formation leader is located at the apex of the wedge as shown in Fig. 4.  

In the figure, followers 1 and 3 track the leader and followers 2 and 4 track followers 1 

and 3, respectively.  The following parameters are considered for the leader and its 

followers: kgm 5= , 23kgI = , mR 175.= , mr 08.0= , and md 4.0= , and the maximum 

achievable linear velocity of any robot in the formation is assumed to be sm /2 .  The 

control gains for the leader were selected as 101 =ik , 52 =ik , 43 =ik , }25{4 diagKi = , 

and 1.0=iα , and for each follower, gains were selected as 511 == jj kk , 522 == jj kk , 

153 =jk , }30{4 diagK j = , and 1.0== joj αα . These controller gains were selected 

according to the constraints observed in Theorem 2.  The observer gains for the leader 

were selected as 251 =ioK , 102 =ioK , 203 =ioK , and for each follower, the observer 

gains were selected as 251 =joK , 62 =joK , 203 =joK and 03.04 =joK . The NN 

parameters for both the leader and each follower were selected as 10== iojo FF , 

 

 

 

Fig. 4.  Formation structure. 
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511 == iojo κκ , 4.022 == iojo κκ , 10== iFF , and 4.2211 ==== ii κκκκ .  In addition, 

five hidden layer neurons were considered in each NN for the leader and each follower.  

Friction is added to the dynamics of the leader and follower and modeled as 

[ ]TsignvvsignF ωβωαβα 2211 )(,.)( ++= , where kα and kβ , 2,1=k , are the friction 

coefficients as given in Table I.  

 Remark 10:  In the proceeding analysis, ,3,2,1, FFFL and 4F will be used to 

denote the leader, follower 1, follower 2, follower 3, and follower 4, respectively.   

 

 

TABLE I.  Friction Coefficients. 

 

 

 

A.  Scenario I:  Obstacle Free Environment  

 Figure 5 shows the resulting trajectories for the NN output feedback controller of 

this work where the robots start in the bottom left corner of the figure and travel toward 

the top right corner of the figure.  Examining Fig. 5, the NN output feedback controller 

achieves and maintains the formation in the presence of unknown dynamics, 

immeasurable velocities, and sensor noise.   In the simulation, noise is generated from a 

normal distribution with a zero mean and standard deviation of one and is introduced to 
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the formation measurements as well as the position and orientation measurements.  The 

variance of the noise signals were chosen to represent a 10 percent error in terms of the 

desired separation and bearing. 

  

 

 
Fig. 5.  Robot trajectories. 

 
 
 
 

 
Fig. 6.  Observer estimation error of F1. 
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Fig. 7.  Formation errors. 

 

 

  Figures 6 and 7 present the observer estimation errors for Follower 1 and all the 

formation tracking errors, respectively.  Examining the observer estimation error plots for 

Follower 1, it is clear that the robot successfully recovers its linear and angular velocity  

as well as the linear and angular velocity of its leader with bounded error which is 

consistent with the theoretical results derived in this work.  Furthermore, comparing the 

convergence of the formation tracking errors for Follower 1 with the convergence of the 

observer estimation errors for Follower 1, it is apparent that the observer errors converge 

to the origin before the formation errors.  A similar phenomenon was observed for the 

other robots, but their observer error plots are not shown due to space constraints.  The 

relationship between the convergence of the observer estimates and formation errors 

demonstrates that accurate velocity information is needed to maintain the formation, and 

that the proposed observer recovers the immeasurable velocities in a satisfactory manner.  
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The results presented in Figs. 6 and 7 also support the theoretical conjectures presented in 

Theorem 4. 

B.  Scenario II: Obstacle Ridden Environment 

  Now, the wedge formation of five robots is considered in an environment with 

stationary and moving obstacles, and the parameters and controller gains defined 

previously along with 75.0=LK and 5.1=ψK  were utilized.  The gains were selected to be 

small in order to keep the desired separation and bearing changes small. 

 Figure 8 depicts the formation trajectories in the presence of both stationary and 

moving obstacles.  The dotted lines represent the path of moving obstacles, and the 

connected circles denote the obstacles' final positions.  Examining the formation 

trajectories, it is evident that the robots are able to maneuver around the encountered 

obstacle while simultaneously tracking their leaders with bounded errors as the result of 

Theorem 5 suggests.  Because the followers on the outside of the formation track the 

robots in the inner formation, the movements of the robots in the interior of the formation 

propagate to the followers on the exterior.   

 Thus, when a robot on the interior of the formation performs an obstacle 

avoidance maneuver, their movements are mimicked by their followers, as evident in Fig. 

8.  The observer estimation errors for Follower 1 are shown in Fig. 9, and examining the 

estimation error plots, one can see that a disturbance occurs at approximately 4 seconds 

corresponding to the time follower 1 encounters an obstacle.  Thus, an encountered 

obstacle can be viewed as a disturbance to the formation.  When the disturbance occurs, 

the NN quickly adapts, and the estimation errors return to a small bounded region around 

the origin as per Theorem 5. 
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Fig. 8.  Trajectories in the presence of obstacles.       

 
 
 
          

 
Fig. 9. Observer errors of F1 in the presence of obstacles. 
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V. CONCLUSIONS 

 A NN output feedback tracking controller for leader-follower based formation 

control was presented that considers the dynamics of the leader and the follower using 

backstepping technique and with limited communication between the leader and its 

followers.  Further, the velocity vectors were considered to be immeasurable, and a novel 

NN observer was designed which allowed the follower robots to not only recover their 

own velocity vector, but also the velocity vector of their respective leader.  It was shown 

using Lyapunov techniques that the entire formation is UUB in both the presence and 

absence of obstacles while relaxing the separation principle.  Numerical results were 

presented and the stability of the system was verified.  The formation control scheme was 

also shown to be effective in simulation not only in the presence of measurement noise, 

but also in both a static and dynamic obstacle environment, and the simulation results 

verify the theoretical conjecture. 
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 APPENDIX 
 

 Proof of Theorem 1:  (Follower Robot NN Observer):  Consider the following 

positive definite Lyapunov candidate 
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whose derivative is given by  
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where 01 >jc is a positive constant.  Recalling the properties of jA  presented in Section 

II.C, it is clear (A.1) is positive definite. Substitution of the observer error dynamics (14) 

and the robustifying signal (15) reveals 
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Next, substituting the NN update law (16), adding and subtracting )2/(~
2

2

2 jooj KNX  

where oN  is the number of hidden layer neurons of the NN observer, and taking the 

upper bound of joV& yields 
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where computable constants jMA and I

jMA are bounds on jA and its inverse, respectively, 

described in Section II.C.  Further, the facts ojo N≤σ̂ , oMFjo WW ≤  and 

)}~(~{ jojo
T
jo WWWtr −  

2~~
FjooMFjo WWW −≤  were utilized with oMW being the known positive 

constant upper bound of the ideal NN weights.  Then, completing the squares with 

respect to the terms containing
Fjoj WX ~~

1 , 
Fjoj WX ~~

2 , and 21
~~

jj XX , joV& is rewritten 

as 
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where ( ) )4( 12

2

1 ojoooMo
I
jMjo KWNA κκ+=Φ  and 2)(2 2

01
I
jMjMjjo AANc +++=Ξ  

are  positive constants.  Finally, we complete the square with respect 

to 1
~

jX , 2
~

jX and
FjoW~ to get 
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where joη is a positive constant defined as 
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 The first derivative (A.2) is guaranteed to be less than zero as long 

as 2/131 +> jojo KK , jojoK Ξ>3 , )2(02 jMo AN>κ and one of the following conditions 

holds 
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Fjo
−

≥
κ

η
 (A.3) 

Observing the definition of joη above, it is clear that joη can be made arbitrarily small by 

increasing the design parameters 1joK , 2joK , 3joK , 1oκ and 2oκ .  Similarly, the error 

bounds in (A.3), are reduced by increasing the design parameters 1joK , 3joK and 2oκ .  

Thus joV& is negative outside of a compact set, and therefore it can be concluded that the 

observer estimation errors 1
~

jX and 2
~

jX and NN observer weight estimation errors joW~ are 

all UUB. 

 Proof of Theorem 2:  (Follower Output Feedback Control):  Consider the 

following Lyapunov function candidate 

jojj VVV +′=           (A.4) 

where joV is defined in (A.1), jNNjj VVV +=′ , 2
3
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2
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j
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T
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j
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αα
.  Differentiating jV  and substituting the closed-loop 

kinematic error dynamics (20) reveals 
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where 1jΩ and 2jΩ are matrices defined as 
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It is important to notice that the matrices are bounded by MjFj 11 Ω≤Ω  and MjFj 22 Ω≤Ω .  

Noting that 33 )2/sin( jj ee ≤ for all ],[3 ππ−∈je , jV&  takes the form of  
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where maxii vv ≤  [12] was utilized. In the next step, it is desired to select 3jk such 

that ( ) 3max3 22 jij kvk <+ , and for any 0>viε , selecting viij vk ε+= max3 2 ensures this 

inequality holds.  Specifically, we select 332 jkvi kεε =  where )2/1,0(3 ∈kε so that 

)21/(2 3max3 kij vk ε−= .                                           (A.5) 

Selecting 3jk as in (A.5) allows jV&  to be written as 
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Next, differentiating jNNV , substituting the closed loop dynamics (26), the tuning law (27), 

and applying the skew symmetric property reveals 
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Now, combining (A.6) and (A.7), substituting the robustifying term (25), and recalling 

TT
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T
jj eee ]ˆ[ˆ =  along with noting 

2~~)}~(~{
FjMFjjj

T
j WWWWWWtr −≤−  and Assumption 3 

reveals 
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Finally, combining (A.8) and (A.2) and completing the squares with respect 

to jê and
FjW~  reveals 

jFjojMo
jo

Fj
j

j
Mj

jojo
jo

j
Mjjo

jojoj
j

j

W
N

A
K

W

XK
K

X
K

KKeV

ηκ
α
κ

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
−Ξ−−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ Ω
−−−−

Γ
−≤

20
2

2

22

2

2

2
2

3
2

2

1

2
14

31

2

~
22

1~
2

~
22

1~
22

1
2
1ˆ

2
&

      (A.9) 



 

 

105

where 22 24 jojojj KK −−Γ=Γ  and ( )
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+=  with joη  defined 

earlier.  Recall that joη can be made arbitrarily small by increasing the design 

parameters 1joK , 2joK , 3joK , 1oκ and 2oκ . Observing the definition of jη  above, 

increasing jΓ and jα allows jη to be further reduced.  Therefore, (A.9) is guaranteed to be 

negative when 22 24 jojoj KK +>Γ , 2/2/1 2
1431 Mjjojojo KKK Ω++> , 22

23 MjjojoK Ω+Ξ> and 

)2/(02 jMo AN>κ  one of the following inequalities is satisfied 
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  Note that the bound on jê can be made arbitrarily small by increasing jΓ  

through the design parameters.  Therefore, 0<jV&  outside of the compact set, and it can 

be concluded that the kinematic and dynamic tracking errors jê , the NN weight 

estimation errors jW~ , the observer estimation errors 1
~

jX , 2
~

jX  and the NN observer weight 

estimation errors, joW~  are all UUB. 

 Proof of Theorem 3 (Leader Robot Control):  Consider the following positive 

definite Lyapunov candidate 

ioii VVV +=          (A.11) 
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loop kinematic and dynamic error systems (32) and (35), respectively, as well as the NN 

weight update law (37) for control reveals 
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where ]10;01[ 2ii k=Ω , and by selecting 12 ≥ik , clearly 2≤Ω
Fi .  Completing the 

square with respect to the terms containing 
Fii We ~ˆ ′  and applying the bounds of 

Assumption 3 with iMFi WW ≤ for a known positive constant iMW , iV&  can be rewritten as 
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2iX , and 

completing the square with respect to ie ′ˆ and
FiW~ reveals 
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Next, differentiating ioV  and substitution of the observer error dynamics (29) and NN 

tuning law (36) reveals 
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where the facts iFi dS +≤ 2  and ioMFio WW ≤ for a known positive constant ioMW were 

utilized and ioη is a defined as 
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 Remark A.1:  The steps taken in the formulation of (A.13) are identical to the 

formulation of (A.2) and therefore, are not repeated here. 

 Finally, combining (A.12) and (A.13), iV& can be written as 
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the following inequalities holds 
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Thus, (A.14) is negative outside of a compact set, and it can be concluded that the 

observer estimation errors 1
~

iX , 2
~

iX , the position, orientation and velocity tracking 

errors iê  and the NN weight estimation errors of the observer and the dynamic controller, 

ioW~ , iW~ , respectively, are all UUB.  Observing the bounds in (A.15), one can see that the 

system errors can be minimized by increasing controller gain parameters.  

 Proof  of Theorem 4 (Formation Stability):  Consider the following Lyapunov 

candidate 

i

N

jij VVV += ∑
1
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where jV  and iV are defined by (A.4)  and (A.11), respectively. In Theorem 2, sufficient 

conditions where found to ensure 0≤jV& ; thus, it follows∑ ≤
N

jV
1

0& if the provisions of 

Theorem 2 are satisfied for every Nj ,...3,2,1= .  Similarly, Theorem 3 derived adequate 

conditions to ensure iV& is less than zero.  Combining these results reveals ijV& is less than 

zero outside of a compact set, and the stability of the formation follows. 

   The stability of a formation for the case when follower j becomes a leader to 

follower j+1 follows directly from Theorem 2 and the positive definite Lyapunov 

candidate ∑
+

=″
1j

j
jj VV  where jV is defined in (A.4).  In this case, follower j becomes the 

reference for follower j+1, and thus the dynamics of follower j must be considered by 

follower j+1.  Since the dynamics of follower j incorporates the dynamics of leader i, 

follower j+1 inherently brings in the dynamics of leader i by considering the dynamics of 

follower j.   

 Proof of Theorem 5 (Follower Obstacle Avoidance): Consider the Lyapunov 

candidate 

 jojNNjoj VVVV ++=′         (A.16) 
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 and joV defined in (A.1).  

Differentiating jV ′and applying similar steps and justifications used to formulate (A.9) 

reveals 
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where joη is a computable constant defined as 
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where 2/2/ 24 jojojojo KK −−Γ=Γ and { }jojjjj kkk α/,,min 4210 =Γ .  The inequality (A.17) is 

less than zero provided 2/2/ 24 jojojo KK +>Γ , 2/2/1 2
1431 Mjjojojo KKK Ω++> , 

22
23 MjjojoK Ω+Ξ> and )2/(02 jMo AN>κ and one of the inequalities in (A.10) holds 

with jê , jj ηα , , and jΓ replaced by joê , jojo ηα , , and joΓ , respectively.  Therefore, 

0<′jV& outside of a compact set, demonstrating the stability of joê , consisting of the 

position and estimated velocity tracking errors, the NN weight estimation errors jW~ ,  the 

observer estimation errors 1
~

jX , 2
~

jX  and the NN observer weight estimation errors, joW~ ,  

for the follower j  in the presence of obstacles.  Additionally, the convergence of the 

estimated velocity tracking error and observer estimation errors to a compact set implies 

that the actual velocity tracking error converges to a compact set as well. 

 Remark A.2: If the above conditions are satisfied for every 

follower Nj ,...3,2,1= , it follows∑ ≤′
N

jV
1

0& .  Combining this result with Theorem 3 

reveals the entire formation is UUB in the presence of obstacles.  Furthermore, the 

stability of a formation in the presence of obstacles for the case when follower j becomes 
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a leader to follower j+1 follows directly from the Lyapunov candidate ∑
+

′=′′
1j

j
jj VV  

where jV ′ is defined in (A.16). 
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3.  Output Feedback Control of a Quadrotor UAV using 
Neural Networks1 

 
 

Travis Dierks and S. Jagannathan 
 
 

Abstract—A new nonlinear controller for a quadrotor unmanned aerial vehicle (UAV) is 

proposed using neural networks (NN) and output feedback.  The assumption on the 

availability of UAV dynamics is not always practical, especially in an outdoor 

environment.  Therefore, in this work, a NN is introduced to learn the complete dynamics 

of the UAV online, including uncertain nonlinear terms like aerodynamic friction and 

blade flapping.  Although a quadrotor UAV is underactuated, a novel NN virtual control 

input scheme is proposed which allows all six degrees of freedom of the UAV to be 

controlled using only four control inputs.  Furthermore, a NN observer is introduced to 

estimate the translational and angular velocities of the UAV, and an output feedback 

control law is developed in which only the position and attitude of the UAV are 

considered measurable.  It is shown using Lyapunov theory that the position, orientation, 

and velocity tracking errors, the virtual control and observer estimation errors, and the 

NN weight estimation errors for each NN are all semi-globally uniformly ultimately 

bounded (SGUUB) in the presence of bounded disturbances and NN functional 

reconstruction errors while simultaneously relaxing the separation principle. The 

effectiveness of proposed output feedback control scheme is then demonstrated in the 

                                                           
1 Research Supported in part by GAANN Program through the Department of Education and Intelligent Systems Center. Authors are 
with the Department of Electrical and Computer Engineering, Missouri University of Science and Technology (formerly University of 
Missouri-Rolla), 1870 Miner Circle, Rolla, MO 65409. Contact author Email: tad5x4@mst.edu. 
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presence of unknown nonlinear dynamics and disturbances, and simulation results are 

included to demonstrate the theoretical conjecture. 

 
Index Terms — Neural network, Quadrotor UAV, Lyapunov method, Output feedback, 
Observer 

I. INTRODUCTION 

 Quadrotor helicopters have quickly emerged as a popular unmanned aerial vehicle 

(UAV) platform in the last several years.  Besides applications like surveillance and 

search and rescue, the popularity of this platform has stemmed from its simple 

construction as compared with conventional helicopters.  For example, a quadrotor UAV 

employs fixed pitch rotors so that its rotor speed can be adjusted to achieve control as 

opposed to mechanical control linkages used in conventional helicopters.  Thus, a 

quadrotor UAV is easier to build and maintain [1]. 

 The dynamics of the quadrotor UAV are not only nonlinear, but also coupled with 

each other and under actuated; characteristics which can make the platform difficult to 

control.  In other words, the UAV has six degrees of freedom (DOF) with only four 

control inputs consisting of thrust and the three rotational torque inputs.  To solve the 

quadrotor UAV tracking control problem, many techniques have been proposed [2-10] 

where the control objective is to track three desired Cartesian positions and a desired yaw 

angle.   

 In [2], a state-dependent Riccati equation-based control scheme was developed 

using the small angle approximation in order to derive the desired pitch and roll required 

for velocity tracking. In contrast, the authors of [3] design a controller using backstepping 

to track the three desired Cartesian positions and a yaw angle while stabilizing the pitch 



 
113

and roll angles.  Then, in [4], saturation functions are employed in the development of the 

control inputs obtained via backstepping approach.  A drawback of these controllers [2-4] 

is the need for full state measurement and knowledge of the UAV dynamics a priori 

while the dynamics like aerodynamic friction are either simplified or ignored altogether.  

It was shown in [1] that the above simplifications are valid only at very low speeds such 

as hovering while the aerodynamic effects can become significant even at moderate 

velocities causing instability of the UAV. 

 On the other hand, in [5], a sliding mode observer is introduced to estimate the 

translational and angular velocities of the UAV.  In addition to the UAV velocities, the 

authors in [6] propose a sliding mode estimator of external disturbances such as wind and 

model uncertainties.  Then, using virtual control inputs and the arcsin function, the 

desired pitch and roll of the UAV were defined to track.  Although the use of the arcsin 

function provides a natural saturation of the desired angles, arcsin becomes undefined 

when its argument is outside the range defined by ]1,1[− , and provisions to ensure the 

aforementioned scenario does not happen are not guaranteed by [6].  In [7], an output 

feedback controller is achieved by strategically introducing a constant term into the 

filtered tracking error which is normally defined as a function of the position and 

translational velocity tracking errors, respectively.  The introduction of the constant term 

is then utilized in the design of an auxiliary control input for the translational velocities 

whereas the system nonlinearities have to satisfy a linear in the unknown parameters 

(LIP) assumption.  In [8], an adaptive observer is proposed to recover the speed of the 

UAV using accelerations, angle measurements, as well as measured angular velocities.  

Thus, the estimation relies on an accurate inertial measurement unit besides needing a 
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stringent persistency of excitation (PE) condition [12] to guarantee performance which is 

very hard to satisfy in practice. 

 In [9] and [10], the approximation property of NN [12] is applied to learn the 

dynamics of the quadrotor UAV.  However, in both cases, the NN’s are trained 

completely offline with experimentally collected data.  A study evaluating the 

performance of NN’s applied to UAV models which were trained offline and NN’s with 

online learning was performed in [20].  This study verified several well-known properties 

of online learning versus offline training.  Offline training allows for large amounts of 

data to be analyzed since computation time in not a critical issue although offline data 

collection is expensive.  Moreover, models which are properly trained offline are often 

robust to small variations in the system but fail to adapt to larger changes in the system.  

Further, an offline scheme alone does not allow the NN to learn any new dynamics it 

encounters during a new maneuver.  In other words, in dynamical environment, such as 

an outdoor setting with changing wind conditions, certain modes of the UAV dynamics 

may not be excited all the time (e.g. blade flapping, drag, etc.).  Under this scenario, an 

offline trained NN may not render a satisfactory performance. In contrast, NN models 

which learn online quickly adapt to variations in the nonlinear behavior of the system in 

real time with no prior knowledge.  Also, it is not practical to collect data for every 

operating scenario since UAV’s often operate in dynamic environments.  

 Therefore, in [21]-[22], NN approaches are proposed to learn the dynamics of the 

UAV online while assuming full state feedback.  In contrast, this paper seeks to remove 

the assumptions of full state measurement and knowledge of the UAV dynamics.  First, 

by observing the natural constraints of the underactuated system [11], a novel NN virtual 
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control input is developed for the roll and pitch, which not only ensures that they remain 

within a stable operating region, but also guarantees that the UAV tracks the specific 

velocity  command required to follow the desired trajectory.  The virtual control input is 

well defined and provides a means of controlling all six DOF using only four control 

inputs.  Additionally, the physical meaning of the virtual control inputs can be linked to 

the types of trajectories that can be successfully tracked.  Next, the inputs of the 

dynamical system are calculated by utilizing the approximation properties of NN to learn 

the dynamics of the UAV online, including unmodeled dynamics like aerodynamic 

damping and blade flapping [1] while relaxing the LIP assumption.   

 Finally, a NN observer is utilized to estimate the translational and angular 

velocities of the UAV so that an output feedback control law can be realized.  All NNs 

are tuned online to allow adaptations to changes of the UAV dynamics and the operating 

environment.  It is shown using Lyapunov theory that the position, orientation, and 

velocity tracking errors, the virtual control observer estimation errors, and the NN weight 

estimation errors of each NN are all semi-globally uniformly ultimately bounded 

(SGUUB).  Further by considering the NN observer errors in the same Lyapunov 

candidate as the UAV tracking errors, the separation principle is also relaxed.  Simulation 

results are also presented to verify the controller in the presence of unmodeled nonlinear 

dynamics and random disturbances. 

 Linear models obtained from nonlinear systems are generally valid near a specific 

operating point [12], and for the UAV, the operating point is generally chosen near the 

hovering configuration [23] which may not be acceptable for dynamical outdoor setting 

with changing wind conditions.  Therefore, the contribution of the proposed NN output 
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feedback controller include:  1)  a novel nonlinear NN-based controller is developed for 

hovering or tracking time varying trajectories that are not near the hovering operating 

point;  2)  explicit knowledge of the nonlinear dynamics is not required;  3) using output 

feedback, the number of sensors/states required to implement the controller is reduced 

while still guaranteeing performance and stability; and 4) the NN relaxes the LIP 

assumption which is required for adaptive controllers. 

 This paper is organized as follows.  In Section II, the required background 

material is presented, and the dynamic representation of the UAV is identified along with 

the constraints associated with the underactuated system.  Next, the novel dynamic output 

feedback tracking controller is developed and verified in Sections III and IV, 

respectively.  Finally, concluding remarks are provided in Section V. 

II. BACKGROUND 

A. Quadrotor UAV Dynamics 

 Consider the quadrotor UAV shown in Fig. 1 with six DOF defined in the inertial 

coordinate frame , aE , as aT Ezyx ∈],,,,,[ ψθφ  where aT Ezyx ∈= ],,[ρ  are the 

position coordinates of the UAV and aT E∈=Θ ],,[ ψθφ  describe its orientation and are 

referred to as roll, pitch, and yaw, respectively.  The translational and angular velocities 

are expressed in the body fixed frame attached to the center of mass of the UAV, bE , and 

the kinematics of the UAV are written as 

Rv=ρ&                                   (1) 
and 

 ωT=Θ& .                                   (2) 
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Fig. 1.  Quadrotor helicopter. 

 

 

 The matrix 33)( xR ℜ∈Θ is the translational rotation matrix which is used to relate 

a vector in the body fixed frame to the inertial coordinate frame defined as [2] 
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where the abbreviations )(•s  and )(•c have been used for )sin(• and )cos(• , respectively.   It 

is important to note that maxRR F =  for a known constant maxR , TRR =−1 , )(ωRSR =&  

and TT RSR )(ω−=& where 33)( xS ℜ∈• is the general form of a skew symmetric matrix 

defined in [7] which satisfies the skew symmetric property [12], 0)( =wSwT γ , for any 

vector 3ℜ∈w and 3ℜ∈γ .  It is also necessary to define a rotational transformation matrix 

from the fixed body from to the inertial coordinate frame as [7] 
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where the abbreviation )(•t has been used for )tan(• .  The transformation matrix T is 

bounded according to maxTT
F
< for a known constant maxT   provided ( ) ( )22 πφπ <<−   

and ( ) ( )22 πθπ <<−  [15]. 

 Next, the dynamics of the UAV in the body fixed frame can be written as [7] 

d
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where ,},{ 66
3

xJmIdiagM ℜ∈=  ,)}(),({)( 66xJSmSdiagS ℜ∈−= ωωω  6
21 ]00[ ℜ∈= TTuuU  

and m is a positive scalar that represents the total mass of the UAV, 33xJ ℜ∈ represents 

the positive definite inertia matrix. The vector 3],,[)( ℜ∈= T
zbybxb vvvtv  represents the 

translational velocity, 3],,[)( ℜ∈= T
zbybxbt ωωωω  represents the angular velocity, 

,)( 13x
iN ℜ∈• 2,1=i , are the nonlinear aerodynamic effects, 1

1 ℜ∈u  provides the thrust 

along the z-direction, 3
2322212 ][ ℜ∈= Tuuuu provides the rotational torques, 

6
21 ],[ ℜ∈= TT

d
T
dd τττ and 2,1,3 =ℜ∈ idiτ  represents unknown, bounded disturbances such 

that Md ττ < for all time t , with Mτ being a known positive constant.  Additionally, 

nxn
nxnI ℜ∈ is an nxn  identity matrix, and mxl

mxl ℜ∈0 represents an mxl  matrix of all 

zeros.  Furthermore, 3)( ℜ∈RG  represents the gravity vector defined as 

z
T EmgRRG )()( Θ=  where T

zE ]1,0,0[=  is a unit vector in the inertial coordinate frame, 

and 2/81.9 smg = . 

 The control inputs to the UAV, 1u and 2u , represent the thrust and torques, 

respectively, generated by the angular speeds of rotors, 4,3,2,1, =iiϖ , and are related to the 

thrust and drag factors by the following relationship [4] 
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where d is a positive scalar representing the distance from the epicenter of the quadrotor 

to the rotor axes, tc is a positive scalar representing the thrust factor, and dc is a positive 

scalar representing the drag factor.   

 Remark 1:  Once the control inputs to the UAV have been determined, the 

relationship in (6) can be used to determine the required rotor speeds in order to achieve 

the desired thrust and rotational torques.  Several authors, [3] and [6] for example, have 

considered the tracking control of the rotors assuming DC motors drive them.  However, 

in this work, we are concerned with deriving the required thrust and rotational torques as 

in [2], [4], [7], and [9], respectively. 

 The nonlinear effects due to aerodynamic damping, 6)( ℜ∈tDA  [7] are modeled 

as 
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where id ,i=1,2,…12 are the damping coefficients.  Additionally, blade flapping effects 

are considered which result from differences between the effective velocities of the rotor 

relative to the air.  As a consequence, a difference in lift between rotors is observed 

causing the rotor blades to flap up and down once per revolution.  Furthermore, flapping 

of the rotor blades tilts the rotor plane away from the direction of motion, thus affecting 

the thrust and rotational torques of the UAV and ultimately it’s tracking ability.  

Specifically, blade flapping creates a longitude thrust iiLi TT αsin=  where iT is the thrust 
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generated at rotor i and iα is the angle in radians [rad] by which the thrust is redirected at 

the rotor and is dependent the translational movements of the UAV as well as the wind 

conditions.  Further, for stiff rotors which are commonly utilized in a quadrotor UAV, 

blade flapping results in a moment being generated at each rotor hub as iHi kM αβ= where 

βk is the stiffness of the rotor in Newton-meters per radian   [N-m/rad].  For complete 

details on blade flapping and its full effects, please refer [1]. 

 As shown in (6), the state of each rotor is related to the total thrust and rotational 

torques which drive the dynamics of (5).  Therefore, in this work the effects of blade 

flapping at each rotor will be combined as single nonlinear disturbances to the quadrotor 

dynamics (5).  For the translational velocities, blade flapping results in thrust being 

redirected longitudinally while the lifting force is reduced.  Therefore, the disturbances in 

the x and y directions are modeled as αsin, TT yxL = , the reduction in thrust in the z 

direction is taken as )cos1( α−= TT
zL ,  and the disturbance to the angular velocity vector 

is written as αβkM H =  where 1uT =  and α is the angle at which the total thrust is 

redirected, respectively.  The total nonlinear aerodynamic effects in (5) are then written 

as   

6
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B. Constraints of the Underactuated System 

 Examining the UAV dynamics (5), it becomes clear that the translational velocity 

dynamics form an underactuated system where only zbv is controllable through 1u .  

Ignoring disturbances and the nonlinear dynamics )(1 vN , the constraints associated with 
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the pitch and roll for the underactuated translational velocity dynamics were derived in 

[11] by observing vSRv T )(ωρ −= &&&  along with (5) and were found to be 

( ) ( )( ).)()(tan,)()(tan gzcyssxcsycxsagzysxca −++−=−+= &&&&&&&&&&&&&&&& θψθψθψψψψ φθ   (8) 

 The above constraints reveal an important property about the UAV during stable 

flight conditions.  First, note that for certain combinations of ,,, zyx &&&&&& andψ , the pitch and 

roll angles approach 2π±  and thus R and T become singular.  Therefore, the UAV 

becomes unstable, and it can be concluded that certain maneuvers are not achievable 

during stable conditions.  These natural constraints will be exploited in the upcoming 

development of the virtual control inputs which will allow the UAV to track the desired 

trajectory. 

C. Neural Networks 

 In this work, two-layer NNs are considered consisting of one layer of randomly 

assigned constant weights axL
NV ℜ∈   in the first layer and one layer of tunable weights 

Lxb
NW ℜ∈  in the second with a inputs,b outputs, and L hidden neurons. A compromise is 

made here between tuning the number of layered weights with computational complexity. 

The universal approximation property for NN's [12] states that for any smooth 

function )( NN xf , there exists a NN such that NN
T

N
T

NNN xVWxf εσ += )()(  where Nε is the 

bounded NN functional approximation error such that MN εε < , and La ℜ→ℜ⋅ :)(σ is the 

activation function in the hidden layers.  It has been shown that by randomly selecting the 

input layer weights NV , the activation function )()( N
T

NN xVx σσ = forms a stochastic 

basis, and thus the approximation property holds for all inputs, a
Nx ℜ∈ , in the compact 
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set S [12].  The sigmoid activation function is considered here.  Furthermore, on any 

compact subset of nℜ , the target NN weights are bounded by a known positive value, 

MW , such that MFN WW ≤ [12].  For complete details of the NN and its properties, refer 

to [12].  In this effort, ⋅  and 
F
⋅ will be used as the vector and Frobenius norms [12].  

Next the definition of the semi-global uniformly ultimately boundedness is introduced. 

 Definition 1:  The equilibrium point xe is said to be semi-global uniformly 

ultimately bounded (SGUUB) if there exists a ball centered around the origin with an 

arbitrary radius r n
rSrS ℜ⊂=),0(  so that for all rSx ∈0  there exists a bound 0>B and 

a time ),( 0xBT such that Bxtx e ≤−)( for all Ttt +≥ 0 .  Further, if n
rS ℜ= , the stability 

result becomes global uniformly ultimately bounded (GUUB) and holds for all nx ℜ∈0   

[16]. 

III. NEURAL NETWORK OUTPUT FEEDBACK TRACKING CONTROL 

 The overall control objective for the UAV is to track a desired trajectory, 

aT
dddd Ezyx ∈= ],,[ρ , and a desired yaw a

d E∈ψ while maintaining a stable flight 

configuration.  The complete knowledge of the UAV dynamics and velocity information 

is required to complete the control objective; however, in this work, the translational and 

angular velocities are considered to be not measurable and full knowledge of the 

dynamics is not available whereas the constant mass and moments of inertia of the UAV 

are assumed known similar to [2]-[9].  Therefore, the universal approximation property 

of NN is utilized in the design of the observer, virtual controller, and the dynamical 

controller.  Knowledge of the mass is required for the dynamic control law whereas the 
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mass and moments of inertia are needed for the observer.  Future effort will seek to relax 

these assumptions. 

 The proposed NN observer estimates the UAV velocity vector which is required 

by the control loop.  The control loop, which consists of a kinematic controller, NN 

virtual controller and a NN dynamical controller, uses the information provided by the 

observer to generate the appropriate commands to complete the control objective.  To 

begin the NN output feedback controller development, the NN observer design is 

considered first. 

A. NN Observer Design 

 In this section, a NN observer is designed to estimate the UAV translational and 

angular velocity vector without explicit knowledge of the dynamics (5).  To begin, define 

new augmented variables 6][ ℜ∈Θ= TTTX ρ and 6][ ℜ∈= TTTvV ω  whose dynamics are 

given by (1) and (5), respectively, and rewritten as 

doo UMGxfV
VtAX

τ
ξ

+++=
+=

−1
1

)(
)(

&
&        (9) 

where 6
1 ℜ∈ξ represents bounded sensor measurement noise such that M11 ξξ ≤  for a 

known constant M1ξ , ))]()([)(()( 21
1 T

oo NvNVSMxf ωω += −  with Vxo= , 61 )( ℜ∈= − RGMG , 

=dτ  =TT
d

T
d ],[ 21 ττ  6
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1

1 ])(,/[ ℜ∈− TT
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d Jm ττ  and  
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 Remark 2:  In [13] and [14], observers were proposed utilizing adaptive fuzzy 

logic and a NN, respectively, and by defining a change of variables.  In both these 
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approaches, A  is the identity matrix, while in this work, A a time varying, nonlinear 

matrix as a result of the relationships observed in kinematic equations (1) and (2). 

  Next, define a change of variable as VZ = , whose derivative with respect to time 

is given by (9).  Then, define the NN observer estimates of X and V as X̂ and Ẑ , 

respectively, as well as the observer estimation error XXX ˆ~ −= .  The proposed observer 

then takes the form of 

UMXAKGfZ
XKZAX

oo

o
11

21

1 ~ˆˆ

~ˆˆ
−− +++=

+=
&

&
       (11) 

where 1oK and 2oK are positive design constants.  From the definition of the transformation 

matrix A in (10), it is observed that 1−A can be calculated using TRR =−1 and 1−T in (4).  

Further, there exists a positive constant I
MA  such that I

MF
AA ≤−1 .  The observer velocity 

estimateV̂ is then written as 

XAKZvV o
TTT ~ˆ]ˆˆ[ˆ 1

3
−+== ω        (12) 

where 3oK  is another positive design constant. Noting XAKVZ o
~ˆˆ 1

3
−−= from (12) and 

the definition of Z&  above, the observer error dynamics of (11) can be formulated as 

do
T

ooo
T

o
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XAKAXAKfXAKAfZ
XKKVAX
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after adding and subtracting XAKA o
T ~)( 1

3
−− & . 

 In (11), the universal approximation property of NN [12] has been utilized to 

estimate the unknown function XAKAxfxf o
T

oooo
~)()()( 1

31
−−+= &  by constant ideal 

bounded weights T
o

T
o VW ,  such that MoFo WW ≤  for a known constant MoW , and written 
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as oo
T

o
T

ooo xVWxf εσ += )()(1 where oε  is the bounded NN approximation error such 

that Moo εε ≤ for a known constant Moε .  In addition, it was shown in [24] that if the 

number of hidden layer neurons is sufficiently large, the reconstruction error can be made 

arbitrarily small on a compact set.  In practice, the values for MoW and Moε  are selected 

based on properties of the dynamics being approximated and the number of hidden layer 

neurons being used.  Additionally, the values for MoW and Moε  are not required to be 

known for the controller design whereas if the values are available, one can calculate the 

error bounds which will subsequently be derived in Theorem 1. The NN estimate of 

)(1 oo xf  is written as o
T

oo
T

o
T

oo WxVWf σσ ˆˆ)ˆ(ˆˆ
1 ==  where T

oŴ is the estimate of T
oW , and 

ox̂ is the NN input written in terms of the observer velocity estimates 

as TTTT
o XVXx ]~ˆˆ1[ˆ = . 

       Moving on and noting XAKZVVV o
~~ˆ~ 1

3
−−=−= , adding and 

subtracting )ˆ( o
T

o
T

o xVW σ , and using (13), the observer estimation error dynamics of (12) 

take the form of 

23132
1

13

13
1

3

3132
1

1
1

3

~~))((~~
~~

~))((ˆ)ˆ()ˆ()~)((~

ξ
τξ

σσ

+−−−−+−=
+−−−

−−−−+−−+=

−

−

−−

XAXKKKKAfVK
KAVKXA

XKKKKAfxVWxVWXAKAfV

T
oooooo

doo
T

oooooo
T

o
T

oo
T

o
T

oo
T

o
&&

 (14) 

where ooo Wf σ̂~~
= , ooo WWW ˆ~ −= , 6

1
1

32
~ ℜ∈+−+= −

ooodo WAK σξτεξ ,and ooo σσσ ˆ~ −= . 

Further, M22 ξξ ≤  where M2ξ is a positive computable constant defined 

as MMMoM M τεξ +=2  oMoM
I
Mo NWAK 213 ++ ξ where FM MM |||| 1−= , a computable 

constant, oN is the number of hidden layer neurons in the NN, and the 
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fact oo N≤σ was used.  Examining the error dynamics of (13) and (14) reveals that 

,0~,0~ == VX and 0~
1 =of are equilibrium points when 01 =ξ  and 0=dτ .  Next the 

following theorem can be stated. 

 Theorem 1:  (NN Observer Boundedness) Let the NN observer be defined by (11) 

and (12), respectively, with the NN observer weights be tuned by 

ooo
T

ooo WFXFW ˆ~ˆˆ
1κσ −=&          (15) 

where 0>= T
oo FF and 01 >oκ are design parameters. Then there exists constant positive 

design parameters ,, 21 oo KK and 3oK  where ( ) 1031 2 ooo NKK κ+> , ( ) 13 2 ooo NK κ> , and 

)( 3132 oooo KKKK −=  with oN the number of hidden layer neurons, such that the observer 

estimation errors X~ ,V~ and the NN observer weight estimation errors, oW~ , are SGUUB. 

  Proof:  Consider the following positive definite Lyapunov candidate 

}~~{
2
1~~

2
1~~

2
1 1

oo
T

o
TT

o WFWtrVVXXV −++=       (16) 

whose first derivative is given by }~~{~~~~ 1
oo

T
o

TT
o WFWtrVVXXV &&&& −++= .  Substitution of the 

closed loop observer estimation error dynamics (13) and (14) as well as the NN update 

law (15) reveals 

}ˆ~ˆ~ˆ(~{~~~~~)(~
123131 oo

T
o

T
o

T
o

T
o

TT
oo

T
o WVXWtrVVKVXXKKXV κσσξξ −−−+−+−−=& . 

Recalling oo N≤σ̂ , MoFo WW ≤ , and noting 2~~)}~(~{
FoMoFooo

T
o WWWWWWtr −≤− , oV& can 

then be rewritten as 

MoFoooFooFoFooMoMooo WWNVWNXWWVVKXXKKV ~~~~~~~~~~)( 1

2

12

2

31

2

31 κκξξ +++−+−+−−=& . (17) 

Now, completing the squares with respect to
FoW~ , X~ , and V~ , (17) can be rewritten as 
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oFo
o

o

oo

o

ooo
o WVNKXNKKV ηκ

κκ
+−⎟

⎠
⎞

⎜
⎝
⎛ −−⎟

⎠
⎞

⎜
⎝
⎛ −

−
−≤

212

1

32

1

31 ~
4

~
2

~
2

)(&      (18) 

where ( ) )2()2( 3
2
231

2
1

2
1 oMooMMooo KKKW ξξκη +−+= and is dependant on the bounds of the 

sensor measurement errors, NN reconstruction error, disturbances and design parameters. 

  Finally, (18) is less than zero provided ( ) 131 2 oooo NKK κ+> , ( ) 13 2 ooo NK κ> , and 

the following inequalities hold: 

( ) ( ) 113131

4~or
2

~or
2)(

~
o

o
Fo

ooo

o

oooo

o W
NK

V
NKK

X
κ
η

κ
η

κ
η

>
−

>
−−

>      (19) 

Therefore, it can be concluded [12] that oV&  is less than zero outside a compact set, 

revealing the observer estimation errors X~ ,V~  and the NN observer weight estimation 

errors, oW~ , are bounded.   

 Examining the definition of oη , it is clear that the constant terms can be made 

arbitrarily small by selecting 1oκ  small, 3oK  large, and 31 oo KK −  large.  Therefore, since 

the initial compact set can be made arbitrarily large by proper selection of gains, the 

stability result becomes SGUUB [7]. 

B. Kinematic Control System 

 In this section, we derive the terms which will be used by the NN virtual 

controller in the following subsection (and illustrated in Fig. 2 shown in Section III-D).  

Namely, the desired translational velocity bT
dzdydxd Evvvv ∈= ][ is found to ensure the 

UAV position converges to the desired trajectory ( dρρ → ).  Next, the desired pitch, dθ , 

and roll, dφ , are found to ensure the x- and y- components of the UAV translational 

velocity track their respective desired values ( dxxb vv → and dyyb vv → , respectively).  
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Then, given the desired orientation, aT
dddd E∈=Θ ][ ψθφ , the desired angular velocity 

b
d E∈ω is then calculated such that dΘ→Θ .   

  To begin the development of the UAV tracking controller, we first define the 

tracking errors for the position and translational velocity.  For the position, define 

a
d Ee ∈−= ρρρ .         (20) 

Differentiating (20) and substitution of (1) yields the position error dynamics 

Rve d −= ρρ && .                         (21) 

Next, select the desired velocity to stabilize the position error dynamics as 

b
d

TT
dzdydxd EeKRvvvv ∈+== )(][ ρρρ&                                   (22) 

where 33},,{ x
zyx kkkdiagK ℜ∈= ρρρρ is a diagonal positive definite design matrix all with 

positive design constants.  The translational velocity tracking error system is then defined 

as 

vvvvvvvveeee d
T

zbybxb
T

dzdydx
T

vzvyvxv −=−== ][][][ .      (23) 

The desired velocity dv is a virtual control input to (21), and substituting (22) into (21) 

while observing vd evv −= , the closed loop position error dynamics can be rewritten as 

veReKe +−= ρρρ& .                       (24) 

 Next, observing ( ))()( RvKRvSv dd
T

dd −++−= ρρω ρ &&&& , the translational velocity 

tracking error dynamics are formed by differentiating (23), and substituting the 

translational velocity dynamics in (5) to obtain 

111 )(1)(1)()(1
ddd

T
zvdv RvKKREu

m
RG

m
eSvN

m
vve τρρω ρρ −−++−−−−=−= &&&&&& .      (25) 
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Now write (3) in terms of the desired orientation angles, dΘ , and define )( dd RR Θ= .  

Finally, we add and subtract mRG d /)( and )ˆ( vRKKR dd
T
d ρρ ρρ −+ &&&  where v̂  is the observer 

estimate of the translational velocity to yield 

1111
1))(ˆ()(1)( dzccdd

T
ddvv Eu

m
xfvRKKRRG

m
eSe τρρω ρρ −−+−++−−= &&&&    (26) 

where 

⎟
⎠
⎞

⎜
⎝
⎛ +−+−+−−−= vRKRRvKRKRRRGRG

m
vN

m
Rxf T

d
T

dd
T

dddcc ˆ)()())()((1)(1)( 111 ρρρ ρρ &&&   (27) 

is an unknown function rewritten as [ ] 3
13121111 )( ℜ∈= T

ccccc fffxf .  In the next step, we 

expand the velocity error dynamics (26) to get  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
−−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

dd

dd

d

v

vz

vy

vx

cc
sc

s
geS

e
e
e

φθ

φθ

θ

ω)(
&

&

&

                (28) 

1 11

2 12 1

13 13

ˆ 0
1ˆ 0

ˆ

d x d R cd d d d d

d d d d d d d d d d d d d y d R c d

d d d d d d d d d d d d d z d R c

x k x v fc c c s s
s s c c s s s s c c s c y k y v f

m
c s c s s c s s s c c c uz k z v f

ρθ ψ θ ψ θ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ ρ

φ θ ψ φ ψ φ θ ψ φ ψ φ θ ρ

τ

⎡ ⎤+ − +⎡ ⎤− ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥+ − + + − + − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ − + − + ⎣ ⎦⎣ ⎦ ⎣ ⎦

&& &

&& &

&& &

 

where 3
321 ˆ]ˆˆˆ[ˆ ℜ∈== vRKvvvv T

RRRR ρ . 

 Examining (28), the error states, vxe& and vye& , are not controllable by using the 

control input 1u .  Thus, vxe& and vye& must be controlled through the states that are influenced 

by the control inputs 1u or 2u .  In this work, the pitch and roll are used to control the 

translational movements of the UAV along x and y directions, respectfully, and thus, the 

pitch and roll angles are treated as virtual control inputs to the underactuated portion of 

the UAV error dynamics in (28).  
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 The key step in the development of the virtual control input for the dynamic 

system is identifying the desired closed loop velocity tracking error dynamics.  For 

convenience, the desired translational velocity closed loop system is selected as 

1))(( dvvv eSKe τω −+−=&         (29) 

where }),cos(),cos({ 321 vdvdvv kkkdiagK φθ= is a diagonal positive definite design matrix 

with each 0>vik , 3,2,1=i .  In the following development, it will be shown that 

)2/,2/( ππθ −∈d  and )2/,2/( ππφ −∈d ; therefore, 0)cos( >dθ  and 0)cos( >dφ  for all 

)2/,2/( ππθ −∈d  and )2/,2/( ππφ −∈d , respectively.   

 Moving on, equating (28) and (29) and considering only the first two error states 

renders 

⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡+

⎥
⎥
⎥

⎦
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⎢
⎢

⎣

⎡

+−+
+−+
+−+

⎥
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⎤
⎢
⎣

⎡
+−

−
+⎥⎦
⎤
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⎡−− 0

0

ˆ
ˆ
ˆ

2

1

133

122

111

dvyv

dvxv

cRdzd

cRdyd

cRdxd

dddddddddddd

ddddd

dd

d

cek
cek

fvzkz
fvyky
fvxkx

csccssssccss
ssccc

sc
s

g
φ

θ

ρ

ρ

ρ

θφψφψθφψφψθφ

θψθψθ

φθ

θ

&&&

&&&

&&&

  (30) 

Then, applying basic math operations, the following relations hold. 

( ) ( ) ( )( )vxvcRdyddcRdxdddcRdzdd ekfvykysfvxkxccfgvzkzs 1122111133 ˆˆˆ ++−+++−+=+−−+ &&&&&&&&& ρψρψθρθ    (31) 

( ) =++−+−+−+ vyvcRdxddcRdyddd ekfvxkxsfvykycc 2111122 )ˆ()ˆ( &&&&&& ρψρψφ             (32) 
))ˆ()ˆ()ˆ(( 111122133 cRdxdddcRdydddcRdzddddd fvxkxcsfvykyssfvzkzcsgcs +−+−+−+−+−+− &&&&&&&&& ρψθρψθρθφθφ

   
 Since the velocity vector is not measurable in this work, the velocity tracking 

error (23) cannot be used in the definition of the desired pitch and roll angles.  Therefore, 

define the estimated velocity tracking error using the observer velocity estimates as 

vevvvvveeee vdd
T

vzvyvxv
~)~(ˆ]ˆˆˆ[ˆ +=−−=−==      (33) 

where v~ is the observer estimation error for the translational velocity.  Using (33) and 

considering (31), the desired pitch angle, dθ , is found to be 
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⎟
⎟
⎠

⎞
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⎝

⎛

+−−+

++−+++−+
=

133

1122111

ˆˆ
ˆ)ˆˆ()ˆˆ(

tan
cRdzd

vxvcRdyddcRdxdd
d fgvzkz

ekfvykysfvxkxc
a

&&&

&&&&&&

ρ

ρψρψθ     (34) 

where )tan(•a is the arctangent function.  Next, using (32), the desired roll angle, dφ  can 

be written as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+−+−+−+−+−+−

++−+−+−+
=

)ˆˆ()ˆˆ()ˆˆ(

ˆ)ˆˆ()ˆˆ(
tan

111122133

2111122

cRdxdddcRdydddcRdzddd

vyvcRdxddcRdydd
d fvxkxcsfvykyssfvzkzcgc

ekfvxkxsfvykyc
a

&&&&&&&&&

&&&&&&

ρψθρψθρθθ

ρψρψφ . (35) 

 In (34) and (35), the approximation properties of NN were utilized to estimate the 

unknown function 111111 )()( cc
T

c
T

ccc xVWxf εσ +=  by bounded target weights T
c

T
c VW 11 , such that 

11 McFc WW ≤ with 1McW a known constant, and 1cε  is the NN approximation error that 

satisfies 11 Mcc εε ≤ for a constant 1Mcε .  The NN estimate of 1cf  is written as 

( ) T
ccc

T
c

T
cc

T
cc

T
cc

T
cc

T
c

T
cc fffWWWWxVWf ]ˆˆˆ[]ˆˆˆˆˆˆ[ˆˆˆˆˆ

131211113112111111111 ==== σσσσσ where T
cW 1

ˆ is the 

NN estimate of T
cW 1 , 3,2,1,ˆ

1 =iW T
ic  is the thi row of T

cW 1
ˆ ,and 1ˆcx  is the NN input written 

as TTTTT
d

T
dc XVx ]~ˆ1[ˆ 1 Θ= ρρ &&& . 

  Remark 3:  The expressions for the desired pitch and roll in (34) and (35), 

respectively, can be viewed as virtual control inputs, and they lend themselves very well 

to the control of quadrotor UAV.  First, the expressions are well defined since 

)tan(•a has a domain of ℜ  compared to )sin(•a  which has a domain between -1 and +1.  

Second, the expressions in (34) and (35) are naturally saturating and will always produce 

desired values in the interval )2/,2/( ππ−  of the UAV.  Finally, the virtual control 

inputs provide the types of desired trajectories that can be tracked in the steady state.  

Examination of (34) and (35) reveals that there exist desired trajectories which will result 

in operating regions near the unstable operating points of the UAV since 
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)tan(•a approaches 2π± as the input of )tan(•a increases. Additionally, large values of 

pxk and pyk can push an UAV toward instability. 

 Now that the desired orientation of the UAV has been specified, the desired 

angular velocity, dω , can be found to ensure the UAV orientation converges to the 

desired values ( ,, dd θθφφ →→ and dψψ → ) which is considered next. 

 To begin the development of dω , first define the attitude tracking error as 

a
d Ee ∈Θ−Θ=Θ          (36) 

where dynamics are found using (2) as 

ωTe d −Θ=Θ
&& .         (37) 

In order to drive the orientation errors (36) to zero, the desired angular velocity, dω , is 

selected as  

)(1
ΘΘ

− +Θ= eKT dd
&ω         (38) 

where 3 3
1 2 3{ , , } xK diag k k kΘ Θ Θ Θ= ∈ℜ is a diagonal positive definite design matrix with 

each 3,2,1,0 =>Θ ik i .  Then, define the angular velocity tracking error as 

ωωω −= de ,         (39) 

and observing ωωω ed −= , the closed loop orientation tracking error system can be 

written as 

ωTeeKe +−= ΘΘΘ& .         (40) 

 Examining (38), calculation of the desired angular velocity requires the 

knowledge of dΘ& ; however, dΘ& is not known in view of the fact that v&̂ and 1ĉf& are not 

available.  Further, in the development of 2u in the following section, it will be shown 
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that dω& is required which in turn implies v&&̂ and 1ĉf&& must be known.  Since these 

requirements are not practical, the universal approximation property of NN is invoked to 

estimate dω and dω& using a NN virtual controller which is considered in the following 

subsection. 

 Remark 4:  In [22], the authors use inverse kinematics to define the desired pitch 

and roll angles which are found to be arctangents of NN estimates.  To implement the 

control law derived in [22], a derivative of the NN estimate is required similar to our 

work; however, even a single derivative of the NN output is difficult to obtain since 

differentiating the NN input often introduces additional unknown dynamics. The effort in 

[22] does not provide insight into how this NN derivative is obtained.  In contrast, our 

approach also defines the desired pitch and roll using the arctangent function whose 

argument contains a NN estimate, but the argument of the arctangent function here is 

fundamentally different from [22]. Further, the need to differentiate the NN output twice 

is avoided in this work by using the NN virtual controller. 

C. NN Virtual Control Development 

 In this section, the information provided by the kinematic controller derived in 

Section III-B is used to calculate the desired angular velocity using a NN virtual 

controller. To begin the development, we rearrange (38) to observe the dynamics of the 

proposed virtual controller when the all dynamics are known as 

)()(
)(

11

1

ΘΘ
−

ΘΘ
−

ΘΘ
−

+Θ++Θ=
−=Θ

eKTeKT
eKTT

ddd

dd

&&&&&&

&

ω
ω .     (41) 

For convenience, define a change of variable as ΘΘ
−−=Ω eKTdd

1ω , and (41) becomes 
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ΩΩΩ
−− ==Θ+Θ=Ω

Ω=Θ
fxfTT

T

ddd

dd

)(11 &&&&&

&
         (42) 

  Next, define the estimates of dΘ and dΩ as dΘ̂ and dΩ̂ , respectively, and the 

estimation error as ddd Θ−Θ=Θ ˆ~
.  Then, the dynamics of the proposed NN virtual 

control inputs become 

dd

ddd

TKf

KT

Θ+=Ω

Θ+Ω=Θ
−

ΩΩ

Ω
~ˆˆ

~ˆˆ
1

21

1
&

&
        (43) 

where 1KΩ and 2ΩK are positive constants.  The estimate dω̂ is then written as 

ddd TKeKT Θ++Ω= −
ΩΘΘ

− ~ˆˆ 1
3

1ω            (44) 

where 3ΩK is another positive constant.  Observing ddddd TK Θ−Ω=−= −
Ω

~~ˆ~ 1
3ωωω , 

subtracting (43) from (42), as well as adding and subtracting d
TT Θ~ and dTK Θ−

Ω
~1

3
& , the 

virtual controller estimation error dynamics are found to be 

dd
T

ddd
T

d

ddd

TKTTKfTKTf

KKT

Θ+Θ−Θ−−Θ−Θ+=Ω

Θ−−=Θ
−

Ω
−

ΩΩ
−

ΩΩ

ΩΩ
~~~ˆ)~~(~

~)(~~

1
3

1
21

1
3

31

&&&

& ω .   (45) 

 In (43), universal approximation property of NN has been utilized to estimate the 

unknown function dd
T TKTfxf Θ−Θ+= −

ΩΩΩΩ
~~)( 1

31
&  as ( ) ΩΩΩΩΩΩ += εσ xVWxf TT)(1  by target 

weights TT VW ΩΩ , such that ΩΩ ≤ MF
WW for a known constant ΩMW  and Ωε is the NN 

approximation error such that MΩΩ ≤ εε for a constant MΩε .  The NN estimate of Ωf is 

written as ( ) ΩΩΩΩΩΩ == σσ ˆˆˆˆˆ
1

TTT WxVWf where TWΩ
ˆ is the NN estimate of TWΩ and Ωx̂ is the NN 

input written in terms of the virtual control input estimates and the NN observer velocity 

estimates.  The NN input is selected as TT
d

TT
d

T
d

T
d

T
d

T
dd Vx ]~ˆˆ1[ˆ ΘΩΘ=Ω ρρρρ &&&&&& . 
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 Next, adding and subtracting ΩΩ σ̂
TW to the derivative of dω~ , the estimation error 

dynamics of (44) are found to be 

( ) ΩΩΩΩΩ
−

ΩΩ +Θ−Θ−−−+−= ξωω d
T

ddd TKKKKTfK ~~)(~~~
3132

1
13

&    (46) 

where ΩΩΩ = σ̂~~
11

TWf , TTT WWW ΩΩΩ −= ˆ~ , ΩΩΩΩ += σεξ ~TW , and ΩΩΩ −= σσσ ˆ~ . Furthermore, 

MΩΩ ≤ ξξ  with MΩξ  a positive computable constant defined 

as ΩΩΩΩ += NWMMM 2εξ where ΩN is the number of hidden layer neurons and the 

fact ΩΩ ≤ Nσ was used.   

  Examination of (45) and (46) reveals 0~,0~ ==Θ dd ω , and 0~
1 =Ωf to be 

equilibrium points of the estimation error dynamics. In the following theorem, it will be 

shown that the NN virtual controller successfully estimates the desired orientation dΘ  

and angular velocity dω .  The stability of the position, orientation and velocity error 

systems will be considered in the following section where the dynamical output feedback 

control law is designed.   

 Theorem 2:  (Virtual Controller Stability) Let the NN virtual controller be defined 

by (43) and (44), respectively, with the NN update law provided by 

ΩΩΩΩΩΩ −Θ= WFFW T
d

ˆ~ˆˆ
1κσ&         (47) 

where 0>= ΩΩ
TFF and 01 >Ωκ are design parameters. Then there exists positive design 

constants ( ) 131 ΩΩΩΩ +> κNKK , )( 3132 ΩΩΩΩ −= KKKK , and ( ) 13 2 ΩΩΩ > κNK  

where ΩN the number of hidden layer neurons, such that the virtual controller estimation 

errors dΘ~ , dω~  and the virtual control NN weight estimation errors, ΩW~ , are SGUUB. 

 Proof:  Consider the following positive definite Lyapunov candidate 
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}~~{
2
1~~

2
1~~

2
1 1

Ω
−
ΩΩΩ ++ΘΘ= WFWtrV T

d
T

dd
T

d ωω       (48) 

whose first derivative with respect to time is given by 

}~~{~~~~ 1
Ω

−
ΩΩΩ ++ΘΘ= WFWtrV T

d
T

dd
T

d
&&&& ωω .  Substitution of the virtual control closed loop 

estimation error dynamics (45) and (46) as well as the NN update law (47) reveals 

)}ˆ~ˆ~ˆ(~{~~~~)(~
1331 ΩΩΩΩΩΩΩΩΩΩ −−Θ−+−Θ−Θ−= WWtrKKKV T

d
T
d

TT
dd

T
dd

T
d κωσσξωωω& . 

Observing ΩΩ ≤ Nσ̂ , ΩΩ ≤ MF
WW for a known constant, ΩMW , and 

2~~)}~(~{
FMF

T WWWWWWtr ΩΩΩΩΩΩ −≤− , ΩV& can then be rewritten as 

2
11

2
3

2
31

~~

~~~~~~~)(

FMF

FdFdMddd

WWW

WNWNKKKV

ΩΩΩΩΩ

ΩΩΩΩΩΩΩΩΩ

−+

+Θ++−Θ−−≤

κκ

ωξωω&
   (49) 

Now, completing the squares with respect to
F

WΩ
~ , dΘ~ , and dω~ , (49) can be rewritten as 
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1
31

~
4

~
2

~
Fdd WNKNKKV&     (50) 

where )2( 3
22

1 ΩΩΩΩΩ += KW MM ξκη which is dependent on the bounds of the NN 

reconstruction errors, target NN weights, and design parameters.  Examining, oη , it is 

clear that the constant terms can be made arbitrarily small by decreasing 1Ωκ  and 

increasing 3ΩK . 

  Finally, (50) is less than zero provided ( ) 131 ΩΩΩΩ +> κNKK  and ( ) 13 2 ΩΩΩ > κNK , 

and the following inequalities hold: 

( ) ( ) 113131

4~or
2

~or~
Ω

Ω
Ω

ΩΩΩ

Ω
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Ω >
−

>
−−

>Θ
κ
η

κ
ηω

κ
η

Fdd W
NKNKK

.    (51) 



 
137

  Therefore, it can be concluded using standard extensions of Lyapunov theory [12] 

that ΩV&  is less than zero outside of a compact set, revealing the virtual controller 

estimation errors, dΘ~ , dω~ , and the NN weight estimation errors, ΩW~ , to be bounded.  

Examining the inequalities in (51), it is clear that the error bounds can be made arbitrarily 

small by proper selection of the gains.  In addition, the initial compact set can be made 

arbitrarily large by proper selection of the gains, and the stability result becomes SGUUB 

[7]. 

 In the following section, the actual control inputs to the dynamics system (5) are 

derived. 

D. NN Output Feedback Control Law 

 In this section, the information provided by the NN observer, kinematic 

controller, and NN virtual controller are used to derive the actual inputs 1u  and 2u  to the 

dynamic system (5). The inputs 1u and 2u are calculated so that the desired lift velocity dzv  

and desired angular velocity dω  are tracked and the overall control objective is met. 

 First, the thrust control input, 1u , will be addressed.  Consider again the 

translational velocity tracking error dynamics written in terms of the observer velocity 

estimates (28).  The thrust control input is found by considering the dynamics of the third 

error state vze&   in (28) as  

)ˆˆ()ˆˆ)((
)ˆˆ)((ˆ

133122

11131

gfvzkzcmcfvykycssscm
fvxkxsscscmemku

cRdzdddcRdydddddd

cRdxddddddvzv

−+−+++−+−+

+−+++=

&&&&&&

&&&

ρθφρψφψθφ

ρψφψθφ   (52) 

where T
c

T
cc

T
cc

T
c

T
ccc WWWfff ]ˆˆˆˆˆˆ[]ˆˆˆ[ 113112111131211 σσσ= is the NN estimate previously 

defined in Section III.B.  Next, the closed loop translational velocity tracking dynamics 
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are formed by substituting the virtual control inputs (34) and (35) as well as the thrust 

(52) into (26) and adding and subtracting T
c

T
c

T
d WR 11σ̂  to reveal 

111

111

ˆ~~))((
ˆ~ˆ)(

c
T
c

T
c

T
dvvv

c
T
c

T
c

T
dvvvv

WRvKeKS
WReKeSe

ξσω
ξσω

++−+−=
++−−=& .     (53) 

where 11111
~

dc
T
d

T
c

T
c

T
dc RWR τεσξ −+= , 111

ˆ~
ccc WWW −= , and 111 ˆ~

ccc σσσ −= .  Further 

maxdFd RR = for a known constant maxdR , and 11 Mcc ξξ ≤  for a computable 

constant MMcMcdMcdMc MNWRR τεξ ++= 1max1max1 2   where MM was defined in Section III.A, with 

1cN is the number of hidden layer neurons. 

 Remark 5:  In the formulation of (53), the expressions for the desired pitch and 

roll (34) and (35), respectively, were first written in the form of (31) and (32), so that sine 

and cosine of the angles could be substituted as opposed to substituting the arctangent 

expressions directly into the sine or cosine function.  

 Next, the rotational torques, 2u , will be addressed. First, the open loop angular 

velocity tracking error system is formed by multiplying the angular velocity tracking 

error (39) by the inertial matrix J, taking the first derivative with respect to time, 

substitute the UAV dynamics (5) and adding and subtracting ΘeT T to get 

Θ

ΘΘ

−−−=
−−−+−−=−=

eTuxf
eTueTNJSJJJeJ

T
dcc

T
d

T
dd

2222

222

)(
))()((

τ
τωωωωωωω &&&& .   (54) 

where 3
2222 )()()( ℜ∈+−−== ΘeTNJSJfxf T

dccc ωωωω& , and unknown. Therefore, the 

universal approximation property of NN is utilized to estimate the function 

=)( 22 cc xf 2222 )( cc
T

c
T

c xVW εσ + by target weights T
c

T
c VW 22 , such that 22 McFc WW ≤ for a known 

constant 2McW  and 2cε is the NN functional reconstruction error such that 22 Mcc εε ≤ for a 
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known constant 2Mcε .  The NN estimate is given by 222222 ˆˆ)ˆ(ˆˆ
c

T
cc

T
c

T
cc WxVWf σσ ==  where T

cW 2
ˆ  

is the NN estimate of T
cW 2  and TTT

d
T
d

T
c ex ]~ˆˆ1[ˆ 2 ΘΘΩ= &ω is the NN input written in terms 

of the observer and virtual controller estimates.  By the construction of the virtual 

controller, dω&̂ is not directly available; therefore, observing (44), the terms T
dΩ&̂  , Tb

dΘ~ , 

and TeΘ have been included instead.   

 Similarly to the translational velocity tracking error, the angular velocity tracking 

error is not measureable.  Thus, the estimated angular velocity tracking error is defined in 

terms of the NN virtual control estimate of dω̂ in (44) and the NN observer estimate of ω̂  

in (12) and written as 

ωωωω ωω
~~ˆˆˆ +−=−= dd ee .        (55) 

 Using the NN estimate 2ĉf  and (55), the rotational torque control input is 

calculated as 

ωωeKfu c ˆˆ
22 += .                    (56) 

Substituting the control input (56) into the angular velocity dynamics (55) as well as 

adding and subtracting c
T

cW σ̂2 , the closed loop dynamics become 

222
~~ˆ~

c
T

dc
T

c eTKKeKWeJ ξωωσ ωωωωω +−−+−= Θ&     (57) 

where T
c

T
c

T
c WWW 222

ˆ~ −= , 2222
~

dc
T

ccc W τσεξ −+= , and 222 ˆ~
ccc σσσ −= .  Further 

22 Mcc ξξ ≤  for a computable constant dMcMcMcMc NW τεξ ++= 2222 2 where 2cN is the 

number of hidden layer neurons. 
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 As a final step, we define an augmented translational and angular velocity error 

system as TTT
vS eee ][ ω= whose closed loop dynamics are described by (53) and (57), 

respectively, and rewritten as 

   ( ) cdS
T

SSSSc
T
dS KeTVKeSKfAeJ ξωω ++−−+−= Θ

~~)(~
&       (58) 

where 66
333333 ]0;0[ x

xxx JIJ ℜ∈= is a constant, 66
3333 0]0;0[ x

xxvS KKK ℜ∈>= ω , 

66
333333 ]00;0)([)( x

xxxS SS ℜ∈= ωω , 0)( =SS
T
S eSe ω ,V~ is the velocity tracking error vector 

defined previously in the observer development, ]0;0[ 3363 TT xx= , TT
x ee ]0[ 31 ΘΘ = , 

TT
dxd ]~0[~

31 ωω = , 6
21 ][ ℜ∈= TT

c
T
cc ξξξ , and Mcc ξξ ≤ for a positive computable constant 

2
2

2
1 McMcMc ξξξ += .  Additionally, 6ˆ~~

ℜ∈= c
T

cc Wf σ  with 66
33 },{ x

xdd IRdiagA ℜ∈= ,   

}~,~{~
21 ccc WWdiagW =    and  TT

c
T
cc ]ˆˆ[ˆ 21 σσσ = .  Examining (58) reveals Se , de ω~,Θ and cf

~ to be 

equilibrium points of the augmented error dynamics when 0=cξ .  Further, a single NN 

is utilized to estimate 6
21 ]ˆˆ[ˆ ℜ∈= TT

c
T

cc fff . 

 Figure 2 now illustrates a general control structure for the proposed NN output 

feedback control law.  Examining the figure, five connected systems are observed: the 

NN observer, kinematic controller, NN virtual controller, NN output feedback controller, 

and the UAV dynamic system.   

 The external inputs to the system are considered to be the desired position, dρ , 

and desired yaw, dψ .  Based on the difference between the current UAV position (ρ ) and 

the desired position, the kinematic controller generates the desired velocity dv to ensure 

dρρ → .  Subsequently, the desired pitch, dθ , and roll, dφ , are calculated to ensure the x  
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Fig. 2. NN output feedback control structure. 

 

 

and y components of the desired velocity are tracked, respectively.  Then, the NN virtual 

controller uses the information provided by the NN observer and kinematic controller to 

generate the desired angular velocity b
d E∈ω which ensures dΘ→Θ .  Then, the NN 

output feedback controller calculates the actual control inputs 1u and 1u  based on the 

information provided by the kinematic controller, NN virtual controller, and the NN 

observer.  The control inputs are then applied to the UAV system whose measurable 

output vector consists of the UAV position and orientation.  The output vector is then fed 

back into the kinematic system as well as the NN observer. 

  In the final theorem, the stability of the entire system which includes position, 

orientation, and velocity tracking errors are considered along with the estimation errors of 

the observer and virtual controller and the NN weight estimation errors.  Considering the 

entire system in a single Lyapunov candidate allows us to relax the separation principle.   
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 Theorem 3:  (Quadrotor UAV System Stability) Given the dynamic system of a 

quadrotor UAV in (5), let the NN observer be defined by (11) and (12), respectively, with 

the NN update law for the observer provided by (15).  Given a smooth desired trajectory, 

let the desired translational velocity for the UAV to track be defined by (22) with the 

desired pitch and roll defined by (35) and (34), respectively.  Let the NN virtual 

controller be provided by (43) and (44), respectively, with the NN update law given by 

(47).  Let the dynamic NN controller be defined by (52) and (56), respectively, with the 

NN update given by 

( ) ccc
T

Sdccc WFeAFW ˆˆˆˆ
1κσ −=&         (60) 

where 0>= T
cc FF and 01 >cκ are constant design parameters.  Then there exists positive 

design constants ,, 21 oo KK 3oK , ,, 21 ΩΩ KK 3ΩK , and positive definite design matrices 

ωρ KKKK v ,,, Θ , such that observer estimation errors X~ ,V~  and the NN observer weight 

estimation errors, oW~ , the virtual controller estimation errors dΘ~ , dω~  and the virtual 

control NN weight estimation errors, ΩW~ , the position, orientation, and translational and 

angular velocity tracking errors, Seee ,, Θρ , respectively, and the dynamic controller NN 

weight estimation errors, cW~ , are all SGUUB. 

 Proof:  Consider the following positive definite Lyapunov candidate  

cSoSUAV VVKVKV ++= Ω
2

max
2

max  

where oV and ΩV were defined in (16) and (48), respectively, maxSK is the maximum 

singular value of SK , and 

{ }cc
T

cS
T
S

TT
c WFWtreJeeeeeV ~~

2
1

2
1

2
1

2
1 1−

ΘΘ +++= ρρ .       (61) 
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The first derivative of UAVV  with respect to time is given 

by cSoSUAV VVKVKV &&&& ++= Ω
2

max
2

max . In Theorem 1, it was found that oV& could be upper 

bounded by (18) while in Theorem 2, the upper bound of ΩV& was found to be (50).  Now, 

observing }~~{ 1
cc

T
cS

T
S

TT
c WFWtreJeeeeeV &&&&& −

ΘΘ +++= ρρ , and substitution of the closed loop 

error dynamics (24), (40), and (58) yields 

)})(ˆ~(~{~~ 1 T
Sdccc

T
cc

T
SdS

T
SS

T
SSS

T
S

T
v

TT
c eAWFWtreKeVKeeKeeKeeReeKeV σξωρρρρ ++++−−−+−= −

ΘΘΘ
&&  

after simplification.  Next defining TTT eee ][ ΘΚ = ρ , ]0;0[ 6333 xxR=Π , and 

]0;0[ 3333 Θ= KKK xxK ρ , and substituting the NN tuning law (60) into cV&  reveals 

)}ˆ)~~(ˆ(~{~~
1 cc

T
ddc

T
cc

T
SdS

T
SS

T
SS

T
KSS

T
SKK

T
Kc WAVWtreKeVKeeeeKeeKeV κωσξω +−+++−Π+−−=& . 

Observing maxΠ<Π
F

and McFc WW ≤ for known constants, maxΠ and ΩcW , dd ωω ~~ = , 

and 2~~)}~(~{
FccFccc

T
c WWWWWWtr −≤− Ω , and an upper bound for cV& is written as 

2

11

maxmaxmax
2

min
2

min

~~)~~(~

~~

FcccFcccdMdFc

McSdSSSSSKSSKKc

WWWNAVW

eeKeVKeeeKeKV

κκω

ξω

−+++

+++Π+−−≤

Ω

&
 

where minKK and minSK are the minimum singular values of KK and SK , respectively, and 

dMFd AA ≤  for a known constant dMA .  Next, completing the squares with respect 

to Ke , 
FcW~ and Se , cV& can be upper bounded as 

2

1

2
2

max

2

1

2
2

max
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2
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min
2min
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where )2(2 min
22

1 ScMMccc KW ξκη += .  Finally, combining the results of (18), (50), and 

(62), the upper bound of UAVV& can be written as 

UAVF
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Fo
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cdMS
dS

Sc

cdM

o

o
o

S

o

ooo
SUAV

WKWKWe
K

KeK
K

NANKKNKKK

V
K

NANKKXNKKKV

η
κκκ

ω
κκκ

κκκ

+−−−⎟
⎠

⎞
⎜
⎝

⎛ −
Π

−−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−Θ⎟

⎠
⎞

⎜
⎝
⎛ −−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−−⎟

⎠
⎞

⎜
⎝
⎛ −

−
−≤

Ω
Ω

Ω

Ω
Ω

Ω

Ω
ΩΩ

2
2

max12
2

max1212

min

2
max

min
2min

2
2

max1

2

1
3

2
max2

1
31

2
max

2

2
max1

2

1
3

2
max2

1

312
max

~
4

~
4

~
6

2
2
1

2

~)(312
2

~

~)(312
2

~
2

)(&

(63) 

where cSoSUAV KK ηηηη ++= Ω
2

max
2

max .  The first nine terms in (63) are less than zero 

provided the controller gains are selected as 

2,
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 Therefore, it can be concluded that UAVV& is less than zero provided the controller 

gains are selected according to (64) and the following inequalities holds: 
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 It can be concluded using standard Lyapunov extensions [12] that UAVV& is less 

than zero outside of a compact set revealing that the observer estimation errors X~ ,V~  and 

the NN observer weight estimation errors, oW~ , the virtual controller estimation 

errors dΘ~ , dω~  and the virtual control NN weight estimation errors, ΩW~ , the position, 

orientation, and velocity tracking errors, Seee ,, Θρ , respectively, and the controller NN 
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weight estimation errors, cW~ , are all bounded.  Finally, the initial compact set can be 

made arbitrarily large through proper selection of the gains; thus, all signals are SGUUB 

[7]. 

 Remark 6:  Examining (65) reveals the error bounds can be reduced through the 

appropriate selection of the design parameters.  The theoretical results of Theorem 3 

ensure that the estimation and tracking errors remain bounded in the presence of bounded 

disturbances.  Further, examining the error bounds in (65), it is observed that the size of 

the estimation and error bounds is dependent on the magnitude of the disturbances.  As a 

result, a very large disturbance will lead to potential large error bounds illustrating the 

relationship between the control system performance and the magnitude of the 

disturbances. 

 In the next section, the requirements and considerations for practical 

implementation of the proposed output feedback control scheme are presented. 

E. Comments on Implementation and Practical Considerations 
 

 To implement the proposed output feedback control scheme, it is observed that 

three NN are required.  Although this appears to be a computationally demanding 

algorithm, previous work on the control of spark ignition engines [17] has demonstrated 

that three NN can be successfully implemented in hardware simultaneously with 

promising results.   In fact, it was found that the total time required to compute the 

controller calculations was less than sec100μ  [17].   

 Further, the quantities required as inputs to each NN can be either measured or 

calculated using current technologies.  The position and orientation of the UAV can be 

measured.  The position of the UAV can be measured using global positioning systems 
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(GPS) enhanced with differential GPS to improve accuracy [18].  Additionally, several 

vision based approaches to measuring the UAV position have also been reported [19].  

Measurement of the attitude of the UAV can easily be achieved using local 

measurements of an onboard attitude heading reference system (AHRS). 

  As a result of Theorem 3, dΘ→Θ with small bounded error for Ttt +≥ 0 .  

Recalling dΘ  in (34) and (35) is defined only within the interval of )2/,2/( ππ −− of the 

UAV, it can be concluded that the UAV maintains a stable flight configuration while in 

the steady state provided the desired trajectory dρ is feasible.  As demonstrated in (8), 

certain trajectories are not achievable during stable flight.  Thus, in order to guarantee 

stability in practice, one or both of the following considerations can be undertaken.  First, 

applying the results of Theorem 3, the desired trajectory dρ  should be achievable using 

steady state pitch and roll movements which satisfy 

)22/,22/(, minmin KUAVKUAVdd KK ηπηπφθ −+−∈ .  As a second consideration, the desired 

pitch and roll angles can be saturated before they reach 2/π± .  However, for very 

demanding trajectories, restricting the desired pitch and roll angles could result in an 

increase in the tracking error bounds.  

  During the time prior to Tt +0 , the bounds on Θe   are potentially larger in 

magnitude than the steady state bounds derived in Theorem 3.  To counter this fact, the 

following simple but effective solution is utilized based on practical observations.  In 

practice, helicopters do not immediately begin aggressive maneuvers from the grounded 

position.  They first rise to a safe operating height and then begin their flight pattern.  

Mimicking this observation, the desired trajectory can be chosen so that the desired pitch 
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and roll are close to zero for Ttt +< 0 .  For instance, given a desired trajectory 

1dρ starting at time 1t , the trajectory tracked by the UAV could be 

( )))(exp(1 11 ttrdd −−−= ρρ where r is the decay rate which can be designed limit the 

initial aggressiveness of the UAV. Multiplying the desired trajectory 1dρ  by the 

exponential function limits the initial maneuver, but after a finite time period allows the 

UAV to track the original unconstrained trajectory 1dρ .  This approach will be employ in 

the following section which presents the numerical simulation results of the proposed 

output feedback control law.  Using this technique, the results in the following section 

demonstrate that the pitch and roll of the UAV remains within the interval )2/,2/( ππ−  

throughout the duration of the test.  

IV. SIMULATION RESULTS 

 The quadrotor UAV (5) is now considered in the presence of unmodeled 

dynamics such as aerodynamic damping [7] and blade flapping [1], and the effectiveness 

of the NN output feedback control law developed in this work is verified.  Additionally, 

random disturbances are added, and simulations are performed in MATLAB.  The 

unknown aerodynamic effects are modeled as in (7) where the damping coefficients are 

selected as =Tdddddd ],,,,,[ 654321  T]1.0,06.0,1.0,06.0,1.0,06.0[  and 

=Tdddddd ],,,,,[ 121110987  T]15.0,1.0,15.0,1.0,15.0,1.0[ .  Further, the blade flapping 

parameter βk  was selected as radmNk /75.0 −=β  andα is taken as zero at the 

beginning the simulation.  Then, at 20=t  seconds, α  steps from zero to twenty degrees, 

and the robustness of the control law is demonstrated.  The sudden increase of α could 
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represent an occurrence such as a gust of wind.  Additionally, a normally distributed 

noise signal with zero mean and variance of 0.01 is added to the UAV dynamics (5) 

through dτ . 

 The inertial parameters of the UAV are taken to be as kgm 9.0=  and 

2}63.0,42.0,32.0{ mkgdiagJ = .  The desired position ([m]) and yaw ([rad]) for the 

UAV to track is designated to be 

))exp(1)(sin())exp(1)(cos([ 22 trtAtrtA yyyxxxd −−−−= ωωρ  T
zz trA ))]exp(1( −− , 

)sin( tAd ψψ ωψ =  with ,5.0,2.0,10 ====== yxyxyx rrAA πωω  ,1.0,10 =−= zz rA  

,1=ψA and πωψ 3.0= .  Each NN employs 5 hidden layer neurons, and the control 

gains are selected to be 20,60,23 321 === ooo KKK , 20,80,24 321 === ΩΩΩ KKK , 

}30,10,10{diagK =ρ , 30,10,10 321 === vvv kkk , }30,30,30{diagK =Θ , and 

}25,25,25{diagK =ω  satisfying the constraints mentioned in the theorems.  The NN 

parameters are selected as 1.0,10 1 == ooF κ , 1.0,40 1 == ΩΩ κF , and 1.0,20 1 == ccF κ .   

  In the simulation, all tunable NN weights are initialized to 0, while the initial 

observer estimates of the position and orientation are set to the UAV's initial position of 

TTTTT
oX ]1.00003.03.0[)]0()0([)0(ˆ −=Θ= ρ . 

  Figure 3 displays the actual trajectory as well as the desired trajectory of the 

UAV.  Additionally, the vector norm of the position error is also shown.  Examining the 

trajectory plot, the desired trajectory starts from the origin while the UAV starts from the 

initial configuration denoted above, and the UAV quickly converges to the desired course 

and tracks with a small bounded as the theoretical results of Theorem 3 suggest.  At 

20=t  seconds, a small peak in the error plot is observed corresponding to the external 
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disturbance being introduced.  However, the NN controller quickly adapts to the 

changing conditions and the UAV returns to its desired path.  The fact that the UAV 

successfully tracks the desired trajectory confirms that the orientations generated by the 

NN virtual controller correctly steers the UAV along the desired path as the results of 

Theorem 2 imply. 

  Figure 4 displays the tracking errors for the position, orientation, translational 

velocity and the angular velocity, respectively, which are each observed to converge to a 

 

 

 
Fig. 3. UAV trajectory tracking. 

 

 

    
Fig. 4. UAV tracking errors. 
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small bounded region around the origin.  Again, at 20=t  seconds, the effect of the 

external disturbance is visible, and it is observed that the each tracking error quickly 

returns to zero even though the disturbance itself does not vanish.  Instead, the NN adapts 

so that acceptable tracking performance is regained.  The tracking performance of the 

translational velocities again reinforce the ability of the virtual controller structure to 

calculate the appropriate pitch and roll angles necessary to achieve tracking. 

 Figure 5 displays the observer estimation errors for the position, orientation, 

translational velocities, and angular velocities, respectively, which are observed to 

converge to a small bounded region near the origin as the conjecture of Theorem 1 

suggested.  For the observer position estimation errors in Fig. 5, recall that the position of 

the UAV is measureable; therefore the initial observer position states are selected as 

)0()0(ˆ ρρ = , and thus, 0)0(ˆ)0()0(~ =−= ρρρ .   

 For the remainder of the simulation, the maximum observer position error in Fig. 

5 is observed to be less than 0.03.  The maximum error of 0.03 is observed in the y-

coordinate  

 

 

    
Fig. 5. UAV observer estimation errors. 
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estimate after introduction of the bounded disturbances.  It is observed that the observer 

estimation errors initially increase when the unknown nonlinearities are introduced, and 

decrease as the NN observer begins to compensate for the nonlinearities.  Moreover, the 

upper bound of the observer position estimation errors calculated from the simulation is 

given by 0303.0)(~ ≤tρ .  Table 1 summarized the mean squared error ( )(•MSE ) and 

maximum observed error ( ))(max( •abs ) for each tracking error and observer estimation 

error.  In each case, the mean squared error is observed to be small.  This result is 

consistent with tracking and estimation performances observed in Fig. 5. Additionally, 

the maximum values observed for both the tracking and observer estimation errors occur 

either at the beginning of the simulation or directly after the external disturbance has been 

introduced.  This phenomenon is also observed in the error plots of Fig. 5. 

  

TABLE I:  MEAN SQUARED ERRORS AND MAXIMUM ERRORS 

 

Tracking 
Errors xeρ )(m  yeρ )(m  zeρ )(m  vxbe )/( sm  vybe )/( sm  vzbe )/( sm  

)(•MSE  0012.0  0011.0  41084.7 −×  1783.0  0656.0  1851.0  
))(max( •abs

 

3.0  3.0  0054.0  6061.0  7781.1  2656.3  
Observer 

Errors xρ~ )(m  yρ~ )(m  zρ~ )(m  xbv~ )/( sm  ybv~ )/( sm  zbv~ )/( sm  

)(•MSE  51022.4 −×
 

51018.5 −×  51070.1 −×  0047.0  0026.0  0019.0  

))(max( •abs
 

0112.0  0292.0  0220.0  2188.0  1192.0  2098.0  
 

Tracking 
Errors φe )(rad  θe )(rad  ψe )(rad  xbeω

)/( srad  
ybeω

)/( srad  
zbeω

)/( srad  
)(•MSE  41094.4 −×

 

41087.5 −×  41058.5 −×  0845.0  0744.0  0277.0  

))(max( •abs
 

2784.0  2285.0  1.0  8112.5  3300.5  5508.2  
Observer 

Errors 
φ~ )(rad  θ~ )(rad  ψ~ )(rad  

xbω~ ⎟
⎠
⎞

⎜
⎝
⎛

s
rad  ybω~ ⎟

⎠
⎞

⎜
⎝
⎛

s
rad  zbω~ ⎟

⎠
⎞

⎜
⎝
⎛

s
rad  

)(•MSE  41077.3 −×
 

41073.2 −×  41059.2 −×  0822.0  0683.0  0746.0  

))(max( •abs 1321.0  0311.0  1828.0  7407.2  5156.1  2353.2  
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 Finally, Fig. 6 shows the control inputs of the UAV as well as the time history of 

the unmodeled dynamics and the noise signal.  Examining the time history of the 

unmodeled dynamics, the random noise signal is clearly visible for the entire simulation 

while the step disturbance is evident starting at 20 seconds.  Additionally, the power of 

the NN controller is revealed when examining the control inputs time history.  Starting at 

20 seconds, the thrust as well as the rotational torques are clearly compensating for the 

newly added dynamics.  Additionally, the system noise is observed to be most prevalent 

in the rotationally torques control inputs. 

 The simulation results verify that the UAV remains within the interval 

)2/,2/( ππ−  throughout the duration of the test. While the noise and the external 

disturbance introduced at 20 seconds is observed in all of the error signals, the 

disturbances observed in the angular velocity tracking errors and observer estimation 

errors are more apparent since the angular velocities of the UAV generate much of the 

UAV's movements.  To see this more clearly, recall that the desired velocity is calculated  

 

 

   

Fig. 6.  UAV unmodeled dynamics, external disturbances and control signal. 
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from measured error values.  Then, in order to achieve translational velocity tracking, the 

desired roll and pitch are calculated.  Next, the angular velocity is found to ensure the 

desired orientation of the UAV is achieved. Finally, rotational torques guarantee that the 

desired angular velocity is tracked by the UAV.  Each stage of the design process 

contains a proportional tracking controller, and thus, the disturbance and noise is 

amplified at each stage of the backstepping controller design.  This phenomenon is also 

illustrated in Fig. 6. 

 As a final assessment of the output feedback control law developed in this work, a 

state feedback PID control law was implemented to control the translational and angular 

velocities and all NNs were removed.  In the simulation, derivatives such as ve& and ωe& that 

cannot be calculated due to uncertainty, were approximated using backward differences 

written as vvvv ettetee && ˆ)()( ≡Δ−−≈ where 610−=Δt  seconds.  The PID control laws 

take the form of vDv

t

vIvvPv
T

evevevev eKdseKeKPPPP &̂][
0321 ++== ∫  and 

ωωωωωωω eKdseKeKP D

t

IPe
&̂

0
++= ∫ , and control gains were selected to be ]}2055{[diagKPv = , 

]}777{[diagKIv = , ]}5.05.05.0{[diagKDv = , ]}202020{[diagKP =ω , ]}777{[I diagK =ω , 

and ]}5.05.05.0{[diagKD =ω .  These gains were tuned to ensure acceptable tracking 

performance while minimizing the overshoot and undershoot of the error signals.  Since 

the derivative terms are being approximated and discretized, )(•DK gains less than one 

rendered the best performance.  All other parameters used in the previous simulation 

remained unchanged.   

 To use the PID control law the desired pitch and roll in (34) and (35), 

respectively, and thrust and rotational torques (52) and (56), respectively, must be 
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modified by removing the NN estimates and proportional feedback terms and substituting 

the PID controllers in their place.  For example, the rotational torques (56) becomes 

ωePu =2 while the desired pitch (34) becomes 

( ))/())()((tan 3121 gvzkzPvykysvxkxca RdzdevRdyddRdxddd −−++−++−+= &&&&&&&&& ρρψρψθ .  The 

desired roll and thrust control input are modified in a similar manner.   

 Fig. 7 shows the norm of the position tracking error as well as the control effort 

used to achieve the tracking performance by a PID controller.  Examining the position 

tracking error, it is evident that the PID controller achieves acceptable tracking 

performance after a significant amount of gain tuning in the presence of unmodeled 

dynamics and bounded disturbances.  The orientation and the translational and angular 

velocity tracking errors are also satisfactory although the plots are not shown.  However, 

comparing the control signal required to achieve tracking using PID control in Fig. 7 to 

the control signal of the NN output feedback controller in Fig. 6, it is clear the PID 

controller exerts significantly more effort to track the desired trajectory.  It was found 

 

 

      

Fig. 7.  UAV position error and control signals using PID control. 
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that that the rotational torque control signals ,, 2221 uu and 23u from the PID controller 

where on average 4.3, 5.1, and 4 times larger the signals generated from the NN output 

feedback scheme, respectively.  On the other hand, the thrust control signal generated by 

the PID controller was comparable to the thrust control signal of the proposed scheme. 

 The reason for the difference in control efforts is due to the fact that the PID gains 

were used to dominate the neglected dynamics in order to ensure an acceptable 

performance whereas the NN output feedback control law adapted online to learn the 

unknown dynamics and perform intelligent compensation. Additionally, significant noise 

amplification is observed in the control signal of the PID control law as a result of using 

large gains to dominate the UAV dynamics. Thus, the NN output feedback control 

renders the tracking of the desired trajectory using less control effort than the 

conventional PID control law while keeping the noise amplification small further 

demonstrating the effectiveness of the proposed approach. In addition, our approach does 

not require significant time to tune the controller gains which becomes necessary when 

using a PID controller with changing operating conditions.   

 Moreover, examining the control rate shown in Fig. 8, the NN approach generated 

less than the control rate required by the PID controller. Examining Figs. 6 and 7, noise is 

observed to be present in the UAV control inputs for both the proposed NN and the 

conventional PID controllers, respectively. Differentiating the noisy signals leads to large 

values of the derivatives in both the cases.  However, the plots in Fig. 8 reinforce that the 

online learning based proposed NN controller performs better than a conventional PID 

controller. 
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Fig. 8.  Control rate of change for the proposed NN controller and a conventional PID 

        controller. 
 
 
 

V. CONCLUSIONS 

 A new NN output feedback control law was developed for an underactuated 

quadrotor UAV which utilizes the natural constraints of the underactuated system to 

generate virtual control inputs to guarantee the UAV tracks a desired trajectory.  Using 

the adaptive backstepping technique, all six DOF are successfully tracked using only four 

control inputs while in the presence of unmodeled dynamics and bounded disturbances. 

Dynamics and velocity vectors were considered to be unavailable, thus a NN observer 

was designed to recover the immeasurable states.  Then, a novel NN virtual control 

structure was proposed which allowed the desired translational velocities to be controlled 

using the pitch and roll of the UAV.  Finally, a NN was utilized in the calculation of the 

actual control inputs for the UAV dynamic system.  Using Lyapunov techniques, it was 

shown that the estimation errors of each NN, the observer, virtual controller, and the 

position, orientation, and velocity tracking errors were all SGUUB while relaxing the 

separation principle.  Numerical results confirm the theoretical conjectures, and the 
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tracking ability of the UAV in the presence of unmodeled dynamics and bounded 

disturbances.  The proposed controller outperforms a conventional linear controller. 
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4.  Leader-Follower Formation Control of Multiple Quadrotor 
Unmanned Aerial Vehicles using Neural Networks1 

 
 

Travis Dierks and S. Jagannathan 
 
 

Abstract—In this paper, a novel framework for leader-follower formation control is 

developed for the control of multiple unmanned aerial vehicles (UAVs) such as 

underactuated quadrotor UAVs in three dimensions.  Using alternate coordinate system 

and a desired separation, angle of incidence, and bearing relative to their leader, a 

desired trajectory is generated online for the follower UAVs through an auxiliary 

kinematic velocity control thus converting the formation control into an equivalent 

tracking problem. Then, novel neural network (NN) based virtual and dynamic control 

laws are introduced to learn the dynamics of the UAVs online including unmodeled 

dynamics like aerodynamic friction. The NN virtual control input scheme allows all six 

degrees of freedom of the UAVs to be controlled using only four control inputs while the 

dynamic control input generates the actual control signals for the UAVs in order to fly in 

formation. Additionally, the interconnection dynamical effects between the leader and its 

followers are explicitly considered and compensated, and the stability of the entire 

formation is demonstrated using Lyapunov theory.  Numerical results are presented to 

verify the theoretical conjectures. 

 

Keywords:  Formation Control, Leader-Follower, Quadrotor UAV, Neural Networks, 
Lyapunov Stability. 
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NOMENCLATURE 

i)(•  Denotes a term for the leader UAV 

j)(•  Denotes a term for the follower UAV 

aE   Inertial coordinate frame 

bE )(•  UAV body fixed coordinate frame 

)(•x  UAV x- coordinate in aE  

)(•y  UAV y- coordinate in aE  

)(•z   UAV z- coordinate in aE  

)(•ρ  UAV position vector in aE  

)(•φ  UAV roll angle in aE  

)(•θ  UAV pitch angle in aE  

)(•ψ  UAV yaw angle in aE  

)(•Θ  UAV orientation vector in aE  

aE )(•   Inertial coordinate frame rotated about )(•ψ  

)(•R  Translational rotation matrix 

)(•T  Rotational transformation matrix 

)(•v  UAV translational velocity vector in bE )(•  

)(•ω  UAV angular velocity vector in bE )(•  

)(•M  UAV mass and inertia matrix 
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)(•m  UAV total mass 

)(•J  UAV moment of inertia matrix 

)(•S  General form of the skew symmetric matrix 

kN )(•  UAV nonlinear aerodynamics effects, k=1,2 

dk)(•τ  External bounded disturbance, k=1,2 

1)(•u  UAV thrust control input 

2)(•u  UAV rotational torque vector control input 

jids  Desired separation between the follower and leader 

jidα  Desired angle of incidence between the follower and the leader 

jidβ  Desired bearing angle between the follower and the leader 

jis   Measured separation between the follower and leader 

jiα   Measured angle of incidence between the follower and the leader 

jiβ   Measured bearing angle between the follower and the leader 

dx )(•  Desired UAV x- coordinate in aE  

dy )(•  Desired UAV y- coordinate in aE  

dz )(•  Desired UAV z- coordinate in aE  

d)(•ρ  Desired UAV position vector in aE  

d)(•φ  Desired UAV roll angle in aE  

d)(•θ  Desired UAV pitch angle in aE  
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d)(•ψ  Desired UAV yaw angle in aE  

d)(•Θ  Desired UAV orientation vector in aE  

dv )(•  Desired UAV translational velocity vector in bE )(•  

d)(•ω  Desired UAV angular velocity vector in bE )(•  

ajR       Auxiliary transformation matrix (function of )(•ψ ) 

ajdR  Desired auxiliary transformation matrix (function of d)(•ψ ) 

jiΞ  Separation transformation matrix (function of jiα  and jiβ ) 

jidΞ  Desired separation transformation matrix (function of jidα  and jidβ ) 

ρ)(•e  UAV position tracking error vector 

Θ•)(e  UAV orientation tracking error vector 

ve )(•  UAV translational velocity tracking error vector 

ω)(•e  UAV angular velocity tracking error vector 

I. INTRODUCTION 

 In recent years, quadrotor helicopters have become a popular unmanned aerial 

vehicle (UAV) platform.  The dynamics of the quadrotor UAV are not only nonlinear, but 

also coupled with each other and underactuated; characteristics which can make the 

platform difficult to control.  In other words, the UAV has six degrees of freedom (DOF) 

with only four control inputs consisting of thrust and the three rotational torque inputs to 

control the six DOF. Recently, the control of single quadrotor UAVs has been undertaken 

by many researchers (Timothy, Burg, Xian & Dawson, 2007; Nicol, Macnab &  
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Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; and Dierks & Jagannathan, 

2008).  However, a team of UAVs working together is often more effective than a single 

UAV in scenarios like surveillance, search and rescue, and perimeter security.  Therefore, 

the formation control of UAVs has been proposed in the literature. 

 The work by Saffarian and Fahimi (2008) presents a modified leader-follower 

framework and proposes a model predictive nonlinear control algorithm to achieve the 

formation.  Although the approach is verified via numerical simulations, proof of 

convergence and stability is not provided.  Van der Walle, Fidan, Sutton, Yu and 

Anderson (2008) present a kinematic-based formation control law by assuming each 

UAV travels at a constant velocity while ignoring the UAV and the formation dynamics.  

Additionally, mathematical proof of stability is not provided.  The work of Kingston, 

Beard and Holt (2008) offers a stable algorithm for perimeter security although the UAVs 

are restricted to travel at constant velocities ignoring UAV and formation dynamics. 

 By contrast in the work of Fierro, Belta, Desai and Kumar (2001), cylindrical 

coordinates and contributions from wheeled mobile robot leader follower formation 

control (Desai, Ostrowski & Kumar, 1998) are extended for aircrafts by assuming the 

dynamics are known. The work of Gu, Seanor, Campa, Napolitano, Rowe, Gururajan and 

Wan (2006) proposes a solution to the leader-follower formation control problem 

involving a linear inner and nonlinear outer-loop control structure, and experimental 

results are provided.  However, an accurate dynamic model is needed and the measured 

position and velocity of the leader has to be communicated to its followers.  In Xie, 

Zhang, Fierro and Motter (2005), the UAVs are assumed to be flying at a constant 

altitude, and the authors present two nonlinear robust formation controllers for UAVs. 
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    The first approach assumes that the velocities and accelerations of the leader 

UAV are known while the second approach relaxes this assumption using robust control 

methodologies.  In both the designs, the dynamics of the UAVs are assumed to be 

available.  On the other hand, in the work of Galzi and Shtessel (2006), a robust 

formation controller is proposed based on higher order sliding mode controllers in the 

presence of bounded disturbances. 

 To overcome the assumption of known dynamics which are difficult to calculate, 

neural networks (NNs) have been considered in several works to control single quadrotor 

UAVs (Nicol, Macnab & Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; Dierks 

& Jagannathan, 2008; Voos, 2007; Dunsfied, Tarbouchi & Labonte, 2004; and Puttige & 

Anavatti, 2007).  On the other hand, in (Voos, 2007; and Dunsfied, Tarbouchi & Labonte, 

2004), NN-based control laws are presented where the NN’s are trained offline using 

experimentally collected data.  A study performed by Puttige and Anavatti (2007) 

verified several well-known properties of online learning versus offline training and 

concluded that NN’s which are properly trained offline are often robust to small 

variations in the system but fail to adapt to larger changes in the system. In contrast, NN 

models which learn online quickly adapt to variations in the nonlinear behavior of the 

system in real time with no prior knowledge are introduced in (Nicol, Macnab & 

Ramirez-Serrano, 2008; Das, Lewis, & Subbarao, 2008; and Dierks & Jagannathan, 

2008).  

  On the other hand, linear models obtained from nonlinear systems are generally 

valid near a specific operating point (Lewis, Jagannathan & Yesilderek, 1999) and for the 

UAV, the operating point is generally chosen near the hovering configuration (Suh, 2003) 
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which may not be acceptable for dynamical outdoor setting with changing wind 

conditions.  Under these outdoor conditions, more modes of the UAV dynamics will be 

excited more of the time (e.g. drag, etc.).  As a consequence, an offline trained NN may 

not render a satisfactory performance since it is not practical or always possible to collect 

training data to account for every scenario the UAV may encounter. Similarly, linear 

controllers may not render satisfactory performance.   

 Therefore, in this work, a new leader-follower formation control framework is 

proposed for UAVs based on spherical coordinates where the desired trajectory of a 

follower UAV is generated online using a desired- separation, angle of incidence, and 

bearing , ds , dα , dβ , respectively, relative to its leader.  Then, a new control law for 

leader-follower formation control is derived using NNs to learn the dynamics of the UAV 

online, including unmodeled dynamics like aerodynamic friction in the presence of 

bounded disturbances.  Although a quadrotor UAV is underactuated, a novel NN virtual 

control input scheme for leader follower formation control is proposed which allows all 

six degrees of freedom of the UAV to be controlled using only four control inputs. The 

NN utilized in the follower control law compensates not only its own dynamics but also 

the formation dynamics. Thus, the framework of this paper effectively converts the 

leader-follower formation control for UAVs into a tracking control problem. 

 Therefore, the contribution of the proposed formation controller include:  1) a 

novel nonlinear NN-based controller is developed for follower UAVs and its leader 

where the objective of the formation is to achieve hovering or tracking time varying 

trajectories that are not near the hovering operating point; 2) explicit knowledge of the 

nonlinear dynamics of individual UAV and formation is not required while the linear in 
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the unknown parameters (LIP) assumption is not required; 3) the kinematic control law 

that translates the desired separation, angle of incidence and bearing into a trajectory 

online for successful formation control. 

 This paper is organized as follows.  First, in Section II, the leader-follower 

formation control problem for UAVs is introduced, and required background information 

is presented.  Then, the NN control law is developed for the follower UAVs as well as the 

formation leader, and the stability of the overall formation is presented in Section III. 

Section IV presents numerical simulations, and Section V provides some concluding 

remarks. 

II.  BACKGROUND 

A. Quadrotor UAV Dynamics 

 Consider the quadrotor UAV shown in Fig 1. with six DOF defined in the inertial 

coordinate frame , aE , as aT Ezyx ∈],,,,,[ ψθφ  where aT Ezyx ∈= ],,[ρ  are the 

position coordinates of the UAV and aT E∈=Θ ],,[ ψθφ  describe its orientation referred 

to as roll, pitch, and yaw, respectively.  The kinematics of the UAV can be written as 

ω
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where 33)( xR ℜ∈Θ is the translational rotation matrix which is used to relate the 

translational velocity vector in the body fixed frame to derivative of the position vector in 

the inertial coordinate frame defined as (Dierks and Jagannathan, 2008) 
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Fig. 1.  Quadrotor UAV. 

 

 

where the abbreviations )(•s  and )(•c have been used for )sin(• and )cos(• , respectively.   It 

is useful to note that maxRR
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TT RSR )(ω−=& , and 33)( xS ℜ∈• is the general form of a skew symmetric matrix defined 
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 It is important to note that (3) satisfies the skew symmetric property (Lewis, 

Jagannathan, Yesilderek, 1999), 0)( =wSwT γ , for any vector 3ℜ∈w .  The rotational 

transformation matrix from the fixed body to the inertial coordinate frame is defined as 

(Dierks and Jagannathan, 2008) 
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where the abbreviation )(•t has been used for )tan(• .  The transformation matrix T is 

bounded according to maxTT
F
<  for a known constant maxT    as long as   

( ) ( )22 πθπ <<−  (Neff, DongBin, Chitrakaran, Dawson & Burg, 2007).  This region 

along with the regions ( ) ( )22 πφπ <<−  and πψπ ≤≤−  will be referred to as the 

stable operating regions of the UAV.  

 The translational and angular velocities are expressed in the body fixed frame 

attached to the center of mass of the UAV, bE , and the dynamics of the UAV in the body 

fixed frame can be written as (Timothy, Burg, Xian & Dawson, 2007) 
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where m is a positive scalar that represents the total mass of the UAV 

and 33xJ ℜ∈ represents the positive definite inertia matrix.  The vector 

3],,[)( ℜ∈= T
zbybxb vvvtv represents the translational velocity, 

3],,[)( ℜ∈= T
zbybxbt ωωωω  represents the angular velocity, 2,1,)( 13 =ℜ∈• kN x

k ,are the 

nonlinear aerodynamic effects, ℜ∈1u  provides the thrust along the z-direction, 

3
2322212 ][ ℜ∈= Tuuuu provides the three rotational torques to control the angular 
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velocities, 6
21 ],[ ℜ∈= TT

d
T
dd τττ  for 2,1,3 =ℜ∈ kdkτ  represents unknown, but bounded 

disturbances such that Md ττ < for all time t , with Mτ being an unknown positive 

constant. Additionally,  nxn
nxnI ℜ∈  is an nxn  identity matrix, and mxl

mxl ℜ∈0 represents 

an mxl  matrix of all zeros.  Furthermore, 3)( ℜ∈RG  represents the gravity vector 

defined as z
T EmgRRG )()( Θ=  where T

zE ]1,0,0[=  is a unit vector in the inertial 

coordinate frame, and 2/81.9 smg = . 

B. Neural Networks 

 In this work, two-layer feedforward NNs are considered consisting of one layer of 

randomly assigned constant weights axL
NV ℜ∈   in the first layer and one layer of tunable 

weights Lxb
NW ℜ∈  in the second with a  inputs,b outputs, and L hidden neurons. A 

compromise is made here between tuning the number of layered weights with 

computational complexity. The universal approximation property for NNs (Lewis, 

Jagannathan & Yesilderek, 1999) states that for any smooth function )( NN xf , there exists 

a NN such that NN
T

N
T

NNN xVWxf εσ += )()(  where La ℜ→ℜ⋅ :)(σ  is the activation 

function in the hidden layers and Nε is the bounded NN functional approximation error 

satisfying MN εε < for a known constant Mε .  It has been shown that by randomly 

selecting the input layer weights NV , the activation function vector )()( N
T

NN xVx σσ =  

forms a stochastic basis, and thus the approximation property holds for all 

inputs, a
Nx ℜ∈ , in the compact set S (Lewis, Jagannathan & Yesilderek, 1999).  The 

sigmoid activation function is considered here.  Furthermore, on any compact subset 

of nℜ , the target NN weights are bounded by a known positive value, MW , such 
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that MFN WW ≤ .  For complete details of the NN and its properties, see (Lewis, 

Jagannathan & Yesilderek, 1999).  In this effort, ⋅  and 
F
⋅ will be used as the vector and 

Frobenius norms (Lewis, Jagannathan & Yesilderek, 1999).   

 Next the definition of the semi-global uniformly ultimately boundedness is 

introduced. 

 Definition 1:  The equilibrium point xe is said to be semi-global uniformly 

ultimately bounded (SGUUB) if there exists a ball centered around the origin with an 

arbitrary radius r, n
rSrS ℜ⊂=),0(  so that for all rSx ∈0  there exists a bound 0>B and 

a time ),( 0xBT  such that Bxtx e ≤−)( for all Ttt +≥ 0  (Sastry, 1999). 

C. A Novel Three Dimensional Leader-Follower UAV Formation Control 
Framework 

 Throughout this leader-follower development, the follower UAVs will be denoted 

with a subscript ‘j’ while the formation leader will be denoted by the subscript ‘i'.  To 

begin the development of this novel framework, an alternate reference frame denoted by 

a
jE  is introduced by rotating the inertial coordinate frame aE  about the z-axis by the 

yaw angle of follower j, jψ .  In order to relate a vector in aE to a
jE , the transformation 

matrix is given by 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0)cos()sin(
0)sin()cos(

jj

jj

ajR ψψ
ψψ

, 

where 1−= aj
T
aj RR . 
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Fig. 2.  UAV leader-follower formation control. 

 

 

  The objective of the proposed leader-follower formation control approach is for 

the follower UAV to maintain a desired separation, ℜ∈jids , at a desired angle of 

incidence, a
jjid E∈α , and bearing, a

jjid E∈β , with respect to its leader. The incidence 

angle is measured from the ajaj yx −  plane of follower j while the bearing angle is 

measured from the positive ajx -axis as shown in Fig. 2. It is important to observe that 

each quantity is defined relative to the follower j instead of the leader i (Fierro, Belta, 

Desai & Kumar, 2001; and Desai, Ostrowski and Kumar, 1998).  Additionally, in order to 

specify a unique configuration of follower j with respect to its leader, the desired yaw of 

follower j is selected to be the yaw angle of leader i, a
i E∈ψ  as in (Saffarian & Fahimi, 

2008).     Using this approach, the relative distance between follower j and 

leader i is written as 
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jiji
T
ajji sR Ξ=− ρρ   (6) 

where 

T
jijijijijiji )]sin()sin()cos()cos()[cos( αβαβα=Ξ     (7) 

 Thus, to solve the leader-follower formation control problem in the proposed 

framework, a control velocity for the follower UAV must be derived to ensure 

 
⎪⎭

⎪
⎬
⎫

=−=−

=−=−

∞→∞→

∞→∞→

0)(lim,0)(lim

,0)(lim,0)(lim

jjdtjijidt

jijidtjijidt
ss

ψψαα

ββ
.      (8)   

 Throughout the development, the desired separation, angle of incidence and 

bearing jids , jidα and jidβ , respectively, will be taken as constants, while it is assumed 

that each UAV has knowledge of its own constant total mass, )(•m , where )(• is i for the 

leader and j for the follower.  Additionally, it will be assumed that leader communicates 

its measured orientation and angular rate vectors, iΘ and iω , respectively, and its desired 

states, ididid ψψψ &&& ,, , idid vv &,  reliably to its followers.  This assumption will be relaxed in 

the future.  

 Further, the benefit of considering the desired instead of the measured states of 

the leader to its followers (Gu, Seanor, Campa, Napolitano, Rowe, Gururajan & Wan, 

2006) in the design of the follower UAVs’ control laws is significant when compensating 

for the formation dynamics which become incorporated in the follower UAVs dynamic 

controller design.  Finally, communicating the desired states in fact reduces the reliance 

on noisy sensor measurements and thus reduces errors due to the noise from propagating 
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throughout the formation. Next, contributions from single UAV control will be 

considered and extended to the leader-follower formation control of UAVs. 

III. LEADER-FOLLOWER FORMATION TRACKING CONTROL 

 In this work, the formation leader control law is drawn from our previous work in 

single UAV control (Dierks & Jagannathan, 2008). The control objective of leader UAV i 

is to track a prescribed desired trajectory, and a desired yaw angle while maintaining a 

stable flight configuration.  The z- component of the translation velocity vector is directly 

controllable with the thrust input.  However, in order to control the x- and y- components 

of translational velocities, the pitch and roll must be controlled, respectively, thus 

redirecting the thrust.  Complete consideration of the leader’s controller design will be 

addressed in Section III-B. 

 To design the follower UAVs’ control laws, frameworks for single UAV control 

(Dierks & Jagannathan, 2008) are extended to UAV formation to convert the formation 

control objective (8) into a tracking control problem as follows.  In the proposed 

formation control formulation, the desired separation, angle of incidence and bearing 

angle will be utilized to define a desired trajectory of a follower UAV relative to its 

leader online while solving the formation control problem (8).  Thus, by tracking the 

prescribed trajectory, the formation control problem (8) is converted into a tracking 

control problem.   

 Remark 1:  The trajectory generated by the follower UAV relative to its leader 

should not be confused with the desired trajectory used to control the single UAVs 

without formation.  For the case of single UAV control, the desired trajectory for the 

UAV is typically prescribed offline and can be tracked using only local information.  In 
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contrast, the desired trajectories for the follower UAVs used in leader-follower formation 

control in this work are generated online, changes as a result of leader’s maneuvers in 

real-time, in order to maintain the desired separation, incidence and bearing. 

 Moving on, once the desired trajectory has been specified online for the follower 

with respect its leader, a translational control velocity is calculated to ensure that the 

current position of the follower converges to its desired position.  Then, the desired pitch, 

roll, and control thrust for the follower are designed such that the translational velocity of 

the UAV approaches the target translational control velocity.  Next, given the designed 

desired attitude, the desired angular velocity is calculated along with the rotational torque 

vector which ensures the orientation and angular velocity of the follower UAV 

approaches their designed target values.  The follower UAV controller design is 

considered next. 

A.  Follower UAV Control Law 

 Without loss of generality, it will be assumed throughout the development that 

follower j is following its formation leader i.  However, in a formation where each UAV 

follows the UAV directly in front of it, this need not be the case.  To begin the 

development of the follower control law, the desired position of the follower UAV is first 

defined relative to its leader.  Then, the position error dynamics are derived and the 

translational control velocity for stabilization is designed.    

 Given a leader i subject to the kinematics and dynamics (1), and (5), respectively, 

define a reference trajectory for follower j to track at a desired separation jids , a desired 

angle of incidence, jidα , and bearing, jidβ  relative to the leader by 
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jid
T
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Next, using (6) and (9), define the position tracking error as 

a
jid

T
ajdjidji

T
ajjijjdj ERsRse ∈Ξ−Ξ=−= ρρρ       (10) 

which can be measured using local sensor information.  To form the position tracking 

error dynamics, it is convenient to rewrite (10) as jidjid
T
ajdjij sRe Ξ−−= ρρρ  and use (1) 

to give 

jid
T
ajdjidjjiij RsvRvRe Ξ−−= && ρ .    (11) 

 Next, the desired translational velocity of follower j  bT
jdzjdyjdxjd Evvvv ∈= ][ , 

selected to stabilize (11) is written as  

)( ρρ jjjid
T
ajdjididi

T
jjd eKRsvRRv +Ξ−= &     (12) 

where 33},,{ x
zjyjxjj kkkdiagK ℜ∈= ρρρρ  is a diagonal positive definite design matrix all 

with positive design constants and idv is the desired translation velocity of leader i. Next, 

the translational velocity tracking error for follower j and leader i is defined as 

jjd
T

jvzjvyjvxjv vveeee −== ][      (13) 

and 

iid
T

ivzivyivxiv vveeee −== ][ ,    (14) 
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respectively.  Applying (12) to (11) while observing jvjdj evv −= and ividi evv −= , 

reveals the closed loop position error dynamics to be rewritten as 

ivijvjjjj eReReKe −+−= ρρρ& .    (15) 

 Next, the translational velocity tracking error dynamics for follower j are 

developed so that the desired pitch, roll, and control thrust can be found.  Differentiating 

(13), observing 

( ) ( )jidjid
T
ajdjjiij

T
jjidjid

T
ajdidiidii

T
jjdjjd sRvRvRKRsRvRvSRRvSv Ξ−−+Ξ−++−= &&&&& ρωω )()( , 

and substituting the translational velocity dynamics in (5) allows the velocity tracking 

error dynamics to be written as  

iij
T
jjidjid

T
ajdjjj

T
j

jidjid
T
ajdidiidii

T
jjdjjzj

jjjjjjvjjjdjv

vRKRsRvRKR
sRvRvSRRmEu

mRGmvNeSvve

ρρ

ωτ
ω
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11

1

&

&&&
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   (16) 

where jjdjd m/11 ττ = .  Next, adding and subtracting idij
T
j vRKR ρ  to (16) reveals 

viij
T
jidij

T
jjidjid

T
ajdjjj

T
j

jidjid
T
ajdidiidii

T
jjdjjzj

jjjjjjvjjv

eRKRvRKRsRvRKR
sRvRvSRRmEu
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1

&
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   (17) 

which can be rewritten as 

j
T
jviij

T
jjd

jjzjjjjjjjvjjv

ReRKR
mEumRGmvNeSe

Λ+−−
−−−−=

ρτ
ω

1

11 )()()(&
    (18) 

with 

)()()( jjidijjidjid
T
ajdj

T
ajdidiiidij vRvRKsRKRvSRvR −+Ξ+−+=Λ ρρω &&&& .   (19) 
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 Remark 2:  Examining the velocity tracking error dynamics (18) of the follower, 

it is observed that the derivative of the control velocity, idv& , of the leader is required as a 

result of using idv in (12).  If the measured velocity of the leader, iv , had been used 

instead of idv in (12), the tracking error dynamics (17) would be dependent on iv& which 

are considered to be unknown by the follower j in this work.  In the following 

development, a NN is introduced to learn the unknown quantities of (17); however, to 

effectively approximate the leader’s dynamics, iv& , terms like the leader’s control thrust 

and rotational torques would be required to be communicated to each follower in addition 

to the leader’s measured linear and angular velocities so that the terms could be included 

in the NN input of the follower. 

 Moving on, we now seek to find expressions for the desired pitch, jdθ , and roll, 

jdφ , required to control the translational velocity components jxbv  and jybv , respectively.  

Moreover, it is desirable to specify the maximum desired pitch and roll angles, 

respectively, to be tracked by the follower UAV. 

 To accomplish these design objectives, we first define the scaled desired 

orientation vector, T
jdjdjdjd ][ ψφθ=Θ  where )2( maxdjdjd θπθθ = , 

)2( maxdjdjd φπφφ = , where )2,0(max πθ ∈d  and )2,0(max πφ ∈d  are design constants 

used to specify the maximum desired roll and pitch, respectively.  Next, we rewrite the 

translational rotation matrix (2) in terms of jdΘ , and define )( jdjjd RR Θ= .  Then, add and 

subtract jjd mRG /)(  and j
T
jdR Λ   to (18) to yield 

1111 ))(()()( jdivij
T
jjjzjcjjcj

T
jdjjdjvjjv eRKRmEuxfRmRGeSe τω ρ −−−+Λ+−−=&      (20) 
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where 

))()(())()()(()( 111 jjjidii
T
jjdj

T
jd

T
jjjjjdjdcjjc mvNvSRRRRRmRGmRGRxf −+Λ−+−= ω    (21) 

is an unknown function which can be rewritten as [ ] 3
13121111 )( ℜ∈= T

jcjcjcjcjc fffxf . In 

the forthcoming development, the approximation properties of NN will be utilized to 

estimate the unknown function )( 11 jcjc xf  by bounded ideal weights T
jc

T
jc VW 11, such that 

11 jMcFjc WW ≤ for a known constant 1jMcW , and written as 111111 )()( jcjc
T
jc

T
jcjcjc xVWxf εσ +=  

where 11 Mcjc εε ≤  is the bounded NN approximation error where 1Mcε is a known 

constant.  The NN estimate of 1jcf  is written as ( ) 111111
ˆˆˆ

jc
T
jcjc

T
jc

T
jcjc WxVWf σσ ==  

T
jc

T
jcjc

T
jcjc

T
jc WWW ]ˆˆˆ[ 113112111 σσσ=  where T

jcW 1
ˆ is the NN estimate of T

jcW 1 , 3,2,1,ˆ
1 =kW T

kjc is 

the thi  row of T
jcW 1

ˆ , and 1jcx  is the NN input 

.]1[1
TT

j
T
jv

T
j

T
jjdjdjd

T
id

T
id

T
jd

T
j

T
i

T
i

T
jjc eevvvvx ρωψψψω &&&&ΛΘΘ=  

 The key step in designing the desired pitch and roll is identifying the desired 

closed loop velocity tracking error dynamics.  For convenience, the desired translational 

velocity closed loop system is selected as 

ivij
T
jjdjvjvjvjjv eRKReKeSe ρτω −−−−= 1)(&       (22) 

where }),cos(),cos({ 321 jvjdjvjdjvjv kkkdiagK φθ=  is a diagonal positive definite design 

matrix with each 0>jvkk , 3,2,1=k .  In the following development, it will be shown that 

)2/,2/( ππθ −∈jd , )2/,2/( ππφ −∈jd ; therefore, it is clear that 0>jvK .  Then, equating 

(20) and (22) while considering only the first two velocity error states reveals  
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where T
jjjj ][ 321 ΛΛΛ=Λ was utilized. Then, applying basic math operations, the first 

line of (23) can be rewritten as 

)())()(( 1331122111 gfsekfsfcc jcjjdjvxjvjcjjdjcjjdjd −+Λ=++Λ++Λ θψψθ .  (24) 

 Similarly, the second line of (23) can be rewritten as 

( ))()()(
))()((

133122111

2111122

jcjjdjcjjdjdjcjjdjdjdjd

jvyjvjcjjdjcjjdjd

fcfssfcsgcs
ekfsfcc

+Λ−+Λ−+Λ−
=++Λ−+Λ

θψθψθθφ

ψψφ   (25) 

 Next, (24) is solved for the desired pitch jdθ while (25) can be solved for the 

desired roll jdφ .  Using the NN estimates, 1
ˆ

jcf , the desired pitch jdθ can be written as 

⎟
⎠

⎞
⎜
⎝

⎛
=

jd

jd
jd D

N
a

θ

θ

π
θ

θ tan2 max     (26) 

where jvxjvjcjjdjcjjdjd ekfsfcN 1122111 )ˆ()ˆ( ++Λ++Λ= ψψθ  and gfD jcjjd −+Λ= 133
ˆ

θ .  

Similarly, the desired roll angle, jdφ , is found to be 

⎟
⎠

⎞
⎜
⎝

⎛
=

jd

jd
jd D

N
a

φ

φ

π
φ

φ tan
2 max    (27) 

where jvyjvjcjjdjcjjdjd ekfsfcN 2111122 )ˆ()ˆ( ++Λ−+Λ= ψψφ  and )ˆ( 111 jcjjdjdjdjd fcsgcD +Λ−= ψθθφ   

)ˆ( 122 jcjjdjd fss +Λ− ψθ )ˆ( 133 jcjjd fc +Λ− θ . 
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 Remark 3:  The expressions for the desired pitch and roll in (26) and (27) lend 

themselves very well to the formation control of quadrotor UAVs.  The expressions will 

always produce desired values in the stable operation regions of the UAV since )tan(•a  

approaches 2π±  as its argument increases. Thus, introducing the scaling factors in jdθ  

and jdφ  results in ),( maxmax θθθ −∈jd  and ),( maxmaxφφφ −∈jd , and the aggressiveness of the 

UAVs maneuvers can be managed.  Further, if the un-scaled desired orientation vector 

were used in the development of (20), the maximum desired pitch and roll would still 

remain within the stable operating regions.  It is observed that too conservative maximum 

values could lead to degraded tracking performance for very aggressive trajectories.  

 Now that the desired orientation of the UAV has been found, we now derive the 

orientation error dynamics and find the stabilizing angular velocity control.  Next define 

the attitude tracking error as 

a
jjdj Ee ∈Θ−Θ=Θ     (28) 

where dynamics are found using (1) to be jjjdj Te ω−Θ=Θ
&& .  In order to drive the 

orientation errors (28) to zero, the desired angular velocity, jdω , is selected as  

)(1
ΘΘ

− +Θ= jjjdjjd eKT &ω     (29) 

where 33
321 },,{ x

jjjj kkkdiagK ℜ∈= ΘΘΘΘ  is a diagonal matrix of positive design 

constants.  Define the angular velocity tracking error as 

jjdje ωωω −= , (30) 
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and observing ωωω jjdj e−= , the closed loop orientation error system dynamics can be 

written as 

ωjjjjj eTeKe +−= ΘΘΘ& .   (31) 

 Examining (29), calculation of the desired angular velocity requires knowledge 

of jdΘ& ; however, jdΘ& is not known in view of the fact jΛ& and 1
ˆ

jcf& are not available.  

Further, development of 2ju in the following section will reveal jdω& is required which in 

turn implies jΛ&& and 1
ˆ

jcf&& must be known.  Since these requirements are not practical, the 

universal approximation property of NN is invoked to estimate jdω and jdω&  by using a 

nonlinear virtual control structure. 

 To begin the NN virtual control development, we rearrange (29) to observe the 

dynamics of the ideal virtual controller to be 

)()(
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1
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−
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−

+Θ++Θ=

−=Θ

jjjdjjjjdjjd

jjjjdjjd
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&&&&&&

&

ω

ω
    (32) 

 For convenience, we define a change of variable as ΘΘ
−−=Ω jjjjdjd eKT 1ω , and 

the dynamics (32) become 

ΩΩΩ
−− ==Θ+Θ=Ω

Ω=Θ

jjjjdjjdjjd

jdjjd

fxfTT
T

)(11 &&&&&

&
     (33) 

 Defining the estimates of jdΘ and jdΩ to be jdΘ̂ and jdΩ̂ , respectively, and the 

estimation error jdjdjd Θ−Θ=Θ ˆ~ , the dynamics of the proposed NN virtual controller 

become 
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where 1ΩjK and 2ΩjK are positive constants.  The estimate jdω̂ is then written as 

jdjjjjjjdjd TKeKT Θ++Ω= −
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− ~ˆˆ 1
3

1ω      (35) 

where 3ΩjK is another positive constant.  Observing  

jdjjjdjdjdjd TK Θ−Ω=−= −
Ω
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with jdjdjd Ω−Ω=Ω ˆ~ , subtracting (34) from (33), as well as adding and subtracting 

jdjjjd
T
j TKT Θ+Θ −

Ω
~~ 1

3
& , the virtual controller estimation error dynamics are found to be 
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where jdjjjd
T
jjjj TKTfxf Θ−Θ+= −

ΩΩΩΩ
~~)( 1

31
&  is an unknown function. 

 In (34), universal approximation property of NN has been utilized to estimate the 

unknown function )(1 ΩΩ jj xf  by bounded ideal weights T
j

T
j VW ΩΩ , such that 

ΩΩ ≤ jMFj WW for a known constant ΩjMW , and written as =ΩΩ )(1 jj xf  ( ) ΩΩΩΩ + jj
T
j

T
j xVW εσ  

where Ωjε is the bounded NN approximation error such that Mj ΩΩ ≤ εε for a known 

constant MΩε .  The NN estimate of Ωjf is written as 

( ) ΩΩΩΩΩΩΩΩ === j
T
jj

T
j

T
jjjj WxVWfxf σσ ˆˆˆˆˆ)ˆ(ˆ  where T

jW Ω
ˆ is the NN estimate of T

jW Ω and Ωjx̂ is 
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the NN input written in terms of the virtual control estimates, desired trajectory, and the 

UAV velocity.  The NN input is defined as TT
j

T
j

T
jd

T
jd

T
jd

T
jj vx ]~ˆ1[ˆ ωΘΩΘΛ=Ω .   

 Next, differentiating (36), using (37) as well as adding and subtracting 

ΩΩ j
T
jW σ̂ reveals 

ΩΩΩΩΩ
−

ΩΩΩ +Θ−−−Θ−+−= jjdjjjjjjd
T
jjjjdjjd KKKKTTxfK ξωω ~))((~)ˆ(~~~

3132
1

13
&     (38) 

where ΩΩΩ = j
T
jj Wf σ̂~~ , T

j
T
j

T
j WWW ΩΩΩ −= ˆ~ , ΩΩΩΩ += j

T
jjj W σεξ ~ , and ΩΩΩ −= jjj σσσ ˆ~ . 

Furthermore, Mjj ΩΩ ≤ ξξ  with ΩΩΩΩ += jjMMMj NW2εξ  a computable constant with 

ΩjN  the constant number of hidden layer neurons in the virtual control NN and the 

fact ΩΩ ≤ jj Nσ was used.  Examination of (30) and (31) reveals that 0~,0~ ==Θ jdjd ω , 

and 0~
=Ωjf to be equilibrium points of the estimation error dynamics when 0=Ωjξ . 

 To this point, the desired translational velocity for follower j has been identified 

to ensure the leader-follower objective (8) is achieved.  Then, the desired pitch and roll 

were derived to drive jdxjxb vv → and jdyjyb vv → , respectively.  Then, the desired angular 

velocity was found to ensure jdj Θ→Θ .  What remains is to identify the UAV thrust to 

guarantee jdzjzb vv → and rotational torque vector to ensure jdj ωω ˆ→ .  First, the thrust is 

derived. 

 Consider again the translational velocity tracking error dynamics (20), as well as 

the desired velocity tracking error dynamics (22).  Equating (20) and (22) and 

manipulating the third error state, the required thrust is found to be 

)ˆ)((

)ˆ()ˆ)((

122

13331111

jcjjdjdjdjdjdj

jcjjdjdjvjjvzjjcjjdjdjdjdjdjj

fcssscm

gfccmekmfsscscmu

+Λ−+

−+Λ+++Λ+=

ψφψθφ

φθψφψθφ    (39) 
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where 1
ˆ

jcf is the NN estimate in (21) previously defined.  Substituting the desired pitch 

(26), roll (27), and the thrust (39) into the translational velocity tracking error dynamics 

(20) yields 

111
~

jcivij
T
jjc

T
jc

T
jdjvjvjv eRKRWReKe ξσ ρ +−+−=& ,      (40) 

with 11 jdjc
T
jdjc R τεξ −= ,  111

ˆ~
jcjcjc WWW −=  and, 11 jMcjc ξξ ≤  for a computable constant 

jMMcjMc mR /1max1 τεξ += .  In the formulation of (40), the expressions for the desired pitch 

and roll (26) and (27), respectively, were first written in the form of (24) and (25), so that 

sine and cosine of the angles could be substituted as opposed to substituting the 

arctangent expressions directly into the sine or cosine function. 

  Next, the rotational torque vector, 2ju , will be addressed. First, multiply the 

angular velocity tracking error (30) by the constant inertia matrix jJ , take the first 

derivative with respect to time, substitute the UAV dynamics (5) and add and subtract 

Θj
T
j eT to reveal 

2222 )( jdj
T
jjjcjcjjjdjjj eTuxfJJeJ τωωω −−−=−= Θ&&&     (41) 

with Θ+−−= j
T
jjjjjjjdjjcjc eTNJSJxf )()()( 222 ωωωω& . 

 Examining )( 22 jcjc xf , it is clear that the function is nonlinear and contains 

unknown terms; therefore, the universal approximation property of NN is utilized to 

estimate the function )( 22 jcjc xf  by bounded ideal weights T
jc

T
jc VW 22 , such that 

22 jMcFjc WW ≤ for a known constant 2jMcW .  The ideal NN representation is written as 

=)( 22 jcjc xf  2222 )( jcjc
T
jc

T
jc xVW εσ +  where 2jcε is the bounded NN functional reconstruction 
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error such that 22 Mcjc εε ≤ for a known constant 2Mcε .  The NN estimate of 2jcf  is given 

by 2222222 ˆˆ)ˆ(ˆ)ˆ(ˆ
jc

T
jcjc

T
jc

T
jcjcjc WxVWxf σσ ==  where T

jcW 2
ˆ  is the NN estimate of T

jcW 2  and 

TT
j

T
jd

T
jd

T
jjc ex ]~ˆ1[ˆ 2 ΘΘΩ= &ω  is the input to the NN written in terms of the virtual 

controller estimates.  By the construction of the virtual controller, jdω&̂ is not directly 

available; therefore, observing (35), the terms T
jdΩ&̂ , T

jdΘ~ , and T
je Θ have been included 

instead.   

 Moving on, the angular velocity tracking error ωje  cannot be calculated due to its 

dependence on the unknown vector jdω .  Thus, using the desired angular velocity (35), 

we define the estimated angular velocity tracking error as jjdje ωωω −= ˆˆ .  Now, using 

the NN estimate 2
ˆ

jcf and ωjê , the rotational torque control input is written as 

ωω jjjcj eKfu ˆˆ
22 += , (42) 

and substituting the control input (42) into the angular velocity dynamics (41) yields 

222 ˆˆ
jdj

T
jjjjcjcjj eTeKffeJ τωωω −−−−= Θ& .    (43) 

 Now, adding and subtracting jc
T
jcW σ̂2  and observing jdjj ee ωω

~ˆ −= Ω , the closed 

loop dynamics (43) become 

222
~ˆ~

jcj
T
jjdjjc

T
jcjjjj eTKWeKeJ ξωσ ωωωω +−++−= Θ&    (44) 
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where T
jc

T
jc

T
jc WWW 222

ˆ~ −= , 2222
~

jdjc
T
jcjcjc W τσεξ −+= , and 222 ˆ~

jcjcjc σσσ −= .  Further, 

22 jMcjc ξξ ≤  for a computable constant dMjcjMcMcjMc NW τεξ ++= 2222 2  where 2jcN is 

the number of hidden layer neurons. 

 As a final step, we define the augmented variables TT
j

T
jvjD eee ][ ω= , 

TT
j

T
jvjD eee ]ˆ[ˆ ω= , ]~0;0~[~

21 jcjcjc WWW =  and TT
jc

T
jcjc ]ˆˆ[ˆ 21 σσσ = .  In the following theorem, 

the stability of the follower j is shown while considering 0=ive .  In other words, the 

position, orientation, and velocity tracking errors are considered along with the 

estimation errors of the virtual controller and the NN weight estimation errors of each NN 

for follower j while ignoring the interconnection errors ( ive ) between the leader and its 

followers.  This assumption will be relaxed in the following section. 

 Theorem 1:  (Follower UAV System Stability) Given the dynamic nonlinear 

system of follower j in the form of (5), let the desired translational velocity, pitch and roll 

for follower j be defined by (12), (26) and (27), respectively.  Let the NN virtual 

controller be defined by (34) and (35), respectively, with the NN update law given by 

ΩΩΩΩΩΩ −Θ= jjj
T
jdjjj WFFW ˆ~ˆˆ κσ&     (45) 

where 0>= ΩΩ
T
jj FF and 0>Ωjκ are design parameters. Let the dynamic NN controller for 

follower j be defined by (39) and (42), respectively, with the NN update given by 

jcjcjc
T

jDjdjcjcjc WFeAFW ˆ)ˆ(ˆˆ κσ −=&      (46) 

where 66
333333 ]0;0[ x

xxxjdjd IRA ℜ∈= , and 0>= T
jcjc FF  and 0>jcκ  are constant design 

parameters.  Then there exists positive design constants ,, 21 ΩΩ jj KK 3ΩjK , and positive 
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definite design matrices ωρ jjvjj KKKK ,,, Θ , such that the virtual controller estimation 

errors jdΘ~ , jdω~  and the virtual control NN weight estimation errors, ΩjW~ , the position, 

orientation, and translational and angular velocity tracking errors, ωρ jjvjj eeee ,,, Θ , 

respectively, and the dynamic controller NN weight estimation errors, jcW~ , are all 

SGUUB.   

 Proof:  Consider the following Lyapunov candidate 

jcjMaxjj VVKV += Ω
2
ω  (47) 

where 0>MaxjK ω  is the maximum singular value of ωjK  ,  

}~~{
2
1~~

2
1~~

2
1 1

Ω
−
ΩΩΩ ++ΘΘ= jj

T
jjd

T
jdjd

T
jdj WFWtrV ωω , 

and 

{ }jcjc
T
jcj

T
jjv

T
jvj

T
jj

T
jjc WFWtrJeeeeeeeeV ~~

2
1

2
1

2
1

2
1

2
1 1−

ΘΘ ++++= ωωρρ  

whose first derivative with respect to time is given by jcjMaxjj VVKV &&& += Ω
2
ω .  

Considering first, ΩjV&  and substituting the closed loop virtual control estimation error 

dynamics (30) and (31) as well as the NN tuning law (45), yields 

ΩΩΩΩΩΩ

ΩΩΩΩ
−

ΩΩΩΩ

−++Θ−

Θ+Θ−Θ−−

+−Θ−Θ−=

j
T

jdj
T
jj

T
jdjdj

T
j

jdj
T
jdjd

T
j

T
jdjdjjjjj

T
jd

jdj
T

jdjdjj
T
jdj

WWtrWtr
TTKKKKT

KKKV

ξωκωσ
ωωω

ωω

~}ˆ~{})~~(ˆ~{

~~~~)~))(((~
~~~)(~

2313
1

331
&

. (48)  

Next, selecting )( 3132 ΩΩΩΩ −= jjjj KKKK  and observing  jdj
T
jdjd

T
j

T
jd TT ωω ~~~~ Θ=Θ  and 

)}~(~{}ˆ~{ ΩΩΩΩΩ −= jj
T
jj

T
j WWWtrWWtr , (48) can be upper bounded by 
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MjjdFjjMjFjjjdFjj

jdFjjjdjjdjjj

WWWWN

WNKKKV

ΩΩΩΩΩΩΩΩ

ΩΩΩΩΩΩ

+−++

Θ+−Θ−−≤

ξωκκω

ω
~~~~~

~~~~)(
2

2
3

2
31

&
. 

 Now, completing the squares with respect to 
FjW Ω

~ , jdΘ~ and jdω~ allows the 

upper bound of ΩjV to be written as 

ΩΩ
Ω

Ω

ΩΩ

Ω

Ω
ΩΩΩ +−⎟

⎠

⎞
⎜
⎝

⎛
−−Θ⎟

⎠

⎞
⎜
⎝

⎛
−−−≤ jFj

j
jd

j

jj
jd

j

j
jjj W

NKN
KKV η

κ
ω

κκ
2232

31
~

4
~

2
~&   (49) 

where )2( 3
22

ΩΩΩΩΩ += jMjjMjj KW ξκη .  Next, considering jcV& , and substituting the 

closed loop kinematics (15) and (31), dynamics (40) and (44), and NN tuning law (46) 

while considering 0=ive  reveals 

( ){ } }ˆ~{)ˆ(ˆ~~
21 jc

T
jcjc

T
jDjDjdjc

T
jcjc

T
jjc

T
jvjdj

T
j

jvj
T
jjj

T
jjvjv

T
jvjj

T
jjj

T
jjc

WWtreeAWtreeKe

eReeKeeKeeKeeKeV

κσξξω ωωω

ρωωωρρρ

+−++++

+−−−−= ΘΘΘ
&

. 

 Now, observing djDjDjd eeA ω~)ˆ( =− , 21ˆ jcjcjc NN +≤σ  jcN≡ , 

jcMFjc WW ≤ for a known positive constant jcMW , and )}~(~{}ˆ~{ jcjc
T
jcjc

T
jc WWWtrWWtr −= , 

jcV& is upper bounded by 

2
21

2222

~~~~
~

FjcjcFjcjcMjcjdFjcjcMcjMcjv

jjdMaxjjvjMaxjMinjjvjvMinjMinjjMinjjc

WWWWNee

eKeeReKeKeKeKV

κκωξξ

ω

ω

ωωρωωρρ

−++++

++−−−−≤ ΘΘ
&

 

where minρjK , minΘjK , minjvK ,and minωjK are the minimum singular values of 

ρjK , ΘjK , jvK ,and ωjK , respectively, and greater than zero.  Next, completing the squares 

with respect to ,,, jvjj eee Θρ  and ωje yields 
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44
3

4
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~
3334

3
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Minj
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jvMin
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jvMin
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Minjjc
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         (50) 

where MinjjMcjvMinjMcjcMjcjc KKW ωξξκη /3/33 2
2

2
1

2 ++= .  Now, combining (49) and (50), an 

upper bound for jV& is written as 
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 (51) 

 
where Ω+= jMaxjjcj K ηηη ω

24/ .  Finally, (51) is less than zero provided 

Ω
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and the following inequalities hold 
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 Therefore, it can be concluded using standard extensions of Lyapunov theory 

(Lewis, Jagannathan & Yesilderek, 1999) that jV&  is less than zero outside of a compact 

set, revealing the virtual controller estimation errors, jdΘ~ , jdω~ , and the NN weight 

estimation errors, ΩjW~ , the position, orientation, and translational and angular velocity 

tracking errors, ωρ jjvjj eeee ,,, Θ , respectively, and the dynamic controller NN weight 

estimation errors, jcW~ , are all bounded.  Finally, the initial compact set can be made 

arbitrarily large through proper selection of the gains; thus, all signals are SGUUB  

(Timothy, Burg, Xian & Dawson, 2007). 

 In the next section, results from our previous work (Dierks & Jagannathan, 2008) 

are revisited in the design of the formation leader control laws. 

B. Formation Leader Control Law 

 The kinematics and dynamics for the formation leader are defined similar to (1) 

and (5), respectively.  In our previous work (Dierks & Jagannathan, 2008), an output 

feedback control law for a single quadrotor UAV was designed to ensure the UAV tracks 

a desired path, T
idididid zyx ],,[=ρ , and desired yaw angle, idψ .  Using a similar approach 

to (10)-(15), the translational control velocity for leader i was found to be (Dierks & 

Jagannathan, 2008) 

b
iiid

T
i

T
idzidyidxid EeKRvvvv ∈+== )(][ ρρρ& ,      (54) 

and the closed loop position tracking error then takes the form of 

iviiii eReKe +−= ρρρ&  (55) 
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 Then, using the leader’s velocity tracking error (14) and following steps similar to 

(17)-(27), the desired pitch angle is given by 

⎟
⎠
⎞

⎜
⎝
⎛=

di

di
id D

Na
θ

θ

π
θ

θ tan2 max    (56) 

where ivxividiididi ekscN 121 +Λ+Λ= ψψθ and gD idi −Λ= 3θ .  Similarly, the desired roll 

angle for the leader is found to be 

⎟
⎠

⎞
⎜
⎝

⎛
=

di

di
id D

N
a

φ

φ

π
φ

φ tan2 max    (57) 

where ivyiviidiiddi ekscN 212 +Λ−Λ= ψψφ  and 123 )( iididiididiiddi csssgcD Λ−Λ−Λ−= ψθψθθφ  

with 1111 îciRidxiidi fvxkx +−+=Λ &&& ρ , 22 iRidyiidi vyky −+=Λ &&& ρ 12îcf+ ,  1333 îciRidziidi fvzkz +−+=Λ &&& ρ ,  

T
iRiRiRiR vvvv ][ 321= iii vRK ρ=  and T

icicicic ffff ]ˆˆˆ[ˆ
1312111 =  is a NN estimate of the 

unknown function )( 11 icic xf  (Dierks & Jagannathan, 2008).  The development of the 

desired angular velocity as well as the NN virtual controller for the formation leader 

follows similar to (28)-(38), and finally, the thrust and rotation torque vector for the 

leader were found to be (Dierks & Jagannathan, 2008) 

)(
)()(

3

2131

gccm
cssscmsscscmekmu

iididi

iidididididiiidididididiivzivii

−Λ+
Λ−+Λ++=

θφ

ψφψθφψφψθφ     (58) 

and 

ωω iiici eKfu ˆˆ
22 += ,    (59) 

respectively, where 3
2

ˆ ℜ∈icf is a NN estimate of an unknown function )( 22 icic xf  and 

iidie ωωω −= ˆˆ .  The closed loop orientation, virtual control, and velocity tracking error 
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dynamics for the formation leader are found to take a form similar to (31), (37) and (38), 

and (40) and (44), respectively (Dierks & Jagannathan, 2008).  

 A general controller structure for the follower UAV as well as the formation 

leader is now shown in Fig. 3 where the subscripts ‘i' and ‘j’ have been omitted.  In the 

figure, four connected systems are observed: a kinematic controller, NN virtual 

controller, NN dynamic controller, and the UAV dynamic system.  The kinematic 

controller refers to the calculation of the translational control velocity and desired pitch 

and roll (12), (26), and (27), respectively, for the follower and (54), (56), and (57), 

respectively, for the leader. 

 The external inputs to the system are considered to be the desired position, dρ , 

and desired yaw, dψ .  For the leader, dρ and dψ are known values. In contrast, the 

follower UAV calculates dρ according to (9) and receives dψ from the leader via wireless  

 

 

 
Fig. 3. Control structure for the follower and leader UAV. 
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communication so that the leader-follower formation control problem (8) is effectively 

converted into a tracking control problem.  Based on the difference between the current 

UAV position (ρ ) and the desired position, the kinematic controller generates the desired 

velocity dv  to ensure dρρ → .  Subsequently, the desired pitch, dθ , and roll, dφ , are 

calculated to ensure the x and y components of the desired velocity are tracked, 

respectively.  Then, the NN virtual controller uses the information provided by the 

kinematic controller to generate the desired angular velocity b
d E∈ω̂ which 

ensures dΘ→Θ .  Then, the NN dynamic controller calculates the actual control inputs 

1u and 2u  based on the information provided by the kinematic controller and NN virtual 

controller. 

 Next, the stability of the formation leader is investigated in the following theorem. 

 Theorem 2 (Formation Leader Stability):  Given a smooth trajectory idρ and 

desired yaw angle idψ  for the leader i, let control velocity and desire pitch and roll for the 

leader be given by (54), (56), and (57), respectively.  Let the virtual controller for the 

leader i be defined similar to (34) and (35) with the virtual control NN update law defined 

similar to (45).  Let the thrust and rotation torque vector defined by (58) and (59), 

respectively, and let the control NN update law be defined similarly to (46).  Then, the 

position, orientation, and velocity tracking errors, the virtual control estimation errors, 

and the virtual controller and the dynamic controller NN weight estimation errors for the 

formation leader i are all SGUUB. 
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 Proof of Theorem 2 is addressed in the following section where the stability of the 

formation consisting of 1 leader and N followers is shown while considering the 

interconnection errors between the leader and its followers. 

C. Quadrotor UAV Formation Stability 

 Before proceeding, it is convenient to define the following augmented error 

systems.  First, the position and translational velocity tracking errors of leader i and N 

follower UAVs are written as ....[
1=

=
j

T
j

T
i eee ρρρ

)1(3] +
=

ℜ∈ NT
Nj

T
je ρ  and 

1
[

=
=

j
T
jv

T
ivv eee  

)1(3].... +
=

ℜ∈ NT
Nj

T
jve .  Next, the transformation matrix (2) is augmented as 

)1(3)1(3
1

},,...,{ ++
==

ℜ∈= NxN
NjjjjiF RRRdiagR      (60) 

with FMaxFF RR =  for a computable constant FMaxR while the NN weights and activation 

functions for the translational velocity error system are augmented as =1
ˆ

cW  

)(
1111

11}ˆ...,,ˆ,ˆ{ icjc NNN

Njjcjjcic WWWdiag +⋅

==
ℜ∈  and ,[

1111 =
=

j
T
jc

T
icc σσσ )(

1
11]..., icjc NNNT

Nj
T
jc

+⋅

=
ℜ∈σ . 

Now, using the augmented variables above, the augmented closed loop position and 

translational velocity error dynamics for the entire formation are written as 

vFFNxN eRGIeKe )( )1(3)1(3 −+−= ++ρρρ&      (61) 

and 

111 ˆ~
cvFF

T
Fc

T
cdFvvv eRGKRWAeKe ξσ ρ +−+−=& ,     (62) 

respectively, where },...,,{
1 NjjdjjdiddF AAAdiagA

==
=  with idA  defined similarly to jdA  

in terms of idΘ , 1cξ is an appropriately defined vector consisting of 1icξ ,
11 =jjcξ , etc.,  
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},...,,{
1 Njjjji KKKdiagK

==
= ρρρρ , ,,{

1=
=

jjvivv KKdiagK  }...,
NjjvK

=
, FG  is a constant 

matrix relating to the formation interconnection errors defined as 

)1(3)1(3

33

3333

0
00 ++ℜ∈⎥⎦

⎤
⎢⎣
⎡= NxN

NxT

xNx
F FG     (63) 

and NNx
TF 33ℜ∈ is a matrix of ones and zeros and is dependent on the specific formation 

topology.  For instance, in a string formation where each follower follows the UAV 

directly in front of it, follower 1 tracks leader i, follower 2 tracks follower 1, etc., and TF  

becomes the identity matrix.  Further, it is observed that NG FF 3= . 

 Next, augmented variables for the orientation and angular velocity tracking errors 

are written as ....[
1=ΘΘΘ = j

T
j

T
i eee )1(3] +

=Θ ℜ∈ NT
Nj

T
je  and 
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1=

=
j

T
j

T
i eee ωωω
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=

ℜ∈ NT
Nj

T
je ω , and the rotational transformation matrix (4) is 

augmented as ,,{
1=

=
jjiF TTdiagT  )1(3)1(3},... ++

=
ℜ∈ NxN

NjjT .  The NN weights and 

activation functions for the angular velocity error system are augmented as 

...,,ˆ,ˆ{ˆ
1222 =

=
jjcicc WWdiagW  )(

2
22}ˆ icjc NNN

NjjcW +⋅

=
ℜ∈  and 

,...,ˆˆ[ˆ
1222 =

=
j

T
jc

T
icc σσσ )(

2
22]ˆ icjc NNNT

Nj
T
jc

+⋅

=
ℜ∈σ , and the augmented closed loop orientation 

and angular velocity error dynamics for the entire formation are written as 

ωeTeKe F+−= ΘΘΘ&  (64) 

and 

222
~ˆ~

cd
T

Fc
T

c KeTWeKeJ ξωσ ωωωω ++−+−= Θ& ,     (65) 
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respectievely, with },...,,{
1 Njjjji KKKdiagK

=Θ=ΘΘΘ = , ,{ ωω iKdiagK =  ,
1=jjK ω }...,

NjjK
=ω , 

},...,,{
1 Njjjji JJJdiagJ

==
=  and 2cξ  is an appropriately defined vector consisting of 2icξ , 

12 =jjcξ , etc.  The vectors dω~  and dΘ~  are the augmented virtual control estimation errors 

written as )1(3
1

]~...~,~[~ +
==

ℜ∈= NT
Nj

T
jdj

T
jd

T
idd ωωωω  and ...~,~[~

1=
ΘΘ=Θ

j
T
jd

T
idd  )1(3]~ +

=
ℜ∈Θ NT

Nj
T
jd .  

 From (37) and (38), the dynamics of the augmented virtual controller are 

ddFd KKT Θ−−=Θ ΩΩ
~)(~~

31ω&    (66) 

and 

ΩΩΩΩ +Θ−+−= ξσωω d
T

F
T

dd TWK ~ˆ~~~
3

& ,    (67) 

respectively, where }...,{ 33113313311 Njxjxx IKIKIKdiagK =Ω=ΩΩΩ = , 13333333 ,{ =ΩΩΩ = jxx IKIKdiagK  

}... 333 NjxIK =Ω , and =Ω2K  )( 313 ΩΩΩ −KKK , and }...,{
1 Nj

T
jj

T
j

T
idiag

=Ω=ΩΩΩ = ξξξξ .  The 

augmented NN variables for the augmented virtual controller are given by 

...,,ˆ,ˆ{ˆ
1=ΩΩΩ = jji WWdiagW  )(}ˆ ΩΩ+⋅

=Ω ℜ∈ ij NNN

NjjW  and )(

1
]ˆ,...,ˆˆ[ˆ ΩΩ+⋅

=Ω=ΩΩΩ ℜ∈= ij NNNT
Nj

T
jj

T
j

T
i σσσσ . 

 As a final step in defining the augmented error systems, we define the augmented 

NN weight updates for the virtual control and dynamic controller to be 

ΩΩΩΩΩΩ −Θ= WFFW T
d

ˆ~ˆˆ κσ&  (68) 

and 

ccc
T

Ddccc WFeAFW ˆ)ˆ(ˆˆ κσ −=& ,   (69) 

 
respectively, where

1
,{

=ΩΩΩ = jji FFdiagF }...
NjjF

=Ω , ...,{
1=

=
jjcicc FFdiagF }

NjjcF
=

, 

...ˆˆ{ˆ
1, =

=
jjcicc WWdiagW }ˆ

NjjcW
=

, TT
c

T
cc ]ˆ[ˆ 21 σσσ = , 

1
,{

=
=

jjcicc IIdiag κκκ  }...
Njjc I

=
κ , 
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1
,{

=ΩΩΩ =
jji IIdiag κκκ }...

Njj I
=Ωκ  with each I being an appropriately dimensioned 

identity matrix, TTT
vD eee ][ ω= and TTT

vD eee ]ˆ[ˆ ω= . 

 A general formation controller structure is now shown in Fig. 4 where each UAV 

control block contains the controller structure shown in Fig. 3.  Additionally, 

communication links have been illustrated.  In the figure, each UAV can have multiple 

follower UAVs, and local sensors (not shown) are utilized by the follower UAVs to 

measure their locations relative to their respective leaders. Starting from the top of the 

figure, the formation leader i has P+1 followers and communicates its measured  

 

 

 

 
Fig. 4.  Formation control structure. 
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orientation and angular rate vectors, iΘ and iω , respectively, and its desired states, 

ididid ψψψ &&& ,, , idid vv &,  to each follower.  Next, in the second layer of UAVs, followers j 

through j+P become leaders to followers j+P+1 through j+N, respectively.   

  Note that follower j does not explicitly communicate the states of the leader i to 

its followers.  However, by construction, the desired states jdv and jdv&  contain the states of 

the formation leader i.  Thus, followers j+P+1 through N inherently bring in the 

dynamics of leader i by considering the dynamics of followers j through j+P, 

respectively. 

  Now, the following theorem can be stated regarding the stability of the entire 

UAV formation. 

 Theorem 3: (UAV Formation Stability) Given the leader-follower criterion of (8) 

with one leader and N followers, let the hypotheses of Theorem 1 and Theorem 2 hold.  

Then, the position, orientation, and velocity tracking errors, the virtual control estimation 

errors and the virtual controller and the dynamic controller NN weight estimation errors 

for the entire formation are all SGUUB. 

 Proof:  Consider the following positive definite Lyapunov candidate 

cMaxcF VVKV +Γ= Ωω
2
1  (70) 

where 03)1(31 >++=Γ FMaxc RNN  and 0>MaxKω  is the maximum singular value of ωK ,  

 }~~{
2
1~~

2
1~~

2
1 1

Ω
−
ΩΩΩ ++ΘΘ= WFWtrV T

d
T

dd
T
d ωω ,     (71) 

and 

{ })~~(
22

1 1
2
1

cc
T

c
T

v
T
v

TcT
c WFWtrJeeeeeeeeV −

ΘΘ +++
Γ

+= ωωρρ     (72) 
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where }~...~~{~
1, Njjcjjcicc WWWdiagW

==
=

1
,{

=ΩΩΩ =
jji FFdiagF }...

NjjF
=Ω , and ,{ icc FdiagF =  

}...
1 Njjcjjc FF

==
.  The derivative (70) with respect to time is given by cMaxF VVKV &&& += Ωω .  

Considering ΩV& and using (66), (67) and (68) while applying similar steps used in the 

formulation of (48)-(49) allows ΩV& to be upper bounded as 

2

min

min32

min
max3min1

~
2

~
jdd

NKNKKV ω
κκ ⎟

⎠
⎞

⎜
⎝
⎛ −−Θ⎟

⎠
⎞

⎜
⎝
⎛ −−−≤

Ω

ΩΩ

Ω

Ω
ΩΩΩ

&
ΩΩ

Ω +− η
κ 2min ~

4 F
W  (73) 

where min1ΩK , min3ΩK and minΩκ are the minimum singular values of 1ΩK , 3ΩK , and Ωκ , 

respectively, max3ΩK is the maximum singular value of 3ΩK , ∑ = ΩΩΩ +=
N

j ji 1
22 ηηη  with 

Ωiη  defined similarly to Ωjη , and ∑ = ΩΩΩ +=
N

j ji NNN
1

22 .  Next, considering cV& and using 

(61), (62), (64), (65), and (69) yields 

{ })ˆ)ˆ(ˆ(~
~

)(

2
1

2
2
11

2
1

2
1

2
1

)1(3)1(3
2
1

2
1

2
1

WeAeAWtr
eeeRGKReKe

eRGIeeKeeKeeKeeKeV

c
T

DdDdc
T

cc

c
T

cc
T
vcvFF

T
F

T
vcd

T
c

vFFNxN
TT

cvv
T
vc

T
c

T
c

κσ
ξξω ωρωω

ρωωωρρρ

+−Γ+

Γ+Γ+Γ−Γ+
−+Γ−Γ−Γ−−= ++ΘΘΘ

&

(74) 

  Next, (74) can be upper bounded as 

FcccMcFccc

dcvcMccMccv

Fccccvcvcc

WWeWN
eKeeee

WeKeKeKeKV

~~
~

~

2
1max

2
1

2
1max12

2
11

2
1

22
1min

22
1min

22
1min

22
1min

2
min

Γ+Γ+

Γ+Γ+Γ+Γ+

Γ−Γ−Γ−Γ−−≤ ΘΘ

κ
ωξξ

κ

ω

ωωρω

ωωρρ
&

 

where minρK , minΘK , minωK , and mincκ are the minimum singular values of ρK , ΘK , ωK , 

and cκ , respectively, cc N≤σ̂ for a known constant cN , and minvK is the minimum 

singular value of FF
T
Fvv RGKRKK ρ+= with vK  selected to ensure 0>vK . 
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 Now, completing the squares with respect to ,,,, ωρ eeee vΘ and
FcW~ yields 

).(
2

~
2

~)2/2/(
)2/2/)1((

)1()2/1(

2
2

2
1

2
max

2
12

2
1max

2
maxmin

2
1

2
maxmin

2
1

2
min

2
1

22
1min

2
min

McMccMc
c

d
c

Fccccc

cc

vvccc

WK
WN

eKNK
eKeKeKV

ξξκω

κκ

ω

ωωω

ρρ

++
Γ

+
Γ

+

−−Γ−

−+−Γ−

−Γ−Γ−−−≤ ΘΘ
&

   (75) 

 Next, using (73) and (75), FV& is formed as 

FFccccc

cc

vvcc

jdMaxc

F
Maxc

dMaxcF

WN
eKNK

eKeKeK
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K

W
KN
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ρρ

ω

ω
ω

+−−Γ−

−+−Γ−

−Γ−Γ−−−

⎟
⎠
⎞

⎜
⎝
⎛ −−Γ−

Γ
−Θ⎟

⎠
⎞

⎜
⎝
⎛ −−Γ−≤

ΘΘ

Ω

ΩΩ

Ω
Ω

Ω

Ω
ΩΩ

2
maxmin

2
1

2
maxmin

2
1

2
min

2
1

22
1min

2
min

2

min

min32
1

2min
2
12

min
max3min1

2
1

~)2/2/(
)2/2/)1((
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  (76) 

where 2/)2( 2
2

2
1

2
max

2
1 Ω+++Γ= ηξξκη ωMaxMcMccMccF KW .  The first eight terms of (76) are 

less than zero provided the augmented gains are selected according to 

min
max3min1

Ω

Ω
ΩΩ +>

κ
NKK , 12

min
min3 +>

Ω

Ω
Ω κ

NK ,
2
1

min >ρK ,     (77)  

2/2/
2/2/)1(,1

maxmin

maxminmin

ccc

cv

N
KNKK

κκ
ωω

+>
++>> , 

 
and FV& is less than zero provided the gains are selected according to (77) and the 

following inequalities hold: 
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    (78) 

 Therefore, it can be concluded using standard extensions of Lyapunov theory 

(Lewis, Jagannathan & Yesilderek, 1999) that FV&  is less than zero outside of a compact 

set, revealing the augmented virtual controller estimation errors, dΘ~ , dω~ , and the NN 

weight estimation errors, ΩW~ , the augmented position, orientation, and translational and 

angular velocity tracking errors, ωρ eeee v ,,, Θ , respectively, and the augmented dynamic 

controller NN weight estimation errors, cW~ , are all bounded.  Finally, the initial compact 

set can be made arbitrarily large through proper selection of the gains; thus, the formation 

errors are all SGUUB  (Timothy, Burg, Xian & Dawson, 2007). 

 Remark 4:  The conclusions of Theorem 3 are independent of any specific 

formation topology, and the Lyapunov candidate (70) represents the most general form 

required to show the stability of the entire formation.  Examining (77) and (78), the 

minimum value of the controller gains and the error bounds increases with the number of 

follower UAV’s, N.  These results are not surprising since increasing the number of 

UAV’s will increase the sources of errors propagated throughout the formation. 
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 Remark 5:  Once a specific formation topology has been decided and set in the 

form of TF , the results of Theorem 3 can be reformulated more precisely.  For this case, 

the stability of the formation is proven using the sum of the individual Lyapunov 

candidates of each UAV as opposed to using the augmented error systems. 

IV. SIMULATION RESULTS 

 A wedge formation of five heterogeneous quadrotor UAVs is now considered in 

MATLAB with the formation leader located at the apex of the wedge as shown in Fig. 5  

where the abbreviations L, F1, F2, F3, and F4 have been used to denote the formation  

 

 

 

 
Fig. 5.  Desired formation topology. 
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leader, follower 1, follower 2, follower 3, and follower 4, respectively.  In addition, the 

leader UAV will be numbered as UAV 0. In the figure, follower 1 should track the leader 

while follower 3 should track follower 1 at a desired separation ms jid 2= , desired angle 

of incidence )(0 radjid =α , and desired bearing  )(3 radjid πβ = , respectively.  On the right 

side of the formation, follower 2 tracks the leader while follower 4 tracks follower 2 at a 

desired separation ms jid 2=  desired angle of incidence, )(10 radjid πα −= , and desired 

bearing  )(3 radjid πβ −= , respectively.  

 The desired position ([m]) and yaw ([rad]) for the leader to track is designated to 

be ))exp(1)(cos([ 2trtA xxxd −−= ωρ  ))exp(1)(sin( 2trtA yyy −−ω  T
zz trA ))]exp(1( −− , and 

0=dψ  with ,1.0,10 πωω ==== yxyx AA  ,05.0== yx rr  ,10−=zA and 25.0=zr .   

 The inertial parameters of each UAV in the formation are summarized in Table I. 

In addition, a normally distributed noise signal with zero mean and variance of 0.01 is 

added to each UAV’s dynamic model (5) through dτ . Unmodeled dynamics in the form 

of aerodynamic friction are also added to each UAV system and modeled as shown below 

(Dierks & Jagannathan, 2008)  
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TABLE I.  UAV Dynamic Parameters 

 Leader F1 F2 F3 F4 

kd ,k=1,2,…6 
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⎥
⎥
⎥
⎥
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where each kd ,k=1,2,…12 are the damping coefficients summarized in Table I.  At t=10 

seconds, a step disturbance is added to the translational and angular velocity dynamics 

with magnitudes of 2.5 and 0.25, respectively. 

 Each NN employed by the leader and its followers consists of 10 hidden layer 

neurons, and for each UAV, the control gains are selected to be, 

20,80,24 321 === ΩΩΩ KKK , }30,10,10{diagK =ρ ,  ,10,10 21 == vv kk 303 =vk , 

}30,30,30{diagK =Θ , and }45,45,45{diagK =ω  based on the theorems.  The NN 

parameters are selected as, 1,10 == ΩΩ κF , and 1.0,10 == ccF κ , and the maximum 

desired pitch and roll values are both selected as 5/2π  for each UAV.   
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  Fig. 6 displays the quadrotor UAV formation trajectories.  Examining the 

trajectories in this figure, it is important to recall that the bearing angle, jiβ , is measured in 

the inertial reference frame of the follower rotated about its yaw angle.  Examining the 

figure, each UAV begins from the ground, and quickly tracks its respective leader upon 

takeoff.   

 

 

 
Fig. 6.  Quadrotor UAV formation trajectories. 

 

 

 

  Comparing the final configuration of the UAVs shown in Fig. 6 to the desired 

formation topology shown in Fig. 5, one can see that the desired formation was achieved.  

Figures 7 through 16 show the position, orientation and the translation and angular 

velocity tracking errors for the leader and its followers.  Examining the tracking errors for 

the leader and its followers in these figures, it is clear that all states track their desired 

values with small bounded errors consistent with the results of Theorem 3.  Initially, 
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errors are observed in each state for each UAV, but these errors quickly vanish as the 

virtual control NN and the NN in the actual control law learns the nonlinear UAV 

dynamics. At t=10 seconds, a small peak in the error plots of each UAV is observed 

corresponding to the external step disturbance being introduced.  However, the NN 

controllers of the UAVs quickly adapt to the changing conditions and the UAVs return to 

track their desired paths with small bounded errors. Additionally, the tracking 

performance of the underactuated states 
xv )(•
and yv )(• implies that the desired pitch and roll, 

respectively, as well as the desired angular velocities generated by the virtual control 

system are satisfactory for the leader, and each follower.  Further, the tracking 

performance confirms the theoretical conjectures derived in Theorem 3. 

 
 
 
 

 
Fig. 7.  Leader position and orientation tracking errors. 
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Fig. 8.   Leader translational and angular velocity tracking errors. 

 
 

 

 
Fig. 9.  Position and orientation tracking errors for follower 1. 
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Fig. 10.  Velocity tracking errors for follower 1. 

 
 
 
 

 
Fig. 11.  Position and orientation tracking errors for follower 2. 
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Fig. 12.  Velocity tracking errors for follower 2. 

 
 
 
 

 
Fig. 13.  Position and orientation tracking errors for follower 3. 
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Fig. 14.  Velocity tracking errors for follower 3. 

 
 
 
 

 
Fig. 15.  Position and orientation tracking errors for follower 4. 
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Fig. 16.  Velocity tracking errors for follower 4. 

 
 
 
 
 

 Next, we investigate the importance of the formation dynamics by employing the 

assumption that the formation is traveling at a constant velocity (Van der Walle, Fidan, 

Sutton, Yu & Anderson 2008; and Kingston, Beard & Holt, 2008).  In the experiment, 

each UAV tracks its respective leader under the assumption that its leader is traveling at a 

constant velocity, and thus, each UAV does not account for the formation dynamics.   

 The resulting formation trajectories are similar to the trajectories shown Fig. 6.  

Although the formation is achieved, the importance of the formation dynamics is 

observed by examining the velocity tracking errors for the followers.  Fig. 17 displays the 

dynamic errors for follower 3, and it is observed that the transient response of the errors 

not only lasts longer, but the size of the bound on the error has increased when compared 

to Fig. 14 as a result of ignoring the formation dynamics.  Similar results were observed 

for the other follower UAVs. 
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Fig. 17.  Velocity tracking errors for follower 3 when the formation dynamics are 

                      ignored. 
 
 
 
 

V. CONCLUSIONS 

 The proposed framework for quadrotor UAV leader-follower formation control 

using NNs for each UAV allows the follower UAVs to track their leader without the 

knowledge of its own and formation dynamics. By converting the formation control into 

a tracking control problem, and designing a NN virtual control structure, all six DOF of 

an underactuated UAV are successfully controlled using only four inputs while in the 

presence of unmodeled dynamics and bounded disturbances.  Lyapunov analysis 

guarantees SGUUB of the entire formation, and numerical results confirm the theoretical 

conjectures. 



 214

REFERENCES 

Das, A., Lewis, F., & Subbarao, K. (2008). Neural network based robust backstepping 
control approach for quadrotors. Proc. of AIAA Guidance, Navigation and Control 
Conference and Exhibit. 

 
Desai, J., Ostrowski, J. P., & Kumar, V. (1998). Controlling formations of multiple 

mobile robots. Proc. IEEE Int. Conf. Robot. Automat., 2964-2869. 
 
Dierks, T. & Jagannathan, S. (2008). Neural network output feedback control of a 

quadrotor UAV. Proc. of the IEEE Conf. on Decision and Control, 3633-3639. 
 
Dunfied, J., Tarbouchi, M., & Labonte, G. (2004). Neural network based control of a four 

rotor helicopter. Proc. of the IEEE Int. Conf. on Industrial Technology, 1543-1548. 
 
Fierro, R., Belta, C., Desai, J. P., & Kumar V. (2001). On controlling aircraft formations. 

Proc. IEEE Conf. on Decision and Control, 1065-1079. 
 
Galzi, D., & Shtessel, Y.  (2006), UAV formations control using high order sliding 

modes. Proc. IEEE American Control Conference, 4249-4254. 
 
Gu, Y., Seanor, B., Campa, G., Napolitano, M., Rowe, L., Gururajan, S., & Wan, S. 

(2006). Design and flight testing evaluation of formation control laws. IEEE Trans. 
on  Control Systems Technology, 14, 1105-1112. 

 
Kingston, D.,  Beard, R. W., & Holt, R. S. (2008). Decentralized perimeter surveillance 

using a team of UAVs. IEEE Trans. on Robotics and Automation, 24, 1394-1404. 
 
Lewis, F.L., Jagannathan, S. & Yesilderek, A. (1999). Neural Network Control of Robot 

Manipulators and Nonlinear Systems, Taylor & Francis, London. 
 
Neff, A.E., DongBin, L., Chitrakaran, V.K., Dawson, D.M., & Burg, T.C. (2007). 

Velocity control for a quad-rotor uav fly-by-camera interface. Proc. of the 
SoutheastCon, 273-278. 

 
Nicol, C., Macnab, C., & Ramirez-Serrano, A. (2008). Robust neural network control of a 

quadrotor helicopter. Proc. IEEE Canadian Conf. on Electrical and Computer 
Engineering, 1233-1238. 

 
Puttige, V. & Anavatti, S. (2007). Comparison of real-time online and offline neural 

network models for a UAV. Proc. IEEE Int. Conf. on Neural Networks, 412 – 417. 
 
Saffarian, M. & Fahimi, F. (2008). Control of helicopters’ formation using non-iterative 

nonlinear model predictive approach. Proc. of IEEE American Control Conference, 
3707-3712. 

 



 215

Sastry, S. S. (1999). Nonlinear Systems: Analysis, Stability and Control, Springer Verlag, 
New York. 

 
Suh, Y. S. (2003). Robust control of a quad-rotor aerial vehicle. Int. Journal of Applied 

Electromagnetics and Mechanics, 18, 103-114. 
 
Timothy, D., Burg, T., Xian, B., & Dawson, D. (2007). Output feedback tracking control 

of an underactuated quad-Rotor UAV. Proc. of the American Control Conference, 
1775-1780. 

 
Van der Walle, D., Fidan, B., Sutton, A., Yu, C., & Anderson, B. (2008). Non-

hierarchical UAV formation control for surveillance tasks. Proc. IEEE American 
Control Conference, 777-782. 

 
Voos, H.  (2007). Nonlinear and neural network-based control of a small four-rotor aerial 

robot. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics,  1-6. 
 
Xie, F., Zhang, X., Fierro, R., & Motter, M. (2005). Autopilot based nonlinear UAV 

formation controller with extremum-seeking. Proc. IEEE Conf. on Decision and 
Control, 4933-4938.  



 
216

 
 
 

5.  Optimal Control of Affine Nonlinear Discrete-time Systems 
with Unknown Internal Dynamics using Online 

Approximators1 
 
 

Travis Dierks and S. Jagannathan   
 
 

Abstract— In this paper, direct dynamic programming techniques are utilized to solve 

the infinite-horizon Hamilton Jacobi-Bellman equation forward-in-time time for the 

optimal control of general affine nonlinear discrete-time systems.  The proposed 

approach, referred normally as adaptive dynamic programming, uses online 

approximators (OLA’s) to solve the infinite horizon optimal regulation and tracking 

control of affine nonlinear discrete-time systems in the presence of unknown internal 

dynamics and a known control coefficient matrix.   For both regulation and tracking, the 

controller designs are implemented using OLA’s to obtain the optimal feedback control 

signal and its associated cost function. Additionally, the tracking controller design 

entails a feedforward portion which is derived and approximated using an additional 

OLA for steady state conditions.  Novel update laws for tuning the unknown parameters 

of the OLA’s online are derived. Lyapunov techniques are used to show that all signals 

are uniformly ultimately bounded (UUB) and that the approximated control signals 

approach the optimal control inputs with small bounded error. In the absence of 

disturbances, an optimal control is demonstrated.  Simulation results are included to 

show the effectiveness of the approach. 
                                                           
1 Research Supported in part by NSF ECCS#0621924 and Intelligent Systems Center. Authors are with the Department of Electrical 
and Computer Engineering, Missouri University of Science and Technology (formerly University of Missouri-Rolla), 1870 Miner 
Circle, Rolla, MO 65409. Contact author Email: tad5x4@mst.edu. 
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Index Terms —Online nonlinear optimal control; Hamilton Jacobi-Bellman; tracking; 
online approximators 

 

I. INTRODUCTION 

 Online approximators (OLAs) have been widely used in the controller designs for 

discrete time nonlinear systems; however, stability is typically the only consideration for 

the resulting control laws [1].  In many cases, it is desirable that the control law not only 

stabilizes the system, but also minimizes a pre-defined cost function to achieve 

optimality. Traditionally, the optimal control of linear systems accompanied by quadratic 

cost functions can be achieved by solving the well known Riccati equation [2].  However, 

the optimal control of nonlinear discrete time systems is a much more challenging task 

that often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation.   

 Although nonlinear optimal control and nonlinear ∞H  optimal control have been 

extensively studied for both discrete and continuous time systems [2]-[6], solving the 

HJB and Hamilton-Jacobi-Isaacs (HJI) equations still remain challenges.  In practice, the 

HJB and HJI equations are more difficult to work with because they involve solving 

either nonlinear partial difference or differential equations [7]; therefore, several works in 

literature have attempted to solve the discrete time nonlinear optimal regulation problem 

using dynamic programming based approaches and neural networks (NN’s) [7]-[8] by 

assuming that there are no NN reconstruction errors; however, the optimal solutions are 

obtained via offline training of the online approximators such as NN’s. 

 Specifically, the authors in [7] propose an iterative solution to the generalized 

HJB equation and present a nearly optimal state feedback control law for affine nonlinear 

discrete time systems derived using a Taylor series expansion.  In [8], the authors present 
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an iteration-based offline solution with convergence proof to the HJB equation using 

heuristic dynamic programming (HDP) [13].  While proof of convergence is shown in [7] 

and [8], the NN reconstruction errors are considered negligible in both cases.  In addition 

to NN’s, Taylor series expansions and Galerkin approximation techniques have also been 

used to estimate the solution to the HJI equation [9]-[10]. 

 To overcome the iterative offline training methodology, several online 

approximator-based controller designs were presented in [11]-[13], and are often referred 

to as forward dynamic programming (FDP) or adaptive critic designs (ACD).  The central 

theme of the approaches [11] and [12] as well as several works in [13] is that the optimal 

control law and cost function are approximated by online parametric structures, such as 

NN’s. Although the techniques [11]-[13] are verified via numerical simulations, the 

reconstruction or approximation errors are not considered and mathematical proofs of 

convergence are not offered. 

 In addition to the optimal regulation problem, the optimal tracking control 

problem has been considered in recent literature through linearization of the tracking 

error equations [16], receding horizon optimal control [17], inverse optimal control [19], 

and directly calculating the infinite horizon HJB equation via offline scheme [20].   In 

[16], the authors consider the ∞H optimal tracking control by linearizing the error 

equations about the origin yielding a locally optimal control law.  The effort in [17] 

considers the receding horizon optimal tracking control by linearizing the nonlinear error 

dynamics about the origin [16].   

 To extend the results of linear optimal control theory to nonlinear systems, the 

state dependent Riccati equation (SDRE) [18] was proposed; however, the optimal 
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control is developed under some tight assumptions including the need for full knowledge 

of the system dynamics.  To overcome linearization, the authors in [20] consider the HJB 

equation and employ similar techniques as [8] to find an offline solution to the optimal 

tracking control problem via HDP.  Besides ignoring the online approximator (OLA) 

reconstruction errors, complete system dynamics are needed to implement offline 

training.   

 In this work, a novel direct dynamic programming (DDP) approach to the optimal 

regulation of nonlinear discrete-time affine systems is first undertaken to solve the HJB 

equation online. Using an initial stabilizing control, an OLA is tuned online to learn the 

HJB equation. Then, a second OLA is utilized that minimizes the cost (HJB) function 

based on the information provided by the first OLA.  For the regulation problem, 

knowledge of the internal system dynamics is not required while the control coefficient 

matrix alone is needed.  In addition, this novel DDP approach is extended to the optimal 

tracking control of affine nonlinear discrete-time systems when the internal dynamics of 

the system are unknown using OLA’s. The proposed tracking controller utilized three 

OLAs- one for approximating the cost function, a second for generating a feedback 

portion of the control input whereas a third OLA is used for approximating the 

feedforward part of the control input.  It is useful to observe that for both linear and 

nonlinear systems, the overall control input for the tracking problem normally contains a 

feedback term as well as a feedforward portion.  Since the internal dynamics are 

considered to be unknown in this work, the third OLA is required to estimate the 

feedforward portion of the control input. 
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 Novel online parameter tuning laws for the OLA’s are derived.  Further, 

Lyapunov theory is utilized to demonstrate the stability of the system while explicitly 

considering the approximation errors resulting from the use of the OLA’s in contrast to 

the other works [7], [8], [20].  The OLA’s considered in this work are NN’s although any 

nonlinear approximator such as radial basis functions, splines, polynomials, and linear in 

the tunable parameter (LIP) adaptive control technique can be utilized. 

 The near optimal control laws proposed in this work are obtained without 

linearizing the equations about the origin [16]-[17] and are accomplished using the 

infinite horizon cost function in contrast with [17].  Additionally, the knowledge of the 

internal system dynamics are not required in contrast to [7], [8], [16], [18] and [20], and 

the proposed approach is solved online and forward-in-time; thus, it does not require 

offline NN training as in [7], [8], and [20]. 

 This paper is organized as follows.  First, background information for the discrete 

time nonlinear optimal regulation problem is presented in Section II.  In Section III, the 

nearly optimal regulation control law is derived, and the stability is verified using 

Lyapunov theory.  The nearly optimal tracking control law is developed in Section IV 

and the stability of the proposed scheme is verified using Lyapunov theory.  Then, 

Section V illustrates the effectiveness of the proposed regulation and tracking schemes 

via numerical simulations, and Section VI provides concluding remarks. 

II. BACKGROUND 

 Consider the affine nonlinear discrete-time system in the absence of disturbances 

described by 
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)()()(
))(())(())(()1(

kukgkf
kxukxgkxfkx

+=
+=+     (1) 

where nkx ℜ∈)( , nkf ℜ∈)( , nxmkg ℜ∈)(  satisfies MF gkg ≤||)(|| where the Frobenius 

norm is applied, and mku ℜ∈)( is the control input.  Without loss of generality, assume 

that the system is observable and controllable, sufficiently smooth, drift free, with 0=x a 

unique equilibrium point on a compact set Ω .  Under these conditions, the optimal 

control input for the nonlinear system (1) can be calculated [2].  In order to control (1) in 

an optimal manner, select the control sequence )(ku that minimizes the infinite horizon 

cost function as [8] 

0 0
( ) ( ) ( ) ( 1) ( ) ( 1)

i i
J k r k i r k r k i r k J k

∞ ∞

= =

= + = + + + = + +∑ ∑     (2) 

for all )(kx , where )()())(()( kRukukxQkr T+=  with 0))(( >kxQ  and mxmR ℜ∈  is a 

symmetric positive definite matrix.  Further, it is required that the control policy 

)(ku guarantees that (2) is finite; or )(ku must be admissible. 

 Definition 1:  Admissible Control [7].  A control action )(ku is admissible with 

respect to the infinite horizon cost function (2) on a compact set Ω  provided the control 

action )(ku is continuous on a compact set Ω , the  control )(ku  stabilizes (1) on Ω with 

0)( 0)( ==kxku , and ))0((xJ is finite for all Ω∈)0(x . 

 The optimal control policy for (1) that minimizes (2) is found by applying the 

stationary condition [2] 

0
)1(
))1(()()(2

)(
))((

=
+∂
+∂
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∂

∂
kx
kxJkgkRu
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kxJ T  

and is shown to be [2] 
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kxJkgRku T .    (3) 

where )(ku∗ and )(•∗J are the optimal control policy and optimal cost function, 

respectively. 

 Even in the presence of known dynamics, the optimal control (3) is generally 

unavailable for nonlinear discrete time systems.  To circumvent this problem, several 

approaches [7]-[8] find (3) via offline iterative training while others [11]-[13] 

approximate (3) using online learning.  In the following section, a new approach to online 

optimal control is presented which guarantees the optimal control policy (3) for the 

nonlinear system (1) is found with small bounded error while ensuring the OLA 

parameter estimates remain bounded close to their target values using Lyapunov theory.  

The authors in [11]-[13] do not provide these guarantees. 

III. NEAR OPTIMAL REGULATION OF NONLINEAR SYSTEMS  

 The nearly optimal nonlinear regulator design entails two steps: an OLA designed 

to learn the HJB equation online and forward-in-time, and a second OLA designed to 

learn the control signal that minimizes the cost (HJB) function based on the information 

provided by the first OLA. Using the approximation property of OLA’s [1], the cost 

function (2), feedback and control policy (3) have OLA representations on a compact set 

expressed as 

c
T
c kxkxJ εσ +Φ= ))(())((   (4) 

and 

A
T
A kxkxu εϑ +Φ= ))(())((   (5) 
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respectively, where cΦ and AΦ are the constant target OLA parameters, cε and Aε are the 

bounded approximation errors, and )(•σ and )(•ϑ are the vector activation functions for 

the cost and control signal OLA schemes, respectively.   

 The following assumptions which are common in OLA literature [1],[21] 

regarding the boundedness of the ideal OLA parameters are required. 

 Assumption 1.  The upper bounds for the ideal OLA parameters are taken as 

cMc Φ≤Φ  and AMFA Φ≤Φ  where cMΦ , AMΦ  are positive constants [1]. 

 Assumption 2.  The approximation errors are upper bounded as cMc εε ≤  and 

AMA εε ≤  where cMε  and AMε  are positive constants [1].   

 Assumption 3. The gradient of the approximation error is upper bounded as 

cMFc kx εε ′≤+∂∂ ))1(/(  where cMε ′ is also a positive constant [21].  

  To begin the optimal regulator design, the cost function will be approximated 

first. 

A. Cost Function Approximation for Optimal Regulator Design 

  The objective of the optimal control law is to stabilize the system (1) while 

minimizing the cost function (2).  The cost function (2) will be approximated by an OLA 

and written as 

)()(ˆ))(()(ˆ))((ˆ)(ˆ kkkxkkxJkJ T
c

T
c σσ Φ=Φ==       (6) 

where ˆ( )J k represents an approximated value of the original cost function )(kJ , cΦ̂  is the 

vector of actual parameter vector for the target OLA parameter vector, cΦ ,and 

:
1)}({)( Lkk lσσ =  is set of activation functions which are each chosen to be basis sets and 
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thus are linearly independent. The basis function should satisfy 0)( 0 =xσ for 

00 =x with nx ℜ∈0 . Selection of )(•σ  in this way ensures 0)0( =J can be satisfied 

[2]. 

 For convenience, define the error in the cost function as 

)1()(ˆ)()(ˆ)1()( −Φ−Φ+−= kkkkkrke T
c

T
cc σσ      (7) 

whose dynamics are given by 

( ))()1()1(ˆ)()1( kkkkrke T
cc σσ −++Φ+=+ .     (8) 

Next, we define an auxiliary cost error vector as 

)1(1)1()(ˆ)1()( jxT
cc kXkkYkE +ℜ∈−Φ+−=      (9) 

where  )]1(...)2()1([)1( jkrkrkrkY −−−−=−   and )](...)1()([)1( jkkkkX −Δ−ΔΔ=− σσσ  

with =Δ )(kσ )1()( −− kk σσ , N∈−<< 10 kj  and N being the set of natural real 

numbers.  It is useful to observe that (9) can be rewritten as 

)]|()1|()|([)( jkkekkekkekE cccc −−= L   where the notation )1|( −kkec  means 

the cost error )1( −kec  re-evaluated at time k  using the actual cost parameter 

matrix )(ˆ kT
cΦ .   The dynamics of the auxiliary vector (9) are formed similar to (8) and 

revealed to be 

)1(ˆ)()()1( +Φ+=+ kkXkYkE c
TTT

c .    (10) 

 Examining the error dynamics (10), it is observed that they closely resemble a 

nonlinear affine system with )1(ˆ +Φ kc  being the control input, and T( ) and X ( )TY k k   

being nonlinear vector fields. To proceed, the following technical results are needed. 
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 Definition 2: Linear Independent Functions [14].  A set of functions 

:
1)}({)( Lkk lσσ =  is said to be linearly independent if 0)(

1
=∑ =

L xc
l llσ implies 

that 01 === Lcc L . 

 Lemma 1.  Let )(kμ be an admissible control such that 

)()()()1( kkgkfkx μ+=+ is asymptotically stable. If the set :
1)}({)( Lkk lσσ = is linearly 

independent, then the set Lkkk 1)}()1({)1( ll σσσ −+=+Δ  is also linearly independent. 

 Proof:   Consider the expression 

( )∑∞

=
−+=−∞

jk
kxkxjxx ))(())1(())(())(( σσσσ .    (11) 

Since, )(kμ is an admissible control 0)( =∞x , and thus, 0))(( =∞xσ  allowing (11) to be 

rewritten as 

( )∑∞

=
−+=−

jk
kxkxjx ))(())1(())(( σσσ .    (12) 

  Now, suppose that the Lemma 1 is not true.  Then there exists a nonzero constant 

vector LC ℜ∈1 such that 

( ) 0))(())1((1 ≡−+ kxkxCT σσ .   (13) 

From (12) and (13), we have ( ) 0))(())1(())(( 11 ≡−+=− ∑∞

= jk
TT kxkxCjxC σσσ which 

contradicts the hypothesis of linear independence of ))(( jxσ  so that 

Lkkk 1)}()1({)1( ll σσσ −+=+Δ must be linearly independent.         ■ 

 Now define the cost function OLA parameter update to be 

( ) ( ))()()()()()1(ˆ 1 kYkEkXkXkXk TT
cc

T
c −=+Φ

− α     (14) 
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where 10 << cα , and substituting (14) into (10) reveals 
 

)()1( kEkE T
cc

T
c α=+ .  (15) 

 Remark 1:  It is interesting to observe that the parameter update law (14) 

resembles the least squares update rule commonly used in offline ADP [7]-[8]; however, 

instead of summing over a mesh of training points [7]-[8], the update (14) represents a 

sum over the system’s time history stored in )(kEc .  Thus, the update (14) uses data 

collected in real time instead of data formed offline [7],[8].   

 Remark 2:  As a result of Lemma 1, the matrix )()( kXkX T is invertible 

provided 0)( ≠kx .  Observing the definition of the cost function (2) and OLA 

approximation (6), it is evident that both become zero only when 0)( =kx .  Thus, once 

the system states have converged to zero, the cost function approximation is no longer be 

updated.  This can be viewed as a persistency of excitation (PE) requirement for the 

inputs to the cost function OLA wherein the system states must be persistently exiting 

long enough for the OLA to learn the optimal cost function. 

 As a final step in the cost function OLA design, we define the parameter 

estimation error to be )(ˆ)(~ kk ccc Φ−Φ=Φ , and rewrite (2) using the ideal OLA 

representation (4) revealing )())(( kkx c
T
c εσ +Φ  )1())1(()( +++Φ+= kkxkr c

T
c εσ which 

can be rewritten as 

)())(()( kkxkr c
T
c εσ Δ−ΔΦ−=    (16) 

where )()1()( kkk ccc εεε −+=Δ .  Substituting (16) into (8)  as well as utilizing (7) and 

)()1( keke ccc α=+  from (15) yields 

)())1()(ˆ)1(())(()1(~ kkkkrkxk c
T
cc

T
c εσασ Δ−−ΔΦ+−−=Δ+Φ .   (17) 
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 In a similar manner as (16), we now form 

=− )1(kr )1())1(( −Δ−−ΔΦ− kkx c
T
c εσ  and substitute this expression into (17) 

revealing )()1()(~))1(()1(~))(( kkkkxkkx cccc
T

cc
T εεασασ Δ−−Δ+Φ−Δ=+ΦΔ ,  and 

the OLA parameter estimation error dynamics are revealed to be 

( )
( ) )).()1(())(())(())((

)(~))1(())(())(())(()1(~
1

1

kkkxkxkx
kkxkxkxkxk

ccc
T

c
TT

cc

εεασσσ
σσσσα

Δ−−ΔΔΔΔ+

Φ−ΔΔΔΔ=+Φ
−

−

  (18) 

 Next, the boundedness of the cost function error (7) and OLA estimation error 

(18) is demonstrated, but first, the following definition is needed. 

 Definition 3 [1]:  An equilibrium point ex is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set ∗ℜ⊂ nS so that for all initial states 

Sx ∈0 there exists a bound B and a time ),( oxBT  such that Bxkx e ≤−)( for all 

Tkk +≥ 0 . 

 Theorem 1: (Boundedness of the Cost OLA Errors).  Let )(kμ be any admissible 

control for the controllable system (1), and let the cost OLA parameter update law be 

given by (14). Then, there exists a positive constant, cα , such that the cost errors (7) and 

(18) are UUB  with bounds given by ecc bke ′≤)(  and cFc bk Φ′≤Φ )(~ . 

  Proof:  Consider the positive definite Lyapunov candidate 

)(~)(~)()( 2
min

2 kkkekV c
T
ccC ΦΦΔ+= σ     (19) 

where 2
minσΔ is a positive constant given by 2

min1))(())((1 σσσ Δ≤ΔΔ kxkxT .  The 

existence of 02
min >Δσ  is ensured by the PE condition described in Remark 2.  The first 
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difference of (19) is given by −−Φ+ΦΔ++=Δ 22
min

2 )()(~)1(~)1()( kekkkekV cc
T
ccC σ  

)(~)(~2
min kk c

T
c ΦΦΔσ , and using (18) and the fact )()1( keke ccc α=+  from (15) yields 

( )( )
( ) ( )( ))1()()(~))1(())(())((

)1()()(~))1((
)(~)(~)()1()(

1

2
min

2
min

22

−Δ+Δ−Φ−ΔΔΔ

×−Δ+Δ−Φ−ΔΔ+

ΦΦΔ−−−=Δ

− kkkkxkxkx
kkkkx

kkkekV

cccc
T

c
T

T
cccc

T
c

c
T
cccC

εαεσασσ
εαεσασ

σα
 (20) 

Since )(kμ  is admissible, then )(kx is asymptotically stable, and there exists a computable 

positive constant MσΔ  such that Mkx σσ Δ≤−Δ ))1(( .  Then, (20) is rewritten as 

( ) 222222
min

22 )1(8)(~2)()1()( cMcFcMcccC kkekV εασασα ++ΦΔ−Δ−−−≤Δ ,   (21) 

and selecting 

 )}2/(,1min{ 22
min

2
Mc σσα ΔΔ< ,    (22) 

the first two terms of (21) are less than zero.  Further, )(kVCΔ  is less than zero provided 

the gain is selected according to (22) and the following inequalities hold 

ec
c

cMc
c bke ′≡

−
+

> 2

22

)1(
)1(8)(

α
εα   or  c

Mc

cMc
Fc bk Φ′≡

Δ−Δ
+

>Φ 222
min

22

2
)1(8)(~

σασ
εα . 

 Thus, using standard Lyapunov theory [1], it can be concluded that )(kVCΔ is less 

than zero outside of a compact set rendering the cost error and cost OLA parameter 

estimation errors are UUB.                   ■ 

  Next, the optimal control signal estimation scheme is presented for the optimal 

regulator. 
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B. Estimation of the Optimal Feedback Control Signal 

 The objective of this section is to find the control policy which minimizes the 

approximated cost function (6).  To begin the development of the feedback control 

policy, we define the OLA approximation of (5) to be 

))(()(ˆ))((ˆ)(ˆ kxkkxuku T
A ϑΦ==    (23) 

where )(ˆ kAΦ is the estimated value of the ideal parameter matrix AΦ  and )(•ϑ denotes 

the basis function. 

   Next, the optimal control signal error is defined to be the difference between the 

feedback control applied to (1) and the control signal that minimizes the estimated cost 

function (6), which is denoted as  

)(ˆ
)1(
))1(()(

2
1))(()(ˆ)( 1 k

kx
kxkgRkxkke c

TT
Aa Φ

+∂
+∂

+Φ= − σϑ     (24) 

and 

)1(ˆ
)2(
))2((

2
)1())1(()1(ˆ)1(

1

+Φ
+∂
+∂+

+++Φ=+
−

k
kx
kxkgRkxkke c

T
T
Aa

σϑ .     (25) 

 Similar to (10), the control signal error dynamics resemble a nonlinear affine 

system controlled through )1(ˆ +Φ kT
A .  Thus, the control OLA parameter update is defined 

to be 

1)()(
)()(

)(ˆ)1(ˆ
+

−Φ=+Φ
kk

kek
kk T

T
a

aAA ϑϑ
ϑ

α     (26)  

where 10 << aα is a small positive design parameter.  Substituting the parameter update 

(24) into (25) yields 
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).1(ˆ
)2(
))2((

2
)1(

))1(()(ˆ
1)()(
))1(()()()1(

1

+Φ
+∂
+∂+

+

+Φ+
+
+

−=+

−

k
kx
kxkgR

kxk
kk
kxkkeke

c

T

T
AT

T

aaa

σ

ϑ
ϑϑ

ϑϑα
    (27) 

Since the control policy ))(( kxu in (5) minimizes the cost function (4), from (3) we can 

write 

.
)2(
))2(()1(

2
1

))1(
)2(
)2()1(

2
1)1(0

1

1

c
T

T
A

cT
A

kx
kxkgR

k
kx
kkgRk

Φ
+∂
+∂

++

+Φ+
+∂
+∂

+++=

−

−

σ

ϑεε
   (28) 

Subtracting (28) from (27) along with defining the control OLA parameter estimation 

error as =Φ )(~ kA  )(ˆ kAA Φ−Φ  while recalling )1(ˆ)1(~ +Φ−Φ=+Φ kk ccc yields 

)).1(()(~)1(~
)2(
))2((

2
)1(

)2(
)2(

)1(
2
1

)1(
1)()(
))1(()()()1(

1
1 +Φ−+Φ

+∂
+∂+

−
+∂
+∂

+−

+−
+
+

−=+

−
− kxkk

kx
kxkgR

kx
k

kgR

k
kk
kxkkeke

T
Ac

T
cT

AT

T

aaa

ϑσε

ε
ϑϑ

ϑϑα
   (29) 

As a final step, we form the parameter estimation error dynamics as 

1)()(
)()(

)(~)1(~
+

+Φ=+Φ
kk

kek
kk T

T
a

aAA ϑϑ
ϑ

α .    (30) 

 Remark 3:  To calculate the control signal error (24) and implement the OLA 

parameter update (26), knowledge of the input transformation matrix )(kg is required.  

However, the internal dynamics )(kf is not required for the cost or control signal OLA 

schemes. 

 In the following theorem, it will be shown that by starting with an initial 

stabilizing control, the control OLA update (26) ensures all future control inputs are also 

admissible. 
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 Theorem 2: (Admissibility).  Let )(0 ku be an initial admissible control input for 

the controllable system (1). Then, there exists a positive constant aα such that the control 

OLA parameter update (26) renders that the future control sequence provides stabilizing 

policies for the nonlinear system (1). 

 Proof:  Suppose 0AΦ is a constant OLA parameter matrix such that  

))(()( 0000 kxku T
A ϑΦ= is an initial stabilizing control policy starting at time 0k , and let 

)(ˆ
00 kcΦ be the corresponding cost function OLA estimate.  Using the control OLA 

update law (26), the control input at the next time 10 +k  can be written as 

)())1())1(()1(ˆ)1( 0000001 kukukxkku a
T
A Δ−+=++Φ=+ αϑ      (31) 

with )1)()(())1(()())(ˆ)(()( 00000000 ++−=Δ ∗ kkkxkkukuku TT ϑϑϑϑ , ))1(())1( 0000 +Φ=+ kxku T
A ϑ , 

=∗ )(ˆ0 ku  2/)1(ˆ)( 00
1 +∇− − kJkgR T  , and )(ˆ))1())1((()1(ˆ

00000 kkxkxkJ cΦ+∂+∂=+∇ σ .  

Observe that )(ˆ0 ku∗ is bounded as a result of Theorem 1.  Next, we evaluate the cost 

function (2) at time 10 +k  using the stabilizing policy, )1( 00 +ku , and then using 

improved policy (31) where )(0 •J  will denote the cost function corresponding to )(0 •u  

and )(1 •J  denotes the cost function corresponding to )(1 •u , respectively.  First, using 

)( 00 ku , we observe 

)2()1()1())1(()1( 000000000 ++++++=+ kJkRukukxQkJ T .    (32) 

Next, using the policy update (31), the cost function (2) is 

)2()1()1()1()1()2()1()1( 0101010000000001 +++++++−+−+=+ kJkRukukRukukJkJkJ TT .  (33) 

Now, we manipulate (33) and use (31) to get ++−+=+−+ )1()2()1()2( 00000101 kJkJkJkJ  
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))()1(())()1(()1()1( 0000000000 kukuRkukukRuku a
T

a
T Δ−+Δ−+−++ αα , and substituting 

(32) yields 

))(()1(2)()(
)1()1())1(()1(

00000
2

0000001

kuRkukuRku
kRukukxQkJ

a
TT

a

T

Δ++ΔΔ−
++−+−=+Δ

αα
.    (34) 

where )1()2()1( 010101 +−+=+Δ kJkJkJ .  Finally, taking the upper bound of (34) and 

observing ≤Δ+ ))(()1(2 000 kuRku a
T α  )()()1()1( 00

2
0000 kuRkukRuku T

a
T ΔΔ+++ α  yields 

))1(()1( 001 +−≤+Δ kxQkJ ,   (35) 

and it can be concluded that 0)1( 01 <+Δ kJ .  Thus, )1( 01 +ku is a stabilizing control.  

Now, repeating the process (31)-(35) by starting with the stabilizing control 

)1( 01 +ku reveals that )2( 02 +ku  is also stabilizing, and by continuing in this way, it can 

be shown that each subsequent control policy is stabilizing for the nonlinear system (1). ■ 

 The results of Theorem 2 conclude that by starting with a stabilizing control 

policy, each subsequent control policy is also stabilizing.  Next the following corollary 

can be stated. 

 Corollary 1: (Boundedness of OLA Basis Functions).  Let )(kμ be an admissible 

control for the controllable system (1). Then, there exists a positive constant 

)0(0 xx = such that )(0 kxx ≥  for all 0>k .  Moreover, there exists positive constants 

||)(|| 0xM ϑϑ =  and ||)(|| 0xM σσ =  such that ||))((|| kxM ϑϑ ≥  and ||))((|| kxM σσ ≥  for all 

0>k . 

 Proof:  Proof of Corollary 1 is straight forward using the positive define 

Lyapunov candidate ))(()(0 kxhxV =  whose first difference is given by 

))(())1(()(0 kxhkxhxV −+=Δ  while considering the separate cases of )())(( kxkxh = , 
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))(())(( kxkxh ϑ= , and ))(())(( kxkxh σ=  as well as recalling each control input is admissible 

(Theorem 2) and applying Definition 1.                ■ 

 A block diagram illustrating the proposed optimal regulation scheme is now 

presented in Fig. 1.  Next, the stability of the cost estimation error, control estimation 

error, and the OLA estimations errors are considered. 

 

 

 

Fig. 1. Near optimal regulator block diagram. 

 

 

C. Convergence Proof 

 In this section, it will be shown that the cost error (7), control error (24), as well 

as the OLA parameter estimation errors are UUB.  Additionally, it will be shown that the 

estimated control input (23) approaches the optimal control signal with small bounded 
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error which is function of the OLA reconstruction errors cε and Aε .  If the OLA 

approximation errors are considered to be negligible [7]-[8], the estimated control policy 

approaches the optimal control asymptotically. 

 Theorem 3:  (Convergence of the Optimal Control Signal).  Let )(0 ku be any 

initial admissible control policy for the nonlinear controllable system (1).  Let the OLA 

parameter tuning for the cost estimator and the control input estimator be provided by 

(14) and (26), respectively.  Then, there exists positive constants cα  and aα  such that the 

cost error (7) and control error (24) along with the cost and control signal OLA parameter 

estimates are all UUB for all Tkk +≥ 0  with bounds given by ,)( ecc bke ≤  

,)(~
c

T
c bk Φ≤Φ ,)( eaa bke ≤ AA bk Ξ≤Ξ )(  for computable positive constants eab , ecb , cbΦ ,  

and AbΞ , respectively.  Further, the system (1) is regulated in a near optimal manner.  

That is, ruu ε≤− ∗ˆ for a small positive constant rε . 

 Proof:  Consider the following positive definite Lyapunov candidate 

)()()( kVkVkV ACAC +=   (36) 

where )(kVC is given by (19) and 

)}(~)(~{5)()(
1

)( 22
min2

2
min2 kktrkekekV A

T
AcA

T
A

M
caA ΦΦΔ+

+
Δ

= ασ
ϑ

σαα .       (37) 

The first difference of (36) is given by +Δ=Δ )()( kVkV CAC )(kVAΔ , and )(kVCΔ  is 

given by (21).  Next, taking the first difference of (37), substituting the control error 

dynamics (29), control OLA parameter estimation error dynamics (30), and applying the 

Cauchy-Schwartz (C-S) inequality yields 
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kx
kxk

kx
kkgRkg
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T
a

T
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c
T
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T
c

M
ca

cT
T

c

M
ca

T
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T
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a
T
aT

T

M
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ϑσαα

ϑ
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ϑϑ
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σσ
ϑ
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εε
ϑ

σαα

ϑϑεεϑσαα
ϑϑ

ϑϑ
ϑ

σαα

   (38) 

   Next, using a similar relationship as the one derived in (29) we rewrite the control 

error (24) as  

.
)1(
)1()(

2
1

)()(~
)1(
))1(()(

2
1))(()(~)(

1

1

+∂
+∂

−

−Φ
+∂
+∂

−Φ−=

−

−

kx
kkgR

kk
kx
kxkgRkxkke

cT

Ac
TT

Aa

ε

εσϑ
   (39) 

Then, substituting (39) into the last term of (38), using )1(~ +Φ kc from (18), and defining 

)(~)( kk T
AA ϑΦ=Ξ  allows (38) to be rewritten as 
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where 22 ))1()(( −Δ+Δ= kk cccc εαεε , 22
cMc εε ≤  for a positive constant 2

cMε , and Mσ ′ is a 

positive constant  such that ||))((|| kxM σσ ∇≥′ .  Now combining (21) and (40) reveals 

2
2
min

2

22
min

2222

)(
1)()(2

5
)(5)(~)()1(),()(

k
kk

kekkekV

AT
ca

aca
T
ccccAAC

ΞΩ
+

Δ
−

ΛΔ−ΦΠ−−−≤Δ

ϑϑ
σαα

σαααεεη
   (41) 

where 
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⎠
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⎜
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⎛ ′+′
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⎟
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. 

 It is observed that the last four terms of (41) are less than zero provided the design 

parameters are selected according to 

( )max
2 ,1min0 Cc Α<< α ,   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′+
++++−

<<
−

1,
2

1,
2

5/4)1()1(
min0 1

222

FMcMAM

MM
a Rgεε

ϑϑ
α         (43) 

where )2()4( 2
max AACBBC ++=Α , 22122 2)1)()((2)5( M

T
FMMa kkRgB σϑϑσα Δ++′= −   
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221222
min )1(2)5( MFMMa RgA σϑσα Δ+Δ= − and 2

minσΔ=C .  Finally, it is observed that 

(41) is less than zero provided the design parameters are selected according to (43) and 

the following inequalities hold 

.

1)()(2
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),()(or
5

),()(

or),()(~or
)1(
),()(
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min

22
min

2
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T
ca
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ca
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kk

kbke

bkbke

Ξ

Φ
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Ω

+
Δ

≥Ξ≡
ΛΔ

≥

≡
Π

≥Φ≡
−

≥

ϑϑ
σαα
εεη

σαα
εεη

εεη
α
εεη

  (44) 

  Thus, using standard Lyapunov extensions [1], it can be concluded 

that )(kVACΔ is less than zero outside of a compact set revealing the cost and control 

errors as well as the cost and control OLA parameter estimates to be UUB.  To 

show ruu ε≤− ∗ˆ , use (5) and (23) to observe =− ∗uku )(ˆ  A
T
A kxk εϑ −Φ− ))(()(~ .  Then, 

taking the limit as ∞→k  and taking the upper bound of ∗− uku )(ˆ shows 

rAMAAMA bkuku εεε ≡+≤+Ξ≤− Ξ
∗ )()(ˆ      (45) 

where AbΞ is defined in (44).                   ■ 

 Remark 4:  If the OLA approximation errors Aε  and cε  are considered to be 

negligible as in [7] and [8], it is clear that ),( cA εεη  in (44) and rε  in (45) both become 

zero.  For this scenario, it can be shown that the control and cost estimation errors and the 

control and cost OLA parameter estimates converge to zero asymptotically. That is, 

∗→ uû . 

 Remark 5:  The results of Theorem 3 are drawn under the assumption of an initial 

admissible control, )(0 ku .  This assumption is required to ensure that the initial cost 

function evaluated at )0(x is finite.  That is, )(0 ku ensures ∞<))0((xJ .  
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IV. NEAR OPTIMAL TRACKING CONTROL OF NONLINEAR DISCRETE-TIME SYSTEMS WITH 
PARTIALLY UNKNOWN DYNAMICS 

 In the previous section, the optimal regulator design was addressed for affine 

nonlinear discrete-time systems. The optimal tracking control problem can be considered 

as an extension of the regulation problem consistent with the other works in the literature 

[2].  The objective for the infinite-time optimal tracking problem is to find the optimal 

control sequence, )(ku∗ , so as to make the nonlinear system in (1) to track a desired 

trajectory )(kxd in an optimal manner.  To achieve our objective, the infinite-horizon cost 

function (2) must be modified accordingly to ensure it remains finite.  To begin the 

development, define the dynamics of the desired trajectory as 

)()()(
)())(())(()1(

kukgkf
kukxgkxfkx

dd

ddd

+=
+=+    (46) 

where ))(( kxf d , or simply )(kfd  for convenience, is the internal dynamics of the 

nonlinear system (1) rewritten in terms of the desired state )(kxd , )(kg is the input 

transformation matrix presented in (1), and )(kud is the control input to the desired 

system.  Next, define the tracking error as 

)()()( kxkxke d−=   (47) 

By using (1) and (46), the tracking error dynamics of (47) are given by 

)()()(
)1()()()()1(

kukgkf
kxkukgkfke

ee

d

+=
+−+=+     (48) 

where )()()( kfkfkf de −= and 

)()()( kukuku de −= .  (49) 

 Considering )(kue as the control input for (48), it can be shown that )(kue is an 

admissible control policy with 0)( =ke  being an equilibrium point of (48).  To convert 
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the nonlinear tracking into a regulation problem, the infinite horizon cost function (2) is 

rewritten in terms of )(ke and )(kue as 

0 0
( ) ( ) ( ) ( 1) ( ) ( 1)e e e e e e

i i
J k r k i r k r k i r k J k

∞ ∞

= =

= + = + + + = + +∑ ∑     (50) 

where )()())(()( kuRkukeQkr ee
T

eee +=  with 0))(( >keQe  and mxm
eR ℜ∈  is positive 

definite.  Since )(kue  is admissible, (50) is finite.  The optimal control input that 

minimizes (50) is found by solving 0)(/)( =∂∂ kukJ ee as 

)1(
))1((

)(
2
1)( 1

+∂
+∂

−=
∗

−∗

ke
keJ

kgRku eT
ee    (51) 

or 

)1(
))1((

)(
2
1)()( 1

+∂
+∂

−=
∗

−∗

ke
keJ

kgRkuku eT
ed .    (52) 

 The feedforward control input )(kud  obtained from (46) is given by 

))()1(()()( 1 kfkxkgku ddd −+= − .   (53) 

  It is observed that the optimal tracking control input (52) consists of a 

predetermined feedforward term, )(kud , and an optimal feedback term that is a function 

of the gradient of the optimal cost function consistent with the linear control case [2].  

Additionally, implementation of the feedforward term requires knowledge of the internal 

dynamics )(kf and control coefficient matrix )(kg  . In this effort, the infinite horizon 

optimal tracking control problem is solved without the knowledge of )(kf . Additionally, 

in this section it is assumed that there exists a matrix mxnIkg ℜ∈)(  such that 

nxnI Ikgkg ℜ∈=)()( where I is the identity matrix.  Note that when mn = , 

1)()( −= kgkg I . 
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 Before proceeding, the following technical Lemma is needed. 

 Lemma 1:  Let )(kue be an admissible control policy for the controllable error 

system (48).  Then, the internal dynamics )(kf e  is bounded above satisfying  

22
min

2 )()2)((
2
1))((

2
)( kugRkeQkf eMeee −Γ+

Γ
≤ λ      (54) 

where )(/2 min
2

eM Rg λ>Γ  is a known positive constant with )(min eRλ  being the 

minimum eigenvalue of eR , and ))(( keQe is defined as in (50). 

 Proof:  Consider the positive definite Lyapunov candidate 

)()()()( kJkekekV e
T Γ+=    (55) 

where )(kJ e is the cost function (50).  The first difference of (55) is given by 

)1()1()( ++=Δ kekekV T  )()()( kJkeke e
T ΓΔ+− . Using (48) and (50) as well as 

applying the CS inequality, an upper bound for )(kVΔ is 

222
min

2 )()()2)(())(()(2)( kekugRkeQkfkV eMeee −−Γ−Γ−≤Δ λ   (56) 

Since )(kue is admissible, the tracking error system (48) is asymptotically stable 

and 0)( <Δ kV .  Then, applying this to (56), the bound in (54) results 

with 2)()( kekV −≤Δ  [22].                  ■ 

 Moving on, the proposed DDP design for tracking entails three portions: a 

feedback system that is designed to produce a nearly optimal portion of the control 

signal, a HJB function estimator which evaluates the performance of the error system, 

and a feedforward design to produce the feedforward control input (52). Using the 

approximation property of OLA’s [1], the cost function (50), feedback control policy 



 
241

(51), and feedforward control policy (53) have OLA representations on a compact set 

expressed as 

ece
T
ce kekeJ εσ +Θ= ))(())((    (57) 

eAe
T
Ae kekeu εϑ +Θ= ))(())((    (58) 

and 

)))(()1(()()( 1
dd

T
ddd kxkxkgku εφ +Θ−+= −      (59) 

respectively, where cΘ , AΘ , and dΘ are the constant target OLA parameters, cε , Aε , 

and dε  are the bounded approximation errors, and c
e

lℜ∈•)(σ , a
e

lℜ∈•)(ϑ  and 

dlℜ∈•)(φ  are the bounded vector activation functions for the cost, feedback, and 

feedforward control networks, respectively [1]. 

 Next, the following assumptions which are common in OLA literature [1],[21] are 

stated regarding the boundedness of the OLA parameters for the tracking problem. 

   Assumption 4:  The upper bounds for the ideal OLA parameters are taken as 

cMc Θ≤Θ , AMFA Θ≤Θ , and dMFd Θ≤Θ  where cMΘ , AMΘ ,and dMΘ  are positive 

constants [1]. 

 Assumption 5: The approximation errors are considered to be bounded above such 

that ecMec εε ≤  , eAMeA εε ≤ , and dMd εε ≤ where ecMε , eAMε  and dMε  are positive 

constants [1].   

 Assumption 6:  Upper bounds for the basis functions are taken as eMe σσ ≤•)( ,  

eMe ϑϑ ≤•)( , and Mφφ ≤•)(  for known constants eMσ , eMϑ , and Mφ , respectively [1]. 
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 Assumption 7: The gradient of approximation errors and activation functions are 

considered to be bounded according to ecMFec ke εε ′≤+∂∂ ))1(/(  and 

deMFe σσ ≤•∂•∂ )(/()( , respectively, where ecMε ′  and deMσ  are also known positive 

constants consistent with the work of [21]. 

  To begin, the design of the HJB function approximator for the tracking problem 

will be considered first. 

A. Cost Function Approximator Design for Tracking 

  The objective of the optimal tracking control law is to stabilize the system (48) 

while minimizing the cost function (50).  This cost function will be approximated by an 

OLA as 

)()(ˆ))(()(ˆ))((ˆ)(ˆ kkkekkeJkJ e
T
ce

T
cee σσ Θ=Θ==      (60) 

where cΘ̂  is the approximation for the ideal parameters cΘ and :
1))}(({)( L

ee kek lσσ =  is 

set of activation functions selected to be linearly independent.  Similarly to the regulation 

case, the basis vector )(•eσ is selected to satisfy  0)( 0 =eeσ  for 00 =e  with ne ℜ∈0  

to facilitate 0)0( =eJ . 

  For convenience, we define the cost error to be 

)()(ˆ)1()(ˆ)()( kkkkkrke e
T
ce

T
ceec σσ Θ−+Θ+=       (61) 

  Next, we define an auxiliary cost error vector as 

)1(1)()(ˆ)()( jx
e

T
ceec kXkkYkE +ℜ∈Θ+=    (62) 

where  11)](...)1()([)( +ℜ∈−−= xj
eeee jkrkrkrkY   and 

1)]1(...)()1([)( +ℜ∈−+ΔΔ+Δ= xj
eeee

cjkkkkX lσσσ  with =+Δ )1(keσ )()1( kk ee σσ −+ , 
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N∈−<< 10 kj  and N  being the set of natural real numbers.  It is useful to observe that 

(62) can be rewritten as )]|()1|()|([)( jkkekkekkekE ecececec −−= L   where the 

notation )1|( −kkeec  means the cost error )1( −keec  re-evaluated at time k  using the 

actual cost parameter matrix )(ˆ kT
cΘ .   

 Remark 6:  Using a similar approach presented in Lemma 1, it can be shown 

that )1( +Δ keσ   is linearly independent if )(keσ  is linearly independent.  As a result, the 

matrix )(kX e is linearly independent provided 0)( ≠ke . Observing the definition of the 

cost function (50), and OLA approximation (60), it is evident that both become zero 

when 0)( =ke .  Thus, once the tracking error has converged to zero, the parameter matrix 

associated with the estimator that approximates the cost function can no longer be 

updated.  This can be viewed as a persistency of excitation (PE) requirement [1] for the 

inputs to the OLA that approximates the cost function.  That is, the tracking error states 

must be persistently exiting long enough for the cost function and optimal control policy 

to be obtained.  Further, the persistency of excitation condition ensures the existence of a 

nonzero lower bound )(kXX eeMin ≤ . 

 Moving on, define the OLA parameter update law as 

T
ceeccc EXk α−Θ=+Θ ˆ)1(ˆ   (63) 

where 10 << ecα is a small positive design parameter. 

 Remark 7:  In the previous section, the auxiliary cost error (10) was considered to 

be a dynamical system whereas the auxiliary cost error (62) is not given dynamics in this 

section.  Additionally, it is observed that the cost OLA parameter update law (14) used in 

the regulation problem is quite different than the cost OLA update utilized for tracking in 
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(63).  The reason for these differences can be linked to the added uncertainty introduced 

by approximating the feedforward term in (52) for tracking.  The added complexities 

introduced in the stability analysis due to the added uncertainty does not yield a compact 

set for which a suitable Lyapunov candidate is less than zero when considering the 

auxiliary cost error dynamics (62) in the form of (10).  However, the theoretical results of 

this section will prove that the cost error (62) remains bounded for all time. 

 To obtain the OLA parameter estimation error dynamics, rewrite (50) using the 

target OLA representation (57) as 

)1())1(()()())(( +++Θ+=+Θ kkekrkke ece
T
ceec

T
c εσεσ     (64) 

Rearranging (64) renders 

)())1(()( kkekr ece
T
ce εσ Δ−+ΔΘ−=     (65) 

where )()1()( kkk ececec εεε −+=Δ .  Substituting (65) into (61) results in 

 )())1(()(~)( kkekke c
T
cc εσ Δ−+ΔΘ−=     (66) 

where )(ˆ)(~ kk ccc Θ−Θ=Θ  is the cost parameter estimation error. Similarly, (62) can be 

rewritten as 

)()(~)( kXkkE ce
T
cc Ψ−Θ−=    (67) 

where )]()1()([)( jkkkk ecececc −Δ−ΔΔ=Ψ εεε K  and 22)( cMc k Ψ≤Ψ .   Now, 

observing =+Θ )1(~ kc  )1(ˆ +Θ−Θ kcc  and using (63) and (67) results in the OLA 

parameter estimation error dynamics to be expressed as 

( ) )()(~)()1(~ kXkkXXIk T
ceecc

T
eeecc Ψ−Θ−=+Θ αα      (68) 

where I is the identity matrix of appropriate dimension. 
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 The following theorem demonstrates the stability of the OLA cost function 

approximator given a fixed admissible control policy, )(0 kue .  

 Theorem 4 (Cost Function OLA Stability):  Let )(0 kue be any initial admissible 

control input for the system (48), and let the parameter tuning for the cost function OLA 

be provided by (63).  Then, there exists a positive constant ecα such that the OLA 

parameter estimation error for the cost function approximator is UUB for all 

time Tkk +≥ 0 with bounds given by ( )42222 2/)2()(~
eMeceMincMcMeMec

T
c XXXk αα −Φ+Ψ≤Θ where 

eMFeeMin XkXX ≤≤ )( with eMinX  and eMX  are known positive constants given by 

Remark 6 and Assumption 6, respectively. 

 Proof:  Consider the positive definite Lyapunov candidate 

)}(~)(~{1)( kktrkV c
T
c

ec
ec ΘΘ=

α
   (69) 

whose first difference is given by 

 )})(~)(~{)}1(~)1(~{(1)( kktrkktrkV c
T
cc

T
c

ec
ec ΘΘ−+Θ+Θ=Δ

α
.     (70) 

 Substituting the closed-loop estimation error dynamics (68) into (70) and applying 

some manipulations reveals 

))}()(~)((~{2

))}()(~())()(~{(1)(

kXkXXktr

kXkXXkXkXXtrkV

T
cec

T
ee

T
c

T
ceecc

T
eeec

TT
ceecc

T
eeec

ec
ec

Ψ+ΘΘ−

Ψ+ΘΨ+Θ=Δ αααα
α   (71) 

Next, applying the CS inequality renders 

2222

2

4
2 2)(~21)( cMcMeMecc

eMin

eM
eceMinec Xk

X
X

XkV Ψ+Ψ+Θ⎟
⎠

⎞
⎜
⎝

⎛
−−≤Δ αα .     (72) 

Examining (72), it can be concluded that 0)( <Δ kVec  provided )2/( 42
eMeMinec XX<α  and 
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( )42222 2/)2()(~
eMeceMincMcMeMec

T
c XXXk αα −Ψ+Ψ>Θ . 

 It can be concluded using standard Lyapunov extension [1], that )(kVecΔ is less 

than zero outside of a compact set so that the cost estimation errors are UUB.     ■ 

  Remark 8: Examining the cost error written in (66), it is clear that the 

boundedness of the cost parameter estimation error ensures the boundedness of the cost 

error. Additionally, the results of Theorem 4, are drawn under the assumption that 

that )(0 kue is a fixed control policy.  This assumption will be relaxed in the following 

section. 

B. Feedback Control Signal Design for Tracking 

  The objective of this section is to find the feedback control policy that minimizes 

the approximated cost function (60).  To begin the development of the feedback control 

policy, define the OLA approximation of (58) as 

))(()(ˆ))((ˆ)(ˆ kekkeuku e
T
Aee ϑΘ==     (73) 

where )(ˆ kAΘ is the actual OLA parameters with AΘ  being the target, and the basis 

function )(•eϑ is the basis function.  Further, the PE condition described in Remark 6 also 

guarantees the existence of a nonzero lower bound )(keeMin ϑϑ ≤ . 

  Next, the feedback control signal error is defined to be the difference between the 

feedback control applied to the error system (48) and the control signal which minimizes 

the estimated cost function (60), which is denoted as 

)(ˆ
)1(

))1((
)(

2
1))(()(ˆ)( 1 k

ke
ke

kgRkekke c
eT

e
T
Aea Θ

+∂
+∂

+Θ= − σ
ϑ .    (74) 
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The feedback control parameter update is now defined to be 

)()()(ˆ)1(ˆ kekkk T
eaeeaAA ϑα−Θ=+Θ      (75)  

where 10 << eaα is a small positive design parameter.   

 The feedback control policy ))(( keue in (58) minimizes the cost function (57).  

Therefore, it can be deduced that 

c
eT

ee
T
A

ecT
eeA ke

kekgRk
ke
kkgRk Θ

+∂
+∂

+Θ+
+∂
+∂

+= −−

)1(
))1(()(

2
1))(

)1(
)1()(

2
1)(0 11 σϑεε .   (76) 

Subtracting (76) from (74) reveals 

eACc
eT

ee
T
Aa k

ke
kekgRkekke εσϑ −Θ
+∂

+∂
−Θ−= − )(~

)1(
))1(()(

2
1))(()(~)( 1     (77) 

where )(ˆ)(~ kk AAA Θ−Θ=Θ  is the feedback control parameter estimation error, )(~ kcΘ is 

the cost function parameter estimation error previously defined with += )(keAeAC εε  

2/))1()1()((1 +∂+∂− kekkgR ec
T

e ε  and eACMeAC εε ≤ . 

 As a final step, we observe that )1(ˆ)1(~ +Θ−Θ=+Θ kk aaa , and using (75) and 

(77), the feedback control parameter estimation error dynamics are found to be  

( )
T

c
eT

ee
a

T
eACeeaA

T
eeeaA

k
ke

kekgRk

kkkkIk

⎟
⎠
⎞

⎜
⎝
⎛ Θ

+∂
+∂

−

−Θ−=+Θ

− )(~
)1(

))1(()()(
2

)()(~)()()1(~

1 σϑα
εϑαϑϑα

    (78) 

where I is the identity matrix of appropriate dimension. 

 Next, the stability of the cost and feedback OLA system is presented. 

 Theorem 5:  (Cost and Feedback OLA Stability).  Let )(0 kue be any initial 

admissible control for the nonlinear system (48), and let the parameter tuning for the cost 

and feedback control OLA systems be provided by (63) and (75), respectively.  Then, 
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there exists positive constants ecα and eaα  such that the OLA parameter estimation errors 

)(~ kAΘ and )(~ kcΘ  are UUB for all Tkk +≥ 0  with bounds given by AA bk ≤Θ )(~  and 

C
T
c bk ≤Θ )(~  for computable positive constants Ab and Cb , respectively.  In addition, 

ueee uu ε≤− ∗ˆ  for a small positive constant ueε . 

 Proof:  Consider the positive definite Lyapunov candidate 

)()()( kVkVkV eceAeAC +=   (79) 

where 

 )}(~)(~{)( kktrkV A
T
A

ea

ec
eA ΘΘ=

α
α    (80) 

and )(kVec is defined in (69).  Taking the first difference of (79) gives 

)()()( kVkVkV eceAeAC Δ+Δ=Δ .  Now, considering )(kVeAΔ and using (78) yields 

.
)(

)1(
))1((

)(~)(
2

)()(~)()(

)(
)1(
))1((

)(~)(
2

)()(~)()(

)(
)1(
))1((

2
)(~)(

)()(~)()()(~2)(

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+∂
+∂

Θ++Θ

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+∂
+∂

Θ++Θ
+

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

+∂
+∂Θ

++ΘΘ−=Δ

−

−

−

T
e

T
eT

ce
eaT

eACeeaA
T
eeea

T
T

e

T
eT

ce
eaT

eACeeaA
T
eeea

ea

ec

T
e

T
e

T
ceT

ACeA
T
ee

T
AeceA

Rkg
ke
ke

kkkkkk

Rkg
ke
ke

kkkkkk
tr

Rkg
ke
kekk

kkkkktrkV

σ
ϑ

α
εϑαϑϑα

σ
ϑ

α
εϑαϑϑα

α
α

σϑ
εϑϑϑα

   (81) 

Next, applying the CS inequality to (81), we arrive at 

.)(~
2

1
2

3

3)(~3
2
1)(

222
212

2

222

2

4
2

eACMecdeMc
FeM

eM
ea

ec

eACMeMeaecA
eMin

eM
eaeMineceA

k
Rg

kkV

εασϑαα

εϑαα
ϑ
ϑαϑα

+Θ⎟
⎠
⎞

⎜
⎝
⎛ ++

+Θ⎟
⎠

⎞
⎜
⎝

⎛ −−≤Δ

−
   (82) 
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Now, combining (72) and (82) shows 

( )

22

212
24

2
2

2

2

4
2

)(~
2

1
2

321

,)(~3
2
1)(

k
Rg

X
X

X

kkV

cdeM
FeM

eM
ea

eM
eMin

ec
eMin

eAeceA
eMin

eM
eaeMineceAC

Θ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++−−

+Θ⎟
⎠

⎞
⎜
⎝

⎛ −−≤Δ

−

σϑαα

εεη
ϑ
ϑαϑα

 (83) 

where ( ) 222222 32, eACMeMeaeceACMeccMcMeMeceAece X εϑααεααεεη ++Ψ+Ψ= .   The first difference of 

(79) is less than zero provided the tuning parameters are selected according 

to )6/( 42
eMeMinea ϑϑα < , ( ) )2/12/32/( 2212242

deMFeMeMeaeMeMinec RgXX σϑαα −++<  and the 

following inequalities hold: 

( )
A

eMin

eM
eaeMinec

eAece
A bk ≡

⎟
⎠
⎞

⎜
⎝
⎛ −

>Θ

2

4
2 3

2
1

,)(~

ϑ
ϑαϑα

εεη or ( )
C

deM
FeM

eM
ea

eM
eMin

ec
eMin

eAeceT
c b

Rg
X

X
X

k ≡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++−

>Θ
−

2

212
24

2
2

2
1

2
321

,)(~

σϑ
αα

εεη .  

 As a result, it can be concluded using standard Lyapunov extension [1], 

that )(kVeACΔ is less than zero outside a compact set so that the feedback control and cost 

parameter estimation errors are UUB.  To show ueee uu ε≤− ∗ˆ , observe  

)1(
)1()(

2
1)(~

)1(
)1()(

2
1)(ˆ 11

+∂
+∂

+Θ
+∂
+∂

+=− −−∗

ke
kkgRk

ke
kkgRkeuu ecT

ec
eT

eaee
εσ  

where (57)  and (74) were used.  Then, using (77), taking the limit as ∞→k  and the 

upper bound of ∗− ee uû  yields 

eAMeMFAee kuu εϑ +Θ≤− ∗ )(~ˆ    (84) 

or ueeAMeMAee buu εεϑ ≡+≤− ∗ˆ .               ■ 



 
250

C. Nearly Optimal Control Input 

 Recall that the optimal tracking control input (52) to the system (1) is comprised 

of an optimal feedback term and a predetermined feedforward term.  In the previous 

section, the nearly optimal feedback control law was developed.  To begin the 

development of the feedforward control input, define the OLA representation of (59) as 

)ˆ)1(()()(ˆ 1
d

T
ddd kxkgku φΘ−+= −    (85) 

where )(ˆ kdΘ is the approximation of the ideal OLA parameter matrix dΘ and dφ is a 

linearly independent basis vector.  As in the previous cases, it is assumed that there exists 

a nonzero lower bound such that ddMin φφ ≤ .  It is observed that this condition is easily 

met with proper selection of the basis function )( dd xφ since the desired trajectory dx is 

bounded.  Now, using (73) and (85), the estimate of the control input (52) is written as 

)(ˆ)(ˆ)( kukuku ed += ,    (86) 

and applying (86) to the nonlinear system (1) reveals ))(ˆ)(ˆ)(()()1( kukukgkfkx ed ++=+  

or 

))(ˆ)()(ˆ)()1( kukgkkfke ed
T
d +Θ−=+ φ .    (87) 

  Then, adding and subtracting )(kfd and )()( kukg e to (87) and recalling the OLA 

representations of )(kf d and )(kue  in (59) and (58), respectively, (87) is rewritten as 

Ad
T
Ad

T
dee kkkgkkukgkfke εϑφ +Θ−Θ++=+ )()(~)()(~)()()()1(     (88) 

where )(ˆ)(~ kk ddd Θ−Θ=Θ , AdAd kg εεε )(−= and AdMAd εε ≤ .  Select the tuning law 

for the feedforward estimator as 

T
edddd kukgkekk ))(ˆ)()1(()(ˆ)1(ˆ −++Θ=+Θ φα .     (89) 
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As a final step, we calculate the error dynamics of )(~ kdΘ as 

T
deddd

T
dddd kfkxkIk ))())((()(~)()1(~ εφαφφα +−Θ−=+Θ .   (90) 

  In the following section, the stability of the proposed scheme is investigated, but 

first, a block diagram of the proposed near optimal tracking controller design is presented 

in Fig. 2 where the cost, feedforward and feedback networks have been labeled 

accordingly. 

 

 

 
 

Fig. 2.  Near optimal tracking control block diagram. 
 
 

  

D. Convergence Proof 

 In this section, the convergence of tracking error (47) and the cost function, 

feedback control signal, and feedforward control signal OLA parameter estimation errors 
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is demonstrated in the following theorem while explicitly considering the OLA 

reconstruction errors ecε , eAε , and dε .   

 Theorem 6:  (System Stability).  Let )(0 kue be any initial admissible control for the 

nonlinear system (48).  Let the parameter tuning for the cost OLA and feedforward OLA 

be provided by (63) and (75), respectively, and let the tuning law for the feedforward 

estimator be given by (89).  Then, there exists positive constants ecα , eaα and Γ  such 

that the tracking error (47) and the OLA parameter estimation errors of the cost function, 

feedback and feedforward terms are all UUB for all Tkk +≥ 0 with bounds given 

by ebke ≤)( , 
Cc bk ′≤Θ )(~ , dd bk ≤Θ )(~ , and

AA bk ′≤Θ )(~  for computable positive constants 

eb , db , Cb′ . and Ab′  , respectively.  Further, the tracking error system (48) is regulated in a 

near optimal manner.  That is, uuu ε≤− ∗  for a small positive constant uε . 

 Proof:  Consider the positive definite Lyapunov candidate 

)()()()( kVkVkVkV edeACs ++=    (91) 

where )(kVeAC is defined in (79),  

)()42(5)()()( 2 kJkekekV edMd
T

eadece Γ++= φαααα     (92) 

and 

)}(~)(~{)( kktrkV d
T
d

d

ea
d ΘΘ=

α
α .   (93) 

 The first difference of (91) is given by )()()()( kVkVkVkV edeACs Δ+Δ+Δ=Δ . 

Considering first )})(~)(~{2}(~)(~{)(()( kktrkktrkV d
T
dd

T
ddead ΘΔΘ−ΘΔΘΔ=Δ αα , substituting 

(90) as well as applying the CS inequality yields 
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)21(2

)42()()(~21)(

22
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2
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dM
ddMinead kfkkV
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  (94) 

Next, considering −++=Δ )1()1()( kekekV T
eaecde ααα +)()( kekeT

eaecd ααα  

)()42(5 2 kJ edMd ΓΔ+ φα  and using the error dynamics (88) and cost function (50) renders 
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)(5)(~5
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   (95) 

Now, combining (83), (94), and (95) forming )(kVsΔ  reveals 
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where ( ) ( ) .5)21(2,,, 222
AdMeadecdMddMeaeAecedeAecs εαααφαεαεεηεεεη +++=  Combining 

like terms as well as applying the bounds of (54) results in the first difference of the 

Lyapunov function as 
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and the following inequalities hold 
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 Additionally, selecting the tuning gains according (97) ensures 0>Ξe .  Therefore, 

using standard Lyapunov extension [1], it can be concluded that )(kVsΔ is less than zero 
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outside of a compact set so that the tracking error (47) and the OLA parameter estimation 

errors of the cost function, feedback control signal, and feedforward control inputs are all 

UUB.  To show uuu ε≤− ∗ , we use (73), (85), (86) , (52), and (57) to observe  

∗−∗ −++Θ=− eedd
T
d uukguu ˆ)~()( 1 εφ .    (98) 

Then, using (84) and taking the limit as ∞→k  and the upper bound of (98) shows 
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 Remark 9:  If the OLA approximation errors eAε , ecε , and dε  become negligible 

[20], the term ),,( deceAs εεεη  becomes zero.  For this scenario, it can be shown that the 

tracking error and each OLA parameter estimation errors converge to zero 

asymptotically. That is, ∗→uu . 

 Remark 10:  The results of Theorem 6 are drawn under the assumption of an 

initial admissible control, )(0 kue .  This assumption is required to ensure that the initial 

cost function evaluated at )0(e is finite.  That is, )(0 kue  ensures ∞<))0((eJ e .  Further, 

once the OLA control input (86) is applied to the nonlinear system (1), OLA estimation 

errors are introduced into the closed loop system as observed in (88).  Thus, the tracking 

error vector must be considered in the Lyapunov candidate (91), and assumptions 

regarding the stability of the error system cannot be made a priori after the OLA control 

input is applied. 

 Remark 11:  In the development of the optimal regulation control problem, the 

OLA basis functions were not assumed to be bounded a priori whereas the assumption of 

bounded basis functions [1] was asserted during the design of the optimal tracking 



 
256

control law.  In the optimal regulator design in Section III, it was shown that by starting 

with an initial stabilizing control, all future control policies were also stabilizing, and 

thus, the OLA basis functions remained bounded.  In contrast, as stated above, 

assumptions regarding the stability of the tracking error system cannot be made a priori 

after the OLA control input is applied. As a result, bounds are placed on the OLA basis 

function [1]. 

V. SIMULATION RESULTS 

 To demonstrate the effectiveness of the online optimal controllers developed in 

this work, first the optimal regulator derived in Section III is considered.  The optimal 

regulation algorithm developed in this work is first implemented on a linear system since 

the results can be easily verified by solving the discrete-time algebraic Riccati equation 

(DARE).  Consider the linear system whose dynamics are given by 
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0
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 Using the quadratic cost function (2) with Q being the identity matrix and 1=R , 

the optimal control input is found by solving the DARE and revealed to be 

)(]2561.16239.0[)( kxku =∗  while the optimal cost function is found to be 

)((k)x2.0098x (k)1.5063x)( 21
2
1 kkJ +=∗  (k)3.7879x 2

2+ .  The initial stabilizing policy 

for the algorithm was selected to be )(]4.15.0[)(0 kxku =  while the basis functions for 

the critic were generated from a sixth order polynomial as 

},,,,,,{ 6
22

3
1

4
1

2
221

2
1 xxxxxxxx K    (99) 
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while the action network basis functions were generated based on the gradient of (99).  It 

is shown in [15] that the gradient of a linearly independent set is also linearly 

independent. The design parameters for the critic and action networks were selected 

as 610−=ca and 1.0=aa while the critic NN weights were set to zero at the beginning of 

the simulation.  The initial weights of the action network were chosen to reflect the initial 

stabilizing control. 

 The simulation was run for 240 time steps, and the final values of the critic and 

actor weights are  

0020.00014.00030.00025.0.0015.00082.07886.30097.25071.1[ˆ −−−=Φc   

      ]0002.00009.00003.00008.00000.00000.0 −−  
and 

0092.00095.00338.00589.02586.16208.0[ˆ −=Φ A  
]0054.0.0075.00050.00074.00049.0 −− . 

 
 Examining the final values for the NN adaptive critic weights, it is clear that they 

have successfully learned the optimal values with small bounded error as the results of 

Theorem 3 suggested.  Additionally, the difference between the optimal control law 

obtained from the DARE and the optimal control learned online is shown in Fig. 3 further 

demonstrating the effectiveness of the online optimal control scheme.  It is observed that 

the NN control law converges to the optimal value with small bounded error within the 

first 200 time steps as the theoretical conjectures of Theorem 3 suggest.  Finally, Fig. 4 

illustrates the system state trajectories for the initial stabilizing control and the improved 

final optimal control law. 

 Next, a nonlinear regulation example is examined. Consider a nonlinear system 

defined by 
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   Fig. 3 Action error.       Fig. 4 State trajectories. 
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 The design parameters, activation functions, and initial network weights were 

chosen similarly to the linear system example with the initial stabilizing control given by 

)(]24.14.0[)(0 kxku −= .  The simulation was ran for 375 time steps, and the time 

history of the critic and actor weights are shown in Fig. 5, and the action error (24) is 

shown in Fig. 6.  Examining Fig. 5, it is clear that all NN weights remain bounded while 

Fig. 6 illustrates the action error converges to a small bounded region around the origin 

consistent with Theorem 1. 

 As a comparison, the SDRE algorithm [18],[23] was implemented along with the 

offline training algorithm presented in [7].  For the SDRE implementation, the nonlinear 

system (100) was parameterized according to 
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and the discrete SDRE ))(([))(())(( kxPkxAkxP T= ×+− −1)))((())(( BkxPBRBkxP TT  

QkxAkxBP +))(())]((  was solved at each time step to render a suboptimal feedback 

control law [23]   

( ) )())(())(()))((())(( 1 kxkxAkxPBRBkxPBkxu TT −+−=  

with R=1 and Q=I and where complete knowledge of the internal dynamics ))(( kxA is 

required. 

  For the offline training algorithm presented in [7], the training set was generated 

from the region  ]5.0,5.0[1 −∈x  and ]5.0,5.0[2 −∈x  with a mesh size of 0.02 [7]. The control 

input from [7] is generated according to 

)])()(()()[(]2)()()([)( 212 xxfxJxJxgRxgxJxgku TT −∇+∇+∇−= ∗∗−∗∗   (101) 

where )(xJ ∗∇ and )(2 xJ ∗∇ are the gradient and Hessian of the cost function, respectively.  

Examining (101), the optimal control law obtained via offline training requires explicit 

knowledge of the internal dynamics )(xf  [7]. The initial stabilizing control policy and 

the basis functions for the critic network for the offline algorithm were taken to be the 

same as those used to implement the online algorithm of this work. 

 Fig. 7 shows the state trajectories when the final optimal control policies learned 

online, trained offline, and using the discrete SDRE solution, respectively, are applied to 

the nonlinear system (100), and from the plot, it is clear that the resulting state 

trajectories for the online learning and offline training solutions are identical.  However, 

the SDRE solution differs from online and offline HJB based solutions.  This result 

illustrates that although SDRE is an attractive alternative for nonlinear optimal control, 

the resulting control laws are still suboptimal even when the exact dynamics  are   known.  
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 Fig. 8 displays the difference between the final optimal control policy learned 

online and the final optimal control policy found via offline training [7].  Examining the 

plot, the difference between the two control policies is less than 0.015. 

 

 

            
           Fig. 5. Adaptive critic weights.                                  Fig. 6. Action error. 

 

 

 

 

         
           Fig. 7. State trajectories for the               Fig. 8. Difference between optimal   
                      nonlinear example.                                            controls. 
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 Next, the tracking problem is considered.  To demonstrate the effectiveness of the 

nearly optimal nonlinear tracking controller, the algorithm developed in Section IV was 

implemented on a differentially driven nonholonomic mobile robot whose discretized 

nonlinear system is described by [24] 

τ1))(()(
)(
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where ( )))(()())(())(( 1 kvFkvkvVMkvf +−= − , τ  is the control torque, 

)(kvR and )(kvL are the velocities of the right and left wheels of the robot, respectively, 

and T is the sampling time.  Further, M is the inertial matrix given by 
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 ))(( kvV is the nonlinear Coriolis forces matrix given by 
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)4/())()((0
23

23

bdmrkvkv
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and ))(( kvF is the nonlinear friction vector which will be modeled as 

T
LLRR kvkvsignkvkvsignkvF )]())((),())(([))(( 2211 βαβα ++=  

where αi, βi, i=1,2, are the coefficients of friction. In addition, the robot parameters 

considered in the simulation are the radius of the driving wheels, r, distance between the 

driving wheels, 2b, distance from the driving axle to the center of mass, d, mass of the 

platform without wheels, mc, mass of each wheel, mw, robot moment of inertia about the 

center of mass, Ic, moment of inertial of the wheel about its axle, Iω, and the moment of 

inertial of each wheel about its diameters, Im [24].  Note that m = mc + 2 mw .  The values 

ofthe above parameters used in the simulation are mr 15.0= , mb 5.0= , md 2.0= ,  
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kgmc 30= , kgmw 2= , 215 mkgIc ⋅= , 2005.0 mkgI ⋅=ω , 20025.0 mkgIm ⋅= , 1.01 =α , 

15.02 =α , 2.01 =β , and 2.02 =β .  The sampling time is taken as T=0.01 seconds. 

 The objective of the mobile robot is to track a virtual reference cart, and the 

desired wheel velocities are generated online according to [24]  
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where rv  and rω are the translational and angular velocities of the virtual reference cart, 

1k , 2k ,and 3k are positive design constants, and 1e , 2e , and 3e are the position tracking 

errors of the wheeled mobile robot as defined in [24].  For this test, the reference 

translational and angular velocities were taken as smvr /1=  and 

sradkTr /)2.0sin(5.0 πω = . 

 To implement the control scheme, two-layer NN’s are considered consisting of 

one layer of randomly assigned constant weights, Nv , in the first layer and one layer of 

tunable weights, NΘ , in the second layer.  A compromise is made here between tuning 

the number of layered weights with computational complexity. It has been shown that by 

randomly selecting the input layer weights Nv , the activation function forms a stochastic 

basis, and thus the approximation property holds for all inputs in a compact set [1].   

 Additionally, 10 hidden layer neurons were selected for both the cost function and 

feedback control OLA’s while 25 hidden layer neurons were selected in order to estimate 

the feedforward signal of the control input.  The activation function of the cost function 

OLA was selected as hyperbolic tangent squared in order to obtain an even linearly 

independent basis function.  Conversely, the gradient of the cost function activation 
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function was selected as the basis function of the feedback control signal OLA as a result 

of the relationship observed in (51).  Finally, radial basis functions were selected as 

activation functions for the feedforward control estimator. 

 The initial stabilizing control law was selected as 
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To establish a performance baseline, an initial simulation was performed using the 

control policy (103) while assuming knowledge of the internal system dynamics, and the 

cost associated with the initial control policy was found to be 5.48.  Subsequently, the 

simulation was performed again while assuming the knowledge of the internal dynamics 

were not available using the feedforward estimator of Section IV-C, and the cost 

associated with this case was found to be 5.61. 

  Next, the OLA optimal control scheme was tested. The control gains were 

selected as 1.0=ecα , 1.0=eaα  and 09.0=dα , and all tunable NN weights were 

initialized to zero.  The simulation was ran for 10 seconds (1000 time steps), and for the 

first 5 seconds, a disturbance with mean zero and variance 0.04 was added to the system 

in order to ensure the persistency of excitation condition holds.  Recall from Section IV 

that the cost and feedback control error signals become zero when the tracking error 

reaches zero. 

 The resulting robot trajectory is shown in Fig. 9.  From the trajectory, it is 

observed that the robot converges to the path of the virtual cart and maintains the desired 

course for the remainder of the test.  The time histories of both the cost function and 

feedback control signal parameter estimates are shown in Fig 10.  Examining the figure, 

it is clear that the parameter estimates converge to constant values and remain bounded 
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consistent with Theorem 6.  It is observed that the magnitude of the cost function NN 

weights are on the order of 410 ; however, the proceeding discussion and comparisons 

will illustrate that these values are consistent with the magnitude of the actual cost 

function being approximated. 

 The cost function and feedback control errors (61) and (74), respectively, are 

shown in Fig. 11.  Examining the plots, it is clear that both errors initially incur large 

values but then converge to a small bounded value near the origin. Additionally, the 

difference between the actual feedforward control term and the estimated feedforward 

term is shown in Fig. 12. Here, the estimation error is found to be small and bounded 

consistent with the theoretical results of Section IV-D. 

  

 

 

     Fig. 9.  Robot trajectory.                                   Fig. 10. OLA parameter estimates. 
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       Fig. 11. OLA feedback control and                 Fig. 12. OLA feedforward control 
                    cost errors.                                                        term estimation error. 
 

 

  Next, the final OLA parameter estimates were used to re-evaluate the system 

performance using the improved control ∗
eû .  The improved control was applied to the 

system when the internal dynamics were known and when they were unknown. These 

results as well as the results of the initial stabilizing control test are summarized in Table 

I.  Comparing the costs, it is clear that the OLA-based optimal control input is an 

improvement over the initial control policy both when df and when it is not. 

 

 
TABLE I.  COST VALUE COMPARISONS 

Control 
policy 

Cost with fd  
known 

Cost with fd  
unknown 

0eu  3.6451e5 3.3455e5 
∗
eû  3.0192e5 2.9168e5 
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VI. CONCLUSIONS 

  In this work, direct dynamic programming techniques were utilized to solve the 

Hamilton Jacobi-Bellman equation in real time for the optimal control of general affine 

nonlinear discrete-time systems using online approximators to address the regulation 

problem and the tracking control problem.  The internal dynamics of the system were 

considered to be unknown, and a novel nearly optimal control laws were developed using 

OLA’s.  Given an initial admissible control policy, OLA’s were utilized to learn the cost 

function and nearly optimal feedback control signal for both the regulation and tracking 

problems.  For the tracking problem, an additional OLA was utilized in the design of a 

desired feedforward portion of the control input to render a stable system.   All OLA 

parameters were tuned online using novel update laws, and Lyapunov techniques were 

used to demonstrate the stability of the proposed optimal control schemes. Simulation 

results were also provided to verify the theoretical conjectures. 
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6.  Optimal Control of Affine Nonlinear Continuous-time 
Systems using an Online Approximator1 

 
 

T. Dierks and S. Jagannathan 
 
 
Abstract—In this paper, a novel single online approximator (SOLA)-based scheme is 

designed to solve the optimal regulation and tracking control problems for affine nonlinear 

continuous-time systems with known dynamics.  The SOLA-based adaptive approach is 

designed to learn the infinite horizon continuous-time Hamilton-Jacobi-Bellman (HJB) 

equation, and the corresponding optimal control input that minimizes the HJB equation is 

calculated forward-in-time.  Subsequently, the SOLA architecture is extended to learn the 

Hamilton-Jacobi-Isaacs (HJI) equation commonly used in H∝ optimal control.  Novel 

parameter tuning algorithms are derived which not only ensures the optimal cost (HJB or 

HJI) function and control input are achieved, but also ensure the system states remain 

bounded during the online learning process.  Lyapunov techniques are used to show that all 

signals are uniformly ultimately bounded (UUB) and that the approximated control signals 

approach the optimal control inputs with small bounded error. In the absence of OLA 

reconstruction errors, asymptotic convergence to the optimal control is demonstrated.  

Simulation results are included to show the effectiveness of the approach. 

 
Index Terms— Online nonlinear optimal control; Single network adaptive critic; Hamilton-
Jacobi-Bellman; Hamilton-Jacobi-Isaacs; Tracking; Online approximators. 
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I. INTRODUCTION 

 The stabilization of nonlinear continuous-time systems has been considered by many 

researchers [1]-[3] using methods ranging from feedback linearization [1] to the use of 

online approximators (OLA’s) [2]-[3].  However, stability is typically the only consideration 

for the resulting control laws [1]-[3].  In many cases, it is desirable that the control law not 

only stabilizes the system, but also minimizes on a pre-defined cost function to achieve 

optimality. Traditionally, the optimal control of linear systems accompanied by quadratic 

cost functions can be attained by solving the well known Riccati equation [4].  However, the 

optimal control of nonlinear continuous time systems is a much more challenging task that 

often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation or the 

Hamilton-Jacobi-Isaacs (HJI) equation when H∝ optimal control is being considered.  

 To extend the results of linear optimal control theory to nonlinear systems, the state 

dependent Riccati equation (SDRE) [5] was proposed; however, the SDRE yields a sub-

optimal result in most cases [5].  In general, the HJB and HJI equations are more difficult to 

work with than Riccati equations because they involve solving nonlinear partial differential 

or difference equations [4].  To avoid finding exact solutions to the infinite horizon cost 

(HJB or HJI) functions, inverse optimal control [6], Markov decision processes [7]-[8], and 

receding horizon control [9] techniques have been applied for nonlinear systems.  

Alternatively, neural networks (NN’s) and dynamic programming  techniques [10]-[11] have 

been used to investigate both the discrete and continuous time nonlinear optimal regulation 

problems while attempting to solve the HJB or HJI equations [12]-[14]. However, in each 

case the optimal solutions are obtained offline and in an iterative manner, and the NN 

reconstruction errors are considered to be negligible.  In addition to NN’s, Taylor series 
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expansions and Galerkin approximation techniques have also been used to estimate the 

solution to the HJI equation [15]-[17].  

 On the other hand, the optimal tracking control problem has been considered in 

recent literature through linearization of the tracking error equations [18], model predictive 

control with a receding horizon [19], inverse optimal control [20], directly calculating the 

infinite horizon HJB equation via offline scheme [21], and online learning-based technique 

[22].   In [18], the authors consider the ∞H optimal tracking control by linearizing the error 

equations about the origin yielding a locally optimal control law.  To overcome linearization, 

the authors in [21] consider the HJB equation and employ similar techniques as [13] to find 

an offline solution to the optimal tracking control problem. 

 In contrast, several online approximator-based controller designs were presented in 

[10] and [22]-[25] to overcome the iterative offline training methodology and are often 

referred to as adaptive critic designs (ACD).  The central theme of several works in [10] is 

that the optimal control law and HJB function are approximated by online parametric 

structures, such as NN’s and forward-in-time. Although the techniques [10] are verified via 

numerical simulations, the approximation errors are not considered and mathematical proofs 

of convergence are not offered.  Recently, several online methods to solve the continuous 

and discrete time HJB and HJI equations were presented in [23]-[25]. In [23] and [24], 

online policy iterations based on adaptive control and Q-learning [26] are developed to solve 

the continuous HJB and discrete HJI problems, respectively.  Although, full knowledge of 

the system dynamics is not required, the methods [23]-[24] are only applicable to linear 

systems. 

   For affine nonlinear continuous-time systems, two policy iteration schemes using 

NN’s have been introduced in [25] for optimal control.  In each scheme, two NN’s, one 
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referred as critic for approximating the cost function and the second NN to approximate the 

optimal control signal and referred to as action NN, are considered to approximate the cost 

(HJB) function and the corresponding optimal control policy, respectively.  In the first 

scheme, discrete-time adaptation of the actor and critic structures is undertaken by training 

the cost approximator in discrete time intervals while the second algorithm tunes both the 

cost function network and the control policy approximator simultaneously in continuous 

time.  In addition, proof of convergence for both algorithms is demonstrated using Lyapunov 

methods. 

 In our previous work [22], a novel approach to the optimal regulation and tracking of 

nonlinear discrete-time affine systems was undertaken to solve the discrete-time HJB 

equation online and forward-in-time. Using an initial stabilizing control, an OLA was tuned 

online to learn the HJB equation while a second OLA was utilized that minimizes the cost 

(HJB) function based on the information provided by the first OLA.  Lyapunov methods 

were used to rigorously demonstrate that the approximated control signals approached the 

optimal control inputs with small bounded error. Also, in the absence of disturbances and 

OLA reconstruction errors, an optimal control was demonstrated.  On the other hand, a 

single network adaptive critic (SNAC) NN-based optimal control scheme was introduced for 

discrete time systems in [28].  However, the SNAC was trained offline, and proof of 

convergence for the NN implementation has not been shown in contrast with [22].   

 By contrast, in this work, affine nonlinear continuous-time systems are considered in 

the development of a novel single online approximator-based (SOLA) unified framework to 

learn both the HJB and HJI functions online and forward-in-time for the optimal regulation 

and tracking control problems in contrast with [22] and [25] where two OLA’s are utilized. 

First, using a single online approximator, the HJB equation is approximated online and 
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forward in time while the optimal control input is calculated using the parameters of the 

approximator.  Next, for the HJI problem, the SOLA design is extended to learn the HJI 

equation as well as the minimizing control input and maximizing disturbance term.   Novel 

online parameter tuning laws for the SOLA are derived that not only ensures the optimal cost 

(HJB or HJI) function, control inputs, and disturbance are achieved, but also ensure the 

system states remain bounded during the online learning process.  Lyapunov theory is 

utilized to demonstrate the stability of the system while explicitly considering the 

approximation errors resulting from the use of the OLA in contrast to the other works [12]-

[13], [10], and [21].  Further, the theoretical results in this work show that an initial 

stabilizing control is not required in contrast to [22] and [25] where an initial stabilizing 

control is necessary for stability.  In the absence of the reconstruction errors, asymptotic 

stability is demonstrated while achieving optimal control. The OLA’s considered in this 

work are NN’s although any nonlinear approximator such as radial basis functions, splines, 

polynomials, and linear in the tunable parameter (LIP) adaptive control technique can be 

utilized. 

 The near optimal control laws proposed in this work are obtained without linearizing 

the equations about the origin [18] and are accomplished using the infinite horizon cost 

function in contrast with [9].  Additionally, the proposed approach is solved online and 

forward-in-time using full knowledge of the system dynamics without the need of an initial 

stabilizing control while using a SOLA in contrast with [22] and [25] which requires an 

initial stabilizing control as well as two OLA’s.  In addition, to extend frameworks in [22] 

and [25] to learn the HJI equation, a third approximator appears to be required whereas the 

HJI problem solved in this work using only a single network.  The assumption on the 
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requirement of the dynamics of the continuous-time system can be relaxed by using an 

additional OLA [27] which will be relegated as part of future work. 

 To date, the authors are not aware of a continuous-time SOLA framework that 1) 

learns cost function and optimal control input online in the continuous time domain; 2) 

explicitly considers OLA approximation errors; 3) provides an explicit proof of convergence 

of the OLA parameters and stability of the system states; and 4) can be extended to solve the 

HJI optimal control.  This work will address these issues. 

 This paper is organized as follows.  First, background information for the continuous 

time nonlinear optimal HJB and HJI regulation problems are presented in Section II.  In 

Section III, the nearly optimal HJB regulation control law is derived, and the stability is 

verified using Lyapunov theory.  Subsequently, the SOLA framework is extended to learn 

the HJI function.  The nearly optimal tracking control law is developed in Section IV, and 

Section V illustrates the effectiveness of the proposed regulation and tracking schemes via 

numerical simulations.  Section VI provides concluding remarks.  

II. NONLINEAR OPTIMAL CONTROL IN CONTINUOUS TIME 

A. Hamilton-Jacobi-Bellman Equation 

 Consider the continuous nonlinear affine system in the absence of disturbances 

described by 

1)()( uxgxfx +=&                                                    (1) 

where nx ℜ∈ , nxf ℜ∈)( , nxmxg ℜ∈)(  is bounded satisfying maxmin ||)(|| gxgg F≤≤  where the 

Frobenius norm is applied, and mu ℜ∈1  is the control input.  Without loss of generality, 

assume that the system is observable and controllable, smooth and drift free, with 0=x  a 
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unique equilibrium point on a compact set nℜ∈Ω  with 0)0( =f .  Under these conditions, 

the optimal control input for the nonlinear system (1) can be calculated [4].  Additionally, the 

dynamics )(xf and )(xg are assumed to be known throughout the development of this work. 

 The infinite horizon HJB cost function for (1) is given by 

∫
∞

=
t

duxrtxV τττ ))(),(())(( 1                                            (2) 

where 111 )())(),(( RuuxQtutxr T+= , 0)( >xQ is the positive define penalty on the states, and 

mxmR ℜ∈ is a positive definite matrix.  Selecting the state penalty )(xQ to be positive definite 

ensures that variations in any direction of the state x affects the cost ))(( txV  which can be 

linked to the observability condition [4]. Moving on, the control input 1u is required to be 

selected such that the cost function (2) is finite; or 1u must be admissible [22].   

 Next, we define the Hamiltonian for the cost function (2) with an associated 

admissible control input 1u to be [4] 

))()()((),(),( 1uxgxfxVuxruxH T
x ++=        (3) 

where )(xVx is the gradient of the )(xV with respect to x .  It is well known that the optimal 

control input )(*1 xu that minimizes the cost function (2) also minimizes the Hamiltonian (3); 

therefore, the optimal control is found by solving the stationary condition 0/),( 11 =∂∂ uuxH  

and revealed to be [4] 

)()(
2
1)(* *1

1 xVxgRxu x
T−−= .                                         (4) 

Substituting the optimal control (4) into the Hamiltonian (3) while observing 

0)*,,( *
1 =xVuxH  reveals the HJB equation and the necessary and sufficient condition for 

optimal control to be [4] 
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)()()()(
4
1)()()(0 *1** xVxgRxgxVxfxVxQ x

TT
x

T
x

−−+=                   (5) 

with 0)0(* =V .  For linear systems, equation (5) yields the standard algebraic Riccati 

equation (ARE) [4]. 

 Before proceeding, the following technical lemma is required. 

 Lemma 1.  Given the nonlinear system (1) with associated cost function (2) and 

optimal control (4), let )(1 xJ be a continuously differentiable, radially unbounded Lyapunov 

candidate such that 0))()()(()()( *
1111 <+== uxgxfxJxxJxJ T

x
T
x && with )(1 xJ x being the partial 

derivate of )(1 xJ .   Moreover, let nxnxQ ℜ∈)( be a positive definite matrix satisfying 

0)( =xQ only if 0=x  and maxmin )( QxQQ ≤≤ for maxmin χχ ≤≤ x  for positive 

constants minQ , maxQ , minχ  and maxχ .  In addition, let )(xQ satisfy ∞=
∞→

)(lim xQ
x

as well as 

**)(*),()( 111
* RuuxQuxrJxQV T

x
T

x +== .                              (6) 

Then, the following relation holds 

x
T
x

T
x JxQJuxgxfJ 1111 )(*))()(( −=+ .                                     (7) 

 Proof:  When the optimal control (4) is applied to the nonlinear system (1), the cost 

function (2) becomes a Lyapunov function rendering 

**)(*))()()(()()( 111
*** RuuxQuxgxfxVxxVxV TT
x

T
x −−=+== &&      (8) 

from (5).  After manipulation and substitution of (6), equation (8) is rewritten as 

x

x
T

xx
T

xx

T
x

T
xx

JxQ
JxQVVVV

RuuxQVVVuxgxf

1

1
**1**

11
*1**

1

)(
)()(

*)*)(()(*))()((

−=
−=

+−=+
−

−

        (9) 

Now, multiply both sides of (9) by T
xJ1 yields the desired relationship in (7).                     ■ 
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 In [25], the closed loop dynamics *)()( 1uxgxf +  were required to satisfy a 

Lipschitz condition such that Kuxgxf ≤+ *)()( 1  for a constant K .   In contrast, the 

optimal closed loop dynamics are assumed to be upper bounded by a function of the system 

states in this work such that 

)(*)()( 1 xuxgxf δ≤+ .            (10) 

The generalized bound )(xδ is taken as 4
1

*)( xJKx ≡δ in this work where xJ1 can be 

selected to satisfy general bounds and *K is a constant.   For example, if xKx 1)( =δ , then 

it can be shown that selecting 5/)()( )2/5(
1 xxxJ T=  with TT

x xxxxJ )2/3(
1 )()( = satisfies the 

bound.  The assumption of a time varying upper bound in (10) is a less stringent assumption 

than the constant upper bound required in [25]. 

B. Hamilton-Jacobi-Isaacs Equation 

 Consider the nonlinear system (1) now in the presence of disturbances and rewritten 

as 

),(
)()()(

2

2

uxrz
dxkuxgxfx

=
++=&

                                           (11) 

where x , )(xf , and )(xg , are defined as in (1), 2u is the control input, nxwxk ℜ∈)(  is bounded 

according to MF kxk ≤)( ,  wd ℜ∈  is the disturbance, z is a penalty output, and ),( 2uxr  

similarly to ),( 1uxr .  Assumptions regarding the equilibrium point, controllability, and 

observability of system (11) are taken to be the same as those made for the nonlinear system 

(1) while the bounds on the optimal closed loop dynamics are taken similarly as (10).   

 The ∞H optimal control problem aims to not only minimize a cost function but also 

attenuate a worst-case disturbance [29].  Thus, the ∞H  optimal control problem is often 
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referred to as a two-player differential game where one player ( 2u ) tries to minimize the cost 

function while the other ( d ) tries to maximize it.  In [30], dissipativity [31] was employed to 

convert the ∞H optimal control problem into an L2-gain optimal control problem which 

requires solving the HJI equation. Therefore, the cost function for the HJI problem is defined 

as [14] 

( )∫
∞

−=
t

T
d dPdduxrtxV τττγττ )()())(),(())(( 2

2                   (12) 

where wxwP ℜ∈ is a constant positive definite matrix, 0>γ is a constant, and where 2u is 

required to be admissible.   

 The Hamiltonian for the HJI problem is written as [14] 

))()()()((),(),,( 2
2

22 dxkuxgxfxVPdduxrduxH T
dx

T
d +++−= γ   (13) 

where )(xVdx is the gradient of the )(xVd with respect to x .  Then, applying the stationary 

conditions 0/),,( 22 =∂∂ uduxH d  and 0/),,( 2 =∂∂ dduxH d reveals the optimal control and 

disturbance to be 

⎪
⎭

⎪
⎬

⎫

=

−=

−

−

)()(
2

1)(*

)()(
2
1)(*

*1
2

*1
2

xVxkPxd

xVxgRxu

dx
T

dx
T

γ

.                                             (14) 

Now, substituting (14) into (13) reveals the HJI equation as 

)()()()(
4
1)()()()(

4
1)()()(0 *1*

2
*1** xVxkPxkxVxVxgRxgxVxfxVxQ dx

TT
dxdx

TT
dx

T
dx

−− +−+=
γ

  (15) 

with 0)0(* =dV . For linear systems, equation (15) yields the game algebraic Riccati equation 

(GARE) [24].  Before proceeding, the following technical results are required. 

 Definition 1: 2L -Gain [30]. The nonlinear system (11) is said to have an 2L -gain less  
 

thanγ  if 
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∫∫∫ ≤=
T TTT

dPddduxrdz
0

2

0 20

2 )()())(),(()( τττγτττττ         (16) 

for all 0≥T .  

 Lemma 2 [30],[32]:  If the nonlinear system (11) with 0=d  is asymptotically stable 

and in addition has an 2L -gain less thanγ , and if the cost function (12) is smooth, then the 

closed loop dynamics 

)()()()()(1
2
1)( 11

2 xVxgRxgxkPxkxfx dx
TT ⎟
⎠
⎞

⎜
⎝
⎛ −+= −−

γ
&                        (17) 

are asymptotically stable. 

 In the next section, a SOLA-based optimal control scheme will be introduced. 

III. SINGLE ONLINE APPROXIMATOR-BASED OPTIMAL CONTROL SCHEME 

 Traditionally, adaptive critic based methodologies generate the optimal control using 

two OLAs [13], [22], [25].  In this work, the adaptive critic is realized using only one OLA 

and in an online fashion.  First, the SOLA-based scheme will be designed to learn the HJB 

cost function (2) and then extended to include the HJI function (4) for generating optimal 

control inputs (12) and (14) respectively. 

A. SOLA to Learn the HJB Function 

 To begin the development, we rewrite the cost function (2) using an OLA 

representation as  

)()()( xxxV T εφ +Θ=                                             (18) 

where Lℜ∈Θ is the constant target OLA vector, Lnx ℜ→ℜ:)(φ is a linearly independent 

basis vector which satisfies 0)0( =φ , and )(xε is the OLA reconstruction error.  The target 

OLA vector and reconstruction errors are assumed to be upper bounded according to 
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MΘ≤Θ  and Mx εε ≤)( , respectively [3].  In addition, it will be assumed that the gradient 

of the OLA reconstruction error with respect to x is upper bounded according to 

Mx xxx εεε ′≤∇=∂∂ )(/)(  [33]. The gradient of the OLA cost function (18) is written as 

)()()()( xxxV
x
xV

x
T
xx εφ ∇+Θ∇==

∂
∂ .                                (19) 

 Now, using (19), the optimal control (4) and HJB function (5) are rewritten as 

)()(
2
1)()(

2
1)(* 11

1 xxgRxxgRxu x
TT

x
T εφ ∇−Θ∇−= −−     (20) 

and 

0)()(
4
1)()()(),(* =+Θ∇∇Θ−∇Θ+=Θ HJB

T
xx

T
x

T xDxxfxxQxH εφφφ    (21) 

where 0)()( 1 >= − TxgRxgD  is bounded such that maxmin DDD ≤≤ for known constants 

minD  and maxD ,  and 

εεε

εεεφεε

x
T

x
T

x

x
TT

xx
T
x

TT
xHJB

Duxgxf

xgRxgxxgRxgxf

∇∇++∇=

∇∇+∇+Θ∇−∇= −−

4
1*))()((

)()(
4
1)))(()()(

2
1)(( 11

 

is the residual error due to the OLA reconstruction error.  Asserting the bounds for the 

optimal closed loop dynamics (10) along with the boundedness of )(xg and εx∇ , the residual 

error HJBε is bounded above on a compact set according to max
2)( Dx MMHJB εδεε ′+′≤ .  In 

addition, it has been shown [25] that by increasing the dimension of the basis vector )(xφ , 

the OLA reconstruction error decreases.   

 Moving on, the OLA estimate of (18) is now written as 

)(ˆ)(ˆ xxV TφΘ=                                                 (22) 
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where Θ̂ is the OLA estimate of the target parameter vectorΘ .  Similarly, the estimate of the 

optimal control (20) is written in terms of Θ̂as 

Θ∇−= − ˆ)()(
2
1)(ˆ 1

1 xxgRxu T
x

T φ .                                     (23) 

 In the development of this work, it will be shown that an initial stabilizing control is 

not required to implement the proposed SOLA-based scheme in contrast to [22] and [25] 

which require initial control policies to be stabilizing.  Moreover, Lyapunov theory will 

show that the estimated optimal control input (23) approaches the real optimal control input 

(4) with small bounded error.  As a result, the proposed online scheme is not required to 

provide an initially stabilizing control input whereas the proposed OLA parameter tuning 

law described next ensures that the system states remain bounded and that (23) will become 

admissible. 

 Now, using (22) and (23), the approximate Hamiltonian can be written as 

Θ∇∇Θ−∇Θ+=Θ ˆ)()(ˆ
4
1)()(ˆ)()ˆ,(ˆ xDxxfxxQxH T

xx
T

x
T φφφ .                      (24) 

 Remark 1: Observing the definition of the OLA approximation of the cost function 

(22) and the Hamiltonian function (24), it is evident that both become zero when 0=x .  

Thus, once the system states have converged to zero, the cost function approximation can no 

longer be updated.  This can be viewed as a persistency of excitation (PE) requirement for 

the inputs to the cost function OLA [25], [22].  That is, the system states must be persistently 

exiting long enough for the OLA to learn the optimal cost function. 

 Remark 2:  The control of unknown continuous-time nonlinear systems has been 

undertaken by many researchers using OLA’s [3] where objectives often include regulating 

the system states or tracking errors to zero while ensuring the OLA parameter estimates 
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remain bounded.  In contrast, the objective of the proposed online optimal control scheme is 

to drive the OLA parameter estimates toward their ideal values while ensuring the system 

states or tracking errors remain bounded.  Once the OLA parameter estimates have 

converged to their ideal values and the Hamiltonian (24) has converged to a small 

neighborhood around the origin, the requirement of 0>x can be removed and the system 

states are allowed to converge zero. 

 Recalling the HJB equation shown in (5), the OLA estimate Θ̂should be tuned to 

minimize )ˆ,(ˆ ΘxH .  However, tuning to minimize )ˆ,(ˆ ΘxH alone does not ensure the stability 

of the nonlinear system (1) during the OLA learning process.  Therefore, the proposed OLA 

tuning algorithm is designed to minimize (24) while considering the stability of (1) and 

written as 

)()()()(
2

)ˆ,(

ˆ)()(ˆ
4
1)()(ˆ)(

)1ˆˆ(
ˆˆ

1
12

1

21

xJxgRxgxux

xDxxfxxQ

x
T

x

T
xx

T
x

T
T

−∇Σ+

⎟
⎠
⎞

⎜
⎝
⎛ Θ∇∇Θ−∇Θ+

+
−=Θ

φ
α

φφφ
σσ
σα&

      (25) 

where 2/ˆ)()()(ˆ Θ∇∇−∇= xDxxf T
xxx φφφσ , 01 >α and 02 >α are design constants, )(1 xJ x is 

described in Lemma 1, and the operator )ˆ,( 1uxΣ is given by 

⎩⎨
⎧ <Θ∇−==Σ

−

otherwise    1
0)2/ˆ)()()()()(()(    if    0)ˆ,(

1T
1x

T
1x

1
xxgRxgxfxJxxJux

T
x

T φ& .          (26)  

 The first term in (25) is the portion of the tuning law which seeks to minimize (24) 

and was derived using a normalized gradient descent scheme with the auxiliary HJB error 

defined as 

2)ˆ,(ˆ
2
1

Θ= xHEHJB .                                                (27) 
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 Meanwhile, the second term in the OLA tuning law (25) is included to ensure the 

system states remain bounded while the SOLA scheme learns the optimal cost function.  The 

form of the operator shown in (26) was selected based on the Lyapunov’s sufficient 

condition for stability (i.e. if 0)(1 >xJ  and 0)()( 11 <= xxJxJ T
x && , then the states x are stable). 

 From the definition of the operator in (26), the second term in (25) is removed when the 

nonlinear system (1) exhibits stable behavior, and learning the HJB cost function becomes 

the primary objective of the OLA update (25).  In contrast, when the system (1) exhibits 

signs of instability (i.e. 0)(1 ≥xxJ T
x & ), the second term of (25) is activated and tunes the OLA 

parameter estimates until the nonlinear system (1) exhibits stable behavior.  This approach 

will be shown to render guaranteed performance in the following Lyapunov proof.  In 

addition, the numerical examples presented in Section V will illustrate that system stability is 

lost and the OLA fails to learn the cost function if the second term in (25) is removed while 

including the second term renders satisfactory performance. 

 Remark 3:  The first portion of the OLA tuning lawΘ&̂ in (25) utilizes 2)1ˆˆ( +σσ T  

instead of the traditional )1ˆˆ( +σσ T used for normalization.  This modification was also 

utilized in [25] for the critic update.  However, the update (25) is different from the critic 

update proposed in [25] since two networks were utilized in [25] whereas only one network 

is used in this work.    

 Remark 4:   For the case of 1)ˆ,( 1 =Σ ux , the update (25) is observed to have 

equilibrium points at 0)ˆ,(ˆ =ΘxH and 0)(1 =xJ x .  Thus, (25) is updated in order to minimize 

(27) as well as to drive the system states to zero (since 0)(1 =xJ x  only when 0=x ).  

However, the tuning law (25) cannot be implemented with 1)ˆ,( 1 =Σ ux for all time because it 
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would prevent the optimal cost function from being learned since the OLA would continue 

to update even after 0)ˆ,(ˆ =ΘxH .  In addition, if stability were the only objective of the 

controller design, the tuning law (25) could be rewritten as 2/)()()()(ˆ
1

1
2 xJxgRxgx x

T
x

−∇=Θ φα& , 

and the stability of the system states and parameter vector Θ̂  could be shown using 

Lyapunov theory.  For this case, the control law (23) would stabilize (1) but not in an 

optimal manner. 

 Moving on, we now form the dynamics of the OLA parameter estimation error 

Θ−Θ=Θ ˆ~ .  Observing HJB
T
xx

T
x

T xDxxfxxQ εφφφ −Θ∇∇Θ+∇Θ−= 4/)()()()()(  from (21), 

the approximate HJB equation (24) can be rewritten in terms of Θ~  as 

HJB

T
xx

T
T
xx

T
x

T xDxxDxxfxxH εφφφφφ −
Θ∇∇Θ

−Θ∇∇Θ+∇Θ−=Θ
4

~)()(~
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2
1)()(~)ˆ,(ˆ .   (28) 

 Next, observing Θ−=Θ && ˆ~ and 2/~)()()2/)((ˆ *
1 Θ∇∇+∇+∇= xDxDxx T

xxxx φφεφσ &  where 

*
1

*
1 )()( uxgxfx +=& , the error dynamics of (25) are written as 
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where )1ˆˆ( += σσρ T .  Next, the stability of the SOLA-based adaptive scheme for optimal 

control is examined along with the stability of the nonlinear system (1). First, the following 

definition is required.  

 Definition 2 [3]:  An equilibrium point ex is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set nS ℜ⊂ so that for all Sx ∈0 there exists a bound B and a 

time ),( oxBT  such that Bxtx e ≤−)( for all Ttt +≥ 0 . 
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 Theorem 1: (SOLA-based scheme convergence to the HJB function and System 

Stability).  Given the nonlinear system (1) with the target HJB equation (5), let the tuning 

law for the SOLA be given by (25).  Then, there exists computable positive constants Jxb  

and Θb  such that the OLA approximation error Θ~ and )(1 xJ x  are UUB for all Ttt +≥ 0 with 

ultimate bounds given Jxx bxJ ≤)(1  and Θ≤Θ b~ .  Further, under OLA reconstruction 

errors, 1
ˆ

rVV ε≤−∗  and 211 ˆ ruu ε≤−∗  for small positive constants 1rε and 2rε , respectively. 

 Proof:  Consider the following positive definite Lyapunov candidate 

ΘΘ+= ~~
2
1)(12

T
HJB xJJ α                                               (30) 

whose first derivate with respect to time is given by 

=HJBJ&  ΘΘ+ &&
~~)(12

TT
x xxJα                   (31) 

where )(1 xJ  and )(1 xJ x  are given in Lemma 1.  To begin, observe that if 0=x , then 

2/~~)( ΘΘ= T
HJB xJ  with 0)( =xJ HJB

& , and the parameter estimation error Θ~ remains constant 

and bounded [3].  On the other hand, to successfully accomplish the online learned objective, 

the system states are required to satisfy 0>x as described in Remark 1.  Therefore, the 

remainder of this proof considers the case of 0>x  (i.e. online learning is being 

performed).  Then, substituting the nonlinear dynamics (1) with control input (23) applied 

along with the OLA estimation error dynamics (29) into (31) reveals 
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Next, completing the squares with respect to Θ∇∇Θ ~)()(~ xDx T
xx

T φφ  and 

2/)(~ *
1 εφ xx
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Next, observing the bound in (10) and applying the Cauchy-Schwarz inequality, HJBJ& is 

upper bounded according to 
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with 64/2
min

4
min1 Dφβ ∇= , 2/3/1024 2

min2 += Dβ , and 2/)(3/64)( 2
max

442
min DD MM εεεη ′+′+= , 

and )(0 min xφφ ∇≤∇< is ensured by 0>x for a constant minφ∇ . 

 Now, the cases of 0)ˆ,( 1 =Σ ux and 1)ˆ,( 1 =Σ ux will be considered.  First, for 

0)ˆ,( 1 =Σ ux , the first term in (32) is less than zero by the definition of the operator in (26).  

Recalling 4
1

*)( xJKx ≡δ  and observing 1/1 2 ≤ρ , (32) is rewritten as 

 ( ) ),(~)( 2
1

1
4

2
1

1
*

21min2 εη
ρ
αβ

ρ
αβαα +Θ−−−≤ xJKxJ xHJB &&             (33) 

and (33) is less than zero provided min
*

212 // xK &βαα > and the following inequalities 

hold 

( ) .)(~or)()( 04

1
0*

21min2

1
1 Θ≡>Θ≡

−
> bb

Kx
xJ Jxx β

εη
βαα

εηα
&

     (34) 

Note that 0>x and the operator (26) ensure the existence of a constant minx& satisfying 

xx && << min0 .  According to standard Lyapunov extensions [3], the inequalities above 

guarantee that HJBJ& is less than zero outside of a compact set.  Thus, )(1 xJ x  as well as the 

OLA parameter estimation error Θ~  remain bounded for the case 0)ˆ,( 1 =Σ ux .  Recalling the 

Lyapunov candidate )(1 xJ is radially unbounded and continuously differentiable (Lemma 1), 

the boundedness of )(1 xJ x  implies the boundedness of the system states, x .  Next, we 

consider the case of 1)ˆ,( 1 =Σ ux which implies the OLA based input (23) may not stabilizing. 

 To begin, add and subtract 2/))(()(12 εφα x
T
x

T
x xDxJ ∇+Θ∇   to (32) to get 
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Next, using Lemma 2 and recalling the boundedness of D, HJBJ&  is rewritten as 
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where 0>MinQ  satisfies )(xQQMin ≤ and is ensured by the condition 0>x .  As a final 

step, complete the square with respect to 2
1 )(xJ x to reveal 
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and 0<HJBJ& provided both of the following inequalities hold 
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According to standard Lyapunov extensions [3], the inequalities in (36) guarantee that HJBJ& is 

less than zero outside of a compact set.  Thus, )(1 xJ x  as well as the OLA parameter 

estimation error estimation error Θ~  remain bounded for the case 1)ˆ,( 1 =Σ ux . Recalling the 

Lyapunov candidate )(1 xJ is a radially unbounded and continuously differentiable (Lemma 

1), the boundedness of )(1 xJ x  implies the boundedness of the system states, x .  The 

overall bounds for the cases 0)ˆ,( 1 =Σ ux and 1)ˆ,( 1 =Σ ux are then given by Jxx bxJ ≤)(1  and 

Θ≤Θ b~  for computable positive constants ),max( 10 JxJxJx bbb =  and ),max( 10 ΘΘΘ = bbb .  

Note that 0Jxb  and 1Θb in (34) and (36), respectively, can be reduced through appropriate 

selection of 1α  and 2α . 
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 To complete the proof, subtract (22) from (18) and (23) from (20) to reveal 
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Next, observing that the boundedness of the system states ensures the existence of positive 

constants Mφ and Mφ′ such that Mφφ ≤ and Mx φφ ′≤∇ , respectively, and taking norm and the 

limit as ∞→t when 0)ˆ,( 1 =Σ ux reveals 
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 Remark 5:  For the case of 0)ˆ,( 1 =Σ ux , the bounds in (34) reveal that 0<HJBJ&  for 

0
~

Θ>Θ b   or 01 )( xx bxJ > .  However, recalling the requirement of 0>x  described in 

Remark 1, the system states are required to be bounded away from zero in order to learn the 

HJB equation.  Thus, the condition of 01 )( xx bxJ >  can be satisfied through the condition 

0>x , Θ~ can become arbitrarily small, and 0<HJBJ&  is still satisfied.  In contrast, for the 

case of 1)ˆ,( 1 =Σ ux , the bounds of (36) reveal that 0<HJBJ&  provided 11 )( Jxx bxJ >  and 

1
~

Θ>Θ b .  Similarly to the case of 0)ˆ,( 1 =Σ ux , the inequality 11 )( Jxx bxJ > can be satisfied 

through the requirement of 0>x .  In addition, the inequality 1
~

Θ>Θ b  is not surprising 

since 1)ˆ,( 1 =Σ ux  implies Θ̂  has not provided a stabilizing control input for the nonlinear 

system (1), and it is known the target OLA parameter Θ  provides a stabilizing control input 

for (1).  Thus, when Θ̂does not provide a stabilizing control, one would expect Θ~ to be 
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bounded away from zero.  This relationship is also depicted in Fig. 1.  The actual 

convergence region is a subset of the regions determined by (34) and (36), respectively, [3]. 

 

 

 
Fig. 1.  Graphical representation of the convergence region. 

 

 

 

 Remark 6:  The results of Theorem 1 indicate that the system states and OLA 

parameter estimation errors are UUB even when Θ̂  does not provide a stabilizing control 

input.  This result implies that an initial stabilizing control is not required for implementation 

of the proposed SOLA design.  Further, Theorem 1 illustrates that the estimated control input 

(23) approaches the target optimal control input (4) with small bounded error as ∞→t .  As a 

result, the OLA tuning law (25) ensures that the system states remain bounded and that (23) 

will become admissible during the online learning if it is not initially stabilizing.  The 

simulation results in Section V also support this claim. 
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 Next, the stability of the SOLA-based optimal control scheme is examined when 

there are no OLA reconstruction errors as would be the case when standard adaptive control 

techniques [2] are utilized. In other words, when a NN is replaced with a standard linear in 

the unknown parameter (LIP) adaptive control, the parameter estimation errors and the states 

are globally asymptotically stable according to Corollary 1. 

 Corollary 1:  (Ideal SOLA-based Optimal Control Scheme Convergence).  Let the 

hypothesis of Theorem 1 hold in the absence of OLA reconstruction errors.  Then, the OLA 

approximation error Θ~ and system states x  are globally asymptotically stable (GAS) and  

∗→VV̂  and ∗→ 11ˆ uu . 

 Proof:  Consider the Lyapunov candidate (30) whose first derivative is found using 

similar methods as those described in (32)-(33) with 0== HJBεε  and 0=∇ εx  . For the case 

of 0)ˆ,( 1 =Σ ux , the first derivative of (30) is written similarly to (33) with 0)( =εη .  

Therefore, HJBJ& is less than zero provided min
*

212 // xK &βαα > , and )(1 xJ x  as well as the 

OLA parameter estimation error Θ~  converge to zero asymptotically.   

 Next, when 1)ˆ,( 1 =Σ ux ,  HJBJ&  is upper bounded similarly to (35) with 0)( =′= Mεεη , 

and 0<HJBJ& provided the following inequalities hold 

4

min21

2*2
21

min21

2*2
21

1
~or)(

Q
K

Q
KxJ x αβ

βα
αβ
βα

>Θ> . 

Note that the above bounds can be made arbitrarily small through proper selection of 1α  and 

2α . As in Theorem 1, it is not surprising that 0~ >Θ for 1)ˆ,( 1 =Σ ux  since the case 

of 1)ˆ,( 1 =Σ ux  implies Θ̂  has not stabilized (1).   Therefore, when 1)ˆ,( 1 =Σ ux , the secondary 

tuning algorithm in (25) is activated until 0)(T
1x <xxJ & .  Then, once the system is stabilized, 
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the case of 0)ˆ,( 1 =Σ ux applies and asymptotic convergence of the parameter estimation error 

is observed.   Since (30) is radially unbounded, the result holds globally.  To complete the 

proof, observe that when 0=ε and 0=∇ εx , the cost function and control error bounds from 

Theorem 1, 1rε and 2rε , respectively, also become zero.  Thus, using similar methods as those 

used in Theorem 1 shows that ∗→VV̂  and ∗→ 11ˆ uu  when 0)ˆ,( 1 =Σ ux . 

 In the following section, we extend the SOLA-based design scheme to include the 

HJI used in H∝ optimal control. 

B. SOLA-based Scheme to Learn the HJI Function 

 To begin the HJI SOLA-based scheme development, we assume that the cost 

function (12) can be represented as  

)()()( xxxV d
T

d εϑ +Φ=                                              (37) 

where Ldℜ∈Φ is the target OLA vector, Ldnx ℜ→ℜ:)(ϑ is a linearly independent basis 

vector, and )(xdε is the OLA reconstruction error while the target OLA vector and OLA 

reconstruction error are considered to be upper bounded according to 

dMd Φ≤Φ and dMd x εε ≤)( , respectively [3].  In addition, it will be assumed that the 

gradient of the OLA reconstruction error with respect to x is upper bounded according 

to dMdxd xxx εεε ′≤∇=∂∂ )(/)( [33]. 

 The gradient of the HJI SOLA-based cost function (37) can be written similarly to 

the gradient of the HJB cost function shown in (19).  Now, using the gradient of the HJI 

SOLA cost function, the optimal control and disturbance (14) and HJI function (15) are 

rewritten as 
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and 

0)()(
4
1)()()(),(* =+Φ∇∇Φ−∇Φ+=Φ HJI
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T
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where 211 /)()()()( γTT
d xkPxkxgRxgD −− −=  and 
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4
1*)(*)()( xDdxkuxgxf dxd

T
dx

T
dxHJI εεεε ∇∇+++∇=  

is the HJI residual error due to the OLA reconstruction error.  Additionally, it is required 

thatγ  be selected such that 0>dD . It is assumed that the optimal closed loop dynamics for 

the HJI problem satisfy a bound defined similar to (10).  As a result, the residual error HJIε is 

upper bounded on a compact set similarly to HJBε .   

 Moving on, the HJI SOLA-based estimate of (37) is now written as 

)(ˆ)(ˆ xxV T
d ϑΦ=                                                     (40) 

where Φ̂ is the OLA estimate of the target parameter vectorΦ .  Similarly, the estimate of the 

optimal control and worst case disturbance (38) is written in terms of Φ̂ as 
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 Similarly to )(ˆ1 xu  and the HJB equation, ))((ˆ 02 txu  is not required to be initially 

stabilizing for the HJI problem.  Now, using (40) and (41), the approximate HJI Hamiltonian 

can be written as 

Φ∇∇Φ−∇Φ+=Φ ˆ)()(ˆ
4
1)()(ˆ)()ˆ,(ˆ xDxxfxxQxH T

xdx
T

x
T

d ϑϑφ .  (42) 
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 Similarly to the HJB SOLA-based optimal controller design, the tuning law for the 

HJI-SOLA seeks to minimize the approximate Hamiltonian (42) while ensure the nonlinear 

system (11) remains stable.   The portion of the tuning law which seeks to minimize (42) is 

derived from normalized gradient descent using the auxiliary HJI error 2/)ˆ,(ˆ 2Φ= xHE dHJI  

while the stabilizing portion of the tuning law is derived from Lyapunov  theory.  Observing 

the similarities of (42) and (24), the tuning law for the SOLA to solve the HJI problem is 

found to be 

xDx
dux

xDxxfxxQ

dx

T
xdx

T
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where 2/ˆ)()(ˆ)(ˆ2 Φ∇∇Φ−∇= xDxxf T

xdx
T

x ϑϑϑσ , 3α  and 4α  are positive a design constants, 

and where 
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where )(2 xJ x is the partial derivative of a continuously differentiable, radially unbounded 

Lyapunov candidate )(2 xJ for the nonlinear system (11) which satisfies similar properties as 

those described in Lemma 1 for  )(1 xJ . 

 The region for 0)ˆ,ˆ,( 22 =Σ dux was determined based on Lemma 2.  Noting the 

similarities between (43) and (25), the OLA estimation error dynamics Φ−=Φ−Φ=Φ &&&& ˆˆ~  can 

be written as 
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where **
2

*
2 )()()( dxkuxgxfx ++=& and 1ˆˆ

2 += ϑϑρ T .  Now the following theorem can be 

stated. 

 Theorem 2: (SOLA-based Control Scheme Convergence to the HJI function and 

System Stability).  Given the nonlinear system (11) with the target HJI equation (15), let the 

tuning law for the OLA be given by (43).  Then, there exists computable positive constants 

JxB  and Φb  such that the OLA approximation error Φ~ and )(2 xJ x  are UUB for all 

Ttt +≥ 0 with ultimate bounds given Jxx BxJ ≤)(2  and Φ≤Φ b~ .  Further, in the presence of 

OLA reconstruction errors, 3
ˆ

rdd VV ε≤− ∗ , 422ˆ ruu ε≤− ∗ , and 5
ˆ

rdd ε≤− ∗  for  small 

positive constants 3rε , 4rε and 5rε  . 

 Proof:  Consider the positive definite Lyapunov candidate 

ΦΦ+= ~~
2
1)(

2 2
4 T

HJI xJJ α                                              (46) 

whose first derivative is given by += xxJJ T
xHJI && )(24α ΦΦ &~~ T . 

  Noting the similarities between the OLA error dynamics (45) and (29), proof of 

Theorem 2 is shown using identical steps used to prove Theorem 1.  In addition, the global 

asymptotic convergence of the OLA estimation errors and system states can be demonstrated 

for the HJI problem just as was shown in Corollary 1 for the HJB optimal control problem. ■ 

 A block diagram of the SOLA-based design is now presented in Fig. 1 where the HJI 

design is shown.  The block diagram becomes the HJB optimal control design by taking 

0)( =xk and after appropriate modifications to reflect ),(ˆ,ˆ),( xVx Θφ and 1û , respectively.   

  We have just shown how a SOLA framework can be designed to solve the HJB and 

HJI optimal control problems.  In the following section, the SOLA-based design will be 
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extended to include the tracking problem by effectively converting the tracking problem into 

a regulation problem. 

 

 

 
Fig. 2.  SOLA for HJI regulation design. 

  

 

IV. CONTINUOUS TIME SOLA-BASED SCHEME FOR NEAR OPTIMAL TRACKING 

 The optimal tracking control problem will be considered as an extension of the 

contributions presented in the previous section.  The following optimal tracking development 

will consider the nonlinear system (11) and the HJI optimal tracking problem; however, the 

resulting theoretical results are easily extended to solve the HJB optimal tracking problem by 

taking 0)( =xk  in (11).   Additionally, in this section it is assumed that there exists a matrix 
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mxnIxg ℜ∈)(  such that nxnI Ixgxg ℜ∈=)()( where I is the identity matrix.  Note that when 

mn = , 1)()( −= xgxg I . 

 The objective for the infinite time optimal tracking problem is to design the optimal 

control *2u  to ensure that the nonlinear system (11) tracks a desired trajectory )(txd in an 

optimal manner in the presence of the worst case disturbance *d .  To achieve our objective, 

the cost function (12) must be modified accordingly to ensure it remains finite.  To begin the 

development, define the desired trajectory to be [18] 

)()()( dddd xuxgxfx +=&                                          (47) 

where )( dxf is the internal dynamics of the nonlinear system (11) rewritten in terms of the 

desired state dx , )(xg is the same input transformation matrix in (11), and )( dd xu is the 

control input to the desired system.  Next, define the state tracking error as 

dxxe −= ,                                                     (48) 

and using (11) and (47), the tracking error dynamics of (48) are 

dxkukgefxdxkuxgxfe eed )()()()()()( ++=−++= &&             (49) 

where )()()( de xfxfef −= and 

de uuu −= .                                                      (50) 

 In order to control (49) in an optimal manner, it is required to select the control 

policy eu that minimizes the infinite horizon HJI cost function [29] 

( )∫
∞

−=
t e

T
eeeT ddPduerteV τττγττ )()())(),(())(( 2                    (51) 

where wxw
eP ℜ∈ is a constant positive definite matrix, 0>eγ is a constant, ))(),(( ττ ee uer  is 

defined similarly to ))(),(( 1 ττ uxr with )(τx and )(1 τu replaced with )(τe  and )(τeu , respectively, 
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and where eu is required to be admissible.  The Hamiltonian for the HJI tracking problem is 

now written as 

))()()()((),(),,( 2 dxkuxgefeVdPduerdueH ee
T

Tee
T

eeeeT +++−= γ          (52) 

where )(eVTe is the gradient of the )(eVT with respect to e .   

 Now applying the stationary conditions 0/),,( =∂∂ eeT udueH  and 

0/),,( =∂∂ ddueH eT reveals the optimal control and disturbance for the tracking problem to 

be 

⎪
⎭

⎪
⎬

⎫

=

−=

−

−

)()(
2

1)(*

)()(
2
1)(*

*1
2

*1

eVxkPxd

eVxgRxu

Te
T

e

Te
T

e

γ

.                                  (53)        

 Now, substituting (53) into (52) reveals the HJI equation for the tracking problem 

as 

)()()()(
4
1)()()()(

4
1)()()(0 *1*

2
*1** eVxkPxkeVeVxgRxgeVefeVeQ Te

T
e

T
Te

e
Te

T
e

T
Tee

T
Tee

−− +−+=
γ

 (54) 

with 0)0(* =TV where )(eQe and eR are defined similarly to )(xQ and R presented in Section 

III, respectively.   Next, we observe that the optimal control input in (53) can be rewritten as 

)()(
2
1 *1 eVxgRuu Te

T
d

−∗ −= .                                    (55) 

Note that the expression for the desired control input du  is obtained from (47) and written as 

))(()()( dd
I

dd xfxxgxu −= & .                                     (56) 

  It is observed that the optimal control input (55) consists of a predetermined 

feedforward term, du , and an optimal feedback term that is a function of the gradient of the 

optimal cost function (51).  Thus, to implement the optimal control (55), the SOLA based 
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control scheme designed in Section III-B is utilized to learn the optimal feedback tracking 

control term after appropriate modifications to reflect (51)-(53).       

 Further, the Theorem 2 results are applicable to the HJI optimal tracking control 

problem since the cost function (51) effectively converts the tracking control problem into a 

regulation problem [22],[29].  Moreover, by taking 0)( =xk , the previous development 

becomes the HJB optimal tracking problem, and the theoretical results of Section III-A and 

Theorem 1 derived for the HJB problem are utilized to learn the optimal feedback tracking 

control term after appropriate modifications to reflect (51)-(30). 

  

 

       
Fig. 3.  SOLA design for HJI optimal tracking. 
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 The block diagram of the SOLA-based design for HJI tracking is presented in Fig. 3. 

 The diagram become the HJB optimal control designs by taking 0)( =xk  and after 

appropriate modifications to reflect ),(ˆ eVe  and )(ˆ1 eu e , respectively. 

V. SIMULATION RESULTS 

To demonstrate the effectiveness of the SOLA-based designs of this work, several 

examples are now offered.  First, three optimal regulator designs are presented for a linear 

system and two nonlinear systems.  Then, the optimal tracker is implemented for the optimal 

formation control of nonholonomic mobile robots.  To implement the online SOLA-based 

designs, a linear in the parameter (LIP) NN is utilized as the OLA.  In addition, in each 

example, 2/)()( 21 yyyJyJ T== so that yyJyJ yy == )()( 21  in (26) and (44), respectively. 

 For regulation, xy =  while ey =  for tracking. 

A. Linear HJB Example 
 Consider the linear system given by 

ux
x
x

x ⎥⎦
⎤

⎢⎣
⎡
−

+⎥⎦
⎤

⎢⎣
⎡

−
−−

=⎥⎦
⎤

⎢⎣
⎡=

3
1

41
21

2

1

&

&
&  

accompanied by the HJB cost function (2) with 1=R  and xxxQ T=)( .  For linear systems 

with quadratic cost functions, the optimal control is found by solving the ARE, and the 

optimal cost function is found to be 2
2

*
3

2
1

*
221

*
11* xWxWxxWV ccc ++=  where 1162.0*

1 −=cW , 

3199.0*
2 =cW , and 1292.0*

3 =cW , respectively [34].   

 The basis vector for the SOLA-based implementation was selected as 

Txxxxx ][)( 2
2

2
121=φ while the tuning parameters were selected as 2001 =α and 01.02 =α .  

The initial conditions of the system states were taken as Tx ]22[)0( −= while all NN weights 
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were initialized to zero.  That is, no initial stabilizing control was utilized for implementation 

of this online design.   

 Figure 4 illustrates the time history of the OLA weights since it is approximating the 

cost function.  Examining the trajectories, it is observed that the NN weights begin from zero 

and converge to constant values as the results of Theorem 1 predicted.  The final values of 

the OLA weights were 1300.0ˆ
1 −=cW , 3269.0ˆ

2 =cW , and 1193.0ˆ
3 =cW  which illustrates 

the convergence of the approximated cost function to the optimal cost function with small 

bounded error which is again consistent with the theoretical results derived in this work.  

Since the SOLA-based design uses only one OLA, convergence of the critic weights ensures 

the convergence of the control input to the optimal control.   

 

 

 
Fig. 4. OLA weights for example 1. 
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 The time history of the system states is shown in Fig. 5.  To satisfy the PE condition 

discussed in Remark 1 in Section III, probing noise was added to the nonlinear dynamics (1). 

 After 15 seconds, this signal was removed and the system states were allowed to converge 

to zero. 

 

 

 
Fig. 5.  System states for example 1. 

 
 
 
 
 

B. Nonlinear HJB Example 
 Consider the nonlinear system in the form of (1) with Txxx ][ 21= ,  

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+
+

−⎟
⎠
⎞

⎜
⎝
⎛ +−= −

22
1

2
1

1
1

1

2

4
)251(2

5)5(tan
2

)( x
x

xxx

x
xf π , and Txg ]30[)( = . 
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 Using the HJB cost function (2) with 2
2)( xxQ =  and 1=R , the optimal cost function 

is given by  2
2

*
61

12
1

*
5

2
1

*
42 )5(tan* xWxxWxWV ccc ++= −  with 2/*

4 π=cW , 1*
5 =cW  and 1*

6 =cW [35].  The 

basis vector for the SOLA-based scheme implementation was selected as 

Txxxxxxxxxx ])5(tan[)( 3
11

12
1

2
2

2
12121

−=φ while the tuning parameters were selected as 

2001 =α and 01.02 =α .  The initial conditions of the system states were taken as 

Tx ]44[)0( −= while all NN weights were initialized to zero.  That is, no initial stabilizing 

control was utilized for implementation of this online design for the nonlinear system. 

 Figure 6 depicts the evolution of the OLA weights during the online learning.  

Starting from zero, the weights of the online OLA are tuned to learn the optimal cost 

function, and the  final values of the OLA weights are found to be 5838.1ˆ
4 =cW , 1ˆ

5 =cW ,  

 

 

 
Fig. 6.  OLA weights for example 2. 
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and 1ˆ
6 =cW , with =]ˆˆˆˆ[ 7321 cccc WWWW ]008.00076.00038.00213.0[ −− .  Again, the online 

SOLA design was observed to converge to the actual optimal cost function with small 

bounded error as the theoretical results suggested. 

 The system states are shown in Fig. 7, and probing noise is added similarly to the 

linear case to ensure the PE condition is satisfied.  After 850 seconds, the PE condition was 

no longer required and was thus removed.  To illustrate the importance of the secondary term 

in the tuning law in (25), the online OLA design is attempted with 0)ˆ,( =Σ ux .  That is, the 

learning algorithm only seeks to minimize the auxiliary HJB residual (27) and does not 

consider system stability.  Fig. 8 shows the results of not considering the nonlinear system’s  

 
 
 
 
 
 

    
Fig. 7.  System states for example 2. 
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stability while learning the optimal HJB function.  From this figure, it is clear that the system 

state quickly escape to infinity, and the SOLA-based controller fails to learn the HJB 

function.  Thus, the importance of the secondary term in (25) which ensures the stability of 

the system is revealed. 

 

 

 
Fig. 8.  Divergence of the system states when the stabilizing OLA update is removed 

( 0)ˆ,( 1 =Σ ux ) for example 2. 
 
 
 
 

C. Nonlinear HJI Example 

 Next, consider the nonlinear system in the form of (11) with Txxx ][ 21= , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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+
−

+
−

+
−

=

4
3

4
32

8
8729

)( 2
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2
122

2
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xxx
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The above dynamics were derived using the converse optimal control method [36] using the 

HJI cost function (12) with IR = , 1== γP , and 

( )2
2

2
12

22
211 )64()62(2)( xxxxxxxQ +++= . 

The optimal cost function was then found to be 

2
2

2
1

*
6

2
2

*
5

2
1

*
4

*
3 )( xxWxWxWxV ccc ++=  

with 1*
4 =cW , 2*

5 =cW  and 3*
6 =cW .  The basis vector for the HJI SOLA implementation was 

selected as Txxxxxxxxxx ][)( 3
1

2
2

2
1

2
2

2
12121=ϑ  while the tuning parameters were selected as 

2003 =α and 01.04 =α .  The initial conditions of the system states were taken as 

Tx ]44[)0( −= while all NN weights were initialized to zero.  That is, no initial stabilizing 

control was utilized for implementation of this online design for the nonlinear system. 

 Figure 9 shows the OLA weights during the online learning.  Starting from zero, the 

weights of the online OLA are tuned to learn the optimal HJ function, and the final values of 

the OLA weights are found to be 0007.1ˆ
4 =cW , 0003.2ˆ

5 =cW , and 9944.2ˆ
6 =cW , with 

=]ˆˆˆˆ[ 7321 cccc WWWW  0000.00001.0[  ]004.00006.0 .  As in the previous examples, the online 

SOLA design was observed to converge to the actual optimal cost function with small 

bounded error as the Theorem 2 ensured.  The convergence of the OLA parameters or critic 

NN weights ensures the convergence of the control input and approximated worst case 

disturbance to the optimal control and disturbance, respectively.  

 The system states are shown in Fig. 10, and probing noise is added similarly to the 

linear case to ensure the PE condition is satisfied.  After 4750 seconds, the PE condition was 

no longer required as convergence of the OLA weights was observed.  To reiterate the 

importance  of  the  secondary  term  in  the  tuning law in (43), the online SOLA design is  
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Fig. 9. OLA weights for example 3. 

 
 
 
 
 

 
Fig. 10.  System states for example 3. 
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attempted with 0)ˆ,ˆ,( 22 =Σ dux .  That is, the learning algorithm only seeks to minimize the 

auxiliary HJI residual and does not consider system stability.  Fig. 11 shows the results of 

not considering the nonlinear system’s stability while learning the optimal HJI function.  

Similar to the observations of Fig. 8, the state trajectories shown in Fig. 11 show that the 

system states diverge resulting in a failed HJI learning session. 

 
 
 

 
Fig. 11.  Divergence of the system states when the stabilizing OLA update is removed 

( 0)ˆ,ˆ,( 22 =Σ dux ) for example 3. 
 
 
 
 

D. Optimal Tracking Control of Nonholonomic Mobile Robot Formations 

 To demonstrate the effectiveness of the proposed optimal tracker, the HJB equation is 

solved online for leader-follower based formation control of nonholonomic mobile robots. 

First, a brief overview of nonholonomic mobile robots [37] and leader-follower based 
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formation control [38] is provided.  The dynamics of a nonholonomic mobile robot are 

written as [37] 

τgvfv += )(& ,                                             (57) 

where )(),()( 11 vFMvqqVMvf m
−− −−= & , BMg 1−= , and Tvv ][ ω=  is the velocity vector 

with v being the translational velocity and ω the robot angular velocity.  In addition, M is a 

constant positive definite inertia matrix, mV is the bounded centripetal and coriolis matrix, 

F is the friction vector, B is a constant, nonsingular input transformation matrix, and τ is 

the control torque vector [37].  For complete details on the robot dynamic equation above, 

see [37].  

 The objective of separation-bearing leader-follower formation control [38] is for each 

robot to maintain a desired separation distance and bearing angle with respect to a designated 

leader as shown in Fig. 12 where the leader is denoted with a subscript ‘i' and the follower is 

denoted by the subscript ‘j’.  In our previous work [38], an auxiliary velocity control input, 

)(tv jc , was found to ensure  that 0)(lim =−
∞→ ijijdt

LL  and 0)(lim =Ψ−Ψ
∞→ ijijdt

 where ijL  and ijΨ are 

the measured separation and bearing of the follower j with respect to leader i while ijdL and 

ijdΨ represent the desired distance and bearing.  Then, the control torqueτ was calculated to 

ensure )(tvv jc→ .  In [38], system stability was the only design criterion.   

 In contrast, using the optimal control framework proposed this work, the control 

torque τ is now re-designed to ensure the control velocity )(tv jc of our previous work [37] is 

tracked in an optimal manner.  A formation of identical nonholonomic mobile robots is 

considered where the leader's trajectory is the desired formation trajectory as shown in Fig.  
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      Fig. 12.  Leader-follower formation control.          Fig. 13.  Desired formation. 

 
 

 

13 where ,3,2,1, FFFL and 4F  denote the leader, follower 1, follower 2, follower 3, and 

follower 4, respectively.  Additionally, the robot parameters used in the simulation are as 

described in [37] where the robots have the same physical dimensions including masses and 

moments of inertial, but different coefficients of friction.  

 For implementation of the OLA based SOLA tracker, the HJB equation written in the 

form similar to (59) is considered with eQeeQ e
T

e =)( , 50=eQ , IRe = and where I is the 

identity matrix.  The tuning parameters were selected as 2001 =α and 01.02 =α .  As in the 

previous examples, all tunable weights were initialized to zero.  That is, no initial stabilizing 

control was utilized for implementation of the online tracker design.  For this example, we 

specify the gradient of the activation function instead of the activation function itself since 

the gradient of activation function is required for the SOLA implementation and not the 

actual activation function.  This type of dynamic programming is often referred to as dual 

heuristic dynamic programming [10] where the gradient of the cost function is approximated 

instead of the actual cost function.  In the previous examples, the optimal cost functions were 



 
 311

observed to contain terms that were also present in the internal dynamics ( )(xf ) of the 

nonlinear systems.  Therefore, the gradient of the activation function is selected based on the 

terms one would expect to find in )(efe . That is, the gradient of the activation function is 

selected to be 

⎥⎦
⎤

⎢⎣
⎡

∇
∇

=∇
2

1

0
0
ϑ

ϑ
ϑee  

where 
 

1ϑ∇ = =∇ 2ϑ  
( ) ( ) ))sgn()(sgn())sgn()(sgn()sgn()sgn()sgn()sgn([ 12212121 cccc vvvvvveeee −×−−− ωω

T
cccc vevvevveve ))]sgn()(sgn())sgn()(sgn())sgn()(sgn())sgn()(sgn( 22121121 −−−− ωω .   

 During the online learning, the virtual reference cart for the formation leader traveled 

a constant translational velocity, smvir /1=  while the reference angular velocity was 

selected as )25.0sin(1.0 tir =ω .  The results of the SOLA algorithm for the leader and its 

followers are shown in Figs. 14 through 19.  First, Figs. 14 through 16 display the SOLA 

weights for the leader, follower 1, and follower 3, respectively.  In each case, the weights are 

observed to converge to constant values as the theoretical results of Section IV predicted.  

The SOLA weights for followers 2 and 4 were observed to be similar to those of followers 1 

and 3, respectively.  The slight differences in the SOLA weights for each robot are linked to 

differences in the coefficients of friction for each robot and the use of the sign(•) function in 

the gradient of the activation functions.  In addition, the dominant weights in Fig. 14-16 are 

observed to correspond to the 1e  and 2e  terms in eeϑ∇ .    
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Fig. 14.  OLA weights for the formation leader. 

 

 

 

 
Fig. 15.  OLA weights for follower 1. 
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Fig. 16.  OLA weights for follower 3. 

 

 

 Figures 17 and 18 depict the velocity tracking errors for the leader and follower 1.  

For the leader tracker errors in Fig. 17, probing noise is introduced to satisfy the PE 

condition and subsequently removed after 225 seconds.  Similarly, the tracking errors of 

follower 1 are shown in Fig. 18 where probing noise was removed after 275 seconds.  In 

addition, the effect of the leader’s probing noise signal on the followers is also observed in 

Fig. 18 when the PE condition is removed for the leader at 225 seconds illustrating the 

effects of the formation dynamics on the follower robots. Similar results were observed for 

the other followers although not shown.  In all cases, the velocity tracking errors converged 

to a small bounded region around the origin after the probing noise was removed as the 

theory suggested. 
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Fig. 17.  Velocity tracking errors for the formation leader. 

 

 

 
Fig. 18.  Velocity tracking errors for follower 1. 
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 Next, Fig. 19 show the Hamiltonian approximation for the formation leader, and 

examining the figure, it is observed that as the approximate Hamiltonian converges to a 

small bounded region containing the origin as the leader’s OLA parameters converge to 

constant values.  This illustrates that the OLA weights are indeed minimizing the 

Hamiltonian even when the velocity tracking errors are not zero. 

 

 

 
 

Fig. 19.  Approximate Hamiltonian for the formation leader. 

 
 
 

 In contrast to the previous examples for regulation, converse optimal control 

techniques do not provide insight as to what the real optimal cost function and control input 

should be.  Therefore, a comparison in terms of cost will be used to evaluate the performance 

of the proposed optimal tracker with the cost defined by 

( )∫
∞

=
t eeT duerteV τττ ))(),(())((  
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where ))(),(( ττ ee uer  is defined similarly to ))(),(( 1 ττ uxr with )(τx and )(1 τu replaced with 

)(τe  and )(τeu , respectively, and where eu is required to be admissible. 

 As a baseline test, the control input (55) is applied to the robot systems (57) when the 

feedback control signal is not optimal.  That is,  

( ))(1 efeKgu ed +−= −τ      (58) 

where du  is given by (56) with cd vx = , )(efe  is defined as in (49),  0>K  is a constant 

design matrix, and Teee ][ 21= is the robot velocity tracking error.  Substituting (58) into the 

robot dynamics (57) reveals the closed loop robot velocity tracking error dynamics to be 

eKe −=& .    

It can be shown that the control input (58) guarantees the velocity tracking error to converge 

to zero exponentially.  For the comparison, K was selected as }10,10{diagK = . 

 For the comparisons, the virtual reference cart for the formation leader traveled a 

constant translational velocity, smvir /1=  while the reference angular velocity was selected 

as )25.0sin(1.0 tir =ω .  The formation trajectories when the control input (58) is applied for 

the leader and its followers is shown in Fig. 20 where the robots start in the bottom left 

corner of the figure and travel towards the top right corner.  Similar robot trajectories were 

observed when the learned SOLA control law was applied. 

 Next, the cost associated with the non-optimal feedback control input of (58) and the 

cost associated with the learned SOLA control input was calculated and compared for the 

leader and its followers.  Figure 21 shows the resulting costs for the formation leader while 

Fig. 22 shows the costs for follower 1.  In each case, the costs associated with the SOLA 

control inputs which were learned online were less than the costs associated with the non-
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optimal control input (58) illustrating the effectiveness of the online optimal controller. 

Similar trends were observed for the other followers although they are not shown.   

 

 

 
Fig. 20.  Formation trajectories. 

 
  
 
 

 
 

Fig. 21.  Costs for the formation leader. 
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Fig. 22.  Costs for follower 1. 
 
 
 

VI. CONCLUSIONS 

 In this work, a single OLA was utilized to design a single network adaptive critic to 

solve both the Hamilton Jacobi-Bellman and Hamilton Jacobi-Isaacs equations in real time 

for the optimal control of general affine nonlinear continuous-time systems.  In the presence 

of known dynamics, the optimal regulation and tracking control problems were undertaken.  

The SOLA based design was utilized to learn the cost function and nearly optimal feedback 

control signal for the HJB optimal control problem and the cost function, nearly optimal 

feedback control signal, and optimal disturbance of the HJI optimal control problem.  All 

OLA parameters were tuned online using novel update laws, and Lyapunov techniques were 

used to demonstrate the stability of the proposed optimal control schemes. Simulation results 

were also provided to verify the theoretical conjectures. 
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SECTION 
 
 

2.  CONCLUSIONS AND FUTURE WORK 
 
 

In this dissertation, the control of nonholonomic mobile robot formations and 

UAV formations was undertaken while addressing many of the common assumptions and 

simplifications of existing approaches.   The dynamics of the individual agents and the 

formation were explicitly considered and compensated using NN’s and online weight 

tuning.  The tracking performance of the overall formation was guaranteed by 

compensating the formation dynamics either explicitly through communication or 

implicitly via decentralized control schemes. For the quadrotor UAV, the derived 

formation control laws were independent of a specific operating point and without the use 

of small angle approximations.  In addition, the infinite horizon HJB equation was solved 

online and forward-in-time, for both discrete-time and continuous-time systems, while 

the infinite horizon HJI equation was solved online for continuous time systems to 

achieve near optimal control.   

In the first paper, the asymptotically stable NN tracking controller for leader-

follower based formation control considers the dynamics of the leader and the followers 

using the backstepping technique with RISE feedback.  The benefit of the feedback 

control scheme  is that asymptotic stability of the formation is guaranteed even when the 

dynamics of the followers and their leader are unknown since the NN learns them all 

online, and the RISE ensures robustness in the presence of unmodeled dynamics and 

disturbances provided they are upper bounded by known functions.  The numerical 

simulations also illustrated the strength of asymptotic stability over a uniformly ultimately 

bounded (UUB) controller of our previous work.  Although superior tracking over 
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existing controllers was demonstrated, the RISE feedback technique is observed to have 

several drawbacks.  First, the RISE feedback scheme requires that the upper bounds on 

the disturbances and unmodeled dynamics to be well known.  In addition, the RISE 

feedback relies on the integral of a high gain term, which was observed to have negative 

effects on the transient response of the formation.  In practical applications of the 

NN/RISE control scheme, better overall performance may be observed by initially 

applying the control law with the RISE feedback portion of the controller disabled.  The 

NN controller would drive the tracking errors into the compact set guaranteed by the 

UUB stability result, and then the RISE feedback portion of the control input could be 

enabled to regain the asymptotic steady-state tracking performance observed in paper 1.  

A NN output feedback tracking controller for leader-follower based formation 

control was presented in the second paper.  Each robot had many challenging 

uncertainties to overcome including limited communication, immeasurable velocity 

vectors, unknown dynamics, and bounded disturbances.  These challenges were 

overcome by using a novel NN observer and controller and enabled the leader-follower 

formation control objective to be completed without the need of the separation principle.  

The impact of the leader’s states on the control laws of the followers was also illustrated 

in the simulation results since the formation tracking errors were not observed to 

converge until convergence of the followers’ observer estimates of their leaders’ velocity 

vectors was achieved.  

In addition, the first two papers consider the stability of the formation in the 

presence of obstacles.  The obstacle avoidance control laws were shown to be effective in 

both a static and dynamic obstacle environment. Further, by treating robots in the 

formation as obstacles, collisions within the formation were guaranteed not to occur. The 
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proposed obstacle avoidance scheme is observed to have potential limitations.  Since the 

scheme only considers the closest obstruction, it is possible that in a highly cluttered 

environment there may be more than one obstacle within the robot's safety zone; one of 

which could potentially be another robot in the formation.  In this case, the follower may 

exhibit an oscillatory behavior between multiple obstructions located within the safety 

zone which is not ideal; however, the goal of the obstacle avoidance scheme is still 

achieved in that collisions are avoided. 

The control of a quadrotor UAV was considered in paper three where a NN output 

feedback control law was developed and the separation principle was relaxed.  Despite 

being underactuated, adaptive backstepping techniques were utilized to control all six 

DOF in the presence of unmodeled dynamics and bounded disturbances.  The dynamics 

of the UAV were not required to be known since the neural networks learned the 

complete UAV dynamics online.  Numerical simulations confirmed that the proposed 

nonlinear NN controller outperformed a conventional linear controller which used state-

feedback.  In the comparison, large control gains were required by the linear controller to 

achieve the same tracking performance observed when the proposed NN output feedback 

controller was applied.  Further, the use of large control gains in the linear controller led 

to significant noise amplification while the proposed controller did not rely on noisy 

velocity measurements by using output feedback.  A drawback of the proposed scheme is 

that three NN’s were required for implementation. 

Subsequently, the fourth paper proposed a framework for quadrotor UAV leader-

follower formation control by converting the formation control problem into a tracking 

control problem.  The state feedback scheme did not require explicit knowledge of the 

UAV or formation dynamics since NN’s learned the complete UAV and formation 
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dynamics online while in the presence of bounded disturbances.  The importance of 

considering the formation dynamics was illustrated in the simulation results by ignoring 

the formation dynamics in the followers’ controller design, and in the experiment, the 

formation was observed to exhibit poor tracking when the dynamics were ignored.  In 

contrast, acceptable steady-state tracking was observed when the proposed controller was 

applied.  A potential draw back of the proposed NN scheme is the transient response 

observed in the simulations.  Although brief, several large spikes were observed in the 

follower UAV velocity tracking error signals which is undesirable.  

In paper five, the Hamilton Jacobi-Bellman equation was solved in real time for 

the optimal regulation and tracking control of affine nonlinear discrete-time systems 

using online approximators.  Knowledge of the system’s internal dynamics was not 

required, and novel nearly optimal control laws were developed using OLA’s to address 

the regulation problem and the tracking control problems.  All OLA’s were tuned online 

in contrast to offline methods which exist in the literature, and convergence to the 

optimal control signal was rigorously demonstrated while explicitly considering OLA 

reconstruction errors which is also not typical of most current approaches.  Although the 

simulation results illustrated the effectiveness of the proposed approach, a drawback of 

the scheme is the need of an initial stabilizing control and the fact that the system states 

must to be persistently exiting (PE) while the OLA’s learn the optimal HJB function and 

optimal control signal.  That is, we cannot simply apply the proposed scheme to a 

nonlinear system and expect the optimal control to be learned by the time the system 

states have reached zero.  To satisfy the PE condition, system noise was added to the 

nonlinear system dynamics.  Thus, the proposed optimal control scheme is still being 
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trained albeit in an online fashion and without full knowledge of the system dynamics.  

Offline training traditionally requires full knowledge of the system dynamics. 

Finally, paper six addressed the optimal control of affine nonlinear systems in 

continuous time.  In contrast to paper five, the approach solved the optimal control 

problem online using a single OLA (SOLA) in continuous-time, and the SOLA was 

shown to solve both the HJB and HJI equations in real time in the presence of known 

dynamics.  The SOLA-based design was utilized to solve the optimal regulation and 

tracking control problems, and all OLA parameters were tuned online using novel update 

laws.    Simulation results illustrated that by using a secondary tuning law, an initial 

stabilizing control policy was not required to ensure the HJB or HJI functions were 

successfully learned.  In fact, it was shown that by removing the secondary tuning law, 

system stability was lost and the OLA’s failed to learn the HJB and HJI cost functions.  A 

drawback of the proposed SOLA-design is the need for full knowledge of the system 

dynamics and the need for the PE condition on the system states.  In addition, the choice 

of the probing noise signal added to the nonlinear system dynamics to satisfy the PE 

condition was found to have an impact on the learning ability of the SOLA-based optimal 

control scheme, and the best overall performance of the SOLA-based adaptive approach 

was observed by satisfying the PE condition using square waves. 

Future applications of the RISE feedback scheme should focus on extending the 

method to include output feedback control.  In addition, robust adaptive control methods 

could be used to relax the requirement on known upper bounds on the uncertainties and 

disturbances.  Also, a more comprehensive obstacle avoidance scheme for leader-

follower formation control could be considered in future work.  This work would focus 

on alleviating the observed limitations of the current obstacle avoidance scheme so that 
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multiple objects and more complex environments can be navigated while completing the 

leader-follower formation control objective. 

In the context of optimal control, future work should include relaxing the 

requirement of a known input coefficient matrix for the discrete-time optimal control 

development.  In contrast, efforts in the continuous-time optimal control framework 

should include relaxing the requirement of known internal dynamics and subsequently 

the requirement of a known input coefficient matrix.  In addition, the design of the 

feedforward term in the optimal tracker could be redesigned to include optimality for 

steady state and transient performance tracking. Finally, the optimal control using 

nonlinear approximators should be extended to other classes of nonlinear systems such as 

strict feedback and others. 
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