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ABSTRACT

Traditional nonlinear techniques cannot be directly applicable to control large
scale interconnected nonlinear dynamic systems due their sheer size and unavailability of
system dynamics. Therefore, in this dissertation, the decentralized adaptive neural
network (NN) control of a class of nonlinear interconnected dynamic systems is
introduced and its application to power systems is presented in the form of six papers.

In the first paper, a new nonlinear dynamical representation in the form of a large
scale interconnected system for a power network free of algebraic equations with
multiple UPFCs as nonlinear controllers is presented. Then, oscillation damping for
UPFCs using adaptive NN control is discussed by assuming that the system dynamics are
known. Subsequently, the dynamic surface control (DSC) framework is proposed in
continuous-time not only to overcome the need for the subsystem dynamics and
interconnection terms, but also to relax the explosion of complexity problem normally
observed in traditional backstepping. The application of DSC-based decentralized
control of power system with excitation control is shown in the third paper.

On the other hand, a novel adaptive NN-based decentralized controller for a class
of interconnected discrete-time systems with unknown subsystem and interconnection
dynamics is introduced since discrete-time is preferred for implementation. The
application of the decentralized controller is shown on a power network. Next, a near
optimal decentralized discrete-time controller is introduced in the fifth paper for such
systems in affine form whereas the sixth paper proposes a method for obtaining the L,-
gain near optimal control while keeping a tradeoff between accuracy and computational

complexity. Lyapunov theory is employed to assess the stability of the controllers.
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ABSTRACT

Traditional nonlinear techniques are not directly applicable to control large-scale
interconnected nonlinear dynamic systems due their sheer size, unknown system
dynamics and the unavailability of state measurements. Therefore, in this dissertation,
the decentralized adaptive neural network (NN) control of unknown nonlinear
interconnected systems with application to power systems is presented.

In paper one, a new nonlinear dynamical representation in the form of a large
scale interconnected system for a power network free of algebraic equations with
multiple Unified Power Flow Controllers (UPFCs) as nonlinear controllers for oscillation
damping is presented by assuming that the system dynamics are unknown. Subsequently,
in paper two the dynamic surface control (DSC) framework is proposed in continuous-
time not only to overcome the need for the subsystem dynamics and interconnection
terms, but also to relax the “explosion of complexity” problem normally observed in
traditional backstepping. Then, the application of DSC-based decentralized control of
power system with excitation control is shown in paper three.

On the other hand, in paper four, a novel adaptive NN-based decentralized
controller for a class of interconnected discrete-time systems with unknown subsystem
and interconnection dynamics is introduced since discrete-time design is preferred for
implementation. The application of the controller is shown on a power system. Next, a
near optimal decentralized discrete-time controller is introduced in paper five where NNs
are employed to approximate the cost function and optimal control input by using online
learning feature. Finally, paper six proposes the L,-gain near optimal controller.

Lyapunov theory is employed to assess the stability of all the controllers.
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SECTION

1. INTRODUCTION

For the past several decades, linear systems theory was the major methodology in
the area of control as its mathematical basis is well developed and implemented on
industrial controllers. Well-known methods such as quantitative feedback theory (QFT)
[1], root locus, Nyquist criteria, Bode and Nichols chart [2] have been widely used in the
control system design and analysis in the frequency domain, while Kalman filtering [3],
the linear-quadratic regulator (LQR), and the linear-quadratic-Gaussian controller (LQG)
[4] are solutions in the time domain.

With the increased system complexity of today’s industrial systems, limitation of
the linear control methods have been observed in a variety of applications. Power
systems, robot manipulators, HVAC (heating, ventilation, and air conditioning systems),
and electric machines are just a few examples of highly nonlinear systems where linear
techniques provide good results for a very limited region of operation. If the operational
conditions change or the system exits the linear region, stability may not be guaranteed
by using linear control theory.

The nonlinear control theory, on the other hand, has been developed in the past
few decades. Topics such as nonlinear adaptive control [5], robust control, nonlinear
optimal control [6] as well as techniques including feedback linearization, sliding mode
control, backstepping [7], dynamic surface control [8] and many others have been

attracting a great attention lately. From application point of view, not only have the



nonlinear control designs been found useful in the diverse industrial applications, but also
they have proven to be more promising when it comes to stability assurance and control
performance compared to their linear counterparts.

Next, applications of nonlinear control in power systems are considered, and the

benefits over linear control techniques are discussed.

1.1. APPLICATIONS OF NONLINEAR CONTROL IN POWER
SYSTEMS

The power system is the one of the most important infrastructures for any region
of the world since it generates and transmits (Fig. 1.1) energy for lighting, heating, home
appliances, transportation, industrial applications, medical centers, etc. Thus, power
system operation, reliability, and stability are of paramount importance.

Stability is one of key features in operating power systems. When a disturbance
occurs in the system, generators deviate from their stable operating point due to the
power imbalance which in turn causes generator oscillations. The resulting oscillations
remain sustained unless they are damped by means of a stabilizer. In the recent years, the
competitive market for power generation and energy services demand a more reliable
power network. Due to offshore wind generation plants (Fig. 1.2) and solar cells, a
noticeable uncertainty in the load flows will occur in a power system thus impacting the
dynamic behavior and stability [9]. Therefore, power system controllers play an
important role in maintaining dynamic performance and power system stability, and thus,

increasing reliability.



Fig.1.1 Power system transmission lines convey energy for hundreds of miles*

Power systems are usually represented by nonlinear dynamic equations of the
generation units and loads combined with nonlinear algebraic equations of the power
network [9]. Linear approaches have been used widely to achieve a useful representation
of the nonlinear power system dynamics; however, it is assumed that the power system
stays close to the operating point. Nonlinear control of power systems, on the other hand,
is a new topic in power system analysis and control. Due to the recent developments in
the nonlinear control theory, power system researchers find nonlinear techniques more

reliable and robust to operate and control the power network.

Photo courtesy of: www2.ee.ic.ac.uk/cap/cappp/projects/15/trline.jpg



Fig.1.2 Wind turbines are one of the most common sources of renewable energy?

In the next section, an overview of recent nonlinear topics is introduced.

1.2.0VERVIEW OF NONLINEAR CONTROL TOPICS AND
POWER SYSTEM APPLICATIONS

1.2.1. Decentralized Control. Nonlinear control approaches such as feedback
linearization, robust control, optimal control, adaptive control, and many others usually
require the knowledge of the system dynamics and measurement of system states for
control. If the system consists of several subsystems, the controller requires state
measurements from all subsystems. Consider a power network which is spread over a few
hundreds of miles where the generators spread over the entire system. In other words, the
distance between the generators can be hundreds of miles. In addition, in order to achieve
an effective control design, one needs the power system bus data (voltages and phase

angles) from various points in the power system. Although the data can be acquired from

2 Photo courtesy of: jewinnie.biz/wordpress/?p=2318



generators as well as the power system nodes and be sent to the main controller or all
subsystem controllers, the process of data acquisition and transmission to the large-scale
system or among different subsystems is quite long which can cause significant delays.
Moreover, the amount of data in such an infrastructure is usually large enough to cause
processing delays in the controller regardless of the distance where the data are sent from.
The delay is one major cause of instability.

In decentralized control methods, each subsystem has a controller that uses local
measurements [10]. Then, the effect of other subsystems is normally modeled by
interconnection terms in the subsystem dynamic representation. The interconnection term
is an unknown function of other subsystems states. Depending on the type of application,
different assumptions can be made on how the interconnection terms behave. The
interconnection term can be bounded by a constant, a function of other subsystem
tracking errors, or a function of other subsystems states. The subsystem controllers are
designed simultaneously such that they mitigate the effect of the interconnection terms in
the overall large-scale system.

In power systems, the subsystems can be the generators (Fig. 1.3) or groups of
generators. Then, the power system is divided among these subsystems. The effect of
other subsystems appears as injected power that influences the subsystem dynamics.

Finally, the controller can be a generator excitation controller or FACTS device.



Fig. 1.3 Generators are the subsystems in the decentralized control of power systems®

1.2.2. Adaptive Neural Network Design. The use of adaptive neural networks
(NN’s) in control systems has been motivated by biological processes such as the nervous
system where the biological neural network has the ability to learn and control. The
ability of neural networks to learn from the input data is widely used in nonlinear control
to approximate unknown nonlinear functions [11]. Neural networks can approximate
continuous functions in a compact set. The approximation precision depends on the
number of neurons. It has been shown that the function approximation error can be
arbitrarily small if the number of neurons is adequately large [11].

The weights in the neural networks are trained via offline methods by using a
series of input and output data. However, in unknown nonlinear systems the input-output

data set is usually not available. Thus, the ideal NN weights are unknown and only an

® Photo courtesy of: www.pppl.gov/.../pages/motor_generators.html



estimation of the ideal weights can be utilized. Consequently, the actual weights can be
tuned in an online fashion such that certain requirements in the control design are
satisfied including stability. The most common way of tuning the NN weight estimates is
to obtain an update law such that, together with other dynamics of the control system, it
satisfies the Lyapunov stability requirements.

When a power system is represented in a purely dynamical form, the nonlinear
functions are complicated functions of all the power system states [12]. Obtaining these
functions is involved which requires the knowledge of the topology of the power system.
By using NNs in the control design, one can relax a priori knowledge of power system
topology as well as burdensome nonlinear function calculations. Moreover, adaptive
neural networks combined with the decentralized control can help stabilizing power

systems when the size of the power system is large.
1.2.3. Optimal Nonlinear Control. Closed-loop stability is often the sole

purpose of many controller designs. However, other objectives, such as optimality,
require a control policy to stabilize the system in an optimal manner when the control
cost matters in addition to the system stability. In the robust optimal control formulation,
the objective of the controller is to minimize a certain cost function which represents a
penalty associated with the states and control input. The optimization problem can
include disturbances. In this case, controller is to minimize a certain cost function
representing a penalty associated with the states and control input while maximizing the

disturbances that the system can tolerate [6].



1.2.4. Discrete-time Decentralized Control Design. Although continuous-time
controller design can be considered for some applications through using analog
controllers, in practice discrete-time control approaches are preferred for computer
implementations [13], since controller designs in continuous-time become unsatisfactory
when implemented on digital computers using low sampling hardware. Moreover, due to
large size of large-scale interconnected systems such as electric power systems, the
feedback delays degrade the controller performance, and thus, the design requires more
decentralized control techniques. Therefore, decentralized controller development in
discrete-time has to be explicitly considered for large-scale systems. The decentralized
controller development in discrete-time for power system application is not yet
undertaken due to the fact that the stability proofs in discrete-time are more involved than

their continuous-time counterparts [14].

1.3. ORGANIZATION OF THE DISSERTATION

Nonlinear control of dynamic control systems and its application to physical
systems in both continuous and discrete-time domains has been attracting a great
attention due to the fact that most of the physical systems are nonlinear in nature.
Although numerous nonlinear control methods are available in the literature, they do not
meet all the required performance specifications for complex physical systems and
networks. Some of the requirements include asymptotic stability, optimality,
controllability and stability in the presence of uncertainty, and desired performance. On
the other hand, in order to employ the nonlinear control techniques, a mature

mathematical model of the physical system needs to be available.



Power systems are considered as a large scale system but also it suffers from the
lack of an appropriate dynamical representation. A power system includes nonlinear
dynamical relationships for generators and nonlinear algebraic relationship representing
power balance equations in the system buses which make it hard to directly employ the
nonlinear control techniques. Therefore, in this dissertation a novel representation of the
nonlinear dynamical power system will be considered and various sort of decentralized
techniques will be introduced. This dissertation is presented in the form of six papers, and
their relation to one another is illustrated in Fig. 1.4.

In the first paper, a new nonlinear dynamical representation of a power network
free of algebraic equations with UPFC as a nonlinear controller is presented. This
representation is appropriate to model a nonlinear power network with several FACTS
devices. Then, oscillation damping using nonlinear control schemes for UPFCs is
discussed. The proposed approach in this paper involves obtaining a nonlinear dynamical
representation using network power balance equations. The advantage of this approach is
that no algebraic equations are needed for the representation while still retaining the
nonlinear behavior. Though classical power system representation in which the internal
voltages of the generators are held constant to develop the control approach are
considered, the proposed approach can be extended to more complex generator models
without loss of generality. Then, a nonlinear control scheme is developed to stabilize and
damp the oscillations resulting from a disturbance. The universal approximation property
of neural networks (NN) is invoked to approximate the power system uncertainties online
without any offline learning phase. Finally, the representation is shown to be a

decentralized nonlinear system.



10

o

Decentralized Adaptive Neural Network (NN)
Control of Interconnected Nonlinear

Dynamical Systems with Application to Power

Systems
( -
Interconnected Nonlinear Paper 1: Novel Dynamic Representation and Control of Power
Dvnamical Svstems Svystems with FACTS Devices

I
Decentralized Adaptive J

Neural Network Control

7 S Paper 2: Decentralized Dynamic Surface Control of Large-Scale
Dymamic Surface Interconnected Systems in Strict-Feedback Form Using Neural
Control Networks with Asvmptotic Stabilization J

Paper 3: Power Svstem Stabilization Using Adaptive Neural
Network-based Dynamic Surface Control

\ J

~

P
Paper 4: Decentralized Adaptive Neural Network Control of a Class
of Interconnected Nonlinear Discrete-time Svstems with
Application to Power Systems

~
Online Optimal Paper 3: Decentralized Near Optimal Control of a Class of h
Interconnected Nonlinear Discrete-time Systems by Using Online

Discrete-time NN
Control

-

Control (HIB) 2 ! -
Hamilton-Bellman-facobi Formulation
. ; I - . . . —_—— X 3
HII Offline Paper 6: Generalized Hamilton-Jacobi-Isaacs Formulation for Near
Optimal Control J Optimal Control of Affine Nonlinear Discrete-Time Systems with
L application to Power Svstems )

Fig. 1.4 Dissertation outline

In the second paper, the dynamic surface control (DSC) design framework is
proposed for a class of nonlinear uncertain interconnected systems in strict-feedback
form while relaxing the matching condition; thus, the repeated differentiation of the
virtual control signal involved in the traditional backstepping design utilized in Paper I, is

relaxed while guaranteeing asymptotic stability. Next, NNs are introduced to overcome
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system uncertainties. Thus, the use of neural network-based DSC in decentralized control
not only overcomes the lack of knowledge about the subsystem dynamics and
interconnection terms, but also relaxes the explosion of complexity problem normally

observed in traditional backstepping. Moreover, the control gain matrix, g(x), is

considered as an unknown nonlinear function of the states and its time derivative is not
required. It is demonstrated that the states of the subsystems approach zero
asymptotically through novel online NN weight update laws in contrast with
boundedness with the available DSC schemes in the literature.

In the third paper, the power system with excitation control is represented as a
class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-
feedback form. Subsequently, dynamic surface control (DSC)-based adaptive neural
network (NN) controller is designed to overcome the repeated differentiation of the
control input that is observed in the conventional backstepping approach. Then, the
power system dynamical model presented in paper | is expanded to the generator flux-
decay model representation [9]. Subsequently, by using the proposed model, it is shown
that the power system with generator excitation control satisfies the theoretical
requirements introduced in paper Il, and thus, the proposed NN controller introduced in
paper 11 is applied to a medium size power system to mitigate the oscillations after a fault
occurs. Simulation results on the IEEE 14-bus power system with generator excitation
control are provided to show the effectiveness of the approach in damping oscillations
that occur after disturbances are removed. The end result is a nonlinear decentralized
adaptive state-feedback excitation controller for damping power systems oscillations in

the presence of uncertain subsystem and interconnection terms.
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The work in the fourth paper is focused on a novel decentralized controller design
for a class of interconnected nonlinear discrete-time systems in affine form with unknown
subsystem and interconnection dynamics. A single neural network (NN) is utilized in the
proposed decentralized controller to overcome the unknown internal dynamics as well as
the control gain matrix of each subsystem. All NN weights are tuned online by using a
novel update law. By using Lyapunov techniques, all subsystems signals are shown to be
uniformly ultimately bounded (UUB). Simulation results are shown on a general
interconnected nonlinear discrete-time system in affine form first to show the
effectiveness of the approach. Subsequently, interconnected electric power system with
excitation control is considered as an example and the proposed controller is utilized to
mitigate the power fluctuations after a disturbance has occurred.

In paper five, the direct neural dynamic programming technique is utilized to
solve the HIB (Hamilton Jacobi-Bellman) equation forward-in-time for the decentralized
near optimal control of affine nonlinear interconnected discrete-time systems where the
interconnected terms in the subsystems are unknown function of other subsystem states
which are unavailable. The optimal controller design consists of two NNs; an action NN
that is aimed to provide a nearly optimal control signal, and a critic NN which evaluates
the performance of the system. All NN parameters are tuned online. By using Lyapunov
techniques all subsystems signals are shown to be uniformly ultimately bounded (UUB)
and that the synthesized subsystems inputs approach their corresponding near optimal
control inputs with small bounded error. Simulation results are shown on an

interconnected system to show the effectiveness of the approach.
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The work in the sixth paper proposes a practical method for obtaining the L,-gain
near optimal control while keeping a tradeoff between accuracy and computational
complexity for a class of affine nonlinear discrete-time systems. Using the Taylor series
expansion of the value function and a small signal perturbation assumption, a generalized
Hamilton-Jacobi-lIsaacs (GHJI) equation is proposed, and an iterative approach to solve
the GHJI is presented. Successive solutions for the value function ensure that the value
function reaches its saddle-point in a zero-sum two-player differential game where the
players are system disturbance and control input. The successive approximations of the
value function are accomplished using the approximation properties of neural networks
(NN) and least squares. Moreover, a NN identifier is presented in this work to learn the
nonlinear internal dynamics of the system. Using Lyapunov theory, it is shown that the
identification errors converge to a small bounded region around the origin. Then, using
the learned NN model of the internal dynamics, offline training is undertaken resulting in
a novel solution to the HJI optimal control problem. The novelty of the proposed method
is that the scheme does not require explicit knowledge of the system internal dynamics as
only an online learned NN model is utilized for the offline training. Additionally,
convergence of the successive approximations is demonstrated while explicitly

considering the identifier NN reconstruction errors.

1.4. CONTRIBUTIONS OF THE DISSERTATION
This dissertation contributes to the field of general nonlinear interconnected
systems controller design as well as to the control of power systems. The nonlinear

model development for power systems presented in paper 1 provides a suitable
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framework to apply nonlinear control techniques to the power systems. In the proposed
representation, the power system algebraic equations are converted to dynamical
equations, and thus, a pure dynamical system is obtained. This modeling procedure is
then enhanced in other papers to achieve decentralized adaptive NN control of power
systems.

Next, the decentralized control design is discussed in paper 2 and the dynamic
surface control (DSC) technique is applied to the general decentralized continuous-time
nonlinear systems in backstepping form with unknown system dynamics, control gains,
and interconnection terms. Then, a NN controller is considered in the control design to
approximate the system nonlinearities. Through a novel NN update law and by using
Lyapunov techniques, asymptotic stability in state and output feedback design is achieved
as opposed to bounded results available in the literature. Further, in paper 3, the power
system model with excitation control is represented in general decentralized model
representation by using the enhanced model introduced in Paper 1. Then, the DSC
adaptive NN decentralized control method is applied to the power systems to mitigate
oscillations after a disturbance occurs and effective damping performance is illustrated.

In paper 4, the general unknown discrete-time nonlinear decentralized control
design is discussed and adaptive NN is utilized to approximate the unknown dynamics in
the subsystems. Unlike, the previous works, the interconnection terms are not bounded by
constants and can grow in a quadratic manner while the large-scale system states as well
as NN weight estimates are proven to be uniformly ultimately bounded. Finally, power
system with excitation control representation is developed in discrete-time and the

proposed controller is applied where satisfactory damping performance is shown.
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Subsequently, the direct neural dynamic programming (DNDP) approach is
utilized for the optimal regulation and tracking of nonlinear interconnected discrete-time
systems in affine form by solving the HIB equation online and forward-in-time. The NNs
are used to approximate the critic as well as the action networks where the optimal
control signal is approximated while minimizing the cost function based on the
information provided by the critic in the presence of the large-scale system unknown
interconnection terms but known subsystems dynamics with explicitly considering the
effect of the interconnection terms in the optimal control design. Additionally, overall
closed-loop stability of the nonlinear decentralized system is presented.

The work in paper 6 seeks to provide the HJI optimal framework for nonlinear
systems in affine form by proposing a practical method of obtaining the L,-gain near
optimal control while keeping a tradeoff between accuracy and computational complexity
where the method can be expanded to decentralized nonlinear interconnected systems.
Using the Taylor series expansion of the value function and using a small signal
perturbation assumption, a generalized Hamilton-Jacobi-lsaacs (GHJI) equation is
proposed, and an iterative approach to solve the GHJI is presented. Successive solutions
for the value function ensure that the value function reaches its saddle-point in a zero-
sum two-player differential game where the players are system disturbances and the
control input. Next, an NN identifier is presented in this work to learn the nonlinear
internal dynamics of the system. Using Lyapunov theory, it is shown that the
identification errors converge to a small bounded region around the origin. Then, using
the learned NN model of the internal dynamics, offline training is undertaken resulting in

a novel solution to the HJI optimal control problem. Power system with FACTSs device as
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damping controller is presented by applying the proposed method to achieve optimal

damping performance.

1.5. DEFINITIONS

In this part, we review some of the definitions that are used in this dissertation.

Equilibrium Point: Consider the dynamical system x e f (x,u,t) (which can be a function

of states as well as time) with x e R"represents the states of an uncontrolled open-loop
system, or a closed-loop system after the application of the control input, and control

input u(t) has been specified in terms of the state x(). Let the initial time be t,, and the
initial condition bex,=x(t,). A state x is an equilibrium point of the system
if f(x,t)=0t>t,.

Asymptotic stability: An equilibrium pointx, is locally asymptotically stable at t, if there
exists a compact setSc9®R" such that, for every initial condition inx,cS,
[x(t) = x,| >0 as t — oo [14].

Uniformly Ultimately Bounded : Consider the dynamical system x = f(x) with x %" being
a state vector. Let the initial time be t, and initial condition bex, =x(,). Then, the
equilibrium point x, is said to be UUB if there exists a compact sets < %" so that for all
xo S there exists a bound B and a time 1(B, x,) such that |xt) - x| <8 for vt >t, +T [14].
Neural Network Universal Approximation: A general function f(x)eRwhere xeR"can

be written as f(x) =WTg(V "x)+&(x) with &(x) a neural network (NN) functional

reconstruction error and ¢is the neural network activation function vector which is a
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basis function vector, W e RN** and vV e R™™- are weight matrices [14]. The input-to-
the hidden-layer weight matrixV is selected initially at random and held fixed during

learning. It is demonstrated in [15] that if the input-to-the-hidden-layer weights, v , are
chosen initialized randomly and kept constant and if the number of neurons N, in the
hidden layer is sufficiently large, the NN approximation error (x) can be made arbitrarily

small since the activation function vector ¢ forms a basis.
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PAPER

1. Novel Dynamic Representation and Control of Power
Systems with FACTS Devices

S. Mehraeen, S. Jagannathan, and M. L. Crow®

Abstract— FACTS devices have been shown to be useful in damping power system
oscillations. However, in large power systems, the FACTS control design is complex due
to the combination of differential and algebraic equations required to model the power
system. In this paper, a new method to generate a nonlinear dynamic representation of
the power network is introduced to enable more sophisticated control design. Then, the
representation is expanded to decentralized formulation of power systems. Once the new
representation is obtained, a back stepping methodology for the UPFC is utilized to
mitigate the generator oscillations. Finally, the neural network approximation property is
utilized to relax the need for knowledge of the power system topology and to approximate
the nonlinear uncertainties. The net result is a power system representation that can be
used for the design of an enhanced FACTS control scheme. Simulation results are given
to validate the theoretical conjectures.

Index Terms — Power System Control, Nonlinear Systems, Neural Networks, FACTS.
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I. Introduction

Power system stability is defined as the ability of an electric power system, for a
given initial operating condition, to regain a state of operating equilibrium after being
subjected to a physical disturbance [1]. Power system stability can be improved through
the use of dynamic controllers such as power system stabilizers, excitation systems, and
more recently FACTS devices. To effectively design the controller, proper modeling of
the generators, controller dynamics, and the network must be utilized. A power system is
usually modeled using a combination of differential and algebraic equations. The
differential equations represent generator angles and speeds whereas the algebraic
equations represent bus active and reactive power balance relationships. Incorporating the
differential-algebraic equations into the control process is difficult and is made more
complex by the inclusion of FACTS devices such as the unified power flow controller
(UPFC).

Advanced controller design usually requires that a system be represented by
purely differential equations. However, power systems with embedded FACTS devices
typically require the algebraic transmission network power balance equations to be
included in the system model and it is not straightforward to develop an algebraic
equation free system model representation for control purposes.

Several approaches have been analyzed for system wide FACTS control design.
Past work [2-6], has proposed to linearize the differential-algebraic equation network and
eliminate the algebraic equations through reduction methods. Then linear control methods
are applied to the linearized power system. This approach, however, tacitly assumes that

the network variables remain in the neighborhood of the desired operating point. In
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addition, the placement and number of UPFC devices are determined heuristically. By

contrast, in [7-12] a single-machine infinite bus model is used to apply nonlinear control

schemes. However, the infinite bus assumption required for this approach is not valid for
large multi-machine systems when the fault affects the power system.

FACTS devices have been considered in [13-14] via utilizing energy functions to
develop the controllers. This approach is not practical because it requires the calculation
of the derivatives of power system bus voltages and angles and requires numerical
differentiators or approximations. Nonlinear control of a multi-machine power system
excitation and governor control has been proposed using back stepping in [17]. This
method holds considerable potential, but does not consider FACTS devices. FACTS
devices can serve many control functions in an electric power system including steady-
state power flow, voltage regulation, and oscillation damping control. Thus, stabilizing
capabilities can be added with the other control capabilities without any additional cost.
This property is exploited in this work.

In this paper, we propose the following contributions to overcome the above-
mentioned challenges:

I- a new nonlinear dynamical representation of a power network free of algebraic
equations with UPFC as a controller is introduced. This representation is appropriate
to model a nonlinear power network with several FACTS devices,

I1- oscillation damping using nonlinear control schemes for UPFCs, and

I11- a neural network approximation property is utilized to relax the need for knowledge

of the power system topology and to approximate the nonlinear uncertainties.
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Our approach involves first obtaining a nonlinear dynamical representation using
network power balance equations. The advantage of this approach is that no algebraic
equations are involved in the control design while the nonlinear behavior is retained. In
the proposed approach, we use the power system classical model in which the internal
voltages of the generators are held constant in order to develop the control design.
However, the proposed approach can be extended to more complex generator models
without loss of generality. Subsequently, a nonlinear control scheme is developed to
stabilize and damp the oscillations resulting from a disturbance such as a three-phase to
ground fault. Finally, we have employed the universal approximation property of neural
networks (NN) to approximate the power system uncertainties and to relax the need for
the a priori knowledge of the system uncertainties.

[l.  The Power System Differential-Algebraic Model

The classical generator representation is often sufficient for the control
development in order to mitigate the inter-area oscillations since only the rotor speed
deviations are of interest. In addition, the resistances of power network lines are
neglected. Despite this assumption made for ease of control development, the proposed
control will be validated on a full nonlinear power system model.

It is more convenient to represent the generator dynamical equations in the Center

of Inertia (COI) coordinates:
i =a 1)

M@:P.—%PCO,—B. E.V,.,sin(G -y, );i=1...,n (2)

i,i+n"—gi "i+n
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Where 5=6-6,, o=@ -wy» v =5 MT=zi":lMi, 50:]/MTZ::1Mi5_i, @ =YM7 Y M@,

i=1

Py, =anPmi _ ”*Z'jpu where Py; is the active load at each bus and P, is the input mechanical
=1

i=n+l

power. Also, s, is the rotor angle of the i-th machine, @; is the angular speed, 5, is the
center of angle, o, is the center of angular speed, B represents the reactance of the

admittance matrix, Eg; is the i-th machine internal voltage, n is the number of generators,

M; = 2H/ax is the i-th machine inertia, and v,,, and i7;,, are the generator bus voltage

and phase angle, respectively. In addition, N is the number of non-generator buses in the
power system.

The bus voltages and phase angles of all of the power system buses are
constrained by the following set of algebraic power balance equations (neglecting

resistances)

N+n
Py + zBijViVj sin(y; —y ;) =Sp; =0

= ©)

N-+n
-Qy; +ZBijViVj cos(yi —w)=Sqi =0i=n+1...n+N
j=1

where P; and Q are the active and reactive loads on the i-th bus andv; =€ ;y; =5 for
1<j<n.
I1l.  New Dynamic Representation of Power Networks
Equations (1) through (3) form the set of power system differential-algebraic
equations. However, a controller design in a differential-algebraic environment is
difficult to achieve, therefore it is desirable to substitute the set of equations (3) with a
more appropriate set. One way to have a pure dynamical system is to take derivative of

equation (3) to obtain V; and y; terms. Thus, we have
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OSpi _ OSp; vV +68Pi l/./+aSpi 5=0 (4)
ot ov oy 00

and

0Spi  OSpi.. OSoi 0Sqj -
Qi _ Z2Qiyj Q'W+ Qis_0 i=n+1..,n+N (5)
ot oV oy 08

Solving equations (4) and (5) forV, andy,;, we obtain a new set of dynamic
equations as
e e
y D(xs) E(xs)] [F(xs)
where

V=N Varz oo Vo ow =W ¥oo o o] s @0 0=[o, @, ... o] . Also, we define

s=[6, & .. &1 and x.=[s" & VT ,'I". Assuming P;and Q;to be functions of v,

B _ _ & o5
and v, we get B g B o % 5 P - B andp. _Pe as
l/ll g AN><N PY, NxN al// N xn Y NxN 6V EN><N 6y/ N xn

given in (1-3a) through (I-4e) in Appendix I. Once again, it is important to note that this
step is for controller development and is not required for actual (practical)
implementation. The proposed approach is a complementary way of solving the
differential-algebraic equations {x=f(x,z); g(x,z)=0} where z=h(x) is obtained by
solving g(x,z) =0 and replaced in the differential equations x = f (x,z) where x is the states
of the power system. Solving the nonlinear algebraic equations g(x,z)=0is a huge

challenge (if not impossible in large-scale power systems) which is relaxed in the

proposed approach without losing the nonlinear characteristics of the power system.
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IV. Power System Decentralized Model

In this section, a decentralized representation of a power system is obtained for
nonlinear controller development. Generator excitation control is a means to alleviate the
power system oscillations. Since the disturbance is a function of the power network
voltages and angles as well as generator states, it is generally hard to design a centralized
damping controller for the complex interconnected power network. Thus, in this section,
we aim at a decentralized excitation controller to mitigate the oscillations by using locally
measurable states of the generator as well as its bus voltages and angles. For this
controller development, the large-scale power system has to be represented in a

decentralized form which is discussed next.

A. Model Development

A power system is usually modeled using a combination of differential and
algebraic equations. The differential equations represent generator states (i.e. angles,

speeds, and dq voltages E;and E;) whereas the algebraic equations represent bus active

and reactive power balance relationships. For the purpose of controller design it is
desirable to have pure dynamical equations. In the previous section an algebraic-free
power system representation based on the classical generator model is represented. In
order to incorporate the generator flux-decay states, the proposed model is extended
herein.

A two-axis model [18] is chosen for the purpose of power system representation.

As a consequence, the generator dynamical equations are given as
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where 5, is the rotor angle of the i-th machine, ; is the difference between the generator

angular speed and synchronous speed, E;; and Ej; are generator’s dg variables as defined in
[18], Egy is the excitation voltage, and v,,, and i7;,, are the generator bus voltage and

phase angle, respectively, as depicted by Fig. 1. In addition

Pai =By inVien (Egi SN, i n) —~ Edi COS(S, ~iun)). (8)
where B represents the reactance of the admittance matrix, n is the number of generators,
and N denotes the number of non-generator buses in the power system as shown in Fig. 1.
The bus voltage and phase angles of the power system buses are illustrated in Fig. 1
which are constrained by the set of algebraic power balance equations (neglecting

resistances) as

N+n

P, +ZB,JV (Egy sinyi —55) + gy cosly; —57))+ . ByViVj sinly; —y/;)=Sp; =0

j=n+l

N-+n (9)
QLI ZB”V (E COS ) EE"] sin(g//i —5J))— z B|JV|VJ COS([//i _V/j)szi =0

j=n+l
i=n +1 ..... n+N

Then, taking the derivative of (9) to obtain v; and v, as

OSpi _ Spiy; , 0Spi ; , O 5+%Eé Beigr _g (10)
& v oy a5 o, JEg

and

Soi_Boiy, Bai ;, Ba 5 Sal s Soi

+ E, =0 i=n+L..,n+N (11)
ot oV oy 00 GE{] OEy
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(R

[ 2n-1

O+—F =
1
Zy

T 2n:2

Fig.1-Power System

By using (7) for £y and Ey and solving (10) and (11) and forV; andy;, we obtain

a new set of dynamic equations as

{A(X) B(x)}{y'}ﬂqx)}mR(X)}O (12)
D(X) E(X) |y F(x)

Where V:B/n+l Vhiz - Vn+N]T’ V7:[V7n+l Vg - ‘/7n+N]T’ and 5:[57)1 67)2 an]TIS the

generators’ speed error vector. Also, define 5=[5 &, ... 51", E,=[Ey Ej ... Epl
! ’ ! ’ T

Ei=[Ey Ed - Eil',  Eg=[Eq Ergz- Eranl AP, =[APy APy ... AR,]T, and
x=[6" @ E§ Ef Efg V' w'1". The entities for Ay.n By » Dy

Enxn » Chxny Frxn s Ronsg s@ND Gy, can be derived by collecting the corresponding

coefficients. Equation (12) can be rewritten in a more appropriate way as

HEC R

% D(x) EMX) | (LF(X)
It is important to note that this step is needed only for model development and is

not required for implementation.
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B. Generator Representation

Next, the flux-decay model [18] of the generator is given as

= _ . 1 -, 1 , /
i = o;; @; :m(Pmi -Py ); Eg :m(— Egi +(Xgi — Xgi g +Efdi) (14)

- 1
Brai =1 (VRi *KEiEfdi)
Ei

where Pg; is the active load at each bus, and M; = 2H/ay is the i-th machine inertia. In

addition, the following equalities are valid

Pei = Egilgi + (Xgi = Xgi ) gil ai (15)
and
Igi = BijisnVien SIN(G; ~%isn); 1ai = Bijsn (E{qi ~Vian 008(S; —‘7i+n)) (16)

Moreover, the power balance equations (9) will be simplified by employing the flux-

decay assumption

Eg = (Xg —X5) g - @17
In this design we assume that the mechanical power P, (1<i<n) is slowly

changing compared to the other control variables; thus P,; ~0. Now define

Xi1 = 0 —O0i; Xi2 = @j; Xj3 = Me'

(18)

= Xia = Peoi — 1qiEtdi

where AP, =P,,; —P,; and P, =P,;. Consequently, the generator dynamics (8) can be

rewritten in the state-space form as

Xi1 = Xi2; Xi2 = Xi3

X; X; 1 .
i*'—4+—(xdi—xqi)'qi|qi—Ec'qi|qi
Taoi  TaoiMi  Tqoi
—(Xqi—X&iX'qi'dini'di)

. KEi VRi .
Xig = |qi(_E_lEfdi —ﬂj— 1 i E fai

Xiz =—

(19)

Tgi Tgi
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The electrical diagram of the generator using the flux-decay model is depicted in

Fig. 2 [18] where the voltage source and injected current are represented as

57 E; . .
Ei:((xqifxai)lqijé,i)e(o zj and, I; =Z—'. According to the figure and (17), the voltage

i
source in Fig.2 can be represented as

E; = (X =X JBiinVin Sin(5, —;z/i+n)+jE(g|i)e((si ‘%) . Then, by applying I =Y,V to the power
network, where 1=[1, 1, .. I,J and V=l e v, e .. v,e'=] we obtain

BT
((Xqi - X&i)Bi,i+nVi+n Sin(Sj — Win) + J'Eéi)e 2

N
= ZYbus,ika+neWk+n
k=1

(20)

which yields
(Xqi = Xgi )Bi,i+nvi+n Sin(5; — i4n)sin(5;) + Egi c0s(6;)

N - 21
= Re[szus,ikameWk*”J &)

k=1
and
~(xgi = %4 JB1 4 nVin SINS, — i) COS(5,) + Ef sin(3,)

N _ 22)
=Im Z‘,Ybus,ik\/kmeWkJrn

k=1

(-]df + f‘rgz}(dj ‘”/2)

V+r?j% +1
T+

[(ng’ — Xl )!qs']e(g,x —xj2)
+ jE;.,I

Fig.2 Generator flux-decay model
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Remark 1. Here Y, may contain nonlinear impedances (including constant loads). Thus,
even if the system Y, is reduced to an nxnmatrix, non-generator bus voltages and
angles are involved in computations. Thus, conventional Y, reduction techniques cannot

be applied to overcome non-generator nodes.

C. Decentralized Nonlinear System Representation

The dynamical representation of the power system from (19) can be rewritten as

a general class of L interconnected nonlinear subsystems in affine form as
%ig = fia (Xia) + 9 (Xia ) Xiz + Aig (X5)

' _ (23)
Xi = fi (X )+ gy (X ug + 45 (X))

hi (Xi) = Xy

where index i, 1<i<L, represents the subsystem (generator) number, L is the number of
subsystems (generators) in the power system, p, 1<p<l, shows the generator state
number, | =4is the order of the power system according to (19), f()andg(), represent
unknown nonlinearities, a() denotes interconnected terms, with X;, =[xy,....xp]" »
Xp=[X] . XITTs X, =[x....x,]"»  X,=0 and h(X;)is the subsystem output for
1<i<Landi<p<l. By comparing the power system representation (19) and the general
system description given by (23), it follows that f,="f,="f,=0, fi3=—X3/Tq0i,

i = 9i2 =1, Gi3 =YT4eiM;, and gi, = 1. Also, A, =4, =0, with
Ajs :i.(xdi = Xgi )' gilg — Eqi I.qi _(Xqi = X Xl.qi lgi +1g I )’ (24)

Aig =1 Eai (25)

and
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uj = |q($—EEi‘Efdi —\T%J (26)

In the following, we findv and y as a function of the states 5, @, andAP,.
Equations (21) and (22) yield expressions Ey;cos(sj)and Eg;sin()as functions of 5 ,v,
and y which in turn yields E;; and 5 to be functions of v , andi as
Egi=%i(V.i)s & =% (V.i7)- (27)
Consequently, by using (15), (16), and (27) the variables 1, andiyas well as p,can be
represented as functions ofv and y as
Poi = 95 (V. i7) (28)
Now, equations (17) and (27) (for1<i<L) along with the 2N nodal power flow equations

(3) give solutions for v and y in terms of s, for 1<i<L as

Vien =i (8); Fisn =Hi(5); 1<i<N (29)

D. Interconnection Terms

In order to address the interconnection terms, the following assumption is needed
for analyzing their upper bound.

Assumption 1: The excitation voltage, g, , satisfies the following inequality [19] defined
by

Efai < K(Eji + (xai — X4l ai) (30)
where Kis a positive constant. Consequently, by (16) and (27) we have

Etai < %(V,i7) (31)

Also, by employing (17), (27), and (31), equation (12) can be simplified to
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Vien SCi(Xs); Wi <Coi(Xs);  1<i<N (32)
where c;;()and c,(.) are positive nonlinear functions andx,=[s™ " vT #'1". Then, by
using (28) and (29) we obtain

Viin <Ci(8,@,P.); Wiy <C(5,@,P,); 1<i<N (33)
where ¢;and ¢, are positive nonlinear functions. Now, by considering the

interconnection term (24) along with (16), (29), (30), and (33) it can be shown that

|Aip| <¢(5,@,AR,) for3<p<4. This step is only for model development and is not necessary

for practical implementation.

Next, we show that A;and A;, are zero at steady state condition. Obviously, at
steady state, we have xg; =AP,;/M,; =0. Consequently, by using (18) at steady state, we
obtain
Aigs =Y Tg0r (Xai = Xgi N L gis
where the index “s” stands for steady state conditions. At steady state, the states x;;, X,

and x;zin (18) are zero. The term (x, —x4) is zero for round rotors and it is a small value
for salient pole rotors. Therefore, A, =0. Also, since x; =0 at steady state, we have

X4s =0 In addition, I,

=0 andA,,, =0. Consequently, at steady state x; = x;, = X3 =X, =0,
we have A;3(0)=A;,(0)=0.
V. The UPFC as a Nonlinear Controller
In the proposed effort, the UPFC is chosen as a FACTS device which acts as a
controller to mitigate system oscillations. The method, however, is applicable to other

FACTS devices since the proposed approach is generic and deals with power balance

equations as well as generator dynamics. As illustrated in Fig.3a, the UPFC shunt
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transformer is connected to bus t+n and the series transformer is connected between
buses t+n and h+n. The effect of the UPFC on the power system can be represented as
injected powers to the connecting buses [20] as shown in Fig. 3b. This is referred to as

the “power injection” model of the UPFC [20].

~ & +
I Bi+n,iﬁ+)é

Series
t+n Transformer h+n

Shunt tn h+n

Transformer

tn
ta

=+ 1+

(a) (b)

Fig. 3 a) UPFC connected between two network nodes b) Injected powers to the
connected buses

The injected active and reactive powers are given by

Peen = BranhenVoVhin SINWein —Whin +6)

Prin = =BrannsnVoVhin SINWisn —Whin +0) (34)
Qt:n = Biin ninVpViin COS(0)

Qhsn = —BinhenVoVhin COSWiin —Whin +6)

whereVv, =V, Z(y,., +6) is the voltage produced by the series transformer and can be

assumed to be a function of time. Thus, the power flow equation at buses t+n and h+n
can be represented as

PoLotn + BranhenVien [V SINW iy =Whin ) + #2608 4y —Whin)]1 =0

Povohsn = BrennenVhen [7 SINWein =Whin) + #C0S(Win —¥Whin)]=0 (35)
QoLotin ~ BrinhsnVien? =0

Qovohsn + BrinhsnVhin [ COSWiin =Whin) = #SINW 10 —Whin)]1=0
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wherey =v, cos#, u=V,sing, and Py, and Qq , represent the left hand side of equations
(3). By taking the derivative of (35), equations (4) and (5) must be modified on the buses
t+n and h+n. Therefore, at bus t+n, we get

I:.’OLDtJrn + Bt+n,h+n[75in(‘//t+n _l//h+n) +/,lCOS(l//Hn “Vhin )Nh+n (36a)

+ Bl+n,h+nvh+n [7/COS((//I+n _l//h+n) - /USin(l//Hn _V/h+n)](l/)t+n _(/)mn)

+ Bt+n.h+nvh+n [7‘/Sin(l//t+n - '//h+n) + ,L'ICOS(I//HH “Whin )] =0

and at bus h+n, we get

IjOLDh+n - Bt+n‘h+n [7/Sin(l//1+n _l//h+n) +.IUCOS(I//HH _l//h+n-)]v.h+n . (36b)

- Bt+n,h+nvh+n []/COS(I/IHH 7'//h+n)7;usm(‘//1+n “Whin )](l//Hn 7l//h+n)

- Bt+n,h+nvh+n [7}Sin(l//t+n - ‘//h+n) + ,L'lCOS((//Hn “Vhin )] =0

Similarly, terms are also added to the left hand side of (5) at buses t+n and h+n

to achieve
QOLD+n - Bt+n,h+n Nt+n - Bt+n,h+nvt+n7} =0 (378')
and
QOLDh+n +Biinhen [y cOS(W tn —¥hin) = #SIN(YW tsn =¥ hin )Nh+n
+BiinnenVhin 77 SINW tin —Whin) = #C0S(W n =¥ hin )W tin —Vhin) (37b)
+ Bt+n,h+nvh+n [7 cos(Win —Whin) = £2SiNW1, 0 —¥n.n)]=0

By updating matricesA,B,D ,andE with the additional terms, new

matrices A, B, D, and E are obtained and given by (I-5a) - (I-5d) in Appendix I. Note that

matrices C and F remain unchanged. Consequently, (6) becomes

{A(X) B(X)}Bﬂ _ —|:C(X):|a) et (38)

D(x) E(x) F(x)
where x=[x{ » u] and vector G represents additional terms in (36) and (37) which are

dependent on yand ;. We define u, =y and u, = and obtain:
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Gt = +Bt+n,h+nvh+n [ul Sin(’//tm “W¥hin ) +U, COS(‘//tJrn “Whin )]
G = —BrnhenVhin [Us SINW 1n =Whin) U, COSWin —Whin)]

Gin = _Bt+n,h+nvt+nu1 (39)
Ghen = +Btﬁ-n,h+nvh+n [ul COS(‘//H—n “Yhin ) —U; Sin(WH—n “¥hin )l
G; =0; elsewhere
By solving (38) for Vv andy , we obtain the set of nonlinear equations
m { fl(x)HgAx) gz(xq{uﬂ (40)
| [ L,0] [80) 8.(x) ] u,

where

[fl(X)}[A B}lm, {gl(x) gz(x)}:{A BTG, G, is introduced as equation (I-6) in
) D E| |F g,(x) T,(x) D E
Appendix | and satisfies c =G[y, [/, and f,f,,,,9,.,.9, <R" .

Equation (40) is an affine nonlinear system in continuous-time with control inputs
u;andu, . Once the control inputs are defined, the UPFC control parametersy and x can be

obtained by integrating the control inputs. By Incorporating (1) and (2), we obtain the

system dynamic equations as

=0
M@, =P, _% Peor = Biiin EgiVi+n sin(d, —y;,,),  1=L...,n
{v}{g(x)}{g&x) gz(x)}{w} @)
4 f,(x) g:(x) g,(x)JLu,
4 =U,
=,

Equation (41) is now in special case of strict feedback form (as explained after (45))
where backstepping can be used for the controller design.
Remark 2. In the case of multiple UPFCs in the network, equations (34) through (39) are

repeated for each pair of UPFC buses t;+nand h;+nfor all 1< j<k, wherek is the total

number of UPFCs. Similarly, the corresponding entries of matrices A, B, D, and E change
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following the same logic described for equation (38). Moreover, vector G has entries
corresponding to each UPFC. Consequently, the resulting differential equation is affine in

terms of all UPFC control inputs which is given by

V _ le(XT) k gjl(XT) ng(XT) ujl (42)
|:l/]:|_|:fT2(XT):|+jZ-1: |:gj3(XT) gj4(XT) Uj,
where k is the number of UPFCs and x, =[x] » 4 - 7 ] - The nonlinear

functions f, f,,, 3., 3., 0,5, §,, < R"are defined in Appendix .

VI. Controller Design
The conventional approach to damping oscillations in an interconnected power
system is to employ a linear control scheme [21]. By contrast, we target the stability of
the generators in a nonlinear sense by defining an appropriate Lyapunov function. In the
control development, we restrict our design to the case of constant loads. Also, we

assume that the mechanical power P, (1<i<n-1) is slowly changing compared to the

other control variables; thus, P,; ~0. For the purpose of convenience we define new state

variables as
Xy = 6; —Sjg
XZi = wi (43)

Xsi = Vit SIN(S; —Wisn)
where s, is the pre-fault generator angle for 1<i<n-1. The selection of x; renders (2) in
the backstepping form as will be explained. Using (42), we obtain
X3i =Vin SIN(S; = Wisn) +Viin (@ = /i4n) COS(S; ~iin)
= f14i SIN(8j —wisn ) —Visn Fr2i €08(8i —wisn ) +Visn®i c05(8i —iin)
k

+ Z {[ 9 j1i Sin(Si —¥in ) —ViinTjsi 0S(5j —wisn j1]
j=1

+1[9j2i SIN(6i = ¥itn)—ViinT jai COS(Si —¥isn )]sz}
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K
=Ty (XT)+Zaj1i (Xp)ujs +a s (X7 ))U o (44)

j=1

where f,,,, fr5,345,9;, .35, and g;,; are the i-th elements of le,sz,gjl,gjz,ggj,

andg;,, respectively. Also, k is the number of UPFCs and j is the UPFC number.

A. Single generator/Single UPFC control

To introduce the design concept, we initially design a controller for a single
generator/single UPFC power system using the standard backstepping design method

with the control inputs uj; =u; and uj, =u,. This approach will be extended to multiple

generators/multiple UPFCs in the next section.

Remark 3. In [15], [20], [24], it is demonstrated that if the UPFC injects the maximum
series voltage (i.e. constantv, ), it can inject the maximum active power; thus, it improves
transient stability. The condition v, =Const may be applied by noting thaty?® + x* =Vv,2.
This in turn results inyu, + zu, =0by taking derivative from both sides (note that
dv;? /dt = 0 for constantv, ) which may be considered as an algebraic relationship between
the control inputs u;, andu,. However, for damping the after-fault oscillations v, can be
kept high at the beginning (for a short time) and reduced afterwards in accordance with
the state errors as this helps reduce the electrical stress on the UPFC. According to [20],
UPFC injected power can also be controlled by varying v, under the constant phase
angleo. Then, when@#is around +90° maximum active power is injected for a givenv, .
This requires thaty =0; thus,u; =0. Consequently, in this design we let u, =0thereby

decreasing the number of inputs in (44). Then, from (2), (43) and (44), the new set of

state equations can be constructed as
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Xii = Xpi

MiXy = fyi + Oy X (45)

Xgi = fo; () + 0o (X)U;i =1,...,n
where f,; =P —(M; /M1 Peoy » 95 = ~BijunEqi» (%) = (%) 02 (%) =25 (%),
andu=u,fori<i<n-1where x_[x, .. Equation (45) is a special case of strict feedback
form where f, and g, are constants instead of function of the states.

Assumption 2. g,,(x) is bounded away from zero. Without loss of generality it will be

assumed that g,; (x) > 0.

This claim is supported by the fact that due to its continuity if g, (x) changes sign, then it

must pass through the origin. As a consequence, equation (45) encounters a singularity

tending to make [y «]" infinitely large. By selecting a proper place for the UPFC and

setting appropriate design gains, we can avoid large control inputs.

Step 1. Introducing Kgand Kj; as design constants, we introduce z; = x, + Kz x; Which
results in

X = — KXy + 2y (46)

Consequently, by defining z,; = (x5 — X35 ) We have

Mizy = fy + M KX + 91 Xasi + 91 2o (47)
where
1
X3si ZQ—X[—Xli — fi = MiKgiXg —Kzi24] (48)
1

is chosen such that the Lyapunov function L1i=%xli2+%|\/|iz§ has a negative definite

derivative when z,, =0.

Step 2. Define the new Lyapunov function
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1 1 1
Li = Kaeni (Exﬁ +EMi212i) +§Z§i (49)

with  K,., being a design constant, we can easily show that
Lo = Koo O +Mi2,2,) + 2,2, <0 Quaranteeing that the states x;; , z,;, and z,; asymptotically
converge to zero provided that z,, =v, where

Vi = —Kateni 211 91 — Kz2i 25 (50)

and from (45)

2, = (%) + g, (XU — Xy (51)

where

Xasi = ix [Xai — Kz KgiXai —M( fyi + 91 %ai)] (52)
Oai M;

Equation (51) along with z,, =v, and (50) provides a solution for control
inputsu in terms of nonlinear functions of states as
U=05 (07 (v = F (X) + Xag) - (53)
Remark 4. If the assumption made in Remark 2 is not applied (i.e. u; #0), equation (53)
will revert to
ag (XU +, (X)Uy =v; — F5; (X) + Xag (54)
which gives a linear relationship in terms of the control inputs. Then, a second
relationship such as yu, + zu, =0 (mentioned in Remark 2) between v, and u, is needed to

select them. Since optimal performance of UPFC is obtained by varying both the injected

voltage v, and angle ¢, a second relationship between u,and u, can play an important role

in achieving the controller.
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B. Multiple generator/multiple UPFC control

For the case of multiple generator control, the equation (24) is replaced by

2, = f3(x) + g, (x)Hu (55)
where, F3(X) = F(X) = ¥ag » fy=[fy o fanals 9, =diag(gp - Gpna)s
Xas =[Xg1 - X3s,n—l]T and Hnoaya = L. 1. Also, define X = [Xn Xl,nfl]T 1

z=[y ... ] @Nd z,=[z,, ... z,,,J'. Note that for the multiple UPFC case x Iis
replaced by x, and the dimensions of g, change. Moreover, note that only n-1generators

are chosen to be controlled. Since the n generators are present in the interconnected
power network, the nth generator is forced to be controlled by the power balance if the
remaining n-1speeds are controlled. Since there are fewer inputs than outputs, it is
generally difficult to find an input that makes the first derivative of the Lyapunov
function candidate negative definite. In other words, because of the inconsistency that
arises due to multiple solutions for a single u the above single generator control method

cannot be employed for multiple generator control. Thus, we propose the input

U=-+3 = ((ﬁT +2K532) f3(0 + (HT + Kzsz;)Kzzzz) (56)

Z(1+ 2K7325i)95i

i=1

where K,,and K_,are design parameters .

Definition. (Uniform Ultimate Bounded (UUB))[22]. Consider the dynamical system

x = f(x)with x e R"being a state vector. Let the initial time be t, and initial condition
be x, = x(t,) - Then, the equilibrium point X, is said to be UUB if there exists a compact
setS — R"so that for all x,eSthere exists a bound B and a time T7(B,xy,)such that

[x(t)—x||<Bfor vt>t,+T.
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Theorem 1. Consider the dynamical system described by (19), (47), and (51) which is
rewritten as
X = =KXy + 2
MiZy = fy; + MKgiXai + 01 Xasi + 91 Zai (57)
2y = f5i (X) + 92 (U — Xgg;
with the input given by (56) for 1<i<n-1. Then the states are globally uniformly

ultimately bounded provided Assumption 1 holds.

Proof. See Appendix II. |

n-1
Remark 5. Equation (57) needs the term Z(1+2K23,z;)g2i to be bounded away from
i=1

zero. Based on Assumption 1, this can be easily achieved by selecting a proper

K,,and K., and replacing each X, with Ky,x; Where Ky, is a proper modification

factor if E(HZKBZL)% _o. From equation (45) this changes g, t0 Kyz,;9, Such that the

i=1

n-1
term Z(1+ 2K 5322 )Kyiz0i 9 Moves from zero in (56).
i=1

VII. Neural Network Control

Although equation (56) provides the UPFC control inputs, finding the analytical
and/or numerical nonlinear control inputs in practice (for fast computing) is a challenging
task in large power systems. Moreover, in order to implement the control law, a complete
knowledge of the total power system dynamics and topology are needed. However, by
using the neural network approximation property for nonlinear functions with on-line
learning scheme [22], we are able to approximate the nonlinear “unknown dynamic”
terms in the power system dynamics, thus relaxing the need for a complete system

description as well as onerous function calculations.
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A general function f(x)eRWhere xeR"can be written as f(x)=WT gV " x)+&(x)
with &(x) a neural network (NN) functional reconstruction error where W e RN>*! and
V eR™M2 are weight matrices [22]. In our design, input-to-the hidden-layer weight

matrixV is selected initially at random and held fixed during learning. It is demonstrated

in [23] that if the input-to-the-hidden-layer weights, Vv, are chosen initialized randomly
and kept constant and if the number of neurons N, in the hidden layer is sufficiently
large, the NN approximation error g(x) can be made arbitrarily small since the activation

function vector ¢ forms a basis.

A. Single generator/single UPFC control

Consider the system (45). Unlike equation (56), here we assume that the nonlinear
functions g, and f, (for 1<i<n-1) are not available. Thus, in order to provide the
desired input we employ the neural network approximation property for nonlinear
functions as u, = —K,z, W4T +2) where the term w4 V"x)+e represents the
unknown nonlinear function in the control input with w;being unknown ideal weight
matrix (where |w;|is assumed to be upper bounded [22]) and ¢ < ¢, is the approximation
error in a compact set Q:{xli,zli,z2i IXG +2f +25 Sp}. In practice, the actual weight matrix
w; and approximation error & are unknown and only an estimation of the weight matrix is
utilizable, i.e.
U=—K iy —W, ¢ (V;" X) (58)

It is shown in Appendix Il that the states [z, w,]"are stable with arbitrarily

small upper bounds by selecting the neural network weight update law as [22]
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\/\A/i =Ty, (V," )2, —a; T\W, (59)
where ¢; is a design constant and T; is a constant matrix.
B. Multiple generator/multiple UPFC control

By using the similar approach to single generator neural network controller we
define the desired control input for system (45) as (60)
U=—KpoH 2, - W)+ &) (60)
where H, ., =ft ... 1 ands<ey inacompact set [22] Q= {xl,zl,zz X % +2] 2 +252, < p}.
Then we utilize the estimation of the weight matrix as
U=-Kz,Hz, -WTp(Vx) (61)
It is shown in Appendix IV that by selecting the weight update law as
W =T T X)A 2, —al W (62)
boundedness of the states [H7z, |W|I" with bounds defined in the Appendix is achieved.
In general, it is hard to conclude stability of the states z,; (1<i<n-1) from boundedness
of H'z,. However, in this problem we have considered n-1generator to avoid
dependency of generators electrical powers (andz, ) to each other. For many power
system topologies if the UPFC is placed on the proper bus we may conclude stability of
2, (1<i<n-1) based on the stability of H"z,as confirmed by simulations. Exceptions
may include topologies with isolated generators. Similar to proof of Theorem 1, this
yields stability of the states x,andz, .
Remark 6. We can see from (61) and (62) that the control and update laws are only

functions of generators data and loads. Although for the controller design s, is needed,



44

this parameter can be achieved by knowing the generator operating conditions. Thus, no
prior knowledge of power system topology is needed for controller design.
VIII.  Simulation Results

For control validation, two power system topologies are considered. In both
examples the simulations are performed using the complete power system model (with
line resistances) to evaluate the effectiveness of the modeling and design. Also, steam
governor is in action in all simulations. First, the system in Fig. 4 is chosen where a three-
phase fault is injected close to bus 3 (as depicted in Fig. 4) at t=0.2sand removed at
t=0.4s seconds. The infinite bus is simulated by a huge generator whose angle and speed

do not change by the fault. The infinite bus voltage and angle are given as V, =1.0470pu
and y, =-0.0091Rad. The data for generator 1 are given asxy =0.006,H =1, E; =1.0657pu,
and 5, =0.0017Rad at t=0. The UPFC is placed on bus 1 between buses 1 and 3 and is

activated after fault clearance.
Two scenarios are assumed; the fault is removed without changing the topology
and with removal of one of the lines between buses 1 and 3(i.e. the faulted line). In

accordance with Remark 2, the proposed control is performed via constant UPFC angle
6 =+90° and variable (controlled) UPFC voltageV, . The design is performed by using the

method introduced in Section V-A for single generator control where gains are chosen

asKg =0.1,Ky; =0.2, K5 =100, and K., =1. The results from the proposed method are
compared with the case with V.« =0.5puand variable ¢ where the controller examines
the slope of the power flow in the line, where the UPFC series transformer is placed, and

switches the output & (shown in Fig. 5) between +90° (which gives maximum UPFC



45

injected power at constant V, =Vymax @S explained in Remark 2) correspondingly to

prevent increasing or decreasing the flow of power in the UPFC line, and thus, to prevent

the power flow oscillations. The output 6 is then passed through a first order

filterKp/@+1ps) (WithKp =0.1; zp =0.1 after fine tuning), depicted in Fig. 5, to reduce

sharp power fluctuations and to provide the UPFC angle ¢ which in turn provides the

total line power P, (including the injected power by UPFC.)

1 o X3 2
7=0.0194+j0.292
UPFC - 2=0.02+j0.2 [ Infinite
| Bus
, 7=0.0194+j0.292 L 5
xy = 0.006 P=0.5pu P=0.217pu
Q=0.6pu Q=0.127pu
Fig. 4 One-generator power system
(o4
= Filter UPFC P,
5 Decision
Making d/dt

Fig. 5 UPFC active power controller
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Proposed controller; origiral topology affer fault

= B L e Comventional controller; original topoalogy after fault
:-; S TR g e s
g, H = e e o
E -0 i i i L L
0 0.5 1 1.3 z 2.9 3
= 10 Proposed controller; line remowval after Tault
w
“-é s 11 E N -~ | EE TR (R T s Conventional comtroller; line removal- after fault
5 "'

] 0.5 1 1.5 2 2.5 3
Time(s)

Fig. 6 Damping effect of the proposed nonlinear controller when compared to the
method with UPFC fixed injected voltage v, and variable angle ¢

0.z T %
iy o .
g AT S
g0 AT VE Ty & I & P W o Vgaeniem
i 103 o AN "
? e I A R
0.2 . =4 -y L e . . .
0 0.z 0.4 0.6 0.8 1 1.2 14 1.6 18 2z
= 04 Proposed controller; original topology after fault
E.-n Proposed controller; line removal after fault
=02 Ky e Comventional controller; original topology after Tault
- — -G i controller; line removal after fault
0 = I
1] 0.z 04 0.6 LIE:} 1 12 14 1.6 18 2
Timeis)

Fig. 7 UPFC injected power and voltage in the proposed nonlinear controller
when compared to the method with UPFC fixed injected voltage Vv, and variable

angle ¢

Figures 6 and 7 show the UPFC damping effect, injected power, and voltage of
the proposed controller for the two scenarios (original topology and line removal after
fault) as compared to those of the conventional controller through controllinge. As
shown in the figures faster damping as well as lower injected voltage and power are

achieved by using the proposed nonlinear controller. Also, unlike the conventional
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controller, no significant difference in controller performance between the two cases
(original topology and line removal after fault) is observed when using the proposed
controller.

In the second example the IEEE 14-bus, 5-generator power system shown in Fig.

8 is used and subjected to three phase faults.

Table 1. Generators Specifications

Gen no. 1 2 3 4 5
Xq 0.006 0.006 0.006 0.006 0.006
H=aoM/2 5 1 1 5 5

The generator data is given in Table 1. All of the generators have steam governors
and the UPFC control is implemented via the power injection model. The power system
loads are considered as constants. The control objective is to damp the generators
oscillations after the fault is cleared.

In the system given by Fig. 8, the UPFC is installed on bus 6 between 6 and 7
which is found to be an appropriate placement by trial and error, i.e. it can stabilize the
power system for different fault locations. The power system modes are 11.3561, 5.9101,
2.6977, and 2.1026Hz. A three-phase short circuit fault is applied to buses 1, 6, and 11 at
t=0.2sand removed at t=0.4s seconds. Generators 1 through 4 are chosen for control. The

control inputsy and x are initially set to zero such thatv,(,) =oand the proposed control
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method is performed through using variable v, and ¢ = +90° . Two cases are considered for

simulations.

Fig. 8 The IEEE 14-bus, 5-generator power system

Case 1. All power system dynamic states are assumed to be available for the control

design and equation (56) along with ¢=+90° (u; =0) are used to design the controller.
The design gains are chosen as K 5, through Ksq =0.1, K5, through

K15 =0.2, K, =100, K53 =1.
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W1(Radls)
W2(Radls)

W3(Rad/is)

W4(Radis)

2 o . ] Time(s)

e ' e Proposed controller
------ Steam controller only
Conventional controller

W5(Radls)

Time(s)

Fig. 9 Generator speeds with and without control; Case 1 with fault on bus 1

Figures 9 through 11 show that significant percentage of oscillation damping can
be achieved for a medium size power network by using a single UPFC as a controller.
Moreover, the nonlinear controller without changing the controller gains from the
previous case is able to damp the oscillations resulting from a fault occurring at different
locations through satisfactory control effort as shown in Figs. 12 and 13. Note, however,
that damping performance varies with the fault location. In particular, Figs. 9 through 11
illustrate that for faults occurring at the locations relatively close to the UPFC bus (bus 6),
the oscillation damping is more effective than for the faults occurring far from UPFC bus.
Also, the control effort for the latter case is higher as shown in Figs. 12 and 13. This is

due to different after fault conditions imposed to the controller.
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Fig. 10 Generator speeds with and without control; Case 1 with fault on bus 6
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S
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W Time(s)
E Proposed controller
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= 2 s . — Conventional controller
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Fig. 11 Generator speeds with and without control; Case 1 with fault on bus 11
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Time(s)

Fig. 12 Active power flow from bus 6 to 7; Case 1
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Fig. 13 UPFC injected power and series injected voltage; Case 1

However, the voltage and line flows do not go back to their pre-fault values due to
bounded stability performance of the controller. Overall, from these results, the proposed
control is very effective in damping the oscillations even in the presence of numerous
modes and with significant fault (as illustrated in Figs. 6-11) occurring in the power
network. The results from the proposed controller are then compared with those of the

conventional controller explained in the first example with K, =0.2; ¢p =0.1(after fine

tuning) where instead of observing the line power flow slope, the sign change in angle
difference of the UPFC line buses (i.e. sign(wi.n —wh+n)) IS considered since a stabilizing
controller using the power flow derivative sign was not achieved. Unlike the previous
example, the conventional controller cannot stabilize all generators and only affects the
generator close to UPFC (i.e. Genb). For the fault on bus 6, no significant damping effect

is introduced by the conventional controller.
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Case 2. Power system dynamics are assumed unavailable. By using equations (61) and
(62) and assuming u; =0 (@=+90°), the NN controller is utilized to approximate the
unknown system. Ten neurons are selected for the hidden layer with sigmoid [22] as
activation function and design gains are chosen as K =0.1, K4, =0.2, K4=0.1, K4, =0.1,
K, through K,,=0.1,K,,=500,« =1e-4, and r=5e5. The weight estimate W is
initialized randomly. No offline training is utilized to tune the weights and no a priori
data about the power system topology is needed for controller design.

Figures 14 and 15 illustrate that the neural network controller nearly has the same
ability to damp the oscillations as that of Case 1. This implies that the neural network
controller is able to quickly learn the power system nonlinear dynamics by only using the

network voltages and angles as well as the synthesized inputu .

Wi {Rad/s)
WZ{Radis)

ViB{Radis)
Vit{Rad/s)

2 4
Timeis}

. | R [l Faulted Bus:1
Faulted Bus:6
Faulted Bus:11

Vifi{Radls)
:

Timeis)

Fig. 14 Generator speeds; Case 2
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0.05 L | ) AR A Faulted Bus:1
Faulted Bus:6 &
Faulted Bus:11 ——

Fig. 15 UPFC injected power and series voltage; Case 2

IX. Conclusions

We have introduced a general nonlinear dynamical model for power systems with
UPFC as stabilizing controller. This model is free of algebraic equations, thus
conventional nonlinear control strategies are applicable to stabilize the power system after
fault occurrence. Then, the model representation is expanded to decentralized
formulation of power systems. We have addressed a multi-machine control scheme in
which the number of control inputs is less than the number of outputs. Furthermore, we
have utilized neural networks approximation property to relax the burdensome nonlinear
function calculations and a priori knowledge about the power system dynamics needed
for control design. Our analytical approach as well as our simulation results shows the

effectiveness of our approach.
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Appendix |

According to equations (4) and (5) we have the equations (I-1) and (I-2).

n+N
Sp =P +VI(ZBIJEgJ sin(yj—dj)+ ZBIJVJ sin(yi—vij))
j=1 j=n+1

n n
'H/)iViZBingj cos(yj —Jj )_ViZBingjwj cos(yj —Jj )

=1 =1
n+N ] n+N
+Vj zBij sin(yi =y j )Vj +yiVi ZBijVj cos(yj—Jj)
j:n+l j:n+1 I-l
n+N ( )
-Vi ZBijVj cos(yi—vyijyj=0
j=n+1
n+N
So =-Qu +V; (ZBUEgJ cos(y; —5;)+ Y ByV; cos(y; —y;))
j= j=n+1

-V, ZB“ g Sin(y; - 8;)+V, ZB” Eq; sin(y; - &)
j=1

n+N

+V, ZBU JSIn(V/i _‘//j)‘/./j =0 (I'Z)

j=n+1

Entries of matrices Ay, , By.y » Chxn» Duxn » Ensn» @Nd Ry, for the case without
UPFC are summarized as follows.
aij = Bi+n,j+nvi+n Sin(WH—n _Wj+n) =1 N; J =1...,N (|'3a)

n

ajj = ZBHHJ 6 SINWisn — 55)
-1

1-3b

aPL|+n ( )

+ZB|+n j+l‘| j+n Sm(‘//Hn ‘//J+n)+ V. i=1...,N
]—1 1+n

bij = _Vi+n Bi+n,j+an+n COS('//i+n _‘//j+n) ;i :1’“-’ N; J :1’“-’ N (|-3C)



n
bji =\/i-¢—nzBi-¢-n,j Egj cos(Wi.n — 5j)
=

n+N oP,
2 i -
+Vi+n ZBHn,jVj COS(‘/’Hn _V/j) _Vi+n Bi+n,i+n +8LA i=1.., N
j=n+1 Visn
Cij :_Vi+nBi+n,ngj COS(l//i+n —51) ,| :l,..., N, J :l,...

dij = Bi+n,j+nvi+n Cos(l//im _l//j+n) ;i :lv“-: N; J :1,...,n

n
dj = ZBim,ngj Cos(Yiun —9})

=1
N
0 i+
+ Z BisnjsnVjn COSWiin =¥ jin) + BitnisnVien — % =L, N
i=1 i+n
eij :Vi+n Bi+n,j+nvj+n Sin(l//i+n _l//j+n) ;i :1,~--, N; J :11---1 N
n
&ii =Visn z Bi+n,j Egj SIN(Wisn — 5j)
1
N
. Qi .
—Viin Z Bi+n,j+an+n SIN(Wisn — '//j+n) _a—LHn 1=1...,N;
j=1 Vien

fij :Vi+nBi+n,ngj Sin(l//i+n —51) ,| :1,,N, J :1,...,

n

S7

(I-3d)

(1-4e)

(I-4a)

(I-4b)

(I-4c)

(I-4d)

(I-4e)

Modifications on the entries of matrices Ay, , By« Dnxy » @Nd Ey . fOr the case

with UPFC are summarized as follows.

3 h = @ n(old) — Brannenl7 SINWin —Whin) + £#COS(Win = Whin)]
Bht = bht(oid) — BrennenVhenl? COSWiin —Whin) — #SIN(Wiin —Whin)]
B = bhnotd) T BranhnVhen[7 COSWiin —Why) — #SIN(Wiin —Whin)]

dt,t = dt,t(old) — Binhen?

A h = A noid) T Bronhenl7 SINWiin = Whin) + £COSWin —Whin)]
Bt =B toid) + BrannenVhinl7 COSWiin —Whin) — #SINWin —Whin)]
Beh =B noid) = BeenhenVhenl COSWiin —Whin) — #8INW 1 = Whin)]

(1-5a)

(1-5b)

(1-5¢)
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A h = Ak noid) + Branpenly COS(Wiin —Whin) — #SINW 10 —Whin)]
eh,t = eh,t(old) - Bt+n,h+nvh+n[78in(V/t+n _‘//h+n) tu Cos(WHn _l//h+n)] (I'Sd)
€hh =€ nold) + BrnhenVhenl? SINWiin = Whin) + 2 COS(Win —Whin)]

The subscript (old) refers to the original values (without UPFC) as defined by (I-

3) and (I-4). The matrix G is defined as follows:

C7;t,l = +Bt+n,h+nvh+n sin(wy.n — V/h+n);(§t,2 = +Bt+n,h+nvh+n COSWin — Whin)

Gh,l = _Bt+n,h+th+n Sin(l//t+n - l//h+n);§h,2 = _Bt+n,h+th+n Cos(l//t-m - l//h+n) (|_6)

G'r+N,1 = _Bt+n,h+nvt+n ; Gt+N,2 =0

Gh+N,1 =+BiinnenVhen COS(Wy,n — l/’h+n);Gh+N,2 =—BiinhenVhin SIN(Wiin — Whin)

G;,; =0; elsewhere

For the case of multiple UPFCs matrices A,B, D, andE are changed to A ,B;,D;,

and E; as described in Remark 1. The nonlinear functions used in (15) are described as (I-

7)
|:f-T1(XT):|:_|:AT(XT) BT(XT):|1|:C(XT):| (|_7)
fra(xr)]  [DrO&) Er(x)] [F(x)
Also, we have
_{AT(xa BT(xT)}‘lGT:_{AT(m BT<xT)TGTU (1-8)
Dr (%) Er(x) Dr (%) Er (%)

where Uy =l un o ouy w Uy Un) s kis the number of UPFCs

i

andg, =[G, - G; - Gl With Gy eR* 2 corresponds to the jth UPFC whose

)

entries are defined in (I-6). UsingG; , we are able to define

{gjl(xT) 92 (Xr )} :_{AT(XT) Br (xr )}1)<GTJ (1-9)
2N x2

Ujs(Xr)  Gjalxr) Dr(xr) Er(xr)
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Appendix 11
Proof of Theorem 1: For the case of multiple generator control, we define the

Lyapunov function as

i=1

n-1 2
L= %{Z(lzi + K225 )} (11-1)

where K is a design constant. Taking derivative of (I1-1), we have

L= {"Z‘l,‘(1+ 2K 2325i)25; ](nz_l(zm + K325 )J : (11-2)

i=1

Using the following equation

n-1 n-1
Z(1+ 2K 7325i) Z3i =Z‘7i (11-3)
i=1 i=1

where v, = —Kzz(z2i + Kz3z§i), makes L negative definite.
In order to obtain u, in the case of multiple generator control we use equation (51)

and (I1-3) and obtain

n-1 Tha
U = [Z(H 2Kz 323i )gzi(X)] Z(‘7i —(1+2Kz 325i )(f2i(X)— X3si)) (11-4)

i=1 i=1
The control input (11-4) causes the term zinz_llZZi+K232§i converge to zero

asymptotically. Consequently, z,, converges to the bound obtained below.
aKZ,

n-1 n-1 1 2 1

2
ZZZi +Kzszy = ZKzg {ZZi +Tj =0
i=1 i=1 Z3

which in turns results in the bound

ni ;o1 S -1
72Ky ) 4KZ, (11-5)

i=1
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Thus, z,;approaches to the bound presented by (11-5) asymptotically.

Next, equations (58) imply

. ~Kgz 1 q1 [0
[ﬂ{_i _@}{Xn]klﬁ]hi 1<i<n-1 (11-6)
4 Mi Mi gL I\/Ii

which is a linear input-to-state stable system by proper choice of the control gains K and

K, such that the eigenvalues of the linear system have negative real parts. Thus, the

states x,; and z; are bounded following the stability of z,; for 1<i<n-1 . |
Appendix 111

Equation (51) for the i-th generator in a single-UPFC power system can be written

as

(oP¥ (M+u)

‘2 = 02 (X)

(11-1)

where x is the vector of the global parameters as defined earlier. We repeat the back
stepping control design mentioned in the previous section and define the Lyapunov

function L,,as
=22 /(295 (%)), (111-2)
which has the derivative as

2y, _ d,i (X)
92 (%) 293 (x)

25i)2;i (111-3)

2 =

Applying (11I-1) into (111-3) renders the Lyapunov function derivativeL, <0

provided the control input is selected as
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f2i (X) — Xggi + 92i (X) 7.
0200 20500 "

U=-Kgz;izy -

(11-4)

f2i (X) = X35 G,i(X)
The t - Zziin (111-4) is the unk t hich th
e term 0y () Zggi(x) 2i in (I111-4) is the unknown term which must be

approximated by a neural network as

() =K Gsi(X) oo _
() 2gi(o A AV TE (I11-5)

whereg <¢g, IS  the  approximation error in a compact set [22]

Q:{xli,zli,z2i |X§ + 25 + 2, Sp}. Since the ideal weights w; are not known, the

estimated weight matrix W;is utilized to approximate u, as (58). Now, define the

Lyapunov function

L; = Ly +(@/2W, 17w, (111-6)

where W, =W, -w; and T, is a design constant. Taking the derivative of (111-6) and

applying (58) results in

Ly =—Kzzd ~W 6, (% X)zy + ez, +VViTri_wi (111-7)
By selecting the neural network weight update law as (59) and applying (I11-7) we

obtain

LZi = —Kzzizé _aVViTVVi + &Ly _aVViTWi

12 -

<-Kzzi25, +5M|22i|_a”vvi” +a”\NiH”\Ni”
2 2 2

(vt (e

el {8 st

W

2

_WJZ
(111-8)

Mi
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L,; is negative if

st e o e M (] ()

which yield uniform ultimate boundedness of the states [z,, W,1" with bounds defined

above. Note that the bound on z, can be arbitrarily small by increasing the design
gainK,,,. Similar to proof of Theorem 1 boundedness of the states[x; z;]" can be

concluded.
Appendix IV

The Lyapunov function in this case is proposed as

L, {izmr/[zigﬂ}%wnw (IV-1)

where w =W -w . We define the desired control input for system (45) as (IV-2)

st (8o S8 ) 8 v

where H, ., =0 ... 1 . However, the desired control input uis a function of unknown

dynamics and is approximated by a neural network as ulz—KzzﬁTzz—(\NT(p(\TTng) . Taking
the derivative of (1V-9), employing (IV-2), and choosing the weight update law as (62),
we obtain

! IV-3
< Ko7z + e [H7 2| -] +a}w] o

. - . . 2 2
Similar to (111-8) L, is negative if ‘HTZZ‘> Em +\/[ Em J L@ [M’] or
2Ky, \2Kzp ) Kyp | 2

M>M’+\/(WVJZ +L[«;Mj2 which yield uniform ultimate boundedness of Hz, .
2 2

oKy, 2
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2. Decentralized Dynamic Surface Control of Large-Scale
Interconnected Systems in Strict-Feedback Form Using Neural
Networks with Asymptotic Stabilization

S. Mehraeen. S. Jagannathan. and M. L. Crow*

Abstract— A novel neural network (NN)-based nonlinear decentralized adaptive
controller is proposed for a class of large-scale, uncertain, interconnected nonlinear
systems in strict-feedback form by using the dynamic surface control (DSC) principle;
thus, the “explosion of complexity” problem which is observed in the conventional
backstepping approach is relaxed in both state and output feedback control design. The
matching condition is not assumed when considering the interconnection terms. Then,
neural networks are utilized to approximate the uncertainties in both subsystem and
interconnected terms. By using novel NN weight update laws with quadratic error terms,
it is demonstrated using Lyapunov stability that the closed-loop signals are
asymptotically stable with both state and output feedback controller, even in the presence
of NN approximation errors in contrast with the uniform ultimate boundedness result,
which is common in the literature with NN-based DSC and backstepping schemes.

Simulation results show the effectiveness of the approach.

Index Terms — Dynamic Surface Control, Decentralized Control, Nonlinear Adaptive

Control, Neural Networks.
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I. Introduction

Dynamic surface control (DSC) [1] has been attracting great attention in this
decade. The well-known problem of increased complexity in the backstepping design
which occurs due to the repeated differentiation of the virtual control signal is replaced by
a series of algebraic terms; thus, the burdensome calculations in the analytical
development and practical implementations are relaxed. Unlike in standard backstepping
method which results in globally uniformly bounded system states in the presence of
unmodeled dynamics, the work in DSC results in uniform ultimate boundedness (UUB)
in a semi-global manner [1]. Further attempts in [2] provide asymptotic stabilization for a
class of uncertain nonlinear systems using DSC and adaptive control provided the control

gain coefficient being unity org(.)=1 and the uncertainty is assumed to be linear in the

unknown parameters (LIP). Subsequently, neural network (NN) universal approximation
property is asserted in [3] to relax this LIP assumption for subsystem uncertainties so that
boundedness of the states is assured in the presence of NN reconstruction errors.
Decentralized control, on the other hand, has been investigated for large-scale
systems with unknown system uncertainties and interconnection terms. In [4], by using
state feedback control design a class of interconnected systems represented in Brunovski
Canonical form is considered and an asymptotic tracking controller using adaptive NNs is
demonstrated provided the interconnection terms satisfy a stringent matching condition.
In [5], decentralized NN control of a more general class of nonlinear systems has been
proposed by relaxing the matching condition using a standard backstepping approach. A
uniformly ultimately boundedness of the system states is provided. Adaptive

decentralized control of a class of uncertain nonlinear systems with asymptotic regulation
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in the backstepping framework is proposed in [6]; however, the explosion of complexity

is not addressed and the control gains g(.) are assumed constants.

On the other hand, output feedback control design, has been investigated for
certain class of interconnected systems. In [7] and [8], the constant control gain

coefficient matrix (g()=const.) matrix is considered and asymptotic results are achieved

where the interconnection terms are functions of the output. In [9], an optimal strategy
based on existence of Algebraic Riccati Equations (ARE) is considered and exponential
stability of the decentralized system is achieved although constant gain coefficient matrix
IS used.

In this paper, the DSC design framework is proposed for a class of nonlinear
uncertain interconnected systems in strict-feedback form while relaxing the matching
condition; thus, the repeated differentiation of the virtual control signal is relaxed. Both
state and output feedback controller designs are introduced. Next, NNs are introduced to
overcome the uncertainties present in both subsystem and the interconnection dynamics.
Thus, the use of neural network-based DSC in decentralized control not only overcomes
the lack of knowledge about the subsystem dynamics and interconnection terms, but also
relaxes the explosion of complexity problem normally observed in traditional

backstepping. Moreover, the control gain matrix, g(x), is considered as an unknown

nonlinear function of the states and its time derivative is not required. For the case of
output feedback, the control gain coefficient for the last state is considered unity.

It is demonstrated that the states of the subsystems approach the origin
asymptotically, for both state and output feedback control design through novel NN

weight update laws with second order error terms in contrast with UUB, which is
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common with the available DSC schemes in the literature. Simulation results verify
satisfactory performance of this controller.

First background information is given in the next section. Subsequently, the class
of large-scale decentralized system along with the DSC state feedback design is
introduced in Section Il followed by output control design in Section IV. A numerical
example resulting from the application of DSC to a nonlinear system is presented in
Section V. Conclusions and future works are given in Section VI.

I1. Background

Consider the dynamical system xe f(x,t) withxeR"represents the states of an

uncontrolled open-loop system, or a closed-loop system after the application of the

control input, and control input u(t) has been specified in terms of the state x(t). Let the
initial time be t;, and the initial condition be x, = x(t,) . A state x, is an equilibrium point
of the system if f (x ,t)=0,t >t,.

Definition 1: An equilibrium point x, is locally asymptotically stable at t, if there
exists a compact setSc9®R" such that, for every initial condition inx,cS,
[xt)—x.]| >0ast—oo-

Next, a brief background on NN is given. A general function f(x)eR where
xeR" can be written as f(x)=wTgvTx)+e(x) With &(x) NN denotes functional

reconstruction error vector, W eRN>* and v eR™Mz2 represent target NN weight
matrices. It is demonstrated in [10] that if, the input-to-the-hidden layer weight matrix,Vv ,
are chosen initialized randomly and kept constant and if the number of neurons N, in the

hidden layer is sufficiently large, the NN approximation error £(x) can be made arbitrarily
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small since the activation function vector 4 forms a basis. In this work,V , is initialized at

random and held and the output-layer weights are tuned online. Next, we introduce the
class of decentralized nonlinear system under consideration.

I1l. The Large-scale Decentralized Nonlinear System with State Feedback Control
Design

In order to consider the class of N interconnected subsystems defined by

Xip = Fi (Xi2) + G (Xig ) Xiz + A (Xy)
Xip = Fip (Xip) + Gip (Xip)Xi pra +Ap (X)) 5i=1...,N @
Xi,ni = fi,ni (Xi,ni )+ gi,ni (Xi,ni )ui +Ai,ni (ini)

hi =X,

where index i represents the subsystem number, f(.), and g(.), represent unknown

nonlinearities,  A()=[A,,...A,,...A,]"  denotes interconnected  terms,  with

EETRA Y

Xip =[Xig o Xip 1T X =[x Xy =[X] ... X0 X, =0, and hyis the subsystem
measured output for 1<i<Nandi<p<n;. For the purpose of readability the
notationsa; anda, ; are used throughout the paper for the same variable wherea; (i and j
are integers representing element of a matrix) is an arbitrary real variable. Before we
proceed, the following are needed.

Assumption 1: Assume that the interconnection terms in (1) are upper bounded in the

compact setQ (defined later) such that ‘Aip(ip)\sz'j\':lgipj(xjp) (which corresponds to

non-matching condition in contrast with [4]) wheresj,is an unknown function
with 6ip;(0)=0for 1<i<N andi<p<n;. Consequently, by using the mean value theorem

[11], the interconnection terms can be written as



68

‘Aip (ip)‘ < z:-\lzl‘sipj (X jp) < ZLZ::JXM ‘gip,jq (X J'q) (2)

where ip,jq = ‘(&S}pj(Xjp)/aqu]xjp:xrjpzl(xjp) N

Assumption 2: The control gain matrix gi,(Xj,) for 1<i<Nand 1<ps<n; satisfy
0<gip <9ip(Xip) < Tjp (Xip) [4][5]-
Assumption 3: The nonlinear function in (1) satisfies f;,(0)=0 for 1<i<Nand 1< p<n;.

Thus, by using the mean value theorem [11] fi,(X;,) can be written as

p
fip(xip):zszlxisvips(Xip)WhereUips(xip) = afip(Xip)/axis‘Xip=X{'p=|'(Xip) '
In other words, function f,(x;)can be written in the form of linear combination of

X;, elements where the coefficients are functions x;,. This helps in the proof of

asymptotic stability. Next, the design of the controller is introduced.
A. Controller Design

Before ~we proceed, definery=xy=z;, I, =(Xhzip vl s Zp=lz0. 2l
Yip =it Yipl s Z =128, enZho Ts Y =D¥ Y3, T Where z;, and y;,are defined in the
following section. Moreover, IT;, =0is defined.
Step 1: Define the error as z, =x,—x,, and y, =x =0 Where X, is the desired set point for
regulation. Now define
Kiy = 2@y () — Kig Zig + Xigg 3)
where x;, is the desired virtual input to make z; —0as t—o with @, (for 1<i<N and
1< p<n;) a nonlinear estimate of the unknown nonlinearity @, defined later in (B-19) in

the appendix where unknown nonlinear terms in Lyapunov function are to be



69

approximated. In equation (3), a two-layer NN, &, (1;,) =W, ¢, (1,,), Where the second

hidden layer weights matrixv;, (second layer) are chosen at random initially and held

fixed, will be utilized to approximate the nonlinear function o, (r1;,) =W ¢, (v;, ' T1;,) + & -

Thus, throughout the paper we use w4, (1,,)to refer to W4, (v, 11,,) and to emphasize

that the weights W, are updated.

For the stabilization problem, the desired values become x4 = Xi;q =0. The

intermediate virtual input x,q4 is obtained by passing the x;,through a first order filter

consistent with the DSC literature [1] as
TioXizd +Xi2g = Xi2

Also, define

Zip = Xiz — Xiad s Yiz = Xi2d — Xi2
Thus,
Xi2 = Zjp + Yi2 + Xj2-

Then, the error dynamic is given by

i = Ty (zi) + A (X)) + 90 (20 (Zip + Y2 + %5) -

This procedure is performed repeatedly until step p.

Step p: Define
Zip = Xip - Xipd .

Then, it follows that

X

X, pr1 = Zip@ip (Tip) — Kip Zip + Xipg »

7j, p+1%i, p+1,d * Xi, p+1,d = Xi, p+1s

(4)

Q)

(6)

()

(8)

(9)

(10)
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Vi, p+1 = Xi, p+1,d — Xi, p+17 (11)
Xi p+1d :_yi,p+1/Ti,p+11 (12)
and

Xi,p+1 = Zi, p+1 + Vi, p+1 + Xi p+1 - (13)

Also, the error dynamics can be written as
Z.ip = fip(xip) +Aip()?p) + gip(xip)xi,p+l _Xipd (14)
where &, (r1,,) is an approximation of the unknown nonlinear function as mentioned.

Finally, in the last step, errors are defined as
Step n.

Xi,ni+1 =U; = Zi,ni (i)iT,ni (Hi,ni ) - Ki,ni Zi,ni + Xi,ni,d ) (15)

Zin, =Xin, ~Xin,d

2i,ni = fi,ni (Xni ) + Ai,ni ()zni ) + gi,ni (Xni ))_(i,ni+l - Xi,ni,d

Zin1 = Yinn=0
where in the above equations (3) through (15), a NN function
approximation o, (r1,,) =Wy ¢, (i1;,) » Will be utilized to approximate the nonlinear function
Dy, () =Wy ¢, (IT) + &, With @, (11;,) to be defined as explained previously. Consequently,
the desired virtual input becomes x ., =z, Wy ¢, (IT;,) — K,z + % @S Opposed to Wang
and Huang [3]. Before going to the next step, define x, =y, = yi, =i, =Kio =€jp =0, 7ig = 7iy =1

for 1<i<Nand W =y, Wy, 1 where W, =W, —w,. Here for convenience, we

assumen; =nfori<i<N. The proof for the case with differentn; follows similarly such

that n; = nfor the stabilization problem and therefore omitted here.
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B. Stability Analysis
Before presenting the system stability, the following lemmas are introduced.
Lemma 1: The intermediate and desired virtual inputs x; ,,;andx; .14, and states, x; .1,
for the decentralized system (1) with 1<i<Nand 1<p<n-1 satisfy the following
inequalities defined by
% poal< o + Kip 2o+ v i

< (eip + Kip]zip ‘ + ‘yip‘/rip * ‘y”’”‘

S(eip + Kip ]Zip‘+‘zi,p+l Jr‘yip‘/Tip +‘Yi,p+1

‘Xi, p+Ld

‘Xi,p+1
with e;, being an appropriate positive constant.

Proof. See Appendix. |

Lemma 2. The derivative of the desired virtual control inputs x;,in the decentralized

system (1) with 1<i<Nand 2<p<n satisfy the following inequality defined as

‘);(ip‘ < Zleéz,ips(ni,p—l)‘zis‘ + Zleégy,ips(ni,p—l)‘yis‘
+ipz_l §Az,ip,jq(ni,pfl'qu)|zjq|
i1 a1+ Say.ip.ig (Hi,pfl'qu)|yjq|

WIth &, 06, Eyinsr Sanipja» AN &y i o DEING appropriate positive functions of states and

errors.
Proof. See Appendix. |

Next, we discuss the NN weight update law by using a novel projection scheme for
tuning the NN weights since NNs are utilized for nonlinear function approximation. An
interesting property of updating the NN weights using the proposed projection scheme via
a second order error term is the boundedness of the NN weights without the need for the

persistency of excitation condition (PE) which is demonstrated next.
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Theorem 1: Assume that single-layer NNs are utilized to approximate the unknown
nonlinearities of the system dynamics and the interconnection terms in (1). Let the NN

weight tuning for the ‘ith” subsystem be provided by

, | WiWig (16)
Wlp =~Pip |p¢|p(H|p) PipZi W|p+pipzip7( 2 ¢|p(Hip)

M’ip

where
=W, &W.T zi i, (I;,) 2 0
=1 if =W, &W,T 2¢,p(n,p)<o
H M
1 if b >Wip

for all 1<i<N ;1< p<n, withw} denoting the user selected bound for the weights ”\N,p“

Then: (a) the weight estimates remain within the user selected bound such

that |, | <wip' for t=0 provided the initial weights start within the set defined by
”\/&ip“swigﬂ att=0; (b) the weight estimation error term, W, =W, ~Wj, OF \y =\W,,,.. Wy, ] IS
bounded inside the compact seta for 1<i<N and 1<p=<n with w,, being the target NN

weight matrix.

Proof: See Appendix A. |
Remark 1: The NN weight update law is a variant of the projection algorithm [12] with
the exception that a quadratic error term is employed along with a new term p; z2\W; for
relaxing the PE condition. The benefit of using the quadratic term of the state in the NN
update law helps ensure asymptotic stability in Theorem 2. The user selected bound on
the NN weights can play an important role for the function approximation. Conservative

bound selection (i.e. smallw,) can result in significant reconstruction errors, which
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should be avoided. This may cause the weight estimates W, stay away from the actual

weightsw,, . Nevertheless, the system errors regulate asymptotically and the weight

estimation errors W, are bounded as shown in Theorem 2.

Lemma 3: The following are equivalent Z”:zp:as = anzn:ap where a (i is an integer) is an
p=1s=1 p=ls=p

arbitrary real number and n, p and s are integers.

Proof. See Appendix. |

The main result of this section is introduced next.

Theorem 2: Consider the nonlinear interconnected system given by (1). Consider the
Assumptions 1-3 hold and let the unknown nonlinearities in the subsystems and
interconnection terms be approximated by NNs. Let the NN weight update be provided

by (16), then there exist a set of control gains K;, and filter time constants, z;, ,associated

with the given control inputs such that the states z, and vy, approach to zero

p

asymptotically (local) for all 1<i<Nand 1<p<n.

Outline of the proof. Since the DSC approach involves two error systems as described
earlier (i.e. z;, and y;, for 1<i<Nandi<p<n) the proof is divided into two parts. In the

first part, we proceed by defining a positive definite Lyapunov function

v :Zip o do [14] in the compact set defined by

" o 9ip(Xi p-1,0 + Xipg)

Q= {Zipl Yip

the involved terms in the derivative of the Lyapunov function candidate and employing

Wl(Z.Y)=%iZn‘,(Vip+yﬁ,)su;1SiS N1< pgn} where x,=0.Then, by expanding
i=1 p=1
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Assumption 1 through 3 and Lemma 1, we factorize z{ terms for 1<i<Nand 1<p<n in

all the involved terms. Next, the unknown terms in the Lyapunov first derivative is
approximated by employing the NNs in the desired virtual control as

X, pi1 = ZpWin ¢hp (TT3) — KipZpi + %ipg fOr  1<i<N and 1< p<n where Xiyq = -yip /7ip from (12)

and the NN output,v@iggb,p(nip) , approximates the nonlinear function a(r1,)) =w,) ¢, (1)) +
which is introduced in the proof of Theorem 2 and the functional reconstruction errors are

bounded above|gip|sgi?)". By using this approach we are able to obtain quadratic

termsz; andy;, even when dealing with the NN approximation errors. Then, all the

quadratic terms can be overcome by a negative quadratic stabilizing term, which can be

designed adequately by choosing a proper design gain K;, and filter time constantz;, .
Next, we elaborate on the second error system vy, (for 1<i<Nand 2<p<n). By
defining a quadratic Lyapunov function candidate L, =yi%/2 for 1<i<Nand 1<p<n
(yy =0as defined earlier), expanding its first derivative, and employing Lemma 2, the
resulting terms in the first derivative is converted into quadratic terms z;, andy; .
Finally, by adding a quadratic Lyapunov function for NN weight estimation errors

Lwiip :%wigvvip defined in Theorem 1 (part b), obtaining its first derivative, and using
ip
the weight update law (16), we sum and reorganize all the resulting quadratic terms z2

p

andy? for 1<i<Nandi<p<n.

By summing the individual Lyapunov function candidates, an overall Lyapunov

N n

function candidate L;=L+L,, will be obtained where L=ZZ(Vip+Lip) and
i=1 p=1



75

N n 1 ~ ~ - - - - - -
Lw=>> _ Wiw,, 18 defined in Theorem 1. Then, the overall first derivative of the

=2

Lyapunov function is given by Szzn:(—ﬁz,ipzizp _ﬁyyipyfp) which can be set negative in

i=1 p=1

the compact set @ by choosing design gains K;, and filter time constants z;, for

1<i<Nand 1<p<n.

It is important to note that unlike other works in NN literature [4, 5, 6], the key to
achieve the asymptotic stability despite the presence of approximation errors is to build
the quadratic terms in the first derivative of the overall Lyapunov function by using the
novel NN weight update law. This further implies that if the initial states are within the
setQ, then they will stay in the same set fort >0 by using (Theorem 4.8 in [14]). Therefore

Lr<o0 for allt>0. Now by applying Barballat's Lemma [15] the states zj,and y;,are

guaranteed to asymptotically converge to zero as time goes to infinity for all
1<i<Nandi<p<n. |
Remark 2: Theorem 2 proves asymptotic regulation for unknown nonlinear
interconnected systems by relaxing the stringent matching condition. A similar procedure
can be utilized to show asymptotic stability of unknown strict feedback nonlinear systems
without interconnection terms.
IV. Output Feedback Control Design
In this section, we consider the DSC controller design using partial knowledge of

subsystem states. In other words, only subsystem outputs (x;for all 1<i<N) are

available.
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A. Controller Design

In the previous sections for the control system (1), it is assumed that all subsystem
states are available for controller design. This assumption may not be practical if only
partial state measurements are available in the subsystem. Thus, in this section, we
proceed with the DSC controller design with only the partial knowledge of subsystem

states by employing the linear observer as

Xll - I—|1X|1 + X|2 + ﬂLllxll

17)

-

ip ipXIp XI p+1+zu Llp il

C s,

Rin = Lin®in +U; + 2" Ljn Xy
where %, is the estimated state for x;, with state estimation error defined

asX., =X

ip = Xip — Xip» Ljpand L pare positive and negative design constants, respectively, for

all 1<i<N and 1<p<n and x=>1 is a positive design constant. Next,

N

P o 5 o o 1T 5 _T5 5 1T A
define [T = Xy = 2i1, X;p =[Rip,--0 %1 =[Xi. 2ip. Vipl"s Zi =[2y1,..., Z;y]" , where 2

:)2-

is defined as 2, =%,

o —Xipa , With x,y IS the intermediate virtual input, and

Z. =[Zy,....Z;,] forall 1<i < N and 1< p < n. Moreover, IT,, =0 is defined.

Step 1: Define the errors as

Zip = X — Xud» Zig = Xig — Xig » (18)
and
Yip =Xy =0 (19)

where x,, is the desired set point for regulation. For the stabilization problem, the desired

values become x4 = X;;,4 =0. In addition, the error dynamics can be written as
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2 =Ly Ry + Ry + 2, Xy (20)
Step p (2< p<n): Define

Zip = Xip — Xipd; Zip = Xip — Xipg (21)
where x,, is the intermediate virtual input at step p. Now, inspired by the state feedback
in section Il design, it is desirable to redefine

Xi ps1 = 2ipV\7i; Pio (ﬁip) — KipZ pi + Xipg (22)
wherex; ., is the desired virtual input to make z;, —0 as defined in (21) as t — o (for
all 1<i<Nandl<p<n) with WJg,(T,)being a NN nonlinear estimate of the
unknown nonlinearity @, (I1,,) =W, 4, (IT;,) +¢;, described in the previous section. Note
that in (22), Z;,is used instead of the measured state as in (18) since partial knowledge of

states is available. Once the estimated state errors Z;;reach adequately close to the actual

state errors z;

ip» the NNs act the same way as in the state feedback design. The

intermediate virtual input X; ;,, 4 is obtained by passing the X; ,,; 4 through a first order
filter consistent with the DSC literature [1] as
Ti,pXi,prnd T Xi,prnd = Xi,pra» (23)

and thus, it yields

Yipsr = Xipsrd ~ Xipsts (24)
and
Xi,p+l,d == yi,p+l/Ti,p+1 | (25)

Finally, the error dynamics can be written as
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(26)

Zin = LinRin + Gin (Xio)Uj + 22" L Xig = Xing
and
%1 = Uy = 1" g2l — e — a2+ 2O (1) — Kin iy = Voo /71 (27)
where 2, =2, /u®* and y;, =y, /u"* for all 1<i<N and 1<p<n. Also, due to the
dependency of the NN approximator to the state estimates z;, (as opposed to z;,in state
feedback control (18)), we redefine the NN weight estimate update with the measured
states replaced with their estimates as

~
i

AL

T
p

Wip = _pipzizp¢|p(ﬁip) - pipzizpwip + pipzisz 2 ¢|p(ﬁip) (28)

where

0 if M’ip <Wg' or M’ip =W, &Wig 224, (1T;,) = 0
=gl i M =W & 24, (11,,) <O

I A ERV

forall 1<i<Nandi< p<n. Next, we discuss the interconnected system stability.

B. Stability Analysis
Here we introduce the Lemmas 3 and 4 which are output feedback equivalents of

Lemmas 1 and 2.
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Lemma 4: The intermediate and desired virtual inputs as well as the subsystem p error in

the states X; .1, Xi pi1.a+ Xi pis fOr the decentralized system (1) for 1<i<N and 1<p<n-1
satisfy the following inequalities defined by
‘)_(i,pﬂ‘ < (eip + Kip]zip‘ + ‘Yip‘/rip

! ‘Xi,p+1‘ < (eip + Kip]zip‘+‘2i,p+l‘+‘yip‘/7:ip +‘yi,p+1

‘Xi,p+l,d ‘ < (eip + Kip)zip‘ +‘yip‘/rip +‘yi,p+l

and

‘Xi,p+l‘ < (eip + KipXZip‘ + ‘Zi,p+1 + ‘yip‘/rip + ‘yi,pﬂ‘ + ‘Zi,pﬂ‘

withe;, being an appropriate positive constant.

Proof. See Appendix. |

Lemma 5. The derivative of the desired virtual control inputs x;,in the decentralized

system (1) with 1<i<N and 2< p<n satisfy the following inequality defined as

P SN ~ 1 (1 ith d

‘Xip‘ < zgz,ips(ni,p—l)‘zip‘ + ny,ips(ni,p—l)‘yip‘ +/up ézi,ip(ni,p—l)‘zil‘ wi gz,ips ! é:y,ips , an
s=1 s=1

&5 i0s DEING appropriate positive functions of states estimates and errors.

Proof. See Appendix. |
The main result of DSC with output feedback controller design is introduced

following this assumption.

Assumption 4: The control gain coefficient g,,(X;,)=1 for 1<i<N is assumed. In other

words, the last state of each subsystem dynamics where the control input comes in has a

unity control gain coefficient.

Remark 3. Note that in each subsystem all the control gains except the last one are

assumed to be functions of the states in contrast with [7] and [9].
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The main result of section 1V is introduced next.
Theorem 3: Consider the nonlinear interconnected system given by (1). Consider the
Assumptions 1-4 hold and let the unknown nonlinearities in the subsystems and
interconnection terms be approximated by NNs. Let the NN weight update be provided by
(28) and the subsystem states estimated by the observer (17), then there exist design
and constant

filter time constantsr,, , observer gains L, L

control gains K;, and a, ips Lip s

ip 1 p?

u ,associated with the given control inputs such that the states z;,,y;,, and z,, approach

to zero asymptotically for all 1<i<Nand 1<p<n.

Outline of the proof. Here the approach involves three error systems due to the presence

of observer states, i.e. Z,,, Zyand y;, for 1<i<Nandl< p<n where 7, =z, -2

ip’ p-

We  proceed by defining a positive definite  Lyapunov  function

N n rT > 51T 51 12
It L S )| e L =BT RE Lo =2RZL Ly =32
i=1 p=1

and Lwip:21 W, Wi, with Zj, :2ip/ﬂp_l' Zjp = Ip/” » VYip :yip/yp_land with

ip

Py » Pip being constants in the compact set defined by
N n

Q= {Zip'ﬁip’ Yip| Wi N Z(sz + 2ip2 + Yipz)S S1<i<N1l<p< n}Where Xio =0, When Lip and
i=1 p=1

a;, are appropriately chosen an appropriate « and sufficiently small 7;; make L negative

semi definite (lacking NN weights errors) in the compact set& for 1<i<N and

1< p <n. The sufficient conditions are summarized in the proof in Appendix. This

further implies that if the initial states are within the set, then they will stay in the same
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set fort > 0 by using [14 and Theorem 4.8)]. Consequently, L <0 for t>0and by applying

Barballat's Lemma [15] the states the states Z,

i Zip» and y;, asymptotically converge to

zero while the states W, remain bounded for all 1<i<Nand 1< p<n. [ |

V.Simulation Results
Two examples are considered for verifying the proposed controllers.
Example 1 (Decentralized State Feedback Control): Consider a four subsystem-based

interconnected nonlinear system (29) whose dynamics are given by

. 2, 2 2 2 2
{xll = x11+sm(x11)+(2+ x11+cos(x11))><12 +2X51+ X531+ X4q

Xip = xf’1+sin(xll+ x122) +(2+ x122 + (:os(x12)>11 +2(Xg1 + Xgo + Xgq + x41)2

{Xm = Xp1 *sin(Xy) + (2 +cos’ (le))xzz +2(%1 + X31,)

- 2 2 2
Xgg =SiN(X31 + X32) + (2 + (X1 €08(X52)) )Jz +2(Xg1 + X2+ Xg2)

Xg = X3y +sin(xZ) + (2+ X2, +cos(x3l))><32 +2X5 + X2
Xgp = XZ +SIN(X3, +X5,) + (2+ X% +cos(x32))u3

2
+2(Xp + Xgp + Xz + Xgp)

Xg1 = X5 +5in(Xy1) +(2+ X5 +cos(x41))><42 +2x5

(29)

Xgp = X3, +5in(xy +xfz)+(2+ X2, +C08(X4 )% My

+2(Xgq +Xgp +XZ +Xgp +Xag +Xg )i

The states of the system are initialized t0x; =Lx;, =1.5; Xy =LXy, =1; X3 =.5Xg =.5;
X4 =.5,X, =.5. The controller (18) for 1<i<N and 1< p<n along with the weight update
law (16) is utilized withx; .., =u;. The objective of the controller is to regulate the system

states to zero.
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Fig.1 Interconnected system errors for state feedback NN controller

The design gains and filter time constants are taken as K;, =Ky =Kg =K, =1;
Kip =Ky =Ko =Kpp =7 71y =7y =79y =74 =05, pi3 = Pog = P33 = Pag =100 . The satisfactory
performance of the controller is depicted in Fig. 1 where the state errors eventually
converge to zero. Fig. 2 illustrates the NN control inputs. The control inputs converge to
zero while the NN approximation error is bounded. Also, Fig. 3 shows the selected NN
weights. These results are as expected according to Theorem 2 where the system errors go

to zero asymptotically while the NN weights stay bounded.
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Fig.2 State feedback NN control inputs
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Fig.3 NN weights stability for state feedback controller

Example 2 (Decentralized output Feedback Control): The system in Example 1 is chosen.
The objective of the controller is to regulate the system states to zero. The controller (27)

for 1<i<Nand 1< p<n along with the observer (17) and the weight update law (28) is

utilized with x; ., =u;. The design gains and filter time constants are given as
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Kii =Ky =Kg =Ky =1, Ko =Ky =Kg =Ky =7, Tip =Ty =Ty =74 =0.01;
P3=Ps =P =Pz =100 Ly =Ly =Ly =Ly=1L,=Lyp=Lg=Lyp=1; E11 :E21 :E31:E41 =1,

Lp=Lyp=Lgp=Lyp=1; p=1; ay; =ay =ay =a, =1352; a;, =a, =az =a,, =78

1 Z19 0
0.5 —— =2z (]
of¥ ey T Z4a
) T ety
o N L L
505 4 6 8 10
e
7 2
(72 7 m
A 23
Oi-', - —— %3]
28 223 .
_4 L 1 L —l—-.zzq
0 2 4 6 8 10

t(s)

Fig.4 Interconnected system errors for output feedback NN controller

The satisfactory performance of the output feedback controller is depicted in Fig.
4 where the state errors eventually converge to zero even in the presence of observer.
Figs. 5 and 6 illustrate the NN control inputs and state estimation errors, respectively,
which converge. Moreover, the neural network weight estimations are depicted in Fig. 7.

The control inputs converge to zero while the NN approximation attains stable.
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Fig.6 State estimation errors x;, for output feedback NN controller

VI. Conclusions
In this paper, the stability of a class of large-scale nonlinear interconnected system
with uncertainties in both subsystem and the interconnection terms is introduced even

when the system does not satisfy the matching condition. By using a variant of the
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projection scheme and dynamic surface control with NNs, the need for the repeated
differentiation in the backstepping design procedure was overcome. The neural network
approximation property is used to approximate the nonlinearities of the subsystems and
interconnected terms. It is shown that the closed loop system is asymptotically regulated
to zero with both state and output feedback control even in the presence of NN function
reconstruction errors using a novel NN weight update law. Separation principle is not
needed for the output feedback design. Simulation results show the effectiveness of the

approach.

0.5
Or .
=
.% -1 L 1 1 '
£ 0 2 4 6 8 10
=
=Z0.5
0 =
-0.5 %
4 . |
0 2 4 6 8 10
t(s)

Fig.7 NN weights stability for output feedback NN controller
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Appendix

Proof of Theorem 1: (a) Define the Lyapunov function L ;, =(1/2\W,W,,. The first
derivative of the Lyapunov function after the substitution of the NN weight update law
(16) is given by Ly =—ppzZiWy dy (ITi,) — pip ZisWig Wy, + Pip Zio Mg ¢, (IT3,) <O,

Since L, <0, MiPH remains bounded such that M’ip <wp' vt>0. (b) Define the Lyapunov

N n —
function Ly =ZZ(]/2pip)Ni;Wip. By differentiatingL,y , using update law (16), and

i=1 p=1

noting that

A

2 , , y
jé’ﬁ.p(ﬂip)— 22W, < Zip(mgXH%HJFVVip j, we have

M’ip

Z.Zpl(V\A/.pV\A/.g/ plip =

- ZinWi-;IJ-¢|p(Hip)

o —vii )

i-1 p=1Pip i=1p=1 + Z.Zp[ [mng%H +Wigﬂ ﬂ

< Zzn:(_ Ziivvigﬂp(nip) + Zﬁoﬂi“;f' ) (A-1)

where pM — QI\/vip||+Wig" Imgx||¢ip||+wig" ) Using (A-1), it can be inferred that the weight
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estimation errors are bounded such that

W

of user selected bound for the NN weights and an upper bound on the target NN weights.

> /Hqﬁ,p(j‘ This upper bound is a function

Proof of Lemma 1: Step 1.From (3) we have

X, = 2z;Wa ¢, (IT,) — Ky 2,

Consider the set o being the same as the compact set over which the neural network
approximation property applies and by using (16) and (A-1) it is assured that there is a

maximum for the states W, and for W, as well ina. Also, note that we can assume

’V\H $n (TT51)

<W ' |g, (1) =e, Dy using a proper NN activation function. Hence, the
following steps can be concluded.
Step 1,
[Riz| < (i1 + Kig 2| (A-2)

Then, from (5) and (6) we have

IXiog | < (i1 + Kig fzia| +|Yiz] (A-3)
and
IXi2| < (eig + Kig ) zia] + |zi2| +iz| (A-4)

Step (2<p<n-1)

i 2 ’ - - Yi
From (9) and by setting d(11,) =Vl (1) We have x, . =z Wil g, (I1,)) - Ky zip
ip

Noting that

V\A/i:)- ¢ip (Hip)

L <Wiy' max|gy, (IT;p)| = ey, it yields

‘Xi, p+1

s(eip + Kip}zip‘ +‘yip‘/7ip (A-5)

Consequently, from (11) and (A-5)
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‘Xi,pﬂ,d ‘ < (eip + Kip ]Zip ‘ + ‘yip ‘/Tip + ‘yi,pﬂ‘ (A-G)
and
|Xi,p+l| < (eip + Kip ]Zip|+|zi,p+1|+|yip|/‘[ip +|yi,p+1| (A'?)

Proof of Lemma 2: Step 1. From (2), (6), and (7) we have
Zj; = fil(zil)+Ai1(Xp)+ 91 (2i)(Ziz + Y2 +X3)
Thus, by using Assumption 3 and x, =z, we have

N — -
|2 < [vi1(zi)]| Zia] + Zqzjlué‘il,jl(le)‘ +‘gil(xil)mzi2‘ +|Yi| + ‘XiZ‘) (A-8)
i

From (3) and &, (IT;,) =Wy ¢, (IT,) we have
Xip = ZilwiI $in (1) — Ky 2y
Thus,

|

where A, (11,) = (Wi max|o, oz z| +Wi" maxda(IT,)+ K, )

Xi2

mgXH¢il (Hil)H"Zil‘ + Ail(Hilxzil‘ (A-9)

Using the weight update laws (16), we have

Y 2 2\f] Wipwi; 2
Wip = _pipzip¢|p(nip) - pipzipwip +x 2 Zip¢|p(Hip)

Mi

This in turn yields

Mip

for 1<i<Nand 1< p<n. Therefore, using (A-9) and employing (A-2), (A-8), and (A-

¢ip(l_[ip)

< pipzfp(z max ‘+Wig") (A-10)

10) for p =1, it yields



‘K.z‘ < §z,i21(ni1)‘zi1‘ + ‘fz,iZZ(Hil)‘ZiZ‘ + ‘fy,iZZ(Hil)‘ Yiz‘

N p—

W{Z Alzjlé}l,jl(le)J
j=1

where

&in(Mly) = pipzizp(z mg‘XHﬂp(Hip)H + W' ) mgXHﬂp(Hip)H
+ Ailquill(zil)‘ + ‘gil(xil)‘(eil + Kil))

&ina(lyy) = Al‘gil(xil)‘

&yiza(lly) = Al‘gil(xil)‘

Note that |x,| is a function of K;; . Also,

|Via| = ‘XiZd _iiz‘ g‘i/fizh‘x;iz‘

i2

< & i (Tig)|Zia| + & oo (Tig)| Zig| + &y 22 (TTiy)| Vi

N _
+[Z Alzjlé}l,jl(le)J +[¥ial/7i2
f

Step 2: From (2), (14), and (12) we have

N 2 B
Zip = fi,(Xi2) +ZZ‘qu‘5i2,jq(X iq) T 9i2 (Xi2)Xi3 + Yi2/Tiz

j=1g=1

Thus, by using Assumption 1 and Lemma 1 we have

N 2 B
‘Ziz‘ < UZ,iZl‘Zil‘ + EZ,izz‘Ziz‘ + (UY,iZZ +1/Ti2}Yi2‘ + ZZ‘qu“é}z,jq(x jq)‘

j=lg=1

+‘gi2(xi2)HXi3‘ < EZ,i21‘Zi1‘ + Uz,izz‘ziz‘ + (Uv,izz +1/7i2]yi2‘

N 2 _
+Z;Z;(ajq\zjq\ +|Yia J(Siliq(qu)‘ |02 (2] +yia] + [l
1=1g=

91

(A-11)

(A-12)

(A-13)

where D51, U720, and Dy ;,,are appropriate positive functions of the states and a;, is an

appropriate  positive constant. From  (9),

have x;; = Zizwi£¢iz(niz) —KizZiy — Via /732 5 thus,

i,

‘Xia“ <

mS‘XHﬂz(niz)H-‘ Zio + Ay |2 + Ay inalZio] + A ool Vol

Dy, (I1;,) = Wi i, (IT;,) WE

(A-14)
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where

A, iy (IT;5) = WY mgXHaﬂz/azilmziz‘3'%,izz(niz) =W} mngaﬂz/ayiz‘Hziz‘ +1Y7,

A, i22(TT;5) =W m(fz‘xHaﬂz/azizH‘Ziz‘"‘WiglI mngﬂl(Hil)H"' Kiz

According to (A-10), we have

i,

SPizzizz(zmgXHﬂz(Hip)H+Wi2/|) ) (A-15)
By using (A-8) and (A-13) we conclude that the terms |z;|and |z;,|can be over

bounded by terms bearing|zy|, |z, |zia|, |viz|, |vis|, and the interconnection terms as

cofactors. Thus, by following a similar procedure to what we used in Step 1 (A-14) may

be rewritten as
‘ii3‘ <& i ()| Zia |+ €130 (T32)|Zia | + &40 (T3] 235
+ &y iao ()| Yia| + &y ias (2| Vi

N _
+ (Az,i21(Hi2) +A) i (HiZ))Z Ail‘z j1H5i1,j1(x jl)‘
j=1

N 2 B
+ Az i (HiZ)ZZ(ajq ‘qu‘+‘yjq‘)5i2,jq (X iq )‘

j=19=1
< dfz,isl(Hiz)‘Zil‘ +&,i032 (Hiz)‘ziz‘+§z,i33(ni2)‘zi3‘
+&yis2 (Hiz)‘in ‘ +&yiss (Hiz)‘Yis‘

N 2
+ZZ(§Az,i3,jq (I, X jq)‘zjq‘JﬂfAy,is,jq (ITjp, X jq)‘yjq‘)

ErE

Note that [x;;| is a function of [Ky;,Kiz,7y,7i,]"
Stepp, 2<p<n-1

By induction we obtain

‘Xip‘Sgz,ipl(ni,pfl)‘zil‘+"'+§z,ipp(Hi,p—1)‘Zip‘+
gy,ipl(ni,p—l)‘yiz‘+"'+§y,ipp(Hi,p—1)‘Yip‘+
N o ‘fAz,ip,jq(Hi,p—l'Xiq)‘ziq‘

2.2,

i=1 g=1{ + Sayip, jq (T pgs X jq)‘yjq‘
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p p
= Z éz,ips (Hi, p—1)‘zis‘ + Z gy,ips (Hi, p—l)‘ Yis ‘
s=1 s=1 (A-16)

+§:sz (fAzip jq(Hi p-1 X 'q)‘ziq‘

j=lg=1 +§Ay ip,jq (HI p-1' jq)‘yjq‘
Note that [x;| is a function of [Ky,....K; 1,7, 7 pal -

Proof of Lemma 3.

 +
ap+ap)+
A LA L CT N
p=1s=1 p=ls=p
&y +ay+ag+--ang+
& +ay+azg+---ap_1 +a,

Proof of Theorem 2: Since there are two error systems (i.e. z, andy, for 1<i<Nand

p

1< p<n) to be dealt with, here the proof is divided into two parts.

First error system (zp): Consider the Lyapunov function

candidate j’p do [13] in the compact set defined by
0

gip(x| p-1» o+ led)

1<i<N1<p<n, . .
o where x,,=o. In the remainder of this proof the

=15 Yl (z,v) = = ZZ( Y3 )< 1

|1p1

first derivative, V

i, inside the set @ is evaluated. By differentiatingV;,, the first

derivative is given by

1
Vi, = . (X )le+zlzpj.ap211 ik Gip (X pets lea+xlpd) B da
R o« ( fir (X ) + glk(xlk)xl,k+l+A|k(xk))
do
g,p(X, D1 z,pa+x,pd)

|p |pd dJ.
9ip(Xip) “ip’Sp
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p-1
where Z: owhen p=1. By using (12), the first derivative is expressed as
k=1

z

. i . = e
Vip < gip(:(ip) Zip +Zizpkz=l{§ip,1k (M)A (X (B-1)

+&aip (Hip)zizp + &sip (Hip)zizp + yi2p

where
B 1 0 1 (B'Z)
gip,lk (Hip) = _l.a(axik gip (X ip1s Zipa + Xipd )Jda
p-1
¢ i) = Z((ip,lk ik (Xit)+ gk X Xi o) (B-3)
k=1
and
1 1 foaf1d d i (B-4)
“ -
(1. )== ==
aio(ITip) 4[Tipgip(xip)J +4[Tip£gip(xi,p1’Zipa+xipd)]

Employing z, from (13) and (14) and expanding the first term in (B-1) yields the

resulting terms as follows. According to Assumption 3 and Lemma 1 we have

Zip i (Xip) _ % P -
9ip (Xip) gip(xip);XISUIps( ip)
p ‘Zip ‘yi,s—l‘
) 51 9ip (Xip UiPS(Xip)((ei's1+Ki'lezi'sl+Zis+ Ti,s—1 +yisj
22 p .
< ip y; s(Xi )| 2+ e +K o fr—
4gi2p(xip)§( e )2{ st Ko f i2,s—1] (B-5)
p ) p ) p ) p ,
* D lisat DT+ D Yisa+ D Yis
s=1 s=1 =1 ~
Define
1 P 1 -
)= s o0l 2P o &9
A i,s—

Next, by applying Assumption 1 and Lemma 1, the following term can be written

as
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N p
ZinZipihp/ . X,
9ip (Xip) JZ:“Z‘ Uip (Xip )‘qu ip.ja (X jq)
ii ‘Zip‘ (ejq 1+Kj,q l)zqu‘+ .
= i R
j=lg=1 gip(xlp) ‘qu‘ ‘y"qfl‘ ‘ jq‘ ip,jq jq
Tjg-
(e 4+K. 71)24-
sZ?in: 1 qu . (g_M, )2
PEE| 405 (Xip) | 7 +2 ip. jq (B7)
TJQ—l
N D , ) i
+ZZ(Zi.qfl+zjq+yj,q—1+yjq)
j=19=1
where sM.

i ﬂixgp‘p' ja(Xjq)| - Define

el o 9

]/Tj’q71+2

Soip(Iip) = ZZ{

=1¢g=1 4g|p(xlp)
Finally, from (13) we have

Zip

ip(xip) (gip(xip)xi,pﬂ_xipd) (B_g)

<Z +Z| p+l/2+y| p+1/2+zlp( |p+1 |pd/gip(xip))
Summarizing (B-5) through (B-9), the term on the left hand side of (B-10) can be

expressed as
Z'P 2 3 2 2 2 2
.|p = Zipé/4ip (Hip) + Z(Zi,s—l +Zjs + yi,s—l + Yis)
glp (xlp) s=1

N P
+Zi§>é’5ip(nip)+22( iq l+Z +y12,qfl+ngq) (B-10)
j=1

g=1

+Z +Z| p+1/2+y| p+1/2+z i,p+l

where

i,p+l

x|

= )_(i,p+1 _Xipd/gip(xip) .

Similar to (B-7), the second term in (B-1) can be expanded as follows.
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p-1 .
2 Zip ‘giplk (I, )“Aik (X))
k1

-1

Nk B
ip ZZ|§ip1k (Hip)||qu|5ik,jq(qu)

1j=19g=1

'CJ

Z

=~
Il

,_\

, BN €100+ Kjga)2i0a]*
<Zjp Z

k=1 ‘ JQ‘ ‘yjq 1‘/qu l+‘ JQ‘

< (le/“) ii[(émk (nip))Z(SiQ{'jq)z((ej'q,l FKjqaf +Y el + 2))

k=1 j=1q=1

k
> J ik, ja (X jq)
)

‘glplk ( |p)[

p-I1 N k _
N (st By Vi Vi) (B-11)
k=1 j=1g=1
Define

& (G (1) G, B-12
Coip (i) = (20 /4) v ([Tp) Vi (B-12)
e p/ ;JZ-:QZ:; (( ig 1+ijqfl) +]/712,q71+2)

Using (B-11) and (B-12), we have

p-1
ZI%Z {gip,lk (IMip ) Ak ()zk)}S
- (B-13)

p-1

Nk
2 2 2 2 2
ZipCoip (T ) + ZZ(Zj,q—l+qu +yj,q—1+yjq)

k=1 j=1q=1
By using (B-1), (B-10) through (B-13), the first derivative is rewritten as

Vip < (gzip(nip) +§3ip(Hip) +é,4lp( |p)] 2, i[zfs_l + Zizs ]

+ §5ip(Hip) + §6ip(Hip) s=1{ + yfs,l + y,zs

(B-14)

21+ 2
' 2+ 247, % 4+ Y2
Z 2 2 +Z +Z| p+l Y| p+1l ip/i, p+1 ip
=lg=t\ + ¥j g1t Yijq

N k
+ ZZ(Zf,q—l Tt Yigat qu)
Now the second error system is simplified.

Second error system (y;,): Define the Lyapunov function candidate as L;, =y, /2 for

1<i<Nand 2<p<n. Then by using (9) and (12) the first derivative is given by
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Llp = yip (Xipd - );(ip) <= yif) /Tip + |yip ||)_(|p| (B_15)
By employing Lemma 2, the first derivative, L;,, can be written as
Lip = Yip(Xipa — iip) < _inp/Tip +Yip iip
ylp
< _7"' yl §ZI s(H| ) is + yl g i S(HI )yIS
‘p‘z p pl‘ ‘ ‘p‘Zyp pl‘ ‘ (B-16)
Sazip, jo (Tl p1s Jq)‘ JQ‘
Yin 222
‘ p‘l =1g= 1[+ §Ay|p Jq(nl p-11 jq)‘yjq‘
2 va 2 (o2 2 N
—_yip/Tip+O—ip(ni,p—1vxp—1)yip+Z(Zis+yis)+z ( +y]q)
s=1 j=19g=1
where
_ 18
O-ip (Hi,p—l’ X p—l) = ZZ((fz,ips (I_Ii,p—l))2 +(§y,ips (Hi,p—l))z)
s=1
- . .,
+1ip {(@z Jip, Jq( i,p-1 Jq))2 J forp>2&oy, =0 (B-l?)
AEa +<§Ay ip,ja(TTi p-1s Jq))2

Now, define the combined Lyapunov function candidatm.;izn“(vip +|_ip). By taking the

derivative of L to get

N p zi2 B +22i2
- Oz + @+ ye) - 2+ vh )+ X T
j=1 s=1l + Yiso1 + 2Yis (B_18)
SN N[22 4272 2 2 _
53 3 ED %) RS PR I
i=1p=ll j=lg=1\ * Y], q—1+2yiq 2 2
p-IN K +z2 1
+ZZZ lq N " [ O-|p(n| p-1: —1)]yi2p
k=1j=1q=1 +y,q 1+qu Tip
Where Zi’n+l = O, yi’n+]_ = 01 and
—D(ITip) = Caip (i) + Caip (i) + S i () (B-19)

+§5ip(Hip)+§6ip(Hip)

Define the virtual control input % ,,; as
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Xips1 = Zin\A/ig% (ITp) — Kip Zpi + Xipg (B-20)
for l<i<Nand 1<p<nwhere Xpq=-yip/7ip from (12) and the neural network
Wipdip (ITjp) @pproximates function o(rt,) =wJ ¢, (1) +#, (introduced in (B-19)) where the

functional reconstruction errors are bounded above |gip|s &y - By plugging (B-20) into (B-

18) the first derivative is given by

L<
r2 M}, 2 T 2 N 2 2
(i~ Yam? - el B2 + Wi, (11, )2 - Z(Zip +yh)
. 1= (B-21)
AR AR REER PRI A AR AR
S=.
) N s
R B CHEEIA R YRGS NI AT IA
j=1g=L j=1 k=1j=1g=1
p-1 N
- : lz(sz + ngk)_(l/rip - Ui'xl )Y.Zp
i
where
i:maxM<i (B'22)

z-i,p Q z-ipgip(xip) - z-ip

and o = max|o, (I, HXM)‘ (which is a known result in DSC literature [1-3]) for all
1a :

1<i<Nand 1< p <n inthe compact set Q.
Now, combine the individual Lyapunov function candidates asL; =L +L,,where L, is
defined in Theorem 1 (part b). By differentiating L, and using Theorem 1 the first term in

(17) gets cancelled with second term in (B-21) and the second term can be brought into

the first term in (B-23). By differentiating L+, rearranging the summations, and noting

N M N M i
that zzaij :zzaji we obtain

i1 j=1 i=1 j=1
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N n N

e 33yt o b35S e 4 43)

i=1 p=1 i=1 p=1j=1
N n N p

&i fips +“2P“J+ > Z§(32,5+3y,5)+2222(3zi2q+3yi2q)

i=1 p=1 i=1 p=1j=1g=1

i1 i1 p=1k=1 j=1q-1 (B-23)

Additional  simplification can be done by noting that iaFNaiand

j=1
-1
pzak - zak a. Which results in the first derivative as
k=1 k=1
N n 1
LTSZ - Kip _72_‘% Mip |2
i-1 p=1 a7y,
_i n (ZNZizp +2Nyi2p)+izn:( |p+1 yl,p+1J
i=1l p=1 i=1 p=1 2
N n p
373> (3(N +1)22 +3(N +1)y2)
i=1 p=1s=1
N n p-1k N n P
T39I IPNACTESINEYE 39 39 N (CFERNTS
i=1 p=1k=1qg=1 i=1 p=1k=1
N n N n
+2> (Nag Ny -2 > e — o i (B-24)

i=1 p=1

=1 p=1

The first derivative in (B-24) can be represented as (B-25) by using Lemma 3 and

p-1p-1 p

the fact that Z Zak => Zak as

k=1g=k k=1q=k

. N n 2 N n
Lr < 23~ (Ky 14,7 =t~ Jot - D73 2Nz + 203

i=1 p=1

N 2 2 n n
+§1:Z Zijpr + y.,p+1J+§:ZZ(3(N +1)zi2p +3(N +1)yi2p) (B-25)

1
[iN
©°
Il
[N
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N n p p-1 . . .
Thetermy "% (ZNzizk + 2Nyi2k) in (B-25) is rewritten as
i=1 p=lk=1q=k
N p p-1 N n p
SIS SNz + 22 )=3 > S (2(p - K)N2Z + 2(p — k)N
i=1 p=1k=1q=k i=1 p=1k=1 (B'26)
N n n
=33 3 (a(k - PN + 2(k - p)Ny2 )
i=1 p=lk=p

By combining (B-25) and (B-26) and performing additional manipulations, the

first derivative from (B-25) is given by

N
L < Boinz2 = Byiny2) (B-27)

n
i=1 p=1

Where

M M
{ﬂzvip =(Kp+(N-3n-ef —mif ~2N-rx,) -

ﬂy,ip =0
and

Kip +N+(2N=-3)(n-p+1)
Boin { ’ (B-28)

71/271/(4%2)7 gi’;' *Uih; -3Np - x, forp>2
Byip=Yrip + N+ (2N =3)(n-p+1)-1/2 -0y —3Np — &,

with,(pzznl(z(k_p),\,) for all 1<i<Nand 1<p<n in the compact set Q. The first

k=p
derivative of the Lyapunov function Lt is negative semi-definite if the initial states

[Z(0),Y (0)] are inside the compact set  provided the design constants ;, and K;, satisfy

(B-29)

. forp>2
27+ﬁ+gi’;] +7y —(N=3)(n-p+1)+3Np +x,
Tip

This further implies that if the initial states are within the set @, then they will stay

in the same set fort>0by using [14 and Theorem 4.8). Consequently, L+ <0 for t>0.
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Now by applying Barballat's Lemma [15] the states zjand vyj,are guaranteed to

asymptotically converge to zero locally as time goes to infinity for all

1<i<Nandi<p<n. u

Remark 4: Design (B-29) suggests that the design constants are selected in a specific

design order as K -z, > K, > 7, >K;. This means that each design gain K;, and
time constant r;, for all 1<i<Nandi<p<ndepend on gains and time constants from

previous steps. This sequence is also satisfied in the proof of Lemma 2.

Proof of Lemma 4: Step 1. From (3) we have

Xip = 20Wi @ (TT;;) — Ky 2 (C-1)
Consider the set & being the same as the compact set over which the neural network
approximation property applies and by using (16) and (A-1) it is assured that there is a

maximum for the states w,] and for W] as well inq. Also, note that we can assume

<w

o0

=g, by using a proper NN activation function. Hence, the

0

V] 6 (1T,) $u(ITy)

following steps can be concluded.
Step 1:
[%ia| < (611 + Kip ) 24| (C-2)

Then, from (5) and (6) we have

|Xi2d | S(eil + Ki1]2i1| +|yi2| ; (C-3)
|)A(i2|§(ei1 + Ki112i1|+|2i2|+|yi2|7 (C-4)
and

Xio| < (8ir + Kig ) 2ia| +|Zi2| +|Viz| +]Zi2] - -
i) < (B + Kig ) 2| + |22 | +]yic] + |2 (C-5)



Stepp, 2<p<n-1

By using Mi;¢ip (ﬁip)w

<W,p" max
Q

¢ip(ﬁip) =€

ip
Lemmal, we obtain

Vi

ip

‘)‘( (e +K; }

i,p+l| = Ip

Consequently, from (11) and (A-5)

v < o1+ Ko J2i | +[3igl feip +[3i gl

R < o + Kip Y| 25l +]ipl 10+

and

[Xipual < <(ey +Kip Y2+ 2 poa | +[Yiol 7 +]¥1 91|+ [T pot]

Proof of Lemma 5: Step 1. From (20) we have
éil = LRy + Xip + iy Xy

Thus,

‘iil‘ < D[R]+ 2] + i ||

From (22) and x,4 =0, we obtain

Xip = 2i1V\7iI ¢i1(ﬁi1) -KiZj

Thus,

|>*<- <

] (ﬁil)u-|2i1| + Ay (ﬁil)‘éil

where A, (11,) =W, max|od /2, (1)

-‘2i1‘ +Wi1V| C
a

+ Kilj

and ¢3i1 = ¢i1(ﬁi1). Using the weight update laws (28), we have
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and a similar reasoning to proof of

(C-6)

(C-7)

(C-8)

(C-9)

(C-10)

(C-11)

(C-12)



¢ip (1:I ip )

+ W' ]

52
i < pip Zip (2 mf?x
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(C-13)

for 1<i<Nand 1<p<n. Therefore, by using (C-12), (C-10), (C-13) for p=1, and

7, =Xy, it yields

’ il)‘-iil‘

‘iiz‘ <& (ITy)|2
Syio2 (ﬁil)‘yiz‘

where §zi,22(ﬁi1) = A fi,i21(ﬁi1) = Aglig, & (TTiy) = Ay ,and

§Z| Zl(Hll) p|1 (2 max“¢|1(H|1)H+W|1 )max“¢, (Hll)“

+ Ay Lil + Ay (eil + Kil)

Note that |x;,| is a function of [Kiy, Ly, Lip, " . Also,

Vil :|Xi2d _);(i2| <|Yiol /712 + );(i2|
<& (1

Syi2 (ﬁi1)|yi2 | + |Yi2 |/Ti2

! i1)|zi1|

Step 2: From (26) we have

" ~ 2 ~
= LipRip + iz + 1 Lip Xy + Vin [7is -

From (22) we have x;; = 2,W,} ¢, (IT;,) — K, 2;, + Yiz/7iz 5 thus,

‘ii3‘ < A.z ] (ﬁiz) -‘2i2‘ A éi1 +A 0 2.iz‘ + Ay,izz‘in‘
where
. odol. 1 - od
Az,i21(Hi2):Wi2A mgx 62:; ‘Ziz‘apy,izz(niz):Wig/I mgx 6y,2 ‘Az“;
I1,) =wM Odhy 2|+ WM I1 K
A, i22(TT5) =W,y max||— ‘ i2‘+ i2 1 (T + Kz
Q ||0Z;, 9

According to (C-13), we have

o(IT,)

Vi S/Oizzizz( +Wig/|) :

(C-14)

(C-15)

(C-16)

(C-17)
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By using Lemma 1 for |x,| and 2, = &, -, , we conclude that

‘iis‘ < fz,ial(ﬁiz)‘zil‘ + fz,isl(ﬁiz)‘iiz |+ &3 (ﬁiz)‘zi?,‘ (C-18)
+S&y 32 (ﬁiz)‘ Yi2 ‘ +&y a3 (ﬁi:«.‘)‘yiS ‘ +#2§E,i31(ﬁi2 )‘Zil‘

Note that [x;;| is a function of [Ky, Kiz,7iz, Lis, Liz, Lin, L] - AlSO,

|Via| = ‘Xi?»d - 23‘ <|Vial /7ia + ‘23‘
< é:z,iSI(ﬁiz)‘iil‘ + fz,isl(ﬁiz)‘iiz‘ + ‘fz,iBs(ﬁiz)‘iiS‘
+ fy,i32(ﬁi2)‘yi2‘ + é:y,i33(ﬁi3)‘ Yi3‘ + ,szi,isl(ﬁiz)‘iil‘ + ‘Yis‘/fis

(C-19)

Stepp, 2<p<n-1
By induction we obtain

‘X;ip‘ < é:z,ipl(ﬁi,p—l)‘iil‘ teeet é:z,ipp(ﬁi,p—l)‘zip‘ + (C_20)
{:y,ipz(ﬁi,p—l)‘ Yiz‘ ot Sy, p—l(ﬁi,p—l)‘yip‘ + ﬂp_l‘fi,ip(ﬁi,p—l)“i}l‘

Note that [x;| is a function of [K,,..., K , 4, 7ip,.... 7;

Proof of Theorem 3: Due to the presence of observer in the output feedback controller
design, there is a third error besides the two errors involved in the state feedback design.
For convenience, we analyze the dynamicsi,, Z,, and vy, where 7, =z,-2, for
1<i<Nand 1<p<n. Thus, here the proof involves three error systems. Before we
continue, we definez,,,, = y,,., =0. Moreover, define x; =y, =y, =zjp = 2, = Xjp = Xjp = Kjp =
Kip =€jo =0, and 7;, =7, =1.

First error system (Zz;,): Employing z, (1< p<n-1) from (14), #,from (26), and noting

that 7, = X;, we obtain

-Z:-ip = fip(xip) + Aip()zp) + gip(xip)zi,pﬂ

~ (D-1)
— LipXjp — 1 P LipZiy + (gip (Xip) _1)Xi,p+l
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For p=n, the error x, becomes

?in = fin(Xip)"‘Ain()?p) - Ein)A(in _ﬂnLinfil' (D'Z)

Define Xi’p = Xip/,up_1 ) )A(i'p = )A(ip//"p_1 ) 2{p = 2ip//'lp_1 ) Zp :‘Zip//"p_1 ) yi’p = yip/,up_1 ) and
71 =[z,,....7,,] for 1<i<Nand 1< p<n. Equations (D-1) together with (D-2) can be

rewritten as

?i, = Fy + uAZ{ + 1B %; (D'3)
where
(fil(xil)"'Ail()?l)) —Lp gu(Xi) 0
I - Li2 0 0 ]
F= - - = : :
! ]//un 2(fi,n—l(xi,n—l)"'Ai,n—l(xi,n—l)) Ai L 0 g (X )
_ = “Lina in-1\Nin-1
]//Jn 1(fin(xin)"'Ain(Xn)) _L:]n 0 b 0 hn
-l 4Gy
0 —Lp, wudp 0 0 )
B =—
# 0 0 - Ei,n—l H 7| n-1
0 0 0 -L,

and g, =g, (X;,)-1. Now, define the Lyapunov function Ly =Z"P;Z/ with Py being a

constant. Taking the Lyapunov function first derivative, we have

=

Zj i 27" Py (Fy + 1B, %) (D-4)

d = >
a(ziT Piiz')ﬁ ~HAQ1min

where  Aggi min = Amin Qi (Xin)) and Qg (X;,) is the solution of Lyapunov equation
Q

A (X)) Py + Py A (Xin) =—Q5 (X;,). By using Assumption 1 and 3, (D-4) can be

written as
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72

:t (Z PXIZI)< /’lﬂ'Qll min |
n

in)HZ%(ZJr (ei,p—l + Ki,p—l)2 +J/Ti2,s_1)
p=1

n
1P P IB XD (B2 + 25+ Y2 s+ ¥2)
p=1

P 1
+ [ HP.HZl 35 bor X B+ s+ Kia P41/
IRl

p
p=1s=1

2 52 2 2 | 512
Z (2i,s—1 + Zis + Yi,s—l + yis + Zis )

n N

222

p
p=1j=lg=1

~12 Xi‘

%(5'3"”)2(3+(em4 + KLq—l)2 +:I7/rqul)

(D-5)

n N p

2 52 2 2 "72)
222\ G g+ g+ Yiqat Yig + Zjg) -
p=1j=1g=1

+[Pl
By using Lemma 3, performing more manipulations, and summing over i, we

obtain

Nod for o) L[ #gumin = 4]BU(Xin)| - ]“'2
—\Z P}l i - 4
;dt( ) .21:{#3 (XiCui = [PaillCai (Xin) il (D-6)

S Bl<x.n>[z<np+1>z Sy, ]
+zu HZ(2(n—p+1)HZH +2(n-p+D)yi + (- p+ D[z

N n
+ZZ(2(n—p+1)HZ [ +200- p+1)y;? +(n- p+D|Z| )ZH Ry

i=1 p=1

Where Cli :Z —lz _12(2"'( i,5— 1+K|s 1) +]7/T|s 1)

and

Cai Zp 125 12( )2 (3+(eiys—l + Ki,s—l)z +]/ri2,3—1)

n N p

+ZZZ ( Fp, JQ)Z(3+( K 1+K1q—1)2+]/71q 1) Z(n—p+1)
pzlleqzl p=1

where u,ps = mg?x Vips (Xip) which results
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Mg, min—/lHBl(Xin)H_/JHBl(xin)HC” N 2 (D 7)
Ld (57 o N 2+ 2 HCs + CaipVi -
2 ) icsco-0-peaS | [ar O S

i=1 i=1

—(n—p+D|Py
where
Cy = Z;Zlm Jlin=p+1)+(2/p)n—p +1)Z, P [+ [P |* xb2(n — p +1))

(xin)”-

Cuip = 244|P; Hb+2H iln-p+D+2(n- p+l)z

Second error system (2;,): From (26) and (25), the observer dynamics can be rewritten as

2in = E )’i +,UX| p+l +/UL|p i1 +y;P/Tip
= Lip(”p + Xipg )"‘ﬂ( i,p+1 + Xi pi1d )+,uL,p Zi+Yip /Tip
2

+/JZ| p+1 +IuLIpZIl + L led +qul p+Ld + ylp/TIp

which results

ff =F, + 1P 2{ + 1 7)) (D-8)
where
Ei1/ﬂ 1 0 0
: : 7Li:[|-i1 ----- I-in]T’
S [ 1
—q; —d -ay, —Kj, +Wi:¢in(ﬁin)+tin/ﬂ
And

Fo"" =[iRiza . Viz /Tiz + LigXiza + #Riag -1 Yin /Tin + LinXing]" - NOW, define the Lyapunov

function L, =2"pP,2. with P; being a constant. Taking the Lyapunov function first

derivative, we have

(D-9)

"!

Z; +2 ”TP L,z,1+2”T

d (MT PXI A;)< :u/1Q2| min

where  Agsi min = Amin (Qu (Xin))  andQ,(X;,) is the solution of Lyapunov equation
Q
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A" P + P A, =—Qq (IT;,) . Equation (D-8) can be written as

d A; r ey
dt (Z| PXIZI) :u;tQ2| min | +IUHL i +:uHPxiHZHLi Zi2 (D'lO)
1o n ' 51
"Rl . + e+ K P <2< R e Rl
Summing over i results
N d A,T ot N /HAQZmln /HLJ 2
. PyZi)<
Eg i uti) ;( [PalC: ~1Pl (B-11)

N
+ > P | L )
i=1

i=1 p=1

where c;, :%Zzﬂ(j/ripz +(eip +Kip )2 +1)'

Third dynamical system (y;,): Define the Lyapunov function candidate as L;, = p2 /2
for 1<i<Nand 2<p<n. Then by using (24) , (25) and x>1, the first derivative is given

by

Lip = Vip (King — Xip) <—Yiz [7ip +

ip

’ P 1 A vad
Fﬁx,ips(ni,p—l)‘zis

1 p-2)[]

—1,up —5 ST p_l)\y,s\+
< /2~ G (1T, 1. X, D+ X0 yi2 + |2 + 2 (D-12)

where G ({1, 520 Xy ) = Z (Eips (T p ) +(Ey s (T, 5 ) for 2< p<nandé, =0
i i,p— — 4

s=1| + (fi,ip (Hi,p—l))

NN weight estimation error: Define the Lyapunov function L, =]/(2pip)vVipTV\7ip. From

(27) we have
N n N n 22
W M AM -
Ly = ZZ 2(p =) Wlp < ZZ 2(?))71) (77ip T ip ) (D-13)
i=1 p=1 PipH i=1 p=1 ¥
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where 43 :QMiPHJFWiQA )(mngg’)ipH*Wiyj and :Wlip

+W,! )max
Q

¢|p'

Now, summing the individual Lyapunov functions, we obtain

L :Zi,il(HPxi HZ Ly +Ly +Lip+ LW) which results

=4 =41 d 51 51 ° N
ziT Py Z; )+a(ziT Psi 2 )+ Lip + LW)

. d
S 1 A

ﬂ(;l“Qli,min —b-bCy; _1)_Hpii HCZi (X |n)J
1

N
<SP, |7 L, N
EH XIH H I[(np+1)zpij(np+l)Pi|
j=1

Ci =[Pl - 2" 2P

Z

3 (o~ I11 - C) - IRy
Y W -6l ~Cap—2Pul (- P+ DY

(D-14)

where 61 = mex|6, (I, 1, X, 1) and A" zr?%x(ﬁirpM +ﬁi“g'). the value g, can be selected
Q )

large when L;, is appropriately chosen (for 1<i<Nand 1< p <n). Then, by selecting
adequately large a,(for 1<i<Nandl<p<n) ZgmnCan overcome the term
|ILi|+Cyin the second term in (D-14). Finally, appropriate x and sufficiently
small z;, make L negative semi definite (lacking NN weights errors) in the compact set <.

These conditions are summarized as

Agimin =B +bCy; +1

Agzmin = |Li]| + Ca (D-15)

Y7y, 26y +Cyuip + 2|Pyl|+ (n— p+1)
for 1<i<Nand 1< p <n. This further implies that if the initial states are within the
setQ, then they will stay in the same set fort>0by using [14 and Theorem 4.8.]

Consequently, L <0 for t >0and by applying Barballat's Lemma [15] the states iy, 2ip,

and y;,, asymptotically converge to zero locally while the states vVip remain bounded for
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all 1<i<Nand 1<p<n.
Remark 5: In the case that g;,is a function of the states, matrix B,includes the
coefficients a;, (for 1<i<N and 1<p<n). Consequently, satisfaction of conditions (D-

15) is limited to a restricted class of interconnected systems.
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3. Power System Stabilization Using Adaptive Neural Network-
based Dynamic Surface Control

S. Mehraeen, S. Jagannathan, and M. L. Crow*

Abstract— In this paper, the power system with excitation control is represented as a
class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-
feedback form. Subsequently dynamic surface control (DSC)-based adaptive neural
network (NN) controller is designed to overcome the repeated differentiation of the
control input that is observed in the conventional backstepping approach. The NNs are
utilized to approximate the unknown subsystem and the interconnection dynamics. By
using novel online NN weight update laws with second order error terms, the closed-loop
signals are shown to be locally asymptotically stable via Lyapunov stability analysis,
even in the presence of NN approximation errors in contrast with other NN techniques
where a bounded stability is normally assured. Simulation results on the IEEE 14-bus
power system with generator excitation control are provided to show the effectiveness of
the approach in damping oscillations that occur after disturbances are removed. The end
result is a nonlinear decentralized adaptive state-feedback excitation controller for
damping power systems oscillations in the presence of uncertain subsystem and

interconnection terms.

Index Terms — Power System stabilization, Excitation Control, Dynamic Surface

Control, Decentralized Control, Adaptive Control,
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Miner Circle, Rolla, MO 65409. Contact author: sm347@mst.edu. Research Supported in part by NSF ECCS#0624644.
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I. Introduction

In the recent years, the competitive market for power generation and energy
services demand a more reliable power network. Due to offshore wind generation plants
and solar cells, a noticeable uncertainty in the load flows will occur in a power system
thus impacting the dynamic behavior and stability. Therefore excitation control, power
system stabilizer (PSS), static VAR compensators, and other power system controllers
can play even more important role in maintaining dynamic performance and power
system stability, and thus, increasing reliability. Centralized control strategies for
ensuring performance and stability are not viable due to the sheer size of the power
network which causes time delays in acquiring power system bus voltages and currents.

Decentralized control (DC) techniques [1-6], on the other hand, have been
evolving for power systems so that they can achieve transient stability as well as steady
state behavior in terms of damping oscillations caused by faults/disturbances. Under the
DC techniques, load and frequency control methods of a multi-area interconnected power
system are studied in [1-2]; however, linear power system model is used to design turbine
and exciter voltage controllers. In [3], an LMI approach is chosen and sequential linear
matrix inequality programming is utilized to design a power system stabilizer (PSS). In
[4], by considering nonlinear power system representation, a suboptimal performance for
all admissible variations of generator parameters is achieved using an LMI-based control
approach.

By contrast, in [5], a decentralized neural network (NN) control of a general class

of nonlinear systems in strict feedback form has been proposed for power systems by
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using backstepping technique while relaxing the matching condition (where in the
matching condition the interconnected terms appear in the input domain only). The
method is applied to design excitation and steam turbine controls rendering state
boundedness due to NN reconstruction errors while encountering repeated differentiation
of the control signal due to backstepping design. In [6], a linear parameter varying (LPV)
representation of the power system is chosen at each operating point via linearization and
subsequently, a decentralized PSS is designed.

Dynamic surface control (DSC) [7], on the other hand, has been receiving
attention in this decade [7-9]. In the DSC scheme, the well-known problem of repeated
differentiation of the control signal in the backstepping design is replaced by a series of
algebraic terms which simplifies the implementation. Consequently, the DSC scheme
results in asymptotic stability in a semi-global manner [7] provided the system dynamics
are accurately known. Further attempts in [8] provide asymptotic stabilization for a class
of uncertain nonlinear systems using adaptive DSC provided the control gain coefficient

matrix being unity or g()=1 (wherex= f(x)+g(x)u) and the system uncertainties are

assumed to be linear in the unknown parameters (LIP). Hence, NN universal
approximation property is asserted in [9] to relax this LIP assumption for subsystem
uncertainties in order to ensure state boundedness.

In this paper, the large-scale power system with generator excitation control is
represented as a nonlinear uncertain, interconnected system, in strict feedback form.
Subsequently, the DSC design framework is proposed while relaxing the matching
condition (i.e. the interconnected terms appear in several dynamic equations as oppose to

the one where the actual control input appears). Next, NNs are introduced to approximate
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both subsystem and the interconnection dynamics. Novel NN weight update laws are
derived which render asymptotic stability even in the presence of NN approximation
errors. Finally, simulation results on a 14-bus 5-generator power system with generator
excitation control verify satisfactory performance of this controller in damping the
oscillations after a disturbance has occurred.

This paper is organized as follows. First background information is given in the
next section. Subsequently, power system model development as well as excitation
control is introduced in Section Ill. The DSC state feedback design is introduced in
Section IV. A numerical example is presented in Section V. Conclusions are given in
Section VI.

I1. Background

Consider the dynamical systemx= f(x,t), wherexeR" representing the state
vector and u(t) is the input vector. Let the initial time be t,, and the initial condition
bex,=x(t,). The statex is considered as an equilibrium point of the system
if f(x,t)=0t>t,.
Definition 1: An equilibrium point x, is locally asymptotically stable at t; if there exists a
compact setS — ®R" such that, for every initial conditionx, =S, |x(t)-x,| >0ast—>w. If
the compact set x, — S can be made arbitrarily large and if ||x(t) - x,| —0ast — o, then the

equilibrium point is semi-globally asymptotically stable.
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Next, a brief background on NN is given. A general function f(x)e%where xeR" can

be written as f(x) =W T ¢(V " x) + £(x) with £(X) NN denotes functional reconstruction

error vector, W e RN2 and v e R™N2 represent target NN weight matrices.
[11. Power System as an Interconnected System

In this section, a decentralized representation of a power system is obtained for
nonlinear controller development. When a disturbance or fault such as a three-phase to
ground occurs, the generator angles and speeds deviate from their normal operating range.
Unless there is a controller to mitigate the oscillations, which bounce back and forth
among multiple generators, the power system will not return to its normal operating state
after the fault is removed. Generator excitation control is a means to alleviate the power
system oscillations. Since the disturbance is a function of the power network voltages and
angles as well as generator states, it is generally hard to design a centralized damping
controller for the complex interconnected power network. Thus, in this paper, we aim at a
decentralized excitation controller to mitigate the oscillations by using locally measurable
states of the generator as well as its bus voltages and angles. For this controller
development, the large-scale power system has to be represented in a decentralized form

which is discussed next.

A. Model Development

A power system is usually modeled using a combination of differential and
algebraic equations. The differential equations represent generator states (i.e. angles,

speeds, and dq voltages E;and E;) whereas the algebraic equations represent bus active

and reactive power balance relationships. For the purpose of controller design it is
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desirable to have pure dynamical equations. In [12], authors have proposed an algebraic-
free power system representation based on the classical generator model. In order to
incorporate the generator flux-decay states, the proposed model is extended herein.

A two-axis model [13] is chosen for the purpose of power system representation.

As a consequence, the generator dynamical equations are given as

) 1

(ﬂ =w;, o ::]Q{;(Fﬁm _'ng);
T o
E [ dIE d'Vi+nCOS(5i_Wi+n)+Efdi]

’
TdOl Xdl Xm

. 1( X, X=X 1
Egi :[_?IEdi +q|7, i+n SIN(J; '//Hn)] Efdl T (VRi _KEiEfdi)
qoi \ Xqi di Ei

where s, is the rotor angle of the i-th machine, «; is the difference between the

generator angular speed and synchronous speed, E; and Ej; are generator’s dq variables as

defined in [13], Ey; is the excitation voltage, and v,,, and y;,, are the generator bus

voltage and phase angle, respectively, as depicted by Fig. 1. In addition,

P = BV (Eqi SIS, = i) — Bl €0S(S, — i) (2)
where B represents the reactance of the admittance matrix, n being the number of
generators, and N denotes the number of non-generator buses in the power system as
shown in Fig. 1. The bus voltage and phase angles of the power system buses are

illustrated in Fig. 1 which are constrained by the set of algebraic power balance equations

(neglecting resistances) as

n N+n
F>Li+ZBiJ.vi(E(;jsin(g/i—5].)+E;Jj cos(y; - 5,))+ leuvv sin(y; — ;)= Sp; =0
j=n+
' - iy 3)
ZBUV (Ey; cos(y; - 8;) — Ejsin(w; - 6,))— 3. BV, cos(y; — ;) =S =0

j=n+l
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Then, taking the derivative of (3) to obtain v; and y, as

OSpi _ aSPiv+aSPi l/-/+aSPi 5'+aSPi E/ +aSPi E(’, -0 (4)

o oV oy a5 OE, ' OE

and
. - ; .. 0Sy .  0Sqi .
Sqi :aSQIV+aSQ'l/)+aSQ'5+ Qi Ec'1+ Qi E; =0 i=n+1l...,n+N )
ot oV oy 0o GE(; OE}

1

El,,“:l (o Bl T 2n41
k 2

s O 2n+2

! T oo 2n o 1N

Byon=5—
=y

Fig.1 Power System

By using (1) for E; andEg and solving (4) and (5) and forv; andy;, we obtain a

new set of dynamic equations as

55 S
D(x) EMX) ]y ] ([F(X)

where V=N, Vi, ... VoT» ¥ =i Voo - Vo], ad 0=[o o, ... o,]is
the generators’ speed error vector. Also, define o&=[5 & .. 5.1,
E,=[Ey Ej .. EnI'» Eg=[Eyu Ei ... Egl', Etg =[Efa1 Etg2 - Eganl
AP, =[AP; AP, ... AR,T', and x=[s" o' Ey EJ El4 VT y"1". The entities for Ay,

Buxn ' D s Ensn s Crsen s Fuse - Ransa »@nd - Goyp€an be derived by collecting the

corresponding coefficients. Equation (6) can be rewritten in a more appropriate way as
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V] [Aax) BT ([C(x) B
M—{Dm o) HF(x)}“”R(X)j‘a(X) o

It is important to note that this step is needed only for model development and is not

required for implementation.

B. Generator Representation
Next, the flux-decay model [13] of the generator is given as

. . 1 ., 1 , ,
8 = ;s dy =——(Pyi — P ); g 27(— Egi + (xai =X N i + Efdi)

M Tdoi (8)

E i =%6/Ri*KEiEfdi)
1

where Pg; is the active load at each bus, and M; = 2H/ay is the i-th machine inertia. In

addition, the following equalities are valid

Pei = Egilgi + (Xgi = Xgi ) gil ai %)
and
lgi = BijisnVien SN —Witn); lai = Bi,i+n(E<'qi Vi COS(S; ~isn)) - (10)

Moreover, the power balance equations (3) will be simplified by employing the flux-

decay assumption

Eg = Xg —Xai)lgi - (11)
In this design we assume that the mechanical power P, (1<i<n) is slowly

changing compared to the other control variables; thus P,; ~0. Now define

AP,

ei

Xip = 0i —Opi ; Xip =@ ; Xj3 = ; Xia = Peoi —14iEtqi (12)

where AP; =P,,; —P,; and P,,; =P,;. Consequently, the generator dynamics (8) can be

rewritten in the state-space form as
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Xip = Xiz 5 Xjz2 = Xj3

, X X: 1 L

Xig =— 24— (Xdi — Xqi )Iqilqi —Egilgi
Taoi  TaoiMi Tgoi (13)
_(Xqi —X&ixlqildi + Iqildi)

K Vi,
X, = | EE =
i4 (TEI fdi — TEi J fdi

The electrical diagram of the generator using the flux-decay model is depicted in

Fig. 2 [13] where the voltage source and injected current are represented as

E; = (g = Xt i + jEéi)g[Jiigj and, I, :;. According to the figure and (11), the voltage

. . ) ) (5i _ﬁj
source in Fig.2 can be represented as E; = ((xqi —xd,)B Viin SIN(S — i) + jEC']i>3 2,

i,i+n

Then, by applying =Y,V to the power network, where 1=[I, I, ... 1,] and

v =[\/n+le‘/’n+1 V,, €2 . VZne‘/’Zn]r we obtain

((Xqi - Xdl )BI |+nV|+n Slﬂ(5 l//|+n) + Jqu k(ﬁi 75)

N )
_ JVk+n
= ZYbus,ika+ne

k=1

(14)

which yields

(Xgi = X&i BiisnVisn SN —¥i,n) SIN(S, )+ E; COS(S; )

. 15
= Re[ZYbus,ikameJWkJrn j (3

k=1
and
— (X = X4 B inVin SINS; — i) €OS(S;) + E sin( ;)

| (16)
= Im(ZYbus,ikameWk+n J

k=1
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)
([d,‘-fiji}(‘ /2)
1
—
1

+
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{,H_ne.]% 7

[(xgr' - Xgi )Iqi]g(éi ~7(2)

+ JEy;

Fig.2 Generator flux-decay model

Remark 1. Here Y, may contain nonlinear impedances (including constant loads). Thus,
even if the system Y, is reduced to an nxnmatrix, non-generator bus voltages and
angles are involved in computations. Thus, conventional Y, reduction techniques cannot

be applied to overcome non-generator nodes.

C. Decentralized Nonlinear System Representation
The dynamical representation of the power system from (13) can be rewritten as

a general class of L interconnected nonlinear subsystems in affine form as

X = fir(Xi) + 9in (X)) Xi2 + Ail(il)

' _ 17)
i = Fir OXi) + 93 (X5)u; + 43 (X))

hi (Xii) = Xy

where index i, 1<i<L, represents the subsystem (generator) number, L is the number of
subsystems (generators) in the power system, p, 1<p<I, shows the generator state

number, 1 =4is the order of the power system according to (13), f()andg(.), represent

unknown nonlinearities, a() denotes interconnected terms, with X =[x,....%I",

=[X{ . X1 X =D xgl™s Xo=0 and hi(X;)is the subsystem output for
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1<i<Landl< p<I. By comparing the power system representation (13) and the
general system description given by (17), it follows that f; = f;, = f,, =0, fi3=—X3/Tgoi »

91 =02 =1, Qi3 =YTyoiM; . and g, = 1. Also, Ay = A;, =0, with

1 - v _
Ajs :_(Xdi_Xqi)lqilqi_Eqilqi_(Xqi_Xdixlqildi"'lqildi)’ (18)
doi
Aiy __I.qiEfdiv (19)
and
K. Ve
U = Iq(iEfdi —ij (20)
Tei Tei

In the following, we findv and y as a function of the states &, @, and AP, .
Equations (15) and (16) yield expressions Eg; cos(d;)and Eg sin(d;)as functions
of 5,V , and yw which in turn yields E¢; and &'to be functions of V , andy as
Ey=%(V.¥), 6= %V,p). (21)
Consequently, by using (9), (10), and (21) the variables 1, andi,as well as p,can be
represented as functions ofv and y as
Pi =% (V.,y) (22)

Now, equations (11) and (21) (fori<i<L) along with the 2N nodal power flow

equations (3) give solutions for v and  in terms of s, for 1<i<L as

Vien =3%i(0); Win =%(0); 1<i<N (23)
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D. Interconnection Terms

In order to address the interconnection terms, the following assumption is needed
for analyzing their upper bound.
Assumption 1: The excitation voltage, E, , satisfies the following inequality [14] defined
by
E i < K(Eg + (Xai — X3 )l ai) (24)
where K s a positive constant. Consequently, by (10) and (21) we have
Ew <% V.p) (25)
Also, by employing (11), (21), and (25), equation (6) can be simplified to
Vien <€ (Xe); Win <Coi(Xs);  1<i<N (26)
where c;()and c, () are positive nonlinear functions andx, =[s" «»" v'™ y"]". Then, by
using (22) and (23) we obtain
Viin <G (8,0,Ps); viwn <Cpi(5,0,P,); 1<i<N (27)
where ¢;and ¢, are positive nonlinear functions. Now, by considering the
interconnection term (18) along with (10), (23), (24), and (27) it can be shown that
|Aip|£5i(5,a),APe) for3<p<4. This step is only for model development and is not
necessary for practical implementation.

Next, we show that A and A,, are zero at steady state condition. Obviously, at
steady state, we have xg =AP,;/M,; =0. Consequently, by using (18) at steady state, we

obtain Az =1/ Ty (xdi — Xgi )I qis |gis Where the index “s” stands for steady state conditions.

At steady state, the states X;;, X;,, and X;5in (12) are zero. The term (x,; —x4) is zero for
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round rotors and it is a small value for salient pole rotors. Therefore, A =0. Also,
since Xy =0 at steady state, we have x, =0. In addition,i; =0 anda;,=0.
Consequently, at steady state X;; = X;, = Xj3 = X;, =0, we have A;(0)=4;,(0)=0.
IV. The Decentralized DSC Controller Design

In this section, the design of the controller is now addressed. Equation (17)
represents a nonlinear system in strict feedback form where a standard backstepping
design can be applied. However, to overcome the repeated differentiation of virtual
control inputs in backstepping, dynamic surface control design method [7] is utilized here
where a first order filter is utilized instead of the derivative. However, due to the filter,

additional error terms appear (i.e. y;,in Fig. 3) which complicates the stability analysis.
The variables used in Fig. 3 are 11, =z, and 11, =[X] .z, y,]" Where z;, and y;, are

introduced in Fig. 3for 1<i<Land 1< p<I.

Xz
o, - = T = » l+
—| T =W g AL | 2 1 Xigyg Zi
— —>
z — &% zy2s +1 =
Wi + ¥
Vi, M
-\
X3
L o e | G [+
%3 = %aWta (g | 23 1 X34 O zZ53
~ | —&iexa -y fa 738 +1 =
Wia +
—~ Yiz
-\
nj

T
—>| = 2, W i T ) Y
-~ =Ky Zs = i T
Win

Fig.3 The DSC controller block diagram
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Figure 3 illustrates the NN DSC controller design steps for the general system
(17) where the interconnection and unknown nonlinear functions are present in each state
dynamics. Therefore, one cannot use the assumption of matching condition. Instead, these
terms have to be explicitly taken into account in the controller design which further
complicates the stability analysis. Moreover, to deliver asymptotic stability, the NN
weights have to be tuned appropriately. Finally, it is shown that if the following
Assumptions are satisfied, the procedure shown in Fig. 3 can (semi-globally) stabilize the

interconnected system (17) asymptotically where f;,, g;, , and A;, are considered unknown

as shown in Theorem 2.

Assumption 2: Assume that the interconnection terms in (17) are bounded above in a

is an unknown function

compact set Q such that ‘Aip(ip)‘sz;tl@pj(xjp) where &

with 5.

i (0)=0for1<i<L and 1< p<I.

Assumption 3: The control gainsgi,(Xjp)for 1<i<Nand 1<p<l satisfy
0<gip < gip(Xip) < Tip(Xjp) -

Assumption 4: The nonlinear function in (17) satisfies f,,(0)=0 for 1<i<Land
1<p<lI.

A. Decentralized Controller Design

The DSC controller design procedure is explained now. Since there are no

unknown terms in the generator state dynamics x; and x;, , N0 NNs are utilized in the first

two steps.
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Step 1: Define the error as z, = x —x,and y =x =0 wWhere x4 is the desired set point for
regulation. Now define x, =-K;z,+x%,; Where %, is the desired virtual input to make
zj; > 0as t— . For the stabilization problem, the desired values become x;;4 = %4 =0.
Next, the intermediate virtual input x;,4 IS obtained by passing the desired virtual input
%, through a first order filter consistent with the DSC literature [7] as

TioXiag + Xizd = Xi2 (28)
Also, define z;, =Xj, —Xjoq and Y, = Xjoq —Xjp- THus,

Xip = Zjp +Yip + Xi2 (29)
Then, from (17) and (29), the error dynamic is given by

Ziy = Zip + Vi + Xip- (30)
Step 2. Define X3=-K,z,+X,. By using (28), we getx,q=-V,/z,; thus,
Xis =—Ki2Zip — Vio /7io - Similarly, the intermediate virtual input x4 is obtained by passing
%3 through a first order filter as

TizXiag +Xizg = Xi3 (31)
Define z;3 = X;3 —Xj3q and Y;3 = X;34 — X;3 t0 obtain

Xiz = Ziz + Yis + Xi3 (32)
Thus, from (17) and (32) we have

Zip = Zig+ Yiz + Xiz — Xizq (33)
Step 3: Due to the presence of unknown interconnection terms inx; , we use a NN

approximator in the desired virtual control to approximate the unknown nonlinear

dynamics. Since it is assumed that other subsystems (generators) states are not available
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in subsystem (generator) i, the NN approximator is only a function of available states x;
through x,,, i.e. ®;(IT;5) =Wl (IT;5) + ;s Where @ ,,(11,;) is part of unknown nonlinear
function in x. In addition, the target NN weights w;, and approximation error (for
1<i<Land 1<p<l) are not known; thus, a tunable weight matrix is utilized [15] to
calculate w;,, which results in Wi, . Accordingly, we define the desired virtual control as
%is = ZiaWis ia(Tiz) — KigZip + %iag - From  (31) we obtain X3y =—Y;3/7i5; thus,
X4 = 2iWis i3 (Ti3) — Kiszis — Via/7i3 - Passing %, through a first order filter results in the
intermediate virtual input x;,, to be

Ti4Xiag +Xigg = Xig (34)

Define z;, = Xj; —Xjaq aNd Y;4 = Xjaq —X;, t0 Obtain

Xia = Zig + Yig + Xig (35)

and

iz = &"'L(ZM"'yi4+xi4)+Ai3_Xi3d (36)
Taoi  TaaiM

Step 4: Similar to step 3, in the last step, the desired virtual input is defined as

Xis =U; =2, Wit iy (IT14) — Kig Zig — Via /714 (37)

by using (34) to replace for x;,4 . Note that, according to [7], there is no need for filtering

the desired virtual input in the last step. Thus, z,; dynamics can be written as

Zig ==V GiE g + 1l + Ay — Xiag (38)
Before proceeding, definex, =y, =y, =2z,=Ky=60=0, 7o=7,=1 and

W = [Wi,,.. Wy,] Where W, =\, -w,, for 1<i<Land 1< p<I.
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B. Stability Analysis

Here, we discuss a novel NN weight update law by using the projection scheme
[16] since NNs are utilized for nonlinear function approximation. An interesting property
of updating the NN weights using the proposed projection scheme is the boundedness of

the NN weights.

Theorem 1[16]: Assume that single-layer NNs are utilized to approximate the unknown
nonlinearities of the system dynamics and the interconnection terms in (17). Let the NN
weight tuning for the ‘ith’ subsystem be provided by

~
i

W, W,

“WM &I 224, () 20 7 =1 if

T
p

¢|p(Hip) (39)

Wip = _pipzi2p¢|p(nip) - pipzizp Aip + pipzizp)(

where , -0 if =W, &W 224, (IT;,) <O

M i M

> WM for all 1<i<Land 1< p<I, with WiF," denoting the user selected

M
<W, or

y=1if

My

bound for the weights |, . Then, the weight estimates remain within the user selected

bound such that Wi, <w;j' for t>0 provided the initial weights start within the set defined
by ‘Mip“swig” att=0; m

The NN weight update law is a variant of the projection algorithm [17] wherein a

quadratic term of the error is employed along with a new term p, z°\W; for relaxing the PE

(Persistency of Excitation) condition. This ensures asymptotic stability in error dynamics

z;, and vy, for all 1<i<Land 1<p<lI. The user selected bound w;}' on the NN weights

ip

can play an important role for the function approximation. Conservative bound selection

(i.e. smallw;)') can result in significant reconstruction errors, which should be avoided.
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This may cause the weight estimates W, to stay away from the actual weightsW, .

Nevertheless, the system errors regulate asymptotically to zero while the weight

estimation W,, are bounded.

Theorem 2: Consider the nonlinear interconnected system given by (17). Consider the
Assumptions 2-4 hold and let the unknown nonlinearities in the subsystems and
interconnection terms be approximated by NNs. Let the NN weight update be provided

by (39), then there exist a set of control gains K;, and filter time constants, z;, ,associated

with the given control inputs such that the states z, and vy, approach to zero

P

asymptotically (local) for all for 1<i<Land 1< p<I. |
It is shown in [16] that if the Assumptions 2-4 hold and the unknown

nonlinearities in the subsystems and interconnection terms are approximated by NNs the

states z;, and y;, approach zero asymptotically for all 1<i<Land 1< p <Iprovided
that the NN weight update is provided by (39) and control gains K;, and filter time
constants, z;, are chosen properly. In addition, from Section Ill, a power system satisfies
Assumptions 2 through 4.

V. Simulation Results

The method introduced in Section Il is utilized to design damping controller for
generator excitation control. The proposed design is summarized in Table 1 and a
comparison of design complexity with backstepping method is given. Note the increased

complexity when dealing with the term dx;,, /dtin backstepping (in row 11). In the
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Table, K;, is the stabilizing design constant fori<i<nwhere n is the number of

generators in the multi-machine power system andi< p<4.

Fig. 4 The IEEE 14-bus, 5-generator power system

Also, ;,is the filter time constant at each step p for2<p<4. In addition, W, and

W,, are the NN weight estimate matrix while ¢5(.) and ¢, (.) are the NN activation

function vector. Since there are no unknown terms in the first and second state dynamics
only two NN are utilized per generator. In other words, the generator angle and speed
dynamics do not require NN approximators. The IEEE 14-bus, 5-generator power system
shown in Fig. 4 is considered and it is subjected to a three-phase disturbance. The

generator data are given as xy =0006, x4 =002, x;=0019, T4y =7, Kg =1,
Tg =0.75for 1<i<5whereas H, =oM,;/2=5for i=14,5; and H; =1 for i=23 . The

power system load specifications are given in Table 2. All the generators have speed
governors and the excitation control is implemented by employing the DSC-based NN

controller as proposed in (37) and (39). The power system loads are considered as
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constants. The control objective is to damp the generators oscillations caused by a three-
phase fault.

Although the stability analysis is based on the lossless power system dynamical
model as described in (6), the simulations are performed using the complete power
system dynamic representation with line resistances and two-axis generator model in
order to evaluate the effectiveness of the representation and the controller design.

The power system modes are 11.3561, 5.9101, 2.6977, and 2.1026Hz. A three-
phase disturbance is injected to the bus 1, 6, and 11 at t=o0.2sand removed at t=0.4s
seconds. Generators 1 through 5 are chosen for control. The control inputs u, and weight
estimate 10x1(i.e. 10 neurons are used in the output layer) matrices W, and W,
(for1<i<5) are obtained by using (37) and (39), respectively, where the NN weights are
tuned throughout the simulations by using on-line learning. The voltage v, is calculated
using (20) and is subjected to hard limits such that the voltage satisfies 0 <Vg, <7 p.u. to
avoid any impractical excitation voltagesE, .

The design gains and filter time constants are chosen as follows: «, -o.001;
Ky =Kg = Ky =Kg; =0.0001; Ky, =0.002; Ky =Kgy =K, =Ky, =0.0002; Ki3=5; Ky=Kg=
Ky =Kg=05; Ky =5.1;K,, =Ky =Ky =Kg, =0.51;,7, =5} Tpp =Tp3 = 7, =75 =5, 73, =0.2;
T =Ty =Ty =T =2; =01, 71p=r53=14=1,5=1;p,=01 for 1<i<5 and
2 < p<4.The weight estimate matrices W, and W, are initialized randomly for1<i<5.
Moreover, no offline training is used to tune the weights in advance and no initial
knowledge about the power system dynamics, complete knowledge of interconnection

dynamics, or power system topology are needed for the controller design.



Table 1. DSC NN design procedure
Sequence DSC Backstepping
1 errors Zy =%, Y =% =0 Zy =%,
2 filter input Xio = —Kuzn N/A
virtual input TiaXiog +Xi2a =Xiz | X2g = —KitZig
4 errors Zi2 = XiZ - Xi27d le = XI2 — XI2d
Yiz2 = Xizda — Xi2
5 filter input Xiz =—KizZiz —Viz/7i2 | NIA
6 virtual input Tig¥iag + Xiag = Xig | T 0T Kinz = Kiz2
Zi3 = Xi3 — Xi3g V)
7 errors Voo = Xy — % Ziz = Xiz — Xigq
G o7
8 fllter input I4 - ZI3WI3¢3(HI3) N/A
KisZiz — Yia /i3
Xigg = Zi’swig%(xis)— Kis2
= Xi3 (=3 Tqqi + K{Kip + Kij
K N, TaoiM;
9 virtual input TiaXiad + Xisg = Xia Kia/Taw) Kiz +1
TdOlMl '
Ki,+1 "7
Zy =%, —X
10 errors 4T T Zjy = Xig — Xiag
Yia = Xiag — Xig
N r_ o7
] U = Z|4W|th¢4(H|4) Uy =z{Wis 4 (Xis)
11 input L OXly
KisZis = Yia/%ia = Kiszis - at
1 v Vi = Tgi (ui/lqi Vei =T (u;/lqi
Ri
I _KEi/TEiXEfdi) _KEi/TEiXEfdi)
Table 2. Power System Loads and Generations
Gen no. P (p.u.) Q(p.u) Gen P (p.u.) Q (p.u.)
no.
1(slack) -3.1184 0.2950 7 0.0000 0.0000
2 -0.1830 -0.4509 8 0.0760 0.0160
3 0.9420 -0.0846 9 0.5950 0.1660
4 0.1120 -0.4601 10 0.3900 0.0580
5 -0.1120 -0.3102 11 0.0350 0.0180
6 0.4780 -0.0390 12 0.0610 0.0160
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Fig. 5 Excitation/VR controller block diagram

The NN activation function is chosen as g, (IT;,) = sigmoid (VipTHip) [16]
for3< p<4 where v, is chosen at random initially and held fixed afterwards to form a set

of basis functions needed for the NN approximation [10].
For comparison, the results from the DSC design are compared with a voltage
regulator (VR) (in the presence of steam governor) shown in Fig. 5. The VR is designed

by using conventional methods [13] defined byGp;(s)=400/(1+.025) for 1<i<5. In
addition, Kgj=0.03 and Tg;=10 are employed. Figures 6 through 8 depict that a

significant oscillation damping is achieved for a medium size power network by using the
proposed decentralized controller when compared to the case with conventional

controller.
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Fig. 6 Generator speeds with DSC/VR control with fault on bus 1
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Fig. 7 Generator speeds with DSC/VR control with fault on bus 6

Moreover, Figs. 6 through 8 illustrate the robustness of the proposed controller
where the oscillations from the faults occurring at different locations have been damped
without changing the gains and filter time constants even when the subsystem dynamics

and interconnection effects are unknown. Note, however, that damping performance
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varies with the fault location. This is due to different after-fault conditions imposed on

the controller.

Figure 9 shows that the variations in excitation voltages, g, have fast transients

as well as slow dynamics where the fast transients are damped in the first few seconds
where the slow dynamics are due to the generator speed controller (governor) and are
damped in a longer time. The NN weight estimates in Fig. 10 are bounded as expected.
Overall, from these results, the proposed control is very effective in damping the

oscillations even in the presence of numerous modes.
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o 0.02 T ; T
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Fig. 8 Generator speeds with DSC/VR control with fault on bus 11



Fig. 9 Generator internal voltages with fault on bus 1, 6, and 11
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VI. Conclusions

In this paper, the power system is represented as a large scale interconnected
nonlinear system with uncertainties in both subsystem and the interconnection terms
where the system does not satisfy the matching condition. By using a new variant of the
projection scheme and dynamic surface control with NNs, the need for the repeated
differentiation in the backstepping design procedure was overcome. The neural network
approximation property is used to approximate the nonlinearities of the subsystems and
interconnected terms. It is shown that the closed loop system is asymptotically regulated
to zero with state feedback control even in the presence of NN function reconstruction
errors. Simulation results on power system with generator excitation control shows the
effectiveness of the approach in damping oscillations that occurs after faults in power
systems.
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4. Decentralized Adaptive Neural Network Control of a Class
of Interconnected Nonlinear Discrete-time Systems with
Application to Power Systems

S. Mehraeen, S. Jagannathan, and M. L. Crow?

Abstract— In this paper, a novel decentralized controller is introduced for a class of
interconnected nonlinear discrete-time systems in affine form with unknown subsystem
and interconnection dynamics. A single neural network (NN) is utilized in the proposed
decentralized controller to overcome the unknown internal dynamics as well as the
control gain matrix of each subsystem while the unknown interconnection terms are
accommodated by using a mild assumption. All NN weights are tuned online by using a
novel update law. By using Lyapunov technigues, all subsystems signals are shown to be
uniformly ultimately bounded (UUB). Simulation results are shown on a general
interconnected nonlinear discrete-time system in affine form first to show the
effectiveness of the approach. Subsequently, interconnected electric power system with
excitation control is considered as an example and the proposed controller is utilized to

mitigate the power fluctuations after a disturbance has occurred.

Index Terms —Decentralized Control, Neural Networks (NN), Interconnected Nonlinear

Discrete-time (DT) Systems.
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I. Introduction

In the recent years, there has been a great interest in the decentralized control of
interconnected nonlinear systems using neural networks (NNs) [1-6]. The decentralized
control effort has focused mainly on nonlinear continuous-time systems [1-4] and limited
effort has been applied for the discrete-time case [5][6]. Although for many applications,
continuous-time controller design can be considered, in practice discrete-time control
approaches are preferred for computer implementations [7] since controller designs in
continuous-time become unsatisfactory when implemented using low sampled hardware.
Moreover, due to sheer size of large-scale interconnected systems such as electric power
systems, the feedback delays degrade the controller performance thus necessitating more
decentralized control techniques. Therefore, decentralized controller development in
discrete-time has to be explicitly considered for large-scale systems.

Decentralized control (DC) techniques in continuous-time [8-13] have been
developed for power systems in order to obtain steady state behavior as well as transient
stability by means of damping oscillations caused by disturbances. However, many
authors [8-11] have not offered stability proofs except simulation results on power
systems. On the other hand, in [12], a decentralized neural network (NN) control of a
general class of nonlinear continuous-time systems in strict feedback form has been
proposed for power systems by using backstepping when certain system dynamics are not
known. Rigorous proofs are offered in this paper although the controller design is
presented in continuous-time in comparison with a centralized discrete-time controller
design for power systems in [14]. However, the decentralized controller development in

discrete-time to treat the large-scale systems such as the power systems is not yet
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undertaken due to the fact that the stability proofs in discrete-time are more involved than
their continuous-time counterparts since the first difference of a Lyapunov function
candidate is quadratic with respect to the states whereas it is linear for the case of
continuous-time system.

Therefore, in [5] the discrete-time NN controller design for a class of
interconnected nonlinear systems is considered where the interconnected terms are
considered to be over bounded by a constant. Moreover, the control gain matrix is taken

to be unity (i.e. g(x)=1). In [6] the interconnected system in discrete-time is considered

and a stabilizing robust controller is proposed. However, the controller does not utilize
the NN to approximate the system uncertainties.

In this work, a novel decentralized NN controller is developed for a class of
interconnected nonlinear discrete-time system in Brunovsky canonical form where these
restrictions are relaxed while realizing that the subsystem internal dynamics, input
coefficient matrix, and the interconnected terms are unknown. A single NN is used to

approximate the control gain matrix g(x)as well as the subsystem internal
dynamics f (x) for each subsystem. By using Lyapunov stability approach, boundedness of

the tracking errors as well as the NN weights are proven. Moreover, the generator
excitation control problem in the electric power systems can be expressed as an
interconnected nonlinear discrete-time system. Consequently, the proposed decentralized
NN control approach is applied as a damping controller to reduce generator excitation
voltage oscillations caused by disturbances.

This paper is organized as follows. First, the class of interconnected nonlinear

discrete-time system in affine form and its associated decentralized NN controller
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development are introduced in Section Il. Section Il presents the power system discrete-
time model development, while numerical simulations and concluding remarks are
provided in Sections IV and V, respectively.
I1. Nonlinear Interconnected System
Consider the class of N interconnected subsystems defined as
X (k +1) = fiy (x (k)

Xk +1) = fina (4 (K)) @
Xin(K +2) = i, (x (k) + g; (X (K))u; + A (x)
Yi (k) = ;1 (k)

where index i represents the subsystem number, N is the number of subsystems, nis the

order of the subsystem, f;;(x;(k))to f;,(x;(k)) are functions of the subsystem states and
represent subsystem nonlinear internal dynamics, g;(x;(k)) is the input gain matrix, A;(x)
denotes interconnected terms of the subsystem ‘i’ With x =[x "

1<i<N. Note that, the Brunovsky Canonical form is an especial case of system (1).

Define the tracking error as
Zip (k) = Xjp (K) = Xjpq (K) 2
for 1<i<N and 1<p=<n, where x,q(k)is the desired trajectory for the state x,(k) , and

Xig =[Xigd --- Xing]"  fOr 1< p<n. Next, define the filtered tracking error as

(<) =04 1" 2 (k) (3)
Where z;() =[zi(k) zip(k) ...zin (1" AND 3 =41 4, ...4011- The coefficients 2, through 2, are
selected such that the poles of the characteristic equation ¢£(q)= Ay +A4iq+--

+2inad" 2 +q" are inside the unit disc. Note that for system stabilization, the desired
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values become xj,q =0 for 1< p<n. Before we proceed, the following mild assumptions

and definition are needed.
Assumption 1: Let the interconnection terms in (1) be bounded above in a compact set ©

such that
2 N N
AP <3655 (r) <85 + Dt (4)
j=1 j=1

where 55; and y;; are known small positive constants for 1<i<N and 1< j<nin contrast
with [5].
Assumption 2: The input gain g;(x;(k)) of each subsystem in (1) is bounded away from

zero and is overbounded in the compact setQ. Without loss of generality, we assume that

it is positive and satisfies
0 < Gimin <[9i (X (K))] < Girra ®)

in a compact set Qwhere g;,,;,and g; ..,are positive real constants.

Remark 1: Assumptions 1 and 2 are standard in the control literature [16].

Definition. (Uniform Ultimate Bounded (UUB))[20]. Consider the dynamical system

x=f(x)With xe%"being a state vector. Let the initial time be t, and initial condition
be x, = x(t,) - Then, the equilibrium point x,is said to be UUB if there exists a compact
sets=w"so that for all x,esthere exists a bound B and a time T(B,x,)such that

Ix®) — x| <BfOr wt>t,+7 .
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Next the decentralized controller development is introduced.

A. Controller Design

In this part we develop a NN controller which employs the filtered tracking error
and NN function approximation capability and a novel NN weight estimate tuning
scheme. The stability criterion is then elaborated to show the stability of the filtered
tracking error as well as NN weight estimates.

Starting with (3), the filtered tracking error dynamic can be written by using (1)
and (2) as
r(k+2) =[4 47 z;(k +1) = g; (% (k) x

fin (406D =g (k+ D+ 30 Ay 04 0N = Xpo k4D ) |
g (% (k) Lg% (k)

The ideal stabilizing control input can be defined as u;=y" =uiy +Kir(k) where
Uig = =i 0 (K)) ™ (Fin (% (K)) = Xipa (k +2) + Zr;_:]iﬂ'ip( fip (% (K)) = Xipa (K +1)) to achieve
asymptotically stable dynamic r(k+1) = K;r;(k) where K; <1 is a positive design constant.
However, in practical applications ujq is not available since the internal dynamics f;, (x; (k)

and control gain matrix g; (x; (k)) are unknown for 1<i<N and 1< p<n. Thus, we employ

NN function approximation property to approximate u;q as (6)

Uig ==0; (X; (k) "
(£ 0 000 = X (6 D4 37 24 (£ 6,00~ X (K +3) ©)
=W, p; (X, Xig (K+1)) — & (X;., Xig (K +1))

where w; is the NN ideal weight matrix and &(.)is the approximation error which

satisfies |¢ ()| <mx - IN practice, the ideal weights w; and approximation error &; are not
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available either and only an estimation of the NN weights is available. Thus, u;y is
approximated as ;4 by a NN to obtain the control input v; as (7)

uj =Gig + Kt (k) =W;" 25 (., Xiq (K +1) + Kjr; () (7)
where W;" is the NN weight estimation matrix. Define the weight estimation error
asw; =w; -w; . Consequently, by using (7) and adding and subtracting u;q in (6), the
filtered tracking error (3) dynamics becomes

rk+1) =[4 1" z(k+1)

= 1006 () = Xing (K +2) + 30 i (Fip (% (K)) = X (k +1) @
+9i (X (k))(\/ViTPi + Kifi +Ujg —Uig )+ Ai(X)

= G (DWW, + & + Kyt J+ A, ()

Define the NN weight update law as

W (k +1) = W, (k) — ¢, ey pi1; (k +1) 9)
wherec; <1is a design positive constant. By using W;(k+1)=W;(k) , and subtracting the
ideal weights from (9), we have

W' (k +2) =W, (k) — ¢ "y it (k +2) — (1 — ¢ )W, (10)
B. Stability Analysis

In this part we prove that the nonlinear discrete-time interconnected system (1)
along with controller (7) and the NN weight update law (9) are stable while the tracking
errors r,(k) and weight estimation errors W; (k) of the individual subsystems are bounded
in the presence of unknown internal dynamics f;(x;(k)), unknown control gain
matrix g;(x;(k)), and unknown interconnection termsa,(x)fori<i<N. We introduce the

following theorem to show the stability of the interconnected system as well as the NN
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weight estimation errors. This theorem guaranties boundedness of the weight estimation
errors W, (k) and the filtered tracking errorsr (k). Once the filtered tracking errorr (k) is
proven bounded, it is treated as a bounded input r; (k) for the linear time-invariant system
(3) as Auzip(k)+-+ Ainazin(k+n-2)+ zy(k+n-1)=r;(k) which yields bounded results for

the output z;; (k) forall1<i<N .

Theorem 1 (Discrete-time Decentralized NN Controller Stability): Consider the
nonlinear discrete-time interconnected system given by (1). Consider the Assumptions 1

and 2 hold and that the desired trajectory x,q ( for all 1<i<Nand 1<p<n) and initial

conditions for system (1) are bounded in the compact setQ. Let the unknown
nonlinearities in each subsystem be approximated by a NN whose weight update is

provided by (9). Then there exist a set of control gains K; and filter tracking error
coefficients 4 , associated with the given control inputs (7) such that the filtered tracking
errorr, (k) as well as the NN weight estimation error w; are UUB for all 1<i<N .

Proof. Define the overall Lyapunov function candidateL =L, +L,, Where

ri (k) Nogo—r = : :
L, (k)= ' and kK)=> —W" (kw; (k). Then, the first difference of the
Z[r(kl] L 09 = 22T (O 9

Lyapunov function due to the first term becomes

o[ ritk+) JZ : { 10 T
AL, = ! — i\ (11)
E‘( gi (x(k)) E’ gi (x(k -1))

Substituting the filtered tracking error (8) into (11) and expanding the terms, we obtain
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N

AL, =) AL,
- 2 (12)
N - N (k)
= Gigo W 1 (%) + & + Ki) + A (X) | - k)
iRt -

Next, by using (10), the first difference due to the second term in the overall Lyapunov

function candidate is obtained as

ALy :;(Ciwi (K) -6 "l (k +1) = (1 =)W, )2 - ;VviT (kWi (k) (13)

Expanding the first difference of the overall Lyapunov function candidate AL = AL, + ALy

by using (11) and (12) to obtain

2

~~ A
0 ()TN i+ 815" + 0 (KR +

3 o o 5 ak )
AL <Y1 +2g; (KW, pre; + 285 (KW, oK, = [g-(lk—l)j
2N pi; +20; (K)Ki +25A; + 2K KA, o

Gl T =

ST (M )+ e " 1y O BT 05+ 6+ K )+
a;

N s _ (14)
s P -2 (0o kO 1 x) + 5 + Ky )+ A

i=1 i
W,
N1

=3 W (KW (k)Y

i=1 @i

+2

SO+ 27 000 o o 01 0T 106+, i)+ 4]

Applying  the  Cauchy-Schwarz  inequality  (a, +a, +--+a,)2<n(@’ +a,’ +--+a,’)

and piTVViVViTpi = VViTpipiTVVi ) yields
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1 -1 -2 2 2
2+ +4(1-c;)c; +4daic | in
( g; (k) o

+[1+g(|<)+g(l<) +421(1 ¢)e g(k)] 1(17(%)2‘%“2
+darc, %o 0, (6) %
N 1-
s 2L S el
+2(|—Ci) W' oy "W
1+ (k) +9i (k) +40-c)e "0 (07, ,
+ L 2 ) Ki'r,
+40;¢, % oi] " 9 (K)
_y| i 2 B El AN 15
i=1 m =1 i ( )

N -1 2 -2 2 2\ T T\
_Z(gi(k)_4(1_ci)ci g;(k)* —4a;c; leH g; (k) )Ni (K)o W; (k)

i=1

Note that by using Assumption 1 we have ZIN:l Bilai () <

Y Aot X )= X Be+ XL Y A = Yiade Xo 2, Bt Where g = (x)is an
arbitrary real-valued function of x; . Thus, (15) becomes

1 1
g(k—l)_z?‘l[h I(k)+4(1 c)et +4aie Y| }y“

N
ALS_Z%_F$9(@+9(H +«1c)c*g&)]
+daic; o] 9 (k)2 '

r.2

1—ci ~
I

gxm—4a—qkf@“mzuﬂz N
i1\ — 40!iCi72HPi Hz gi (k) "

(1 ¢, i

[1+g(k)+g(k) +41-¢) g, (k)]
+ 4aic HP.H gi(k)2

(16)
N " — "
# 3]+ SN+ @)oo + 200 - 0) W W

I
5N

1 ) .
+(2+ "o +a(-c)e " + e 2pi2j50i

Therefore, AL < 0'in (16) provided the following conditions hold
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| > g' , (17)
or

i o [ S (19
where

1+ 0 ()2 + 4 -c)e Mgyl
' [ i PO IO B ]eimafﬂa—ci)zwf
+4oi¢ o] 91 (k) “

R i A Y

1 _ _
+ (2 + + 4L +4aC; 2Hpi fnaxjébi
imin

Ci'r =

1 1 - -
- Z,j\l=1|:2 + +4(1-c)c L+ 4eiC; 2||pi||§1axi|7ji

gimax imin
[1+ Jimax T Yi max2 + 4(1—Ci)ci71gi maXZ}K 2 ’

+ 4aici_2||pi ||r2nax 0 max2

Ci'w — ];Ci+ci’m, and
i

Cly = (gimin — 41— )¢ Y _4aici‘2HpiH;animaxz)\pinnax . This guaranties the boundedness
of the weight estimation error W;(k) and filtered tracking error r,(k) which in turn shows
that the tracking errors z; (k) are UUB for all 1<i<N as explained. [

Hence, the Lyapunov stability analysis shows that the proposed NN controller

guarantees that the closed-loop signals are UUB with the bounds given by (17) and (18).

Note that the design constant c; should be chosen close to one to retain a small bound. In

the next section, the proposed controller is applied to achieve stability of the

interconnected power systems.
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I11. Case Study

“Power system stability is the ability of an electric power system, for a given
initial operating condition, to regain a state of operating equilibrium after being subjected
to a physical disturbance, with most system variables bounded so that practically the
entire system remains intact” [17]. There must be a controller to mitigate the oscillations
after a fault is occurred such that the power network goes back to its normal operating
condition after the fault. Generator excitation control is a means to mitigate the power
system oscillations. Since the disturbance is a function of the power network voltages and
angles as well as generator states, it is generally hard to design a centralized damping
controller in the large-scale power system.

In this section, we aim at designing a discrete-time decentralized generator
excitation controller to damp the oscillations by using generator measurable states in an

interconnected power system consisting of multiple generators.

A. Power System Model Development

A power system is usually modeled using a combination of differential and
algebraic equations. For control design it is desirable to have pure dynamical equations.
In [18], authors have proposed a continuous-time algebraic-free power system
representation based on the generator classical model. In order to incorporate the

generator flux decay states, the proposed model can be extended.
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Fig.1 Power System

The two-axis model [18] is chosen for controller design. Then, the generator

dynamical equations are given as

5i=w|
) 1
@:W(Pmi_Pei)
'1 (19
. X X — X
El=—| Qg +2d_Zdiy.  cos(S —wi, )+ Ei
qi Tdm[ Xc’ji qi X('ji i+N (I Vi N) fdi

. 1 Xqi Xai — Xdi .
El = - e+ Ay sin(S -y
di Tqu[ X:ji di T Xc,ji i+N ( i WH—N)J

where ¢, is the rotor angle of the i-th machine, @, is the difference between the generator

angular speed and synchronous speed o, , E; and Ey; are generator dg variables as defined
in [19], Ey; is the excitation voltage, M; = 2H/ay is the i-th machine inertia, P, is the
generator output electric power, P, is the mechanical power , and Vv;,\ and ;. are the

generator bus voltage and phase angle, respectively, as depicted by Fig. 1 with N and L
represent the number of generators (subsystems) and the number of non-generator buses

in the power system, respectively . In addition

Ri = Bi,i+NVi+N(EéiSin(5i —Vi.n) — Egicos(s _WHN))’ (20)
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where B represents the reactance of the admittance matrix. The voltages and phase angles
of the power system buses shown in Fig. 1 are constrained by the following set of

algebraic power balance equations (neglecting resistances) as

N
j=1

(21)
L+N ]
+ zBijViVjsm(Wi —y;)=5p;=0
j=1+1
N -
Qui — > By\Vi(Ey cosy; — 5)) — Eyy sin(w; — )
j=1
L+N
- DBV cos(yi —y) =Sq; =0 22)
j=N+1
i=l+1...,N+L
Then, taking the derivative of (21) and (22) to obtain V; and y; terms, we have
OSp; :aspiv+aspil/)+aspi5+aspi Eé+asPi E, =0 (23)
ot ov oy 00 2/= OE;
and
®qi _ S V + Boi W+ Bqi S+ Ba E, + Ba E,=0 (24)

o N oy a5 OE

for i=1+1,..,

By using dynamic equations (20) for E; andEg and solving equations and forv;

andy; , we obtain a new set of dynamic equations as

A(X) B(x) v C(x) i
{D(X) E(XJL"} +[{F(x)}w+ R(X)+G(X).E g ] =0 5)
where
VZ[VN+1 Ve - VN+|_]T1 1//=['//N+1 YNtz - WN+L]T1 ’60=[a)1 Dy ... a)N]T i< the

generators speed vector, R(), and G()are nonlinear functions of the states. In (25)
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x=[6" o E EJ V' y'I', where 5=[5 &5, ... &I, Ej=[Ey Ej ... EnI,
E;=[Ey Ei, ... Eyl', and AP, =[AP, AR, ... AR,I". The entries forAa,, , B,
Dl » EixLs Cixn FisL» Rolsas Goxn Can be derived by collecting the corresponding
coefficient. Equation (25) can be rewritten in a more appropriate way as

. -1

Vv A(x) B(x C(x
{l:{ (9 ()} ([ ()}a)+R(x)+G(x).Efdj

y D(x) EMX)] ([F(x) (26)

=a(x) +b(X)Ey

It is important to note that this step is needed for model development only and is

not required for implementation.

B. Generator Model

In order to analyze the stability of the generator, the flux-decay model [19] is

chosen. Then, the generator dynamical equations are given as

b= @7)
w; = L (Pmi Pel)
., 1 , ,
Eqi :Ti(_ Edi + (X — X Mg + Efdi)
doi
In addition, the following equalities are valid
P = Egilgi + (X — Xai) lgilai (28)
and
lgi = BiisnVien SIN(S —¥iin) (29)

lgi = Bijiin (Eéi —Vi,n COS(9; —‘//i+N))
Moreover, the power balance equations will be simplified by employing the flux-decay

assumption as
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Eai = (Xg — Xai) lgi (30)
In this design we assume that the mechanical power P, (1<i<N) is slowly changing

compared to the other control variables; thus, P,; ~ 0. Define,

Xy = 6; — O
X2 = @)
I:>e0i = F)mi
AR, = Fi — Py
_ ARy

X3 = M.

(31)

where P,; is the steady state generator electric output power. Consequently, the generator

dynamics (31) can be rewritten as

Xi1 = X2
Xia = Xi3 (32)
Xig = _ X3 ﬂ + A
Taoi  MiTqo
where
Ui = —Eg (33)
and
- Ve . P
Aj = 7(Xdi _Xqi)lqilqi —Egilgi _(Xqi _Xdixlqildi + Iqildi)+ = (34)
TdOi MdeOi

: 1 . . |
Define Ag; = PRygi/(MiTygi)and A :Ti(xdi_xqi)lqi ¢i ~ Eqilgi _(Xqi _XdiXIqudi-l'Iqildi)'

doi

In [18] authors have shown that
Ag| < 0 (%), (35)
where o, ()is a nonlinear function of the generator states, X =[x X, ...xy]",

% =[x, %, X3]", and that Ay =0at steady state conditions, that is, when ~ x=0.
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Knowing that the steady-state conditions result r, = 0and vice versa, we can assume that
|A1i(k)|2 < Z'j\lzlyijrjz(k) for 1<i <N, where y;; is a positive constant and r,(k)is the

filtered tracking error defined in (3). Since Ay is a constant, Assumption 1 is satisfied for

interconnected power systems.

C. Power System Dynamical Model in Discrete-time

The generator representation in discrete-time can be obtained by discretizing the
continuous-time representation (32) as

Xig (K +1) = T (k) + X5, (k)
Xiz (K +1) = Txi3 (k) + Xz (k) (36)
—Txgi (k)

doi

where T is the time step and g; =T-14; /(M;T40;) - Note that for this system, n=3 since the
generator (subsystem) has third order dynamics. The power system representation in
discrete-time (36) is similar to system (1) with f;;(x (k) =Txip (k) + i1 (K) , Fip (% (K)) = Txiz (k) + Xip (k) ,
fia (% (K)) == Txia(K)Tygi + %z k), g% (k)= T - 14 /(M{T4q;), @and TA; is the interconnection
term where  x, (k) =[x, (k) x,(k), s and  x=[x X, ...xy] . Also, recall that
Assumptions 1 and 2 (g, =T -1, /(M;Ty,;) and g; is bounded away from zero and

|gi|, exists) hold for the power system as explained earlier.

Remark 2: It is worth mentioning that in the generator dynamics with g;(x;(k))
and f;5(x;(k))in (36) are known only if the generator parameters T4, and M; as well as

the generator current 1y are known a priori. In a practical scenario, these values are not
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accurately known. Thus, NN controller (7) and (9) can be utilized in the control input to
improve the overall interconnected power system stability in the absence of the
mentioned values. In practice, while generator angle, speed and power are measured,

obtaining 1 requires knowledge of B;;,  , according to (29).

Remark 3: If the generator values mentioned in Remark 2 f; (.) and g, (.) are known, the

control input is simplified as

U =V =0 (fig (% (K) + Aixia (K +D) + A%z (k +2) — Kiri (k). (37)
IV. Simulation Results

Example 1. Consider the following fourth order-subsystem interconnected nonlinear

discrete-time system to demonstrate the effectiveness of the NN controllers developed in

this work as

X (K +)T) =X, (KT)
X (K +D)T) = f15(Xy1, X2) + 912 (X1, X12)Uy

+.01x (Xp,> (KT) + Xgp” (KT) + X, > (KT) + X5 (KT))
Xo1((K +1)T) = X,,(KT)
Xoo (K +DT) = f25(Xo1, X55) + G0 (Xo1, Xp2)U

+.15¢ (X, 2 (KT) + Xg (KT) + Xg1” (KT) + X7 (KT))
Xa1 (K +DT) = X5, (KT)
Xgo (K +1)T) = f35(Xa1, X32) + 932 (Xa1, X32)U3

+.1x (%2 (KT) + X2 (KT) + X" (KT) + X4 (KT))

X1 (K +DT) = %44 (KT)
X (K +)T) = F45(X41, Xa2) + 92 (Xa1, X42)Ug
1 (0,” (KT) + 335" (KT) + %57 (KT) + X5,” (KT))

where



157

f1o (X, Xe0) = IT;L (Xll(kT) I+ )(122 (kT)))+ X (KT);
s Yar) = - (KN4 0" (€T
f32(Xa1, Xgp) = %; (X31(kT) I+ stg(kT))) ;
faa(Xa1, X42) = IT;L (X41(kT) x L+ X423(kT))) ;
and

J12 (X1, X2) =1+ 0-55in(X122(kT)) ;

22 (Xo1: Xp2) =1+ 0.258In(X;, (KT) + Xp, (KT)) ;

32 (X1, X32) =1+ 0.5sIn(X3, (KT)) ;

042 (Xa1, X42) =1+ 0.255in(X,, (KT)) + 0.25¢0S(X,, (KT)) ;

with sampling interval T being 1ms. The objective of each subsystem controllers is to
make each subsystem state track a desired trajectory defined as x,,(kT)=0.1sin(0.kT),
Xp14 (KT) =0.15in(0.02KT) , X414 (kT) =0.1sin(0.1kT), X4y4 (kT) = 0.1sin(0.01k T). Then, controller

(7) along with NN weight update law (9) is utilized to achieve this goal. The weight

estimate matrices W; are initialized at zero for1<i < 4. Moreover, no offline training is

used to tune the weights in advance even though the nonlinear system and the

interconnection dynamics are not needed for the controller design. The NN activation
function is chosen as (%, X4 (K +1)) = sigmoid (V;" [x;, x;q(k +1)]") [20] where v; is
chosen at random initially and held fixed afterwards to form a set of basis functions
needed for the NN function approximation [21].

The initial values are x,, =1; x,, =1; X,; =1.5; X5, =1; X1 =1 Xgp =2 X4y =2; X5, =1. The
design gains are taken ask,=K,=K,=K,=00l; ay=a,=az=a,=02;, L=A, ==
2, =0.01. The simulation is performed under two different values ¢, =.9andc, =1 for

1<i< 4. Itis shown by the simulation that ¢; <1gives smaller NN.
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Case 1(c, =.9): The satisfactory performance of the controller is depicted in Fig. 2 where

the states eventually converge to a close proximity of the desired trajectory indicating the
boundedness of the tracking errors as concluded in the Theorem 1. Figure 3 illustrates the

NN control inputs.

-

11d
-

x 03 Mﬁ Subsystem output [
o3 : .
- 0 WWM Desired trajectory
x" _0.5 ! 1 ! T T
0 50 100 15 200 250 300
E 0-4 ' M T T T
x 0.2 E
oa u ’% K
o JE—
)CN ‘02 ] [l 1 ] [l
i 0 50 100 150 200 250 300
° - - y : .
x 0.5 -
06‘_ 0 i
% 05 ) ) ) ) )
0 50 100 150 200 250 300
- T T T T
= 04 ]
x
g 02 -
xg 0 : ' ! ﬁ‘lﬁh“%— 3
0 100 200 300 400 500
Time(ms)

Fig.2 Interconnected systems states Xj; and desired trajectories X;;q4 for 1<i<4
with G = 9

Also, Fig. 4 shows the representative NN weights. These results are as expected
according to Theorem 1 where the NN weights stay bounded and converge to small

values. In order to evaluate the neural network performance the function

01(K) :WiT pi(%) + & =—9; (X(k))fl(fis(xi (K))— Xigq (K +1) + A7y (k + 1)) (38)
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and its corresponding NN approximationw." o are depicted in Fig. 5. The NN appear to

approximate the function satisfactorily.

0.1 - T . .
= 0 M\W
0.1 .

'1 0 10 200 300 400 500

0 50 100 150 200 250 300

R
|

) 1u 50 100 150

ll4
- =

i) il 1

0 100 200 300 400 500 600
Time(ms)
Fig.3 Interconnected systems control inputs with ¢, =.9

Case 2(¢,-1): Case 1 is repeated here with the update law (9) with ¢=1 fori<i<4.
Although the controller performance is almost the same as in case 1, as shown in Figs 6
and 7, certain NN weight estimates increase to higher values than in the previous case
(Fig. 8). The function approximation error with c; =.9 is less than that of ¢;=1 depicted in

Figs. 9, according to Fig 10. Larger values of weight estimates can cause over

approximation of the nonlinear function throughout the simulation.
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Fig.4 NN weight estimates W, for 1<i<4 with ¢, =.9
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Fig.5 Actual nonlinear function and NN approximation for &, (k) introduced in
(43) with ¢; =.9
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Fig.6 Interconnected systems states x; and desired trajectories x,, for 1<i<awhen
with ¢; =1
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Fig.7 Interconnected systems control inputs with ¢; =1
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Fig.8 NN weight estimates w; for 1<i<4 with ¢ =1
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Fig.9 Actual nonlinear function and NN approximation for s, (k) introduced in
(43) with ¢, =1
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W1*R°1 - Delta,|2

1} 50 100 150
Time{ms)

Fig.10-NN function approximation error for &, (k) introduced in (38) with ¢, = .9
andc, =1

Example 2. The method introduced in Section I1l is now utilized to design power system
damping controller with generator excitation control. The 3-bus, 2-generator power
system shown in Fig. 11 is considered and is subjected to a three-phase disturbance on
bus 3. The generator data are given as xy =03, xgi=002, x4 =0019, Typ=7,
1<i<2whereas H,=wM;/2=5and H,=w,M,/2=1. Both generators have speed governors
and the excitation control is implemented by employing the discrete-time NN controller
as proposed in (7) with update law (9) wherek; =K, =0.001, 4 =4, =[0.00010.0001]",
@y =ay=00001, and ¢, =c, =1. In addition, w; (for 1<i<2) is the NN weight estimate
matrix while p; (.) is the NN activation function vector for the subsystems.

Similar to the previous example, the weight estimate matrices W; are initialized at

zero fori<i<2. The NN activation function is chosen as p;(x,%q(k+1)=
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sigmoid (v " [x;, xiq (k+1)]") [20] where V; is chosen at random initially and held fixed

afterwards to form a set of basis functions needed for the NN approximation [21].The
power system loads are considered as constants. In the simulation, time step of T =0.005s IS
chosen. The control objective is to damp the generators oscillations caused by a three-
phase fault.

Although the stability analysis is based on the lossless power system dynamical
model as described in (26), the simulations employ the entire power system dynamics
with line resistances. A two-axis generator model is utilized in order to evaluate the

effectiveness of the controller design.

1 3

. O

Py

Fig.11 Power system topology

A three-phase disturbance is injected to the bus 3 at t=o0.2sand removed at t =0.4s
seconds. Generators 1 and 2 are chosen for control. The damping control starts once fault
occurs. The neural networks have 10 neurons in the output layer where biases are
considered and the NN weights are tuned throughout the simulations by using on-line

learning. The voltage E,; is calculated using (33) and is subjected to hard limits such that

the voltage satisfies 05<E; <5p.u. to avoid any impractical excitation voltagese, .
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Moreover, no offline training is used to tune the weights in advance. No initial knowledge
about the interconnection dynamics or power system topology is needed for the controller
design.

The simulation is performed under three scenarios; a) excitation control using (7)
and (9) when the generator values mentioned in Remark 2 are unknown; b) excitation
control by using (37) (when the generator values are known); and c) steam governor only.
Note that for (a) and (b), steam governor is also active. Figure 12 shows the damping
performance of the proposed controller (case a) as compared to cases b and ¢ whereas

Fig. 13 represents the excitation voltages E for the cases (a) and (b). Satisfactory

damping performance of the proposed controller can be observed from Fig. 1las
predicted by Theorem 2 while the excitation voltages are within practical accepted limits

as shown in Fig. 13. The weight estimation matrices (Fig. 14) w; (fori<i<2) are

bounded as expected from Theorem 2. When the generator valuesTyg;, M;, I are known,

the control effort is a little lower than when the values are unknown while the damping
performances are just slightly different. Thus, the NN controller is capable of overcoming
unknown dynamics in nonlinear systems almost equally in the absence of knowledge of
system parameters.
V.Conclusions

In this paper, the decentralized nonlinear discrete-time system is considered and
control design for tracking problem is addressed to guarantee the boundedness of the
large-scale system states. The design employs NN function approximation property to

approximate the control gain matrix and internal dynamics of subsystems. There is no



166

offline NN training and all parameters are tuned online. By using Lyapunov techniques it
Is shown that the subsystems states as well as NN weight estimation errors are UUB with
small bounded error. The interconnected power system can be expressed as an
interconnected nonlinear dynamic system. Simulation results are performed on power

systems with excitation control to verify the theoretical conjectures.

0.04 T T T T
@ 0.02+ ;
=
= 0
2 g2t
0.04 2 :
o 1 Controller v, 5
02— Steem governor
’ Proposed controller
=
e 0
N
=
0_2 1 L 1 1
o 1 2 3 4 5
Time(s)

Fig. 12 Generator speeds with discrete-time control with fault on bus 3
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Fig. 13 Generator excitation voltages with the proposed controller
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Fig. 14 NN weight estimates W, for 1<i<2
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5. Decentralized Near Optimal Control of a Class of
Interconnected Nonlinear Discrete-time Systems by Using
Online Hamilton-Bellman-Jacobi Formulation

S. Mehraeen and S. Jagannathan®

Abstract— In this paper, the direct neural dynamic programming technique is
utilized to solve the HIB (Hamilton Jacobi-Bellman) equation forward-in-time for the
decentralized near optimal control of nonlinear interconnected discrete-time systems in
affine form with known subsystem and unknown interconnection dynamics. The optimal
controller design consists of two NNs; an action NN that is aimed to provide a nearly
optimal control signal, and a critic NN which evaluates the performance of the system.
All NN parameters are tuned online for both the NNs. By using Lyapunov techniques all
subsystems signals are shown to be uniformly ultimately bounded (UUB) and that the
synthesized subsystems inputs approach their corresponding near optimal control inputs
with small bounded error. Simulation results are shown on an interconnected system to

show the effectiveness of the approach.

Index Terms -Decentralized Control, Neural Networks (NN), Optimal Control,

Hamilton-Jacobi-Bellman (HJB), Nonlinear Discrete-time (DT) Systems.
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I. Introduction

Online approximators such as neural networks (NN) have been widely used in the
controller design of nonlinear systems; however, they are mostly utilized to achieve
stability [1]. An optimal control policy is necessary to stabilize the system in an optimal
manner when the control costs have to be considered in addition to the system stability.
Therefore, in the optimal control formulation, the objective of the controller is to
minimize a cost function comprising of the states of the system and the control input [2].
The optimal control of linear systems is well-known and can be obtained by solving the
Riccati equation [2]. However, the optimal control of nonlinear discrete time systems
often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation.

The HJB equation is more difficult to solve due to a lack of a closed-form solution
and therefore recently offline methods have been developed to solve the discrete-time
HJB equation [3][4]. These solutions are based on policy-value iterations for centralized
discrete-time nonlinear systems to solve the nonlinear HJB partial difference/differential
equation. Subsequently, neural networks (NN) are utilized to approximate the unknown
nonlinear functions. In [3], the authors approximate the cost function with a Taylor series
expansion under the assumption of small perturbation and propose an iterative algorithm
to find the optimal control policy. In [4], the authors employ heuristic dynamic
programming [5] in an iterative based offline solution. In general, the offline methods
with NNs require lengthy iterative procedures to obtain a closed form solution for a
region of interest in the state space.

By contrast, online approximator based controller designs are presented in [5-7] to

address the HJB solution forward-in-time without involving the difficulties in iterative
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offline training methodology. These methods are referred to as forward dynamic
programming (FDP) or adaptive critic designs (ACD). In [6-7], the optimal control law
and cost function are approximated by online parametric structures, such as NN’s where
the methods are verified by numerical simulations without presenting the convergence
proof. The tracking problem with HIB solution is proposed in [8-11]. In [8] the tracking
problem is addressed through linearization of the tracking error equations, whereas in [9]
receding horizon optimal control is presented. The inverse optimal control [10] and
offline direct calculation of the infinite horizon HIB equation [11] are among the recent
approaches to the optimal tracking problem.

On the other hand, there has been a great interest in the decentralized control of a
class of interconnected nonlinear systems using NNs. The decentralized control effort has
focused mainly on stabilization and tracking for nonlinear continuous-time systems [12-
16] and limited effort for affine nonlinear discrete-time systems [17][18]. The discrete-
time proofs are much involved than their continuous-time counterpart since the first
difference of a Lyapunov function candidate is quadratic with respect to the states
whereas it is linear for the case of continuous-time system. To the best knowledge of the
authors, no work is currently done on the optimal control of nonlinear decentralized
discrete-time systems in affine form.

In this work the direct neural dynamic programming (DNDP) approach is utilized
for the optimal regulation and tracking of nonlinear interconnected discrete-time systems
in affine form by solving the HJB equation online and forward-in-time. The NNs are used
to approximate the critic as well as the action networks where the optimal control signal

is approximated while minimizing the cost function based on the information provided by
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the critic in the presence of the unknown interconnection terms but known subsystems
dynamics. Additionally, overall closed-loop stability of the nonlinear decentralized
system is presented.

This paper is organized as follows. First, the class of interconnected nonlinear
discrete-time system is introduced in Section Il. In Section Ill, background information
of the HIB optimal methodology and the online methodology for the HIB-based optimal
control are introduced for interconnected systems. Then, numerical simulations and
concluding remarks are provided in Sections IV and V, respectively.

I1. Nonlinear Interconnected System

Consider the class of N interconnected subsystems defined as

X (K +1) = X, (k)

Xin1 (K +1) = X (k) 1)
Xin(k +1) = f;(x; (k) + g; (% (K))u; + A; (X)
¥i (k) = X1 (k)

where index i represents the subsystem number,Nis the number of

subsystems, nis the order of the subsystem, f;(xj(k)), represents subsystem internal
nonlinear dynamics, g;(x;(k))is the input gain matrix, u;(k) is the subsystem control
input, A;(x) denotes interconnected terms of the subsystem ‘i’ with x=[x',....x,'T",

X = [Xq,.... %" for 1<i<N . Define the tracking error

Zip (K) = Xip (K) = Xipq (K) )
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for 1<i<N and 1<p<n, where xjq(k)is the desired trajectory for state x,(k) , and

Xi,p+1.d (K) = Xipg (k +1) for 1<p<n-1. Note that for the stabilization problem the desired

values become x4 =0 for 1< p<n. Next, define the filtered tracking error

() =04 17 2 (k) (3)

Where z; (k) =[zi (k) zip(k) ...zin ()" ANA 3 =41 4, ... 4011~ The coefficients 2, through 4,4

are selected such that the poles of the characteristic equation ¢£(q)= A +Aipq+--

+2in20" 2 +q" are inside the unit disc. Before we proceed, the following definition and

mild assumptions are needed.

Definition 1. (Uniform Ultimate Bounded (UUB))[19]: Consider the dynamical system

x = f(x)with x e ®"being a state vector. Let the initial time be t, and initial condition

be x, = x(t,) - Then, the equilibrium point x,is said to be UUB if there exists a compact

setscw"so that for all x, esthere exists a bound B and a time T(B,x,)such that

() = x| < BfOr vi>ty+T.

Assumption 1: Let the interconnection terms in (1) be bounded above in a compact set ©

such that

400 Sifﬂ,— (r;) 3%%‘12 )
=L i=1

where y ; is known small positive constants for 1<i<N in contrast with [17].

Assumption 2: The input gain of each subsystem g;(x (k)) in (1) is bounded away from

zero and is bounded above in the compact setQ. Without loss of generality, we assume

that it satisfies



175

0 < Gimin < 9i (% (K)) < i max (5)

in a compact setQwhere g;,,,;, and g;.,are positive real constants.

Remark 1: Assumptions 1 and 2 are standard in the control literature [15].

Next, the decentralized optimal controller development is introduced.
I11. Decentralized Optimal Control

In this section our goal is to find optimal control inputs u;(k) for 1<i<N that can

stabilize the interconnected system (1) while minimizing the infinite horizon system cost

function
T(x(k)) = 2 (QEx(J)) +u” (x(DNRu(x(}))) )
j=k
=Q(x(k)) +u"Ru + J (x(k +1))
where Q(x) e ®* is a positive definite function of the large-scale system states, Re RNN is
positive definite design matrix, and u(x(k)) =[uy(k)....,uy (k)]" Whereu; (k) is only a function

of the ith subsystem states (for 1<i<N). In addition to stabilizing the nonlinear system

(1), the control input u(k)must make the cost function (6) finite. In other words,
u(k) must be admissible.

Definition 2. (Admissibility) : The control input u(k) is admissible with respect to the
penalty function Q(x)>0 and control energy penalty u' (k)Ru(k) function if a) u is

continuous; b)u(x)|,_, =0; C) u(x) stabilizes system (2); and d)

J(x(0),u,K) = Z(Q(x(j)) +u' Ru)s ©.

=0
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Moving on, this optimal control problem provides an optimal control input
u”(x(k)) such that Ju*())<Ju)) for vu(k). The minimizing control input u*(k)is found
by using the stationary condition [2] asaJ (k)/au(k) =0, and routine calculation shows that

1 0J(k +1) @)

l
u(k) = —*R (())a(k )

where g(x(k))=[a," 0¢(k))....,an" O (k)TT and G, (% (K))pq =[0,...,9; (x (k))]" for 1<i<N.
From (6) and (7), we can observe that the large-scale cost function J(k)and the optimal
control u*(k) (and its components v;"(k) for 1<i<N) are in general functions of all large-
scale system states. However, in the decentralized control strategy, only the
corresponding subsystem states (such as x;(k)) are available for designing the controller
u; (k) for 1<i<N. By selecting proper Q(x)andR decoupling the cost function (6) is

possible which is presented next.

Lemma 1. (Existence of Subsystem Cost Functions): Consider the interconnected

nonlinear system (1) and associated cost function (6). Let Q(x) be found satisfying

N
QM) =>"Qi(x) (8)
i=1

where each Q, (x;) is a positive definite function. Then, the following results are obtained.

N
a) There exist positive definite matrices R; such that J(x(k)) z (x,(k)) where

=1

J,(% (k) = i(Qi (Xi(j))+uiT(j)Riui(j)) is a cost function of subsystem states and control input

for 1<i<N.
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b) If there exists rR=diag(R;,...,Ry) Where R; is positive definite matrix for 1<i<N , then
the large-scale optimal policy u*(x(k)) in (7) can be obtained via individual subsystem
optimal policies u;*(x(k)) where u*(x(k)) =[uy" (% (K)),....un (% (K)1" -

Proof. Part a) Starting from equation (6) and using (8), we have

T(x(k) 2 3 Q) + Amn(RIUT (i)UCi)) o
2, |

o N
>3 (@06 (0) + Amin (R Gidui (1))

=ki=1

—

where A;, (.)is the minimum singular value . By defining R; = 2in(R)l,xn, We obtain

(10).
_ o N
T = Y3 (@ 04 () + o (DRw (i)
j=ki=1
=3 3@ () + Ul (DRu () (10)
i=1 j=k
N
=" 3, (k)
i=1
= 3 (@ 0 (k) + T ()R (k) + 3, (k + D)
i=1
- N
Note that (10)  results max(J(x(k)))Z max@izl\]i(xi(k))) where

Ji (% (K)) = ZTZK(Qi(Xi(j))+uiT(j)Riui(j)) is positive definite, and thus, the cost function

for subsystem “i” (fori1<i<N) exist provided that large-scale cost function J(x(k)) is

well-defined.

Part b) In the case of diagonal matrix R , the cost function (6) becomes

_ N
J(x(k)) = D 3; (x;(k))
E (11)

= (@106 () + uT (k)R (k) + 3y (k +1)
i=1
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whereRr =diag (R, ,...,Ry) - In this case the optimal control solution (7) becomes

N 1 8d(k+1)  aJ(k+1) 12
W) =5 RTgik) {6x1(k+1) """ 6xN(k+1)} 4

According to (11), the term aJ(k+1)/ox;(k+1) in (12) is only a function of x;(k +1). Thus,

by expanding (12), we obtain u*(x(k)) =[u;" (X(K)).....un" (x(k))]" Where

10— LR g o aenT ik +1) 13
U0 ==5 RG0S (13)

which is the optimal policy corresponding to the subsystem cost function

Ji(xi(k)) = i(Qi(Xi(j))+uiT(j)Riui(j)) (14)

j=k

n
Remark 2: From part (b) of Lemma 1, if the subsystem optimal policy u; (k) is found, the
optimal control input u(k)can be found for the large-scale interconnected system. Even

then it is still a difficult problem since the interconnection terms for each subsystem is a

function of all the states of the large-scale system.

From Lemma 1, the optimal control problem can be divided into subsystem optimal
control problems. However, finding a solution for the optimal policy (13) is still generally
hard due to the solution of the HIB equation and presence of unknown interconnection
terms. Here we use NN to approximate the cost function (14) and optimal policy (13)
and present a forward-in-time solution. The unknown interconnection terms are overcome
by augmenting the control input with a feed forward term comprising of subsystem states
similar to the problem of tracking. Therefore, for each subsystem the design consists of an

action network which is designed to produce a nearly optimal control signal, and a critic
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network which evaluates the performance of the system. The augmented term is also
introduced in this section. By using the universal approximation property of NN’s [1], the

control input (13) and cost function (14) can be represented by neural networks as

Ji(k) =Wy ¢ (% (K)) + & (15)
and
Ui (K) = Ui (K) =Wai " 5 (% (K)) + £a; + F (% (K)) (16)

respectively, where w,; and w,; are the ideal subsystem critic and action NN weights and
are assumed to be bounded with bounds |W|<Wey, Wail<Wam , & and e, are the
bounded approximation errors which satisfy |e.| <&, |eail<€aim, ¢()andy;()are the
vector activation functions for the critic and action networks, respectively[1], and
F(x; (k) is @ known function added to help overcome the effect of interconnection terms
which will be defined shortly. Before we discuss the critic and action networks, the
following assumption is required.

Assumption 3: The critic network approximation error

satisfies|8;;ci (% (k +1))/ox% (k +1)| < &y Inthe compact setQ for 1<i<N .

A. The Critic Network Design

The objective of the optimal control law is to stabilize the system (1) while
minimizing the cost functions (14). Since the cost function (14) is analytically not
available it is approximated by a NN and written as (15); however, in practice the NN

ideal weights are not available. Consequently, the cost function J; (k) is approximated by

Ji(k) =W, (k)¢ (% () (17)
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where W, is the estimated values for the ideal weights w_ and 4 ()is the vector of
activation functions which are chosen to be basis sets and thus are linearly independent.

Define the augmented matrices and cost function J(k) as

Wcl 0 Wcl O ¢1 O gCl 0
WC: ) WC: 1 (I): ) SC: )and
0 WCN O WCN O ¢N O ECN
J(K) =W,  (K)®(x(K)) . (18)

Define the critic error as

E. (k) = Q(k —1) + W, (K)A®(K) (19)
where
AD(K) = D(x(k)) — ®(x(k —1)) (20)
Q + UlT Ryu; 0
and Q = . Then the critic error dynamics become
0 Qu + UNT RyUn
E.(k +1) = Q(k) + W." (k +D)AD(k +1) (21)

By selecting the critic weight update law as [20]

W, (k +1) = Ad(k + (A0 (k +)AD(K +1)) " x

: (22)
(BT (0-Q ()
the critic error becomes
Ec(k+1) =acEc (k) (23)
oy 0
where «, = with o being a design constant fori<i<N. From (11) and

0 oo
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(15) we obtain

Q(K) =-W, ' ®(k +1) + W, (k) — g, (K +1) +£¢ (k)

=-W, " A®(K +1) — Ag (k +1) @)

where Ag (k+1) =¢. (k +1) —£. (k) . Define weight estimation error to be W, =w, -W,. By

using (24), (22), and (21) it can be concluded that

W, (k +DADK +1) =

25
—ac (Q(k ~1)+ W' (k)A<I>(k))— Agg(k +1) (25)

Then, by replacing Q(k-1) by a similar term as in (24) we obtain

ADT (k+)W, (k +1) =

26
+a AT (K)W, (K) + acAg (K) — Agg (k +1) (26)

As a result, the dynamics of the weight estimation errors can be obtained as

W, (K +1) = @ A®(K +1)(ADT (k +1)AD (K +1)) " x
(A®T ()W, (k) + Ag, (K))
—AD(k +1)(ADT (k +DAD(K +1)) *Ag, (k +1)

(27)

The following technical results are needed before we proceed.
Definition 3: Linear Independent Functions [24]. A set of functions g(k) ={g,(k)}" IS

said to be linearly independent ifZ/L:lcﬁ@(x) = oimplies thatc, =---=c¢,_ =0.

Lemma 2. Let u(k) be an admissible control for system (1). If the set ®(k) = {®,(k)} is
linearly independent, then the set Am(k+1)={®,(k+1)—@,K)} Iis also linearly

independent.

Proof: Since, (k) is an admissible control, we have x(») =0, and thus, @(x(x))=0. Then,
by observing a(x(wo)) — ®(x(j)) = > (@(x(k +1)) - @(x(k)))and using contradiction the

proof can be completed.



182

Remark 3. The matrix A®' (k)Ad(K) is invertible provided x(k) = 0. Note from (14) and
(18) that the cost function becomes zero only whenx(k)=0. Thus, once the system states

have converged to zero, the cost function approximation can no longer be updated. This
can be expressed as persistency of excitation (PE) requirement for the inputs to the cost
function approximator (18) where the subsystem states must be persistently exiting long
enough such that the critic network learns the optimal cost function. Also, the PE
condition ensures the existence of minimum values for the activation function 4, .

Next, we show that the critic error (21) and the critic network estimation error

(27) are UUB.

Theorem 1: Consider the nonlinear discrete-time interconnected system given by (1).
Let z (k) be an initial admissible control input for the ith subsystem of the nonlinear
interconnected discrete-time system. Let the overall cost function of the interconnected

system, J(k), be approximated by NNs as defined in (18) whose weight update law is

provided by (22). Then, the critic errors (19) and critic weight estimation errors \7VC are

UUB.

Proof: Consider the Lyapunov candidate
Vo (K) = Ec ()T Eq (K) + A®F tr{W, W, } (28)

where A®2. s a positive constant and satisfies A®? <“A(I)T(k +1)AD(k +1)H. The

min —

existence of A®2. >0 is ensured by the PE condition described in Remark 3. Also, note
that by admissibility of the control input, we can assume max|Ad(k)|exists. By

calculating the first difference of Vv, (k)and using A® ., >||A®(k)| we have



183

AV, () =~ e PIEL Q] - (A%, [ A% W (0 (29)

2
+(2+ Y| el
where ¢3,is the bound on the approximation error e, such that |ec|<eq . The first

difference of the Lyapunov function is less than zero provided

[ 2,2 - 2,2
‘Ec‘ > (2+4aci)‘2€cM or HWC (k)H >J 2(2+4ac|)<:cM -
1_HaCH ADi, _4HacH AD;

and the gain is chosen as||o, || < mln{L m'“ }

Remark 4: It is interesting to observe that the NN weight update law (21) resembles the
least squares update rule commonly used in offline ADP [3][4]; however, instead of
summing over a mesh of training points [3][4], the update (21) represents a sum over the

system’s time history stored ing (k). Thus, the update (21) uses data collected in real
time instead of data formed offline [3][4].

Remark 5: The results of Theorem 1 are drawn under the assumption of a fixed

admissible control policy which is relaxed in the following section.

B. The Action Network Design for Stabilization

The action network obtains the optimal control input which minimizes the
approximated cost function (15). Note that the basis functiony;(.) needs to be the gradient
of the basis function ¢, (.) of the critic NN since the optimal control (16) depends on the

gradient of the cost function according to (13). It is shown in [3] that the gradient of a

linearly independent set is also linearly independent.
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Remark 6. According to (13) the action network of subsystem ‘i’ estimates the

derivative of the corresponding cost function J;(x; (k)) presented in (15) as (30)

03; (k + 1)/ (k +1) =Wy (k) a¢4 ( (k +1))/0x; (k +1) (30)
+0g5 (% (k +1))/ox (k +1)

which is a function of x;(k+1). Unlike the optimal control of affine systems [20], the
term x, (k +1) for the interconnected system is not only a function of subsystem states but
also, according to (1), is a function of the interconnection term a;(.), which is a function
of entire state vector x(k). However, the action NN is only a function of subsystem
states x; (k) . Consequently, the action network will not able to approximate the optimal

policy in (13) accurately due to the need for the entire state vector which is not available.
Thus, this term must be transformed appropriately so that the augmented term in (16) can
be used to compensate the effects of the interconnection term such that the stability proof
can be performed in the presence of the interconnection term.

In order to elaborate on the effect of A;(.) in the analysis, first we consider (30). In
this analysis, we use Taylor series expansion of (30)
04" (k+1) W, (k) 26k D

ox (K +1) ox (K +1) (31)
=x(k +1)TV(§i + % (k +1)TV2§ixi(k +DT 4

&(x(k +1)) =

where V is the gradient and VZis the Hessian matrices and the effect of the
interconnection terms are assumed negligible in the second term and afterwards due to

small y for 1<i<N. Thus the higher order terms can be approximated as functions of

subsystem only with small approximation error. Then, & (x(k +1)) can be rewritten as
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&K +D) 2 [y (k +1) . % (k + D15 +C (%K) + o
=[xi2(K) - £i06) + 6 06 + A )15 +Ci (%K) (32)
= B (%) + BinGi (Ui + BinAi (X) + Ci (% (K)) + o

where Bi = v.§|Xi is the equilibrium point, Bi=1Ba - Bl

=Xi0
Bi(x) =[i2(K) .. Xin()By --Binal + Ci(x)represents the higher order terms, and ois a

bounded term representing the terms with the higher order interconnection terms. Thus,

0 (+D 0, Gk +1)]

11 T
o Gix(k) (axi(k +1) ox. (k +1)

- -Lrgx (k))[

1 Bi (%) + Bin (%30) 85 () j (33)
2

+ Bin(XiO)Ai (x) +C; (% (k)

= 5%) = 2R (X (500 (0 +
where &, :_%Ri_lgi(xi(k))(ﬂi(xi) + Bin(%i0) 8 (6)u; + C; (% (k))) Consequently, (31) can be

expressed as (33) with 5(x) a function of local states and the interconnection term
appearing with the local system states. Only ,(x)in (33) can be approximated by the
action NN (i.e. 5, (x) =W,;" (K)w; (K)—&i(K)+F (k) ), and thus, from (33) and rearranging the

terms we obtain

W, " (K (K) = &, (K) + F (k) - % Ri95 (K) B (Xig) A (K)

o (k +1) dsi(k+1)
ox; (k +1) ox(k+1)

(34)

1 __ 1 __
+>R '9; (k) vvJ(k)+§Ri '9; (k)

This step is important when analyzing the action network error and plays a role in
the stability analysis as will be shown. Transforming the partial derivative to (34) helps to
include the effects of the interconnection term while still ensuring that the closed-loop

system is bounded.
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Next, equation (16) calculates the optimal policy through using a NN. In practice,
the NN ideal weights and approximation errors are unknown and only an estimate of the

weights is available. Thus,
0; (k) =W, i (% (K)) + F (% (K) (35)
whereWw,; is the estimated values of the ideal weights w,;. The function F(x;(k)) is added

to help overcome the effect of the interconnection terms in the large-scale nonlinear

system and is defined as
F (% (K)) = g (% () (i (6 () +[0 AT 2) (36)
Define the weight estimation error for the action NN asw,; =W, -w,; and the action error

as

&, (K) =W, " (k) (%, (K)) + F; (% (k) @
1oz 1 04 (K+1), 0
+5Ri g; (% (k) mwci(k)

Subtracting (34) from (35) yields

&, (K) = -W,;" (K)w; (K) + &, (k)
+0, -2 R 1, (0n (x0) A, (K)

1o 0g(k+D) &
2 Ri-ai(k) X, (K +1)W°' ()

1 4, 0g(k+1)
2 gi(k)axm(k+1)

(38)

Also, define the action NN weight update law as

o Oy ViK)esi (k) 39
W, (k +2) =W, (k) T w00 51 (39)

which yields
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N k — N k ) l//i(k)eai(k) 40
Wi (k +1) =W, ( )+aall//iT(k)!//i(k)+1 ( )

From (38) and (40) we obtain

(K)wi (k +1)e,; (k)

vt (K (k) +1

oy (k+ D)+ 01K+ 1)~ 2 R7G, (K + D 050 (K +) 41)

bk g 1)
x(k+2) ©

g, (kK +2)

ox (k + 2)

ei(k+1) =W, T (k) (k +1) — oy 2

~ZR g+

1__
-5k 'gi(k +1)

Lemma 3: (Admissibility). Let y,xbe an initial admissible control input for the
subsystem ‘i’ of the controllable system (1). Then, there exists a positive constant «,; such

that the subsystem control policy (35) with parameter update (39) ensures that the future
control sequence provides stabilizing policies for the nonlinear system (1).

Proof: Steps follow similar to [20].
C. Filtered Tracking Error and Stability Analysis

By using the subsystem dynamics (1) and control input (35), the filtered tracking
error dynamic defined in (3) is given by

Ek+1) = f,04 () +[0 4T 7 +
0, (% (ML T (K) + F 0. (K0))+ A (X) (42)
= 0, (% (DL T (K0 () + W, T (% (K0))+ A (X)

In this part we show that the nonlinear discrete-time interconnected system (1)
along with controller (35), critic network (17), and given neural network weight update
laws is stable and the filtered tracking error and weight estimation errors (27) and (40) of
the individual subsystems are bounded, even in the presence of the unknown

interconnection terms A; (x) for 1<i<N.
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Remark 7. The subsystem action error in (38) is different from the action error in [20] in
the sense that it contains the interconnection term which has to be explicitly considered.
As a result, a suitable Lyapunov function (which is a different Lyapunov from what is

used in [20]) has to be considered to overcome the interconnection term effect.

Theorem 2: Consider the nonlinear discrete-time interconnected system given by (1).
Let z (k) be an initial admissible control input for the ith subsystem of the nonlinear
interconnected discrete-time system fori<i< N . Consider the Assumptions 1 through 3
hold and that the initial conditions for system (1) are bounded in the compact setQ . Let
the weight tuning for the critic and action networks be provided by (22) and (39),
respectively. Then, the critic error (19), the action error (37), and regulation error r; (k)
along with the weight approximation errors of the critic and action network are all

uniformly ultimately bounded (UUB) for all k >k + To. In addition, u; —>u; +¢, .

Proof: Define the overall Lyapunov function candidate
V00 =300 - X, Pt s g 5,
= R (e = (43)

YNV + 3 V()

2
imax

Where Lri = (I’l (k)/\/M)2 1V, k)= aaiaciz A¢|2min1eai2(k) ) VWI(k) = 8[/7iA¢|2minaci ~aiT (k)W~a|(k) )
+

‘/7i = [max Vi (k)/min Vi (k)]2 ' in the CompaCt Set Q and Vci (k) = eci2 (k) + A¢|2min ~ciTW~ci Wlth

() =Qk-D+W,' (Ag(K)  ,  Wg =W -Wg ,ag, < HAqﬁ,T (k+DAg(Kk+1|, and

A (k) =g (k)-4 (k-1). Then, the first difference of the Lyapunov function due to the first

term in (43) becomes
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ZALn Z[ k”’] Z[ﬂ] (44)

i ik = Gik-1)
Substituting (42) into (44) and using Cauchy-Schwartz inequality (o +a,+-.+a)?

< n(a12 +322 +...+an2) f We Obtaln

() JZ (45)
1

N - - A2 N
AL; < Z[SWiTWaiWaiT(//i + 3 W Wy Ty + 3 ]_ Z(g (K
(k-

i-1 gi(k)) =
H H H N N N N N
By using Assumption 1 and noting that ZHZ]JJ % :ZHZH% =2 Nyp? we
obtain

< i(3WiTW~aiW~aiTl//i + ?’Wl W Wa| l//l) > [1 - 3Nyl]r|2(k) (46)
=1 imax

i=1 imin
Next, by using (40), the first difference due to the second term in the overall

Lyapunov and using Cauchy-Schwartz inequality function candidate is obtained as

2
2 A¢| min_

Wizmax +1

2
702 (WJ e2 (k) + 70,2 (k +1)

7 (a2 0+ 2) 7306 0+ D)W (W, T (0w 0%k +)

AV, (K) = ay

(47)
705D r e g 2k +2)
4 0% (kK +2) i (k +2)
7= o4 (k+2)7T a o
+ZWCi (k + )m (k +D(R, ) i(k+1)
5¢5 (k+2) (k+1)
Xin(k +2) Wo

N % 6,7 (K + D(R )28, (K + DB (40)A (K +1) — e, 2(K)

The interconnection term A;?(k+1)in (47) can be expanded by using Assumption 1 and

N N 2 N N 2
Zj:12|:17i7lrl = Zj:17i (Z|:17| }'J' . Consequently,
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A (x(k + D) < iyjrf(k +1)
j=1

N g T T
<37l GO, T 00 +W, T s 0)+ 4,00
j=1

2wi T LYy
N 39 (KW, j wa jWaj Wa
<27

N
j=1 |+ 3gj2(k)Wa jT‘//a iVa jTWaj + 327|r|2(k)

1=1

37jgj2(k)Wa jT‘//a iVa jTWaj
j=1

N
+37; > nr? (k) (48)
+37,—g,—2(k)waJ—Twa,-wafwa,} =

Moreover, the term W' (k +1)Wg (k+1)in (47) can be expanded by using the update law
(22) as shown below

W, (K + W (k +1) < 2057 W, T (K)Adh (K) + A (K))

(AT (kK +D)AG (K +1)AgT (k +1)

A (K + (AR (K +DAd (k + 1) HAdT (KW (k) + Acy (K))
+2(Ad" (K +DAG (K +1)2Ad" (k +1) x

Ad (K +D(AGT (k + DA (K + 1) A%, (k +1)

Wci

Next, the first difference of the Lyapunov function due to the third term in (43) is

< 4a M| + day?As 2 (K) + 2A¢ - 2Ae P (K +1) (49)

obtained by using (40) and expanding the terms as

AVwi(k) = 8(/7iA¢|2mina‘ci2 x

o2 VLR () o Wy (R (e ()
7 0w (0 +1f v (K (k) +1

(50)

The action error e, (k) in (50) can be expanded by using (38) as

W, (K)w; (K)ey (K) = 2W, T (k)i (K)

— " (KW, (K) + &, (K) + 03 (k) - % Ri™0i (k) B (%i0) A (K) (51)

1 1T og(k +1) v 1 AT dgi(k +1)
> Ri"gi (k) o (K1) W (k) > R g (k) ox (K1)

By using Cauchy-Schwartz inequality and taking norms we obtain
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2W,; (k)i (K)eg (K)
<2407 + 4600+ 0,00 + A (0
+(RH2 97 (K) B’ (Xi0) A (K)

2
. opk+1)[ ) ~
+R )zgf(k)H—aX"i’n((k: 1))H W (o

(52)

where =, (k) =W,;" (K)y; (k)i (KW, (k) and A; (k) = &, (k) + o (k) - 1 R7g. (k) Ogi(k+1)
2 ox. (K +1)

Finally, following the same steps to obtain (29) for individual subsystems, the first

difference due to the last term in (43) can be written as

AV (K) = (1 - ag?)eg () = (AdRiy — Barg”A)

W o] (53)

+(2+ 4aci2)gCZM

In order to conclude the math, the first difference of (43) can be summarized by

using (46), (48),(49), (52), and (53).

AV, (k) <

— Beaisi” (K) = B=yi =i (K)

— (1 a?)ey? (K) — By Wy (k)| — Bur(k) + B,
= _Beaieaiz(k) - BEaiEai (k)z

M (54)
— (- )y (K) = By W (k)| — Bt (k) + B,
where
T 2 o _T k _ k
Beai:aaiaciz éﬂzmin —7ae?i{y/iT(k)l/li(k+l)J _gwiAqilzminacizafi Z/I ( )l//l( ) ’ (55)
Wi +1 v (o (k) +1 i Ky () +1f
- 9‘/7iA¢|2min0‘ci205ai _ 7A¢|2min05ai050i2 l//iT (k +1)l//i (k +1) _ %Aﬂzminacizaai
=al
wi' (K (k) +1 Wimax +1 wi' (K (k) Wi +1
N A 'Zmin 7 — =
=Y ey ,/J o R 05 DB (500307 () (56)
j=1 j max
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4 A¢|m|n "a¢(k+2)"2
+1] %, (k +2)|

Buci = A min — 40GAG e — 1010 g’ (K + (R ™)?

l/ll max

_ (R_—l)2 gz(k) 6¢| (k +l) Hz 8‘/7iA¢|2min0!ci20!ai , (57)
T o+ T (w0 41

ri

o N &8pAg §
5 _ Vibdhnay aa.( 1 _SNy.j 17 min % (R )2 0,2(K) By (X0}

(l//izmax"'l) 3gimax gimin j=1 l//J (k)l//J(k) +1
| 3 At LR+ DB (0) B Zy. 58)
j=1 W]max+l : :
and
B, =a, oy —min_ Adfimin x
a al—ci Imax+1
2 70sq(k+2)" 1o 064 (K+2)
+7(ey (k+1))+4axin(k+2) et
2
7 o o04(k+2) 2 “1y2 2 2 ) 2
1 oy 9 DR 80 (0 + 280 “s? (4 )

L Afimin T, _
+|:Z:1aajaq 2 Jmnl4(Rj l) g (k"'l)ﬂjn (XIO) 37,9, (k)Wal VaiVai Wai
1= jmax

W|A¢| min&ci aai
¥imax +1)

(6‘( ) 8!/7iA¢|2min0(ci2
" (s (k) +1

+(2+ 40(0,) ch

v, W W, v + 70 (k +1)

ai'Vai

](eai () + 1K) + A ) + A () (59)

It can be seen from (54) that the Lyapunov function is negative outside the bound
Ba

Cl k
oy O W] \! o (60)
e, f [Eutol> [ 2 or ol f

provided that the following conditions are satisfied:

el
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[ ogtc+ 1) [f B

2
2A¢J+(Ri_l)2 9i max X (K +1)

A¢|2min
1
(//izmax +

ad <min{l, (61)

}
\a¢,(k+2)\

+7
1)0%;, (k +2)|

gi maxz(Ri_l)2

2 2
Qi < min{L A A¢| min (62)
- — 2
(7l//i4max + 9WiA¢|2minaci l//izmax Xl//izmax + 1)}

4 _

7W|A¢| min&ci aai

7; <£min 21

L AP} m - =
( izmax+l)gimaxzza %o Jm_:]_(Rj l)Zgjmaleb)jn(xjo)2

j=1 Jmax

l/7iA¢|2minaci2aai 1
(l//izmax + 1) 3gi max

8V7]A¢]2m|n Qi Oy -1
JZ‘I v, (k)l/lj(k) 1( i ) 9 max /Bjn (XjO) (63)

21| & A¢jminaajacj2 1\2 25 2 L

4+ - — e % = (R. . (X

4 Jz_l V/J?max+1 ( j ) g]max ﬂjn( 10) éyl
'//|A¢|m|na 26I‘ai 3N
(V/|max 1) gimin

Note that in order to satisfy (63) the design gains «, and ey ( for 1<i <N ) must be

sufficiently small. Thus, using standard Lyapunov extensions [1], it can be concluded

that av, () is less than zero outside a bound resulting the cost and control errors as well as

the weight estimation errors to be UUB. Since the errorse, (k) and e (k) are UUB and

converge to a bound, it follows that |u, —u;

<&, asS k —>owoWith & being a positive

constant. -

Remark 8. According to Remark 3, the value of 7, can be bounded by ensuring that the

subsystem states are persistently exciting.
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Remark 9. According to Remark 6, the action network of subsystem ‘i’ is

approximating the derivative of the corresponding cost function J;(x;(k)) (the critic

network) which requires the state vector x(k). IfA;(x)can be overbounded by a small

positive constant (i.e. |Ai(x)|2 <y;) in the compact set Q, the effect of the interconnection
terms can be modeled by a constant, and thus, the action network approximation error
&,i 15 reduced since the action NN need not use the entire state vector x(k). Under such a
strong assumption, Theorem 2 is simplified to the case of a centralized control [20] and
the requirement of known f;(x;(k)) is relaxed. Also, the control policy (35) is simplified
to

Ui (k) =Wai Twai" (3 (K)). (64)
By contrast, Theorem 2 is proven by considering Assumption 1 where the interconnection

terms A, (x) can grow in a quadratic manner.

D. The Action Network Design for Tracking

Consider interconnected system (1) where the subsystem output is to track the
desired trajectory x;4 (k) . Consequently, in the error system (2), xi,q (k) can be obtained by
using the advanced values of the desired trajectory x;;4 (k) for 1<i<Nand 1< p<n. Thatis
Xipd (K) = Xjgq (k+ p-1) . (65)
Thus, the error dynamics can be written as
'Zil(k +1) =z (k)

21 (1) = 20n () (66)

Zin(k +1) = f; (X (k) + i (X (K))Ui + A (X) = Xing (K +1)
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which resembles the stabilization problem with the states being the errors z;, defined in
(2) for 1<i<Nand 1<p<n.

Before we proceed, the following Assumption is required.
Assumption 4: The desired trajectory xi(k) (for 1<i<Nand 1<p<n) is bounded
fork e R*.

In order to use the results of Theorem 2 necessary changes have to be made in the
definitions and variables which are discussed next. First, the overall cost function (6) and

subsystem cost function J;(x; (k)) (in (14)) are redefined as

5,00=Y () +uT ()Ru())
2, (67)
—Q(z(k) +uT @()Ru(z(K)) + T, (k +1)

and

3@ = Y@@+l (HRui(D) (68)

=k
where z=[z z,...zy]". Then, the critic and action NNs become functions of the

errors z;, in the tracking problem. That is,

Ji () =W (k) (2 (K)) , (69)
e (K) = Q; (2 (k—1) +Wg; " (K)Ads (K) » (70)
and

Vi -+ = Ah (& (kD)o @k + D) (kD) 1)

laies™ (6)-QT (2 )

Similar to Section II-A the matrix form of (69) through (71) are Jjk)=W," K)®(z(k)),
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E.(k)=Qk-1)+ W, (k)ao(k) , and

W, (K +1) = A®(K + (AT (k + DAD(K +1))] '
(T 0-QT ()

where the matrices are defined similar to what previously introduced; besides,
3K =010 ... Iy 1" and Eg(k) =[eqy (k) ... eqn (K] -
Also, the optimal policy (13) becomes

T 8di(k+1) (72)

0y _Lrlg (.
uj (k) = 2R| 9i (X (k) o2 (k1)

which in turn yields (33) to be

—% Ri g (xi (k)" (‘M‘ Dy oy 21K *1)]

oz (k +1) oz; (k +1) (73)
=Wai" (K)wi (% (K), 2i (K)) = &4 (K) + F (% (K)) + 0
where o — LR g (x (k))[ﬂm(ziagi ()0 = Xipq (K +1)) |

2 +Ci(z;(k +1))
Define the action network

u; (K) =W, wai" (%K), 2 (K)) + F; (% (k) (74)
where
F 06 (K)) = —— = (£, (%, (K)) ~ X (k +1) +[0 4T 7,)- (75)

gi (% (k)
As a result, the filtered tracking error dynamics becomes

(K +1) = (% (K)) = X (K + 1) +[0 4T 7, +
0, (% (ML, Ty, (K) + F (6 (0D )+ A, (X) (76)
= 0, 04 DML, (K (K) + W, T, (4 (kD)) + A (X)

Next, define
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&ai (k) =W, (K)w; (% (K), 2 (K)) + F (% (k)

lrg T M f (77)
+ 5 R, 3: (% (k) o2, (k+1) W, (k)
and
Wiy (k +2) =V, () - a0t (78)

vy (K (K) +1

Finally, the critic and action weight estimation errors are defined as w, =W -W,;

andw,; =W, —w,

ai’

respectively. After the changes (67) through (78) we introduce the

following Theorem.

Theorem 3: Consider the nonlinear discrete-time interconnected system given by (66).
Let (k) be an initial admissible control input for the ith subsystem of the nonlinear
interconnected discrete-time system fori<i<N . Consider the Assumptions 1 through 4
hold and that the initial conditions of the system are bounded in the compact setQ . Let
the weight tuning for the critic and action networks be provided by (71) and (78),
respectively. Then, the critic error (70), the action error (77), and the filtered tracking
error r; (k) along with the weight estimation errors of the critic and action network of each
subsystem are all uniformly ultimately bounded (UUB) for all k > k + To. In addition,

Ui > U+, .

Proof: The proof follows the same steps as in the proof of Theorem 2 by considering the

following positive definite Lyapunov candidate

V(k)=iV-(k):Z.N mL-(kHZN Vi (K)
=i I (e e

YNV + Y V(o)

(79)
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where I-ri = (rl (k)/\/ gi(k—l) )2’ V,i(k) = aaiaciz AZL'"i"leaiz(k) ' Vwi(k) = 8l7iA¢|2minaci 2’\/\7aiT (k)vvai (k) )

7 = [maxy; ()/miny; (P, in the compact set@ and v, (k) =e,’(k) + Ag> W, W, With

1A¢.2mmSHA(AT(k+1)A¢.(k+1)v and Ag(K)=¢(K)-4((k-1). The proof is completed by

expanding the terms, using (74) through (78), and following the same steps as in the
proof of Theorem 2. [

Remark 10. Note from (69) and (78) that if e,;approaches zero, the cost function (69)

and update law (78) are not active, that is, the critic network (69) and control policy (74)
stop approaching to the optimal values. Thus, once the tracking error has become
negligible, the weight matrices associated with the cost function as well as optimal policy
are no longer updated. Similar to Remark 3, this can be viewed as a persistency of
excitation (PE) requirement [1] for the inputs to the networks. Thus, the tracking error
states z)must be persistently exiting long enough for the cost function and optimal
control policy to be obtained. Also, the PE condition ensures the existence of minimum
values for the activation functions ¢ and ;.
IV. Simulation Results

Example 1. (Stabilization) To demonstrate the effectiveness of the optimal controllers
developed in this work on the interconnected systems, the following fourth order-

subsystem interconnected nonlinear discrete-time system is considered as
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X1 ((k +DT) =%, (KT)
Xp (K +DT) = 15 (Xq, X12) + 912 (X1, X42) Uy

+.01% (Xo0” (KT) + X5 (KT) + Xa1” (KT) + X4, (KT))
Xo1 (K +1T) = X5, (KT)
Xoo (K +D)T) = f25(Xa1, X22) + U2 (Xp1, X22)U,

+.1x (X 2 (KT) + Xgo” (KT) + X4 *(KT) + X, (KT))
X31 (K +DT) = X3, (KT)

Xao (K +1)T) = f35(X31, X32) + 932 (Xa1, X32)Us

+.1x (%2 (KT) + X2 (KT) + X" (KT) + X4 (KT))

X1 (K +DT) = %44 (KT)
X (K +)T) = F45(X41, Xg2) + 92 (Xag, X42)Ug

+.1x (X 2 (KT) + X5 (KT) + Xop” (KT) + Xa5° (K T))

where

1y (Xeps Xip) = I—Gl(xll(kT) I+ %5° (KT))+ X4 (KT):
o Xaz) = 2= (KN4 0" (T
Ft2362) = == (s (KT (04 3 (KT))

Fup(Xaps Xap) = %61 (ke (KT) x @+ 2 (TY))

and

91p(Xeq, Xpp) =1+ 0-55in(X122(kT)) ;

22 (Xa1, X2) =1+ 0.255IN( X5 (KT) + X5, (KT)) ;

932 (Xa1) X32) =1+ 0.58In(X3, (KT)) ;

045 (X471, X45) =1+ 0.25sin(X,; (KT)) + 0.25c0s(X,, (KT)) ;

with sampling interval T being 1s. The objective of each subsystem controller is to make
the system states xj; (fori<i<4) regulate to zero in a near optimal manner as proposed.
The initial values of the states are given by x, =1 x, =1; Xy =15; Xy =1; Xgy =1 Xgp =2
X, = 2; %, =1. Note that the interconnection term bound coefficient y =[y;, 7, »5 7,] (for

1< j<4)can be written as y=[.01.1.1.1]. Three cases are considered:
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Case a) The non-optimal stabilizing controller defined by u, = -—1[fi+,1ﬂzi2(k)-Ki*ri (k)] is
gi

considered where 4 =2, = 4, =4, =001 andK,; =K, =K, =K, =0.5.
Case b) The optimal policy (64) is considered. The design gains are oy =2e-5 and
a,; =1le—5forl<i < 4. Note that by the control policy (64) the internal dynamics f;(x;)

need not be known provided that the interconnection terms are overbounded by a small
constant as mentioned in Remark 8.

Case c¢) The proposed optimal controller (35) for 1<i<4 along with the weight update
laws (22) and (39) are utilized for critic and action networks, respectively. The design

gains are o; =2e—5 and «,; =le—-5forl<i<4.

According to Remark 3 persistently exciting state errors are required to achieve
optimal values of critic and action weight matrices. In order to provide persistency of
excitation in the cases b and c in the stabilization problem, the simulation has been
performed by using the a destabilizing control input to the system near origin such that
the critic and action networks can benefit from nonzero control errors over a longer time.
Then, the destabilizing controller is removed and the trained critic and action networks
are used to control the subsystems optimally.

Moreover, the critic weights are initialized randomly whereas the action network
weights start from zero. Both action and critic errors are approximated by NNs with
polynomials activation functions where the critic network utilizes an even 6th order
polynomials to assure positive values for cost function whereas the action network uses a

fifth order polynomial since it should resemble the derivative of the critic network.
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The performance of the three controllers are depicted in Fig. lin terms of the
subsystems states by using the trained values of critic and action NNs after the
destabilizing controller is removed. Each subsystem has two states which eventually
converge to the origin. Figure 2 illustrates the NN control inputs for the three controllers.

These stable results are as predicted by Theorem 2. Also, Fig. 3 shows the large-scale

interconnected system cost function defined by j(x(k))=i(Q(X(j))JruT(j)Ru(j)),

i
whereu(k) = [u,(K),...,uy (K)T", Q(x(j))=x"Qx, Q= lg.g, and R =1,,,. Figure 4 shows
the convergence of the action NN to the optimal policy through the action error (37)
where the proposed optimal input converges to the optimal policy provided by the critic

network in a long training time when the subsystems are perturbed. Finally, Fig. 5 shows

the convergence of the critic NN error according to (19) in the training time.

= 05 ]
>
ol -
0 20
1.5
1 x,Casea |
x' 05} - %, Case a |
or ) : f i — —— ¥, Caseb :
2 4 6 8 10 —_——.=x.Caseb
2 " L
x”Casec
xg 1k & KT e quasec N
1}
1} 15 20
2
xg 1 b
0 2 —
0 5 10 15 20

Time(s)
Fig.1 Interconnected systems states x, with optimal and non-optimal controller
for1<i<4
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Fig.3 Cost function for the stabilization problem
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Fig.4 Action NN error for stabilization problem
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Fig.5 Critic NN error for stabilization problem
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Example 2. The interconnected discrete-time system of Example 1 is now considered for

tracking. The desired trajectories for the individual subsystems are given below.

X,14 (KT) = 0.3sin(0.1KT) » Xy (KT) = 0.3sin(0.02KT) X334 (KT) =0.3sin(0.1kT) , X414 (kT) =0.3sin(0.01k T) .
The subsystem outputsx,kmare to follow the corresponding desired

trajectory x,, (kr). The control policy (74) along with the weight updates (71) and (78) are

utilized for tracking problem with the subsystem critic and action network gains are

ag =2e-5 and «,; =le-6fori<i<4. The satisfactory tracking performance results are

then shown in Fig. 6 where the subsystem outputs track the desired trajectories by using
the optimal control policy (74). Figure 7 shows the control inputs. The observations
confirm the results of Theorem 3 where the tracking error is bounded and the proposed
control policy converges to the optimal policy provided by critic network. In Fig. 8 the
control error (77) is illustrated where Fig. 9 shows the critic error (70). Similar to the
previous example, a destabilizing controller provided persistency of excitation for a
period of time and then it is removed where the final critic and action NN weights are
used to provide the optimal tracking shown in Figs 6 and 7.
V.Conclusions

In this paper, the optimal control of discrete-time nonlinear decentralized system
via online HJB methodology is considered and control design for stabilization and
tracking problem is addressed. In specific, direct neural dynamic programming technique
is utilized to solve the HIB (Hamilton Jacobi-Bellman) equation in real time and forward
in time for the optimal control of decentralized affine nonlinear discrete-time systems.
The design employs an action network that is aimed to provide a nearly optimal control

signal, and a critic neural network which evaluates the performance of the system. The
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NNs are tuned online. The optimal control input is augmented with an additional term for
compensating the interconnection terms. Lyapunov techniques are employed to show that
the synthesized subsystems inputs approach the optimal control inputs with small

bounded error.

Xyq & Xgpy g1 & Xgpy

_1 I 1 L L "
0 20 40 60 80 0 10 20 30 40 50

Time(s) Timef(s)

Fig.6 Interconnected systems states x, with the proposed optimal controller and
desired trajectories for 1<i<4
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Fig.7 Interconnected systems control inputs for tracking problem
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Time(s) 10"
Fig.9 Critic NN error for tracking problem
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6. Generalized Hamilton-Jacobi-lsaacs Formulation for Near
Optimal Control of Affine Nonlinear Discrete-Time Systems
with Application to Power Systems

S. Mehraeen, T. Dierks, S. Jagannathan, and M. L. Crow*

Abstract— In this paper, the nearly optimal solution for discrete-time (DT) affine
nonlinear control systems in the presence of partially unknown dynamics and
disturbances is considered. The approach is based on successive approximate solution
of the generalized Hamilton-Jacobi-Isaacs (GHJI) equation, which appears in optimal
control. Successive approximation approach using GHJI has not been applied to DT
nonlinear optimal control problems. The definition of GHJI function as well as methods
for updating control input and disturbance for DT nonlinear affine systems is proposed
using the mild assumption of small perturbation condition and known system dynamics.
Moreover, sufficient conditions for the convergence of the GHJI solution to the saddle-
point are derived, and an iterative approach to approximate the GHJI equation using a
neural network (NN) is presented. The result is a closed-loop optimal NN controller via
off-line learning. Then, the requirement of full knowledge of the dynamics of the
nonlinear DT system is relaxed by using an on-line approximator. Numerical examples
including optimal control of a small power system are provided illustrating the

effectiveness of the approach.

! Authors are with Department of Electrical and Computer Engineering, Missouri University of Science and Technology, 1870
Miner Circle, Rolla, MO 65409. Contact author: sm347@mst.edu. Research Supported in part by NSF ECCS#0624644.
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Index Terms —Neural Networks (NN), Optimal Control, Generalized Hamilton-Jacobi-
Isaacs (GHJI), Nonlinear Discrete-time (DT) Systems.
I. Introduction
Closed-loop stability is often the sole purpose of many controller designs [1].
However, other objectives, such as optimality, require a control policy to stabilize the
system in an optimal manner when the control cost matters in addition to the system
stability. In the robust optimal control formulation, the objective of the controller is to
minimize a certain cost function which represents a penalty associated with the states and
control input [2] while maximizing the disturbances that the system can tolerate.

The H,, optimal control problem is a branch of optimal control which seeks to not

only minimize a cost function, but also attenuate a worst-case disturbance [2]. Such
techniques are necessary for large scale complex systems such as power networks where
disturbances and faults commonly degrade the performance.

State space techniques for optimal control are derived for linear systems [3] by
solving the Riccati equations in both continuous and discrete-time domain. On the other
hand, the authors of [4] introduce a zero-sum two-player differential game and extended
theH_ optimal control to nonlinear dynamic systems. In contrast, the concept of
dissipativity [5] was employed to convert the H_ optimal control problem into an L,-gain
optimal control problem in [6]. However, the L,-gain optimal problem requires solving
the nonlinear differential or difference Hamilton-Jacobi-lsaacs (HJI) equations which is
very difficult due to lack of a closed-form solution.

To overcome this problem, the continuous and discrete time problems are

addressed in [7] and [8], respectively, where a smooth solution is found by solving for the
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Taylor series expansion coefficients using Riccati equations. As a result, the HJI problem
is reduced to solving a Riccati equation along with a sequence of linear algebraic
equations. In contrast, [9] proposes an iterative based policy to successively solve the
continuous-time HJI by breaking the nonlinear (in value function) partial differential
equation to a sequence of linear differential equations using Galerkin techniques.
However, an associated draw back of this approach is the requirement of a large number
of integral calculations. A similar approach was adopted by [10] where the value function
is approximated by a neural network that is trained offline using the least squares
techniques.

While the continuous-time HJI problem has been under consideration [7][9][10],
discrete-time HJI control problem for nonlinear systems is addressed in a limited manner.
The work of [11] presents important fundamental principles concerning the HJI
optimization problem via the L,-gain optimal problem; however, no approximation
strategy has been used to find a closed-form solution of the value function.

In contrast, the work in this paper seeks to extend the foundations presented in
[12] by proposing a practical method for obtaining the L,-gain near optimal control while
keeping a tradeoff between accuracy and computational complexity. Using the Taylor
series expansion of the value function and using a small signal perturbation assumption, a
generalized Hamilton-Jacobi-Isaacs (GHJI) equation is proposed, and an iterative
approach to solve the GHJI is presented. Successive solutions for the value function
ensure that the value function reaches its saddle-point in a zero-sum two-player

differential game where the players are system disturbances and the control input. The
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successive approximations of the wvalue function are accomplished using the
approximation properties of neural networks (NN) [1] and least squares.

Next, a NN identifier is presented in this work to learn the nonlinear internal
dynamics of the system. Using Lyapunov theory, it is shown that the identification errors
converge to a small bounded region around the origin. Then, using the learned NN model
of the internal dynamics, offline training is undertaken resulting in a novel solution to the
HJI optimal control problem.

The contribution of this work is the use of a Taylor series expansion to solve the
HJI equation which is more involved than the use of the Taylor series expansion to solve
the HJB in [12]. For instance, additional considerations are required when solving the
HJI equation to ensure the existence of a saddle-point in the zero-sum two player game
where as solving the HIB equation [12] does not have such a requirement. Additionally,
added complexity is introduced during the successive approximation of the HJI equation
which requires an inner loop and an outer loop whereas successively approximating the
HJB equation requires only a single training loop. In addition, the proposed method does
not require explicit knowledge of the system internal dynamics as only an online learned
NN model is utilized for the offline training in contrast to the works [8]-[12] which
require the internal dynamics to be known. Additionally, convergence of the successive
approximations is demonstrated while explicitly considering the identifier NN
reconstruction errors.

This paper is organized as follows. First, background information for the discrete
time nonlinear HJI formulation is presented in Section II. In Section Ill, the GHJI

equation is derived, and an iterative based approach to solve the GHJI equation is
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proposed. Additionally, convergence of the successive approximations is demonstrated.
Then, it is shown that algebraic Riccati equation can be obtained from HJI in Section 1V.
Section V presents the NN implementation of the successive approximation of the GHJI
equation as well as the NN identification scheme, while numerical simulations and
concluding remarks are provided in Sections VI and VI, respectively.
Il. Background
Consider the discrete-time affine nonlinear system
Xear = £ () + 9(XU + (X )W 1)
wherex, e R"is the state vector evaluated at step k, f()e®R", g(.)eR™", and

h(.) € ®™M are smooth functions defined in a neighborhood of the origin, u, € R™is the

control input and w, € RM is the disturbance. Now, assume that Xy is Lipschitz on a

set  and there is a control input such that system (1) is asymptotically stabilized. Then,

our goal is to find a control input u, which can minimize the infinite horizon cost function

J, = Z(Q(xj) +Uj Ru; — 7*wj Pw; )= Q(%,) + Uy Ru, — 72wy Pw +J, ., (2)
=k

when the disturbance w, has its worst value, i.e., w,tries to make the cost function
negative [10]. In (2), Q, R, and P are positive definite matrices, and y is a constant. In
addition to stabilizing the nonlinear system (1), the control input u, must make the cost
function (2) finite. That is, u, must be admissible. Next, the definition of admissible

control is introduced.
Definition 1. (Admissible Control): The control input uy is called admissible with respect

to the penalty function Q(x)>0 and control energy penalty u; Ru,, function if a) ug is
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continuous; b) u, ()], =0 C) u, (x) stabilizes ~ system (1); and d)
J, (x(0),u) =i(Q(xj) +Uuj Ru; — %wj PWj)Soo-
j=0

Moving on, this control problem is often referred to as a zero-sum two-player
differential game [4] where the two policies ug(x,) and wg(x,)are the solutions of (2)
such that J, (u;,w,) <J,(u;,w;) < J,(u,w;) for allu, andw,. The minimizing control
input ug (x,) and maximizing disturbance w (x,) are found using the stationary conditions

[13] &) /ou(x)=0 andad,/ow.(x)=0, and routine calculation  shows

Uy = —% R™g(x)" —Z‘)](k” and = 2—12P’1h(xk)T —2‘)]('“1- The pair (u;(x).wy (%)) then
k+1 4 k+1

becomes the feedback saddle-point solution of the optimization problem [4]. The
necessary and sufficient condition for the existence of a solution for HJI from [2] is given
in the following theorem.

Theorem 1[2]. Consider a zero-sum two-player differential game. The feedback saddle-

point solution (ug (x,),wx (%)) is achievable, if and only if there exists a smooth function

Vv, ():ZxR®" - % referred as value function such that the HJI equation

Va0 = i 31 (Q0) R P V05
= max n3||(n Z(Q(Xj) +U] Ru; — 7*wj Pw; +Vk+1(xk+1)) @)
= Q(x) + U Ruy — 72w Pwj +V,( + guy +hwy)

has a solution withVv_ (x) =0where x = x,. n

Before proceeding, the following definitions are required.

Definition 2 [14]. (L,-gain): The nonlinear system (1) with feedback control u, and
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disturbance w, 1, is said to have an L,-gain less than or equal to y if

N N
Z(Q(xk) +Uy Ruk)g > viwg Pw (4)
k=0

k=0
with Q(x, ) + u; Ru, excited by the disturbance from an initial state x,. When N approaches

infinity, (4) can be rewritten as

(Q(xk) +ug Ru, )S iyzwl Pw, .
0 k=0

[Ms

k

The problem of disturbance attenuation can be addressed by using the L,-gain of a

nonlinear system [11]. The disturbance w is locally attenuated by a real value y > 0if there
exists a neighborhood around the origin such that vw, <1, for which the trajectories of the

closed-loop system (1) starting from the origin remain in the same neighborhood, and the

response z, el,, where ||zk||2 = Q(x,) +Uu, Ru, satisfies
Z(;/ZWI Pw, —Q(X,) — Uy Ruk)z 0. Under these conditions, local disturbance attenuation
k=0

with internal stability lends an admissible control input providing a closed-loop system
with an L,-gain less than or equal to » [11].

Definition 3 [5]. (Finite-gain Dissipative System): The discrete-time nonlinear system (1)
is said to be finite-gain dissipative with supply rate

W (X, W) = Q%) + Uy Ruy — 7wy Pw (%)

if there exists a nonnegative function V:®R" —>%Rcalled a storage function with

V(0)=0such that for all kez* and w, we have V(x,,;) -V (x) <W(x,,w, ) ,0r equivalently

k
V (%) =V (%) < ZW(Xj’Wj) .
j=0
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The relationship between the system (1) having L,-gain and being dissipative can be
expressed by the following [11]:
a) The nonlinear system (1) has L,-gain less than or equal  if it is finite-gain dissipative
with the supply rate (5) andv (0)=0.
b) The nonlinear system (1) is finite-gain dissipative with the supply rate (5) if it has L,-
gain less than or equal to y and is reachable fromx=0.
[1l. GHJI Equation for Nonlinear Discrete-time System
According to the optimization problem (3), the DT HJI equation becomes [11]
Vi (F + gug +hw) -V, (x)JrQ(xk)Jru’k"T Rug —yzw;T Pw; =0 where the optimal control
inputu; and worst case disturbance w; are the solutions of optimization problem (3).
Thus, the Hamiltonian function can be defined as

H(Xk’ukiwk)= (6)
Vi (F +gu +hw ) =V, (X) + Q(xy ) + UkT Ru, — 72WkT Pw

Note that whenH (x,,ug,wg)=0, we have the DT HJI equation (12). According to the
definition of the value function v, (x) in (3), the optimal control input u; and worst
disturbance w; can be obtained by setting the first partial derivative of the right hand side
of equation (6) with respect to u, and w,, respectively, equal to zero (the stationary

conditions [13]) as oH (x,u,,w,)/du, =0 and oH(x,,u,,w)/ow, =0. These equations in

turn yield
* 1,4 T aVk* 1

U =——Rg(x) —= 7
k > 9(%) X, (1)

and
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A v,
27 axk+1
Next, by substituting (7) and (8) into (12), the HJI equation becomes
0=V i1 (%11) = Vie (%) +Q(x,.)
©)

aVk*+1

;

1oV, (1 - -
+ 2Nk (Zh(xk)p (%) - g(x)R lg(Xk)TjaX
k+1

4 an+1 Y
Note that the differential equation (9) is nonlinear with respect to av,’, /ox,,, and in

general is difficult to solve. In [12], a Taylor series expansion approach was undertaken
to overcome the difficulties in finding such a value functionv,,,in the single-player
Hamilton-Jacobi-Bellman optimization problem. However, no work has been done in
discrete-time HJI formulation. In this paper, Taylor series expansion approach is
employed to solve the DT HJI optimization.

By assuming small perturbation about the operating pointx, , we expand Av, by

keeping the first two terms in the Taylor series and considering the higher order terms to
be negligible. It was shown in [12] that this assumption is not stringent and can be
applied to quadratic cost function without making the small perturbation assumption.
Thus, we obtain

AV =V (X 11) =V (%) =Vieos =V
T 1 T 2 (10)
2V (X — %) + E(Xk+l = %) VV (K1 — %)

wherevv, and v, are the gradient vector and Hessian matrix, respectively, as shown

in (11) and (12) as

={8V(x) 8V(x)} 1)
X=Xk X=Xk

0% X,

oV (X)

VvV, =
k OX
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_agv (X) aZV (X) 82V (X)—
ox’ X%, % 0X,
pey o GRY
VA, — (%) (ZX) ) (12)
k ax26xl 6)(2 axzaxn
NEK VK VX
L 6Xn8X1 axn6X2 aXr’l2 dIx=xg

Next, the following lemma is stated before we proceed.

Lemma 1. Letu, be an initial admissible control policy applied to the nonlinear discrete-

time system (1) with the associated value function (3) and cost function (2) such that
VV, (f, +9,u, +hw, —x,)

1
+ 5 (fi + GyUy + hw, — X )T VA, (fy + gy +how —X,) (13)

+Q(X,) + Uy Ruy — 7°wy Pw, = 0.
Then, J;(x;,u,w)=V; foralljez".

Proof. Substituting the dynamics (1) and using (10), we have

V,-V;= iAVk = i(V (Xs1) _V(Xk)): i(vkﬂ _Vk)z
k=j k=] k=] . (14)

o [V (Fe + giu +hwy — %)

1
k=] +E(fk + gy +hw — Xk)TVsz(fk + gy +hew = X,)
According to equation (2) we have
J;(x;,u,w) = Z(Q(xk)+u[Ruk —72WIPWk)- (15)
k=]

Since u, is an admissible control,v,, =0, and by adding (14) to (15), we obtain
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k=]

; 1
+ Z[;(fk + iy + hwe =% )T YV (F + gt + hew — Xk)j -
k=
+ 3 (Q0x) + uf Ry — 2] Pw,)
k=
The right hand side of (16) is zero by observing (13). Thus, J;(x;,u,w)-V; =0. u

Equation (13) now provides a new optimal solution for v, based on new u; and w;
which are derived next.

Definition 4. (GHJI Equation for Discrete-time Nonlinear System): Equation (13)
evaluated at v(x)|,_,=0is defined as the GHJI equation for affine nonlinear DT system
(1.

Definition 5. (Pre-Hamiltonian Function): A suitable pre-Hamiltonian function for the
affine nonlinear DT system (1) is defined as

H (X, Vi, U, W) = VVi (e + gy + hwy = %)

+%(fk + QU + hwi — X )T VA, (f + gyly +hwy —X,) (17)

+Q(%.) +ug Ru, — 7wy Pw, .

Note that when H (x,V,,ug,wg) =0, the GHJI equation results where u; and wy are the new
optimal policies to be obtained. The optimal control input u; and worst case disturbance
w, can be found by setting the first partial derivative of the equation (17) with respect to
u, and w, , respectively, equal to zero

OH (X, Vi, U, W)
oW

OH (X, Vi, U, W)
au, -

=0

0
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which yields

W, =272 —W VAR [ WV T 4+ v %) 18
k = |¢Y k k] Mg + VAV (i + gl — %) (18)

and

U = —[g[VZng +2R}lg[[VVT + VA (f, +hw — xk)]. (19)

To ensure that the term 2,2p—h'vA/h is always invertible, it is required that

y2>%zmaX(B) where B =P*h{v&/,h,. It will also be shown that selecting yin this way

guarantees the existence of a saddle-point in the zero-sum two-player game. Equations
(18) and (19) may be solved together to obtain solutions in terms of the value function

and system states as

w, = (1 =Y, " vAVg,Y, g vAVh, ) Y,

(20)
(VT + VA (, —x) - VAG,Y, "ol VT + VA (£, - x))
and
‘= (1Y, Yo VAR YT vAVg, Y gl
Uy = o 9k k Tw T Ok /) Yy Ok % (1)

(VT + 9 (, —x) - VA (B Y, W [PV T+ VA (£, - %))
where Y, = g, VA/.g, + 2R >0 and Y,, = h, VA/.h, —2°P.

In contrast to the policies (7) and (8), the optimal control and worst-case
disturbance (18) and (19) can be calculated independent of x,,,. Thus, once the value
function is obtained, the optimal control input and worst-case disturbance can then be
implemented by using (20) and (21). However, despite its linear behavior, finding a
solution for the GHJI equation is still not easy. To overcome this problem, an iterative
based scheme [9][10][12] is proposed to update the disturbance and control input (18)

and (19) in order to reach the optimal u; and w; for the discrete time GHJI problem.
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The following theorem will now demonstrate that the optimal control (19) and
worst case disturbance (18) ensures the existence of a saddle-point in the zero-sum two-
player game.

Theorem 2. (Existence of saddle point) Let the pair(u.,w;) be an arbitrary admissible
control and the worst-case disturbance inputs as provided by (18) for system (1). In
addition, let the pair (ug,w,) be the optimal controller provided by (19) and an arbitrary
disturbance input, respectively, for system (1). Then, the Hamiltonian function (6)
satisfies H(x,,up,w,) < Hx upw) < H (X U, i) -

Proof. The proof will be shown in two steps. First, it will shown
that H (x,,u,,wg) —H (X, ug,wg)>0. By using (17), and noting that H(x.ug,w;) and
H (x,, U, , Wy ) are nothing but equation (17) rewritten in terms of w; and/oruy , we obtain

H (X Ui Wie) — H (X, U, W) =
WV (f + gy + hwy = x) + Q(x) + UkT Ru, _72W:T Pw

1 N *
""E(fk + g Uy + hewy — Xk)TVZVk(fk + g Uy + hewie — X))

WV (fi+ Qi + W, =)+ QEx) + Uy Rug = 7w, P

1 * * * *
+E(fk + gUy + hewy — Xk)TVZVk(fk + g Uy + hewye = X,)

[PV + (e + howy = x0T VA, Jo, (U — ug)
1 T 1.7 % (22)
+§uk Y, Uy _Euk Y, Uy

Next, using (19) to replace the first term in (22) yields

* * * Ty T * 1 T 1 #1 *
H (X, Uy, Wie) = H (X, U, Wie ) = =Uy Yy, (U —Uk)+EUk YUy _Euk Y Uy

=(Uy — U:)TYU (U —uy).
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Since the  matrix  Y,is  positive definite it can be  concluded
that H (x,,u,, wg ) — H (X, ug,wg) > 0.
Next, it will be shown that H (x,,ug,w, ) — H(x,,us, wg) <0. Similar to (22) we have
H (X, Uy, W ) — H (X, U, W) = lVVk + (fi + 9y — Xk)TVZVk}]k(Wk - W)
+%WKTYWWk - %W:TYWWE .
Employ (18) and replace the first term in H(x,,u,w,)—H(x.ux,wi) to obtain

* * * *T * l 1 *T *
H (X, Uy, Wi ) = H (X, Uy, W) = =W YwT (W — W) +EWkTYka _Ewk Yl

= (W - W:)TYW(WI( - W)

Since y® > 4, (Ph VA, hy) /2 : Yo is negative definite. Thus,
H (X, Uy, W, ) — H (%, U, W) <0 and it can be concluded
that H (x,., uic, W) < H (%, Ui, W) < H (6, Uy, W) - u

A. Successive Approximation of the GHJI Equation

Let ulbe an initial admissible control input for system (1) in the absence of
disturbancesw, in a compact set€2. The successive approximation procedure consists of a
sequential set of updates for the disturbancew("Vin an inner loop with index j
accompanied by a sequential set of updates for the control inputu® in an outer loop with
index i. The sequence starts with setting u{’ =u? and w(® =0 for i=0. Then, the pre-

Hamiltonian equation (13) is solved forv,"as
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WD (F+ gl +how D —x,) + E(fk + iU + D —x)" x

VA (f 4 gu® + hwD - %)+ Q(x) + u® Ru® (23)

2w P — o,
The updated disturbance can now be found by using (18) as

ngi,jJrl) _ _[hl'(rvzvk(lyl)hk _ zyzp]flh: X (24)
[V VA D (6 + g - %)]

The inner loop j proceeds until it converges such thaty,®? =y 07+ -y, (=)
Next, u{" is updated according to (19) and written as
u ™ =g VAV g, + 2RI gy
WV VA (F, +how ™ - x)]
Then, value function is found by solving (23) forv,(". Similar to the inner loop, the outer

(o0,0)

loop i proceeds until it converges such thatV,("™ =Vv0**) =v(**) This procedure is

depicted in Fig. 1.
Theorem 3. Letu{ an initial admissible control input for pair (i,j) on the set a. Then,

iterating between the pair (23) and (24) ensures v,®? is monotonically increasing until the

worst-case disturbance for the control input u{is found provided »?>4,..(B)/2

withs = p-2hTvayGon, . That is, V&P <v& <y and fim V0D =& | In addition, the

jooo

value function v, satisfies

. : : 1 : .
VVk(I'J)T (fi + geu +how ™ —x) + E( fie + GU + ™ =) x

. 0 . . © . T .
VA (f 4 gul + ™ = x) +Q(x) +ul Ru

_yzwlgu,oo) Pwlgl,]) =0



225

where

Wi = VA By = 22T IV + VAE (£ + gul® - x)] -

Proof. First, we evaluate Av,"? along the trajectories of

X1 = T+ Ul + how 1+ (25)

From (10) we have

AV = VD (- %) + ;(Xm ORI CWESS) (26)

Now, substituting (25) into (26) reveals

AV =D (4 g ul +hw 1 —xk)+;(fk + g +hw{ Y _x )T x

VA, + gul + hoawd T - x,). (27)
Next, we rewrite the GHJI equation (13) in terms of v along the trajectory

X1 = Fio+gu +how D as

WD (£ + gud +hew) —x,) + E( fie + g + R Y =) x
VAL (i g + R = %) +Q0x) +u Ry (28)
i g = o,

Now, combining (27) and (28) renders
AV =

WD (e + gud + hew ™™ —x) + %( fic + g+ —x )" x

VAV + gud + w1 - x,)

VVk(i’j)( fk + gkulgi) + thIEiyj) - Xk) + Q(Xk) + ulgi)T Ruk - 72W1£i’j)T I:)Wk

1 i i i H PR
+E(fk + g U@ + howd D —x )TVALSD (F 1 g u® +howi D —x)

and after some math we obtain



R AV et
+ ;[2( f+gu —x )" (Vzvk("”)nk + 2VVk(”"T hk}(wﬁi'j”) - w,ﬁ”))
+ ;WS’ i he (Vzvk‘i'”%kwﬁi'j“) -Q(x,) - uS)T Ru, .
Also, from the update law (24) we have the relation
W (P b, ~27P] -
—[VVk(i'j)T + (Vzvk(i'j))(fk + gkulgi) - Xk)]T hy |
Plugging (30) into (29) yields
AV = 1497 22l 5T ] (70 2P )
_%ngi, T [hg (Vzvk(i,j))nk B ZyZP}\/vﬁi’j“)
T (D 22 - Q) R,
After rearranging, we have
AVED = _Q(x,) - ulﬁi)T Rul + 72w ol Pw( I+ 4

%(WS'”D _ ngi,j))T [272p —h (vzvk(i,j)>nk lesi,m) _ WIEi,j)).

Next, taking the infinite sum of (31) implies that

VD00 23 a0 = Qe )-ul? Rl 4wl Pt
k=1 k=I

3l T e W ol )
k=l
:_Jl(i,j+1)(xl,uigi)’wlgi,jﬂ))
+ g%(wlgi,jﬂ) B WIEi,j))T [2;/2P Ny (Vzvk(i,j)>nk legi,jﬂ) B ngi,j))

Since V.!") = 0 equation (32) yields

59 ) 2V 4 T T o U o

k=1
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(29)

(30)

31)

(32)

wiD )] (33)
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=0
Wk(I'J) =0
v

Solve equation (28) for value
function v,V

»
»

\ 4

j=j+1

Update the disturbance wy
by using (29)

Solve equation (28) for value
function V,

(i)

No

Yes

store VM=, )

i=i+1

Update the control input uk(i'j)
by using (30)

Solve equation (28) for value
function V,

No

Yes

store V, ()= v, M

Fig. 1 Successive approximation procedure
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In addition, from Lemma 1 it is known that
Jl(i,j)(xI ,uf”,w,("”) :v,‘i'j) _ (34)

Thus, from (33) and (34) we conclude that
VI _y @D, %i((ws,m) wi D Ty 2p ] (7200 by g3 _WSJ))) _ (35)
k=l

Ify2 > 4,...(B)/2, then 2y?P —h] (VZVk(i'j))nk is positive definite, and equation (35) shows that
v, > v (D) which proves the first claim of the theorem. The second part of the theorem
is easily shown by noting that when convergence occurs, equation (23) and (24) are
solved for the same value function v, and disturbance w{"*). Moreover, since a saddle-
point exists in the zero-sum two-player game (Theorem 2), in a neighborhood © around
the origin, v,*?has a maximum v,®<) for u®. Thus, v,®:"continues to increase by the
sequential updates (15) in the inner loop j until v, =y, & —y (=) n
Remark 1. In [10], H., optimal control is considered for continuous-time nonlinear systems
by means of obtaining the minimum . However, the method is based on decreasing y by
trial and error until its least value is achieved. By contrast, an explicit relationship

7> A (B)/2 for the minimumy is found here. Selection of yin this way not only

guarantees the existence of a saddle-point in the zero-sum two-player game, but also
ensures convergence in the inner loop of successive approximations.
Next the convergence of the outer loop i is discussed.

Theorem 4. Letu” be an initial admissible control for pair (i,j) for system (1) on the set
Q. Then, the nonlinear system x, ., = f(x.)+g(x )ul™ +h(x )w®* has the L,- gain less than or

equal to y. Additionally, v~ >y >y and  lim v = where v solves the

|—>00
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GHJI equation (13). Also, if v =) then v, =y

Proof. By evaluating  av0=from (10) along the trajectory  of
X = F06)+9(x)ud ™ +h(x )w) and following a similar procedure as in Theorem 3,
it is straight forward to show that

) -0 0 R ol (7 o Jof )

T e (36)
_Q(Xk)_ulgwl) RU§I+1)+y2W§I'w) Pwlgl,oo).
Equation (36) shows that Av,‘*) < —Q(x)+ 72w puli) —u ru@» which, according to
Definition 2, implies that the nonlinear system x,,, = f (x,) + g(x)ul™® +h(x )wd=) has the L-
gain less than or equal to » and consequently is dissipative with respect to the supply rate
. T . . R . - a. -

Q%) —uf™ Rul™ 4 20 Pyl according to Definition 3. That s,
VI v 0 <w (x, ,u®, w D) where

W0t 2 ) = = QU1 )~ R 2 P,

For the second claim, take the infinite sum of (36) to get

V) _y ) 2 3 Ay )
=
_ z(_ Q%) —ul*D RU 4 2w Pwﬁi,w))
k=1
_ Z(%(ulgiﬂ) _ ulgi))T [ZR +q (vzvk(i,oo) )gk IUIEM) _u® ))
k=l
— _Jl(i+1,00) (X| ’u|£i+1) ' W‘EI’OO))

_ i%(uém) _ ulgi))T [ZR ol (Vzvk(i,w))gk Kulsnl) _ ulgi))
P

Since V.5 =0 and 30V (x,u®,wiP) =v, @D (from Lemma 1), and applying similar
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reasoning used in Theorem 2 shows

Y1) 0 _ ;ki(uﬁim ~ US))T [2R . g;(r(vzvk(i,oo) )gkkulgnl) _ U;Ei)) (37)

Observing 2R+ g V&, )g, >0, (37) shows that V,***) <v,() Moreover, since a

saddle-point exists in the considered zero-sum two-player game (Theorem 2), in the

neighborhood @ around the origin, v*?has a minimumy® asu® varies. Thus,
v,*#) continues to decrease by the sequential updates (30) in the outer loop i until
V[0 2y ) Zy ), .
Next, the admissibility of the controller is presented.

Lemma 2. (Admissibility of the controller) Let uj be an initial admissible control input
for system (1) in the compact set€. Let the proposed successive approximation
procedure of updates for the disturbance w{?in the inner loop j and updates for the
control inputu® in the outer loop i is performed. Then, the control input u® remains
admissible in each step of the outer loop i.

Proof. From Theorem 3 we observe that v©*) exists and is finite in the set 2. Also, from
Theorem 4 we observe that the positive function v**) exists and v& <v©*). Since uyis
admissible v©)is finite and as a result v,** is finite. Consequently, uj is admissible. By
induction, admissibility of u} for 2 <i<wis concluded. [

Remark 2: In [12], the optimal control problem was solved by applying a Taylor series
expansion of the HIB equation. In contrast, this work uses a Taylor series expansion to
solve the HJI equation which is more involved than the HIJB from [12]. For instance,

additional considerations are required when solving the HJI equation to ensure the
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existence of a saddle-point in the zero-sum two player game where as solving the HJB
equation does not have such a requirement. Additionally, added complexity is introduced
during the successive approximation of the HJI equation which requires an inner loop and
an outer loop whereas successively approximating the HJB equation requires only a
single training loop.

Remark 3: In [8], a solution to the HJI equation was found using a Taylor series to
approximate the system dynamics as well as the HJI equation. As a result, the HJI
problem is reduced to solving a Riccati equation along with a sequence of linear algebraic
equations. In contrast, this work takes on a fundamentally different approach in forming
the Taylor series expansion since we do not require a Taylor series expansion of the
system dynamics. Additionally, the work of [8] does not prove that a saddle-point in the
zero-sum two-player game exists using their approximation techniques whereas the
saddle-point is rigorously shown to exist in this work. Finally, it is observed that [8] (and

[12]) requires knowledge of the internal system dynamics f,(x) where as this requirement

is relaxed in our work using the NN identifier presented after Section IV.
IV. Linear Discrete-time HJI
Next, it will be shown that discrete-time algebraic Riccati equation (DARE) for
linear systems can be obtained by the proposed GHJI equation. Consider the discrete-time
linear system (38) and associated value function (39)
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where x, e ®" is the state vector evaluated at step k, Ae®R™, Be®™™, and C e R™Mare
smooth functions defined in a neighborhood of the origin, u, e ®™is the control input,
w, e ®M is the disturbance and T is a positive definite constant matrix.
Lemma 3. If v,® =x, ", in (39) is the value function for system (38), then I =
Proof. This can be easily shown by obtaining the transpose of both sides of the linear HJI
DARE equation (40) [18][19], knowing that Q, R, and P are symmetric, and for any given
invertible matrix X we have (XT )‘1 = (x ‘1)T . Then,
r=ATA+Q-[ATTB A'TE]x

{R +B'rB B'IE }_TBTFA} (40)

E'TTB  E'TE-»%P| |E'TA

Assuming that the Riccati equation (40) has a unique solution yields thatr™ =r. [
Note that the difference between (40) and the Riccati equation obtained in [11][18][19] is
the existence of input (R) and disturbance (P) gains.

Equation (39) reveals that vvk*T =2rx and v, =2r. Thus, the GHJI equation

(13) becomes

2%, TT (AX, + Bu; +Cw; — %, ) + (Ax, + Bu; +Cw; —x, )" x

T(A%, + BU. +CW, —x.) +Q(x) + U’ RU! — 72w Pwj =0
or equivalently

(A%, + Bu; +Cw;)'T(Ax, + Bu; +Cw;) 41)

+Q(x,) + u:T Ruy, — 7/2sz Pw; =0

by using Lemma 3. The optimal policies (20) and (21) are now rewritten as
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-1
W = (cTrc ~y*P-C'rBB'TB + RFBTFCJ x w)

[— C'TA+CTIBB'TB + RFBTFA)Xk
and

-1
0 = (BTFB +R-B'TClcTC - yZPFCTrB) x )

(— B'TA+B'TClcTC - yZPFcTrA)xk.

Corollary 1. The GHJI equation (41) is equivalent to the HJI DARE (40).
Proof. This can be shown by following a similar approach to [18] where matrices R and P

are not identity matrices. Define
1 -1
K :(CTFC —72P—CTFB[BTFB + RT BTFC) x
T T T 1,7
(—c rA+C'IB[B'TB +R]'B FA)
and
1 -1
Lz(BTFB+R—BTFC[CTFC—y2PT CTFB) x
(— B'TA+B'TClcTC - yZPFCTrA)xk
Thus, w; = Kx, and uy = Lx,. Define
T T T 2p [LA~T
D, = B'IB+R-B'rclc’rc - 2P| 'C'rB,
T 2 T T 1.7
D,, =C'TC-»?P-C'TB[B'TB+R]|'B'TC,
T T 2 T
A,=B'TB+R, A,=C'TC-»?P, A, =B'TC, and

A, =CTI'B. Note that D, = A, — A,A, "A,, and D,, = A, — A, A, ‘A, are the Schur

complements of A, and A,,, respectively. Thus [13],
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{ o —A‘EAZDZ‘%}:[% AHT.
~ApAuD Dy Ay Ay

T

Also, note that Dy =Dy, DzzT =Dy, A12T = Az, A22T =Py, and A11T =Ay-

Consequently, K and L can be calculated as

{ L} _ { D - foﬁzAz‘.%}{BTFA} _
K] |-DzAwAr Dy |CTA (44)
_{ Ar A }_l B'TA
Ay A, [CTTA

Now, by using (44), equation (41) may be rewritten as

—-T+Q+ATA+A'TBL+A'TCK +
% |L'B'TTA+L'B'TBL+L'B'TCK + KTC'TA+|x, =0
K'C'ITBL+K'C'I'CK + L"RL - 2K "PK

or equivalently as

I=Q+ATA+A'TBL+A'TCK +L'B'TA+K'C'TA-
i KT]{R +TBTFB T B'IC 2 }X
C'TB C'rCc-,%P
{R +BTTB  B'TC T{BTFA}
C'TB C'ITC-4%P| |C'TA
=Q+A'TA+ A'TBL + ATTCK

L
=Q+ATA+[ATTB ATFC]LJ .

Thus, by using (44), one can obtain

F=Q+ATA

T T AT
—[ATrB ATFC{RJFB B B'rc P} [B FA}

C'TB C'IC-7?P| |C'TA|

The solution for T can be obtained through solving (45) iteratively [18].
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I..=ATA+Q-|ATB A'TClx

-1
R+BTB  B'TC BT A (45)
C'rB C'r,C-y°P| [C'TA

V. NN Approximation of the Value Function
So far, we have demonstrated how to recursively solve the GHJI equation by

successively updating the disturbance w®?and control u®. In addition, it was

demonstrated that the optimal solution of GHJI is found by iterating between the two
loops. However, a general closed-form solution for GHJI is still hard to obtain even
though the GHJI equation is a linear differential equation and in general easier to solve
than the original HJI equation.

Moreover, the solution for GHJI requires the internal dynamics (i.e. f,(x) ) to be
known. In this section by using an approximator such as a NN for the internal

dynamics, f, (x) , we show that the value function can be obtained with a small error.

A. Successive Approximation of the Value Function using NN
First, we show how to approximate the solution of GHJI equation for the discrete-
time nonlinear system by using the approximation properties of NNs and by assuming

that the disturbance term w9 and the control input u® are in feedback form. It is known

that NNs can approximate smooth functions on a compact set [1]. Then, we can

approximate v with an NN as

VOD SV (0 = Yo () W 5 (0) (46)
1=1

where the activation function vector o,(x)is continuous and zero at the origin,
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W, =[@, - o] is the vector of NN weights , &, =[o; - o.]" is the vector of
activation functions and L is number of hidden layer neurons. The NN weights are tuned
to minimize the residual error (which is defined next) in least square method over a set of
points within the stability region of the initial admissible control. In the
GHII (-0, u® W)= 0 equation, the value function v,Vis replaced by Vv, to obtain the

residual error as

GHJI[VL(”) . im,al (x),u(i),w(i'j)] =, (X). (47)

1=1
Weighted residuals [15] are used to find the least square solution for (47). The
weights are determined by using
(e (X)/ oW, e (x))=0. (48)

By expanding (48) we obtain

1 1

<VELAX + ZAXV2G AX, VT AX + —AXTVZELAX>.WL +
2 2 (49)
. : o o 1

<Q(x) +u®TRUD — 200D Pyl vE Ax + EAXTVZELAX> =0

where the termsvs, and v, are gradient vector and Hessian matrix of &, (x)with
respect to x, respectively, and ax = f(x)+g()u(x)® + h()w(x)®? —x . The following lemma
is needed to proceed.

Lemma 4 [12]. If the set {aj(x)}lL = {5,(x),...,0, (X)} is linearly independent, then so is

the set
L

1
{VGJTAX + ZAxTvzaij} :
1

From (49) we have



237

W, = —<§,§>1<Q(x) +u® Ry® _ ;/Zw("j)T Pw("j),§> (50)
where 6 ={Vo]Ax+Ax"Vio;Ax/2}y . As a result of Lemma 4, (6,6) is full rank and

invertible. Therefore, a unique solution for the weights can be obtained. In addition, the

inner products in (50) can be approximated as [15]
N

(a(x),b(x)) = IQ a(x)b(x)dx ~ Za(x)b(x)é X
i=1

where & =x, —x;_; 1S chosen small in Q and N is large. By employing a mesh in the set

Qwhere the mesh size is 5x, the NN weights can be found as

w, =—(x"xJ " xy (51)
where X and Y are defined as

X = [(VELAX+AXTVZELAX/2)X:X1 (VELAX+A><TVZE,_A></2)X:XJT

(Q(x) +u®TRY® — 2@ DT py (i J)j
X=X1

Y = :
(Q(X) +u®TRY® — 20T PW(LJ))

X=Xp

and p is the number of points in the mesh.

Examining the weight update (51), it is observed that knowledge of x,, and thus
f.(x) is required for implementation of the iterative scheme; however, it is not always

possible to obtain an explicit expression for the internal dynamics f, (x) a priori.

B. Identification of Unknown Nonlinear Internal Dynamics

Consider the unperturbed system

Xei1 = i + QU (52)
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Using the universal approximation properties of NN’s [1], the smooth function

f (x) can be represented using a NN as

f(X) =Wy (X)+& (53)
where w, represents the bounded target weight matrix, ,, (x) is a linearly independent set
of basis functions satisfying ,,, <y (x|<yw for all x=0. It is observed that this
condition is easily met with proper selection of the basis function. Additionally,
z=[z,...,] ,and || <&, with &, being a positive constant.
The NN identification scheme is now defined as

Ky = fAk + iUy + KX, (54)
where %, =x,-%,, K is a design constant, f(x)=Wy(x), and w, is the NN approximation of
w, . Subtracting (54) from (52) reveals the identification error dynamics to be

X, =f +5-KX (55)
where f, =Wy withw, =w, -W, . Let the NN tuning law be given by

Wy (k+2) =Wy (K) + @y (Ks + KX (56)

Then, the NN weight estimation error dynamics w, (k +1) = W, —W, (k +1) are given

by

W, (k +1) =W, (k) — ey o, Wy () + &)

- - (57)
=W, (k) - cAW
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where AW =y "W, (k)+y 2" . The key feature of the update law (56) is that when %, in
very small, that isx, ~ %,, we can conclude that identifier (54) has learned the internal
dynamics f (x), that is f (x) ~ f (x) . Before proceeding, the following definition is required.

Definition 6 [1]: An equilibrium point x,is said to be uniformly ultimately bounded
(UUB) if there exists a compact set s < ®™so that for all initial states x, < s there exists a
boundB and a timeT (B, x,) such that |x(k) - x,|<Bforall k>k,+T.

Theorem 5. Let the proposed identification scheme in (54) be used to identify (52), and let

the NN update law be given by (56). Then, the state estimation errors (k) and NN

function approximation errors W]y are UUB.
Proof. Define the Lyapunov function
(94

Calculating the first difference and using (55) and (57), we have

AL = %XMT Kot + e W, (K +1)TW, (k+ 1))
(04

~2%7%, —étr{/vaVVf }
< offi| + afelf + ak?[R - SR
%tr{ﬁﬁf (k) — oaW || W, (k) - aAW )}—étr{ﬁfwf b
After some math we obtain
AL < —%(1—3K2)||ik||2 + Wy HZF +agy’

+(2al//fM2‘Mifo ”i + 2al//fM2§M2) - Z‘Mle//f ”ZF + 2”\/val//f HFE

<

After more manipulations we get
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AL < —%(1— KR - - a2y —1))Mfwf Hi

+§M2a(1+ 2(//sz) .
It can be concluded AL<o0if the design parameters are selected according to

K <1/+3, a<1/(2y 4% -1), and the following inequalities hold.

2l a+ 2 2)
a 2
% 1-3K
3( )

o7 5Mz(lJFOf(l+ Zl//sz)) _
i » (B ),

X[ = =b, or

X

(58)

As a result, the state identification error as well as the function approximation

error converges to the bounds b,and b, uniformly. Note that b, and b, can be made
small by choosing proper design gains and decreasing &3 by means of increasing the

number of hidden layer neurons [10]. [

Corollary2. Using the proposed NN identification scheme,
(0= (0 ¢ (59)

where ¢ =Wy, +z; thus,

ngShNJrEM =gy -
Proof of Corollary 2 is easily shown by observing (53), f(x)=W,y(x), and applying the

bound of (58).

Next, we investigate the effect of using f (x)in the NN least squares training
method of Section IV-A.
Theorem 6. Let the internal dynamics f, (x) be provided using the NN identifier (54) so
that the relationship (58) holds. If the NN least squares algorithm is utilized for tuning

the NN weights in order to get f, (x) so that the value functionV;’(x) can be constructed,
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then, Vk*(x)—vk*(x)\sT(\gf\)s.»:M where T(.) is a function of ¢, with ¢, being a positive
constant.
Proof. Similar to (46) which renders v,’(x) when NN successive approximation algorithm

converges, we approximate the function v,’(x) with an NN as

L
Vi (0 = > @0y () =W/ & (x) . (60)

1=1

From (50) it is easy to verify that W,_is a function of x, f wherew, is the same function of

x, f as
V\7L = Tl(X’ f) (61)
W, =T (x, f)

where (¢ f)=~(0(x 1),8(x, 1)) x <Q(X) #0000 RUGOY w00 PU) P, B (x, 1))
Thus, by using (46) and (61) we can rewrite V,/(x) and V' (x)as Vi’ (x) ~W, &, (x) =T,(x, f)
andV, (xX) * W, G (x) =T,(x, f) where T,(x, f)=a, (X)T,(x, f). Consequently, by using
Taylor series around the point (x, f)and f(x) = f (x)—&; we obtain

V() =Vl (X) = To(x, ) =T, (x, f) =

1 T, (X, fA) kf1 _kfn
Z " ” 7 et R
kit ki Kf1---Km (077 f)...(0° " f,)

f=f
where s is the number of required Taylor series terms such that the Taylor series error is

negligible, f, - f, =¢, from (59), —&, =[e....., ], f=[fl,..., fn]r, andk; is an integer

n
such that Zk“ =s. Since v (x)and V,;(x)are bounded and continuous, there exists a
i=1
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positive constant s, such that [0°T, /(8" f,)...(8™ f.)) < 3, . Consequently,

* rES > l
’Vk () = Vi (X)‘<{ Z ﬁ@\ngﬂws}
Kfi,...kfn “fl---Nfn

Note that if ¢, <1, thenv,’ (x) -V, (x) can be made very small. n

VI. Simulation Case Studies

In order to verify the theoretical work introduced in this paper, a complex power
system and a general nonlinear system are considered. First, a power system case study is
introduced next.

The power system is chosen as a nonlinear dynamical system where the power
balance equations are utilized to obtain its nonlinear dynamics. A power system is usually
modeled using a combination of differential and algebraic equations. The differential
equations represent generator states (i.e. angles, speeds,) whereas the algebraic equations
represent bus active and reactive power balance relationships. For control design it is
desirable to have pure dynamical equations. In [16], authors have proposed an algebraic-
free power system representation based on the generator classical model for the power
system shown in Fig.2.

This representation is appropriate to model a nonlinear power network with
FACTS device as a controller. The advantage of this approach is that no algebraic
equations are involved in the control design but the nonlinear behavior is retained. In the
proposed approach, the power system classical model is utilized where the generators’
internal voltages are held constant to develop the control approach. Then, the proposed

nonlinear optimized control scheme is utilized to optimally stabilize and damp the
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oscillations resulting from a disturbance by using UPFC as a controller. Finally, the

results are compared with that of a conventional nonlinear backstepping controller.

1

Y oo
G }—'7—0 n+1
&/ t-1 O zne1

Bl,m =&g)

G 2ns2

n

( G Hir_l L 2n &= N

S Bm,}x = X

Fig.2 Power System

A. Power System Continuous-time Dynamical Model

The classical generator representation is often sufficient for the control
development for mitigating inter-area oscillations since only the rotor speed deviations
are of interest. In addition, the resistances of network lines are neglected. Despite this
assumption made for ease of control development, the proposed control will be validated
on a power system with resistances presence.

It is more convenient to represent the generator dynamical equations in the Center

of Inertia (COI) coordinates as

. M; ] .
Miaw; = By, —M—'Pcm = Bij+nEgiVisn SIN(; —¥isn) , | =1,...,n
T

where
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n n n
5i=5i—50,a)i=a_},—a)o, l//i:l/7i_50, MT:ZMi’ é‘O:]/MTZMigi’ mOZJ/MTZMiCT)i’
i=1 i=1 i=1

n+N

Peor =Zn:Pmi - Yp; and Py is the active load at each bus. Also, 5, is the rotor angle of the
i=1

i=n+l
i-th machine, @; is the angular speed, , is the synchronous angular speed, B represents
the reactance of the admittance matrix, Eg is the i-th machine internal voltage, n is the

number of generators, M; = 2H/ay is the i-th machine inertia, and v;,, and i;,, are the

generator bus voltage and phase angle, respectively. In addition, N is the number of non-
generator buses in the power system.

The bus voltages and phase angles of all of the power system buses are
constrained by the following set of algebraic power balance equations (neglecting

resistances)

N-+n

P+ ZBijViVjSin(!//i —¥;) =S =0
j=1

N+n

=1

where B; and Q; are the active and reactive loads on the ith bus, andv; =gy ;y; =, for

1< j<n. By using the UPFC power injection model [17] and the approach introduced in
[16], the generator dynamical model can be represented as

Xgi = Xy
MiXyi = fii + 9y Xy
X = (%) + 9 (Xu; i=1...,n

where n is the number of generators. Also, UPFC dynamics is given by =uwhere

¥ =V, cos@and V, =V, £(,., + ) according to Fig. 3[16].
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= I/'b +
BH:@,%M I
= 5
i+n Tiar:lesformer h—+n
St t+n htn
Transtorrmer
= Sy Sty
(a) (b)

Fig. 3 a) UPFC connected between two network nodes b) Injected powers to the
connected buses

Then, by employing backstepping design, we obtain

Xy = —KsiXg + 25
MiZy; = fyi + MiKgiXai + 91 Xagi + 92 Z3i

Zgi = f5; (X) + g (X)U — Xgy
where zy; = Xgi —Xoig , Xoid = —KsiXai, Z3 = (Xgi — Xagi)

1 _ _
Xagi = — X[Xgi — fii =M KgiXp — K7 Z5]
1

. 1 KaM: + Ko
X3di =—_X[—X2i — Kz KgiXyi —M(fn +05iX5)]

1i i

with Ky and K,,; are positive design constants. Next, we obtain power system discrete-

time dynamics.

B. Power System Discrete-time Dynamical Model

By assuming a small time step T, the generator dynamics are approximated by
X (K +1) = (L= TK g ) x5 (K) + Tz (K) = Kigxy; (K) + Tz (k)

where z,, = x5 — X,y , Ky 1S design constant, and
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Xoig = (Kip =)/ T)x; = —K%; . Next, observe

M;2,; (K +1) = Mzy; (K) + Ty (K) + TM; K5 %55 (K)
+Ty Xaqi (K) +Tgy; 25 (k)

1 _
Xagi ZEX[—TM = Thi = TMKgiXai + (Ko = M;j)z,]
]

1 _ _
:—gl_ x[=xg; = fyi = MiKgixgi — K251,
I

and K, is a design constant. Finally,

23 (K +1) = z5; (K) + Ty (X, k) + TGy (X, k)u
T KsM: + Koy
+——[Xgi + Kz3i Ki Xy +%( f1 + 91iX3)]

91 i

where x=[x, z, x» 2z, ] and the control input u,can be obtained as

uy(k)=— [(KS‘l)zamk)—fZi(x.k)—

gi(x k)L T
1 KiM. + K5
_|:X2i + K21 K Xai +—d—_ 2l I{/I AL (f) + 0y X3i)D .
91 i

For the case of multiple generator/multiple UPFC control, the dynamics zy(k+1) are

replaced by

23 (k +1) = z4; (K) + T4 (k) + Tg, (k) Hu, (62)
where, f3(X) = F,(X) — Xq » fy=[fn o Fanal s 9, =diag(gy . 9201)s
Xsg =[Xsg1 .- Xagnal @Nd Hp, =0 ... 1. Additionally, we define x =[x, .. x..J .
zy=|ts ... Zanal+ z3=[zs ... z5,.] - Moreover, note that only n-igenerators are

chosen to be controlled. Since the n generators exist in the interconnected power
network, the nth generator is forced to be controlled if the remaining n-1speeds are

controlled. Since there are fewer inputs than outputs (for n>2), it is generally difficult to
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find an input that makes a total Lyapunov function derivative negative definite. However,
equation (62) can be stabilized by defining the control input u, as

- (K3-1) 25 (K) = 5 (k) )
=)
Zlgzi = _gix[XZi + K24 KsiXai +M(f
i=1 1i :

0 () =
1+ 03i%ai)]

In fact the control input u; is stabilizing the dynamics defined by
Zy(k +1) = Hzg(k +1) = H " 25 (k) + HTf, (k) + H " Tg, (k)Hu, (64)

The stability of the individual generators can be concluded by considering the
power system transient response where the generator dynamics are linear combination of
the linearized model modes. For typical power systems, if the summation of the modes is
equivalent to zero, stability of the individual generators can be concluded. Exceptions
include topologies with unobservable modes and isolated coupled generators. With
H " z,(k +1) converging to zero the stability of the individual generators are guaranteed by

using (118) through (121) resulting in

(KD | P K Tox(k)) 0 g ooy (65)
Zik+D) | |-T Kyl zgk)] |[Toy|™

By proper selection of the design constants K, and K, stability of x;; andz,, can be

obtained. Next the above mathematical representation and the controller design is
evaluated on a tractable two-generator power system.
Example 1. First, for optimal control validation, the two-generator power system shown is

Fig. 4 is used and subjected to a three phase fault.
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Fig. 4 Two-generator power system

The generator data is given in Table 1. The generators have speed governors with
the UPFC control implemented via the power injection model. The power system loads
are considered as constants. The control objective is to optimally damp the generators
oscillations after the fault is cleared. Although the dynamical power system model and
controller are derived based on lossless power system, the simulations are performed
using the complete power system model (with line resistances) to evaluate the

effectiveness of the model and the control design.

Table 1. Generators Specifications

Gen no. 1 2
Xq 0.0023 0.0023
H =oM /2 5 1

In the system given by Fig. 2, the UPFC is installed on bus 1 between 1 and 3

which is found to be an appropriate placement by trial and error. A three phase short
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circuit fault is applied to bus 3 at t=0.2s and removed at t=0.4s seconds. Generator 1 is
chosen for control. In order to find the optimal controller, the value function is
approximated by a neural network as described by (46) where a 6th-order even
polynomial is chosen for the basis function with the state vector defined

byx,=[x; 2 7 zm+z, X, 2] . FOr training, a history of the power system

subjected to different faults is employed instead of using a mesh formed by variation of
all the states used in the literature [10].

The simulation results are depicted in Figs. 5 and 6 for oscillation damping after a
fault is cleared by using an UPFC embedded with the proposed optimal controller and
with standard nonlinear backstepping controller (63) where there are no other
disturbances in the power system.

Subsequently, a disturbance is injected in the power system using an exponentially
decaying function for the bus load where the load on bus 3 decays 0.05pu with a slow
exponential rate of z=0.5s. The results are shown in Figs. 7 and 8 where the optimal
control is able to handle the load disturbance injected to the power system.

Next, a general nonlinear discrete-time system is considered and the proposed
optimal controller is evaluated.

Example 2. A nonlinear system described by (66) is considered

x(k+D)] —0.8%, (k) oo .00, (66)
X,(k+1) | |sin(0.8% (K) - X, (K) +1.8%,(K) | | -1-%,()| |1]
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with the initial stabilizing controller is defined by u=[1 1.5]x,(k) x,(k)]"- The initial
conditions of (66) are taken as x(0)=0.1and x,(0)=0.1. MoreoverqQ(x)=x"Qx,
Q=1,R=P=1, and y =20 are used. In order to implement the NN approximator, the mesh
size in the (x;,x,)plane is chosen to be 0.05. The region (-0.5<x <0.5-0.5<x, <0.5) is

used to train the neural network (NN). The activation functions of the NN are even
polynomial functions up to tenth order in the form of
[xf,xlxz,xg,xf,xlxg...,xg ,,,,,, x}°...,x§°J, and the control input and disturbance are updated

according to the proposed procedure in Fig. 1 of Section I1I-A. The final NN weights are

W, = [2.2457 2.1128 3.3185 28.4098 38.9558 35.1154 -6.2207 -74.4427 -165.6169

-202.5626 -160.5370  9.6288 6.8831 -60.4303 -4.5262 143.2018 -5.1839 -132.6341
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4.1517 -39.2125 10.0417 117.5590 309.7810 521.1991 515.7240 372.5395 35.3219

24.9638 11.1778 -79.0883 -263.6746 -430.7612 -607.4182 -532.2564 -332.3868]" .

Upon completion of the offline training, the performance of the final optimal
control policy is compared to the initial stabilizing control. In the comparison, a
disturbance w=0.05e%*is introduced into the system at k=0. To evaluate the overall

performance of the system, the performance metric defined in [7] is utilized as

Attenuatia(k) ={Zk:(Q(xj)+u} Ruj)J/[Zk:yZWJT ijj- (67)
i

j=0

Fig. 9 shows the control effort of the optimal control law as well as the initial
control law while Fig. 10 depicts the control attenuation associated with each policy
evaluated using the metric (67). By examining Fig. 9, it is observed that the time history
of the states for the initial control policy oscillates as it converges to the origin whereas
with the improved control law, the states converge to the origin smoothly with no
overshoots or undershoots. Additionally, examining the control signals shown in Fig. 9,
the final optimal control policy exhibits significant improvements over the initial policy
in terms of magnitude and smoothness. Examining Fig. 10, a significant decrease in the
control effort (67) is observed when the improved optimal control law is applied to the
system. Thus, the improved control policy behaves as expected.
Example 3. To demonstrate the effectiveness of the proposed nonlinear optimal method

while relaxing the internal dynamics, f (x), the nonlinear system in Example 2 is revisited

when the f (x) is unknown.
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Attenuation

The internal dynamics is now approximated by f(x)=W{y, (x)where the identification

scheme (54) and NN weight update law (56) are applied. Te NN is comprised of 10
hidden layer neurons where the sigmoid activation function [20] is utilized.

Additionally, the hidden layer weights v are chosen at random and kept constant during
the simulation whereas the tunable weights W, are set initially to -10. For identifier, the
initial, actual, and estimated states are x,(0) = x,(0) = %,(0) = %,(0) =0.1, respectively. The
control input is designed through backstepping to let the system state x,(k)to track a
desired trajectory r(k) =sin(k) which is obtained as

1 -(sin(08x;-x,) +18x,) +

uk)=—-— 1

where e; (k) = x; (k) = r(k), 2, (K) = X, (K) = Xpq (K) , @Nd x,q =(r(k +1) + K;e;(k))/0.8 .
In addition, the design gain constants are K, =0.1,K, =0.01, and the identifier

design gain constant in (54) is selected ask =0.01. Then, the proposed nonlinear optimal
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controller design is considered with the system with the approximated f(x) =W/ (x).

The original stabilizing controller u=[1 1.5]x (k) x,(k)]"is considered. Also, Q(x)=x"Qx,
Q=1, R=P=1, and y=20; are used. In order to implement the NN approximator, the
mesh size in the (x;,x,)plane is chosen to be 0.03. The region (-0.5<x, <0.5-0.5<x, <0.5)
is used to train the neural network (NN). Similar to Example 2, the NN is defined with
the activation functions containing even polynomial functions up to tenth order in the
form of [xf,xlxz,xg,xf,xlxg...,xg ,,,,,, xio...,xéoj, and the control input and disturbance are
updated according to the proposed procedure in Fig. 1 of Section I11-A. Upon completion
of the offline training, the performance of the final optimal control policy is compared to
the initial stabilizing control.  Similar to Example 2, a disturbance w=0.05e%*is
introduced to the system at k=0.

Fig. 11 illustrates the online identification results where the actual and identified
states as well as the approximated internal dynamics f(x) and f(x)are shown. Then, Fig.
12 shows the control efforts of the optimal control law as well as the initial control law
while Fig. 13 shows the control attenuation associated with each policy evaluated using
the metric (67). By examining Fig. 12, it is observed that the state time history and the
control input for the optimal control policy with unknown f(x) converges to the optimal
control policy and the control input with known f(x). By examining Fig. 13, the control
effort (67) is also in the same range as in Example 2 when the internal dynamics f(x)is
known. Next, another example is employed to verify the verify that the proposed GHJI

results in DARE optimal policies.
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Example 4. Consider the linear system described by

xk+n]_[0 -08]x0)] [0], [0] (68)
X (k+1)| |08 1.8 |x,(k)| |-1| |1]

The initial stabilizing controller is chosen to be

u=[5 1.5{)(1(‘()}.

X, (k)

The initial conditions of (68) are taken as x,(0)=1and x,(0)=1. Moreover
Q(x) = x"Qxis used and R=Q(X)=P=1, »=20. In order to implement the NN approximator,
the mesh size in the (x,x,)plane is chosen to be 0.05. The region
(-05<x <05-05<x, <0.5) is used to train the NN. The NN is defined with the activation
functions containing even polynomial functions up to sixth order in the form of
[xf,xlxz,xg,xf,xlxg...,x;‘ ,,,,,, xf...,xS], and the control input and disturbance are updated

according to (19) and (18). Upon completion of the offline training, the performance of
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the final optimal control policy is compared to the linear DARE optimal policy (43) as
well as initial stabilizing control. The DARE is solved using MATLAB where the matrix
ris obtained as

_[1.5074 1.0070
~11.0070 3.7919 |

In the comparison, a disturbance inputw=10e*is introduced into the system at
k=0. The system states and the control efforts when the improved optimal controller and
the original stabilizing controller were applied are shown in Fig. 14. Figure 15 shows the
attenuation associated with each policy where the attenuation is defined as (67).
Examining Fig. 15, a significant decrease in the control effort is observed when the
improved optimal control law is applied to the system. In addition, it can be observed that
the proposed nonlinear optimal controller coincides with the DARE optimal policy.
Figure 16 illustrates the system trajectories with the nonlinear optimal control strategy as
well as the DARE optimal controller and original controller.

These examples clearly indicate that the proposed optimal control policy renders
the desired performance as expected.

VII. Conclusions

In this paper, nearly optimal solutions for discrete-time (DT) nonlinear control
systems are considered. A successive approximation approach is utilized to solve the
generalized Hamilton-Jacobi-lsaacs (GHJI) equation that appears in optimal control.
Under a small perturbation condition, the definition of GHJI function as well as methods
for updating control input and disturbance for DT nonlinear affine systems is proposed,

and the associated value function is achieved.
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Moreover, sufficient conditions for algorithm convergence to the saddle-point are
derived. Then, a NN is employed to approximate the GHJI equation using a least squares
approach. The result is a closed-loop optimal NN controller via off-line learning. Finally,
by using an identifier the need for system internal dynamics is relaxed. Simulation results

were also presented to verify the theoretical conjectures.
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Fig. 16 Linear system trajectories with nonlinear and DARE optimal controllers
as well as original stabilizing controller
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SECTION

2. CONCLUSIONS AND FUTURE WORK

In this dissertation, neural network (NN) control techniques were utilized in the
controller design of a class of nonlinear interconnected dynamic systems with
applications to power systems. In order to motivate the need for decentralized control,
this work begins by introducing a novel representation of power systems, where the
algebraic equations in the conventional representation of the power system are replaced
by a set of differential equations. The representation is then generalized to a decentralized
representation of power systems and used to implement various nonlinear control
techniques starting from traditional backstepping to optimal control by solving the HIB

equation forward in time.

2.1. CONCLUSIONS

In the first paper, the decentralized representation of the nonlinear power system
clearly demonstrated the need for decentralized control. In the formulation, the approach
taken to eliminate the algebraic equations appears to work well. If the system dynamics
or nonlinearities are known beforehand, traditional backstepping-based control schemes
can be utilized to deliver the desired performance. By contrast, in the second paper, the
system nonlinearities and interconnection terms are assumed unknown which is typical in
practical situations. Then, to overcome the repeated differentiation normally required in

backstepping, dynamic surface control (DSC)-based approach is proposed. The DSC-
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based approach with the proposed novel update law consisting of quadratic error terms
will indeed provide asymptotic stability of the tracking error when states are available.
Further, by using a linear observer introduced in the second paper, the need for state
measurability is relaxed. Then, in the third paper, DSC-framework was demonstrated on
a power system after the power system decentralized model is developed.

Discrete-time representation and control design are preferred for embedded
computer implementation. Therefore, in the forth paper, the decentralized discrete-time
controller design for unknown nonlinear interconnected system is introduced and the
stringent assumption of bounded interconnected terms is relaxed. Moreover, by
employing a NN the system unknown dynamics are approximated while bounded
stability of the states and NN weights is guaranteed. The discrete-time decentralized
representation of a power system with excitation control is developed and the proposed
controller is shown to be effective on damping power system oscillations.

Further, the work of the fifth paper considers the decentralized optimal control of
nonlinear interconnected systems where the HJB solution is found forward in time by
using NNs with online learning strategies. The large scale system is proven to be
optimally controlled and the NN weights are shown to be bounded. The work concludes
by finding an offline solution for the discrete-time HJI optimal problem in the sixth
paper. This final paper deals with the optimal control of nonlinear discrete-time systems
in the presence of disturbances. Then, by using an iterative approach the value function is
obtained. Also, the existence of the saddle-point in a zero-sum two-player differential
game where the players are system disturbance and control input is proven. Next,
approximation properties of neural networks (NN) and least squares are used to obtain

the value function. Moreover, a NN identifier is presented in this work to learn the
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nonlinear internal dynamics of the system where the obtained NN optimal policy is

implemented to mitigate power systems oscillations.

2.2. FUTURE WORK

Future work should address the online discrete-time robust optimal control
problem for uncertain decentralized nonlinear systems. Also, the tracking problem in the
decentralized control is an open subject which is suggested as future work. Extending the
HJI optimal problem to the decentralized nonlinear interconnected systems is also
important to achieve optimal control of large-scale systems in the presence of

disturbances.
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