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ABSTRACT 

Traditional nonlinear techniques cannot be directly applicable to control large 

scale interconnected nonlinear dynamic systems due their sheer size and unavailability of 

system dynamics.  Therefore, in this dissertation, the decentralized adaptive neural 

network (NN) control of a class of nonlinear interconnected dynamic systems is 

introduced and its application to power systems is presented in the form of six papers.  

In the first paper, a new nonlinear dynamical representation in the form of a large 

scale interconnected system for a power network free of algebraic equations with 

multiple UPFCs as nonlinear controllers is presented. Then, oscillation damping for 

UPFCs using adaptive NN control is discussed by assuming that the system dynamics are 

known.  Subsequently, the dynamic surface control (DSC) framework is proposed in 

continuous-time not only to overcome the need for the subsystem dynamics and 

interconnection terms, but also to relax the explosion of complexity problem normally 

observed in traditional backstepping.  The application of DSC-based decentralized 

control of power system with excitation control is shown in the third paper. 

On the other hand, a novel adaptive NN-based decentralized controller for a class 

of interconnected discrete-time systems with unknown subsystem and interconnection 

dynamics is introduced since discrete-time is preferred for implementation.  The 

application of the decentralized controller is shown on a power network.  Next, a near 

optimal decentralized discrete-time controller is introduced in the fifth paper for such 

systems in affine form whereas the sixth paper proposes a method for obtaining the L2-

gain near optimal control while keeping a tradeoff between accuracy and computational 

complexity.  Lyapunov theory is employed to assess the stability of the controllers. 
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ABSTRACT 

Traditional nonlinear techniques are not directly applicable to control large-scale 

interconnected nonlinear dynamic systems due their sheer size, unknown system 

dynamics and the unavailability of state measurements.  Therefore, in this dissertation, 

the decentralized adaptive neural network (NN) control of unknown nonlinear 

interconnected systems with application to power systems is presented.  

In paper one, a new nonlinear dynamical representation in the form of a large 

scale interconnected system for a power network free of algebraic equations with 

multiple Unified Power Flow Controllers (UPFCs) as nonlinear controllers for oscillation 

damping is presented by assuming that the system dynamics are unknown.  Subsequently, 

in paper two the dynamic surface control (DSC) framework is proposed in continuous-

time not only to overcome the need for the subsystem dynamics and interconnection 

terms, but also to relax the “explosion of complexity” problem normally observed in 

traditional backstepping.  Then, the application of DSC-based decentralized control of 

power system with excitation control is shown in paper three. 

On the other hand, in paper four, a novel adaptive NN-based decentralized 

controller for a class of interconnected discrete-time systems with unknown subsystem 

and interconnection dynamics is introduced since discrete-time design is preferred for 

implementation.  The application of the controller is shown on a power system.  Next, a 

near optimal decentralized discrete-time controller is introduced in paper five where NNs 

are employed to approximate the cost function and optimal control input by using online 

learning feature. Finally, paper six proposes the L2-gain near optimal controller.  

Lyapunov theory is employed to assess the stability of all the controllers. 
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SECTION 
 

 

 

1.  INTRODUCTION 
 

 

 

 For the past several decades, linear systems theory was the major methodology in 

the area of control as its mathematical basis is well developed and implemented on 

industrial controllers. Well-known methods such as quantitative feedback theory (QFT) 

[1], root locus, Nyquist criteria, Bode and Nichols chart [2] have been widely used in the 

control system design and analysis in the frequency domain, while Kalman filtering [3], 

the linear-quadratic regulator (LQR), and the linear-quadratic-Gaussian controller (LQG) 

[4] are solutions in the time domain.  

With the increased system complexity of today’s industrial systems, limitation of 

the linear control methods have been observed in a variety of applications. Power 

systems, robot manipulators, HVAC (heating, ventilation, and air conditioning systems), 

and electric machines are just a few examples of highly nonlinear systems where linear 

techniques provide good results for a very limited region of operation. If the operational 

conditions change or the system exits the linear region, stability may not be guaranteed 

by using linear control theory.   

 The nonlinear control theory, on the other hand, has been developed in the past 

few decades. Topics such as nonlinear adaptive control [5], robust control, nonlinear 

optimal control [6] as well as techniques including feedback linearization, sliding mode 

control, backstepping [7], dynamic surface control [8] and many others have been 

attracting a great attention lately. From application point of view, not only have the 
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nonlinear control designs been found useful in the diverse industrial applications, but also 

they have proven to be more promising when it comes to stability assurance and control 

performance compared to their linear counterparts.  

Next, applications of nonlinear control in power systems are considered, and the 

benefits over linear control techniques are discussed. 

 

 

 

1.1.   APPLICATIONS OF NONLINEAR CONTROL IN POWER 

  SYSTEMS 
 

  The power system is the one of the most important infrastructures for any region 

of the world since it generates and transmits (Fig. 1.1) energy for lighting, heating, home 

appliances, transportation, industrial applications, medical centers, etc. Thus, power 

system operation, reliability, and stability are of paramount importance.  

  Stability is one of key features in operating power systems. When a disturbance 

occurs in the system, generators deviate from their stable operating point due to the 

power imbalance which in turn causes generator oscillations. The resulting oscillations 

remain sustained unless they are damped by means of a stabilizer. In the recent years, the 

competitive market for power generation and energy services demand a more reliable 

power network. Due to offshore wind generation plants (Fig. 1.2) and solar cells, a 

noticeable uncertainty in the load flows will occur in a power system thus impacting the 

dynamic behavior and stability [9]. Therefore, power system controllers play an 

important role in maintaining dynamic performance and power system stability, and thus, 

increasing reliability.  
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Fig.1.1 Power system transmission lines convey energy for hundreds of miles
1
 

 

 

 

 

  Power systems are usually represented by nonlinear dynamic equations of the 

generation units and loads combined with nonlinear algebraic equations of the power 

network [9]. Linear approaches have been used widely to achieve a useful representation 

of the nonlinear power system dynamics; however, it is assumed that the power system 

stays close to the operating point. Nonlinear control of power systems, on the other hand, 

is a new topic in power system analysis and control. Due to the recent developments in 

the nonlinear control theory, power system researchers find nonlinear techniques more 

reliable and robust to operate and control the power network. 

 

 

                                                 
1
Photo courtesy of: www2.ee.ic.ac.uk/cap/cappp/projects/15/trline.jpg 
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Fig.1.2 Wind turbines are one of the most common sources of renewable energy
2
 

 

 

 

 

  In the next section, an overview of recent nonlinear topics is introduced. 

 

 

 

1.2. OVERVIEW OF NONLINEAR CONTROL TOPICS AND 

POWER SYSTEM APPLICATIONS 

 
 1.2.1. Decentralized Control. Nonlinear control approaches such as feedback 

linearization, robust control, optimal control, adaptive control, and many others usually 

require the knowledge of the system dynamics and measurement of system states for 

control. If the system consists of several subsystems, the controller requires state 

measurements from all subsystems. Consider a power network which is spread over a few 

hundreds of miles where the generators spread over the entire system. In other words, the 

distance between the generators can be hundreds of miles. In addition, in order to achieve 

an effective control design, one needs the power system bus data (voltages and phase 

angles) from various points in the power system. Although the data can be acquired from 

                                                 
2
 Photo courtesy of: jcwinnie.biz/wordpress/?p=2318 
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generators as well as the power system nodes and be sent to the main controller or all 

subsystem controllers, the process of data acquisition and transmission to the large-scale 

system or among different subsystems is quite long which can cause significant delays. 

Moreover, the amount of data in such an infrastructure is usually large enough to cause 

processing delays in the controller regardless of the distance where the data are sent from. 

The delay is one major cause of instability.  

  In decentralized control methods, each subsystem has a controller that uses local 

measurements [10]. Then, the effect of other subsystems is normally modeled by 

interconnection terms in the subsystem dynamic representation. The interconnection term 

is an unknown function of other subsystems states. Depending on the type of application, 

different assumptions can be made on how the interconnection terms behave. The 

interconnection term can be bounded by a constant, a function of other subsystem 

tracking errors, or a function of other subsystems states.  The subsystem controllers are 

designed simultaneously such that they mitigate the effect of the interconnection terms in 

the overall large-scale system.  

  In power systems, the subsystems can be the generators (Fig. 1.3) or groups of 

generators. Then, the power system is divided among these subsystems. The effect of 

other subsystems appears as injected power that influences the subsystem dynamics. 

Finally, the controller can be a generator excitation controller or FACTS device. 
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Fig. 1.3 Generators are the subsystems in the decentralized control of power systems
3
 

 

  

 
 

 1.2.2. Adaptive Neural Network Design.  The use of adaptive neural networks 

(NN’s) in control systems has been motivated by biological processes such as the nervous 

system where the biological neural network has the ability to learn and control. The 

ability of neural networks to learn from the input data is widely used in nonlinear control 

to approximate unknown nonlinear functions [11]. Neural networks can approximate 

continuous functions in a compact set. The approximation precision depends on the 

number of neurons. It has been shown that the function approximation error can be 

arbitrarily small if the number of neurons is adequately large [11].  

  The weights in the neural networks are trained via offline methods by using a 

series of input and output data. However, in unknown nonlinear systems the input-output 

data set is usually not available. Thus, the ideal NN weights are unknown and only an 

                                                 
3
 Photo courtesy of: www.pppl.gov/.../pages/motor_generators.html 
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estimation of the ideal weights can be utilized. Consequently, the actual weights can be 

tuned in an online fashion such that certain requirements in the control design are 

satisfied including stability. The most common way of tuning the NN weight estimates is 

to obtain an update law such that, together with other dynamics of the control system, it 

satisfies the Lyapunov stability requirements.   

  When a power system is represented in a purely dynamical form, the nonlinear 

functions are complicated functions of all the power system states [12]. Obtaining these 

functions is involved which requires the knowledge of the topology of the power system. 

By using NNs in the control design, one can relax a priori knowledge of power system 

topology as well as burdensome nonlinear function calculations. Moreover, adaptive 

neural networks combined with the decentralized control can help stabilizing power 

systems when the size of the power system is large. 

 1.2.3. Optimal Nonlinear Control. Closed-loop stability is often the sole 

purpose of many controller designs.  However, other objectives, such as optimality, 

require a control policy to stabilize the system in an optimal manner when the control 

cost matters in addition to the system stability. In the robust optimal control formulation, 

the objective of the controller is to minimize a certain cost function which represents a 

penalty associated with the states and control input. The optimization problem can 

include disturbances. In this case, controller is to minimize a certain cost function 

representing a penalty associated with the states and control input while maximizing the 

disturbances that the system can tolerate [6].  
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  1.2.4. Discrete-time Decentralized Control Design. Although continuous-time 

controller design can be considered for some applications through using analog 

controllers, in practice discrete-time control approaches are preferred for computer 

implementations [13], since controller designs in continuous-time become unsatisfactory 

when implemented on digital computers using low sampling hardware. Moreover, due to 

large size of large-scale interconnected systems such as electric power systems, the 

feedback delays degrade the controller performance, and thus, the design requires more 

decentralized control techniques.  Therefore, decentralized controller development in 

discrete-time has to be explicitly considered for large-scale systems. The decentralized 

controller development in discrete-time for power system application is not yet 

undertaken due to the fact that the stability proofs in discrete-time are more involved than 

their continuous-time counterparts [14]. 

 

 

 

1.3.  ORGANIZATION OF THE DISSERTATION 

Nonlinear control of dynamic control systems and its application to physical 

systems in both continuous and discrete-time domains has been attracting a great 

attention due to the fact that most of the physical systems are nonlinear in nature. 

Although numerous nonlinear control methods are available in the literature, they do not 

meet all the required performance specifications for complex physical systems and 

networks. Some of the requirements include asymptotic stability, optimality, 

controllability and stability in the presence of uncertainty, and desired performance. On 

the other hand, in order to employ the nonlinear control techniques, a mature 

mathematical model of the physical system needs to be available.  
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Power systems are considered as a large scale system but also it suffers from the 

lack of an appropriate dynamical representation. A power system includes nonlinear 

dynamical relationships for generators and nonlinear algebraic relationship representing 

power balance equations in the system buses which make it hard to directly employ the 

nonlinear control techniques.  Therefore, in this dissertation a novel representation of the 

nonlinear dynamical power system will be considered and various sort of decentralized 

techniques will be introduced. This dissertation is presented in the form of six papers, and 

their relation to one another is illustrated in Fig. 1.4. 

In the first paper, a new nonlinear dynamical representation of a power network 

free of algebraic equations with UPFC as a nonlinear controller is presented. This 

representation is appropriate to model a nonlinear power network with several FACTS 

devices. Then, oscillation damping using nonlinear control schemes for UPFCs is 

discussed. The proposed approach in this paper involves obtaining a nonlinear dynamical 

representation using network power balance equations. The advantage of this approach is 

that no algebraic equations are needed for the representation while still retaining the 

nonlinear behavior.  Though classical power system representation in which the internal 

voltages of the generators are held constant to develop the control approach are 

considered, the proposed approach can be extended to more complex generator models 

without loss of generality.  Then, a nonlinear control scheme is developed to stabilize and 

damp the oscillations resulting from a disturbance. The universal approximation property 

of neural networks (NN) is invoked to approximate the power system uncertainties online 

without any offline learning phase. Finally, the representation is shown to be a 

decentralized nonlinear system. 
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Fig. 1.4 Dissertation outline 

 

 

 

 

In the second paper, the dynamic surface control (DSC) design framework is 

proposed for a class of nonlinear uncertain interconnected systems in strict-feedback 

form while relaxing the matching condition; thus, the repeated differentiation of the 

virtual control signal involved in the traditional backstepping design utilized in Paper I, is 

relaxed while guaranteeing asymptotic stability. Next, NNs are introduced to overcome 
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system uncertainties. Thus, the use of neural network-based DSC in decentralized control 

not only overcomes the lack of knowledge about the subsystem dynamics and 

interconnection terms, but also relaxes the explosion of complexity problem normally 

observed in traditional backstepping. Moreover, the control gain matrix, )(xg , is 

considered as an unknown nonlinear function of the states and its time derivative is not 

required.  It is demonstrated that the states of the subsystems approach zero 

asymptotically through novel online NN weight update laws in contrast with 

boundedness with the available DSC schemes in the literature.  

In the third paper, the power system with excitation control is represented as a 

class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-

feedback form. Subsequently, dynamic surface control (DSC)-based adaptive neural 

network (NN) controller is designed to overcome the repeated differentiation of the 

control input that is observed in the conventional backstepping approach. Then, the 

power system dynamical model presented in paper I is expanded to the generator flux-

decay model representation [9]. Subsequently, by using the proposed model, it is shown 

that the power system with generator excitation control satisfies the theoretical 

requirements introduced in paper II, and thus, the proposed NN controller introduced in 

paper II is applied to a medium size power system to mitigate the oscillations after a fault 

occurs. Simulation results on the IEEE 14-bus power system with generator excitation 

control are provided to show the effectiveness of the approach in damping oscillations 

that occur after disturbances are removed. The end result is a nonlinear decentralized 

adaptive state-feedback excitation controller for damping power systems oscillations in 

the presence of uncertain subsystem and interconnection terms. 
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The work in the fourth paper is focused on a novel decentralized controller design 

for a class of interconnected nonlinear discrete-time systems in affine form with unknown 

subsystem and interconnection dynamics.  A single neural network (NN) is utilized in the 

proposed decentralized controller to overcome the unknown internal dynamics as well as 

the control gain matrix of each subsystem. All NN weights are tuned online by using a 

novel update law. By using Lyapunov techniques, all subsystems signals are shown to be 

uniformly ultimately bounded (UUB). Simulation results are shown on a general 

interconnected nonlinear discrete-time system in affine form first to show the 

effectiveness of the approach. Subsequently, interconnected electric power system with 

excitation control is considered as an example and the proposed controller is utilized to 

mitigate the power fluctuations after a disturbance has occurred. 

In paper five, the direct neural dynamic programming technique is utilized to 

solve the HJB (Hamilton Jacobi-Bellman) equation forward-in-time for the decentralized 

near optimal control of affine nonlinear interconnected discrete-time systems where the 

interconnected terms in the subsystems are unknown function of other subsystem states 

which are unavailable.  The optimal controller design consists of two NNs; an action NN 

that is aimed to provide a nearly optimal control signal, and a critic NN which evaluates 

the performance of the system. All NN parameters are tuned online. By using Lyapunov 

techniques all subsystems signals are shown to be uniformly ultimately bounded (UUB) 

and that the synthesized subsystems inputs approach their corresponding near optimal 

control inputs with small bounded error. Simulation results are shown on an 

interconnected system to show the effectiveness of the approach.  
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The work in the sixth paper proposes a practical method for obtaining the L2-gain 

near optimal control while keeping a tradeoff between accuracy and computational 

complexity for a class of affine nonlinear discrete-time systems.  Using the Taylor series 

expansion of the value function and a small signal perturbation assumption, a generalized 

Hamilton-Jacobi-Isaacs (GHJI) equation is proposed, and an iterative approach to solve 

the GHJI is presented.  Successive solutions for the value function ensure that the value 

function reaches its saddle-point in a zero-sum two-player differential game where the 

players are system disturbance and control input. The successive approximations of the 

value function are accomplished using the approximation properties of neural networks 

(NN) and least squares. Moreover, a NN identifier is presented in this work to learn the 

nonlinear internal dynamics of the system. Using Lyapunov theory, it is shown that the 

identification errors converge to a small bounded region around the origin.  Then, using 

the learned NN model of the internal dynamics, offline training is undertaken resulting in 

a novel solution to the HJI optimal control problem.  The novelty of the proposed method 

is that the scheme does not require explicit knowledge of the system internal dynamics as 

only an online learned NN model is utilized for the offline training.  Additionally, 

convergence of the successive approximations is demonstrated while explicitly 

considering the identifier NN reconstruction errors. 

 

 

  

1.4. CONTRIBUTIONS OF THE DISSERTATION 

This dissertation contributes to the field of general nonlinear interconnected 

systems controller design as well as to the control of power systems.  The nonlinear 

model development for power systems presented in paper 1 provides a suitable 
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framework to apply nonlinear control techniques to the power systems. In the proposed 

representation, the power system algebraic equations are converted to dynamical 

equations, and thus, a pure dynamical system is obtained. This modeling procedure is 

then enhanced in other papers to achieve decentralized adaptive NN control of power 

systems.  

Next, the decentralized control design is discussed in paper 2 and the dynamic 

surface control (DSC) technique is applied to the general decentralized continuous-time 

nonlinear systems in backstepping form with unknown system dynamics, control gains, 

and interconnection terms. Then, a NN controller is considered in the control design to 

approximate the system nonlinearities. Through a novel NN update law and by using 

Lyapunov techniques, asymptotic stability in state and output feedback design is achieved 

as opposed to bounded results available in the literature. Further, in paper 3, the power 

system model with excitation control is represented in general decentralized model 

representation by using the enhanced model introduced in Paper 1. Then, the DSC 

adaptive NN decentralized control method is applied to the power systems to mitigate 

oscillations after a disturbance occurs and effective damping performance is illustrated.  

In paper 4, the general unknown discrete-time nonlinear decentralized control 

design is discussed and adaptive NN is utilized to approximate the unknown dynamics in 

the subsystems. Unlike, the previous works, the interconnection terms are not bounded by 

constants and can grow in a quadratic manner while the large-scale system states as well 

as NN weight estimates are proven to be uniformly ultimately bounded.   Finally, power 

system with excitation control representation is developed in discrete-time and the 

proposed controller is applied where satisfactory damping performance is shown. 



 15 

Subsequently, the direct neural dynamic programming (DNDP) approach is 

utilized for the optimal regulation and tracking of nonlinear interconnected discrete-time 

systems in affine form by solving the HJB equation online and forward-in-time. The NNs 

are used to approximate the critic as well as the action networks where the optimal 

control signal is approximated while minimizing the cost function based on the 

information provided by the critic in the presence of the large-scale system unknown 

interconnection terms but known subsystems dynamics with explicitly considering the 

effect of the interconnection terms in the optimal control design. Additionally, overall 

closed-loop stability of the nonlinear decentralized system is presented. 

The work in paper 6 seeks to provide the HJI optimal framework for nonlinear 

systems in affine form by proposing a practical method of obtaining the L2-gain near 

optimal control while keeping a tradeoff between accuracy and computational complexity 

where the method can be expanded to decentralized nonlinear interconnected systems. 

Using the Taylor series expansion of the value function and using a small signal 

perturbation assumption, a generalized Hamilton-Jacobi-Isaacs (GHJI) equation is 

proposed, and an iterative approach to solve the GHJI is presented.  Successive solutions 

for the value function ensure that the value function reaches its saddle-point in a zero-

sum two-player differential game where the players are system disturbances and the 

control input. Next, an NN identifier is presented in this work to learn the nonlinear 

internal dynamics of the system. Using Lyapunov theory, it is shown that the 

identification errors converge to a small bounded region around the origin.  Then, using 

the learned NN model of the internal dynamics, offline training is undertaken resulting in 

a novel solution to the HJI optimal control problem. Power system with FACTs device as 
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damping controller is presented by applying the proposed method to achieve optimal 

damping performance. 

 

 

 

1.5.  DEFINITIONS 

In this part, we review some of the definitions that are used in this dissertation. 

Equilibrium Point: Consider the dynamical system ),,( tuxfx  (which can be a function 

of states as well as time) with nRx represents the states of an uncontrolled open-loop 

system, or a closed-loop system after the application of the control input, and control 

input ( )u t  has been specified in terms of the state ( )x t . Let the initial time be 
0t , and the 

initial condition be
0 0( )x x t .  A state 

ex is an equilibrium point of the system 

if
0( , ) 0,ef x t t t  . 

Asymptotic stability: An equilibrium point
ex is locally asymptotically stable at 

0t  if there 

exists a compact set nS   such that, for every initial condition in
0x S , 

( ) 0 as ex t x t   [14]. 

Uniformly Ultimately Bounded : Consider the dynamical system )(xfx  with nx  being 

a state vector. Let the initial time be 0t  and initial condition be )( 00 txx  . Then, the 

equilibrium point ex is said to be UUB if there exists a compact set nS  so that for all 

Sx 0 there exists a bound B and a time ),( 0xBT such that Bxtx e )( for Ttt  0 [14]. 

Neural Network Universal Approximation: A general function Rxf )( where nRx can 

be written as )()()( xxVWxf TT    with )(x  a neural network (NN) functional 

reconstruction error and  is the neural network activation function vector which is a 
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basis function vector, 12
N

RW  and 2Nn
RV


  are weight matrices [14]. The input-to-

the hidden-layer weight matrixV is selected initially at random and held fixed during 

learning. It is demonstrated in [15] that if the input-to-the-hidden-layer weights, V , are 

chosen initialized randomly and kept constant and if the number of neurons 2
N  in the 

hidden layer is sufficiently large, the NN approximation error )(x can be made arbitrarily 

small since the activation function vector forms a basis. 
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Abstract— FACTS devices have been shown to be useful in damping power system 

oscillations. However, in large power systems, the FACTS control design is complex due 

to the combination of differential and algebraic equations required to model the power 

system.  In this paper, a new method to generate a nonlinear dynamic representation of 

the power network is introduced to enable more sophisticated control design.  Then, the 

representation is expanded to decentralized formulation of power systems. Once the new 

representation is obtained, a back stepping methodology for the UPFC is utilized to 

mitigate the generator oscillations. Finally, the neural network approximation property is 

utilized to relax the need for knowledge of the power system topology and to approximate 

the nonlinear uncertainties.  The net result is a power system representation that can be 

used for the design of an enhanced FACTS control scheme.  Simulation results are given 

to validate the theoretical conjectures. 

Index Terms – Power System Control, Nonlinear Systems, Neural Networks, FACTS. 
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I. Introduction 

Power system stability is defined as the ability of an electric power system, for a 

given initial operating condition, to regain a state of operating equilibrium after being 

subjected to a physical disturbance [1].  Power system stability can be improved through 

the use of dynamic controllers such as power system stabilizers, excitation systems, and 

more recently FACTS devices.  To effectively design the controller, proper modeling of 

the generators, controller dynamics, and the network must be utilized.  A power system is 

usually modeled using a combination of differential and algebraic equations. The 

differential equations represent generator angles and speeds whereas the algebraic 

equations represent bus active and reactive power balance relationships. Incorporating the 

differential-algebraic equations into the control process is difficult and is made more 

complex by the inclusion of FACTS devices such as the unified power flow controller 

(UPFC).   

Advanced controller design usually requires that a system be represented by 

purely differential equations.  However, power systems with embedded FACTS devices 

typically require the algebraic transmission network power balance equations to be 

included in the system model and it is not straightforward to develop an algebraic 

equation free system model representation for control purposes. 

  Several approaches have been analyzed for system wide FACTS control design. 

Past work [2-6], has proposed to linearize the differential-algebraic equation network and 

eliminate the algebraic equations through reduction methods. Then linear control methods 

are applied to the linearized power system. This approach, however, tacitly assumes that 

the network variables remain in the neighborhood of the desired operating point.  In 
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addition, the placement and number of UPFC devices are determined heuristically.  By 

contrast, in [7-12] a single-machine infinite bus model is used to apply nonlinear control 

schemes. However, the infinite bus assumption required for this approach is not valid for 

large multi-machine systems when the fault affects the power system.  

FACTS devices have been considered in [13-14] via utilizing energy functions to 

develop the controllers.  This approach is not practical because it requires the calculation 

of the derivatives of power system bus voltages and angles and requires numerical 

differentiators or approximations. Nonlinear control of a multi-machine power system 

excitation and governor control has been proposed using back stepping in [17].  This 

method holds considerable potential, but does not consider FACTS devices.  FACTS 

devices can serve many control functions in an electric power system including steady-

state power flow, voltage regulation, and oscillation damping control. Thus, stabilizing 

capabilities can be added with the other control capabilities without any additional cost. 

This property is exploited in this work.  

 In this paper, we propose the following contributions to overcome the above-

mentioned challenges: 

I- a new nonlinear dynamical representation of a power network free of algebraic 

equations with UPFC as a controller is introduced. This representation is appropriate 

to model a nonlinear power network with several FACTS devices, 

II- oscillation damping using nonlinear control schemes for UPFCs, and 

III- a neural network approximation property is utilized to relax the need for knowledge 

of the power system topology and to approximate the nonlinear uncertainties. 



  

 

 

22 

Our approach involves first obtaining a nonlinear dynamical representation using 

network power balance equations. The advantage of this approach is that no algebraic 

equations are involved in the control design while the nonlinear behavior is retained.  In 

the proposed approach, we use the power system classical model in which the internal 

voltages of the generators are held constant in order to develop the control design. 

However, the proposed approach can be extended to more complex generator models 

without loss of generality.  Subsequently, a nonlinear control scheme is developed to 

stabilize and damp the oscillations resulting from a disturbance such as a three-phase to 

ground fault. Finally, we have employed the universal approximation property of neural 

networks (NN) to approximate the power system uncertainties and to relax the need for 

the a priori knowledge of the system uncertainties. 

II. The Power System Differential-Algebraic Model 

The classical generator representation is often sufficient for the control 

development in order to mitigate the inter-area oscillations since only the rotor speed 

deviations are of interest. In addition, the resistances of power network lines are 

neglected. Despite this assumption made for ease of control development, the proposed 

control will be validated on a full nonlinear power system model.   

It is more convenient to represent the generator dynamical equations in the Center 

of Inertia (COI) coordinates:  

ii                                          (1) 
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 where PLi is the active load at each bus and miP  is the input mechanical 

power. Also, 
i  is the rotor angle of the i-th machine, i  is the angular speed, 0 is the 

center of angle, 0  is the center of angular speed, B represents the reactance of the 

admittance matrix, Egi is the i-th machine  internal voltage, n is the number of generators, 

Mi = 2H/0 is the i-th machine inertia, and niV   and ni  are the generator bus voltage 

and phase angle, respectively. In addition, N is the number of non-generator buses in the 

power system. 

The bus voltages and phase angles of all of the power system buses are 

constrained by the following set of algebraic power balance equations (neglecting 

resistances) 
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                   (3) 

where LiP  and LiQ are the active and reactive loads on the i-th bus and gjj EV  ; jj   for  

nj 1 . 

III. New Dynamic Representation of Power Networks 

Equations (1) through (3) form the set of power system differential-algebraic 

equations.  However, a controller design in a differential-algebraic environment is 

difficult to achieve, therefore it is desirable to substitute the set of equations (3) with a 

more appropriate set.  One way to have a pure dynamical system is to take derivative of 

equation (3) to obtain iV  and i  terms. Thus, we have 
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Solving equations (4) and (5) for iV  and i , we obtain a new set of dynamic 

equations as  
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where  

 TNnnn VVVV  21
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, and  Tn 21 . Also, we define 

T
n ][ 21    and TTTTT

S Vx ][  . Assuming LiP and LiQ to be functions of iV  

and i , we get  
V

S
A NN






P ,





PS
B NN

,





PS
C nN

,
V

S
D NN






Q ,





QS
E NN

, and





QS
F nN

 as 

given in (I-3a) through (I-4e) in Appendix I.  Once again, it is important to note that this 

step is for controller development and is not required for actual (practical) 

implementation. The proposed approach is a complementary way of solving the 

differential-algebraic equations  );,( zxfx   0),( zxg  where )(xhz   is obtained by 

solving 0),( zxg  and replaced in the differential equations ),( zxfx   where x is the states 

of the power system. Solving the nonlinear algebraic equations 0),( zxg is a huge 

challenge (if not impossible in large-scale power systems) which is relaxed in the 

proposed approach without losing the nonlinear characteristics of the power system. 
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IV. Power System Decentralized Model 

In this section, a decentralized representation of a power system is obtained for 

nonlinear controller development. Generator excitation control is a means to alleviate the 

power system oscillations. Since the disturbance is a function of the power network 

voltages and angles as well as generator states, it is generally hard to design a centralized 

damping controller for the complex interconnected power network. Thus, in this section, 

we aim at a decentralized excitation controller to mitigate the oscillations by using locally 

measurable states of the generator as well as its bus voltages and angles.  For this 

controller development, the large-scale power system has to be represented in a 

decentralized form which is discussed next. 

A. Model Development 

A power system is usually modeled using a combination of differential and 

algebraic equations. The differential equations represent generator states (i.e. angles, 

speeds, and dq voltages qE  and dE ) whereas the algebraic equations represent bus active 

and reactive power balance relationships. For the purpose of controller design it is 

desirable to have pure dynamical equations. In the previous section an algebraic-free 

power system representation based on the classical generator model is represented. In 

order to incorporate the generator flux-decay states, the proposed model is extended 

herein. 

A two-axis model [18] is chosen for the purpose of power system representation. 

As a consequence, the generator dynamical equations are given as  
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where i  is the rotor angle of the i-th machine, i  is the difference between the generator 

angular speed and synchronous speed, qiE and diE are generator’s dq variables as defined in 

[18],  fdiE is the excitation voltage, and niV   and ni  are the generator bus voltage and 

phase angle, respectively, as depicted by Fig. 1. In addition 
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where B represents the reactance of the admittance matrix, n is the number of generators, 

and N denotes the number of non-generator buses in the power system as shown in Fig. 1. 

The bus voltage and phase angles of the power system buses are illustrated in Fig. 1 

which are constrained by the set of algebraic power balance equations (neglecting 

resistances) as 
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Then, taking the derivative of (9) to obtain iV  and i  as 
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Fig.1-Power System 

 

 

 

 

By using (7) for qiE   and diE   and solving (10) and (11) and for iV  and i , we obtain 

a new set of dynamic equations as  
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where   TNnnn VVVV  21
,  TNnnn   21 ,  and  Tn 21 is the 

generators’ speed error vector. Also, define T
n][ 21   , T

qnqqq EEEE ][ 21   , 

T
dnddd EEEE ][ 21   ,  T
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fd
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TT VEEEx ][   . The entities for NNA  , NNB  , NND  , 

NNE  , nNC  , NNF  , 12 NR ,and nNG 2 can be derived by collecting the corresponding 

coefficients. Equation (12) can be rewritten in a more appropriate way as  
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It is important to note that this step is needed only for model development and is 

not required for implementation. 
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B. Generator Representation 

Next, the flux-decay model [18] of the generator is given as 
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where Pei is the active load at each bus, and Mi = 2H/0 is the i-th machine inertia. In 

addition, the following equalities are valid 
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Moreover, the power balance equations (9) will be simplified by employing the flux-

decay assumption  
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In this design we assume that the mechanical power miP ( ni 1 ) is slowly 

changing compared to the other control variables; thus 0miP . Now define  
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where eiieei PPP  0  and miie PP 0 . Consequently, the generator dynamics (8) can be 

rewritten in the state-space form as 
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The electrical diagram of the generator using the flux-decay model is depicted in 

Fig. 2 [18] where the voltage source and injected current are represented as 
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which yields  
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Fig.2 Generator flux-decay model 
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Remark 1. Here busY  may contain nonlinear impedances (including constant loads). Thus, 

even if the system busY  is reduced to an nn matrix, non-generator bus voltages and 

angles are involved in computations. Thus, conventional busY reduction techniques cannot 

be applied to overcome non-generator nodes. 

C. Decentralized Nonlinear System Representation 

  The dynamical representation of the power system from (19) can be rewritten as 

a general class of L  interconnected nonlinear subsystems in affine form as 
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where index i , Li 1 , represents the subsystem (generator) number, L   is the number of 

subsystems (generators) in the power system, p , lp 1 , shows the generator state 

number, 4l is the order of the power system according to (19), (.)f and (.)g , represent 

unknown nonlinearities, (.)  denotes interconnected terms, with T
ipiip xxX ],,[ 1  , 

TT
p

T
p XXX ],,[ 1





 , T

Ljjj xxX ],,[ 1 


 , 00 X  and )( ili Xh is the subsystem output for 

Li 1 and lp 1 . By comparing the power system representation (19) and the general 

system description given by (23), it follows that 0421  iii fff , idii Txf 033  , 
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fdiqii EI 4 ,                                     (25) 

and  
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 In the following, we findV  and   as a function of the states  ,  , and eP . 

Equations (21) and (22) yield expressions )cos( iqiE  and )sin( iqiE  as functions of ,V , 

and  which in turn yields qiE  and  to be functions of V , and  as 

),(1  VE iqi  , ),(2  Vii  .                            (27) 

Consequently, by using (15), (16), and (27) the variables qiI  and diI as well as eiP can be 

represented  as functions  ofV and  as 

),(3  VP iei                                    (28) 

Now, equations (17) and (27) (for Li 1 ) along with the N2 nodal power flow equations 

(3) give solutions for V and  in terms of i  for Li 1  as  

NiV iniini   1);(;)( 21                           (29) 

D. Interconnection Terms 

In order to address the interconnection terms, the following assumption is needed 

for analyzing their upper bound. 

Assumption 1: The excitation voltage, fdiE , satisfies the following inequality [19] defined 

by 

  dididiqifdi IxxEE  K                              (30) 

where K is a positive constant. Consequently, by (16) and (27) we have 
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Also, by employing (17), (27), and (31), equation (12) can be simplified to  
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NixcxcV sinisini   1);(;)( 21                          (32) 

where (.)1ic and (.)2ic  are positive nonlinear functions and TTTTT
s Vx ][  . Then, by 

using (28) and (29) we obtain 

NiPcPcV einieini   1);,,(;),,( 21                       (33) 

where ic1 and ic2  are positive nonlinear functions. Now, by considering the 

interconnection term (24) along with (16), (29), (30), and (33) it can be shown that 

),,( eiip P   for 43  p . This step is only for model development and is not necessary 

for practical implementation. 

Next, we show that 3i and 4i  are zero at steady state condition. Obviously, at 

steady state, we have 03  ieii MPx . Consequently, by using (18) at steady state, we 

obtain 

  qisqisqidiidsi IIxxT  03 1  

where the index ―s‖ stands for steady state conditions. At steady state, the states 1ix , 2ix , 

and 3ix in (18) are zero. The term )( diqi xx  is zero for round rotors and it is a small value 

for salient pole rotors.  Therefore, 03  si .  Also, since 03 ix  at steady state, we have 

04 isx . In addition, 0qiI  and 04  si . Consequently, at steady state 04321  iiii xxxx , 

we have 0)0()0( 43  ii . 

V. The UPFC as a Nonlinear Controller 

In the proposed effort, the UPFC is chosen as a FACTS device which acts as a 

controller to mitigate system oscillations. The method, however, is applicable to other 

FACTS devices since the proposed approach is generic and deals with power balance 

equations as well as generator dynamics. As illustrated in Fig.3a, the UPFC shunt 
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transformer is connected to bus t+n and the series transformer is connected between 

buses t+n and h+n. The effect of the UPFC on the power system can be represented as 

injected powers to the connecting buses [20] as shown in Fig. 3b.  This is referred to as 

the ―power injection‖ model of the UPFC [20]. 

 

 

 

(a)         (b) 

Fig. 3 a) UPFC connected between two network nodes b) Injected powers to the 

connected buses 

 

 

 

 

The injected active and reactive powers are given by 
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where )(   ntbb VV  is the voltage produced by the series transformer and can be 

assumed to be a function of time.  Thus, the power flow equation at buses t+n and h+n 

can be represented as 
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where  cosbV ,  sinbV , and OLDP  and OLDQ  represent the left hand side of equations 

(3).  By taking the derivative of (35), equations (4) and (5) must be modified on the buses 

t+n and h+n.  Therefore, at bus t+n, we get 
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and at bus h+n, we get 

0)]cos()sin([

))](sin()cos([

)]cos()sin([

,

,

,OLD













nhntnhntnhnhnt

nhntnhntnhntnhnhnt

nhnhntnhntnhntnh

VB

VB

VBP












                  (36b) 

Similarly, terms are also added to the left hand side of (5) at buses  nt   and nh   

to achieve 
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ntnhntntnhntnt VBVBQ                               (37a) 

and 
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By updating matrices A , B , D ,and E with the additional terms, new 

matrices A , B , D , and E are obtained and given by (I-5a) - (I-5d) in Appendix I.  Note that 

matrices C  and F remain unchanged. Consequently, (6) becomes 
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where TT

Sxx ][  and vector G  represents additional terms in (36) and (37) which are 

dependent on  and  . We define 1u  and 2u  and obtain:  
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By solving (38) for V  and , we obtain the set of nonlinear equations  
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 , 22 NG  is introduced as equation (I-6) in 

Appendix I and satisfies  TuuGG 21 , and NRggggff 432121 ,,,,, .  

Equation (40) is an affine nonlinear system in continuous-time with control inputs 

1u and 2u . Once the control inputs are defined, the UPFC control parameters  and  can be 

obtained by integrating the control inputs. By Incorporating (1) and (2), we obtain the 

system dynamic equations as  
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                   (41) 

Equation (41) is now in special case of strict feedback form (as explained after (45)) 

where backstepping can be used for the controller design. 

Remark 2. In the case of multiple UPFCs in the network, equations (34) through (39) are 

repeated for each pair of UPFC buses nt j  and nh j  for all kj 1 , where k is the total 

number of UPFCs. Similarly, the corresponding entries of matrices A, B, D, and E change 
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following the same logic described for equation (38). Moreover, vector G has entries 

corresponding to each UPFC. Consequently, the resulting differential equation is affine in 

terms of all UPFC control inputs which is given by 
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where k is the number of UPFCs and T

kk

T

ST xx ][ 11   . The nonlinear 

functions 
1 2 1 2 3 4,  ,  ,  ,  ,  N

T T j j j jf f g g g g R are defined in Appendix I.  

VI. Controller Design 

The conventional approach to damping oscillations in an interconnected power 

system is to employ a linear control scheme [21]. By contrast, we target the stability of 

the generators in a nonlinear sense by defining an appropriate Lyapunov function. In the 

control development, we restrict our design to the case of constant loads.  Also, we 

assume that the mechanical power miP ( 11  ni ) is slowly changing compared to the 

other control variables; thus, 0miP . For the purpose of convenience we define new state 

variables as  
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where
0i is the pre-fault generator angle for 11  ni . The selection of ix3 renders (2) in 

the backstepping form as will be explained. Using (42), we obtain 
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




k

j

jTijjTijTTi uxuxx

1

2211 )(a)(a)(f                       (44) 

where
iTf 1
, iTf 2 , ijg 1 , ijg 2 , ijg 3 , and ijg 4  are the i-th elements of 1Tf , 2Tf , 1jg , 2jg ,

jg3
, 

and 4jg , respectively. Also, k is the number of UPFCs and j is the UPFC number. 

A. Single generator/Single UPFC control 

To introduce the design concept, we initially design a controller for a single 

generator/single UPFC power system using the standard backstepping design method 

with the control inputs 11 uu j   and 22 uu j  . This approach will be extended to multiple 

generators/multiple UPFCs in the next section.  

Remark 3. In [15], [20], [24], it is demonstrated that if the UPFC injects the maximum 

series voltage (i.e. constant bV ), it can inject the maximum active power; thus, it improves 

transient stability. The condition ConstVb  may be applied by noting that 222
bV  . 

This in turn results in 021  uu  by taking derivative from both sides (note that 

02 dtdVb for constant bV ) which may be considered as an algebraic relationship between 

the control inputs 1u  and 2u . However, for damping the after-fault oscillations bV  can be 

kept high at the beginning (for a short time) and reduced afterwards in accordance with 

the state errors as this helps reduce the electrical stress on the UPFC. According to [20], 

UPFC injected power can also be controlled by varying bV under the constant phase 

angle . Then, when is around o90  maximum active power is injected for a given bV . 

This requires that 0 ; thus, 01 u . Consequently, in this design we let 01 u thereby 

decreasing the number of inputs in (44). Then, from (2), (43) and (44), the new set of 

state equations can be constructed as  
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where   COITimii PMMPf 1 , giniii EBg  ,1 , 
2 ( ) f ( )i Tif x x  , )(a)( 22 xxg ii  , 

and 2uu  for 11  ni where [ , , ]T T

Sx x   . Equation (45) is a special case of strict feedback 

form where 
1if and 

1ig are constants instead of function of the states. 

Assumption 2.  )(2 xg i  is bounded away from zero. Without loss of generality it will be 

assumed that 0)(2 xg i . 

This claim is supported by the fact that due to its continuity if )(2 xg i  changes sign, then it 

must pass through the origin. As a consequence, equation (45) encounters a singularity 

tending to make T][   infinitely large. By selecting a proper place for the UPFC and 

setting appropriate design gains, we can avoid large control inputs. 

Step 1. Introducing iKδ and iKZ1  as design constants, we introduce iiii xKxz 121 δ which 

results in 

iiii zxKx 11δ1                                    (46) 

Consequently, by defining )( 332 siii xxz  we have 

iisiiiiiiii zgxgxKMfzM 21312δ11                           (47) 

where  
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1Z12δ11
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3 iiiiiii
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si zKxKMfx
g

x                         (48) 

is chosen such that the Lyapunov function 2
1

2
1

2

1

2

1
L iiii zMx 1

 has a negative definite 

derivative when 02 iz . 

Step 2. Define the new Lyapunov function 
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2
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2
1atten2
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1
(L iiiiii zzMxK                             (49) 

with iKatten  being a design constant, we can easily show that  

0)(L 221111atten2  iiiiiiiii zzzzMxxK   guaranteeing that the states ix1 , iz1 , and iz2 asymptotically 

converge to zero provided that iiz 2  where 

iiiiii zKgzK 2Z211atten                               (50) 

and from (45) 

2 2 2 3( ) ( )i i i siz f x g x u x                                 (51) 

where  
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xKKx

g
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
                     (52) 

Equation (51) along with iiz 2  and (50) provides a solution for control 

inputs u in terms of nonlinear functions of states as 

))(()( 32
1

2 siiii xxfνxgu   .                            (53) 

Remark 4. If the assumption made in Remark 2 is not applied (i.e. 01 u ), equation (53) 

will revert to  

siiiii xxfνuxux 322211 )()(a)(a                             (54) 

which gives a linear relationship in terms of the control inputs. Then, a second 

relationship such as 021  uu  (mentioned in Remark 2) between 1u and 2u is needed to 

select them. Since optimal performance of UPFC is obtained by varying both the injected 

voltage bV and angle , a second relationship between 1u and 2u can play an important role 

in achieving the controller. 
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B. Multiple generator/multiple UPFC control 

For the case of multiple generator control, the equation (24) is replaced by 

uHxgxfz )()( 232                                  (55) 

where, sxxfxf 323 )()(  ,  Tnfff 1,2212   ,  1,2212  nggdiagg  , 

T
nsss xxx ][ 1,3133   and  TnH 111)1( 

. Also, define  Tnxxx 1,1111    , 

 Tnzzz 1,1111   , and  Tnzzz 1,2212   . Note that for the multiple UPFC  case x  is 

replaced by
Tx  and the dimensions of 

2g  change. Moreover, note that only 1n generators 

are chosen to be controlled. Since the n  generators are present in the interconnected 

power network, the nth generator is forced to be controlled by the power balance if the 

remaining 1n speeds are controlled. Since there are fewer inputs than outputs, it is 

generally difficult to find an input that makes the first derivative of the Lyapunov 

function candidate negative definite. In other words, because of the inconsistency that 

arises due to multiple solutions for a single u  the above single generator control method 

cannot be employed for multiple generator control. Thus, we propose the input 
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               (56) 

where 
2ZK and 

3ZK are design parameters . 

Definition. (Uniform Ultimate Bounded (UUB))[22]. Consider the dynamical system 

)(xfx  with nx  being a state vector. Let the initial time be 0t  and initial condition 

be )( 00 txx  . Then, the equilibrium point ex is said to be UUB if there exists a compact 

set nS  so that for all Sx 0
there exists a bound B and a time ),( 0xBT such that 

Bxtx e )( for Ttt  0
. 
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Theorem 1. Consider the dynamical system described by (19), (47), and (51) which is 

rewritten as 



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21312δ11
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                        (57) 

with the input given by (56) for 11  ni . Then the states are globally uniformly 

ultimately bounded provided Assumption 1 holds. 

Proof. See Appendix II. 

Remark 5. Equation (57) needs the term 






1

1

223Z )21(

n

i

i
T
i gzK  to be bounded away from 

zero. Based on Assumption 1, this can be easily achieved by selecting a proper 

2ZK and 3ZK  and replacing each ix3  with iixK 3MZ2  where   iKMZ2  is a proper modification 

factor if 0)21(

1

1

223Z 




n

i

i
T
i gzK . From equation (45) this changes ig2  to ii gK 2MZ2  such that the 

term 






1

1

2MZ223Z )21(

n

i

ii
T

i gKzK  moves from zero in (56). 

VII. Neural Network Control 

Although equation (56) provides the UPFC control inputs, finding the analytical 

and/or numerical nonlinear control inputs in practice (for fast computing) is a challenging 

task in large power systems. Moreover, in order to implement the control law, a complete 

knowledge of the total power system dynamics and topology are needed. However, by 

using the neural network approximation property for nonlinear functions with on-line 

learning scheme [22], we are able to approximate the nonlinear ―unknown dynamic‖ 

terms in the power system dynamics, thus relaxing the need for a complete system 

description as well as onerous function calculations.  
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A general function Rxf )( where nRx can be written as )()()( xxVWxf TT    

with )(x  a neural network (NN) functional reconstruction error where 12
N

RW  and 

2Nn
RV


  are weight matrices [22]. In our design, input-to-the hidden-layer weight 

matrixV is selected initially at random and held fixed during learning. It is demonstrated 

in [23] that if the input-to-the-hidden-layer weights, V , are chosen initialized randomly 

and kept constant and if the number of neurons 2
N  in the hidden layer is sufficiently 

large, the NN approximation error )(x can be made arbitrarily small since the activation 

function vector forms a basis.  

A. Single generator/single UPFC control 

Consider the system (45). Unlike equation (56), here we assume that the nonlinear 

functions ig2 and if2  (for 11  ni ) are not available. Thus, in order to provide the 

desired input we employ the neural network approximation property for nonlinear 

functions as    )(2Z21 xVWzKu T
ii

T
iii

 where the term  )( xVW T
ii

T
i  represents the 

unknown nonlinear function in the control input with iW being unknown ideal weight 

matrix (where iW is assumed to be upper bounded [22]) and Mi   is the approximation 

error in a compact set   2
1

2
1

2
1211 ,, iiiiii zzxzzx . In practice, the actual weight matrix 

iW and approximation error i are unknown and only an estimation of the weight matrix is 

utilizable, i.e. 

)(ˆ
2Z2 xVWzKu T

ii
T

iii                                 (58) 

 It is shown in Appendix III that the states T
ii Wz ]ˆ[ 22 are stable with arbitrarily 

small upper bounds by selecting the neural network weight update law as [22] 
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iiii
T

iiii WzxVW ˆ)(ˆ
2  

                              (59) 

where i  is a design constant and i is a constant matrix.  

B.  Multiple generator/multiple UPFC control 

By using the similar approach to single generator neural network controller we 

define the desired control input for system (45) as (60)  

  x)Vφ(WzHKu TTT
22Z                              (60) 

where  TnH 111)1( 
and M   in a compact set [22]   221111211 ,, zzzzxxzzx TTT . 

Then we utilize the estimation of the weight matrix as 

)(ˆ
22Z xVφWzHKu TTT                               (61) 

It is shown in Appendix IV that by selecting the weight update law as  

WzHxVW TT ˆ)(ˆ
2  

                                (62) 

boundedness of the states TT WzH ]
~

[ 2 with bounds defined in the Appendix is achieved. 

In general, it is hard to conclude stability of the states iz2 ( 11  ni ) from boundedness 

of 2zH T . However, in this problem we have considered 1n generator to avoid 

dependency of generators electrical powers (and iz2 ) to each other. For many power 

system topologies if the UPFC is placed on the proper bus we may conclude stability of 

iz2 ( 11  ni ) based on the stability of 2zH T as confirmed by simulations. Exceptions 

may include topologies with isolated generators. Similar to proof of Theorem 1, this 

yields stability of the states 1x and 1z . 

Remark 6. We can see from (61) and (62) that the control and update laws are only 

functions of generators data and loads. Although for the controller design 0i  is needed, 
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this parameter can be achieved by knowing the generator operating conditions. Thus, no 

prior knowledge of power system topology is needed for controller design. 

VIII. Simulation Results 

For control validation, two power system topologies are considered. In both 

examples the simulations are performed using the complete power system model (with 

line resistances) to evaluate the effectiveness of the modeling and design. Also, steam 

governor is in action in all simulations. First, the system in Fig. 4 is chosen where a three-

phase fault is injected close to bus 3 (as depicted in Fig. 4) at st 2.0 and removed at 

st 4.0  seconds. The infinite bus is simulated by a huge generator whose angle and speed 

do not change by the fault. The infinite bus voltage and angle are given as 1.0470pu2 V  

and -0.0091Rad 2  . The data for generator 1 are given as 006.0dx , 1H , 1.0657pugE , 

and 0.0017Radi   at 0t . The UPFC is placed on bus 1 between buses 1 and 3 and is 

activated after fault clearance.  

Two scenarios are assumed; the fault is removed without changing the topology 

and with removal of one of the lines between buses 1 and 3(i.e. the faulted line). In 

accordance with Remark 2, the proposed control is performed via constant UPFC angle 

o90 and variable (controlled) UPFC voltage bV . The design is performed by using the 

method introduced in Section V-A for single generator control where gains are chosen 

as 1.01 K , 2.01Z1 K , 1002Z1 K , and attenK =1. The results from the proposed method are 

compared with the case with pu5.0max bV and variable   where the controller examines 

the slope of the power flow in the line, where the UPFC series transformer is placed, and 

switches the output   (shown in Fig. 5) between o90 (which gives maximum UPFC 
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injected power at constant maxbb VV   as explained in Remark 2) correspondingly to 

prevent increasing or decreasing the flow of power in the UPFC line, and thus, to prevent 

the power flow oscillations. The output  is then passed through a first order 

filter )1( sK PP   (with ;.KP 10  10.P   after fine tuning), depicted in Fig. 5, to reduce 

sharp power fluctuations and to provide the UPFC angle   which in turn provides the 

total line power eP  (including the injected power by UPFC.)  

 

Fig. 4 One-generator power system 

 

 

 

 

 

Fig. 5 UPFC active power controller 
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Fig. 6 Damping effect of the proposed nonlinear controller when compared to the 

 method with UPFC fixed injected voltage bV and variable angle   

 

 

 

 

 

Fig. 7 UPFC injected power and voltage in the proposed nonlinear controller 

 when compared to the method with UPFC fixed injected voltage bV and variable 

 angle   

 

 

 

 

Figures 6 and 7 show the UPFC damping effect, injected power, and voltage of 

the proposed controller for the two scenarios (original topology and line removal after 

fault) as compared to those of the conventional controller through controlling .  As 

shown in the figures faster damping as well as lower injected voltage and power are 

achieved by using the proposed nonlinear controller. Also, unlike the conventional 
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controller, no significant difference in controller performance between the two cases 

(original topology and line removal after fault) is observed when using the proposed 

controller. 

In the second example the IEEE 14-bus, 5-generator power system shown in Fig. 

8 is used and subjected to three phase faults. 

 

 

Table 1. Generators Specifications 

Gen no. 1 2 3 4 5 

dx  0.006 0.006 0.006 0.006 0.006 
2MH s  5 1 1 5 5 

 

 

 

 

The generator data is given in Table 1. All of the generators have steam governors 

and the UPFC control is implemented via the power injection model.  The power system 

loads are considered as constants. The control objective is to damp the generators 

oscillations after the fault is cleared.  

In the system given by Fig. 8, the UPFC is installed on bus 6 between 6 and 7 

which is found to be an appropriate placement by trial and error, i.e. it can stabilize the 

power system for different fault locations. The power system modes are 11.3561, 5.9101, 

2.6977, and 2.1026Hz. A three-phase short circuit fault is applied to buses 1, 6, and 11 at 

st 2.0 and removed at st 4.0  seconds. Generators 1 through 4 are chosen for control. The 

control inputs  and  are initially set to zero such that 0)( 0 tVb and the proposed control 
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method is performed through using variable bV and o90 . Two cases are considered for 

simulations. 

 

 

 

 

 
Fig. 8 The IEEE 14-bus, 5-generator power system 

 

 

 

 

Case 1. All power system dynamic states are assumed to be available for the control 

design and equation (56) along with o90 ( 01 u ) are used to design the controller. 

The design gains are chosen as 1K through 4K =0.1, 1Z1K through 

Z14K =0.2, Z2K =100, 1Z3 K . 
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Fig. 9 Generator speeds with and without control; Case 1 with fault on bus 1 

 

 

 

  

Figures 9 through 11 show that significant percentage of oscillation damping can 

be achieved for a medium size power network by using a single UPFC as a controller. 

Moreover, the nonlinear controller without changing the controller gains from the 

previous case is able to damp the oscillations resulting from a fault occurring at different 

locations through satisfactory control effort as shown in Figs. 12 and 13.  Note, however, 

that damping performance varies with the fault location. In particular, Figs. 9 through 11 

illustrate that for faults occurring at the locations relatively close to the UPFC bus (bus 6), 

the oscillation damping is more effective than for the faults occurring far from UPFC bus. 

Also, the control effort for the latter case is higher as shown in Figs. 12 and 13. This is 

due to different after fault conditions imposed to the controller.  
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Fig. 10 Generator speeds with and without control; Case 1 with fault on bus 6 

 

 

 

 

 

Fig. 11 Generator speeds with and without control; Case 1 with fault on bus 11 

 

 

 

 

 

Fig. 12 Active power flow from bus 6 to 7; Case 1 
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Fig. 13 UPFC injected power and series injected voltage; Case 1 

 

 

 

 

However, the voltage and line flows do not go back to their pre-fault values due to 

bounded stability performance of the controller. Overall, from these results, the proposed 

control is very effective in damping the oscillations even in the presence of numerous 

modes and with significant fault (as illustrated in Figs. 6-11) occurring in the power 

network. The results from the proposed controller are then compared with those of the 

conventional controller explained in the first example with ;2.0PK  10.P  (after fine 

tuning) where instead of observing the line power flow slope, the sign change in angle 

difference of the UPFC line buses (i.e. )sign( nhnt   ) is considered since a stabilizing 

controller using the power flow derivative sign was not achieved. Unlike the previous 

example, the conventional controller cannot stabilize all generators and only affects the 

generator close to UPFC (i.e. Gen5). For the fault on bus 6, no significant damping effect 

is introduced by the conventional controller. 
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Case 2. Power system dynamics are assumed unavailable.  By using equations (61) and 

(62) and assuming 01 u  ( o90 ), the NN controller is utilized to approximate the 

unknown system. Ten neurons are selected for the hidden layer with sigmoid [22] as 

activation function and design gains are chosen as 1K =0.1, 2K =0.2, 3K =0.1, 4K =0.1, 

1Z1K through Z14K =0.1, Z2K =500, =1e-4, and  =5e5. The weight estimate Ŵ is 

initialized randomly. No offline training is utilized to tune the weights and no a priori 

data about the power system topology is needed for controller design. 

Figures 14 and 15 illustrate that the neural network controller nearly has the same 

ability to damp the oscillations as that of Case 1. This implies that the neural network 

controller is able to quickly learn the power system nonlinear dynamics by only using the 

network voltages and angles as well as the synthesized input u . 

 

Fig. 14 Generator speeds; Case 2 
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Fig. 15 UPFC injected power and series voltage; Case 2 

 

 

 

 

IX. Conclusions 

We have introduced a general nonlinear dynamical model for power systems with 

UPFC as stabilizing controller. This model is free of algebraic equations, thus 

conventional nonlinear control strategies are applicable to stabilize the power system after 

fault occurrence.  Then, the model representation is expanded to decentralized 

formulation of power systems. We have addressed a multi-machine control scheme in 

which the number of control inputs is less than the number of outputs.  Furthermore, we 

have utilized neural networks approximation property to relax the burdensome nonlinear 

function calculations and a priori knowledge about the power system dynamics needed 

for control design. Our analytical approach as well as our simulation results shows the 

effectiveness of our approach. 
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Appendix I 

According to equations (4) and (5) we have the equations (I-1) and (I-2). 
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 Entries of matrices NNA  , NNB  , nNC  , NND  , NNE  , and nNF  for the case without 

UPFC are summarized as follows. 
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Modifications on the entries of matrices NNA  , NNB  , NND  , and NNE  for the case 

with UPFC are summarized as follows. 
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The subscript (old) refers to the original values (without UPFC) as defined by (I-

3) and (I-4).  The matrix G is defined as follows: 
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For the case of multiple UPFCs matrices A , B , D , and E are changed to TA , TB , TD , 

and TE as described in Remark 1. The nonlinear functions used in (15) are described as (I-

7) 




























)(

)(

)()(

)()(

)(

)(
1

2

1

T

T

TTTT

TTTT

TT

TT

xF

xC

xExD

xBxA

xf

xf                          (I-7) 

Also, we have 

UG
xExD

xBxA
G

xExD

xBxA
T

TTTT

TTTT
T

TTTT

TTTT

11

)()(

)()(

)()(

)()(



















                   (I-8) 

where  Tkkjjk uuuuuuU 2121211112 
,  k is the number of UPFCs 

and  
kNTkTjTT GGGG

221 
  with 22  N

Tj RG  corresponds to the j th UPFC whose 

entries are defined in (I-6). Using TG , we are able to define  

Tj
TTTT

TTTT

N
TjTj

TjTj
G

xExD

xBxA

xgxg

xgxg






















1

22
43

21

)()(

)()(

)()(

)()(
                (I-9) 

 

 



  

 

 

59 

Appendix II 

Proof of Theorem 1: For the case of multiple generator control, we define the 

Lyapunov function as 
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where iK 3Z is a design constant. Taking derivative of (II-1), we have  
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Using the following equation   
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where  2
2322Z iii zKzK Z , makes L negative definite. 

In order to obtain 1u in the case of multiple generator control we use equation (51) 

and (II-3) and obtain  
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The control input (II-4) causes the term 2
2
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asymptotically. Consequently, iz2 converges to the bound obtained below. 
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Thus, iz2 approaches to the bound presented by (II-5) asymptotically. 

Next, equations (58) imply 
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which is a linear input-to-state stable system by proper choice of the control gains iKδ and 

iK 1Z such that the eigenvalues of the linear system have negative real parts. Thus, the 

states ix1  and iz1   are bounded following the stability of iz2 for 11  ni  .        

Appendix III 

Equation (51) for the i-th generator in a single-UPFC power system can be written 

as  
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where x  is the vector of the global parameters as defined earlier. We repeat the back 

stepping control design mentioned in the previous section and define the Lyapunov 

function i2L as 
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which has the derivative as  
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Applying (III-1) into (III-3) renders the Lyapunov function derivative 0L2 i
  

provided the control input is selected as 
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in (III-4) is the unknown term which must be 

approximated by a neural network as  
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where Mi   is the approximation error in a compact set [22] 
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1211 ,, iiiiii zzxzzx . Since the ideal weights iW  are not known, the 

estimated weight matrix iŴ is utilized to approximate 1u  as (58). Now, define the 

Lyapunov function 
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where iii WWW  ˆ~
and i  is a design constant. Taking the derivative of (III-6) and 

applying (58) results in  
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By selecting the neural network weight update law as (59) and applying (III-7) we 

obtain  
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i2L is negative if  
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which yield  uniform ultimate boundedness of the states T
ii Wz ]ˆ[ 22 with bounds defined 

above. Note that the bound on iz2 can be arbitrarily small by increasing the design 

gain iK 2Z . Similar to proof of Theorem 1 boundedness of the states T
ii zx ][ 11 can be 

concluded. 

Appendix IV 

The Lyapunov function in this case is proposed as 
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where WWW  ˆ~
. We define the desired control input for system (45) as (IV-2)  
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where  TnH 111)1( 
. However, the desired control input u is a function of unknown 

dynamics and is approximated by a neural network as   x)Vφ(WzHKu TTT
22Z1  . Taking 

the derivative of (IV-9), employing (IV-2), and choosing the weight update law as (62), 

we obtain 
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Similar to (III-8) 4L  is negative if 
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 which yield uniform ultimate boundedness of 2zH T . 
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Abstract— A novel neural network (NN)-based nonlinear decentralized adaptive 

controller is proposed for a class of large-scale, uncertain, interconnected nonlinear 

systems in strict-feedback form by using the dynamic surface control (DSC) principle; 

thus, the “explosion of complexity” problem which is observed in the conventional 

backstepping approach is relaxed in both state and output feedback control design. The 

matching condition is not assumed when considering the interconnection terms.  Then, 

neural networks are utilized to approximate the uncertainties in both subsystem and 

interconnected terms. By using novel NN weight update laws with quadratic error terms, 

it is demonstrated using Lyapunov stability that the closed-loop signals are 

asymptotically stable with both state and output feedback controller, even in the presence 

of NN approximation errors in contrast with the uniform ultimate boundedness result, 

which is common in the literature with NN-based DSC and backstepping schemes.  

Simulation results show the effectiveness of the approach.  

 

Index Terms – Dynamic Surface Control, Decentralized Control, Nonlinear Adaptive 

Control, Neural Networks.  
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I. Introduction 

Dynamic surface control (DSC) [1] has been attracting great attention in this 

decade. The well-known problem of increased complexity in the backstepping design 

which occurs due to the repeated differentiation of the virtual control signal is replaced by 

a series of algebraic terms; thus, the burdensome calculations in the analytical 

development and practical implementations are relaxed. Unlike in standard backstepping 

method which results in globally uniformly bounded system states in the presence of 

unmodeled dynamics, the work in DSC results in uniform ultimate boundedness (UUB) 

in a semi-global manner [1]. Further attempts in [2] provide asymptotic stabilization for a 

class of uncertain nonlinear systems using DSC and adaptive control provided the control 

gain coefficient being unity or (.) 1g   and the uncertainty is assumed to be linear in the 

unknown parameters (LIP). Subsequently, neural network (NN) universal approximation 

property is asserted in [3] to relax this LIP assumption for subsystem uncertainties so that 

boundedness of the states is assured in the presence of NN reconstruction errors.    

Decentralized control, on the other hand, has been investigated for large-scale 

systems with unknown system uncertainties and interconnection terms. In [4], by using 

state feedback control design a class of interconnected systems represented in Brunovski 

Canonical form is considered and an asymptotic tracking controller using adaptive NNs is 

demonstrated provided the interconnection terms satisfy a stringent matching condition. 

In [5], decentralized NN control of a more general class of nonlinear systems has been 

proposed by relaxing the matching condition using a standard backstepping approach. A 

uniformly ultimately boundedness of the system states is provided. Adaptive 

decentralized control of a class of uncertain nonlinear systems with asymptotic regulation 
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in the backstepping framework is proposed in [6]; however, the explosion of complexity 

is not addressed and the control gains (.)g  are assumed constants. 

On the other hand, output feedback control design, has been investigated for 

certain class of interconnected systems. In [7] and [8], the constant control gain 

coefficient matrix ( .(.) Constg  ) matrix is considered and asymptotic results are achieved 

where the interconnection terms are functions of the output. In [9], an optimal strategy 

based on existence of Algebraic Riccati Equations (ARE) is considered and exponential 

stability of the decentralized system is achieved although constant gain coefficient matrix 

is used.  

In this paper, the DSC design framework is proposed for a class of nonlinear 

uncertain interconnected systems in strict-feedback form while relaxing the matching 

condition; thus, the repeated differentiation of the virtual control signal is relaxed. Both 

state and output feedback controller designs are introduced. Next, NNs are introduced to 

overcome the uncertainties present in both subsystem and the interconnection dynamics. 

Thus, the use of neural network-based DSC in decentralized control not only overcomes 

the lack of knowledge about the subsystem dynamics and interconnection terms, but also 

relaxes the explosion of complexity problem normally observed in traditional 

backstepping. Moreover, the control gain matrix, )(xg , is considered as an unknown 

nonlinear function of the states and its time derivative is not required.  For the case of 

output feedback, the control gain coefficient for the last state is considered unity. 

It is demonstrated that the states of the subsystems approach the origin 

asymptotically, for both state and output feedback control design through novel NN 

weight update laws with second order error terms in contrast with UUB, which is 
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common with the available DSC schemes in the literature. Simulation results verify 

satisfactory performance of this controller.  

First background information is given in the next section. Subsequently, the class 

of large-scale decentralized system along with the DSC state feedback design is 

introduced in Section III followed by output control design in Section IV. A numerical 

example resulting from the application of DSC to a nonlinear system is presented in 

Section V. Conclusions and future works are given in Section VI. 

II. Background  

Consider the dynamical system ),( txfx  with nRx represents the states of an 

uncontrolled open-loop system, or a closed-loop system after the application of the 

control input, and control input ( )u t  has been specified in terms of the state ( )x t . Let the 

initial time be 
0t , and the initial condition be

0 0( )x x t .  A state 
ex is an equilibrium point 

of the system if
0( , ) 0,ef x t t t  . 

Definition 1: An equilibrium point
ex is locally asymptotically stable at 

0t  if there 

exists a compact set nS   such that, for every initial condition in
0x S , 

( ) 0 as ex t x t   . 

Next, a brief background on NN is given. A general function Rxf )(  where 

nRx  can be written as )()()( xxVWxf TT    with )(x  NN denotes functional 

reconstruction error vector, 12
N

RW  and 2Nn
RV


  represent target NN weight 

matrices. It is demonstrated in [10] that if, the input-to-the-hidden layer weight matrix,V , 

are chosen initialized randomly and kept constant and if the number of neurons 2
N  in the 

hidden layer is sufficiently large, the NN approximation error )(x can be made arbitrarily 
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small since the activation function vector forms a basis. In this work,V , is initialized at 

random and held and the output-layer weights are tuned online. Next, we introduce the 

class of decentralized nonlinear system under consideration. 

III. The Large-scale Decentralized Nonlinear System with State Feedback Control 

Design 

 

In order to consider the class of N interconnected subsystems defined by 

1
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where index i  represents the subsystem number,  f(.), and g(.), represent unknown 

nonlinearities, 
1(.) [ ,..., ,..., ]T

i ip in      denotes interconnected terms, with 

T
ipiip xxX ],,[ 1  , T

Njjj xxX ],,[ 1 


 , TT
p

T
p XXX ],,[ 1





 , 00 X , and ih is the subsystem 

measured output for Ni 1 and ip n1  . For the purpose of readability the 

notations ija and jia ,  are used throughout the paper for the same variable where ija (i and j 

are integers representing element of a matrix) is an arbitrary real variable.  Before we 

proceed, the following are needed. 

Assumption 1: Assume that the interconnection terms in (1) are upper bounded in the 

compact set  (defined later) such that  


N

j jpipjpip XX
1

)()(   (which corresponds to 

non-matching condition in contrast with [4]) where ipj is an unknown function 

with 0)0( ipj for Ni 1  and ip n1  . Consequently, by using the mean value theorem 

[11], the interconnection terms can be written as  
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jpipjpip XxXX

1 1
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1
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where  
)(, )(

jpXljpXjpXjqjpipjjqip xX


  in .  

Assumption 2: The control gain matrix )( ipip Xg  for Ni 1 and ip n1   satisfy 

)()(0 ipipipip
m
ip XgXgg   [4][5]. 

Assumption 3: The nonlinear function in (1) satisfies 0)0( ipf  for Ni 1 and ip n1  . 

Thus, by using the mean value theorem [11] )( ipip Xf  can be written as 

 


p

s ipipsisipip XxXf
1

)()(  where
)(

)()(
ipXlipXipXisipipipips xXfX


 . 

In other words, function )( ipip Xf can be written in the form of linear combination of 

ipX elements where the coefficients are functions ipX . This helps in the proof of 

asymptotic stability.  Next, the design of the controller is introduced. 

A. Controller Design 

Before we proceed, define 111 iii zx  , T
ipip

T
ipip yzX ],,[ , T

ipiip zzZ ],,[ 1  , 

T
ipiip yyY ],,[ 1  , TT

N
T

N
ZZZ ],,[ nn1 1

 , TT
N

T

N
YYY ],,[ nn1 1

  where ipz  and ipy are defined in the 

following section. Moreover, 00 i is defined. 

Step 1: Define the error as 
1 1 1i i i dz x x   and  

1 1 0i iy x   where 
1i dx is the desired set point for 

regulation.  Now define 

diiiiiii xzKzx 1111112 )(ˆ                                   (3) 

where 2ix  is the desired virtual input to make 01 iz as t  with ip̂  (for Ni 1 and 

ip n1  ) a nonlinear estimate of the unknown nonlinearity ip defined later in (B-19) in 

the appendix where unknown nonlinear terms in Lyapunov function are to be 
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approximated. In equation (3), a two-layer NN, )(ˆ)(ˆ
ipip

T
ipipip W   , where the second 

hidden layer weights matrix ipV (second layer) are chosen at random initially and held 

fixed, will be utilized to approximate the nonlinear function   )()( ip
T

ipip
T

ipipip VW . 

Thus, throughout the paper we use )(ˆ
ipip

T
ipW  to refer to )(ˆ

ip
T

ipip
T

ip VW  and to emphasize 

that the weights ipŴ are updated. 

For the stabilization problem, the desired values become 011  didi xx  . The 

intermediate virtual input dix 2 is obtained by passing the 2ix through a first order filter 

consistent with the DSC literature [1] as  

2222 ididii xxx                                          (4) 

Also, define 

222222 ; idiidiii xxyxxz                                            (5) 

Thus, 

2222 iiii xyzx  .                                     (6) 

Then, the error dynamic is given by 

))(()()( 222111111 xyzzgXzfz iiipiiii  .                            (7) 

This procedure is performed repeatedly until step p. 

Step p: Define 

ipdipip xxz  .                                       (8) 

Then, it follows that 

ipdipipipipippi xzKzx  )(ˆ
1, ,                                   (9) 

1,,1,,1,1,   pidpidpipi xxx ,                                 (10) 



  

 

 

70 

1,,1,1,   pidpipi xxy ,                                 (11) 

1,1,,1,   pipidpi yx  ,                                  (12) 

and 

1,1,1,1,   pipipipi xyzx .                               (13) 

Also, the error dynamics can be written as 

ipdpiipippipipipip xxXgXXfz   1,)()()(                           (14) 

where )(ˆ
ipip   is an approximation of the unknown nonlinear function as mentioned. 

Finally, in the last step, errors are defined as 

Step n.  

diiii
T
iiii iiiiiii

xzKzux ,n,n,n,n,n,n,1n, )(ˆ  ,                       (15) 




















0

)()()(

1n,1n,

,n,1n,nn,nn,nn,n,

nnn

ii

iiiiiiiii

iii

ii

diiiiii

diii

yz

xxXgXXfz

xxz

  

where in the above equations (3) through (15), a NN function 

approximation )(ˆ)(ˆ
ipip

T
ipipip W   , will be utilized to approximate the nonlinear function 

  )()( ipip
T

ipipip W , with )( ipip  to be defined as explained previously. Consequently, 

the desired virtual input becomes ipdpiipipip
T

ippipi xzKWzx  )(ˆ
1,   as opposed to Wang 

and Huang [3]. Before going to the next step, define 0000101  iiiiii eKzyyx , 110  ii   

for Ni 1 and ]
~

,
~

[
~

n,11 NNWWW   where 
ipipip WWW  ˆ~ . Here for convenience, we 

assume ni n for Ni 1 . The proof for the case with different in follows similarly such 

that ni n for the stabilization problem and therefore omitted here. 

 



  

 

 

71 

B. Stability Analysis 

Before presenting the system stability, the following lemmas are introduced. 

Lemma 1: The intermediate and desired virtual inputs 1, pix and dpix ,1,  , and states, 1, pix , 

for the decentralized system (1) with Ni 1 and 11  np  satisfy the following 

inequalities defined by 

 

 

 























1,1,1,

1,,1,

1,

piipippiipipippi

piipipipipipdpi

ipipipipippi

yyzzKex

yyzKex

yzKex







  

with ipe being an appropriate positive constant. 

Proof.  See Appendix.                                     

Lemma 2. The derivative of the desired virtual control inputs ipx in the decentralized 

system (1) with Ni 1 and np 2  satisfy the following inequality defined as 

 



 

p

s
ispiips

p

s
ispiipsip yzx

1
1,,

1
1,, )()( yz   






 
























N

j

p

q jqjqpijqip

jqjqpijqip

yX

zX

1

1

1 1,,,

1,,,

),(

),(

Δy

Δz




 

with ips,z , ips,y , jqip ,,Δz , and jqip ,,Δy being appropriate positive functions of states and 

errors. 

Proof. See Appendix.                                      

Next, we discuss the NN weight update law by using a novel projection scheme for 

tuning the NN weights since NNs are utilized for nonlinear function approximation. An 

interesting property of updating the NN weights using the proposed projection scheme via 

a second order error term is the boundedness of the NN weights without the need for the 

persistency of excitation condition (PE) which is demonstrated next. 



  

 

 

72 

Theorem 1: Assume that single-layer NNs are utilized to approximate the unknown 

nonlinearities of the system dynamics and the interconnection terms in (1).   Let the NN 

weight tuning for the ‗ith‘ subsystem be provided by  

 )(
ˆ

ˆˆ
ˆ)(ˆ

2

222
ipip

ip

T
ipip

ipipipipipipipipipip

W

WW
zWzzW  

                   (16) 

where 





















M
ipip

ipipip
T

ip
M

ipip

ipipip
T

ip
M

ipip
M

ipip

WWif

zWWWif

zWWWorWWif

ˆ1

0)(ˆ&ˆ1

0)(ˆ&ˆˆ0

2

2






 

for all Ni 1 ; np 1 , with M
ipW denoting the user selected bound for the weights ipŴ . 

Then: (a) the weight estimates remain within the user selected bound such 

that M
ipip WW ˆ for 0t  provided the initial weights start within the set defined by 

M
ipip WW ˆ  at 0t ; (b) the weight estimation error term, ipipip WWW  ˆ~

 or ]
~

,
~

[
~

n,11 NNWWW   is 

bounded inside the compact set for Ni 1  and  np 1  with ipW being the target NN 

weight matrix. 

Proof: See Appendix A.                                     

Remark 1: The NN weight update law is a variant of the projection algorithm [12] with 

the exception that a quadratic error term is employed along with a new term ipipip Wz ˆ2 for 

relaxing the PE condition.  The benefit of using the quadratic term of the state in the NN 

update law helps ensure asymptotic stability in Theorem 2. The user selected bound on 

the NN weights can play an important role for the function approximation. Conservative 

bound selection (i.e. small M
ipW ) can result in significant reconstruction errors, which 
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should be avoided. This may cause the weight estimates ipŴ  stay away from the actual 

weights ipW . Nevertheless, the system errors regulate asymptotically and the weight 

estimation errors ipW
~

 are bounded as shown in Theorem 2. 

Lemma 3: The following are equivalent 
  


n

p

n

ps

p

n

p

p

s

s aa
11 1

where ia (i is an integer) is an 

arbitrary real number and n, p and s are integers. 

Proof. See Appendix.                                      

The main result of this section is introduced next. 

Theorem 2: Consider the nonlinear interconnected system given by (1). Consider the 

Assumptions 1-3 hold and let the unknown nonlinearities in the subsystems and 

interconnection terms be approximated by NNs. Let the NN weight update be provided  

by (16), then there exist a set of control gains ipK  and filter time constants, ip ,associated 

with the given control inputs such that the states ipz  and ipy  approach to zero 

asymptotically (local) for all Ni 1 and np 1 . 

Outline of the proof. Since the DSC approach involves two error systems as described 

earlier (i.e. ipz  and ipy  for Ni 1 and n1  p ) the proof is divided into two parts. In the 

first part, we proceed by defining a positive definite Lyapunov function  





d

xXg

ipz

ipdpiip

ip  


0 1, ),(
V   [14] in the compact set defined by  

 












 
 

n,1,1;
4

1
),(,

1 1

2 pNiyYZyz
N

i

n

p

ipipipip VW1
 where  00 iX .Then, by expanding 

the involved terms in the derivative of the Lyapunov function candidate and employing 
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Assumption 1 through 3 and Lemma 1, we factorize 2
ipz  terms for Ni 1 and np 1  in 

all the involved terms. Next, the unknown terms in the Lyapunov first derivative is 

approximated by employing the NNs in the desired virtual control as  

ipdpiipipip
T
ippipi xzKWzx  )(ˆ

1,   for   Ni 1  and np 1  where ipipipd yx  from (12) 

and the NN output, )(ˆ
ipip

T
ipW  , approximates the nonlinear function 

ipipip
T

ipip W   )()(  

which is introduced in the proof of Theorem 2 and the functional reconstruction errors are 

bounded above M
ipip   . By using this approach we are able to obtain quadratic 

terms 2
ipz and 2

ipy  even when dealing with the NN approximation errors. Then, all the 

quadratic terms can be overcome by a negative quadratic stabilizing term, which can be 

designed adequately by choosing a proper design gain ipK and filter time constant ip .  

Next, we elaborate on the second error system ipy  (for Ni 1 and np 2 ). By 

defining a quadratic Lyapunov function candidate 22
ipip yL  for  Ni 1 and np 1  

( 01 iy as defined earlier), expanding its first derivative, and employing Lemma 2, the 

resulting terms in the first derivative is converted into quadratic terms  2
ipz  and 2

ipy . 

Finally, by adding a quadratic Lyapunov function for NN weight estimation errors 

ip
T

ip
ip

ip WW
~~

2

1
,


WL defined in Theorem 1 (part b), obtaining its first derivative, and using 

the weight update law (16), we sum and reorganize all the resulting quadratic terms 2
ipz  

and 2
ipy  for Ni 1 and np 1 .  

By summing the individual Lyapunov function candidates, an overall Lyapunov 

function candidate WT LLL   will be obtained where  
 


N

i p

ipip

1

n

1

LVL  and 
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
 


N

i

n

p

ip
T

ip

ip

WW
1 1

~~

2

1


WL  is defined in Theorem 1. Then, the overall first derivative of the 

Lyapunov function is given by  
 


N

i

n

p

ipipipip yz
1 1

2
,

2
, yzTL   which can be set negative in 

the compact set   by choosing design gains ipK  and filter time constants ip  for 

Ni 1 and np 1 .  

It is important to note that unlike other works in NN literature [4, 5, 6], the key to 

achieve the asymptotic stability despite the presence of approximation errors is to build 

the quadratic terms in the first derivative of the overall Lyapunov function by using the 

novel NN weight update law. This further implies that if the initial states are within the 

set , then they will stay in the same set for 0t by using (Theorem 4.8 in [14]). Therefore 

0TL  for all 0t . Now by applying Barballat's Lemma [15] the states ipz and ipy are 

guaranteed to asymptotically converge to zero as time goes to infinity for all 

Ni 1 and np 1 .                                   

Remark 2: Theorem 2 proves asymptotic regulation for unknown nonlinear 

interconnected systems by relaxing the stringent matching condition.  A similar procedure 

can be utilized to show asymptotic stability of unknown strict feedback nonlinear systems 

without interconnection terms. 

IV. Output Feedback Control Design 

In this section, we consider the DSC controller design using partial knowledge of 

subsystem states.  In other words, only subsystem outputs ( 1ix for all Ni 1 ) are 

available. 
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A. Controller Design 

In the previous sections for the control system (1), it is assumed that all subsystem 

states are available for controller design. This assumption may not be practical if only 

partial state measurements are available in the subsystem. Thus, in this section, we 

proceed with the DSC controller design with only the partial knowledge of subsystem 

states by employing the linear observer as 

 























1

11,

112111

~ˆˆ

~ˆˆˆ

~ˆˆˆ

iin
n

iininin

iip
p

piipipip

iiiiii

xLuxLx

xLxxLx

xLxxLx

















                          (17) 

where ipx̂ is the estimated state for ipx , with state estimation error defined 

as ipipip xxx ˆ~  , ipL and ipL are positive and negative design constants, respectively, for 

all Ni 1  and np 1  and 1  is a positive design constant. Next, 

define 111 ˆˆˆ
iii zx  , T

ipiip xxX ]ˆ,,ˆ[ˆ
1  , T

ipip
T
ipip yzX ],ˆ,ˆ[ˆ  , 

T
inii zzz ]ˆ,,ˆ[ˆ 1  , where ipẑ  

is defined as ipdipip xxz  ˆˆ , with ipdx  is the intermediate virtual input, and 

T
inii zzz ]~,,~[~

1  for all Ni 1  and np 1 . Moreover, 0ˆ
0  i  is defined.  

Step 1: Define the errors as 

diiidiii xxzxxz 111111 ;ˆˆ  ,                            (18) 

and     

011  ii xy                                     (19) 

where 
1i dx is the desired set point for regulation. For the stabilization problem, the desired 

values become 011  didi xx  . In addition, the error dynamics can be written as  
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112111
~ˆˆˆ iiiiii xLxxLz                               (20) 

Step p ( np 2 ): Define 

ipdipipipdipip xxzxxz  ;ˆˆ                           (21) 

where ipdx is the intermediate virtual input at step p. Now, inspired by the state feedback 

in section III design, it is desirable to redefine 

ipdpiipipip
T

ipippi xzKWzx  ˆ)ˆ(ˆˆ1,                          (22) 

where 1, pix  is the desired virtual input to make 0ipz  as defined in (21) as t  (for 

all Ni 1 and np 1 ) with )ˆ(ˆ
ipip

T
ipW  being a NN nonlinear estimate of the 

unknown nonlinearity ipipip
T

ipipip W   )()(  described in the previous section. Note 

that in (22), ipẑ is used instead of the measured state as in (18) since partial knowledge of 

states is available. Once the estimated state errors ipẑ reach adequately close to the actual 

state errors ipz , the NNs act the same way as in the state feedback design. The 

intermediate virtual input dpix ,1,  is obtained by passing the dpix ,1,  through a first order 

filter consistent with the DSC literature [1] as 

1,,1,,1,1,   pidpidpipi xxx ,                             (23) 

and thus, it yields 

1,,1,1,   pidpipi xxy ,                                (24) 

and 

1,1,,1,   pipidpi yx  ,                               (25) 

Finally, the error dynamics can be written as 
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ipdiip
p

piipipip xxLxxLz    11,
~ˆˆˆ                            (26) 

Step n. 

In the last step, errors are defined as: 















indiin
n

iininininin

indinin

indinin

xxLuXgxLz

xxz

xxz


1

~)(ˆˆ

ˆˆ



 

and 

 ininininin
T
ininininii

n
ini yzKzzazaux   ˆ)ˆ(ˆˆˆˆ 111,                   (27) 

where 1ˆˆ  p
ipip zz   and  1 p

ipip yy   for all Ni 1  and np 1 . Also, due to the 

dependency of the NN approximator to the state estimates ipẑ (as opposed to ipz in state 

feedback control (18)), we redefine the NN weight estimate update with the measured 

states replaced with their estimates as 

)ˆ(
ˆ

ˆˆ
ˆˆˆ)ˆ(ˆˆ

2

222
ipip

ip
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ipip

ipipipipipipipipipip
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WW
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                   (28) 

where 
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for all Ni 1 and np 1 . Next, we discuss the interconnected system stability. 

B. Stability Analysis 

Here we introduce the Lemmas 3 and 4 which are output feedback equivalents of 

Lemmas 1 and 2.  
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Lemma 4: The intermediate and desired virtual inputs as well as the subsystem p error in 

the states 1, pix , dpix ,1,  , 1,ˆ pix for the decentralized system (1) for Ni 1  and 11  np  

satisfy the following inequalities defined by 

  ipipipipippi yzKex  ˆ1,        

  1,,1, ˆ   piipipipipipdpi yyzKex  ,      1,1,1, ˆˆˆ   piipippiipipippi yyzzKex  , 

and 

  1,1,1,1,
~ˆˆ   pipiipippiipipippi zyyzzKex   

with ipe being an appropriate positive constant.  

Proof.  See Appendix.                                       

Lemma 5. The derivative of the desired virtual control inputs ipx in the decentralized 

system (1) with Ni 1 and np 2  satisfy the following inequality defined as 

11,,~
1

1

1,,

1

1,,
~)ˆ()ˆ(ˆ)ˆ( ipiip

p
p

s

ippiips

p

s

ippiipsip zyzx 








   zyz   with ips,z , ips,y , and 

ips,~z being appropriate positive functions of states estimates and errors. 

Proof. See Appendix.                                         

The main result of DSC with output feedback controller design is introduced 

following this assumption. 

Assumption 4: The control gain coefficient 1)( inin Xg  for Ni 1  is assumed.  In other 

words, the last state of each subsystem dynamics where the control input comes in has a 

unity control gain coefficient. 

Remark 3. Note that in each subsystem all the control gains except the last one are 

assumed to be functions of the states in contrast with [7]  and [9].   
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The main result of section IV is introduced next. 

Theorem 3: Consider the nonlinear interconnected system given by (1). Consider the 

Assumptions 1-4 hold and let the unknown nonlinearities in the subsystems and 

interconnection terms be approximated by NNs. Let the NN weight update be provided by 

(28) and the subsystem states estimated by the observer (17), then there exist design 

control gains ipK  and ipa , filter time constants ip , observer gains ipL , ipL , and constant 

  ,associated with the given control inputs such that the states ipz , ipy , and ipẑ  approach 

to  zero asymptotically for  all Ni 1 and np 1 . 

Outline of the proof. Here the approach involves three error systems due to the presence 

of observer states, i.e. ipz~ ,  ipẑ and ipy  for Ni 1 and np 1  where ipipip zzz ˆ~  . 

We proceed by defining a positive definite Lyapunov function  
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ipip yy  and with 

iPx̂ , ip  being constants in the compact set defined by 
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222
1W where 00 iX ,. When ipL and 

ipa  are appropriately chosen an appropriate   and sufficiently small ip make L negative 

semi definite (lacking NN weights errors) in the compact set ̂  for Ni 1  and 

np 1 . The sufficient conditions are summarized in the proof in Appendix. This 

further implies that if the initial states are within the set ̂ , then they will stay in the same 
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set for 0t by using [14 and Theorem 4.8)]. Consequently, 0L  for 0t and by applying 

Barballat's Lemma [15] the states the states ipz~ , ipẑ , and ipy  asymptotically converge to 

zero while the states ipW
~

remain bounded for  all Ni 1 and np 1 .          

V. Simulation Results 

Two examples are considered for verifying the proposed controllers.  

 Example 1 (Decentralized State Feedback Control): Consider a four subsystem-based 

interconnected nonlinear system (29) whose dynamics are given by 
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                         (29) 

The states of the system are initialized to 5.1;1 1211  xx ; 1;1 2221  xx ; 5.;5. 3231  xx ; 

5.;5. 4241  xx . The controller (18) for Ni 1 and np 1  along with the weight update 

law (16) is utilized with ini ux 1, . The objective of the controller is to regulate the system 

states to zero.  
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Fig.1 Interconnected system errors for state feedback NN controller 

 

 

 

 

The design gains and filter time constants are taken as 141312111  KKKK ; 

742322212  KKKK ; 5.042322212   ; 10043332313   . The satisfactory 

performance of the controller is depicted in Fig. 1 where the state errors eventually 

converge to zero. Fig. 2 illustrates the NN control inputs. The control inputs converge to 

zero while the NN approximation error is bounded. Also, Fig. 3 shows the selected NN 

weights. These results are as expected according to Theorem 2 where the system errors go 

to zero asymptotically while the NN weights stay bounded. 
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Fig.2 State feedback NN control inputs 

 

 

 

 

 

Fig.3 NN weights stability for state feedback controller 

 

 

 

 

Example 2 (Decentralized output Feedback Control): The system in Example 1 is chosen. 

The objective of the controller is to regulate the system states to zero. The controller (27) 

for Ni 1 and np 1  along with the observer (17) and the weight update law (28) is 

utilized with ini ux 1, . The design gains and filter time constants are given as  
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141312111  KKKK ; 742322212  KKKK ;  2212  01.04232  ; 

 2313  ; 1004333    141312111  LLLL ; 142322212  LLLL ; 141312111  LLLL ;  

142322212  LLLL ;  1 ; 135241312111  aaaa ; 7842322212  aaaa  

 

 

 

 

 

Fig.4 Interconnected system errors for output feedback NN controller 

 

 

 

 

The satisfactory performance of the output feedback controller is depicted in Fig. 

4 where the state errors eventually converge to zero even in the presence of observer. 

Figs. 5 and 6 illustrate the NN control inputs and state estimation errors, respectively, 

which converge.  Moreover, the neural network weight estimations are depicted in Fig. 7.  

The control inputs converge to zero while the NN approximation attains stable.  
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Fig.5 Output feedback NN control inputs 

 

 

 

 

 

Fig.6 State estimation errors ipx~  for output feedback NN controller 

 

 

 

 

VI. Conclusions 

In this paper, the stability of a class of large-scale nonlinear interconnected system 

with uncertainties in both subsystem and the interconnection terms is introduced even 

when the system does not satisfy the matching condition. By using a variant of the 
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projection scheme and dynamic surface control with NNs, the need for the repeated 

differentiation in the backstepping design procedure was overcome. The neural network 

approximation property is used to approximate the nonlinearities of the subsystems and 

interconnected terms. It is shown that the closed loop system is asymptotically regulated 

to zero with both state and output feedback control even in the presence of NN function 

reconstruction errors using a novel NN weight update law. Separation principle is not 

needed for the output feedback design. Simulation results show the effectiveness of the 

approach. 

 

 

 

 

 

Fig.7 NN weights stability for output feedback NN controller 
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Appendix 

Proof of Theorem 1: (a) Define the Lyapunov function   ip
T
ipipW WWL ˆˆ21,  . The first 

derivative of the Lyapunov function after the substitution of the NN weight update law 

(16) is given by  ip
T

ipipipipip
T

ipipipipW WWzWzL ˆˆ)(ˆ 22
,   0)(ˆ2 ipip

T
ipipip Wz  . 

Since 
, 0W ipL  , 

ipŴ  remains bounded such that M
ipip WW ˆ  0t  . (b) Define the Lyapunov 

function  
 



N

i

n

p
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ipip WW

1 1

~~
21 WL . By differentiating WL , using update law (16), and 

noting that 
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where   




 



M
ipip

M
ipip

M
ip WWW  max . Using (A-1), it can be inferred that the weight 
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estimation errors are bounded such that  .
~

ip
M
ipipW  .  This upper bound is a function 

of user selected bound for the NN weights and an upper bound on the target NN weights. 

Proof of Lemma 1: Step 1.From (3) we have  

1111112 )(ˆ
iiii

T
iii zKWzx    

Consider the set   being the same as the compact set over which the neural network 

approximation property applies and by using (16) and (A-1) it is assured that there is a 

maximum for the states T
iW 1

~
and for T

iW 1
ˆ as well in . Also, note that we can assume 

1111111 )()(ˆ
iii

M
iii

T
i eWW 


  by using a proper NN activation function. Hence, the 

following steps can be concluded. 

Step 1,  

  1112 iiii zKex                                      (A-2) 

Then, from (5) and (6) we have 

  21112 iiiidi yzKex                                 (A-3) 

and  
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Step  12  np  
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  ipipipipippi yzKex 1,                              (A-5) 

Consequently, from (11) and (A-5) 
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  1,,1,   piipipipipipdpi yyzKex                            (A-6) 

and 

  1,1,1,   piipippiipipippi yyzzKex                         (A-7) 

Proof of Lemma 2:  Step 1. From (2), (6), and (7) we have  
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Using the weight update laws (16), we have  
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for Ni 1 and np 1 . Therefore, using (A-9) and employing (A-2), (A-8), and (A-

10) for 1p , it yields 
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Step 2: From (2), (14), and (12) we have  
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Thus, by using Assumption 1 and Lemma 1 we have  
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where 21Z,i , 22Z,i , and 21Y,i are appropriate positive functions of the states and jqa is an 

appropriate positive constant. From (9), (12), and )(ˆ)(ˆ
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By using (A-8) and (A-13) we conclude that the terms 1iz and 2iz can be over 

bounded by terms bearing 1iz , 2iz , 3iz , 2iy , 3iy , and the interconnection terms as 

cofactors. Thus, by following a similar procedure to what we used in Step 1 (A-14) may 

be rewritten as  
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Note that 3ix  is a function of T
iiii KK ],,,[ 2121  .  

Step p, 12  np  
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Note that ipx  is a function of T
piipii KK ],,,,,[ 1,11,1    . 

Proof of Lemma 3. 
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Proof of Theorem 2: Since there are two error systems (i.e. ipz  and ipy for   Ni 1 and 

np 1 ) to be dealt with, here the proof is divided into two parts. 
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Employing ipz from (13) and (14) and expanding the first term in (B-1) yields the 

resulting terms as follows. According to Assumption 3 and Lemma 1 we have 

 



 
























p

s

is

si

si

issisisiipips

ipip

ip

p

s

ipipsis

ipip

ip

ipip

ipipip

y
y

zzKeX
Xg

z

Xx
Xg

z

Xg

Xfz

1 1,

1,

1,1,1,

1

)(
)(

)(
)()(

)(





 

   




































p

s

is

p

s

si

p

s

is

p

s

si

si

sisi

p

s

ipips

ipip

ip

yyzz

KeX
Xg

z

1

2

1

2
1,

1

2

1

2
1,

2
1,

2
1,1,

1

2

2

2
1

2)(
)(4 


                     (B-5) 

Define 

   





















 2
1,

2
1,1,

1

2

24

1
2)(

)(4

1
)(

si

sisi

p

s

ipips

ipip

ipip KeX
Xg 


                 (B-6) 

Next, by applying Assumption 1 and Lemma 1, the following term can be written 

as 
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Finally, from (13) we have 
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Summarizing (B-5) through (B-9), the term on the left hand side of (B-10) can be 

expressed as 
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where 

)(1,1, ipipipdpipi Xgxxx   . 

Similar to (B-7), the second term in (B-1) can be expanded as follows. 
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Using (B-11) and (B-12), we have 
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By using (B-1), (B-10) through (B-13), the first derivative is rewritten as 
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Now the second error system is simplified. 

Second error system ( ipy ): Define the Lyapunov function candidate as 22
ipip yL  for  

Ni 1 and np 2 . Then by using (9) and (12) the first derivative is given by 
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By employing Lemma 2, the first derivative, ipL , can be written as 
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where 01, niz , 01, niy , and 

 
)()(

)()()()(

65

432

ipipipip

ipipipipipipip








                            (B-19) 

Define the virtual control input 1, pix  as  
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ipdpiipipip
T

ippipi xzKWzx  )(ˆ
1,                                     (B-20) 

for   Ni 1 and np 1 where ipipipd yx  from (12) and the neural network 

)(ˆ
ipip

T
ipW   approximates function 

ipipip
T

ipip W   )()(  (introduced in (B-19)) where the 

functional reconstruction errors are bounded above M
ipip   . By plugging (B-20) into (B-

18) the first derivative is given by 
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where 
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1)(
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1
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 

                                     (B-22) 

and ),(max 11, 


 ppiip
M
ip X  (which is a known result in DSC literature [1-3]) for all 

Ni 1 and np 1  in the compact set  .  

Now, combine the individual Lyapunov function candidates as WT LLL  where WL is 

defined in Theorem 1 (part b). By differentiating TL and using Theorem 1 the first term in 

(17) gets cancelled with second term in (B-21) and the second term can be brought into 

the first term in (B-23). By differentiating TL , rearranging the summations, and noting 

that 
  


N

i

M

j

ji

N

i

M

j

ij aa
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we obtain 
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Additional simplification can be done by noting that 
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The first derivative in (B-24) can be represented as (B-25) by using Lemma 3 and 

the fact that 
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The term  
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By combining (B-25) and (B-26) and performing additional manipulations, the 

first derivative from (B-25) is given by 
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with  
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n
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p Npk )(2  for all Ni 1 and np 1  in the compact set  . The first 

derivative of the Lyapunov function TL is negative semi-definite if the initial states 

)]0(),0([ YZ  are inside the compact set  provided the design constants ip and ipK satisfy 
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This further implies that if the initial states are within the set , then they will stay 

in the same set for 0t by using [14 and Theorem 4.8). Consequently, 0TL  for 0t . 
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Now by applying Barballat's Lemma [15] the states ipz and ipy are guaranteed to 

asymptotically converge to zero locally as time goes to infinity for all 

Ni 1 and np 1 .                                     

Remark 4:  Design (B-29) suggests that the design constants are selected in a specific 

design order as  221 iii KK   inin K . This means that each design gain ipK and 

time constant ip  for all Ni 1 and np 1 depend on gains and time constants from 

previous steps. This sequence is also satisfied in the proof of Lemma 2. 

Proof of Lemma 4: Step 1. From (3) we have  

1111112 ˆ)(ˆˆ iiii
T

iii zKWzx                               (C-1) 

Consider the set ̂  being the same as the compact set over which the neural network 

approximation property applies and by using (16) and (A-1) it is assured that there is a 

maximum for the states T
iW 1

~
and for T

iW 1
ˆ as well in . Also, note that we can assume 

1111111 )ˆ()ˆ(ˆ
iii

M
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T
i eWW 


  by using a proper NN activation function. Hence, the 

following steps can be concluded. 

Step 1:  

  1112 ˆiiii zKex                                   (C-2) 

Then, from (5) and (6) we have 

  21112 ˆ iiiidi yzKex  ,                             (C-3) 

  221112 ˆˆˆ iiiiii yzzKex  ,                         (C-4) 

and  

  2221112
~ˆˆ iiiiiii zyzzKex  .                           (C-5) 
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Step p, 12  np  
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M
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T
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Consequently, from (11) and (A-5) 
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Proof of Lemma 5:  Step 1. From (20) we have  
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Step 2: From (26) we have  
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By using Lemma 1 for ipdx  and ipdipip xxz  ˆˆ , we conclude that   
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Note that 3ix  is a function of T
iiiiiii LLLLKK ],,,,,,[ 2121221  . Also, 
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                (C-19) 

Step p, 12  np  

 By induction we obtain 
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Note that ipx  is a function of T
piipiipiipii LLLLKK ],,,,,,,,,,,[ 1,11,11,21,1     .

Proof of Theorem 3: Due to the presence of observer in the output feedback controller 

design, there is a third error besides the two errors involved in the state feedback design. 

For convenience, we analyze the dynamics ipẑ , ipz~ , and ipy  where ipipip zzz ˆ~   for 

Ni 1 and np 1 . Thus, here the proof involves three error systems. Before we 

continue, we define 0ˆˆ 11   nini ii
yz . Moreover, define  00000101

~~ˆ iiiiiiii Kxxzzyyx  

000  ii eK , and 110  ii  .  

First error system ( ipz ~ ): Employing ipz  ( 11  np ) from (14), ipz̂ from (26), and noting 

that ipip xz ~~  we obtain 
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For np  , the error ipx~ becomes 

1
~ˆ)()(~
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ininpinipinin zLxLXXfz  .                       (D-2) 

Define 1 p
ipip xx  , 1ˆˆ  p

ipip xx  , 1ˆˆ  p
ipip zz  , 1~~  p

ipip zz  , 1 p
ipip yy  , and 

 Tinii zzz ~,,~~
1

   for Ni 1 and np 1 . Equations (D-1) together with (D-2) can be 

rewritten as 
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and 1)(  ipipin Xgg . Now, define the Lyapunov function ii
T

ii zPz  ~~
~~ xxL  with iPx~  being a 

constant. Taking the Lyapunov function first derivative, we have 
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xQx
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where ))(( ~

ˆ
minmin,1 inii XQxQ


   and )(~ ini XQx  is the solution of Lyapunov equation 

)()( 1~~1 inii
T

in XAPPXA xx   )(~ ini XQx . By using Assumption 1 and 3, (D-4) can be 

written as 
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By using Lemma 3, performing more manipulations, and summing over i, we 

obtain 

 

 

  

 

 



 

 

 










































N

i

N

j

j

n

p

iipi

N

i

n

p

iipii

N

i

n

p

ipiini

N

i

i

iniiiin

ini
N

i

ii
T

i

Pzpnypnzpn

zpnypnzpnP

yzpnXBP

z
XCPCXB

XB
zPz

dt

d

1 1

~

1

222

1 1

222
~

1 1

22

1

2
~

1

2

2~11

1min,1

1

~

~)1()1(2ˆ)1(2

~)1()1(2ˆ)1(2

2ˆ)1(2)(

~

)()(

)(
~~

x

x

x

x

Q

x







                 (D-6) 
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where  

  )1(2)1(2)1(
2

~
1 1

~~3   
pnbPPpnpnPC i

n

p

N

j jii xxx  , 

 


N

j jiiip PpnpnPbPC
1

~~
2

~4 )1(2)1(22 xxx , and )(max 1
ˆ

inXBb


 . 

Second error system ( ipz ˆ ): From (26) and (25), the observer dynamics can be rewritten as 

   

ipipdpiipdipiippiipip

ipipiipdpipiipdipip

ipipiippiipipip

yxxLzLzzL

yzLxzxzL

yxLxxLz



















,1,11,

1,1,1,

11,

~ˆˆ

~ˆˆ

~ˆˆ̂

 

which results 
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derivative, we have 
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Summing over i results 
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Third dynamical system ( ipy ): Define the Lyapunov function candidate as 22
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for Ni 1 and np 2 . Then by using (24) , (25) and 1 , the first derivative is given 
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M   . the value min1Q can be selected 

large when  ipL  is appropriately chosen (for Ni 1 and np 1 ). Then, by selecting 

adequately large ipa (for Ni 1 and np 1 ) min2Q can overcome the term 

ii CL 2 in the second term in (D-14). Finally, appropriate   and sufficiently 

small ip make L negative semi definite (lacking NN weights errors) in the compact set ̂ . 

These conditions are summarized as   
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 for Ni 1 and np 1 . This further implies that if the initial states are within the 

set ̂ , then they will stay in the same set for 0t by using [14 and Theorem 4.8.] 

Consequently, 0L  for 0t and by applying Barballat's Lemma [15] the states ipz ~ , ipẑ , 

and ipy  asymptotically converge to zero locally while the states ipW
~

remain bounded for  
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all Ni 1 and np 1 .  

Remark 5: In the case that ing is a function of the states, matrix 1B includes the 

coefficients ipa  (for Ni 1  and np 1 ). Consequently, satisfaction of conditions (D-

15) is limited to a restricted class of interconnected systems. 
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Abstract— In this paper, the power system with excitation control is represented as a 

class of large-scale, uncertain, interconnected nonlinear continuous-time system in strict-

feedback form. Subsequently dynamic surface control (DSC)-based adaptive neural 

network (NN) controller is designed to overcome the repeated differentiation of the 

control input that is observed in the conventional backstepping approach. The NNs are 

utilized to approximate the unknown subsystem and the interconnection dynamics. By 

using novel online NN weight update laws with second order error terms, the closed-loop 

signals are shown to be locally asymptotically stable via Lyapunov stability analysis, 

even in the presence of NN approximation errors in contrast with other NN techniques 

where a bounded stability is normally assured.  Simulation results on the IEEE 14-bus 

power system with generator excitation control are provided to show the effectiveness of 

the approach in damping oscillations that occur after disturbances are removed. The end 

result is a nonlinear decentralized adaptive state-feedback excitation controller for 

damping power systems oscillations in the presence of uncertain subsystem and 

interconnection terms. 

 

Index Terms – Power System stabilization, Excitation Control, Dynamic Surface 

Control, Decentralized Control, Adaptive Control,  
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I. Introduction 

In the recent years, the competitive market for power generation and energy 

services demand a more reliable power network. Due to offshore wind generation plants 

and solar cells, a noticeable uncertainty in the load flows will occur in a power system 

thus impacting the dynamic behavior and stability. Therefore excitation control, power 

system stabilizer (PSS), static VAR compensators, and other power system controllers 

can play even more important role in maintaining dynamic performance and power 

system stability, and thus, increasing reliability. Centralized control strategies for 

ensuring performance and stability are not viable due to the sheer size of the power 

network which causes time delays in acquiring power system bus voltages and currents.  

Decentralized control (DC) techniques [1-6], on the other hand, have been 

evolving for power systems so that they can achieve transient stability as well as steady 

state behavior in terms of damping oscillations caused by faults/disturbances. Under the 

DC techniques, load and frequency control methods of a multi-area interconnected power 

system are studied in [1-2]; however, linear power system model is used to design turbine 

and exciter voltage controllers. In [3], an LMI approach is chosen and sequential linear 

matrix inequality programming is utilized to design a power system stabilizer (PSS). In 

[4], by considering nonlinear power system representation, a suboptimal performance for 

all admissible variations of generator parameters is achieved using an LMI-based control 

approach.  

By contrast, in [5], a decentralized neural network (NN) control of a general class 

of nonlinear systems in strict feedback form has been proposed for power systems by 
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using backstepping technique while relaxing the matching condition (where in the 

matching condition the interconnected terms appear in the input domain only). The 

method is applied to design excitation and steam turbine controls rendering state 

boundedness due to NN reconstruction errors while encountering repeated differentiation 

of the control signal due to backstepping design. In [6], a linear parameter varying (LPV) 

representation of the power system is chosen at each operating point via linearization and 

subsequently, a decentralized PSS is designed. 

 Dynamic surface control (DSC) [7], on the other hand, has been receiving 

attention in this decade [7-9]. In the DSC scheme, the well-known problem of repeated 

differentiation of the control signal in the backstepping design is replaced by a series of 

algebraic terms which simplifies the implementation. Consequently, the DSC scheme 

results in asymptotic stability in a semi-global manner [7] provided the system dynamics 

are accurately known. Further attempts in [8] provide asymptotic stabilization for a class 

of uncertain nonlinear systems using adaptive DSC provided the control gain coefficient 

matrix being unity or (.) 1g   (where uxgxfx )()(  ) and the system uncertainties are 

assumed to be linear in the unknown parameters (LIP). Hence, NN universal 

approximation property is asserted in [9] to relax this LIP assumption for subsystem 

uncertainties in order to ensure state boundedness.    

 In this paper, the large-scale power system with generator excitation control is 

represented as a nonlinear uncertain, interconnected system, in strict feedback form. 

Subsequently, the DSC design framework is proposed while relaxing the matching 

condition (i.e. the interconnected terms appear in several dynamic equations as oppose to 

the one where the actual control input appears). Next, NNs are introduced to approximate 
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both subsystem and the interconnection dynamics.  Novel NN weight update laws are 

derived which render asymptotic stability even in the presence of NN approximation 

errors. Finally, simulation results on a 14-bus 5-generator power system with generator 

excitation control verify satisfactory performance of this controller in damping the 

oscillations after a disturbance has occurred.  

This paper is organized as follows. First background information is given in the 

next section. Subsequently, power system model development as well as excitation 

control is introduced in Section III. The DSC state feedback design is introduced in 

Section IV. A numerical example is presented in Section V. Conclusions are given in 

Section VI. 

II. Background  

Consider the dynamical system ( , )x f x t , where
nx  representing the state 

vector and ( )u t  is the input vector. Let the initial time be 
0t , and the initial condition 

be
0 0( )x x t .  The state

ex is considered as an equilibrium point of the system 

if
0( , ) 0,ef x t t t  . 

Definition 1: An equilibrium point
ex is locally asymptotically stable at 

0t  if there exists a 

compact set nS   such that, for every initial condition
0x S , ( ) 0 as ex t x t   .  If 

the compact set
0x S can be made arbitrarily large and if ( ) 0 as ex t x t   , then the 

equilibrium point is semi-globally asymptotically stable. 
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Next, a brief background on NN is given. A general function )(xf where 
nx  can 

be written as )()()( xxVWxf TT    with )(x  NN denotes functional reconstruction 

error vector,
12

N
RW  and 2Nn

RV


  represent target NN weight matrices.  

III. Power System as an Interconnected System 

In this section, a decentralized representation of a power system is obtained for 

nonlinear controller development. When a disturbance or fault such as a three-phase to 

ground occurs, the generator angles and speeds deviate from their normal operating range. 

Unless there is a controller to mitigate the oscillations, which bounce back and forth 

among multiple generators, the power system will not return to its normal operating state 

after the fault is removed. Generator excitation control is a means to alleviate the power 

system oscillations. Since the disturbance is a function of the power network voltages and 

angles as well as generator states, it is generally hard to design a centralized damping 

controller for the complex interconnected power network. Thus, in this paper, we aim at a 

decentralized excitation controller to mitigate the oscillations by using locally measurable 

states of the generator as well as its bus voltages and angles.  For this controller 

development, the large-scale power system has to be represented in a decentralized form 

which is discussed next. 

A. Model Development 

A power system is usually modeled using a combination of differential and 

algebraic equations. The differential equations represent generator states (i.e. angles, 

speeds, and dq voltages qE and dE ) whereas the algebraic equations represent bus active 

and reactive power balance relationships. For the purpose of controller design it is 
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desirable to have pure dynamical equations. In [12], authors have proposed an algebraic-

free power system representation based on the classical generator model. In order to 

incorporate the generator flux-decay states, the proposed model is extended herein. 

A two-axis model [13] is chosen for the purpose of power system representation. 

As a consequence, the generator dynamical equations are given as  
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where 
i  is the rotor angle of the i-th machine, i  is the difference between the 

generator angular speed and synchronous speed, qiE and diE are generator‘s dq variables as 

defined in [13],  fdiE is the excitation voltage, and niV   and ni  are the generator bus 

voltage and phase angle, respectively, as depicted by Fig. 1. In addition, 

 )cos()sin(, niidiniiqininiiei EEVBP                      (2) 

where B represents the reactance of the admittance matrix, n being the number of 

generators, and N denotes the number of non-generator buses in the power system as 

shown in Fig. 1. The bus voltage and phase angles of the power system buses are 

illustrated in Fig. 1 which are constrained by the set of algebraic power balance equations 

(neglecting resistances) as 
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Then, taking the derivative of (3) to obtain iV  and i  as 
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Fig.1 Power System 

 

 

 

 

By using (1) for qiE   and diE   and solving (4) and (5) and for iV  and i , we obtain a 

new set of dynamic equations as  
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where   TNnnn VVVV  21
,  TNnnn   21

,  and  Tn 21 is 

the generators‘ speed error vector. Also, define T
n][ 21   , 

T
qnqqq EEEE ][ 21
  , T

dnddd EEEE ][ 21
  ,  21[ fdfdfd EEE  T

fdnE ] ,   

T
eneee PPPP ][ 21   , and T

d
T

q
TT EEx  [ TTTT

fd VE ] . The entities for NNA  , 

NNB  , NND  , NNE  , nNC  , NNF  , 12 NR ,and nNG 2 can be derived by collecting the 

corresponding coefficients. Equation (6) can be rewritten in a more appropriate way as  
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It is important to note that this step is needed only for model development and is not 

required for implementation. 

B. Generator Representation 

Next, the flux-decay model [13] of the generator is given as 
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where Pei is the active load at each bus, and Mi = 2H/0 is the i-th machine inertia. In 

addition, the following equalities are valid 

diqidiqiqiqiei IIxxIEP )(                                  (9) 

and  

 )cos(;)sin( ,, niiniqiniidiniininiiqi VEBIVBI     .                   (10) 

Moreover, the power balance equations (3) will be simplified by employing the flux-

decay assumption  

qidiqidi IxxE )(  .                                (11) 

In this design we assume that the mechanical power miP ( ni 1 ) is slowly 

changing compared to the other control variables; thus 0miP . Now define  
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where eiieei PPP  0  and miie PP 0 . Consequently, the generator dynamics (8) can be 

rewritten in the state-space form as 
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The electrical diagram of the generator using the flux-decay model is depicted in 

Fig. 2 [13] where the voltage source and injected current are represented as 
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which yields  
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Fig.2 Generator flux-decay model 

 

 

 

 

Remark 1. Here busY  may contain nonlinear impedances (including constant loads). Thus, 

even if the system busY  is reduced to an nn matrix, non-generator bus voltages and 

angles are involved in computations. Thus, conventional busY reduction techniques cannot 

be applied to overcome non-generator nodes. 

C. Decentralized Nonlinear System Representation 

  The dynamical representation of the power system from (13) can be rewritten as 

a general class of L  interconnected nonlinear subsystems in affine form as 
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where index i , Li 1 , represents the subsystem (generator) number, L   is the number of 

subsystems (generators) in the power system, p , lp 1 , shows the generator state 

number, 4l is the order of the power system according to (13), (.)f and (.)g , represent 

unknown nonlinearities, (.)  denotes interconnected terms, with T
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Li 1 and lp 1 . By comparing the power system representation (13) and the 

general system description given by (17), it follows that 0421  iii fff , idii Txf 033  , 

121  ii gg , iidi MTg 03 1 , and qii Ig 4 . Also, 021  ii , with 
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 In the following, we findV  and   as a function of the states  ,  , and eP . 

Equations (15) and (16) yield expressions )cos( iqiE  and )sin( iqiE  as functions 

of ,V , and  which in turn yields qiE   and  to be functions of V , and  as 

),(1  VE iqi  , ),(2  Vii  .                           (21) 

Consequently, by using (9), (10), and (21) the variables qiI  and diI as well as eiP can be 

represented  as functions  ofV and  as 

),(3  VP iei                                   (22) 

Now, equations (11) and (21) (for Li 1 ) along with the N2 nodal power flow 

equations (3) give solutions for V and  in terms of i  for Li 1  as  

NiV iniini   1);(;)( 21                        (23) 
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D. Interconnection Terms 

In order to address the interconnection terms, the following assumption is needed 

for analyzing their upper bound. 

Assumption 1: The excitation voltage, fdiE , satisfies the following inequality [14] defined 

by 

  dididiqifdi IxxEE  K                              (24) 

where K is a positive constant. Consequently, by (10) and (21) we have 

),(4  VE fdi                                    (25) 

Also, by employing (11), (21), and (25), equation (6) can be simplified to  

NixcxcV sinisini   1);(;)( 21                          (26) 

where (.)1ic and (.)2ic  are positive nonlinear functions and TTTTT
s Vx ][  . Then, by 

using (22) and (23) we obtain 

NiPcPcV einieini   1);,,(;),,( 21                       (27) 

where ic1 and ic2  are positive nonlinear functions. Now, by considering the 

interconnection term (18) along with (10), (23), (24), and (27) it can be shown that 

),,( eiip P   for 43  p . This step is only for model development and is not 

necessary for practical implementation. 

Next, we show that 3i and 4i  are zero at steady state condition. Obviously, at 

steady state, we have 03  ieii MPx . Consequently, by using (18) at steady state, we 

obtain   qisqisqidiidsi IIxxT  03 1  where the index ―s‖ stands for steady state conditions. 

At steady state, the states 1ix , 2ix , and 3ix in (12) are zero. The term )( diqi xx  is zero for 
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round rotors and it is a small value for salient pole rotors.  Therefore, 03  si .  Also, 

since 03 ix  at steady state, we have 04 isx . In addition, 0qiI  and 04  si . 

Consequently, at steady state 04321  iiii xxxx , we have 0)0()0( 43  ii . 

IV. The Decentralized DSC Controller Design 

In this section, the design of the controller is now addressed. Equation (17) 

represents a nonlinear system in strict feedback form where a standard backstepping 

design can be applied. However, to overcome the repeated differentiation of virtual 

control inputs in backstepping, dynamic surface control design method [7] is utilized here 

where a first order filter is utilized instead of the derivative. However, due to the filter, 

additional error terms appear (i.e. ipy in Fig. 3) which complicates the stability analysis. 

The variables used in Fig. 3 are 
11 ii z  and T

ipip
T

piip yzX ],,[ 1,   where ipz  and ipy  are 

introduced in Fig. 3 for Li 1 and lp 1 .  

 

 

 

 

 
Fig.3 The DSC controller block diagram 
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Figure 3 illustrates the NN DSC controller design steps for the general system 

(17) where the interconnection and unknown nonlinear functions are present in each state 

dynamics. Therefore, one cannot use the assumption of matching condition. Instead, these 

terms have to be explicitly taken into account in the controller design which further 

complicates the stability analysis. Moreover, to deliver asymptotic stability, the NN 

weights have to be tuned appropriately. Finally, it is shown that if the following 

Assumptions are satisfied, the procedure shown in Fig. 3 can (semi-globally) stabilize the 

interconnected system (17) asymptotically where ipf , ipg , and ip are considered unknown 

as shown in Theorem 2. 

Assumption 2: Assume that the interconnection terms in (17) are bounded above in a 

compact set   such that  


N

j jpipjpip XX
1

)()(   where ipj is an unknown function 

with 0)0( ipj for Li 1  and lp 1 .  

Assumption 3: The control gains )( ipip Xg for Ni 1 and lp 1  satisfy 

)()(0 ipipipip
m
ip XgXgg   . 

Assumption 4: The nonlinear function in (17) satisfies 0)0( ipf  for Li 1 and 

lp 1 .  

A. Decentralized Controller Design 

The DSC controller design procedure is explained now. Since there are no 

unknown terms in the generator state dynamics 1ix and 2ix , no NNs are utilized in the first 

two steps.  
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Step 1: Define the error as 
1 1 1i i i dz x x  and 

1 1 0i iy x   where dix 1 is the desired set point for 

regulation.  Now define diiii xzKx 1112
  where 2ix  is the desired virtual input to make 

01 iz as t . For the stabilization problem, the desired values become 011  didi xx  . 

Next, the intermediate virtual input dix 2 is obtained by passing the desired virtual input 

2ix  through a first order filter consistent with the DSC literature [7] as  

2222 ididii xxx                                 (28) 

Also, define diii xxz 222    and 222 idii xxy  .  Thus,  

2222 iiii xyzx                                   (29) 

Then, from (17) and (29), the error dynamic is given by    

2221 iiii xyzz  .                                (30) 

Step 2: Define diiii xzKx 2223
 . By using (28), we get 222 iidi yx  ; thus, 

22223 iiiii yzKx  . Similarly, the intermediate virtual input dix 3 is obtained by passing  

3ix  through a first order filter as 

3333 ididii xxx                                 (31) 

Define diii xxz 333    and 333 idii xxy   to obtain   

3333 iiii xyzx                                  (32) 

Thus, from (17) and (32) we have 

diiiii xxyzz 23332                                  (33) 

Step 3: Due to the presence of unknown interconnection terms in 3ix  , we use a NN 

approximator in the desired virtual control to approximate the unknown nonlinear 

dynamics. Since it is assumed that other subsystems (generators) states are not available 
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in subsystem (generator) i, the NN approximator is only a function of available states 1ix  

through 4ix , i.e. 333333 )()( iii
T

iii W   where )( 33 ii   is part of unknown nonlinear 

function in 3ix . In addition, the target NN weights ipW and approximation error (for 

Li 1 and lp 1 ) are not known; thus, a tunable weight matrix is utilized [15] to 

calculate ipW  which results in ipŴ . Accordingly, we define the desired virtual control as 

diiiii
T
iii xzKWzx 32333334 )(ˆ   . From (31) we obtain 333 iidi yx  ; thus,  

333333334 )(ˆ
iiiiii

T
iii yzKWzx   . Passing 4ix  through a first order filter results in the 

intermediate virtual input dix 4 to be 

4444 ididii xxx                                 (34) 

Define diii xxz 444    and 444 idii xxy   to obtain   

4444 iiii xyzx                                  (35) 

and 

diiiii

iid

i

id

i
i xxyz

MT

x

T

x
z 33444

0

4

0

3
3 )(                        (36) 

Step 4: Similar to step 3, in the last step, the desired virtual input is defined as 

444444445 )(ˆ
iiiiii

T
iiii yzKWzux                      (37) 

by using (34) to replace for dix 4 . Note that, according to [7], there is no need for filtering 

the desired virtual input in the last step. Thus, iz4 dynamics can be written as 

diiiqifdiqii xuIEIz 444                              (38) 

Before proceeding, define
00101 iiiii Kzyyx  00  ie , 110  ii   and 

]
~

,
~

[
~

11 NnWWW   where 
ipipip WWW  ˆ~

 for Li 1 and lp 1 .  
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B. Stability Analysis 

Here, we discuss a novel NN weight update law by using the projection scheme 

[16] since NNs are utilized for nonlinear function approximation. An interesting property 

of updating the NN weights using the proposed projection scheme is the boundedness of 

the NN weights. 

Theorem 1[16]: Assume that single-layer NNs are utilized to approximate the unknown 

nonlinearities of the system dynamics and the interconnection terms in (17).   Let the NN 

weight tuning for the ‗ith‘ subsystem be provided by  

)(
ˆ

ˆˆ
ˆ)(ˆ

2

222
ipip

ip

T
ipip

ipipipipipipipipipip

W

WW
zWzzW  

                   (39) 

where 0)(ˆ&ˆˆ0 2  ipipip
T

ip
M

ipip
M

ipip zWWWorWWif  ; 0)(ˆ&ˆ1 2  ipipip
T

ip
M

ipip zWWWif  ;  

M
ipip WWif  ˆ1  for all Li 1 and lp 1 , with M

ipW denoting the user selected 

bound for the weights ipŴ . Then, the weight estimates remain within the user selected 

bound such that M
ipip WW ˆ for 0t  provided the initial weights start within the set defined 

by M
ipip WW ˆ  at 0t ;                                

The NN weight update law is a variant of the projection algorithm [17] wherein a 

quadratic term of the error is employed along with a new term ipipip Wz ˆ2 for relaxing the PE 

(Persistency of Excitation) condition.  This ensures asymptotic stability in error dynamics 

ipz  and ipy  for  all Li 1 and lp 1 . The user selected bound M
ipW on the NN weights 

can play an important role for the function approximation.  Conservative bound selection 

(i.e. small M
ipW ) can result in significant reconstruction errors, which should be avoided. 
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This may cause the weight estimates ipŴ  to stay away from the actual weights ipW . 

Nevertheless, the system errors regulate asymptotically to zero while the weight 

estimation ipŴ  are bounded.   

Theorem 2: Consider the nonlinear interconnected system given by (17). Consider the 

Assumptions 2-4 hold and let the unknown nonlinearities in the subsystems and 

interconnection terms be approximated by NNs. Let the NN weight update be provided  

by (39), then there exist a set of control gains ipK  and filter time constants, ip ,associated 

with the given control inputs such that the states ipz  and ipy  approach to zero 

asymptotically (local) for all for Li 1 and lp 1 .                

It is shown in [16] that if the Assumptions 2-4 hold and the unknown 

nonlinearities in the subsystems and interconnection terms are approximated by NNs  the 

states ipz  and ipy  approach zero asymptotically for  all Li 1 and lp 1 provided 

that the NN weight update is provided by (39) and control gains ipK  and filter time 

constants, ip are chosen properly. In addition, from Section III, a power system satisfies 

Assumptions 2 through 4. 

V.  Simulation Results 

The method introduced in Section III is utilized to design damping controller for 

generator excitation control. The proposed design is summarized in Table 1 and a 

comparison of design complexity with backstepping method is given. Note the increased 

complexity when dealing with the term dtxd di4
 in backstepping (in row 11). In the 
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Table, ipK  is the stabilizing design constant for ni 1 where n is the number of 

generators in the multi-machine power system and 41  p . 

 

 
Fig. 4 The IEEE 14-bus, 5-generator power system 

 

 

 

 

Also, ip is the filter time constant at each step p for 42  p . In addition, 3
ˆ

iW  and 

4
ˆ

iW  are the NN weight estimate matrix while 3i (.) and 4i (.) are the NN activation 

function vector. Since there are no unknown terms in the first and second state dynamics 

only two NN are utilized per generator. In other words, the generator angle and speed 

dynamics do not require NN approximators. The IEEE 14-bus, 5-generator power system 

shown in Fig. 4 is considered and it is subjected to a three-phase disturbance. The 

generator data are given as 006.0
dix , 02.0dix , 019.0qix , 70 idT , 1EiK , 

75.0EiT for 51  i whereas 52  isi MH  for 5,4,1i ; and 1iH  for 3,2i  . The 

power system load specifications are given in Table 2. All the generators have speed 

governors and the excitation control is implemented by employing the DSC-based NN 

controller as proposed in (37) and (39).  The power system loads are considered as 
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constants. The control objective is to damp the generators oscillations caused by a three-

phase fault.  

Although the stability analysis is based on the lossless power system dynamical 

model as described in (6), the simulations are performed using the complete power 

system dynamic representation with line resistances and two-axis generator model in 

order to evaluate the effectiveness of the representation and the controller design. 

The power system modes are 11.3561, 5.9101, 2.6977, and 2.1026Hz.  A three-

phase disturbance is injected to the bus 1, 6, and 11 at st 2.0 and removed at st 4.0  

seconds. Generators 1 through 5 are chosen for control. The control inputs iu and weight 

estimate 110 (i.e. 10 neurons are used in the output layer) matrices 3
ˆ

iW  and 4
ˆ

iW  

(for 51  i ) are obtained by using (37) and (39), respectively, where the NN weights are 

tuned throughout the simulations by using on-line learning. The voltage RiV is calculated 

using (20) and is subjected to hard limits such that the voltage satisfies 70  RiV p.u. to 

avoid any impractical excitation voltages fdiE . 

The design gains and filter time constants are chosen as follows: 001.011 K ; 

 3121 KK 0001.05141 KK ; 002.012 K ;  3222 KK 0002.05242  KK ; 513 K ;  3323 KK  

5.05343  KK ; 1.514 K ;  3424 KK 51.05444  KK ; 5.21  ;  2322   52524  ; 2.031  ; 

 3332  23534  ; 1.041  ;  4342  14544  ; 1.0ip  for 51  i  and 

42  p .The weight estimate matrices 3
ˆ

iW and 4
ˆ
iW are initialized randomly for 51  i . 

Moreover, no offline training is used to tune the weights in advance and no initial 

knowledge about the power system dynamics, complete knowledge of interconnection 

dynamics, or power system topology are needed for the controller design. 
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Table 1. DSC NN design procedure 
Sequence DSC  Backstepping 

1 errors 0; 1111  iiii xyxz  
11 ii xz   

2 filter input 112 iii zKx    N/A 

3 virtual input  2222 ididii xxx   
112 iidi zKx   

4 errors 
diii xxz 222 

222 idii xxy   
diii xxz 222

  

 

5 filter input 22223 iiiii yzKx   N/A 

6 virtual input 3333 ididii xxx   222113 iiiiidi zKxKxx 

 

7 errors 
diii xxz 333 

333 idii xxy   diii xxz 333
  

8 filter input 
3333

33334 )(ˆ

iiii

ii
T

iii

yzK

Wzx







  
N/A 

9 virtual input 4444 ididii xxx   

2

2

0

2

0
02

11203

3333334

1

1
)

1(

)(ˆ

i

i

iid

i

iid
idi

iiiidi

iiii
T

iidi

z
K

MT

K

MT
TK

KKKTx

zKXWzx











 

 

10 errors 
diii xxz 444 

444 idii xxy   
diii xxz 444

  

11 input 
4444

4444 )(ˆ

iiii

ii
T

iii

yzK

Wzu







  

dt

xd
zK

XWzu

di
ii

ii
T

iii

4
44

4444 )(ˆ




 
 

12 RiV  
)

(

fdiEiEi

qiiEiRi

ETK

IuTV




 

)

(

fdiEiEi

qiiEiRi

ETK

IuTV




 

 

 

 

 

Table 2. Power System Loads and Generations 
Gen no. P (p.u.) Q (p.u.) Gen 

no. 

P (p.u.) Q (p.u.) 

1(slack) -3.1184  0.2950 7  0.0000  0.0000 

2 -0.1830 -0.4509 8  0.0760  0.0160 

3  0.9420 -0.0846 9  0.5950  0.1660 

4  0.1120 -0.4601 10  0.3900  0.0580 

5 -0.1120 -0.3102 11  0.0350  0.0180 

6  0.4780 -0.0390 12  0.0610  0.0160 
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Fig. 5 Excitation/VR controller block diagram  

 

 

 

 

The NN activation function is chosen as  )( ipip )( ip
T

ipVsigmoid  [16] 

for 43  p  where ipV  is chosen at random initially and held fixed afterwards to form a set 

of basis functions needed for the NN approximation [10]. 

For comparison, the results from the DSC design are compared with a voltage 

regulator (VR) (in the presence of steam governor) shown in Fig. 5. The VR is designed 

by using conventional methods [13] defined by )02.1(400)(A ssG i   for 51  i . In 

addition, 03.0FiK  and 10FiT  are employed. Figures 6 through 8 depict that a 

significant oscillation damping is achieved for a medium size power network by using the 

proposed decentralized controller when compared to the case with conventional 

controller.  
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Fig. 6 Generator speeds with DSC/VR control with fault on bus 1 

 

 

 

 

 
Fig. 7 Generator speeds with DSC/VR control with fault on bus 6 

 

 

 

 

Moreover, Figs. 6 through 8 illustrate the robustness of the proposed controller 

where the oscillations from the faults occurring at different locations have been damped 

without changing the gains and filter time constants even when the subsystem dynamics 

and interconnection effects are unknown. Note, however, that damping performance 
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varies with the fault location. This is due to different after-fault conditions imposed on 

the controller. 

Figure 9 shows  that the variations in excitation voltages, fdE , have fast transients 

as well as slow dynamics where the fast transients are damped in the first few seconds 

where the slow dynamics are due to the generator speed controller (governor) and are 

damped in a longer time. The NN weight estimates in Fig. 10 are bounded as expected. 

Overall, from these results, the proposed control is very effective in damping the 

oscillations even in the presence of numerous modes.  

 

 

 

 

 
Fig. 8 Generator speeds with DSC/VR control with fault on bus 11 
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Fig. 9 Generator internal voltages with fault on bus 1, 6, and 11 

 

 

 

 

 
Fig. 10 Neural network weight estimates 3

ˆ
iW with fault on bus 6 
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VI. Conclusions 

In this paper, the power system is represented as a large scale interconnected 

nonlinear system with uncertainties in both subsystem and the interconnection terms 

where the system does not satisfy the matching condition. By using a new variant of the 

projection scheme and dynamic surface control with NNs, the need for the repeated 

differentiation in the backstepping design procedure was overcome. The neural network 

approximation property is used to approximate the nonlinearities of the subsystems and 

interconnected terms. It is shown that the closed loop system is asymptotically regulated 

to zero with state feedback control even in the presence of NN function reconstruction 

errors. Simulation results on power system with generator excitation control shows the 

effectiveness of the approach in damping oscillations that occurs after faults in power 

systems. 
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Abstract— In this paper, a novel decentralized controller is introduced for a class of 

interconnected nonlinear discrete-time systems in affine form with unknown subsystem 

and interconnection dynamics.  A single neural network (NN) is utilized in the proposed 

decentralized controller to overcome the unknown internal dynamics as well as the 

control gain matrix of each subsystem while the unknown interconnection terms are 

accommodated by using a mild assumption. All NN weights are tuned online by using a 

novel update law. By using Lyapunov techniques, all subsystems signals are shown to be 

uniformly ultimately bounded (UUB). Simulation results are shown on a general 

interconnected nonlinear discrete-time system in affine form first to show the 

effectiveness of the approach. Subsequently, interconnected electric power system with 

excitation control is considered as an example and the proposed controller is utilized to 

mitigate the power fluctuations after a disturbance has occurred.  

 

Index Terms –Decentralized Control, Neural Networks (NN), Interconnected Nonlinear 

Discrete-time (DT) Systems.  
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I. Introduction 

In the recent years, there has been a great interest in the decentralized control of 

interconnected nonlinear systems using neural networks (NNs) [1-6]. The decentralized 

control effort has focused mainly on nonlinear continuous-time systems [1-4] and limited 

effort has been applied for the discrete-time case [5][6]. Although for many applications, 

continuous-time controller design can be considered, in practice discrete-time control 

approaches are preferred for computer implementations [7] since controller designs in 

continuous-time become unsatisfactory when implemented using low sampled hardware. 

Moreover, due to sheer size of large-scale interconnected systems such as electric power 

systems, the feedback delays degrade the controller performance thus necessitating more 

decentralized control techniques.  Therefore, decentralized controller development in 

discrete-time has to be explicitly considered for large-scale systems. 

Decentralized control (DC) techniques in continuous-time [8-13] have been 

developed for power systems in order to obtain steady state behavior as well as transient 

stability by means of damping oscillations caused by disturbances. However, many 

authors [8-11] have not offered stability proofs except simulation results on power 

systems. On the other hand, in [12], a decentralized neural network (NN) control of a 

general class of nonlinear continuous-time systems in strict feedback form has been 

proposed for power systems by using backstepping when certain system dynamics are not 

known. Rigorous proofs are offered in this paper although the controller design is 

presented in continuous-time in comparison with a centralized discrete-time controller 

design for power systems in [14]. However, the decentralized controller development in 

discrete-time to treat the large-scale systems such as the power systems is not yet 
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undertaken due to the fact that the stability proofs in discrete-time are more involved than 

their continuous-time counterparts since the first difference of a Lyapunov function 

candidate is quadratic with respect to the states whereas it is linear for the case of 

continuous-time system.  

Therefore, in [5] the discrete-time NN controller design for a class of 

interconnected nonlinear systems is considered where the interconnected terms are 

considered to be over bounded by a constant. Moreover, the control gain matrix is taken 

to be unity (i.e. 1)( xg ). In [6] the interconnected system in discrete-time is considered 

and a stabilizing robust controller is proposed. However, the controller does not utilize 

the NN to approximate the system uncertainties.   

In this work, a novel decentralized NN controller is developed for a class of 

interconnected nonlinear discrete-time system in Brunovsky canonical form where these 

restrictions are relaxed while realizing that the subsystem internal dynamics, input 

coefficient matrix, and the interconnected terms are unknown.  A single NN is used to 

approximate the control gain matrix )(xg as well as the subsystem internal 

dynamics )(xf for each subsystem.  By using Lyapunov stability approach, boundedness of 

the tracking errors as well as the NN weights are proven. Moreover, the generator 

excitation control problem in the electric power systems can be expressed as an 

interconnected nonlinear discrete-time system. Consequently, the proposed decentralized 

NN control approach is applied as a damping controller to reduce generator excitation 

voltage oscillations caused by disturbances. 

This paper is organized as follows. First, the class of interconnected nonlinear 

discrete-time system in affine form and its associated decentralized NN controller 
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development are introduced in Section II.  Section III presents the power system discrete-

time model development, while numerical simulations and concluding remarks are 

provided in Sections IV and V, respectively. 

II. Nonlinear Interconnected System 

Consider the class of N interconnected subsystems defined as 

)()(

)())(())(()1(

))(()1(

))(()1(
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1,1
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






                      (1) 

where index i  represents the subsystem number, N is the number of subsystems, n is the 

order of the subsystem, ))((1 kxf ii to ))(( kxf iin are functions of the subsystem states and  

represent subsystem nonlinear internal dynamics, ))(( kxg ii is the input gain matrix, )(xi  

denotes interconnected terms of the subsystem „i‟ with TT
N

T
xxx ],,[ 1  , T

inii xxx ],,[ 1  for 

Ni 1 . Note that, the Brunovsky Canonical form is an especial case of system (1). 

Define the tracking error as 

)()()( kxkxkz ipdipip                                 (2) 

for Ni 1  and np 1 , where )(kxipd is the desired trajectory for the state )(kxip  , and 

T
inddiid xxx ][ 1   for  np 1 . Next, define the filtered tracking error as 

)(]1[)( kzkr i
T

ii                                   (3) 

where T
iniii kzkzkzkz )]()()([)( 21  and ][ 1,21  niiii   . The coefficients 1i  through ip  are 

selected such that the poles of the characteristic equation  qq ii 21)(    

12
1,


  nn

ni qq  are inside the unit disc. Note that for system stabilization, the desired 
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values become 0ipdx  for np 1 . Before we proceed, the following mild assumptions 

and definition are needed. 

Assumption 1: Let the interconnection terms in (1) be bounded above in a compact set   

such that  



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N

j

jiji

N

j

jiji rrx
1

2
0

1

2
)()(                              (4) 

where i0  and ij are known small positive constants for Ni 1  and nj 1 in contrast 

with [5]. 

Assumption 2: The input gain ))(( kxg ii of each subsystem in (1) is bounded away from 

zero and is overbounded in the compact set . Without loss of generality, we assume that 

it is positive and satisfies  

maxmin ))((0 iiii gkxgg                              (5) 

in a compact set where minig and maxig are positive real constants. 

Remark 1: Assumptions 1 and 2 are standard in the control literature [16]. 

Definition. (Uniform Ultimate Bounded (UUB))[20]. Consider the dynamical system 

)(xfx  with nx  being a state vector. Let the initial time be 0t  and initial condition 

be )( 00 txx  . Then, the equilibrium point ex is said to be UUB if there exists a compact 

set nS  so that for all Sx 0 there exists a bound B and a time ),( 0xBT such that 

Bxtx e )( for Ttt  0 . 
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Next the decentralized controller development is introduced. 

A. Controller Design  

In this part we develop a NN controller which employs the filtered tracking error 

and NN function approximation capability and a novel NN weight estimate tuning 

scheme. The stability criterion is then elaborated to show the stability of the filtered 

tracking error as well as NN weight estimates.  

Starting with (3), the filtered tracking error dynamic can be written by using (1) 

and (2) as  
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The ideal stabilizing control input can be defined as )(krKuuu iiidii 
  where  
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p ipdiipipindiiniiid kxkxfkxkxfkxgu   to achieve 

asymptotically stable dynamic )()1( krKkr iii  where 1iK  is a positive design constant. 

However, in practical applications idu is not available since the internal dynamics ))(( kxf iip  

and control gain matrix ))(( kxg ii are unknown for Ni 1  and np 1 .  Thus, we employ 

NN function approximation property to approximate idu as (6) 
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where iW  is the NN ideal weight matrix and (.)i is the approximation error which 

satisfies max(.) ii   . In practice, the ideal weights iW  and approximation error i  are not 



145 
 

available either and only an estimation of the NN weights is available. Thus, idu   is 

approximated as idû by a NN to obtain the control input iu  as (7) 

)())1(,(ˆ)(ˆ krKkxxWkrKuu iiidii
T
iiiidi                       (7) 

where T
iŴ  is the NN weight estimation matrix. Define the weight estimation error 

as iii WWW  ˆ~ . Consequently, by using (7) and adding and subtracting idu  in (6), the 

filtered tracking error (3) dynamics becomes  
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Define the NN weight update law as 

)1()(ˆ)1(ˆ 1



krckWckW iiiiii

T
i                           (9) 

where 1ic is a design positive constant. By using )()1( kWkW ii   , and subtracting the 

ideal weights from (9), we have 

iiiiiiii
T

i WcIkrckWckW )()1()(
~
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~ 1


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B. Stability Analysis 

In this part we prove that the nonlinear discrete-time interconnected system (1) 

along with controller (7) and the NN weight update law (9) are stable while the tracking 

errors )(kri  and weight estimation errors )(
~

kWi  of the individual subsystems are bounded 

in the presence of unknown internal dynamics ))(( kxf ii , unknown control gain 

matrix ))(( kxg ii , and unknown interconnection terms )(Xi for Ni 1 . We introduce the 

following theorem to show the stability of the interconnected system as well as the NN 
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weight estimation errors. This theorem guaranties boundedness of the weight estimation 

errors )(
~

kWi  and the filtered tracking errors )(kri . Once the filtered tracking error )(kri is 

proven bounded, it is treated as a bounded input )(kri  for the linear time-invariant system 

(3) as )(11 kzii  )2(11, nkzini  )()1(1 krnkz ii   which yields bounded results for 

the output )(1 kzi  for all Ni 1 .   

Theorem 1 (Discrete-time Decentralized NN Controller Stability): Consider the 

nonlinear discrete-time interconnected system given by (1). Consider the Assumptions 1 

and 2 hold and that the desired trajectory ipdx ( for all Ni 1 and np 1 ) and initial 

conditions for system (1) are bounded in the compact set . Let the unknown 

nonlinearities in each subsystem be approximated by a NN whose weight update is 

provided by (9). Then there exist a set of control gains iK  and filter tracking error 

coefficients i , associated with the given control inputs (7) such that the filtered tracking 

error )(kri  as well as the NN weight estimation error iW
~

 are UUB for all Ni 1 . 

Proof. Define the overall Lyapunov function candidate
rW LLL  , where 
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Substituting the filtered tracking error (8) into (11) and expanding the terms, we obtain 



147 
 

  



 




















N

i ki

i
N

i

iiiiii
T

iki

N

i

rir

g

kr
XrKxWg

LL

1

2

)1(1

2

)(

1

)(
)())(

~
( 

                (12) 

Next, by using (10), the first difference due to the second term in the overall Lyapunov 

function candidate is obtained as  
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Expanding the first difference of the overall Lyapunov function candidate Wr LLL   

by using (11) and (12) to obtain  
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Applying the Cauchy-Schwarz inequality 2
21 )( naaa   )(

22
2

2
1 naaan     

and i
T

ii
T

i WW 
~~

i
T

ii
T

i WW
~~

 , yields 



148 
 

 
























































































































N

i

ii

iiii

iiiii

i
T

ii
T

ii

iiiii

i

ii

ii

i

i

iiii

iiiii

iiiiii

i

rK
kgc

kgcckgkg

WWcI

WccW
cc

Wc
kgc

kgcckgkg

ccc
kg

L
1

22

222

212

2

2212

222

222

212

2221

)(4

)()1(4)()(1

)(2

)1(
)1(

1
1

)(4

)()1(4)()(1

4)1(4
)(

1
2















 































N

i

i
T

ii
T

iiiiiiiii

N

i

i
T

i

i

i
N

i i

i

kWkWkgckgcckg

kWkW
c

kg

kr

1

22221

11

2

)(
~

)(
~

)(4)()1(4)(

)(
~

)(
~1

)1(

)(




               (15) 

Note that by using Assumption 1 we have  
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Therefore, 0L  in (16) provided the following conditions hold  
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
  . This guaranties the boundedness 

of the weight estimation error )(
~

kWi and filtered tracking error )(kri which in turn shows 

that the tracking errors )(kzi are UUB for all Ni 1 as explained.            ■ 

Hence, the Lyapunov stability analysis shows that the proposed NN controller 

guarantees that the closed-loop signals are UUB with the bounds given by (17) and (18). 

Note that the design constant ic should be chosen close to one to retain a small bound. In 

the next section, the proposed controller is applied to achieve stability of the 

interconnected power systems.  
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III. Case Study 

“Power system stability is the ability of an electric power system, for a given 

initial operating condition, to regain a state of operating equilibrium after being subjected 

to a physical disturbance, with most system variables bounded so that practically the 

entire system remains intact” [17]. There must be a controller to mitigate the oscillations 

after a fault is occurred such that the power network goes back to its normal operating 

condition after the fault. Generator excitation control is a means to mitigate the power 

system oscillations. Since the disturbance is a function of the power network voltages and 

angles as well as generator states, it is generally hard to design a centralized damping 

controller in the large-scale power system.  

In this section, we aim at designing a discrete-time decentralized generator 

excitation controller to damp the oscillations by using generator measurable states in an 

interconnected power system consisting of multiple generators.  

A. Power System Model Development 

A power system is usually modeled using a combination of differential and 

algebraic equations. For control design it is desirable to have pure dynamical equations. 

In [18], authors have proposed a continuous-time algebraic-free power system 

representation based on the generator classical model. In order to incorporate the 

generator flux decay states, the proposed model can be extended. 
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Fig.1 Power System 

 

 

 

 

The two-axis model [18] is chosen for controller design. Then, the generator 

dynamical equations are given as  
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where 
i  is the rotor angle of the i-th machine, i  is the difference between the generator 

angular speed and synchronous speed s , qiE and diE are generator dq variables as defined 

in [19],  fdiE is the excitation voltage, Mi = 2H/0 is the i-th machine inertia, eiP  is the 

generator output electric power,  miP  is the mechanical power , and NiV   and Ni  are the 

generator bus voltage and phase angle, respectively, as depicted by Fig. 1 with N and L 

represent the number of generators (subsystems) and the number of non-generator buses 

in the power system, respectively . In addition 

 )cos()sin(, NiidiNiiqiNiNiiei EEVBP    ,                (20) 
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where B represents the reactance of the admittance matrix. The voltages and phase angles 

of the power system buses shown in Fig. 1 are constrained by the following set of 

algebraic power balance equations (neglecting resistances) as 
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Then, taking the derivative of (21) and (22) to obtain iV  and i  terms, we have 
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for LNli  ,,1 .    

By using dynamic equations (20) for qiE   and diE   and solving equations and for iV  

and i , we obtain a new set of dynamic equations as  
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where   

 TLNNN VVVV  21 ,  TLNNN   21
, ,  TN 21  is the 

generators speed vector, (.)R , and (.)G are nonlinear functions of the states. In (25) 
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eNeee PPPP ][ 21   . The entries for LLA  , LLB  , 

LLD  , LLE  , NLC  , LLF  , 12 LR , NLG 2  can be derived by collecting the corresponding 

coefficient. Equation (25) can be rewritten in a more appropriate way as  
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It is important to note that this step is needed for model development only and is 

not required for implementation. 

B. Generator Model 

In order to analyze the stability of the generator, the flux-decay model [19] is 

chosen. Then, the generator dynamical equations are given as 
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In addition, the following equalities are valid 
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Moreover, the power balance equations will be simplified by employing the flux-decay 

assumption as 
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In this design we assume that the mechanical power miP ( Ni 1 ) is slowly changing 

compared to the other control variables; thus, 0miP . Define,  
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where ieP 0 is the steady state generator electric output power. Consequently, the generator 

dynamics (31) can be rewritten as 
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where 

fdii Eu                                      (33) 
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In [18] authors have shown that 

)(1 xii  ,                                   (35) 

where (.)i is a nonlinear function of the generator states, T
Nxxxx ][ 21  , 

T
iiii xxxx ][ 321 , and that 01  i at steady state conditions, that is, when   0x . 
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Knowing that the steady-state conditions result 0ir and vice versa, we can assume that 

 
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j jiji krk
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22

1 )()(   for Ni 1 , where ij  is a positive constant and )(kri is the 

filtered tracking error defined in (3). Since i0 is a constant, Assumption 1 is satisfied for 

interconnected power systems. 

C. Power System Dynamical Model in Discrete-time 

The generator representation in discrete-time can be obtained by discretizing the 

continuous-time representation (32) as  
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where T is the time step and )( 0idiqii TMITg  . Note that for this system, n=3 since the 

generator (subsystem) has third order dynamics. The power system representation in 

discrete-time (36) is similar to system (1) with )()())(( 121 kxkTxkxf iiii  , )()())(( 232 kxkTxkxf iiii  , 

)()())(( 3033 kxTkTxkxf iidiii  ,  ))(( kxg ii
 )( 0idiqi TMIT  , and iT  is the interconnection 

term where T
iiii kxkxkxkx )](),(),([)( 321  and T

Nxxxx ][ 21  . Also, recall that 

Assumptions 1 and 2 ( )( 0idiqii TMITg   and ig  is bounded away from zero and 

ig exists) hold for the power system as explained earlier.   

Remark 2: It is worth mentioning that in the generator dynamics with ))(( kxg ii  

and ))((3 kxf ii in (36) are known only if the generator parameters idT 0  and iM as well as 

the generator current qiI are known a priori. In a practical scenario, these values are not 
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accurately known. Thus, NN controller (7) and (9) can be utilized in the control input to 

improve the overall interconnected power system stability in the absence of the 

mentioned values. In practice, while generator angle, speed and power are measured, 

obtaining qiI requires knowledge of NiiB , , according to (29). 

Remark 3: If the generator values mentioned in Remark 2 if (.) and
ig (.) are known, the 

control input is simplified as  
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IV. Simulation Results 

Example 1. Consider the following fourth order-subsystem interconnected nonlinear 

discrete-time system to demonstrate the effectiveness of the NN controllers developed in 

this work as 
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where  
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with sampling interval T being 1ms. The objective of each subsystem controllers is to 

make each subsystem state track a desired trajectory defined as )1.0sin(1.0)(11 kTkTx d  , 

)02.0sin(1.0)(21 kTkTx d  , )1.0sin(1.0)(31 kTkTx d  ,  )01.0sin(1.0)(41 kTkTx d  . Then, controller 

(7) along with NN weight update law (9) is utilized to achieve this goal. The weight 

estimate matrices iŴ  are initialized at zero for 41  i . Moreover, no offline training is 

used to tune the weights in advance even though the nonlinear system and the 

interconnection dynamics are not needed for the controller design. The NN activation 

function is chosen as  ))1(,( kxx idii ))]1(,[( T
idi

T
i kxxVsigmoid   [20] where iV  is 

chosen at random initially and held fixed afterwards to form a set of basis functions 

needed for the NN function approximation [21]. 

The initial values are 1;1 1211  xx ; 1;5.1 2221  xx ; 2;1 3231  xx ; 1;2 4241  xx . The 

design gains are taken as
321 KKK  01.04  K ;  321  2.04  ;  321   

01.04  . The simulation is performed under two different values 9.ic and 1ic  for 

41  i . It is shown by the simulation that 1ic gives smaller NN.  
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Case 1( 9.ic ): The satisfactory performance of the controller is depicted in Fig. 2 where 

the states eventually converge to a close proximity of the desired trajectory indicating the 

boundedness of the tracking errors as concluded in the Theorem 1. Figure 3 illustrates the 

NN control inputs.  

 

 

 

 

 

Fig.2 Interconnected systems states 1ix  and desired trajectories dix 1  for 41  i  

with 9.ic  

 

 

 

 

Also, Fig. 4 shows the representative NN weights. These results are as expected 

according to Theorem 1 where the NN weights stay bounded and converge to small 

values. In order to evaluate the neural network performance the function   

 )1()1())(())(()()( 1123
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T

i             (38) 
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and its corresponding NN approximation i
T
iW ˆ are depicted in Fig. 5. The NN appear to 

approximate the function satisfactorily. 

 

 

 

 

 
Fig.3 Interconnected systems control inputs with 9.ic  

 

 

 

 

Case 2( 1ic ): Case 1 is repeated here with the update law (9) with 1ic  for 41  i . 

Although the controller performance is almost the same as in case 1, as shown in Figs 6 

and 7, certain NN weight estimates increase to higher values than in the previous case 

(Fig. 8). The function approximation error with 9.ic is less than that of 1ic   depicted in 

Figs. 9, according to Fig 10. Larger values of weight estimates can cause over 

approximation of the nonlinear function throughout the simulation. 
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Fig.4 NN weight estimates iŴ  for 41  i  with 9.ic  

 

 

 

 

 

Fig.5 Actual nonlinear function and NN approximation for )(21 k introduced in 

(43) with 9.ic  
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Fig.6 Interconnected systems states 1ix  and desired trajectories dix 1  for 41  i when 

with 1ic  

 

 

 

 

 

Fig.7 Interconnected systems control inputs with 1ic  
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Fig.8 NN weight estimates iŴ  for 41  i  with 1ic  

 

 

 

 

 

Fig.9 Actual nonlinear function and NN approximation for )(21 k introduced in 

(43) with 1ic  
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Fig.10-NN function approximation error for )(21 k introduced in (38) with 9.ic  

and 1ic  

 

 

 

 

Example 2. The method introduced in Section III is now utilized to design power system 

damping controller with generator excitation control. The 3-bus, 2-generator power 

system shown in Fig. 11 is considered and is subjected to a three-phase disturbance on 

bus 3. The generator data are given as 0.3dix , 02.0dix , 019.0qix , 70 idT , 

21  i whereas 5211  MH s and 1222  MH s . Both generators have speed governors 

and the excitation control is implemented by employing the discrete-time NN controller 

as proposed in (7) with update law (9) where 001.021  KK , T]0001.00001.0[21   , 

0001.021  , and 121  cc .  In addition, iŴ  (for 21  i ) is the NN weight estimate 

matrix while i (.) is the NN activation function vector for the subsystems.  

Similar to the previous example, the weight estimate matrices iŴ  are initialized at 

zero for 21  i . The NN activation function is chosen as  ))1(,( kxx idii  
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))]1(,[( T
idi

T
i kxxVsigmoid  [20] where iV  is chosen at random initially and held fixed 

afterwards to form a set of basis functions needed for the NN approximation [21].The 

power system loads are considered as constants. In the simulation, time step of sT 005.0 is 

chosen. The control objective is to damp the generators oscillations caused by a three-

phase fault.  

Although the stability analysis is based on the lossless power system dynamical 

model as described in (26), the simulations employ the entire power system dynamics 

with line resistances.  A two-axis generator model is utilized in order to evaluate the 

effectiveness of the controller design.  

 

 

 

 

 
Fig.11 Power system topology 

 

 

 

 

A three-phase disturbance is injected to the bus 3 at st 2.0 and removed at st 4.0  

seconds. Generators 1 and 2 are chosen for control. The damping control starts once fault 

occurs. The neural networks have 10 neurons in the output layer where biases are 

considered and the NN weights are tuned throughout the simulations by using on-line 

learning. The voltage fdiE is calculated using (33) and is subjected to hard limits such that 

the voltage satisfies 55.0  fdiE p.u. to avoid any impractical excitation voltages fdiE .  
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Moreover, no offline training is used to tune the weights in advance. No initial knowledge 

about the interconnection dynamics or power system topology is needed for the controller 

design.  

The simulation is performed under three scenarios; a) excitation control using (7) 

and (9) when the generator values mentioned in Remark 2 are unknown; b) excitation 

control by using (37) (when the generator values are known); and c) steam governor only. 

Note that for (a) and (b), steam governor is also active. Figure 12 shows the damping 

performance of the proposed controller (case a) as compared to cases b and c whereas 

Fig. 13 represents the excitation voltages fdE for the cases (a) and (b). Satisfactory 

damping performance of the proposed controller can be observed from Fig. 11as 

predicted by Theorem 2 while the excitation voltages are within practical accepted limits 

as shown in Fig. 13. The weight estimation matrices (Fig. 14) iŴ  (for 21  i ) are 

bounded as expected from Theorem 2. When the generator values idT 0 , iM , qiI are known, 

the control effort is a little lower than when the values are unknown while the damping 

performances are just slightly different. Thus, the NN controller is capable of overcoming 

unknown dynamics in nonlinear systems almost equally in the absence of knowledge of 

system parameters. 

V. Conclusions 

In this paper, the decentralized nonlinear discrete-time system is considered and 

control design for tracking problem is addressed to guarantee the boundedness of the 

large-scale system states. The design employs NN function approximation property to 

approximate the control gain matrix and internal dynamics of subsystems. There is no 
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offline NN training and all parameters are tuned online. By using Lyapunov techniques it 

is shown that the subsystems states as well as NN weight estimation errors are UUB with 

small bounded error. The interconnected power system can be expressed as an 

interconnected nonlinear dynamic system. Simulation results are performed on power 

systems with excitation control to verify the theoretical conjectures. 

 

 

 

 

 
Fig. 12 Generator speeds with discrete-time control with fault on bus 3 
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Fig. 13 Generator excitation voltages with the proposed controller 

 

 

 

 

 

Fig. 14 NN weight estimates iŴ  for 21  i   
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Abstract— In this paper, the direct neural dynamic programming technique is 

utilized to solve the HJB (Hamilton Jacobi-Bellman) equation forward-in-time for the 

decentralized near optimal control of nonlinear interconnected discrete-time systems in 

affine form with known subsystem and unknown interconnection dynamics.  The optimal 

controller design consists of two NNs; an action NN that is aimed to provide a nearly 

optimal control signal, and a critic NN which evaluates the performance of the system. 

All NN parameters are tuned online for both the NNs. By using Lyapunov techniques all 

subsystems signals are shown to be uniformly ultimately bounded (UUB) and that the 

synthesized subsystems inputs approach their corresponding near optimal control inputs 

with small bounded error. Simulation results are shown on an interconnected system to 

show the effectiveness of the approach. 

 

Index Terms –Decentralized Control, Neural Networks (NN), Optimal Control, 

Hamilton-Jacobi-Bellman (HJB), Nonlinear Discrete-time (DT) Systems.  
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I. Introduction 

Online approximators such as neural networks (NN) have been widely used in the 

controller design of nonlinear systems; however, they are mostly utilized to achieve 

stability [1]. An optimal control policy is necessary to stabilize the system in an optimal 

manner when the control costs have to be considered in addition to the system stability.  

Therefore, in the optimal control formulation, the objective of the controller is to 

minimize a cost function comprising of the states of the system and the control input [2]. 

The optimal control of linear systems is well-known and can be obtained by solving the 

Riccati equation [2]. However, the optimal control of nonlinear discrete time systems 

often requires solving the nonlinear Hamilton-Jacobi-Bellman (HJB) equation. 

The HJB equation is more difficult to solve due to a lack of a closed-form solution 

and therefore recently offline methods have been developed to solve the discrete-time 

HJB equation [3][4].  These solutions are based on policy-value iterations for centralized 

discrete-time nonlinear systems to solve the nonlinear HJB partial difference/differential 

equation. Subsequently, neural networks (NN) are utilized to approximate the unknown 

nonlinear functions. In [3], the authors approximate the cost function with a Taylor series 

expansion under the assumption of small perturbation and propose an iterative algorithm 

to find the optimal control policy. In [4], the authors employ heuristic dynamic 

programming [5] in an iterative based offline solution. In general, the offline methods 

with NNs require lengthy iterative procedures to obtain a closed form solution for a 

region of interest in the state space.  

By contrast, online approximator based controller designs are presented in [5-7] to 

address the HJB solution forward-in-time without involving the difficulties in iterative 
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offline training methodology. These methods are referred to as forward dynamic 

programming (FDP) or adaptive critic designs (ACD). In [6-7], the optimal control law 

and cost function are approximated by online parametric structures, such as NN‟s where 

the methods are verified by numerical simulations without presenting the convergence 

proof.  The tracking problem with HJB solution is proposed in [8-11].  In [8] the tracking 

problem is addressed through linearization of the tracking error equations, whereas in [9] 

receding horizon optimal control is presented. The inverse optimal control [10] and 

offline direct calculation of the infinite horizon HJB equation [11] are among the recent 

approaches to the optimal tracking problem. 

On the other hand, there has been a great interest in the decentralized control of a 

class of interconnected nonlinear systems using NNs. The decentralized control effort has 

focused mainly on stabilization and tracking for nonlinear continuous-time systems [12-

16] and limited effort for affine nonlinear discrete-time systems [17][18]. The discrete-

time proofs are much involved than their continuous-time counterpart since the first 

difference of a Lyapunov function candidate is quadratic with respect to the states 

whereas it is linear for the case of continuous-time system. To the best knowledge of the 

authors, no work is currently done on the optimal control of nonlinear decentralized 

discrete-time systems in affine form.  

In this work the direct neural dynamic programming (DNDP) approach is utilized 

for the optimal regulation and tracking of nonlinear interconnected discrete-time systems 

in affine form by solving the HJB equation online and forward-in-time. The NNs are used 

to approximate the critic as well as the action networks where the optimal control signal 

is approximated while minimizing the cost function based on the information provided by 
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the critic in the presence of the unknown interconnection terms but known subsystems 

dynamics. Additionally, overall closed-loop stability of the nonlinear decentralized 

system is presented.  

This paper is organized as follows. First, the class of interconnected nonlinear 

discrete-time system is introduced in Section II.  In Section III, background information 

of the HJB optimal methodology and the online methodology for the HJB-based optimal 

control are introduced for interconnected systems.  Then, numerical simulations and 

concluding remarks are provided in Sections IV and V, respectively. 

II. Nonlinear Interconnected System 

Consider the class of N interconnected subsystems defined as 
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where index i  represents the subsystem number, N is the number of 

subsystems, n is the order of the subsystem, ))(( kxf ii ,  represents subsystem internal 

nonlinear dynamics, ))(( kxg ii is the input gain matrix, )(kui  is the subsystem control 

input, )(xi  denotes interconnected terms of the subsystem „i‟ with TT
N

T
xxx ],,[ 1  , 

T
inii xxx ],,[ 1  for Ni 1 . Define the tracking error  

)()()( kxkxkz ipdipip                                (2) 
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for Ni 1  and np 1 , where )(kxipd is the desired trajectory for state )(kxip  , and 

)1()(,1,  kxkx ipddpi  for  11  np . Note that for the stabilization problem the desired 

values become 0ipdx for np 1 . Next, define the filtered tracking error 

)(]1[)( kzkr i
T

ii                                   (3) 

where T
iniii kzkzkzkz )]()()([)( 21  and ][ 1,21  niiii   . The coefficients 1i  through 1, ni  

are selected such that the poles of the characteristic equation  qq ii 21)(    

12
1,


  nn

ni qq  are inside the unit disc. Before we proceed, the following definition and 

mild assumptions are needed. 

Definition 1. (Uniform Ultimate Bounded (UUB))[19]: Consider the dynamical system 

)(xfx  with nx  being a state vector. Let the initial time be 0t  and initial condition 

be )( 00 txx  . Then, the equilibrium point ex is said to be UUB if there exists a compact 

set nS  so that for all Sx 0
there exists a bound B and a time ),( 0xBT such that 

Bxtx e )( for Ttt  0 . 

Assumption 1: Let the interconnection terms in (1) be bounded above in a compact set   

such that  


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
N

j

jj

N

j

jiji rrx
1

2

1

2
)()(                                (4) 

where j is known small positive constants for Ni 1  in contrast with [17]. 

Assumption 2: The input gain of each subsystem ))(( kxg ii  in (1) is bounded away from 

zero and is bounded above in the compact set . Without loss of generality, we assume 

that it satisfies  
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maxmin ))((0 iiii gkxgg                              (5) 

in a compact setwhere minig and maxig are positive real constants. 

Remark 1: Assumptions 1 and 2 are standard in the control literature [15]. 

Next, the decentralized optimal controller development is introduced. 

III. Decentralized Optimal Control  

In this section our goal is to find optimal control inputs )(kui for Ni 1  that can 

stabilize the interconnected system (1) while minimizing the infinite horizon system cost 

function 

 

))1(())((
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                                     (6) 

where )(xQ is a positive definite function of the large-scale system states, NNR   is 

positive definite design matrix, and T
N kukukxu )](,),([))(( 1  where )(kui  is only a function 

of the ith subsystem states (for Ni 1 ).  In addition to stabilizing the nonlinear system 

(1), the control input )(ku must make the cost function (6) finite.  In other words, 

)(ku must be admissible. 

Definition 2. (Admissibility) : The control input )(ku  is admissible with respect to the 

penalty function 0)( xQ  and control energy penalty )()( kRukuT  function if a) u is 

continuous; b) 0)(
0


x
xu ; c) )(xu stabilizes system (1); and d) 

  


0

))((),),0((

j

T RuujxQkuxJ .  
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Moving on, this optimal control problem provides an optimal control input 

))(( kxu  such that ))(())(( kuJkuJ   for )(ku . The minimizing control input )(ku is found 

by using the stationary condition [2] as 0)()(  kukJ , and routine calculation shows that 

)1(

)1(
))((

2

1
)( 1




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kx

kJ
kxgRku T                                (7) 

where T
N

T
N

T
kxgkxgkxg ))]((,)),(([))(( 11    and 1))(( nii kxg  T

ii kxg ))]((,,0[   for Ni 1 .   

From (6) and (7), we can observe that the large-scale cost function )(kJ and the optimal 

control )(ku (and its components )(kui
  for Ni 1 ) are in general functions of all large-

scale system states. However, in the decentralized control strategy, only the 

corresponding subsystem states (such as )(kxi ) are available for designing the controller 

)(kui for Ni 1 . By selecting proper )(xQ and R decoupling the cost function (6) is 

possible which is presented next. 

Lemma 1. (Existence of Subsystem Cost Functions): Consider the interconnected 

nonlinear system (1) and associated cost function (6). Let )(xQ be found satisfying 


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N
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ii xQxQ

1

)()(                                    (8) 

where each )( ii xQ is a positive definite function. Then, the following results are obtained. 

a) There exist positive definite matrices iR  such that 



N

i

ii kxJkxJ
1

))(())(( where 

 



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kj

ii
T
iiiii juRjujxQkxJ )()())(())((  is a cost function of subsystem states and control input 

for Ni 1 . 
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b)   If there exists ),,( 1 NRRdiagR   where iR  is positive definite matrix for Ni 1 , then 

the large-scale optimal policy ))(( kxu  in (7) can be obtained via individual subsystem 

optimal policies ))(( kxui
 where T

iNi kxukxukxu ))]((,)),(([))(( 1
   . 

Proof.  Part a) Starting from equation (6) and using (8), we have 
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where (.)min is the minimum singular value . By defining nni IRR  )(min , we obtain 

(10). 
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Note that (10) results       


N
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))((max))((max  where 
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iiiii juRjujxQkxJ )()())(())((   is positive definite, and thus, the cost function 

for subsystem “ i ” (for Ni 1 ) exist provided that large-scale cost function ))(( kxJ is 

well-defined.                  

Part b) In the case of diagonal matrix R , the cost function (6) becomes  
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where ),,( 1 NRRdiagR  . In this case the optimal control solution (7) becomes 
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According to (11), the term )1()1(  kxkJ i  in (12) is only a function of )1( kxi . Thus, 

by expanding (12), we obtain T
N kxukxukxu ))]((,)),(([))(( 1
    where  
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which is the optimal policy corresponding to the subsystem cost function 
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                                      

Remark 2: From part (b) of Lemma 1, if the subsystem optimal policy )(kui
 is found, the 

optimal control input )(ku can be found for the large-scale interconnected system. Even 

then it is still a difficult problem since the interconnection terms for each subsystem is a 

function of all the states of the large-scale system.

From Lemma 1, the optimal control problem can be divided into subsystem optimal 

control problems. However, finding a solution for the optimal policy (13) is still generally 

hard due to the solution of the HJB equation and presence of unknown interconnection 

terms.   Here we use NN to approximate the cost function (14) and optimal policy (13) 

and present a forward-in-time solution. The unknown interconnection terms are overcome 

by augmenting the control input with a feed forward term comprising of subsystem states 

similar to the problem of tracking. Therefore, for each subsystem the design consists of an 

action network which is designed to produce a nearly optimal control signal, and a critic 



179 
 

network which evaluates the performance of the system. The augmented term is also 

introduced in this section. By using the universal approximation property of NN‟s [1], the 

control input (13) and cost function (14) can be represented by neural networks as 

ciii
T

cii kxWkJ   ))(()(                              (15) 

and 

))(())(()()( aa kxFkxWkuku iiiii
T

iii 
                           (16) 

respectively, where ciW  and iWa  are the ideal subsystem critic and action NN weights and 

are assumed to be bounded with bounds ciMci WW  , iMi WW aa  , ci  and ia are the 

bounded approximation errors which satisfy ciMci   , iMi aa   , (.)i and (.)i are the 

vector activation functions for the critic and action networks, respectively[1], and 

))(( kxF ii is a known function added to help overcome the effect of interconnection terms 

which will be defined shortly. Before we discuss the critic and action networks, the 

following assumption is required. 

Assumption 3: The critic network approximation error 

satisfies cMiici kxkx   )1())1((  in the compact set  for Ni 1 .  

A. The Critic Network Design 

The objective of the optimal control law is to stabilize the system (1) while 

minimizing the cost functions (14). Since the cost function (14) is analytically not 

available it is approximated by a NN and written as (15); however, in practice the NN 

ideal weights are not available. Consequently, the cost function )(kJi is approximated by 

))(()(ˆ)(ˆ kxkWkJ ii
T

cii                               (17) 
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where ciŴ  is the estimated values for the ideal weights ciW and (.)i is the vector of 

activation functions which are chosen to be basis sets and thus are linearly independent. 

Define the augmented matrices and cost function )(ˆ kJ as  
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c ΦWJ  .                              (18) 

Define the critic error as  

)()(ˆ)1()( kkkk
T

cc ΦWQE                            (19) 

where 

))1(())(()(  kxkxk ΦΦΦ                            (20) 

and 
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Q .  Then the critic error dynamics become 

)1()1(ˆ)()1(  kkkk
T

cc ΦWQE                      (21) 

By selecting the critic weight update law as [20] 
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the critic error becomes  

)()1( kk ccc EE                                  (23) 
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 with ci being a design constant for Ni 1 . From (11) and 
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(15) we obtain 
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where )()1()1( kkk ccc εεε  . Define weight estimation error to be ccc WWW ˆ~
 . By 

using (24), (22), and (21) it can be concluded that  
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                       (25) 

Then, by replacing )1( kQ  by a similar term as in (24) we obtain 
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As a result, the dynamics of the weight estimation errors can be obtained as 
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The following technical results are needed before we proceed. 

Definition 3: Linear Independent Functions [24].  A set of functions :
1)}({)( Lkk    is 

said to be linearly independent if 0)(
1

 

L
xc

  implies that 01  Lcc  . 

Lemma 2. Let )(k be an admissible control for system (1). If the set :
1)}({)( Lkk ΦΦ  is 

linearly independent, then the set Nkkk 1)}()1({)1(  ΦΦΦ   is also linearly 

independent. 

Proof: Since, )(k is an admissible control, we have 0)( x , and thus, 0))(( xΦ . Then, 

by observing  





jk
kxkxjxx ))(())1(())(())(( ΦΦΦΦ and using contradiction the 

proof can be completed. 
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Remark 3. The matrix )()( kkT
ΦΦ  is invertible provided 0)( kx .  Note from (14) and 

(18) that the cost function becomes zero only when 0)( kx .  Thus, once the system states 

have converged to zero, the cost function approximation can no longer be updated.  This 

can be expressed as persistency of excitation (PE) requirement for the inputs to the cost 

function approximator (18) where the subsystem states must be persistently exiting long 

enough such that the critic network learns the optimal cost function. Also, the PE 

condition ensures the existence of minimum values for the activation function i . 

Next, we show that the critic error (21) and the critic network estimation error 

(27) are UUB. 

Theorem 1: Consider the nonlinear discrete-time interconnected system given by (1). 

Let )(ki be an initial admissible control input for the ith subsystem of the nonlinear 

interconnected discrete-time system. Let the overall cost function of the interconnected 

system, )(ˆ kJ , be approximated by NNs as defined in (18) whose weight update law is 

provided by (22). Then, the critic errors (19) and critic weight estimation errors cW
~

 are 

UUB. 

Proof: Consider the Lyapunov candidate  

}
~~

{)()()( 2
min c

T
cc

T
cc trkkk WWΦEEV                       (28) 

where 2
minΦ  is a positive constant  and satisfies )1()1(2

min  kkT
ΦΦΦ . The 

existence of 02
min Φ  is ensured by the PE condition described in Remark 3. Also, note 

that by admissibility of the control input, we can assume )(max kΦ exists. By 

calculating the first difference of )(kcV and using )(max kΦΦ   we have 
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where 2
cM is the bound on the approximation error cε  such that cMc ε . The first 

difference of the Lyapunov function is less than zero provided 

2
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and the gain is chosen as }
4

,1min{
2
max

2
min2

Φ

Φ




c . 

Remark 4:  It is interesting to observe that the NN weight update law (21) resembles the 

least squares update rule commonly used in offline ADP [3][4]; however, instead of 

summing over a mesh of training points [3][4], the update (21) represents a sum over the 

system‟s time history stored in )(kEc
.  Thus, the update (21) uses data collected in real 

time instead of data formed offline [3][4].   

Remark 5:  The results of Theorem 1 are drawn under the assumption of a fixed 

admissible control policy which is relaxed in the following section.   

B. The Action Network Design for Stabilization 

The action network obtains the optimal control input which minimizes the 

approximated cost function (15). Note that the basis function (.)i needs to be the gradient 

of the basis function (.)i of the critic NN since the optimal control (16) depends on the 

gradient of the cost function according to (13). It is shown in [3] that the gradient of a 

linearly independent set is also linearly independent.  
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Remark 6. According to (13) the action network of subsystem „ i ‟ estimates the 

derivative of the corresponding cost function ))(( kxJ ii presented in (15) as (30) 

 
)1())1((

)1())1(()()1()1(


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kxkxkWkxkJ

iici

iii
T

ciii



                   (30) 

which is a function of )1( kxi .  Unlike the optimal control of affine systems [20], the 

term )1( kxi for the interconnected system is not only a function of subsystem states but 

also, according to (1), is a function of the interconnection term (.)i , which is a function 

of entire state vector )(kx . However, the action NN is only a function of subsystem 

states )(kxi . Consequently, the action network will not able to approximate the optimal 

policy in (13) accurately due to the need for the entire state vector which is not available. 

Thus, this term must be transformed appropriately so that the augmented term in (16) can 

be used to compensate the effects of the interconnection term such that the stability proof 

can be performed in the presence of the interconnection term.  

In order to elaborate on the effect of (.)i  in the analysis, first we consider (30). In 

this analysis, we use Taylor series expansion of (30)  
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
                   (31) 

where   is the gradient and 
2 is the Hessian matrices and the effect of the 

interconnection terms are assumed negligible in the second term and afterwards due to 

small i  for Ni 1 . Thus the higher order terms can be approximated as functions of 

subsystem only with small approximation error. Then, ))1(( kxi can be rewritten as 
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where 
0ixixi 

  is the equilibrium point, T
inii ][ 1   , 

T
niiiniii kxkxx ])][()([)( 1,12    , )( ii xC represents the higher order terms, and i is a 

bounded term representing the terms with the higher order interconnection terms. Thus, 
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where  ))(()()()())((
2

1
0

1
kxCuxgxxkxgR iiiiiiiniiiiii 


 . Consequently, (31) can be 

expressed as (33) with )( ii x  a function of local states and the interconnection term 

appearing with the local system states. Only )( ii x in (33) can be approximated by the 

action NN (i.e. )()()()()( aa kFkkkWx iii
T

iii   ), and thus, from (33) and rearranging the 

terms we obtain 
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This step is important when analyzing the action network error and plays a role in 

the stability analysis as will be shown. Transforming the partial derivative to (34) helps to 

include the effects of the interconnection term while still ensuring that the closed-loop 

system is bounded. 
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Next, equation (16) calculates the optimal policy through using a NN. In practice, 

the NN ideal weights and approximation errors are unknown and only an estimate of the 

weights is available. Thus,  

))(())((ˆ)(ˆ aa kxFkxWku iiii
T

ii                           (35) 

where iWa
ˆ  is the estimated values of the ideal weights iWa . The function ))(( kxF ii  is added 

to help overcome the effect of the interconnection terms in the large-scale nonlinear 

system and is defined as  
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Define the weight estimation error for the action NN as iii WWW aaa
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Subtracting (34) from (35) yields 
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Also, define the action NN weight update law as 
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which yields 
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From (38) and (40) we obtain 
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Lemma 3: (Admissibility).  Let )(0 kui
be an initial admissible control input for the 

subsystem „i‟ of the controllable system (1). Then, there exists a positive constant ai such 

that the subsystem control policy (35) with parameter update (39) ensures that the future 

control sequence provides stabilizing policies for the nonlinear system (1). 

Proof: Steps follow similar to [20]. 

C. Filtered Tracking Error and Stability Analysis 

By using the subsystem dynamics (1) and control input (35), the filtered tracking 

error dynamic defined in (3) is given by 
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In this part we show that the nonlinear discrete-time interconnected system (1) 

along with controller (35), critic network  (17), and given neural network weight update 

laws is stable and the filtered tracking error and weight estimation errors (27) and (40) of 

the individual subsystems are bounded, even in the presence of the unknown 

interconnection terms )(xi for Ni 1 .  
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Remark 7. The subsystem action error in (38) is different from the action error in [20] in 

the sense that it contains the interconnection term which has to be explicitly considered. 

As a result, a suitable Lyapunov function (which is a different Lyapunov from what is 

used in [20]) has to be considered to overcome the interconnection term effect. 

Theorem 2: Consider the nonlinear discrete-time interconnected system given by (1). 

Let )(ki be an initial admissible control input for the ith subsystem of the nonlinear 

interconnected discrete-time system for Ni 1 . Consider the Assumptions 1 through 3 

hold and that the initial conditions for system (1) are bounded in the compact set .  Let 

the weight tuning for the critic and action networks be provided by (22) and (39), 

respectively. Then, the critic error (19), the action error (37), and regulation error )(kri  

along with the weight approximation errors of the critic and action network are all 

uniformly ultimately bounded (UUB) for all k ≥ k + T0. In addition, bii uu   . 

Proof: Define the overall Lyapunov function candidate 
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Substituting (42) into (44) and using Cauchy-Schwartz inequality 2
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Next, by using (40), the first difference due to the second term in the overall 
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Next, the first difference of the Lyapunov function due to the third term in (43) is 

obtained by using (40) and expanding the terms as  
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The action error )(a ke i in (50) can be expanded by using (38) as  
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By using Cauchy-Schwartz inequality and taking norms we obtain 



191 
 

  2
2

221

2
0

2221

2
1a

2
a

aa

)(
~

)1(

)1(
)(

)()()()(

))()()((4)(
4

3

)()()(
~

2

kW
kx

k
kgR

kxkgR

kAkkk

kekkW

ci

in

i
ii

iiinii

iiii

iii






















                      (52) 
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Finally, following the same steps to obtain (29) for individual subsystems, the first 

difference due to the last term in (43) can be written as 
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In order to conclude the math, the first difference of (43) can be summarized by 

using (46), (48),(49), (52), and (53). 
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It can be seen from (54) that the Lyapunov function is negative outside the bound 
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provided that the following conditions are satisfied: 



193 
 

 
}

)(
)2(

)2(

1

1
7

8
)1(

)1(2

,1min{

1

212
max

2

2
max

2

2
max

21

2
min

2
max

2















































ii

in

i

i

i

in

i
ii

i

i

ci

Rg
kx

k

kx

k
gR













                   (61) 

  
}

197
,1min{

2
max

2
max

22
min

4
max

2
min

2

a





iiciiii

ici
i




                     (62) 

 

















































,

)()(
1

1

21

4

min

1

1

2
0

2
max

21

2
max

2
min2

a
2

max
2
max

a
22

min

N

j

jjnjj

j

j

cjjii

iciii

i

xgRg 








  

 











































































































min
2
max

a
22

min

11

0
22

max
21

2
max

2
a

2
min

1

0
22

max
21a

22
min

max
2
max

a
22

min

3

)1(

)()(
14

21

)()(
1)()(

8

3

1

)1(

ii

iciii

N

l

l

N

j

jjnjj

j

cjjj

N

j

jjnjj

j
T

j

jcjjj

ii

iciii

g

N

xgR

xgR
kk

g
















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                 (63) 

Note that in order to satisfy (63) the design gains ia and ci ( for Ni 1 ) must be 

sufficiently small. Thus, using standard Lyapunov extensions [1], it can be concluded 

that )(kVi is less than zero outside a bound resulting the cost and control errors as well as 

the weight estimation errors to be UUB. Since the errors )(a ke i and )(keci are UUB and 

converge to a bound, it follows that bii uu 
  as k with b being a positive 

constant.                                       ■ 

Remark 8. According to Remark 3, the value of i can be bounded by ensuring that the 

subsystem states are persistently exciting. 



194 
 

Remark 9. According to Remark 6, the action network of subsystem „ i ‟ is 

approximating the derivative of the corresponding cost function ))(( kxJ ii (the critic 

network) which requires the state vector )(kx . If )(xi can be overbounded by a small 

positive constant (i.e. ii x 
2

)( ) in the compact set  , the effect of the interconnection 

terms can be modeled by a constant, and thus, the action network approximation error 

ia is reduced since the action NN need not use the entire state vector )(kx .  Under such a 

strong assumption, Theorem 2 is simplified to the case of a centralized control [20] and 

the requirement of known ))(( kxf ii is relaxed. Also, the control policy (35) is simplified 

to 

))((ˆ)( aa kxWku i
T

i
T

ii  .                              (64) 

By contrast, Theorem 2 is proven by considering Assumption 1 where the interconnection 

terms )(xi can grow in a quadratic manner. 

D. The Action Network Design for Tracking 

Consider interconnected system (1) where the subsystem output is to track the 

desired trajectory )(1 kx di . Consequently, in the error system (2), )(kxipd  can be obtained by 

using the advanced values of the desired trajectory )(1 kx di for Ni 1 and np 1 . That is  

)1()( 1  pkxkx diipd .                              (65) 

Thus, the error dynamics can be written as 

)1()())(())(()1(

)()1(

)()1(

1

21









kxxukxgkxfkz

kzkz

kzkz

indiiiiiiin

inin

ii


                 (66) 
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which resembles the stabilization problem with the states being the errors ipz  defined in 

(2) for Ni 1 and np 1 .  

Before we proceed, the following Assumption is required. 

Assumption 4: The desired trajectory )(kxipd  (for Ni 1 and np 1 ) is bounded 

for  Rk . 

 In order to use the results of Theorem 2 necessary changes have to be made in the 

definitions and variables which are discussed next. First, the overall cost function (6) and 

subsystem cost function ))(( kxJ ii (in (14)) are redefined as 

 

)1())(())(())((

))(())(())(()(








kJkzRukzukzQ

jzRujzujzQkJ

z
T

kj

T
z                 (67) 

and 

 






kj

ii
T
iiiizi juRjujzQkzJ )()())(())((                            (68) 

where T
Nzzzz ][ 21  . Then, the critic and action NNs become functions of the 

errors ipz in the tracking problem. That is,   

))(()(ˆ)(ˆ kzkWkJ ii
T

cii  ,                                (69) 

)()(ˆ))1(()( kkWkzQke i
T

ciiici  ,                           (70) 

and 

 
 ))(()(

))1(())1(())1(()1(ˆ
1

kzQke

kzkzkzkW

i
T

i
T

cici

iii
T

iiici









.                  (71) 

Similar to Section II-A the matrix form of (69) through (71) are ))(()(ˆ)(ˆ kzkk
T

c ΦWJ  , 
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)()(ˆ)1()( kkkk
T

cc ΦWQE   , and   

 
 )()(

)1()1()1()1(ˆ
1

kk

kkkk

TT
cc

T
c

QE

ΦΦΦW








 

where the matrices are defined similar to what previously introduced; besides, 

T
N kJkJk )](ˆ)(ˆ[)(ˆ

1 J  and T
cNcc kekek )]()([)( 1 E . 

Also, the optimal policy (13) becomes 

)1(
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1
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1




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                           (72) 

which in turn yields (33) to be 
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where 





















))1((

)1()()(
))((

2

1 01

kzC

kxuxgz
kxgR

ii

indiiiiin
iiii


 . 

Define the action network 

))(())(),((ˆ)( aa kxFkzkxWku iiii
T

i
T

ii                         (74) 

where 

)]0[)1())(((
))((

1
))(( i

T
iindii

ii

ii zkxkxf
kxg

kxF 


 .                (75) 

As a result, the filtered tracking error dynamics becomes 

 
  )())(()()(
~

))((

)())(()(ˆ))((

]0[)1())(()1(
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                 (76) 

Next, define 
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and 

1)()(

)()(
)(ˆ)1(ˆ a

aaa



kk

kek
kWkW

i
T

i

ii
iii




                       (78) 

Finally, the critic and action weight estimation errors are defined as iii WWW ccc
ˆ~

  

and iii WWW aaa
ˆ~

 , respectively. After the changes (67) through (78) we introduce the 

following Theorem. 

Theorem 3: Consider the nonlinear discrete-time interconnected system given by (66). 

Let )(ki be an initial admissible control input for the ith subsystem of the nonlinear 

interconnected discrete-time system for Ni 1 . Consider the Assumptions 1 through 4 

hold and that the initial conditions of the system are bounded in the compact set .  Let 

the weight tuning for the critic and action networks be provided by (71) and (78), 

respectively. Then, the critic error (70), the action error (77), and the filtered tracking 

error )(kri along with the weight estimation errors of the critic and action network of each 

subsystem are all uniformly ultimately bounded (UUB) for all k ≥ k + T0. In addition, 

bii uu   . 

Proof: The proof follows the same steps as in the proof of Theorem 2 by considering the 

following positive definite Lyapunov candidate 


















N

i wi

N

i i

N

i ci

N

i ri

i

iciii
N

i

i

kVkV

kVkLkVkV

11 a

11 2
max

a
22

min

1

)()(

)()(
)1(3

)()(




                 (79) 
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where  2)1()(  kiiri gkrL , )(
1

)(
2

a2
max

2
min2

aa kekV i

i

i
ciii









 , )(kVwi )(

~
)(

~
8 aa

22
min kWkW i

T
iciii   , 

 2)(min)(max kk iii   , in the compact set  and 
ci

T
ciicici WWkekV

~~
)()( 2

min
2

 with  

, )1()1(2
min  kk i

T
ii  , and )1()()(  kkk iii  .  The proof is completed by 

expanding the terms, using (74) through (78), and following the same steps as in the 

proof of Theorem 2.                                  ■ 

Remark 10. Note from (69) and (78) that if  iea approaches zero, the cost function (69) 

and update law (78) are not active, that is, the critic network (69) and control policy (74) 

stop approaching to the optimal values. Thus, once the tracking error has become 

negligible, the weight matrices associated with the cost function as well as optimal policy 

are no longer updated.  Similar to Remark 3, this can be viewed as a persistency of 

excitation (PE) requirement [1] for the inputs to the networks.  Thus, the tracking error 

states )(kz must be persistently exiting long enough for the cost function and optimal 

control policy to be obtained. Also, the PE condition ensures the existence of minimum 

values for the activation functions i and i . 

IV. Simulation Results 

Example 1. (Stabilization) To demonstrate the effectiveness of the optimal controllers 

developed in this work on the interconnected systems, the following fourth order-

subsystem interconnected nonlinear discrete-time system is considered as 
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with sampling interval T being 1s. The objective of each subsystem controller is to make 

the system states 1ix  (for 41  i ) regulate to zero in a near optimal manner as proposed. 

The initial values of the states are given by 1;1 1211  xx ; 1;5.1 2221  xx ; 2;1 3231  xx ; 

1;2 4241  xx . Note that the interconnection term bound coefficient ][ 4321    (for 

41  j ) can be written as ]1.1.1.01[. . Three cases are considered:   
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Case a) The non-optimal stabilizing controller defined by  )()(
1

21 k*r-Kkz+f
g

-
 u iiiii

i

i   is 

considered where 01.04321    and 5.04321  KKKK .  

Case b) The optimal policy (64) is considered. The design gains are 52  eci  and 

51a  ei for 41  i . Note that by the control policy (64) the internal dynamics )( ii xf  

need not be known provided that the interconnection terms are overbounded by a small 

constant as mentioned in Remark 8. 

Case c) The proposed optimal controller (35) for 41  i  along with the weight update 

laws (22) and (39) are utilized for critic and action networks, respectively. The design 

gains are 52  eci  and 51a  ei for 41  i .  

According to Remark 3 persistently exciting state errors are required to achieve 

optimal values of critic and action weight matrices.  In order to provide persistency of 

excitation in the cases b and c in the stabilization problem, the simulation has been 

performed by using the a destabilizing control input to the system near origin such that 

the critic and action networks can benefit from nonzero control errors over a longer time. 

Then, the destabilizing controller is removed and the trained critic and action networks 

are used to control the subsystems optimally. 

Moreover, the critic weights are initialized randomly whereas the action network 

weights start from zero. Both action and critic errors are approximated by NNs with 

polynomials activation functions where the critic network utilizes an even 6th order 

polynomials to assure positive values for cost function whereas the action network uses a 

fifth order polynomial since it should resemble the derivative of the critic network.   
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The performance of the three controllers are depicted in Fig. 1in terms of the 

subsystems states by using the trained values of critic and action NNs after the 

destabilizing controller is removed. Each subsystem has two states which eventually 

converge to the origin. Figure 2 illustrates the NN control inputs for the three controllers. 

These stable results are as predicted by Theorem 2. Also, Fig. 3 shows the large-scale 

interconnected system cost function defined by  



M

kj

T jRujujxQkxJ )()())(())(( , 

where T
N kukuku )](,),([)( 1  , QxxjxQ T))(( ,  88 IQ , and 44 IR . Figure 4 shows 

the convergence of the action NN to the optimal policy through the action error (37) 

where the proposed optimal input converges to the optimal policy provided by the critic 

network in a long training time when the subsystems are perturbed. Finally, Fig. 5 shows 

the convergence of the critic NN error according to (19) in the training time. 

 

 

 

 

 

 
Fig.1 Interconnected systems states 

1ix  with optimal and non-optimal controller 

for 41  i  
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Fig.2 Control inputs  

 

 

 

 

 
Fig.3 Cost function for the stabilization problem 
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Fig.4 Action NN error for stabilization problem 

 

 

 

 

 
Fig.5 Critic NN error for stabilization problem 
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Example 2. The interconnected discrete-time system of Example 1 is now considered for 

tracking. The desired trajectories for the individual subsystems are given below. 

)1.0sin(3.0)(11 kTkTx d  , )02.0sin(3.0)(21 kTkTx d  )1.0sin(3.0)(31 kTkTx d  ,  )01.0sin(3.0)(41 kTkTx d  . 

The subsystem outputs )(1 kTxi are to follow the corresponding desired 

trajectory )(1 kTx di . The control policy (74) along with the weight updates (71) and (78) are 

utilized for tracking problem with the subsystem critic and action network gains are 

52  eci  and 61a  ei for 41  i . The satisfactory tracking performance results are 

then shown in Fig. 6 where the subsystem outputs track the desired trajectories by using 

the optimal control policy (74). Figure 7 shows the control inputs. The observations 

confirm the results of Theorem 3 where the tracking error is bounded and the proposed 

control policy converges to the optimal policy provided by critic network. In Fig. 8 the 

control error (77) is illustrated where Fig. 9 shows the critic error (70). Similar to the 

previous example, a destabilizing controller provided persistency of excitation for a 

period of time and then it is removed where the final critic and action NN weights are 

used to provide the optimal tracking shown in Figs 6 and 7. 

V. Conclusions 

In this paper, the optimal control of discrete-time nonlinear decentralized system 

via online HJB methodology is considered and control design for stabilization and 

tracking problem is addressed. In specific, direct neural dynamic programming technique 

is utilized to solve the HJB (Hamilton Jacobi-Bellman) equation in real time and forward 

in time for the optimal control of decentralized affine nonlinear discrete-time systems. 

The design employs an action network that is aimed to provide a nearly optimal control 

signal, and a critic neural network which evaluates the performance of the system. The 
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NNs are tuned online. The optimal control input is augmented with an additional term for 

compensating the interconnection terms.  Lyapunov techniques are employed to show that 

the synthesized subsystems inputs approach the optimal control inputs with small 

bounded error. 

 

 

 

 

 

Fig.6 Interconnected systems states 
1ix  with the proposed optimal controller and 

desired trajectories for 41  i  

 



206 
 

 

Fig.7 Interconnected systems control inputs for tracking problem 

 

 

 

 

 
Fig.8 Action NN error for tracking problem 

 

 

 



207 
 

 
Fig.9 Critic NN error for tracking problem  
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Abstract— In this paper, the nearly optimal solution for discrete-time (DT) affine 

nonlinear control systems in the presence of partially unknown dynamics and 

disturbances is considered.   The approach is based on successive approximate solution 

of the generalized Hamilton-Jacobi-Isaacs (GHJI) equation, which appears in optimal 

control. Successive approximation approach using GHJI has not been applied to DT 

nonlinear optimal control problems. The definition of GHJI function as well as methods 

for updating control input and disturbance for DT nonlinear affine systems is proposed 

using the mild assumption of small perturbation condition and known system dynamics.  

Moreover, sufficient conditions for the convergence of the GHJI solution to the saddle-

point are derived, and an iterative approach to approximate the GHJI equation using a 

neural network (NN) is presented. The result is a closed-loop optimal NN controller via 

off-line learning. Then, the requirement of full knowledge of the dynamics of the 

nonlinear DT system is relaxed by using an on-line approximator. Numerical examples 

including optimal control of a small power system are provided illustrating the 

effectiveness of the approach. 
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Index Terms –Neural Networks (NN), Optimal Control, Generalized Hamilton-Jacobi-

Isaacs (GHJI), Nonlinear Discrete-time (DT) Systems.  

I. Introduction 

Closed-loop stability is often the sole purpose of many controller designs [1].  

However, other objectives, such as optimality, require a control policy to stabilize the 

system in an optimal manner when the control cost matters in addition to the system 

stability. In the robust optimal control formulation, the objective of the controller is to 

minimize a certain cost function which represents a penalty associated with the states and 

control input [2] while maximizing the disturbances that the system can tolerate. 

 The H optimal control problem is a branch of optimal control which seeks to not 

only minimize a cost function, but also attenuate a worst-case disturbance [2].  Such 

techniques are necessary for large scale complex systems such as power networks where 

disturbances and faults commonly degrade the performance.  

State space techniques for optimal control are derived for linear systems [3] by 

solving the Riccati equations in both continuous and discrete-time domain. On the other 

hand, the authors of [4] introduce a zero-sum two-player differential game and extended 

the H optimal control to nonlinear dynamic systems.  In contrast, the concept of 

dissipativity [5] was employed to convert the H optimal control problem into an L2-gain 

optimal control problem in [6]. However, the L2-gain optimal problem requires solving 

the nonlinear differential or difference Hamilton-Jacobi-Isaacs (HJI) equations which is 

very difficult due to lack of a closed-form solution.   

To overcome this problem, the continuous and discrete time problems are 

addressed in [7] and [8], respectively, where a smooth solution is found by solving for the 
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Taylor series expansion coefficients using Riccati equations.  As a result, the HJI problem 

is reduced to solving a Riccati equation along with a sequence of linear algebraic 

equations. In contrast, [9] proposes an iterative based policy to successively solve the 

continuous-time HJI by breaking the nonlinear (in value function) partial differential 

equation to a sequence of linear differential equations using Galerkin techniques.  

However, an associated draw back of this approach is the requirement of a large number 

of integral calculations. A similar approach was adopted by [10] where the value function 

is approximated by a neural network that is trained offline using the least squares 

techniques. 

While the continuous-time HJI problem has been under consideration [7][9][10], 

discrete-time HJI control problem for nonlinear systems is addressed in a limited manner.  

The work of [11] presents important fundamental principles concerning the HJI 

optimization problem via the L2-gain optimal problem; however, no approximation 

strategy has been used to find a closed-form solution of the value function.  

In contrast, the work in this paper seeks to extend the foundations presented in 

[12] by proposing a practical method for obtaining the L2-gain near optimal control while 

keeping a tradeoff between accuracy and computational complexity.  Using the Taylor 

series expansion of the value function and using a small signal perturbation assumption, a 

generalized Hamilton-Jacobi-Isaacs (GHJI) equation is proposed, and an iterative 

approach to solve the GHJI is presented.  Successive solutions for the value function 

ensure that the value function reaches its saddle-point in a zero-sum two-player 

differential game where the  players  are  system  disturbances  and the control  input. The  
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successive approximations of the value function are accomplished using the 

approximation properties of neural networks (NN) [1] and least squares.   

Next, a NN identifier is presented in this work to learn the nonlinear internal 

dynamics of the system. Using Lyapunov theory, it is shown that the identification errors 

converge to a small bounded region around the origin.  Then, using the learned NN model 

of the internal dynamics, offline training is undertaken resulting in a novel solution to the 

HJI optimal control problem.      

The contribution of this work is the use of a Taylor series expansion to solve the 

HJI equation which is more involved than the use of the Taylor series expansion to solve 

the HJB in [12].  For instance, additional considerations are required when solving the 

HJI equation to ensure the existence of a saddle-point in the zero-sum two player game 

where as solving the HJB equation [12] does not have such a requirement.  Additionally, 

added complexity is introduced during the successive approximation of the HJI equation 

which requires an inner loop and an outer loop whereas successively approximating the 

HJB equation requires only a single training loop.  In addition, the proposed method does 

not require explicit knowledge of the system internal dynamics as only an online learned 

NN model is utilized for the offline training in contrast to the works [8]-[12] which 

require the internal dynamics to be known.  Additionally, convergence of the successive 

approximations is demonstrated while explicitly considering the identifier NN 

reconstruction errors. 

This paper is organized as follows. First, background information for the discrete 

time nonlinear HJI formulation is presented in Section II.  In Section III, the GHJI 

equation is derived, and an iterative based approach to solve the GHJI equation is 
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proposed.  Additionally, convergence of the successive approximations is demonstrated.  

Then, it is shown that algebraic Riccati equation can be obtained from HJI in Section IV. 

Section V presents the NN implementation of the successive approximation of the GHJI 

equation as well as the NN identification scheme, while numerical simulations and 

concluding remarks are provided in Sections VI and VII, respectively. 

II.  Background  

Consider the discrete-time affine nonlinear system 

kkkkkk wxhuxgxfx )()()(1 
                 (1) 

where n
kx  is the state vector evaluated at step k,  nf (.) , mng (.) , and 

Mnh (.) are smooth functions defined in a neighborhood of the origin, m
ku  is the 

control input and M
kw   is the disturbance.   Now, assume that xk+1 is Lipschitz on a 

set  and there is a control input such that system (1) is asymptotically stabilized. Then, 

our goal is to find a control input ku which can minimize the infinite horizon cost function 

  1
22 )()( 





 kk
T
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T
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T
jjk JPwwRuuxQPwwRuuxQJ             (2) 

when the disturbance kw  has its worst value, i.e., 
kw tries to make the cost function 

negative [10]. In (2), Q, R, and P are positive definite matrices, and  is a constant.  In 

addition to stabilizing the nonlinear system (1), the control input ku must make the cost 

function (2) finite.  That is, ku must be admissible. Next, the definition of admissible 

control is introduced. 

Definition 1. (Admissible Control): The control input uk is called admissible with respect 

to the penalty function 0)( xQ  and control energy penalty k
T
k Ruu , function if a) uk is 
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continuous; b) 0)(
0


xk xu ; c) )(xuk stabilizes system (1); and d) 
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jjk PwwRuuxQuxJ  . 

Moving on, this control problem is often referred to as a zero-sum two-player 

differential game [4] where the two policies )( kk xu  and )( kk xw are the solutions of (2) 

such that ),(),(),(   kkkkkkkkk wuJwuJwuJ  for all ku  and kw . The minimizing control 

input )( kk xu and maximizing disturbance )( kk xw  are found using the stationary conditions 

[13] 0)(/  kkk xuJ  and 0)(/  kkk xwJ , and routine calculation shows 
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. The pair ))(),(( kkkk xwxu   then 

becomes the feedback saddle-point solution of the optimization problem [4]. The 

necessary and sufficient condition for the existence of a solution for HJI from [2] is given 

in the following theorem. 

Theorem 1[2]. Consider a zero-sum two-player differential game. The feedback saddle-

point solution ))(),(( kkkk xwxu   is achievable, if and only if there exists a smooth function 

 nZ:(.)kV referred as value function such that the HJI equation  
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 has a solution with 0)(  xV where kxx  .                                       ■ 

Before proceeding, the following definitions are required. 

Definition 2 [14]. (L2-gain): The nonlinear system (1) with feedback control ku  and 
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disturbance 2lwk   is said to have an L2-gain less than or equal to  if 
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with k
T
kk RuuxQ )( excited by the disturbance from an initial state 0x . When N approaches 

infinity, (4) can be rewritten as  
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The problem of disturbance attenuation can be addressed by using the L2-gain of a 

nonlinear system [11]. The disturbance wk is locally attenuated by a real value 0 if there 

exists a neighborhood around the origin such that 2lwk  for which the trajectories of the 

closed-loop system (1) starting from the origin remain in the same neighborhood, and the 

response 2lzk  , where k
T
kkk RuuxQz  )(

2
, satisfies 

  0)(
0

2 


k

k
T
kkk

T
k RuuxQPww . Under these conditions, local disturbance attenuation 

with internal stability lends an admissible control input providing a closed-loop system 

with an L2-gain less than or equal to  [11]. 

Definition 3 [5]. (Finite-gain Dissipative System): The discrete-time nonlinear system (1) 

is said to be finite-gain dissipative with supply rate  

k
T
kk

T
kkkk PwwRuuxQwxW 2)(),(                   (5) 

if there exists a nonnegative function n:V called a storage function with 

0)0( V such that for all Zk  and kw  we have ),()()( 1 kkkk wxWxVxV  , or equivalently  
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
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j
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01 ),()()(  .  
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The relationship between the system (1) having L2-gain and being dissipative can be 

expressed by the following [11]: 

a) The nonlinear system (1) has L2-gain less than or equal  if it is finite-gain dissipative 

with the supply rate (5) and 0)0( V . 

b) The nonlinear system (1) is finite-gain dissipative with the supply rate (5) if it has L2-

gain less than or equal to  and is reachable from 0x . 

III. GHJI Equation for Nonlinear Discrete-time System 

According to the optimization problem (3), the DT HJI equation becomes [11] 
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kkkkkk PwwRuuxQxVhwgufV    where the optimal control 

input 
ku and worst case disturbance 

kw  are the solutions of optimization problem (3). 

Thus, the Hamiltonian function can be defined as 
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Note that when 0),,( 
kkk wuxH , we have the DT HJI equation (12). According to the 

definition of the value function )(xVk  in (3), the optimal control input 
ku  and worst 

disturbance 
kw can be obtained by setting the first partial derivative of the right hand side 

of equation (6) with respect to ku  and kw , respectively, equal to zero (the stationary 

conditions [13]) as 0/),,(  kkkk uwuxH  and 0/),,(  kkkk wwuxH . These equations in 

turn yield 
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and 
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Next, by substituting (7) and (8) into (12), the HJI equation becomes 
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Note that the differential equation (9) is nonlinear with respect to 
11 



  kk xV  and in 

general is difficult to solve.  In [12], a Taylor series expansion approach was undertaken 

to overcome the difficulties in finding such a value function 
1kV in the single-player 

Hamilton-Jacobi-Bellman optimization problem. However, no work has been done in 

discrete-time HJI formulation. In this paper, Taylor series expansion approach is 

employed to solve the DT HJI optimization.  

By assuming small perturbation about the operating point
kx , we expand kV  by 

keeping the first two terms in the Taylor series and considering the higher order terms to 

be negligible.  It was shown in [12] that this assumption is not stringent and can be 

applied to quadratic cost function without making the small perturbation assumption.   

Thus, we obtain 
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where kV  and kV2  are the gradient vector and Hessian matrix, respectively, as shown 

in (11) and (12) as 
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Next, the following lemma is stated before we proceed. 

Lemma 1. Let ku be an initial admissible control policy applied to the nonlinear discrete-

time system (1) with the associated value function (3) and cost function (2) such that 
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Then, jjj VwuxJ ),,(  for all  Zj . 

Proof. Substituting the dynamics (1) and using (10), we have 
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According to equation (2) we have 
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Since ku is an admissible control, 0V , and by adding (14) to (15), we obtain  



220 
 

 

 .)(

)()(
2

1

)(),,(

2

2

































jk

k
T
kk

T
kk

jk

kkkkkkk
T

kkkkk

jk

kkkkkkjjj

PwwRuuxQ

xwhugfVxhwugf

xhwugfVVwuxJ



              (16) 

The right hand side of (16) is zero by observing (13). Thus, 0),,(  jjj VwuxJ .    ■ 

Equation (13) now provides a new optimal solution for *
kV  based on new 

ku  and 
kw  

which are derived next. 

Definition 4. (GHJI Equation for Discrete-time Nonlinear System): Equation (13) 

evaluated at 0)(
0


x
xV is defined as the GHJI equation for affine nonlinear DT system 

(1). 

Definition 5. (Pre-Hamiltonian Function): A suitable pre-Hamiltonian function for the 

affine nonlinear DT system (1) is defined as 
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Note that when 0),,,( 
kkkk wuVxH , the GHJI equation results where 

ku  and 
kw are the new 

optimal policies to be obtained. The optimal control input 
ku  and worst case disturbance 


kw  can be found by setting the first partial derivative of the equation (17) with respect to 

ku and kw , respectively, equal to zero  
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which yields 
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guarantees the existence of a saddle-point in the zero-sum two-player game.  Equations 

(18) and (19) may be solved together to obtain solutions in terms of the value function 

and system states as 
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where 02.2  RgVgY k
T
ku  and PhVhY k

T
kw

22 2.  . 

In contrast to the policies (7) and (8), the optimal control and worst-case 

disturbance (18) and (19) can be calculated independent of 1kx .  Thus, once the value 

function is obtained, the optimal control input and worst-case disturbance can then be 

implemented by using (20) and (21). However, despite its linear behavior, finding a 

solution for the GHJI equation is still not easy. To overcome this problem, an iterative 

based scheme [9][10][12] is proposed to update the disturbance and control input (18) 

and (19) in order to reach the optimal  
ku  and 

kw  for the discrete time GHJI problem. 
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The following theorem will now demonstrate that the optimal control (19) and 

worst case disturbance (18) ensures the existence of a saddle-point in the zero-sum two-

player game. 

Theorem 2. (Existence of saddle point) Let the pair ),( 
kk wu  be an arbitrary admissible 

control and the worst-case disturbance inputs as provided by (18) for system (1). In 

addition, let the pair ),( kk wu  be the optimal controller provided by (19) and an arbitrary 

disturbance input, respectively, for system (1).  Then, the Hamiltonian function (6) 

satisfies ),,(),,(),,(   kkkkkkkkk wuxHwuxHwuxH .   

Proof. The proof will be shown in two steps. First, it will shown 

that 0),,(),,(  
kkkkkk wuxHwuxH . By using (17), and noting that ),,( 

kkk wuxH  and 

),,( 
kkk wuxH are nothing but equation (17) rewritten in terms of 

kw and/or 
ku , we obtain 
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Next, using (19) to replace the first term in (22) yields 
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Since the matrix uY is positive definite it can be concluded 

that 0),,(),,(  
kkkkkk wuxHwuxH . 

Next, it will be shown that 0),,(),,(  
kkkkkk wuxHwuxH . Similar to (22) we have  
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Employ (18) and replace the first term in ),,(),,(   kkkkkk wuxHwuxH   to obtain 
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Since 2/)( 21
max

2
kk

T
k hVhP    , wY  is negative definite. Thus, 

0),,(),,(  
kkkkkk wuxHwuxH  and it can be concluded 

that ),,(),,(),,(   kkkkkkkkk wuxHwuxHwuxH .                     ■ 

A. Successive Approximation of the GHJI Equation 

Let 0
ku be an initial admissible control input for system (1) in the absence of 

disturbances kw  in a compact set . The successive approximation procedure consists of a 

sequential set of updates for the disturbance ),( ji
kw in an inner loop with index j 

accompanied by a sequential set of updates for the control input )(i
ku in an outer loop with 

index i. The sequence starts with setting 0)(
k

i
k uu   and 0

)0,(


i
kw  for i=0. Then, the pre-

Hamiltonian equation (13) is solved for ),( ji
kV as  
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The updated disturbance can now be found by using (18) as 
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The inner loop j proceeds until it converges such that ),()1,(),( 
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i
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k VVV .  

Next, )(i
ku is updated according to (19) and written as  
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Then, value function is found by solving (23) for ),( ji
kV . Similar to the inner loop, the outer 

loop i proceeds until it converges such that ),(),1(),(   k
i

k
i

k VVV . This procedure is 

depicted in Fig. 1. 

Theorem 3.  Let )(i
ku an initial admissible control input for pair (i,j) on the set  . Then, 

iterating between the pair (23) and (24) ensures ),( ji
kV  is monotonically increasing until the 

worst-case disturbance for the control input )(i
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where  
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Now, combining (27) and (28) renders 
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and after some math we obtain 
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Also, from the update law (24) we have the relation 
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Fig. 1 Successive approximation procedure 
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In addition, from Lemma 1 it is known that  
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  which proves the first claim of the theorem. The second part of the theorem 

is easily shown by noting that when convergence occurs, equation (23) and (24) are 

solved for the same value function ),( i
kV and disturbance ),( i

kw .  Moreover, since a saddle-

point exists in the zero-sum two-player game (Theorem 2), in a neighborhood  around 
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Remark 1. In [10], H optimal control is considered for continuous-time nonlinear systems 

by means of obtaining the minimum  . However, the method is based on decreasing  by 

trial and error until its least value is achieved. By contrast, an explicit relationship 

  2/max B  for the minimum   is found here.  Selection of  in this way not only 

guarantees the existence of a saddle-point in the zero-sum two-player game, but also 

ensures convergence in the inner loop of successive approximations. 

Next the convergence of the outer loop i is discussed. 
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For the second claim, take the infinite sum of (36) to get 
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Since 0),( 
jiV  and ),(),()(),(

),,(
ji

l
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l
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ji

l VwuxJ  (from Lemma 1), and applying similar 



230 
 

reasoning used in Theorem 2 shows 
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2
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Observing  02 ),(2  
k

i
k

T
k gVgR , (37) shows that ),(),1(   i

l
i

l VV . Moreover, since a 

saddle-point exists in the considered zero-sum two-player game (Theorem 2), in the 

neighborhood   around the origin, ),( i
lV has a minimum )(

lV as )(i
lu varies. Thus, 

),( i
lV continues to decrease by the sequential updates (30) in the outer loop i until 

)(),1(),( 
 l

i
l

i
l VVV .                                    ■ 

Next, the admissibility of the controller is presented. 

Lemma 2.   (Admissibility of the controller) Let 0
ku be an initial admissible control input 

for system (1) in the compact set . Let the proposed successive approximation 

procedure of updates for the disturbance ),( ji
kw in the inner loop j and updates for the 

control input )(i
ku in the outer loop i is performed. Then, the control input )(i

ku  remains 

admissible in each step of the outer loop i. 

Proof. From Theorem 3 we observe that ),0( 
kV exists and is finite in the set  . Also, from 

Theorem 4 we observe that the positive function ),1( 
kV exists and ),0(),1( 

 kk VV . Since 0
ku is 

admissible ),0( 
kV is finite and as a result ),1( 

kV is finite. Consequently, 1
ku is admissible. By 

induction, admissibility of i
ku for  i2 is concluded.                  ■ 

Remark 2:  In [12], the optimal control problem was solved by applying a Taylor series 

expansion of the HJB equation.  In contrast, this work uses a Taylor series expansion to 

solve the HJI equation which is more involved than the HJB from [12].  For instance, 

additional considerations are required when solving the HJI equation to ensure the 
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existence of a saddle-point in the zero-sum two player game where as solving the HJB 

equation does not have such a requirement.  Additionally, added complexity is introduced 

during the successive approximation of the HJI equation which requires an inner loop and 

an outer loop whereas successively approximating the HJB equation requires only a 

single training loop. 

Remark 3:  In [8], a solution to the HJI equation was found using a Taylor series to 

approximate the system dynamics as well as the HJI equation.  As a result, the HJI 

problem is reduced to solving a Riccati equation along with a sequence of linear algebraic 

equations.  In contrast, this work takes on a fundamentally different approach in forming 

the Taylor series expansion since we do not require a Taylor series expansion of the 

system dynamics.  Additionally, the work of [8] does not prove that a saddle-point in the 

zero-sum two-player game exists using their approximation techniques whereas the 

saddle-point is rigorously shown to exist in this work.  Finally, it is observed that [8] (and 

[12]) requires knowledge of the internal system dynamics )(xfk
where as this requirement 

is relaxed in our work using the NN identifier presented after Section IV. 

IV. Linear Discrete-time HJI 

Next, it will be shown that discrete-time algebraic Riccati equation (DARE) for 

linear systems can be obtained by the proposed GHJI equation. Consider the discrete-time 

linear system (38) and associated value function (39)  

kkkk CwBuAxx 1                                    (38) 

k
T

kk xxV 
)(

                                    (39) 
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where n
kx  is the state vector evaluated at step k,  nnA  , mnB  , and MnC  are 

smooth functions defined in a neighborhood of the origin, m
ku  is the control input, 

M
kw   is the disturbance and  is a positive definite constant matrix.  

Lemma 3. If 
k

T
kk xxV 

)( in (39) is the value function for system (38), then T  

Proof. This can be easily shown by obtaining the transpose of both sides of the linear HJI 

DARE equation (40) [18][19], knowing that Q, R, and P are symmetric, and for any given 

invertible matrix X we have    TT XX 11 
 . Then, 

 
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

                (40) 

Assuming that the Riccati equation (40) has a unique solution yields that T .     ■ 

Note that the difference between (40) and the Riccati equation obtained in [11][18][19] is 

the existence of input (R) and disturbance (P) gains. 

Equation (39) reveals that k

T

k xV   2 and   22
kV . Thus, the GHJI equation 

(13) becomes 
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or equivalently  

0)(

)()(

2 
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PwwRuuxQ
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
                (41) 

by using Lemma 3. The optimal policies (20) and (21) are now rewritten as  
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 
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and 
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Corollary 1. The GHJI equation (41) is equivalent to the HJI DARE (40).  

Proof. This can be shown by following a similar approach to [18] where matrices R and P 

are not identity matrices. Define 

 
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Thus, kk Kxw  and kk Lxu  . Define 

  BCPCCCBRBBD TTTT 
12

11  ,     

  CBRBBBCPCCD TTTT 
12

22  ,     

RBBA T 11 , PCCA T 2
22  , CBA T12 , and 

BCA T21 .  Note that 21
1

22121111 AAAAD


  and 12
1

11212222 AAAAD


  are the Schur 

complements of 11A  and 22A , respectively. Thus [13], 
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Consequently, K and L can be calculated as 
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Now, by using (44), equation (41) may be rewritten as  
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or equivalently as 
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Thus, by using (44), one can obtain 
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The solution for  can be obtained through solving (45) iteratively [18].  
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V.  NN Approximation of the Value Function 

So far, we have demonstrated how to recursively solve the GHJI equation by 

successively updating the disturbance ),( jiw and control )(iu .  In addition, it was 

demonstrated that the optimal solution of GHJI is found by iterating between the two 

loops.  However, a general closed-form solution for GHJI is still hard to obtain even 

though the GHJI equation is a linear differential equation and in general easier to solve 

than the original HJI equation. 

Moreover, the solution for GHJI requires the internal dynamics (i.e. )(xfk ) to be 

known. In this section by using an approximator such as a NN for the internal 

dynamics, )(xfk , we show that the value function can be obtained with a small error. 

A. Successive Approximation of the Value Function using NN 

First, we show how to approximate the solution of GHJI equation for the discrete-

time nonlinear system by using the approximation properties of NNs and by assuming 

that the disturbance term ),( jiw and the control input )(iu are in feedback form. It is known 

that NNs can approximate smooth functions on a compact set  [1]. Then, we can 

approximate ),( jiV with an NN as 

)()()(
1

),( xWxxVV L
T
L

L

l

llL
ji   



                (46) 

where the activation function vector )(xl is continuous and zero at the origin, 
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T
LLW ][ 1   is the vector of NN weights , T

LL ][ 1    is the vector of 

activation functions and L is number of hidden layer neurons. The NN weights are tuned 

to minimize the residual error (which is defined next) in least square method over a set of 

points within the stability region of the initial admissible control. In the 

  0,, ),()(),( jiiji wuVGHJI  equation, the value function ),( ji
kV is replaced by LV to obtain the 

residual error as 

)(,,)( ),()(
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 .                (47) 

Weighted residuals [15] are used to find the least square solution for (47). The 

weights are determined by using 

0)(,/)(  xeWxe LLL .                (48) 

By expanding (48) we obtain 

0
2

1
,)(

.
2

1
,

2

1

2),(),(2)()(

22





xxxPwwRuuxQ

Wxxxxxx

L
T

L
jiTjiiTi

LL
T

LL
T

L





          (49) 

where the terms L  and L2 are gradient vector and Hessian matrix of )(xL with 

respect to x, respectively, and xxwxhxuxgxfx jii  ),()( )()()()()( . The following lemma 

is needed to proceed. 

Lemma 4 [12]. If the set   )(,),()( 11
xxx L

L
j    is linearly independent, then so is 

the set 

L

j
TT

j xxx
1

2

2

1









  .  

From (49) we have  
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 ,)(, ),(),(2)()(1 jiTjiiTi
L PwwRuuxQW 


                (50) 

where L
j

TT
j xxx 1

2 }2/{   . As a result of Lemma 4,  ,  is full rank and 

invertible. Therefore, a unique solution for the weights can be obtained. In addition, the 

inner products in (50) can be approximated as [15] 
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where 1 ii xxx is chosen small in   and N is large. By employing a mesh in the set 

 where the mesh size is x , the NN weights can be found as 
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where X and Y are defined as 
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and p is the number of points in the mesh. 

Examining the weight update (51), it is observed that knowledge of 1kx  and thus 

)(xfk is required for implementation of the iterative scheme; however, it is not always 

possible to obtain an explicit expression for the internal dynamics )(xfk a priori.  

B. Identification of Unknown Nonlinear Internal Dynamics 

Consider the unperturbed system 

kkkk ugfx 1 .                (52) 
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Using the universal approximation properties of NN’s [1], the smooth function 

)(xf can be represented using a NN as 

  )()( xWxf ff                 (53) 

where  
fW  represents the bounded target weight matrix, )(xf  is a linearly independent set 

of basis functions satisfying 
fMffMin x   )(  for all 0x .  It is observed that this 

condition is easily met with proper selection of the basis function.  Additionally, 

 Tn ,,1  , and M   with M being a positive constant. 

The NN identification scheme is now defined as 

kkkkk xKugfx ~ˆˆ 1                  (54) 

where kkk xxx ˆ~  , K is a design constant, )(ˆ)(ˆ xWxf ff , and 
fŴ is the NN approximation of 

fW .  Subtracting (54) from (52) reveals the identification error dynamics to be 

kkk xKfx ~~~
1                   (55) 

where f
T
fk Wf 

~~
 with fff WWW ˆ~

 .  Let the NN tuning law be given by 

T
kkfff xKxkWkW )~~()(ˆ)1(ˆ

1   .                (56) 

Then, the NN weight estimation error dynamics  )1(
~

kW f
 )1(ˆ  kWW ff

are given 

by 

 
WkW

kWkWkW

f

T
ff

T
ffff

~
)(

~

)(
~

)(
~

)1(
~








                (57) 
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where T
ff

T
ff kWW   )(

~~
. The key feature of the update law (56) is that when kx~  in 

very small, that is kk xx ˆ , we can conclude that identifier (54) has learned the internal 

dynamics )(xf , that is )()(ˆ xfxf  . Before proceeding, the following definition is required. 

Definition 6 [1]:  An equilibrium point 
ex is said to be uniformly ultimately bounded 

(UUB) if there exists a compact set  nS so that for all initial states Sx 0
there exists a 

bound B and a time ),( oxBT  such that Bxkx e )( for all Tkk  0
. 

Theorem 5. Let the proposed identification scheme in (54) be used to identify (52), and let 

the NN update law be given by (56). Then, the state estimation errors )(~ kx  and NN 

function approximation errors f
T
fW 

~
are UUB. 

Proof.   Define the Lyapunov function  
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Calculating the first difference and using (55) and (57), we have 
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After some math we obtain 
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After more manipulations we get 
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It can be concluded 0L if the design parameters are selected according to 

3/1K , )12/(1
2
 fM , and the following inequalities hold.                
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As a result, the state identification error as well as the function approximation 

error converges to the bounds xb and Wb  uniformly. Note that xb and Wb can be made 

small by choosing proper design gains and decreasing 2
M by means of increasing the 

number of hidden layer neurons [10].                            ■ 

Corollary2.  Using the proposed NN identification scheme,  

fkk xfxf  )()(ˆ                 (59) 

where   f
T
ff W

~ ; thus, fMMWf b   . 

Proof of Corollary 2 is easily shown by observing (53), )(ˆ)(ˆ xWxf ff , and applying the 

bound of (58). 

Next, we investigate the effect of using )(ˆ xf k
in the NN least squares training 

method of Section IV-A. 

Theorem 6.  Let the internal dynamics )(xfk
 be provided using the NN identifier (54) so 

that the relationship (58) holds.  If the NN least squares algorithm is utilized for tuning 

the NN weights in order to get )(ˆ xf k
 so that the value function )(ˆ xVk

  can be constructed, 
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then, 
Mfkk TxVxV    )()()(ˆ  where T(.) is a function of f  with M being a positive 

constant.  

Proof. Similar to (46) which renders )(xVk
  when NN successive approximation algorithm 

converges, we approximate the function )(ˆ xVk
 with an NN as 
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From (50) it is easy to verify that LŴ is a function of fx ˆ, where LW is the same function of 

fx, as  
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where  )()(1

1 )()()(),(),,(),( iTi xRuxuxQfxfxfxT 


 ),(,)()( ),(),(2 fxxPwxw jiTji  . 

Thus, by using (46) and (61) we can rewrite )(ˆ xVk
 and )(xVk

 as )ˆ,()(ˆ)(ˆ
2 fxTxWxV LLk    

and ),()()( 2 fxTxWxV LLk    where ),()(),( 12 fxTxfxT L . Consequently, by using 

Taylor series around the point ),( fx and fxfxf  )()(ˆ we obtain 
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where s is the number of required Taylor series terms such that the Taylor series error is 

negligible, 
fkk ff ˆ  from (59),  Tnf  ,,1  ,  Tnfff ˆ,,ˆˆ

1  , and ifk  is an integer 

such that sk

n

i

if 
1

. Since )(xVk

 and )(ˆ xVk

 are bounded and continuous, there exists a 
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positive constant 
M such that Mn

fnkfks ffT  ))()/(( 1
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2  .  Consequently,  
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Note that if 1fM , then )(ˆ)( xVxV kk
  can be made very small.               ■ 

VI. Simulation Case Studies 

In order to verify the theoretical work introduced in this paper, a complex power 

system and a general nonlinear system are considered.  First, a power system case study is 

introduced next. 

The power system is chosen as a nonlinear dynamical system where the power 

balance equations are utilized to obtain its nonlinear dynamics. A power system is usually 

modeled using a combination of differential and algebraic equations. The differential 

equations represent generator states (i.e. angles, speeds,) whereas the algebraic equations 

represent bus active and reactive power balance relationships. For control design it is 

desirable to have pure dynamical equations. In [16], authors have proposed an algebraic-

free power system representation based on the generator classical model for the power 

system shown in Fig.2.  

This representation is appropriate to model a nonlinear power network with 

FACTS device as a controller. The advantage of this approach is that no algebraic 

equations are involved in the control design but the nonlinear behavior is retained.  In the 

proposed approach, the power system classical model is utilized where the generators’ 

internal voltages are held constant to develop the control approach.  Then, the proposed 

nonlinear optimized control scheme is utilized to optimally stabilize and damp the 



243 
 

oscillations resulting from a disturbance by using UPFC as a controller. Finally, the 

results are compared with that of a conventional nonlinear backstepping controller. 

 

 

 

 

 
Fig.2 Power System 

 

 

 

 

A. Power System Continuous-time Dynamical Model 

The classical generator representation is often sufficient for the control 

development for mitigating inter-area oscillations since only the rotor speed deviations 

are of interest. In addition, the resistances of network lines are neglected. Despite this 

assumption made for ease of control development, the proposed control will be validated 

on a power system with resistances presence.   

It is more convenient to represent the generator dynamical equations in the Center 

of Inertia (COI) coordinates as 

ii                           

)sin(, niiniginiiCOI
T

i
miii VEBP

M

M
PM    , ni ,,1  

where 
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 and PLi is the active load at each bus. Also, 
i  is the rotor angle of the 

i-th machine, i  is the angular speed, 0  is the synchronous angular speed, B represents 

the reactance of the admittance matrix, Egi is the i-th machine  internal voltage, n is the 

number of generators, Mi = 2H/0 is the i-th machine inertia, and niV   and ni  are the 

generator bus voltage and phase angle, respectively. In addition, N is the number of non-

generator buses in the power system. 

The bus voltages and phase angles of all of the power system buses are 

constrained by the following set of algebraic power balance equations (neglecting 

resistances) 
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where LiP  and LiQ are the active and reactive loads on the i th bus, and gjj EV  ; jj   for  

nj 1 . By using the UPFC power injection model [17] and the approach introduced in 

[16], the generator dynamical model can be represented as 
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where n is the number of generators. Also, UPFC dynamics is given by u where 

 cosbV and )(   ntbb VV  according to Fig. 3[16].  
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(a)         (b) 

Fig. 3 a) UPFC connected between two network nodes b) Injected powers to the 

connected buses 

 

 

 

 

Then, by employing backstepping design, we obtain 
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where idii xxz 222  , iiid xKx 1δ2  , )( 333 diii xxz  , 
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with iKδ and iKZ1  are positive design constants. Next, we obtain power system discrete-

time dynamics. 

B. Power System Discrete-time Dynamical Model 

By assuming a small time step T , the generator dynamics are approximated by  

)()()()()1()1( 21121δ1 kTzkxKkTzkxKTkx iiiiiii   

where idii xxz 222  , 1iK  is design constant, and 
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.)/)1(( 1δ112 iiiiid xKxTKx   Next, observe 

)()(

)()()()1(

3131

2δ122

kzTgkxTg

kxKTMkTfkMzkzM

iidii

iiiiiii




      

where diii xxz 333  ,  

],[
1

])([
1

2Z12δ11
1

222δ11
1

3

iiiiiii
i

iiiiiiii
i

di

zKxKMfx
g

zMKxKTMTfTx
Tg

x




    

and 1iK  is a design constant. Finally, 
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where Tzxzxx ][ 22212111   and  the control input 1u can be obtained as 
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For the case of multiple generator/multiple UPFC control, the dynamics )1(3 kz i  are 

replaced by 

12333 )()()()1( uHkTgkTfkzkz i                               (62) 

where, dxxfxf 323 )()(  ,  Tnfff 1,2212   ,  1,2212  nggdiagg  , 

T
nddd xxx ][ 1,3133   and  TnH 111)1( 

. Additionally, we define  Tnxxx 1,1111    , 

 Tnzzz 1,3313   ,  Tnzzz 1,3313   . Moreover, note that only 1n generators are 

chosen to be controlled. Since the n  generators exist in the interconnected power 

network, the nth generator is forced to be controlled if the remaining 1n speeds are 

controlled. Since there are fewer inputs than outputs (for 2n ), it is generally difficult to 
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find an input that makes a total Lyapunov function derivative negative definite. However, 

equation (62) can be stabilized by defining the control input 1u as 
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In fact the control input iu is stabilizing the dynamics defined by 

123333 )()()()1()1( uHkTgHkTfHkzHkzHkz TT
i

T                  (64) 

The stability of the individual generators can be concluded by considering the 

power system transient response where the generator dynamics are linear combination of 

the linearized model modes. For typical power systems, if the summation of the modes is 

equivalent to zero, stability of the individual generators can be concluded. Exceptions 

include topologies with unobservable modes and isolated coupled generators. With 

)1(3 kzH T converging to zero the stability of the individual generators are guaranteed by 

using (118) through (121) resulting in 
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By proper selection of the design constants iK1 and iK 2 stability of ix1 and iz2 can be 

obtained.  Next the above mathematical representation and the controller design is 

evaluated on a tractable two-generator power system. 

Example 1. First, for optimal control validation, the two-generator power system shown is 

Fig. 4 is used and subjected to a three phase fault. 
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Fig. 4 Two-generator power system 

 

 

 

 

The generator data is given in Table 1. The generators have speed governors with 

the UPFC control implemented via the power injection model. The power system loads 

are considered as constants. The control objective is to optimally damp the generators 

oscillations after the fault is cleared. Although the dynamical power system model and 

controller are derived based on lossless power system, the simulations are performed 

using the complete power system model (with line resistances) to evaluate the 

effectiveness of the model and the control design. 

 

 

 

  

Table 1. Generators Specifications 

Gen no. 1 2 

dx  0.0023 0.0023 

2MH s  5 1 

 

 

 

 

 In the system given by Fig. 2, the UPFC is installed on bus 1 between 1 and 3 

which is found to be an appropriate placement by trial and error. A three phase short 
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circuit fault is applied to bus 3 at st 2.0 and removed at st 4.0  seconds. Generator 1 is 

chosen for control. In order to find the optimal controller, the value function is 

approximated by a neural network as described by (46) where a 6th-order even 

polynomial is chosen for the basis function with the state vector defined 

by  Tp zxzzzxx 221232312111   .  For training, a history of the power system 

subjected to different faults is employed instead of using a mesh formed by variation of 

all the states used in the literature [10]. 

The simulation results are depicted in Figs. 5 and 6 for oscillation damping after a 

fault is cleared by using an UPFC embedded with the proposed optimal controller and 

with standard nonlinear backstepping controller (63) where there are no other 

disturbances in the power system. 

Subsequently, a disturbance is injected in the power system using an exponentially 

decaying function for the bus load where the load on bus 3 decays 0.05pu with a slow 

exponential rate of s5.0 . The results are shown in Figs. 7 and 8 where the optimal 

control is able to handle the load disturbance injected to the power system. 

Next, a general nonlinear discrete-time system is considered and the proposed 

optimal controller is evaluated. 

Example 2. A nonlinear system described by (66) is considered 
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Fig. 5 Generator speeds 

 

 

 

 

  

 
Fig. 6 UPFC injected power and series voltage 
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Fig. 7 Generator speeds with load disturbance 

 

 

 

 

 

with the initial stabilizing controller is defined by   Tkxkxu )]()([5.11 21 . The initial 

conditions of (66) are taken as 1.0)0(1 x and 1.0)0(2 x . Moreover QxxxQ T)( , 

Q=1,R=P=1 , and 20  are used. In order to implement the NN approximator, the mesh 

size in the  21, xx plane is chosen to be 0.05. The region  5.05.0,5.05.0 21  xx  is 

used to train the neural network (NN). The activation functions of the NN are even 

polynomial functions up to tenth order in the form of 

 10
2

10
1

4
2

3
21

4
1

2
221

2
1 ,,,,,,,,, xxxxxxxxxx  , and the control input and disturbance are updated 

according to the proposed procedure in Fig. 1 of Section III-A. The final NN weights are 

LW  [2.2457  2.1128   3.3185  28.4098   38.9558   35.1154  -6.2207 -74.4427 -165.6169 

-202.5626 -160.5370    9.6288  6.8831 -60.4303 -4.5262 143.2018 -5.1839 -132.6341    
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4.1517  -39.2125 10.0417 117.5590 309.7810 521.1991  515.7240 372.5395 35.3219  

24.9638 11.1778 -79.0883 -263.6746 -430.7612  -607.4182 -532.2564 -332.3868 T] . 

Upon completion of the offline training, the performance of the final optimal 

control policy is compared to the initial stabilizing control.  In the comparison, a 

disturbance kew 1.005.0  is introduced into the system at k=0.  To evaluate the overall 

performance of the system, the performance metric defined in [7] is utilized as 
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Fig. 9 shows the control effort of the optimal control law as well as the initial 

control law while Fig. 10 depicts the control attenuation associated with each policy 

evaluated using the metric (67).  By examining Fig. 9, it is observed that the time history 

of the states for the initial control policy oscillates as it converges to the origin whereas 

with the improved control law, the states converge to the origin smoothly with no 

overshoots or undershoots.  Additionally, examining the control signals shown in Fig. 9, 

the final optimal control policy exhibits significant improvements over the initial policy 

in terms of magnitude and smoothness.  Examining Fig. 10, a significant decrease in the 

control effort (67) is observed when the improved optimal control law is applied to the 

system. Thus, the improved control policy behaves as expected. 

Example 3. To demonstrate the effectiveness of the proposed nonlinear optimal method 

while relaxing the internal dynamics, )(xf , the nonlinear system in Example 2 is revisited 

when the )(xf is unknown. 
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Fig. 8 UPFC injected power and series voltage with load disturbance 

 

 

 

 

 
Fig. 9 Nonlinear system states and control inputs with the optimal control 
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Fig. 10 Nonlinear system control cost 

 

 

 

 

The internal dynamics is now approximated by )(ˆ)(ˆ xWxf f
T
f  where the identification 

scheme (54) and NN weight update law (56) are applied. Te NN is comprised of 10 

hidden layer neurons where the sigmoid activation function [20]  is utilized.  

Additionally, the hidden layer weights fV are chosen at random and kept constant during 

the simulation whereas the tunable weights fŴ  are set initially to -10. For identifier, the 

initial, actual, and estimated states are 1.0)0(ˆ)0(ˆ)0()0( 2121  xxxx , respectively. The 

control input is designed through backstepping to let the system state )(1 kx to track a 

desired trajectory )sin()( kkr  which is obtained as 






















2211

221

2 ))1()2((
80

1

)81)80(sin(

1

1
)(

zKkeKkr
.-

x.-xx.-

-x-
ku       

where )()()( 11 krkxke  , )()()( 222 kxkxkz d , and   0.8/)()1(- 112 keKkrx d  . 

In addition, the design gain constants are 1.01 K , 01.02 K , and the identifier 

design gain constant in (54) is selected as 01.0K . Then, the proposed nonlinear optimal 
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controller design is considered with the system with the approximated )(ˆ)(ˆ xWxf f
T
f  . 

The original stabilizing controller   Tkxkxu )]()([5.11 21 is considered. Also, QxxxQ T)( , 

Q=1, R=P=1 , and ;20  are used. In order to implement the NN approximator, the 

mesh size in the  21, xx plane is chosen to be 0.03. The region  5.05.0,5.05.0 21  xx  

is used to train the neural network (NN). Similar to Example 2, the NN is defined with 

the activation functions containing even polynomial functions up to tenth order in the 

form of  10
2

10
1

4
2

3
21

4
1

2
221

2
1 ,,,,,,,,, xxxxxxxxxx  , and the control input and disturbance are 

updated according to the proposed procedure in Fig. 1 of Section III-A. Upon completion 

of the offline training, the performance of the final optimal control policy is compared to 

the initial stabilizing control.  Similar to Example 2, a disturbance kew 1.005.0  is 

introduced to the system at k=0.   

Fig. 11 illustrates the online identification results where the actual and identified 

states as well as the approximated internal dynamics )(ˆ xf  and )(xf are shown. Then, Fig. 

12 shows the control efforts of the optimal control law as well as the initial control law 

while Fig. 13 shows the control attenuation associated with each policy evaluated using 

the metric (67).  By examining Fig. 12, it is observed that the state time history and the 

control input for the optimal control policy with unknown )(xf  converges to the optimal 

control policy and the control input with known )(xf .  By examining Fig. 13, the control 

effort (67) is also in the same range as in Example 2 when the internal dynamics )(xf is 

known.  Next, another example is employed to verify the verify that the proposed GHJI 

results in DARE optimal policies. 
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Fig. 11 Internal dynamics )(xf  approximation 

 

 

 

 

 

Fig. 12 Nonlinear system states and control inputs with actual )(xf as well as 

approximated )(ˆ xf  
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Fig. 13 Nonlinear system control attenuation with approximated )(ˆ xf  

 

 

 

 

Example 4. Consider the linear system described by 

wu
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1

0
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2

1

2

1 .               (68) 

The initial stabilizing controller is chosen to be  

  









)(

)(
5.15.1

2

1

kx

kx
u .  

The initial conditions of (68) are taken as 1)0(1 x and 1)0(2 x . Moreover 

QxxxQ T)( is used and R=Q(x)=P=1, 20 . In order to implement the NN approximator, 

the mesh size in the  21, xx plane is chosen to be 0.05. The region 

 5.05.0,5.05.0 21  xx  is used to train the NN. The NN is defined with the activation 

functions containing even polynomial functions up to sixth order in the form of 

 6
2

6
1

4
2

3
21

4
1

2
221

2
1 ,,,,,,,,, xxxxxxxxxx  , and the control input and disturbance are updated 

according to (19) and (18). Upon completion of the offline training, the performance of 
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the final optimal control policy is compared to the linear DARE optimal policy (43) as 

well as initial stabilizing control. The DARE is solved using MATLAB where the matrix 

 is obtained as  











7919.30070.1

0070.15074.1
. 

In the comparison, a disturbance input kew 1.010  is introduced into the system at 

k=0. The system states and the control efforts when the improved optimal controller and 

the original stabilizing controller were applied are shown in Fig. 14.  Figure 15 shows the 

attenuation associated with each policy where the attenuation is defined as (67).  

Examining Fig. 15, a significant decrease in the control effort is observed when the 

improved optimal control law is applied to the system. In addition, it can be observed that 

the proposed nonlinear optimal controller coincides with the DARE optimal policy. 

Figure 16 illustrates the system trajectories with the nonlinear optimal control strategy as 

well as the DARE optimal controller and original controller.  

These examples clearly indicate that the proposed optimal control policy renders 

the desired performance as expected. 

VII. Conclusions 

In this paper, nearly optimal solutions for discrete-time (DT) nonlinear control 

systems are considered.  A successive approximation approach is utilized to solve the 

generalized Hamilton-Jacobi-Isaacs (GHJI) equation that appears in optimal control. 

Under a small perturbation condition, the definition of GHJI function as well as methods 

for updating control input and disturbance for DT nonlinear affine systems is proposed, 

and the associated value function is achieved.  
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Fig. 14 Linear system states and control inputs with nonlinear and DARE optimal  

controllers as well as original stabilizing controller 

 

 

 

 

 

Fig. 15 Linear system control attenuation with nonlinear optimal controller and 

original stabilizing controller 
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Moreover, sufficient conditions for algorithm convergence to the saddle-point are 

derived.  Then, a NN is employed to approximate the GHJI equation using a least squares 

approach. The result is a closed-loop optimal NN controller via off-line learning.  Finally, 

by using an identifier the need for system internal dynamics is relaxed. Simulation results 

were also presented to verify the theoretical conjectures. 

 

 

 

 

 
Fig. 16 Linear system trajectories with nonlinear and DARE optimal controllers 

 as well as original stabilizing controller 
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SECTION 
 
 
 

2.  CONCLUSIONS AND FUTURE WORK 
 
 
 

In this dissertation, neural network (NN) control techniques were utilized in the 

controller design of a class of nonlinear interconnected dynamic systems with 

applications to power systems. In order to motivate the need for decentralized control, 

this work begins by introducing a novel representation of power systems, where the 

algebraic equations in the conventional representation of the power system are replaced 

by a set of differential equations. The representation is then generalized to a decentralized 

representation of power systems and used to implement various nonlinear control 

techniques starting from traditional backstepping to optimal control by solving the HJB 

equation forward in time.  

 
 
 
2.1.  CONCLUSIONS 

In the first paper, the decentralized representation of the nonlinear power system 

clearly demonstrated the need for decentralized control.  In the formulation, the approach 

taken to eliminate the algebraic equations appears to work well.  If the system dynamics 

or nonlinearities are known beforehand, traditional backstepping-based control schemes 

can be utilized to deliver the desired performance.  By contrast, in the second paper, the 

system nonlinearities and interconnection terms are assumed unknown which is typical in 

practical situations. Then, to overcome the repeated differentiation normally required in 

backstepping, dynamic surface control (DSC)–based approach is proposed. The DSC-
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based approach with the proposed novel update law consisting of quadratic error terms 

will indeed provide asymptotic stability of the tracking error when states are available.  

Further, by using a linear observer introduced in the second paper, the need for state 

measurability is relaxed.  Then, in the third paper, DSC-framework was demonstrated on 

a power system after the power system decentralized model is developed. 

Discrete-time representation and control design are preferred for embedded 

computer implementation. Therefore, in the forth paper, the decentralized discrete-time 

controller design for unknown nonlinear interconnected system is introduced and the 

stringent assumption of bounded interconnected terms is relaxed. Moreover, by 

employing a NN the system unknown dynamics are approximated while bounded 

stability of the states and NN weights is guaranteed. The discrete-time decentralized 

representation of a power system with excitation control is developed and the proposed 

controller is shown to be effective on damping power system oscillations.  

Further, the work of the fifth paper considers the decentralized optimal control of 

nonlinear interconnected systems where the HJB solution is found forward in time by 

using NNs with online learning strategies. The large scale system is proven to be 

optimally controlled and the NN weights are shown to be bounded. The work concludes 

by finding an offline solution for the discrete-time HJI optimal problem in the sixth 

paper. This final paper deals with the optimal control of nonlinear discrete-time systems 

in the presence of disturbances. Then, by using an iterative approach the value function is 

obtained. Also, the existence of the saddle-point in a zero-sum two-player differential 

game where the players are system disturbance and control input is proven. Next, 

approximation properties of neural networks (NN) and least squares are used to obtain 

the value function. Moreover, a NN identifier is presented in this work to learn the 
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nonlinear internal dynamics of the system where the obtained NN optimal policy is 

implemented to mitigate power systems oscillations.   

 

 

2.2.  FUTURE WORK 

Future work should address the online discrete-time robust optimal control 

problem for uncertain decentralized nonlinear systems. Also, the tracking problem in the 

decentralized control is an open subject which is suggested as future work. Extending the 

HJI optimal problem to the decentralized nonlinear interconnected systems is also 

important to achieve optimal control of large-scale systems in the presence of 

disturbances. 
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