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ABSTRACT 
 

 

 

Fault diagnostics and prognostics schemes (FDP) are necessary for complex 

industrial systems to prevent unscheduled downtime resulting from component failures.  

Existing schemes in continuous-time are useful for diagnosing complex industrial 

systems and no work has been done for prognostics. Therefore, in this dissertation, a 

systematic design methodology for model-based fault prognostics and accommodation is 

undertaken for a class of nonlinear discrete-time systems. This design methodology, 

which does not require any failure data, is introduced in six papers.   

In Paper I, a fault detection and prediction (FDP) scheme is developed for a class 

of nonlinear system with state faults by assuming that all the states are measurable. A 

novel estimator is utilized for detecting a fault. Upon detection, an online approximator in 

discrete-time (OLAD) and a robust adaptive term are activated online in the estimator 

wherein the OLAD learns the unknown fault dynamics while the robust adaptive term 

ensures asymptotic performance guarantee. A novel update law is proposed for tuning the 

OLAD parameters. Additionally, by using the parameter update law, time to reach an a 

priori selected failure threshold is derived for prognostics. Subsequently, the FDP scheme 

is used to estimate the states and detect faults in nonlinear input-output systems in Paper 

II and to nonlinear discrete-time systems with both state and sensor faults in Paper III.  

Upon detection, a novel fault isolation estimator is used to identify the faults in 

Paper IV.  It was shown that certain faults can be accommodated via controller 

reconfiguration in Paper V. Finally, the performance of the FDP framework is 

demonstrated via Lyapunov stability analysis and experimentally on the Caterpillar 

hydraulics test-bed in Paper VI by using an artificial immune system as an OLAD. 



 v 

ACKNOWLEDGMENTS 

 

 
I would like to express my deep thanks to my advisor, Dr. Jagannathan 

Sarangapani for his valuable guidance, time and support. I also would like to thank Dr. 

Kelvin Erickson, Dr. Chengshan Xiao, Dr. Cihan Dagli, Dr. S. N. Balakrishnan, and Dr. 

Al Salour for serving on my doctoral committee.  I also thank the Intelligent System 

Center (ISC) and the NSF Intelligent Maintenance System Center (IMS) at Missouri S & 

T for funding my education through a graduate research assistantship.  

I am greatly thankful to my father, Dr. T. S. Thandavamoorthy for his 

encouragement and also dedicate this dissertation to my beloved late mother, T. T. 

Vijayanthimala. I also express my sincere gratitude to rest of my family members back 

home in India for their understanding and love. I also thank all my friends here in the US 

and as well back home for their time and support. 

I also would like to thank all my fellow colleagues who made my time in Ph.D. 

program fun and exciting. I also would like to extend a special thanks to Dr. Maciej 

Zawodniok and Jeff Birt for their support and time.  

Finally, I would like thank the staff of ECE department for their continuous 

assistance and also would like to thank the staff of Curtis Laws Wilson Library for 

providing me with the necessary literature.  

 
 

 



 vi 

TABLE OF CONTENTS 

Page 

PUBLICATION DISSERTATION OPTION ................................................................... iii 

ABSTRACT ....................................................................................................................... iv 

ACKNOWLEDGMENTS ...................................................................................................v 

LIST OF ILLUSTRATIONS ............................................................................................. xi 

SECTION 

1. INTRODUCTION ...........................................................................................................1 

             1.1  OVERVIEW OF THE FAULT DETECTION METHODOLOGIES……… .5                  1 

             1.2  ORGANIZATION OF THE DISSERTATION...............................................7                  1 

             1.3  CONTRIBUTIONS OF THE DISSERTATION ...........................................10                  1 

             1.4  REFERENCES ..............................................................................................11                  1 

PAPER 

1. A Fault Detection and Prediction Scheme Using Asymptotic Estimators for Non-     

    Affine Nonlinear Discrete-Time Systems with State Faults..........................................14 

Abstract ..............................................................................................................................14 

1. Introduction ....................................................................................................................15 

2. Problem Statement .........................................................................................................21 

3. Asymptotic Fault Detection Estimator...........................................................................25 

4. Analytical Results ..........................................................................................................29 

             A)  Stability Analysis ............................................................................................30                  1 

             B)  Fault Detection Time .......................................................................................33                  1 

5. Prediction Scheme .........................................................................................................34 



 vii 

6. Simulation Results .........................................................................................................37                  1 

7. Conclusions and Future Work .......................................................................................45 

Appendix ............................................................................................................................46 

References ..........................................................................................................................57 

2.  A Robust Fault Detection and Prediction Scheme for Nonlinear Discrete Time  

     Input-Output Systems ...................................................................................................62 

Abstract ..............................................................................................................................62 

I.  Introduction ...................................................................................................................63 

II. Problem Formulation.....................................................................................................66 

III. Fault Detection Scheme………………………………………………………………68            1 

IV. Analytical Results ........................................................................................................71                 1 

V. Prediction Scheme.........................................................................................................86 

VI. Simulation Results .......................................................................................................91 

                A.  Fault Detection Scheme ...................................................................................91                  1 

             B.  Prediction Scheme ...........................................................................................95                  1       

VII. Conclusion and Future Work .....................................................................................97 

References ..........................................................................................................................98 

3.  A Model Based Fault Detection and Prediction Scheme for Nonlinear  

     Multivariable Discrete-Time Systems With Asymptotic Stability Guarantees ..........101 

Abstract ............................................................................................................................101 

I.  Introduction …. ...........................................................................................................102 

II. Problem Statement … .................................................................................................107 

III. Fault Detection and Diagnosis Framework................................................................110                 1 

IV. Analytical Results ......................................................................................................115                1 



 viii 

V. Prediction Scheme.......................................................................................................122 

VI. Simulation Results .....................................................................................................127 

VII. Conclusions and Future Work ..................................................................................137 

Appendix…. .....................................................................................................................138 

References  .......................................................................................................................155 

4.  A Novel Prognostics Scheme for Nonlinear Discrete-time Systems with  

     Multiple State Faults and Fault Types ........................................................................161 

Abstract ............................................................................................................................161 

I.  Introduction………. ....................................................................................................162 

II. System Description………. ........................................................................................165                 1 

III. Fault Detection Scheme .............................................................................................169  

IV. Prognostics Scheme ...................................................................................................172 

             A. Systems with Multiple Faults .........................................................................173                  1 

             B. Systems with Multiple Fault Types ................................................................179                  1 

             C. TTF Determination .........................................................................................183                  1 

V. Simulation Results ......................................................................................................186 

VI. Conclusions …….......................................................................................................192 

Appendix ..........................................................................................................................192 

References  .......................................................................................................................204 

5.  An Asymptotically Stable Online Fault Detection and Accommodation  

     Scheme for Nonlinear Discrete-time Systems ............................................................208 

Abstract ............................................................................................................................208 

1. Introduction ..................................................................................................................209 

2. Problem Statement  ......................................................................................................211 



 ix 

3. Fault Detection Scheme ...............................................................................................213 

             A. Nonlinear Estimator Dynamics ......................................................................213                  1 

             B. Performance of the Detection Scheme ...........................................................214                  1 

4. Fault Accommodation Scheme ....................................................................................218 

5. Simulation Results .......................................................................................................224 

6. Conclusions ..................................................................................................................228 

Appendix ..........................................................................................................................229 

References ........................................................................................................................240 

6.  A Novel Fault Detection and Prediction Scheme in Discrete-time Using a Non-  

     linear Observer and Artificial Immune System as an Online Approximator ..............243 

Abstract ............................................................................................................................243 

I.  Introduction .................................................................................................................244 

II. Artificial Immune System as Function Approximators ..............................................248  

III. Problem Statement .....................................................................................................251                  1 

IV. Fault Detection Scheme .............................................................................................254 

            A. Observer Dynamics .........................................................................................254                  1 

            B. Fault Detection Threshold Selection ...............................................................255                  1 

V. Prediction Scheme.......................................................................................................259                 1 

VI. Simulation Results .....................................................................................................263 

            A. Two Link Robot Manipulator .........................................................................263                  1 

            B. Axial Piston Pump ...........................................................................................266 

                             B.1) Piston Wear Fault ........................................................................268                  1 

                             B.2) Outlet Pressure Sensor Fault .......................................................270 

 



 x 

VII. Experimental Results ................................................................................................272 

VIII. Conclusions .............................................................................................................277 

Appendix ..........................................................................................................................277 

References ........................................................................................................................284 

SECTION 

2.  CONCLUSIONS AND FUTURE WORK .................................................................289 

             2.1  CONCLUSIONS ……….............................................................................289                  1 

             2.2  FUTURE WORK .........................................................................................292 

VITA  …………………………………………. .............................................................294 

 



 xi 

LIST OF ILLUSTRATIONS 

Figure               Page 

SECTION 

1.1 A qualitative technique based fault detection. ......................................................................3 

1.2 Block diagram representation of a model-based fault detection scheme .................................4 

1.3 Dissertation overview ........................................................................................................8 

Paper 1 

1   State trajectories from initial state to failure .......................................................................24 

2   Flow chart indicating the TTF determination .....................................................................37 

3   Residual signal with the detection threshold. ................................................................39 

4   Online estimation of the system parameter. ........................................................................41 

5   The TTF determination after the fault detection. .................................................................41 

6   Residual signal with the fault detection threshold. .......................................................43 

7   Estimated and actual system parameter trajectories along with the failure threshold...45 

8   The TTF determination after the fault occurrence ...............................................................45 

Paper 2 

1 Procedure to iteratively update the TTF ...............................................................................90 

2 Absolute value of the residual. ............................................................................................93 

3 Evolution of the actual fault term ( ( )f y ) and OLAD( ˆ(ˆ , )f y  ) response ................................93 

4 Absolute value of the residual and the fault detection threshold .............................................94 

5 Evolution of the fault ( ( )f y ) and OLAD ( ˆ(ˆ , )f y  ) response in the presence of the system  

   uncertainty and the measurement noise................................................................................95 

 
6 Comparison between the estimated and the actual system parameter, and also shown the safe   

   threshold. ..........................................................................................................................96 



 xii 

7 Prediction of TTF after the occurrence of the fault. ..............................................................96 

Paper 3 

1 State trajectories from initial time to failure .......................................................................111 

2 Flow chart indicating the TTF determination .....................................................................125 

3 State residual ( 1 11

ˆ( ) ( ) ( )se k x k x k  )     ............................................................................131 

4 State residual ( 2 22
ˆ( ) ( ) ( )se k x k x k  )          .......................................................................131 

5 Output residual norm and the detection threshold ...............................................................131 

6 Online estimation of the fault parameter ( 3 ( )k ) ................................................................132 

7 Online estimation of the fault parameter ( 4 ( )k ) ................................................................132 

8 The TTF determination due to the state fault (
3

(.)sg ). ........................................................132 

9 The TTF determination due to the state fault (
4

(.)sg ). ........................................................133 

10 State residual ( 1 11

ˆ( ) ( ) ( )se k x k x k  )     ..........................................................................135 

11 State residual ( 2 22
ˆ( ) ( ) ( )se k x k x k  )          .....................................................................135 

12 Output residual norm and the detection threshold .............................................................135 

13 Online estimation of the fault parameter ( ( )y k ) ..............................................................136 

14 The TTF determination after the output fault. ...................................................................136 

Paper 4 

1 Overview of the prognostics scheme      .................................................................................169 

2 Flow chart indicating the TTF determination .....................................................................185 

3 Residual and the threshold for detecting faults ...................................................................188 

4 Convergence of the FI residual (
1( )ke ). .............................................................................189 



 xiii 

5 Convergence of the FI residual (
1( )ke ) ..............................................................................189 

6 Online estimation of the fault parameter 
1

( )  ...............................................................190 

7 Online estimation of the fault parameter 
2

( )  ..............................................................190 

8 The TTF determination due to the state fault (
1

(.)h ) ...........................................................191 

9 The TTF determination due to the state fault (
2

(.)h ) ..........................................................191 

Paper 5 

1 Residual norm and fault detection threshold. ................................................................227 

2 Tracking performance w/o fault accommodation ................................................................227 

3 Tracking performance with fault accommodation ...............................................................228 

Paper 6 

1 Flow chart indicating the TTF determination. ....................................................................262 

2 Schematic of a two link manipulator .................................................................................263 

3 Residual and the FD threshold.   .....................................................................................265 

4 Online estimation of the fault magnitude ...........................................................................266 

5 The TTF determination due to the incipient actuator fault ...................................................266 

6 Residual and the FD threshold- Piston wear fault. ..............................................................269 

7 Online estimation of the piston wear fault magnitude .........................................................269 

8 The TTF determination due to the piston wear fault. ..........................................................270 

9 Residual and the FD threshold- Output sensor fault. ...........................................................271 

10 Evolution of the pressure sensor fault and the OLAD learning ..........................................271 

11 Picture of the axial piston pump test bed ..........................................................................273 

12 Raw outlet pressure signal ...........................................................................................273 

13 Processed outlet pressure signal ......................................................................................273 



 xiv 

14 Residual and the FD threshold- Piston wear fault (experimental results) ...................274 

15 Online estimation of the piston wear fault magnitude (experimental results)             ...........275 

16 The TTF determination due to the piston wear fault ...................................................275 

17 Residual and the FD threshold- Pressure sensor fault (experimental results). ............276 

18 Evolution of the pressure sensor fault and the OLAD learning  

     (experimental results)…..............................................................................................276 

 

 

 

 

 

 

 

 

 



SECTION 

1. INTRODUCTION 

 
 

In the past few decades, with the availability of cheap and reliable embedded 

computer hardware along with sensors, scientists and engineers have developed complex 

engineering systems such as automotive vehicles, UAVs, aircrafts, power plants, DoD 

vehicles etc. These technological advancements have improved our quality of life but 

with the potential risk of component failures. For instance, faults undetected in an 

aircraft, blackout of 2003 in the northeast due to power system faults, could be disastrous 

and may cost heavily.  

In the earlier days, in industrial plants, a structured maintenance plan is not 

utilized costing the manufacturer dearly. Subsequently, a scheduled maintenance plan 

was implemented to reduce machine down. However, this has lead to increased false and 

missed alarms. Therefore, a proactive maintenance scheme is being developed by 

monitoring the complex industrial systems and in the event of a fault, an alarm is 

generated.  Such a maintenance scheme is expected to minimize missed and false alarms 

and as well reduce machine down time and cost. Early fault detection schemes were soon 

found to be unreliable and required human intervention.  Later, many developed data 

driven schemes heavily relied on sensor information for decision making. But, due to low 

reliability of sensors, these schemes soon faded out.  

With the progress of research, it was determined that any development on fault 

detection and prediction should take into account the inherent system nonlinearities, 
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disturbances or noise. Thus robust fault detection (FD) schemes which reduce missed or 

false alarms are being introduced in the literature.  

In general, fault diagnosis and prognosis of complex industrial nonlinear systems 

comprise of four major tasks: i) fault detection; ii) fault isolation; iii) fault 

accommodation; and iv) prognostics. Detection of an abrupt, incipient and intermittent 

fault in a given system is normally referred to as fault detection whereas isolation 

involves determining the root cause and identifying the fault upon detection.  In other 

words, fault detection and isolation will render diagnostics. Moreover, in certain 

applications it may be possible to reconfigure the controller in order to accommodate the 

effects of the fault, which is known as fault accommodation. Finally, estimating the 

remaining useful life of a system after a fault has occurred is referred to as prognostics.  

Therefore, prognostics include fault isolation and time to failure determination. 

In general, literature indicates that two most prominent fault detection 

methodologies exist: hardware redundancy and analytical redundancy-based framework. 

In the hardware redundancy framework, redundant hardware is used for detecting a fault 

in the system. For example, in a process, two sensors of the same kind measuring the 

same process variable can be deployed. When the measurements from one sensor deviate 

from the other, a fault is alerted.  However, such a scheme is not only expensive but also 

consumes space.  

Among the analytical-based fault detection framework, the two prominent 

methods, qualitative and quantitative, are introduced. In the qualitative technique, process 

or experimental data is used for detection.  Qualitative techniques are generally referred 

to as data-driven techniques.  Figure 1.1 illustrates the detection of fault using signals, 
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where the process is monitored using sensors. Subsequently, features are extracted from 

the measured signals using techniques such as Fourier analysis, Wavelet analysis etc. 

These features are compared against normal signatures to detect faults in the process. 

Additionally, to understand the failures better, data have to be obtained continuously 

from the system. Therefore, this technique is found to be time consuming and expensive.  

The detection depends upon the quality of the collected data. Finally, the data driven 

techniques are sensitive to system and operational changes. 

 

 

Fig. 1.1: A qualitative technique based fault detection.  

 

By contrast, in the quantitative method, a model representative of the system is 

utilized for detecting faults. This model is typically derived from either first principles or 

borrowed from control scientists/engineers. The system model provides an estimate of the 

system states by observing the inputs and measured outputs of the nonlinear system. A 

residual signal is then generated by comparing the output of the model with that of the 
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system. A fault is detected in a robust manner even under system uncertainties when the 

residual deviates beyond a predefined threshold value.  The selection of the threshold is a 

challenging task since an improper threshold selection might lead to false and missed 

alarms; however, several attempts have been made to address this issue using analytical 

methods. One such residual based FD design is shown in Fig. 1.2, where an observer with 

online fault learning capabilities is used for fault detection. As explained above, the fault 

is detected by comparing the generated residual against apriori chosen threshold. 

Subsequently, the online approximator (OLA) such as neural networks, fuzzy systems 

etc., are initiated online to learn the unknown fault dynamics. Additionally, the OLA 

scheme is tuned online without any offline training. Therefore, in this way the fault is 

successfully detected and learned in real-time without any offline training. The advantage 

of using a quantitative based FD scheme is reduced cost and space requirements, and also 

generic. Consequently, this online framework can be used for a range of applications. 

 

 

Fig. 1.2: Block diagram representation of a model-based fault detection scheme.   
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Next, an overview of current methodologies for fault diagnosis and prognosis is 

presented, and their shortcomings are exposed. Subsequently, the organization of this 

dissertation along with the contributions of this work is introduced. 

 

1.1 OVERVIEW OF THE FAULT DETECTION METHODOLOGIES 

There have been numerous research activities focusing on solving the problem of 

fault diagnosis and prognosis. However, in the past couple of decades, many researchers 

developed fault detection (FD) schemes by considering a linear representation of the 

nonlinear system. Popular FD schemes include parity relations [1], geometric 

relationships [2], and observers or estimators [3].  

Recently, with better understanding of nonlinear systems, several quantitative-

based FD schemes, which include geometric [4], adaptive estimation [5, 6], are 

introduced for nonlinear continuous-time systems.  Other techniques include the use of 

sliding mode observer [7] and diagonal observer [8].  Additionally, FD schemes have 

been developed for engineering applications such as robot manipulators, hydraulic 

systems, flight control etc [9]. Moreover, numerous survey papers [10] providing an 

excellent overview of the state-of-the art developments have been published on model-

based FD techniques.  

Guaranteeing the stability of FD schemes using Lyapunov theory has gained 

interest in the past few years.  However, the existing FD schemes [4-8] render only 

uniform ultimate bounded (UUB) stability due to the presence of system disturbances. 

However, in the recent literature, some work on the asymptotic convergence of the 
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identification error in continuous-time is demonstrated for robot manipulators with 

actuator faults [11]. 

Another aspect which lacked in the previously reported quantitative-based 

schemes for nonlinear systems [4-11] is prognostics or predicting the remaining useful 

life of the system. However, in certain data-driven techniques, TTF approaches [12-14] 

assumed a specific degradation model which has been found to be limited to the system 

or material type under consideration. Another scheme [15] employs a deterministic 

polynomial and a probabilistic method for prognosis by assuming that certain parameters 

are affected by the fault while others [16] use a black box approach using neural network 

(NN) on the failure data. All these schemes [12-16] while being data-driven address only 

TTF prediction, require offline training and do not offer performance guarantees. 

Therefore, it is envisioned that a unified FDP scheme will be necessary to alert an 

impending failure and provide the remaining useful life. 

It is worth noting that most of the above discussed schemes [4-8] were developed 

for continuous time nonlinear systems. However, FDP schemes in discrete-time are 

necessary due to the stability problems incurred in the direct conversion of the continuous 

time FD schemes [17]. Recent developments in discrete-time include [17], where a FD 

scheme is introduced by using the persistent of excitation (PE) condition. Since it is very 

difficult to verify or guarantee PE, in our earlier work [18], a FD scheme using linearly 

parameterized online approximators is introduced by relaxing the PE requirement. 

However, bounded stability of all the signals is demonstrated similar to the case of fault 

detection algorithms in continuous-time.  
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In summary, the problem of fault diagnosis deals with detecting and isolating 

faults in the system (root-cause analysis). On the other hand, prognostics deal with fault 

isolation and predicting the remaining useful life of the system. In other words, 

prognostics include detection, isolation and remaining useful life prediction while 

accommodation aims at minimizing the risk due to the fault by reconfiguring the 

controller. Each of the major tasks is challenging and involved, as there are issues 

relating to sensitivity, robustness, and stability. However, in this dissertation, 

mathematically rigorous schemes are outlined to address these issues pertaining to 

quantitative or model-based fault detection, diagnosis, prognostics, and accommodation.  

Additionally, stability guarantees are provided for the schemes developed in the 

dissertation when compared to the previously reported FDP schemes.  

 

1.2 ORGANIZATION OF THE DISSERTATION 

 
This dissertation deals exclusively on fault prognostics and accommodation 

respectively for a class of nonlinear discrete-time systems and is presented in the form of 

six papers as illustrated in Fig. 1.3.  

In this dissertation, the two most commonly classified faults: incipient (slowly 

growing) and abrupt (sudden), are considered. Paper I details the fault detection and 

prediction scheme for a class of nonlinear discrete-time systems with state or process 

faults. Additionally, the scheme is based on the assumption that all states are measurable. 

The proposed fault detection scheme is guaranteed to be asymptotically stable due to a 

novel nonlinear estimator comprising of the online approximator and a robust adaptive 

term.  It is also noted that the robust adaptive term is a function of the parameters of the 
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online approximator. In addition, a deterministic method for estimating the time to failure 

by using the parameter vector of the online approximator is proposed. In comparison to 

our previous work [18], the proposed method achieves asymptotic stability using novel 

estimator design.  

 

 

 

Subsequently, the fault detection and prediction scheme has been extended in 

Paper II to a multivariable input-output nonlinear discrete-time system, and also to a 

multi-input-multi-output (MIMO) nonlinear discrete time system with state and sensor 

faults in Paper III.  Due to the availability of outputs, in Paper II, not all the states are 

needed whereas the detection scheme becomes more challenging.  Additionally, the TTF 

scheme is developed using only the output signals. On the other hand, addition of sensor 

faults in Paper III complicates the stability of the MIMO system.  However, suitable 

Fig. 1.3: Dissertation overview. 
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performance guarantees is still shown. Separate TTF schemes are developed for process 

and sensor faults, respectively.  

By contrast, in Paper IV, a novel fault isolation framework is addressed wherein a 

fault isolation estimator is designed to isolate the fault in the system. It is noted that the 

system could have more than one fault at a given time instance. Additionally, in the worst 

case scenario, every system state can incur multiple faults and fault types. Therefore, this 

complicates the design of a fault isolation scheme; however, it is still undertaken. In the 

event of a new fault, the fault dynamics are characterized by the online approximator and 

will be added to the fault isolation estimator.  In addition, a prognostics scheme based on 

the online estimation of the isolation estimator parameter vector is used for predicting the 

time to failure. The prognostics scheme is based on an explicit mathematical equation and 

an iterative algorithm.  

On the other hand, Paper V introduces the idea of fault accommodation for a 

general class of nonlinear discrete-time systems with state or process faults. In this paper, 

for fault detection, a nonlinearly linearly parameterized online approximator such as 

multi-layer neural network (MNN) is used instead of the linearly parameterized 

approximators. This complicates the stability proof but is still offered. Subsequently, 

using the online estimate of the unknown fault dynamics, a corrective control signal is 

proposed, which could accommodate the effects of the fault in the system. This fault 

accommodation scheme is developed for a nonlinear system under the assumption that all 

the states are available for measurement.  

Finally, Paper VI considers a new FD design using artificial immune system 

(AIS) as online approximator. The fault detection process remains same as that of the 
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above given in Paper I. However, AIS is used for the online learning of the fault 

dynamics. Conventionally, AIS has been considered as an offline tool for applications 

such as classification, pattern recognition and detection. In this paper, an adaptive online 

parameter update law is proposed for tuning the AIS parameters. Using Lyapunov theory, 

mathematically, the asymptotic convergence of the residuals and the parameter 

estimation errors are demonstrated. Due to the asymptotic performance guarantees of the 

parameter estimation errors, we use AIS parameters to develop a TTF scheme.  

In summary, novel fault prognostics and accommodation framework is introduced 

in this dissertation. Different fault classes and fault types are considered. The proposed 

scheme is deterministic when compared to other schemes in the literature. Finally, both 

simulation and Caterpillar hydraulics test-bed environments are used to illustrate the 

performance of the proposed schemes.  

 

1.3  CONTRIBUTIONS OF THE DISSERTATION 

 
 This dissertation introduces online model-based fault diagnosis, prognosis and 

accommodation schemes for nonlinear discrete-time systems. In all of the designs 

presented in this dissertation, asymptotic stability results are derived in the presence of 

system uncertainties and faults. Asymptotic convergence of the residual is stronger when 

compared to boundedness which is typical in other fault detection, diagnosis, and 

accommodation schemes [6, 12-16, 17].  The proposed design does not require any 

apriori offline training unlike other fault diagnosis schemes [1].  

The contributions of paper I include the design of a FDP scheme that detects and 

learns, online the state or process faults using suitable online approximators. 
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Additionally, a new parameter based TTF scheme was introduced, unlike other data 

driven or probabilistic approach [15]. This implies that the proposed TTF technique is 

deterministic and accurate in estimating the system behavior. Next, these results are 

extended to nonlinear systems with minimal state measurements, i.e., a FD scheme to 

detect and learn state faults using output measurements alone is introduced in Paper II. 

Another contribution includes the design of a FD scheme to detect both the state and 

sensor faults.  

In addition, an online fault isolation (root-cause analysis) method is developed to 

identify the simultaneously occurring faults in a nonlinear discrete-time system. 

Moreover, the performance of the fault isolation scheme is demonstrated for multiple 

faults. In paper V, a single layer NN and a MNN design is proposed for fault 

accommodation design. Additionally, asymptotic tracking performance is shown even in 

the presence of system uncertainties and faults. Finally, a new fault detection scheme 

using AIS as an online approximator is introduced for capturing the fault dynamics. 

Adaptive parameter update law is proposed to tune the AIS scheme online, which 

obviates the need of any apriori offline training as used in the conventional approach.  
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 

Abstract—In this paper, an asymptotic state estimator comprising of an online 

approximator in discrete-time (OLAD) along with a robust term, which is a function of 

the parameter vector of the approximator, is proposed for monitoring and detecting state 

faults in a nonlinear discrete-time system although the states are considered measurable. 

A fault in the system is detected by comparing the residual against a mathematically 

chosen threshold.  

Upon detecting a fault, the OLAD and the robust term are initiated and the OLAD 

parameter vector is tuned online using a suitable update law in order to learn the 

unknown fault dynamics, while the robust term is used to ensure local asymptotic 

stability of the fault detection scheme, unlike other FD schemes rendering bounded 

stability. Subsequently, the fault detection time and a parameter based time to failure 

(TTF) prediction schemes are developed. Finally, the proposed FDP scheme is simulated 

on two examples. 

 

Keywords: fault detection, prediction scheme, nonlinear discrete-time system, Lyapunov 

stability.  
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1. Introduction 

 

Complex engineering systems require automatic control methods to minimize 

human intervention and attain the desired productivity. However, such systems are prone 

to failures due to unnoticed wear and tear in the systems resulting in huge losses and at 

times catastrophic problems. Therefore, a robust fault detection and prediction scheme 

has to be designed to predict an impending fault which can be used to alert the operator 

by providing the remaining useful life of the component or the system.  

In the past (see, Chen and Patton (1999), Frank and Keller (1990), Gertler (1988)) 

analytical and hardware redundancy techniques were developed whereas a hardware 

redundancy technique is found to be not practically feasible for many applications due to 

its incurred cost. Therefore, analytical redundancy techniques reined more interest from 

the fault detection community. Quantitative and qualitative methodologies were used 

within the analytical redundancy framework. In the qualitative method (Dash and 

Venkatasubramanian 2000), a simple rule based and/or a fault tree analysis is used to 

detect a fault in the system. An associated drawback is the need of data for failure mode 

analysis and also there is no opportunity to learn new faults (Liu et al. 2006). Data-driven 

approaches (Luh and Cheng 2005) also have the same weakness that newer faults for 

detection require a priori data which is expensive (Luh and Cheng 2005).  

However, in the quantitative method, a model representative of the given system 

is used for fault detection, where the models could be derived from physics of system 

operation or borrowed from control engineers (see, Chen and Patton (1999), Frank and 

Keller (1990), Gertler (1988)). Certain fault detection (FD) schemes developed under 

quantitative approach, use parity-relations (Chen and Patton 1999) whereas others (see, 
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Chen and Patton (1999), Frank and Keller (1990), Gertler (1988), Hermans and M. 

Zarrop (1996), Edwards et al. (2000)) employ an observer for fault detection. 

Alternatively, a geometric based approach was developed (Massoumnia et al. 1989). 

Along the similar lines, an FD scheme has been developed for stochastic systems (Chen 

and Speyer 2003). However, all of these schemes are useful for linear systems.   

Recently, the FD schemes have been extended to nonlinear continuous time 

systems. For instance, the geometric approach used is extended to a nonlinear system 

(see, Hammouri et al. (1999), Hammouri et al. (2002), Persis and Isidori (2001), 

Hammouri et al. (2001)), whereas, an adaptive estimation technique is proposed (see, 

Demetriou and Polycarpou (1998), Jiang and Chowdhury (2005), Talebi et al. (2009)). 

Others use sliding mode observer (Yan and Edwards 2007) whereas (Lopez-Toribio and 

Patton 1998, Lopez-Toribio and Patton 1999) employ a fuzzy based observers. In (Dixon 

et al. 2000) FD schemes for robot manipulators have been developed and in (Caccavle 

and Villani 2003), a compilation of the FD schemes for numerous engineering 

applications such as hydraulic systems, flight control etc. are given. A recent survey in 

(Isermann 2005) on model based FD techniques gives an excellent overview of the state-

of-the art developments which indicates that stability and performance of FD schemes are 

gaining interest within the community. Therefore, most of the reported schemes (see, 

Demetriou and Polycarpou (1998), Hammouri et al. (1999), Jiang and Chowdhury 

(2005), Yan and Edwards (2007), Hammouri et al. (2002), Persis and Isidori (2001), 

Hammouri et al. (2001)) have utilized Lyapunov theory to study the stability and 

performance of FD schemes. However, a uniform ultimate boundness (UUB) of the 

signals is ensured with the schemes (Demetriou and Polycarpou (1998), Jiang and 
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Chowdhury 2005). A recently proposed continuous time FD work renders asymptotic 

stability (McIntyre et al. 2005), but is only for robotic manipulators with specific types of 

actuator faults.   

For real-time applications, a discrete-time scheme would be more natural to 

implement on a computer rather than a continuous-time scheme. In addition, a continuous 

time scheme can be prone to instability without an appropriate sampling rate. Therefore, 

in the literature (Mahmoud (2008), Kabore and Wang (1999), Caccavle et al. (2008), 

Zhang et al. (2007)), there have been FD schemes developed for both linear and 

nonlinear discrete-time systems. The nonlinear FD presented in (Caccavle et al. 2008) is 

based on the adaptive estimation, but the stability is proven to be UUB under a stringent 

persistency of excitation (PE) condition.  In our recent work (Thumati and Jagannathan 

2007), this assumption was relaxed when an online approximator is used although UUB 

stability of the residual is proven.  

Finally, it is important to note that all the above mentioned schemes (see, 

Demetriou and Polycarpou (1998), Hammouri et al. (1999), Thumati and Jagannathan 

(2007), Jiang and Chowdhury (2005), Mahmoud (2008), Talebi et al. (2009), Kabore and 

Wang (1999), Caccavle et al. (2008), Hammouri et al. (2001), Zhang et al. (2007)) 

address fault detection and no attempt has been made to predict the impending faults. In 

order to determine remaining useful life, time to failure (TTF) prediction is a first step. 

However, in certain data-driven schemes (Luo et al. 2003), TTF is determined by 

assuming a specific degradation model which has been found to be limited to the system 

or material type under consideration. Another scheme relied on a deterministic 

polynomial and a probabilistic method for prognosis (Roemer and Ghiocel (1999) and 
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Phelps et al. (2002)) by assuming that certain parameters are affected by the fault. On the 

other hand, a black box approach using neural network (NN) was developed in (Shao and 

Nezu 2000). All these schemes (see, Luo et al. (2003), Roemer and Ghiocel (1999), 

Phelps et al. (2002), Shao and Nezu (2000)) address only prognostics, and there is no 

method to learn the fault dynamics online, which is usually required for improving 

system design and for fault accommodation.  Moreover, obtaining data a priori for each 

fault is expensive. 

Developing FDP schemes in discrete-time is difficult due to stability analysis as it 

is relatively easier to show stability using Lyapunov theory in continuous time since the 

first derivative is linear with respect to the states whereas the first difference of a 

Lyapunov function in discrete-time is quadratic with respect to the states (Jagannathan 

2006).  Lack of a robust discrete-time FDP scheme that offers better performance is the 

main motivation of this paper. 

In this paper, a FDP scheme is designed using the adaptive estimation techniques 

for non-affine nonlinear MIMO discrete-time systems. All the states of the system are 

assumed to measurable, and a FD estimator is used for generating the residual for 

monitoring and fault detection. Unlike in control theory, where the estimator is used to 

supplement the unknown states for controller design, the purpose of the proposed FD 

estimator is to generate the residual signal. Since the states are measurable, the faults are 

assumed to be a function of the system states and input. In addition, the faults considered 

could be slowly growing (incipient fault) or suddenly occurring (abrupt fault). The 

nonlinear estimator consists of an online approximator in discrete-time (OLAD) and a 

robust term to monitor the nonlinear discrete-time system.  
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A dead-zone operator with a mathematically derived threshold is utilized to detect 

the occurrence of the fault even in the presence of bounded uncertainties and 

approximation errors thus ensuring robust detection. When a fault is detected, the OLAD 

and the robust term are initiated while the OLAD learns the dynamics of the unknown 

fault.  An adaptive parameter update law is proposed for tuning the unknown parameters 

of the OLAD and the robust term. Additionally, the uniqueness of the proposed 

parameter update law is the relaxation of the PE condition. By using the Lyapunov 

theory, the local asymptotic stability of the proposed fault detection scheme is 

demonstrated, which is unique in comparison to the previously reported FD schemes (see, 

Demetriou and Polycarpou (1998), Hammouri et al. (1999), Thumati and Jagannathan 

(2007), Caccavle et al. (2008)) that guarantees only bounded stability. In addition, the 

robust term used in the nonlinear estimator facilitate the asymptotic convergence of the 

residual and the parameter estimation errors.  

The asymptotic convergence of the residual or state estimation error helps in 

developing a prediction scheme or TTF determination based on the parameter 

trajectories.  When an unknown fault is detected, TTF is determined in tandem with the 

online approximation of the fault dynamics. It is essential to understand that a system 

may remain functional after a fault, whereas it cannot continue to function after a failure 

(Isermann 2006).  In other words, a fault is a first step in the failure occurrence. To 

predict the remaining useful life of a system, the parameter update law used for tuning the 

OLAD is utilized. For TTF, the parameters are projected to their limits where the system 

operation beyond the limits is considered to be unsafe. Alternatively, knowledge of state 

trajectories in real time could be used as well for prediction using the approach given 
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here. The limits could also be obtained from simulation or by using tools such as in 

(Phelps et al. (2002), Mathur et al., 1998).   

Therefore, the contributions of this paper include the design of a FDP scheme 

rendering asymptotic stability for a class of non-affine nonlinear discrete-time systems 

even in the presence of system uncertainties and reconstruction errors. The proposed FDP 

scheme considers nonlinear state faults while other schemes (Caccavle et al. (2008), 

McIntyre et al. (2005)) consider only structured faults.  

In addition, the online learning feature provided by the OLAD could assist in fault 

isolation and accommodation; however, it is not addressed in this paper. Published 

literature, however, (Gertler (1988), Persis and Isidori (2001)), presents fault isolation 

and accommodation schemes. 

In terms of organization, Section 2 introduces the non-affine system under 

consideration whereas Section 3 presents the proposed fault detection scheme in detail. In 

Section 4, the stability and performance of the fault detection scheme are introduced and 

Section 5 discusses the prediction scheme. Finally, in Section 6, a real-time example of a 

magnetic levitation system and a mass damper system are considered. Section 7 presents 

some concluding remarks and discusses future work. 
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2. Problem Statement 

 

Consider a class of non-affine nonlinear discrete time system described by  

1 1 1 1

2 2 2 2
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x x x  is the state vector, mu  is the input vector, :
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ip    , 

:
n m

i    ,  : n m
ih     are smooth vector fields, and 1, 2, .......,i n . Additionally, 

ip  is the known system dynamics, i is the system uncertainty, 

( )( ( ), ( )) ( ( ), ( ))i i ix k u k k T f x k u kh    represents unknown fault function with ( ( ), ( ))if x k u k  

represents the unknown nonlinear state or process fault dynamics. Further,  i   for 

1, 2,.......,i n  denotes the time profile of the state or process faults, which is given by 
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     i=1, 2… n 

where
i

0   is an unknown constant representing the rate at which the fault evolves in the 

state ix (Zhang and Morris 1994). Here the use of an exponential term in the time profile 

is to characterize the incipient and abrupt faults. Thus for small values of
i

 , this term 

describes an incipient fault, whereas for large values it represents abrupt faults. 

Additionally, T denotes the unknown time of occurrence of state or process faults (see, 

Demetriou and Polycarpou (1998), Thumati and Jagannathan (2007), Caccavle et al. 
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(2008)), Talebi et al. (2009)). In certain previous works on FD (see, Chen and Patton 

(1999), Frank and Keller (1990), Gertler (1988), Isermann (2005)), structured faults are 

assumed, which makes it easier to use other techniques like parity relation to decouple 

the uncertainty from the fault. However, we relax such assumptions here.  

 

Remark 1: The nonlinear fault function is modeled in terms of the system states and 

inputs. This is a common means of representing nonlinear system faults (Demetriou and 

Polycarpou 1998), unlike actuator faults (Caccavle et al. (2008)), which is a function of 

the system inputs.    

 Typically, in an actuator fault (see, Chen and Patton (1999), Frank and Keller 

(1990), Gertler (1988), Jiang and Chowdhury (2005)), part of its dynamics is assumed to 

be known; however, in this case, the fault type assumed is nonlinear, thus encompassing 

the various possible state or process faults.  

Additionally, by using an assumption such as linear in the unknown parameters 

(Jagannathan 2006), the fault dynamics in (1) could be expressed 

as
1

( )( ( ), ( )) ( ( ), ( ))
T

i i i k
i

h x k u k x k u k    , where 1l

i


 is an ideal and unknown parameter (or 

weight) matrix such that the approximation error, 1 ( )k
i

 , is bounded (Barron 1993). The 

ideal parameter vector or weights are considered bounded, i.e., 
maxi i  (Jagannathan 

2006). In this case, 
1l

i


 is a known nonlinear basis function assumed to be upper 

bounded by
maxi  . This is true for activation functions such as RBF, sigmoid etc. The 

following assumption is standard in the fault detection literature: 
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Assumption 1: The state and the input vectors are bounded prior to and after the fault 

occurrence consistent with the past literature (see, Demetriou and Polycarpou (1998), 

Thumati and Jagannathan (2007), Caccavle et al. (2008), Jiang and Chowdhury (2005), 

Yan and Edwards (2007), Talebi et al. (2009), Kabore and Wang (1999), Alessandri 

(2003)).  Moreover, the system in (1) could have single and multiple state faults. 

Figure 1 clarifies Assumption 1 by using a state trajectory to illustrate the 

difference between a fault and the failure. Before the fault occurrence, the system states 

are considered bounded for a given system uncertainty. After the occurrence of the fault, 

the system behavior degrades and reaches a maximum limit beyond which the system is 

considered to have failed. The system degradation behavior is described by an increase in 

the system parameters, which also increases the magnitude of the states. As the states 

enlarge, a maximum limit, or failure threshold, is reached beyond which the system will 

be unable to perform its assigned task.  The states or parameters that approximate the 

uncertain nonlinear dynamics increase substantially while they still remain bounded. 

However, the bound could be large. This bounding value is used to predict TTF and to 

avoid any catastrophic failures. Therefore it is most important to detect a fault at the 

incipient stage by learning its dynamics accurately so that TTF can be determined.  This 

also implies that the class of nonlinear discrete-time systems (1) considered here is 

assumed to have slower escape time upon the occurrence of a fault so that Assumption 1 

is still valid. Next the following assumptions are required before we proceed. 
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Figure 1: State trajectories from initial state to failure. 

 

 

Assumption 2:  The modeling uncertainty is unstructured and bounded (Demetriou and 

Polycarpou 1998), i.e., ( ( ), ( ))  ( , ) ( ),i Mi
x k u k x u U      where there exist the compact sets 

n
    and m

U   , with 0
Mi

   a known constant, for 1, 2, .......,i n . 

In some of the previous works (see, Chen and Patton (1999), Frank and Keller 

(1990), Gertler (1988), Edwards et al. (2000), Yan and Edwards (2007)), bounded and 

structured system uncertainties are considered, which simplifies the development of fault 

detection.  

 

Assumption 3: The initial system states are available, i.e., 
0

(0) ix xi  .   

The representation given in (1) provides a general framework for a broad class of 

nonlinear discrete-time systems with state or process faults. Now, the following section 

introduces the fault detection scheme. Subsequent sections will present the prediction 

scheme and TTF determination.  
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3. Asymptotic Fault Detection Estimator 

 

In this model based technique, it is required to generate residuals to monitor and 

detect faults in (1). Therefore, a nonlinear asymptotic estimator that serves the purpose of 

residual generation will be introduced. This clearly implies that the purpose of the 

estimator is not to estimate the systems states as in the case of a controller design 

(Jagannathan 2006) whereas it will be utilized solely for detection and prediction. This is 

similar to the case of using observers or estimators (Demetriou and Polycarpou (1998), 

Caccavle et al. (2008)) in the literature in lieu of the proposed asymptotic state estimator. 

Following is the design of the nonlinear estimator, which is used for monitoring and 

detecting faults in the system defined in (1) 

1 11 1 1 1 1 1 1
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where 
1

ˆ ˆ ˆ[ , ....., ]
n

n
x x x  is the estimated state vector, 1ˆ :

n m l

ih


     for 

1, 2, .......,i n , represents the OLAD used to approximate the unknown fault dynamics, 

A  is a diagonal design matrix (i.e.,  
11

)( ,.....,
nn

A diag a a ), and 1ˆ l

i


 represents the 

adjustable parameters for approximating unknown fault dynamics. Since the type of 

faults considered in (1) is linearly parameterized, the structure of the OLAD could be 

written as ˆ ˆ ˆ( ( ), ( ); ( )) ( ) ( ( ), ( ))
T

i i i ih x k u k k k x k u k   . Finally, iv   represents the robust term 

which is defined as 
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where 0ic  is a user defined constant and 
ib is an appropriate dimensioned constant 

vector and its selection is addressed later in the text. The use of the robust term in the 

nonlinear estimator is one of the important design changes from other FD 

observers/estimators (Demetriou and Polycarpou (1998), Caccavle et al. (2008)).  

Next, define the state estimation error or residual as ˆ( ) ( ) ( )i i ie k x k x k  . Using 

equations (1) and (2), the residual dynamics can be written as  

( 1) ( ) ( ) ( , ) ( ) ( )
T

i ii i i i i ik a e k k x u v k ke                       (4) 

where 1
( ) ( ) ( ( ), ( ))

ii ik k x k u k   , and the parameter estimation error is given as 

ˆ( ) ( )i i ik k    . In order to detect faults in the system, the residual is compared with a 

known threshold via a dead-zone operator. This dead-zone operator and the threshold 

improve robustness of the fault detection scheme (see, Chen and Patton (1999), Frank 

and Keller (1990), Gertler (1988)) in the presence of bounded disturbances and other 

uncertainties. Selection of a threshold guarantees reliable performance in the presence of 

system uncertainties. The threshold selection (Demetriou and Polycarpou 1998) is 

difficult even for continuous-time systems; however, a mathematical procedure is 

presented in this paper for discrete-time systems to simplify the process.  

    Prior to the occurrence of the fault, the residual, ( )ie k , remains within the 

threshold provided a suitable threshold is selected. In the event of a fault, however, the 

residual increases and eventually crosses the threshold. Once the residual exceeds the 

threshold, a fault is considered to have occurred through the dead-zone operator. Upon 
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detecting a fault, the OLAD and the robust term are initiated online. The threshold 

operator [ ]D  is defined in terms of the residual as   

0,  if
[ ( )]

( ),

( )i i

i

i

D e k
e k Otherwise

e k 





           (5) 

where 0i  is the threshold for 1, 2, .......,i n , 
1

[ , ....., ]
T n

n
    , and 

1[ ( )] [ [ , ....., [ ]] ] T

n

n
D e k D e D e  . The selection of the dead-zone size i clearly provides a 

tradeoff between reducing the possibility of false alarms (robustness) and improving the 

sensitivity of the faults. The selection of an appropriate value for
i is addressed in the 

following section. 

Remark 2: Since the OLAD and the robust term are not initiated until a fault is detected, 

the proposed FD estimator guarantees a bounded residual prior to the fault. Therefore, 

any unforeseen incipient or abrupt state fault can only drive the residual to exceed the 

threshold thus enabling the FD scheme to detect them. Consequently, the OLAD or the 

robust adaptive terms do not compensate the residual prior to fault detection.   

    Next, to guarantee a stable learning of the fault function, the following weight 

update law is used to tune the parameters of the OLAD   

( )ˆ ˆ ˆ( 1) ( ) D[ ( 1)] ( ) ( ) ( )
T

ki i i i i i i i i ik k k I k k ke                      (6) 

where 0i  is the learning rate, 0i   is the design constant, and ( ) ( ( ), ( ))i ik x k u k  is the 

OLAD basis function, which could be an RBF, a sigmoid, etc. (Farrell and Polycarpou 

2006).  This online tuning law relaxes the need of PE condition, which is required for 

some of the previously reported discrete-time FD scheme (Caccavle et al. 2008).  Later, 

it would be seen that the additional term commonly referred to as epsilon-modification in 
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(6) not only relaxes PE but also renders a stable parameter based prediction scheme, 

which is a uniqueness of the proposed update law. The following lemma is needed before 

proceeding any further.  

Lemma 1: The term ( ( )i k ), comprising of the reconstruction error (
1

( )
i

k ), the bounded 

system uncertainty ( ( ( ), ( ))i x k u k ) are bounded above by a function of residual and the 

weight estimation errors (see, Dawson et al. (1991), Kwan et al. (1995), Xian et al. 

(2004), Patre et al. (2007), Lewis et al. (1999)), i.e.,  

  2

2 3

2 2
1 (2 1 / )

0 1
5 ( ) ( ) ( ) ( ) ( )

M

T

i ii i i i i i i i i i i ik b b e k b e k k b k                      (7) 

where 
0 1 2
, ,i i ib b b and 

3i
b  are known positive constants.                             

Proof: Please refer to Appendix. 

Remark 3: In most of the previous schemes (Demetriou and Polycarpou (1998), 

Thumati and Jagannathan (2007), Caccavle et al. (2008)), the approximation error and 

the system uncertainty are considered to be upper bounded by a known constant, thus 

rendering UUB results. On the other hand, certain stringent assumptions such as the 

approximation errors satisfy a conic sector (Hayakawa et al. 2008) is not needed here. 

Instead, a novel procedure is proposed to take into account the approximation errors and 

the system uncertainties in a more reasonable fashion, thus resulting in improved 

stability without any assumptions.  

Remark 4: In (Xian et al. 2004), disturbances are also included along with the 

reconstruction errors and asymptotic stability of the tracking error is demonstrated 

provided the disturbances are bounded above. In this paper, bounded disturbances and 

round-off errors can be included with the OLAD reconstruction errors and asymptotic 
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stability can still be shown. Next, by adding and subtracting 
 

ˆ ˆ( ) ( )

T

T T

i

i i i

i i i i

b C

b bk k c



 




 in (4), 

where iC  is an appropriate dimensioned constant vector, the residual dynamics is 

rewritten as 

 
21( ) ( ) ( ) ( )

ˆ ˆ( ) ( )
( 1)

T T

i i i i i

T
i i i

i ii ie k k k k
b k k b ciii

b C
k ae

 



 


   


                     (8) 

where ( )1 ( ) ( , )
T

i ikk
i

x u   , and
 

2

( )

( )
ˆ ˆ( ) ( )

T T

i i i i

T

i

i i ik

k
i

b C

b k k b c



 
 




 for convenience. 

The uniqueness of the proposed FD scheme is the online learning feature of the 

OLAD to learn the unknown fault dynamics and the asymptotic stability guarantees  in 

contrast with available fault detection schemes in both continuous (Demetriou and 

Polycarpou 1998) and discrete-time (Thumati and Jagannathan (2007), Caccavle et al. 

(2008), Alessandri (2003)) where UUB is only ensured. This implies that the residual 

derived using the estimator is robust to system uncertainties and would render effective 

fault detection.  Unlike other schemes (Liu et al. (2006), Luh and Cheng (2005)), no prior 

offline training is needed to tune the OLAD and thus facilitating the learning of unknown 

fault dynamics online. Next, the performance of the FD scheme using the OLAD and the 

robust term is examined mathematically. 

4. Analytical Results 

 

In this section, analytical results in terms of the performance of the detection 

scheme and time to detection are discussed. First, prior to the occurrence of the fault, the 

stability is examined to guarantee the boundedness of the residual thus ensuring the 
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design of the estimator. In addition, based on the uncertainty, the selection of the 

threshold is derived. 

A) Stability Analysis 

 

To begin with, assume first that the system in (1) has no uncertainties and with no 

faults present, the system (1) is rewritten as ( 1) ( ( ), ( ))i ix k p x k u k  .The estimator in (2) is 

reduced to  

ˆ ˆ( 1) ( ( ) ( )) ( ( ), ( ))i ii i i ipx k a x k x k x k u k     

and the residual dynamics is obtained as  

( 1) ( )i ii iae k ke                                                  (9) 

where the eigen values of iia is selected within the unit circle. Hence the stability of (9) 

follows trivially, i.e., 0ie   as k  . Next, the system described in (1) in the presence 

of uncertainties and prior to the fault occurrence, is given by  

( 1) ( ( ), ( )) ( ( ), ( ))i i ix k x k u k x k u kp                                 (10) 

The proposed estimator to monitor the system (1) becomes 

ˆ ˆ( 1) ( ( ) ( )) ( ( ), ( ))i ii i i ipx k a x k x k x k u k                           (11) 

To derive a suitable threshold for detecting a fault and to show the stability of the 

estimator prior to the fault occurrence, the residual dynamics are obtained from (10) and 

(11) as 

( 1) ( ) ( ( ), ( ))ii ii ike a e k x k u k                         (12)          
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Using (Chen 1999), we solve (12) such that
1

0

( ( ), ( ))( )

k

i i
j

k j
iia x k u ke k 






  provided the 

initial conditions are zero. Since iia is selected to remain within the unit circle and using 

the upper bound on the system uncertainty, there exist two positive constants
i and

it
  

such that 1
k

ii i

k
ita    . Therefore, ( )

(1 )

(1 )i Mi

k
i

i

i

ce k  








, where 

i i ic t   .  This 

implies that if the size of the dead-zone is selected as
(1 )

Mi ic

i

i









 , the residual, ( )ie k , 

remains within the dead-zone for all k T . Given the individual thresholds, the overall 

threshold  can be determined by using Frobenious norm which is compatible with the 

Euclidean norm (DePree and Swartz 1988). This demonstrates that the estimator is 

bounded prior to the fault. 

Subsequent to the detection of a fault, the OLAD is used to learn the unknown 

fault dynamics. To guarantee a stable learning environment in the presence of faults by 

the OLAD-robust term, the update law proposed in (6) is exerted. To show that the 

parameter update law in (6) renders a stable system, the following theorem is proposed. 

 

Theorem 1 (Stability Analysis of the Fault Detector After a Fault Occurrence):  Let 

the proposed fault estimator design in (2) be used to monitor the system (1), and the 

parameter update law given in (6) be used for tuning OLAD parameter vector. 

Additionally, let the initial conditions be bounded in a compact set B. In the presence of 

bounded OLAD reconstruction error and uncertainties, by using the adaptive robust term 

(3), the residual, ( )i ke , and ( )i k are locally asymptotically stable.  

Proof: Please refer to Appendix.        
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Remark 5: The above theorem demonstrates that the first difference of the Lyapunov 

function is negative definite even in the presence of NN reconstruction vector provided if 

the robust adaptive term is used in (2).  By contrast, a uniformly ultimately bounded 

(UUB) result will be observed in the literature (Demetriou and Polycarpou (1998), 

Thumati and Jagannathan (2007), Caccavle et al. (2008)) if the robust term is not applied. 

This robust term and Lemma 1 enables one to express the system uncertainties and 

unmodeled dynamics as a function of tracking and estimation errors which are combined 

with other negative terms for ensuring negative definiteness of the first difference in the 

Lyapunov function. 

Remark 6: Theorem 1 indicates that the fault detection scheme developed in this effort 

would ensure stable learning of the fault function or dynamics in the presence of system 

uncertainties while rendering asymptotic stability. The asymptotic convergence of the 

residual in fact ensures that the fault function is approximated in a more accurate fashion 

provided the initial parameters are within the compact set. The dead-zone operator is still 

necessary even if system uncertainties are not present due to bounded disturbances and or 

computer round off errors. Even if they are present, similar to continuous-time 

(Hayakawa 2008), these bounded disturbances and round-off errors can be 

accommodated while guaranteeing asymptotic stability of the residual and parameter 

vector.  In contrast, only asymptotic stability of the tracking error (Hayakawa 2008) can 

be demonstrated in continuous-time. 

Remark 7: An Euler discretization of the continuous time fault detection scheme cannot 

be used here for discrete-time system since the update laws cannot be derived from the 

continuous-time counterpart.   
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B) Fault Detection Time 

 Besides stability, an additional metric to evaluate the performance of a fault 

detection scheme is the detection time which is defined as how quickly a fault is 

detectable once it has occurred.  Previous works in discrete-time do not provide a 

measure of the fault detection time (Thumati and Jagannathan (2007), Caccavle et al. 

(2008)) unlike their continuous-time counterparts. This paper presents a mathematical 

procedure to determine the fault detection time for nonlinear discrete time systems due to 

incipient and abrupt faults. The explicit equation for deriving fault detection time is 

shown in the following theorem, once a fault has occurred in the i
th

 state. For faults in 

multiple states, the fault detection time is given by 1min , ........( )dt dik k i n .  

Theorem 2 (Fault Detection Time): During the time interval  
1
,

d
k T k T k   , if the i

th
 

fault dynamics satisfies ( ( ), ( )) 2
iMi x k u kf  , the upper bound on the fault detection time for 

incipient and abrupt faults can be obtained by solving: 

For incipient fault: 

 
1

1

2
(1 )

( / ) ( / )
1

1 ( / )
( / )d

i

i

d

Mi

k
k k

ii ii

i i
d

i

k
ii ii

ii

ii

k
ii

e a e a
a a

e a
a e a

 















 



 
  

 


                  (13)                                                                      

For abrupt fault: 

1

log

2

1

log( )
d

Mi

i

ii

k k

a






 

 
 
 

                                       (14) 

Proof: Please refer to Appendix.  

The above mathematical equations (13)-(14) determines the fault detection time 

explicitly. Next, a new parameter based prediction scheme is proposed.  
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5. Prediction Scheme 

 

Thus far, a fault detection scheme has been presented, its performance analyzed 

and the fault detection time derived analytically.  Now TTF can be determined using the 

behavior of the parameter trajectories before and after the occurrence of a fault. The 

following assumption holds in deriving the TTF. 

Assumption 4: The parameter vector ˆ ( )i k  is an estimate of the actual system parameters.  

Remark 8: This assumption is satisfied when a system can be expressed as linear in the 

unknown parameters (LIP). For example, in a mass damper system, or in civil 

infrastructure such as a bridge, the mass, damping constant and spring constant may be 

expressed as linear in the unknown parameters. In the event of a fault, system parameters 

change, and tend to reach their limits. When any one of the parameters exceeds its limit, 

operation is considered unsafe.  TTF is defined as the time elapsed when the first 

parameter reaches its limit. The TTF can also be analyzed with lower limits. 

The parameter update law given in (6) is used to estimate the system parameter 

online and will be used in this section to develop an explicit mathematical equation for 

predicting TTF. This equation is then used to develop an algorithm for the continuous 

prediction of TTF iteratively at every time instant. Alternatively, estimated state 

trajectories can be employed as well if the states can be related to physical quantities. 

Next, the mathematical equation is presented in the following theorem. 

Theorem 3 (Time to Failure): If the system in (1) can be expressed as LIP, the TTF for 

the j
th

 system parameter at the k
th

 time instant can be determined using  
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 
 

max

0

0
log(1 )

log

T

i i i i

T

i i i i

jj

jj

T

i
jj

i i i i

i i i i

f

i i iI

e

e

k k

I

I

   

   

   

 

 

 
 









 
 
 
 
 

           (15)   

where 
jfk is the TTF, 0 j

k is the time instant when the prediction starts (bearing in mind 

that dtk  was the initial value, which increases incrementally), 
maxj

i is the maximum value 

of the system parameter, and 
0

j
i is the value of the system parameter at the time instant 

0 j
k .  

Proof: Please refer to Appendix. 

Remark 9: The mathematical equation (15) presents the TTF for the j
th

 system 

parameter. In general, for a given system with a parameter vector, the TTF would 

be ), 1, 2, ........(min
ft jf j lk k  , where l  denotes the number of parameters. The TTF is 

defined as the time elapsed when the first parameter reaches its limit.  The speed at which 

the actual parameters approach their target values is dictated by the learning rate or 

adaptation gain and the design constant in the parameter update law (6). A small value for 

the learning rate implies that slower convergence which further means that the TTF is not 

as accurate when the learning rate is lower. However, a large value of the learning rate 

can speed up the convergence. Increasing the learning rate can cause hunting problems 

which will result in inaccurate prediction of TTF. 

Remark 10: Although the proposed prediction scheme is based on the parameter 

trajectory, estimated system states could also be used for prediction since asymptotic 

stability is proven.  A relationship similar to (15) can be derived for TTF using (2). 
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However, for brevity, no further discussions on the use of state trajectories for prediction 

are included in this paper. 

Remark 11: This prediction scheme could be applied to unknown systems that satisfy 

LIP. It could also be applied to systems with partial information that satisfy LIP. Such 

systems were given in Section 2.  

    Figure 2 provides a flow chart of the iterative algorithm to determine TTF ( ftk ) 

for each system parameter.  The TTF is calculated at each time instant starting when a 

fault is detected until the system parameter reaches its maximum value (threshold). 

Therefore, it is logical that the TTF decreases as the parameters approach their 

corresponding limits. 

By tuning the system parameter estimate ( ˆ ( )i k ) to update the TTF recursively, the 

system could be more accurately monitored than would be possible with other methods 

(Roemer and Ghiocel (1999), Phelps et al. (2002)). In fact, the TTF will not be accurate 

when the parameter estimate vector is just started. Over time when the parameter vector 

starts converging to its true values, the TTF prediction starts improving. Additionally, no 

prior offline training is required to estimate the system parameters, which significantly 

reduces the burden of collecting data. 
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Figure 2: Flow chart indicating the TTF determination. 

 

 
 

Next the performance of this FDP scheme is tested on a practical application. The 

simulation results presented below will indeed show that the performance of the FDP 

scheme as indicated in the theorems can be demonstrated in simulation.  

6. Simulation Results 

 

In this section, two different simulation examples are considered to study the 

proposed FDP scheme. In both the simulations, the detection, online learning, and TTF 

are illustrated. The first example is a magnetic suspension system and the second 

example considered is a mass-damper system. Next, we introduce the first example. 

Yes 

No 
 

If 
ft f

k k (actual 

TTF)  

 

Calculate 0 )(
ji k , )0(

ji ke and )0(ˆ
ji k at the 

0 j

th
k instant 

Fault detected, 0 j dtk k   (time of 

fault detection) 

Calculate TTF using (15) 

Calculate min( )
jft fk k  

System failed 

0 0 1
j j

k k   
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Example 1: Magnetic levitation system 

The following modified nonlinear discrete-time model is considered (Barie and 

Chiasson 1996) 

1 2 1
( 1) ( ( )) ( )x k t x k x k     

2

2 3 1 2
( 1) ( ( / )( ( ) / ( )) ) ( )

p
x k t g C m x k x k x k      

2

3 3 2 3 1 3
( 1) ( ( ( ) / ) ( ) (2 / )( ( ) ( ) / ( ))) ( ( ) / ) ( ( )) ( )

p
x k t R k L x k C L x k x k x k u k L x k x k               (16) 

 

where  
1 2 3

( ) ( ), ( ), ( )
T

x k x k x k x k is the state vector, and ( ( ))x k is the system uncertainty. 

Prolonged use of the magnetic coil may cause wear and tear thus changing its resistance 

nonlinearly. Hence, we consider an incipient fault that would change the resistance 

nonlinearly. Moreover, the fault is seeded at the 60
th

 second of system operation and the 

fault is defined by  

27.7

( 1) (( exp( )) / 5000)

( )

k

R k

R k k



   





      

0 60 sec

60 sec

k

k

for 





     

Finally, the input is taken as  

2

1 3 2 3 1 3
(1 / )(sin(0.1 ) ( ( / ) ( ) (2 / )( ( ) ( ) / ( ))) ( ))( )

p
L k t R L x k C L x k x k x k t x ku k          

    

To monitor the system defined in (16) and to generate residual, the following 

nonlinear FD estimator is used 

1 2 1 1 1
ˆ ˆ( 1) ( ( )) ( ) 0.1( ( ) ( ))x k t x k x k x k x k       

2

2 3 1 2 2 2
ˆ ˆ( 1) ( ( / )( ( ) / ( )) ) ( ) 0.1( ( ) ( ))

p
x k t g C m x k x k x k x k x k      

2

3 3 2 3 1 3 3 3
ˆ ˆ( 1) ( ( / ) ( ) (2 / )( ( ) ( ) / ( ))) ( ( ) / ) ( ) 0.1( ( ) ( )) ( )ˆ( )

p
x k t L x k C L x k x k x k u k L x k x k x k v kk                 (17)                                                                               

where the estimated state vector  is given by  
1 2 3

ˆ( ) ˆ ˆ ˆ( ), ( ), ( )
T

x k x k x k x k , and 0.1 mA I  with 

Im is an appropriately dimensioned identity matrix.  Additionally, the robust term used to 
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guarantee the convergence of the residual is given by
22

( )

( )
ˆ ( )

ˆ

f

f

f

k

v k

k

b

b c





, but is not 

initiated until the fault is detected.   The values of the system parameters used for this 

simulation are 
2 2

1

4
1, 1.24 10 , 27.7 , 0.65 ,

p
C Nm A R ohm L Henrym


    0.01st  , 

1 2
(0) (0) 0.002x x  ,

3
(0) 0.001x  , 1.5

f
c  , and 0.008fb  . In this simulation, the system 

uncertainty is taken as ( ( )) 0.25x k  and is assumed to exist from the start of the system 

operation. The parameter ˆ( )k  is estimated online, and prior to the fault 

detection ˆ( ) 27.7k  . 

Since uncertainty is considered in the simulation, a fault detection threshold has to 

be utilized to avoid missed or false alarms. To overcome such problems, the threshold 

derived in Section 4 of this paper is used, where we have
(1 )

Mc







 . Since 0.25

M
  , and 

taking 0.935c  , 0.01  , we have a constant threshold value of 0.27  .  Fig. 3 depicts the 

residual and the detection threshold over the entire simulation interval.  
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Figure 3: Residual signal with the detection threshold. 
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From the figure, it is obvious that for the designed threshold value, the residual 

remains always within the limit, but exceeds only after the occurrence of the fault. These 

could be observed from the two arrow heads showing the occurrence and detection of the 

fault. Upon detection of the fault, the residual converges to zero, which is attributed to the 

online learning of the unknown fault and the use of the robust term. Additionally, this 

shows that the proposed FD estimator tracks the actual system states accurately.  

The online learning of the change in the fault parameter is shown in Fig. 4, where 

the estimate converges to the target value asymptotically in real-time, i.e., unlike other 

schemes (Liu et al. (2006), Luh and Cheng (2005)) neither apriori fault information nor 

offline training is needed to learn the change in the parameter. However, the initial 

variations in the parameter estimate may be attributed to the selection of the gains of the 

parameter update law in (6), where 0.58   and 0.001  .  

Using the online parameter estimate in Fig. 4 and setting a failure threshold value 

of 0.8 units, the TTF is estimated using the procedure outlined in Section 5, thus we have 

the TTF prediction as shown in Fig. 5. From the figure, the prediction seems to be 

satisfactory as it converges to the actual time of failure of 93.7 seconds.  The TTF is 

estimated only after the detection of the fault and as seen in the figure, the estimated TTF 

is consistent with the actual time of failure.  
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Figure 4: Online estimation of the system parameter. 
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Figure 5: The TTF determination after the fault detection. 

 

 
 

Hence, through this simulation, the theoretical results derived in this paper are 

verified. Additionally, another simulation example is introduced next to illustrate the 

usability of the proposed FDP scheme.  

 

Example 2: Mass damper system 

 

Some of the commonly known systems such as bridges, automobile suspension 

system etc., could be modeled as a mass damper system. Hence a FDP scheme to alert 

users about any impending faults is necessary. Consider the following discrete time states 

space model equivalent to a continuous time mass damper system (Demetriou and 

Polycarpou 1998) 
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1 2 1
( 1) ( ) ( )sTx k x k x k         

12 2 1 21( 1) ( ( ) ( ) ( ) ( )
1

{ } ( )s cTx k F c x k k k x k k
m

x k                (18)       

where 1
( )x k and

2
( )x k  are the system states, representing the displacement and velocity 

term of the mass damper system. The external force (input) applied to the system is 

defined as 2 sin( )
s

TkF  . In this simulation, a spring stiffness fault is assumed, which is 

considered as a predominant fault (Demetriou and Polycarpou 1998). Hence, the fault is 

assumed to cause the spring constant to vary as given below 

 1

1

0.55

( 1) ( / 90000)

( )
c

c
k k

k k

k



 





             

0 15 sec

15 sec

k

k

for 





 

   To monitor and detect faults in (18), the following nonlinear FD estimator is 

considered    

1 2 1 1 10.01 ˆ( ( ) ( ))ˆ ˆ ˆ( 1) ( ) ( )sT x k x kx k x k x k      

1 2 12 2 2
ˆ1 ( ) ( ) ( ) 0.01

1
ˆ ˆ( ) ( ( ) ( ))( ( ){ }s sT k k v kx k x k x k

m
F c x k x              (19)          

where
1

ˆ ( )x k and 2
ˆ ( )x k are estimated states of 1

( )x k  and 2
( )x k . For this simulation, the 

following values are considered 1m  ,
1

0.5c  , 
1
(0) 0x  , 

2
(0) 0x  , 

1̂
(0) 0x  ,

2
ˆ (0) 0x  , and 

0.01sec
s

T  .  Additionally, ( )v k  is the robust term which is given by
2 2

( )

ˆ ( )

ˆ

( )
ss

s s s

k

k

b
v k

b c





. We 

take 0.4
s

b   and 0.05
s

c  . From the definition, the fault is seeded at the 15
th

 second of 

operation. Initially, we calculate the residual and monitor constantly to detect faults in the 

system. In this simulation, we consider the following defined constant disturbance 

( ) 0.48k   for  0 seck   
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Therefore, a threshold is required to avoid missed or false alarms. In this design, 

we have 0.48
M

  , and taking 0.99c  , 0.01  , using 
(1 )

Mc







 , we would have a constant 

threshold value of 0.49  .  The above discussed results could be seen in Fig. 6, where the 

residual remains within the threshold prior to the occurrence of the fault. Consequently, 

after the fault, the residual tends to increase, which exceeds the chosen threshold. 

Subsequent to detection, the fault parameter, i.e., ˆ ( )s k has to estimated online using (6), 

with 0.5   and 0.001  . However, prior to the fault detection, we take ˆ ( ) 0.55s k  . In 

addition, the robust term is triggered to guarantee asymptotic convergence of the residual, 

which is observed in Fig. 6, where the residual converges to zero eventually. This is true 

even with a disturbance.  
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Figure 6: Residual signal with the fault detection threshold. 

 

 

The online estimation of the fault parameter is shown in Fig. 7 along with the 

failure threshold value of 0.074. This implies that the induced fault causes the spring 
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constant to decrease and reach its lower limit beyond which the system is considered to 

have failed completely. Using this online estimate and the procedure outlined in Section 

5, TTF is estimated in real-time and is shown in Fig. 8. The initial prediction may not be 

accurate, which is attributed to the random selection of the tuning parameter in (6). 

However, as the online estimation of the fault parameter improves, TTF estimation 

improves and is found to converge with the actual time of failure of 33
 
seconds.  

The above two simulation examples demonstrate that the proposed FDP scheme 

performs reliably even in the presence of uncertainties. The scheme learns any unknown 

fault function and provides an estimate. It also predicts accurately the remaining useful 

life of the system. Moreover, no apriori training is needed to learn new faults or for 

estimating TTF (see, Liu et al. (2006), Luh and Cheng (2005), Luo et al. (2003), Roemer 

and Ghiocel (1999), Phelps et al. (2002), Shao and Nezu (2000), Mathur et al. (1998)). 

Additionally, in the first simulation example an increasing fault parameter was 

considered for TTF estimation, whereas, in the second simulation example, a decreasing 

fault parameter is considered to estimate TTF. This automatic FDP scheme, therefore, 

can alert maintenance personnel the need for preventive measures by providing the TTF. 

With a unified scheme, therefore, a system can be properly monitored from setup to 

failure.  
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Figure 7: Estimated and actual system parameter trajectories along with the 

failure threshold. 
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Figure 8:  The TTF determination after the fault occurrence. 

 

7. Conclusions and Future Work 

 

In this paper, a new asymptotic FD estimator and a parameter based prediction 

scheme have been developed for a class of non-affine nonlinear discrete-time system with 

state faults. The proposed scheme detects and learns unknown incipient and abrupt state 

faults.  By using a robust term and considering certain mild assumptions on the system 

uncertainties and reconstruction errors, the FDP scheme is guaranteed to render 

asymptotic stability in contrast with other schemes where a bounded stability is 

demonstrated. A dead-zone operator enhances robustness of the proposed scheme. A key 

feature of the proposed FDP scheme is the prediction of the remaining useful by using 

information on the real-time change in the system parameter. The scheme was developed 
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with the assumption that all states are measurable.  Future work, therefore, would relax 

the need for measuring all the states. 

Appendix 

 

Proof of Lemma 1: Consider the residual dynamics given in (8), solving it would render  

 
0 ( )

( )
( ) (0) ( ) ( ( ), ( )) ( )

ˆ ˆ( ) ˆ ˆ( ) ( )

T

T

T T T T

T

j i i i
b j

k
i i ik k j i i i

ii i i

i i i i i i i

j b C
k j x j u j j

j b
i i ii i

b C

e a e a

b j j b cc


 

 


 






 

   








 


                  

The above equation is rewritten as  

0 0

( ) ( ) (0) ( ) ( ( ), ( ))
T

j j

k k
k j k k j
ii ii i ii i ij k j x j u ji ia e a e a  

 


 

         

 
   

0 0

( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

i i i i

T T

i i i i i i

i i

T T
j ji i

k k
k j k j
ii ii

i i

j b C b C

b j j b b j j b

a a
c c

 

    

  
 

 





   

Apply Frobenius norm in the above equation to obtain the following  

0 0

( ) ( ) (0) ( ) ( )
T

j j

k k
k j k k j
ii ii ii i ij k j ji i ia e a e a  

 

 
 

   

 

0 0

( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

i i i i

T T

i i i i i i

T T
j ji i

k k
k j k j
ii ii

i i

j b b

b j j b b j j b

a a
c c

 

    

 
 

 
       (A.1) 

The summation term in the above equation could be solved 

as max

max0 (1 )

( )

( ) ( )
T

j

k
i ik j

ii i i

ii

k

j j

a

a
 

 

 


 . Constricting

max
0.5iia  in the unit disc, this makes the FD 

scheme even more stable. Then we obtain
max max

max max

( ) ( )

(1 )

i i i ik k

ii iia a

   



 . Similarly bounds 

could be derived for the other terms in the above equation. 
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Also, ( )

( )

ˆ ˆ( ) ( )

T

i i

T

i i i

T

iT

i

k bi

i

k b

b j j b c





 




, 

ˆ ˆ( ) ( )

T

i i

T

i i i

T

iT

i

bi

i

b

b j j b c





 




. Therefore (A.1) could be 

rewritten as  

 
max max max

max max max max

( ) ( )( )

( ) (0)
i ii i i ik

ii

k b k bk

k
i

i i

ii ii ii ii

e a e

a a a a

   
     

Squaring both side and factoring  2

maxii
a  would give us 

max max max

max max max

2

2 2
( ) ( )

( ) ( ) (0)
max

i ii i i ik

ii

k b k b

k k
iii i i

ii ii ii

a e a e

a a a

  




   

 
 
 
 

 

   

Take
max

0

max

(0)
i ik

ii

b

i

ii

b a e

a



 ,
max max1 ii bb   , then the above equation could be 

rewritten as 
2

2 2

0
max

max

1 ( )

( ) ( ) b
ii

i k

k ki i

ii

b
a e

a



  

 
 
 
 

 

Expanding the square term on the right hand side of the above equation and after 

some mathematical manipulation, the following equation is obtained 

2 2 22 2 2

0 maxmax max

2

1 1( ) 3 2 ( ) 2 ( ) 2 ( ) ( )
ii ii i ik b k k k ki i ii ia a e b a b e                     (A.2) 

Multiply (A.2) by  
max

2
1 (2 1 / )5 i i i    to render the following equation 

     
max max max

2 22 2 2

0
3

max max

2 2 2
1 (2 1 / ) ( ) 1 (2 1 / ) 2 1 (2 1 / ) ( )5 5 5

ii ii
k b ki i i i i i i i i i ia a e                 

                             

   
max max

2

max

2 2 2

1 12 1 (2 1 / ) ( ) 2 1 (2 1 / ) ( ) ( )5 5i ik k ki i i i i i ii ib a b e           

 

Take  
max

2 2

0
3

max

2
1 (2 1 / )

0
5

ii
bi i i ib a    ,  

max

2

max

2
2 1 (2 1 / )

1
5

iii i i ib a    , 
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 
max max

2

12 1 (2 1 / )
2

5i i i i iib a b    , and  
max

2 2

12 1 (2 1 / )
3

5i i i ib b    , would reveal equation 

(7). This completes the proof.  

 

Proof of Theorem 1: Consider the Lyapunov function candidate as  

21 1
( ) ( )( )

5

[ ]
T

i i

i

k ki iV ke  


   

whose first difference is given by 

2 2

1

1
1

5
( ) ( )i ii

V

V k ke e



   
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[ ( 1) ( 1) ( ) ( )
1
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T T

i i i i

i

V

k k k k   
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



                                            (A.3)                                                

Substitute (8) in
1

V of (A.3) to render 
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2

1 21
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Apply Cauchy-Schwarz inequality 
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T
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     (A.4) 

Next, substitute (6) in
2

V  of (A.4), to render 
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After some mathematical manipulation, the above equation becomes 
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Apply Cauchy-Schwarz inequality   (
2 2

2ab a b  ) to terms numbered as 1 in the above 

equation to obtain the following  
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where 0i   is a constant. Substitute the residual dynamics (8), apply the Cauchy-

Schwarz inequality ((
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numbered as 1 in the above equation and after some mathematical manipulation, we 

would have the following equation  
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Since 1 2
V V V    from (A.4) and (A.5), the first difference of the Lyapunov function 

candidate is given by 
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Consider only terms numbered as 1 and 2 in (A.6), would result in the following  

   
 

 

2

2

2

21 (2 1 / ) 1 (2 1 / )5 ( ) 5

( )

ˆ ˆ( ) ( )

T

i i i

T T

i i i i i

T T

ii i i i i i i ik

k b C

b k k b c

     


 
   




  

       
2

( )1 (2 1 / )5
TT

i i i
ki i i i b C       

 

      2 1 (2 1 / )
2

5 ( ) ( )
T T T
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Next, consider only terms numbered as 2 in (A.6), which is given by  
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Next, using (A.7), (A.8), and Lemma 1 in (7) in (A.6), would render the following 

equation  
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2 3

2 2

1

0 1
( ) ( ) ( ) ( )i i i i i i i ib b e k b e k k b k              (A.9) 

Apply Cauchy-Schwarz inequality (
2 2

ab a b  ) to the term numbered as 1 in the 

above equation and apply Frobenius norm would result in the following first difference of 

the Lyapunov function  
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then (A.10) could be rewritten as  
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This implies that the first difference in the Lyapunov function candidate 0V  in (A.11) 
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provided if the gains are selected as

max

max 2
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. Since 

0V  and the first difference is less than zero provided the gains are selected as above and 

0
( )ie k and

0
( )i k  are bounded in a compact set B. This concludes that ( )ie k  and 

( )i k converges to zero asymptotically.                                                                

Proof of Theorem 2: After the i
th

 fault occurs, and prior to triggering the i
th

 OLAD and 

the robust term, the residual equation in (12) is given by  

( 1) ( ) ( ( ), ( )) ( ( ), ( ))
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Incipient faults: Solve for ( )ie k  in (A.12) during the time interval  
1
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d
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Use the triangle inequality and 1
( )i iT ke   , would reveal  
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From Assumption 2, the maximum bound on the system uncertainty is given 
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Hence a fault is detected only if  
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Solve further to get 
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It is easy to see that solving the above equation further would render (13). 

Abrupt faults: For abrupt faults, i  using (A.13), therefore, 
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After performing some mathematical manipulations in the above equation, (14) could be 

derived.                 

 

Proof of Theorem 3:  In general, for any system satisfying Assumption 6, the maximum 

value of the system parameter in the event of a fault is determined by their physical 
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limitations. Thus ( )

max

ˆ
f j j

k
ji i  . Equation (15) holds only in the time 

interval [ ],
d f

k k k . Consequently, the update equation in (6) can be written as  
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The above equation is a linear time varying equation which can be written as  
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iB  , and ( ) ( ) ( 1) ik k kiu e  . Since the above defined A matrix is diagonal, (A.14) can 
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basis  function and the residual, additionally 1, 2,........j l .  

The solution of the system defined in (A.15) is given by 
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Since the j
th

 system parameter reaches its maximum value at the time of failure, i.e., f j
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 In the above equation, for the time interval [ 0 j
k ,

f j
k ], ( )jj ka  and ( )j ku  are assumed to 

be constant. This suggests that the system defined above can be considered as a linearly 

time invariant system. This assumption is reasonable since 0 1jja   and it is stable and 

the input ( )j ku would be bounded due to the guaranteed stability of the parameter update 

law in (6). Also, TTF is continuously updated at each time instant in the 

interval [ ],
d f

k k k , as explained below. Hence the above equation becomes 
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Using results of geometric series, (A.16) then becomes  
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With some simple mathematical manipulation, one obtains  
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Finally, after performing some mathematical manipulation, we have 
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Since ( ) ( ) ( )1
i

T

i ijj ik I k ka     , j ib  , and ( ) ( ) ( 1)j ik k k
j

u i e  , equation (15) 

results.                                                                                
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 

Abstract—Model-based fault detection (MFD) techniques are preferred over 

hardware based schemes due to low cost and minimal changes to the system 

when the system states are available.  However, one of the major challenges in 

model based monitoring, diagnosis and prognosis (MDP) approach was to 

develop a detection and prognosis (DP) scheme in discrete-time in the presence 

of partial state information since discrete-time schemes are normally preferred 

for ease of implementation. Therefore, in this paper, we propose a unified fault 

detection and prediction (FDP) scheme for a nonlinear discrete-time input-

output system in the presence of modeling uncertainties when certain states are 

not available for measurement. A nonlinear estimator with an online tunable 

approximator and a robust term is introduced to monitor the system. A residual 

is generated by comparing the output of the system with that of the estimator. A 

unknown fault is detected when the generated residual exceeds a 

mathematically derived threshold. Subsequently, the online approximator and 

the robust terms are initiated. The approximator uses the system input and 

output measurements while its own parameters are tuned online using a novel 
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update law. Additionally, robustness, sensitivity, and the stability of the fault 

detection scheme are rigorously examined. The proposed scheme is guaranteed  

to be asymptotically stable due to the introduction of the robust term and using 

some mild assumption on the system uncertainty. Subsequently the process of 

determining the time to failure (TTF) is introduced. Finally, the FDP scheme is 

simulated on a magnetic suspension system.  

Keywords: Fault detection and prognostics, nonlinear discrete time system, online 

approximator, Lyapunov stability. 

I. Introduction 

 

Traditionally, fault detection and prognostics schemes were developed 

individually due to lack in understanding of how to learn the fault dynamics.  In general, 

the process of fault detection, prognosis and accommodation consists of: (a) detection 

deals with determining if a fault has occurred; (b) diagnosis considers the problem of root 

cause and location of the fault; (c) prognosis deals with the prediction of TTF and (c) 

accommodation attempts to correct a particular fault, through controller reconfiguration. 

In particular, prognostic schemes have been found to be vital since the prediction of TTF 

helps the maintenance personnel to take action in the event of a fault.   

From the available fault detection (FD) schemes, the model based FD appear to be 

most preferred [5, 9] over any hardware based schemes due to reduced cost. In such an 

approach, a model representative of the nonlinear system behavior is first developed and 

residuals are obtained by comparing the response of the model with that of the actual 

system. A fault is detected when the residuals exceed a pre-determined threshold. 

However, modeling uncertainties can cause performance degradation of the FD scheme 
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rendering false alarms and missed detection thus demanding a robust FD scheme. 

Quantitative modeling schemes such as state-space [9], parity relations [5] as well as the 

qualitative schemes such as expert systems [10] have been introduced for linear systems 

[5, 9, 10] as a robust FD scheme.   

With the development of advance nonlinear modeling techniques [8], it is now 

possible to develop FD schemes for nonlinear systems with nonlinear incipient or abrupt 

faults [1, 3, 7, 20, 23, 24]. This classification of faults is based on the time profile, where 

an incipient fault would be a slowly growing whereas an abrupt fault would be suddenly 

occurring [7]. However, most of the above discussed schemes [5, 9, 7, 10, 20, 24] of FD 

are for continuous-time systems. There has been limited previous work on FD of discrete 

time system [1, 3], but has mainly been on sensor or actuator faults, and requires the 

persistency of excitation (PE) condition to prove the stability of the scheme.  It is noted 

that the development of a FD scheme in discrete-time is difficult due to the stability or 

convergence.  In other words, the first difference of a Lyapunov function is quadratic with 

respect to the states which makes the detection scheme in discrete-time difficult whereas 

it is linear in the case of continuous-time systems. Therefore, the authors have recently 

introduced a robust FD framework for nonlinear discrete-time systems [8] by assuming 

that all the states are available for measurement and relaxing the requirement of the PE 

condition. However, availability of all the states means the need for more sensors, which 

makes the scheme expensive. This is the main focus of this paper. 

One of the noted problems in the literature for the above mentioned schemes even 

for continuous-time systems is the lack of prognostics or TTF determination. One of the 

earlier works on prognostics [16, 17] assumed a specific degradation model of the system, 
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which is found to be quite limited to the system or material type under consideration. On 

the other hand, deterministic polynomial and a probabilistic method were developed for 

prognosis [19, 21] by assuming that only certain parameters affect the fault.  The fault 

dynamics are not being learned online making the prediction inaccurate. Finally, a black 

box approach using NN was developed in [22] using failure data which is expensive to 

collect apriori. 

By contrast, in this paper, we unify the development of the fault detection and 

prognostics (FDP) scheme for nonlinear discrete-time input-output systems [7, 20, 24]. 

Such an approach has not been previously developed either in continuous or discrete time 

systems [1, 3].  First, a systematic learning methodology and some analytical results for 

the FDP scheme are introduced for a class of nonlinear discrete time input-output systems 

by using a robust term and assuming an upper bound on the modeling uncertainties.  As a 

consequence, the proposed FDP scheme guarantees asymptotic stability in contrast to 

other schemes where a bounded stability [1, 3, 7, 20, 23, 24] is ensured.  The proposed 

FDP scheme could detect nonlinear system faults, which are modeled as a nonlinear 

function of the input and output variables rather than actuator faults [1, 3].  Subsequently, 

the TTF is introduced by using the learning methodology.   

The main idea behind this methodology, is to monitor the system for any 

abnormal behavior (which could be due to the faults or modeling uncertainties) utilizing a 

nonlinear estimator consisting of an online approximator in discrete-time (OLAD) with 

adjustable parameters and a robust term.  Commonly used OLAD models are neural 

network, fuzzy logic, and spline function. By comparing the output of the estimator and 

the system output, residuals are generated and compared against a mathematically derived 
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threshold for FD. After the detection of a fault, the OLAD and the robust term are 

initiated to learn the fault dynamics online. A stable adaptive update law is proposed for 

tuning the OLAD. Subsequently, the parameter update law is utilized to solve for the 

TTF.  Further, the stability, the sensitivity, and the robustness of the FDP scheme are 

demonstrated through Lyapunov analysis in the presence of reconstruction errors and 

unmodeled dynamics.  Finally, it is important to note that fault detection schemes and 

adaptation laws developed in continuous-time [7, 20, 24] cannot be directly applied to 

nonlinear systems represented in discrete-time.  

This paper is organized as follows: In Section II the nonlinear discrete-time input-

output system under consideration is explained.  In Section III, the fault detection scheme 

is introduced.   In Section IV, the robustness, the sensitivity, and the performance of the 

fault detection scheme is shown extensively with mathematical proofs by using the 

Lyapunov theory and in Section V the prognostics scheme is developed. In Section VI, a 

magnetic suspension system is used to illustrate the fault detection and prognostics 

scheme. Finally, in Section VII some concluding remarks and some possible future work 

are given. This paper introduces a fault detection and prediction algorithm in discrete-

time and not a fault isolation and accommodation scheme. However, published literature 

on fault isolation and accommodation could be found elsewhere [10, 20, 26].  

II.  Problem Formulation 

 

The discrete time input-output system under consideration is described by 

 ( 1) ( ) ( ( ), ( )) ( ( ), ( )) ( ) ( ( ), ( ))x k Ax k y k u k x k u k k T f y k u k                         

  ( ) ( )y k Cx k                                      (1) 
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where nx  is the state vector, y is the output, , :
m n

f   , :
n m n

     are 

smooth vector fields, 0T  is the starting time of the fault, ( ( ), ( ))y k u k  represents the 

nominal dynamics of system, ( ( ), ( ))x k u k is the modeling uncertainty, ( ( ), ( ))f y k u k is the fault 

dynamics,  and ( )k T  , a n n  square matrix function representing the time profiles of 

the fault.  

A system fault typically changes the parameters of the system or its dynamics 

which is expressed as a nonlinear function of the output and input.  It is important to note 

that (1) does not address sensor faults. The time profiles of the incipient faults are 

modeled by [23] 

1 2( ) ( ( ), ( ), ...., ( ))nk T diag k T k T k T          

where  

i-

0
( )

0

0  if    

1 -  ,  if  
i

e  







 







i=1, 2… n                          (2)                                                                        

with i > 0 is an unknown constant that represents the rate at which the fault in the state xi 

occurs.  For large values of i , the time profile function ( )i  approaches a step function 

to model an abrupt fault. In this paper, we address only abrupt faults.  

 

Remark 1: Modeling of faults using time profile is commonly found in the fault 

detection literature [25], and is used extensively by researchers [1, 3, 7, 20, 23, 24]. 

Next, throughout this paper, we make the following assumptions.  

Assumption 1: Initial state of the system is known, i.e., 0(0)x x . 
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Assumption 2: The state and the inputs are bounded before and after the fault, a standard 

assumption often made in the literature [7].  

Assumption 3: The nominal system is assumed to be observable [24] in some domain of 

interest. 

Assumption 4:  The modeling uncertainty is unstructured and bounded [7, 24], i.e., 

0( ( ), ( )) ,  ( , ) ( )x k u k x u U       

where there exists the compact sets n
    and m

U   , with 
0 0   a known constant.  

During the past decade, many design schemes so called the robust fault diagnosis 

schemes have resulted in a variety of tools in continuous-time for dealing with modeling 

uncertainties [5].  In these robust detection schemes, when the system dynamics change 

above a predefined threshold, then a fault is declared [7, 20, 24]. On the other hand, 

another approach [5] attempts to decouple the effects of faults and modeling errors as a 

way of improving robustness. In the following section, a fault detection scheme is 

developed by using a mathematically derived threshold and OLAD. Subsequently, the 

parameter tuning scheme of the OLAD is utilized for prediction.  

III. Fault Detection Scheme 

 

 

The input-output system with fault under study uses the following nonlinear 

estimator given by 

ˆ ˆˆ ˆ( 1) ( ) ( ) ( ( ), ( )) ( ) ( ( ), ( ); ( )) ( )x k A KC x k y k u k Ky k f y k u k k v k                          

ˆ ˆ( ) ( )y k Cx k                                              (3) 

with
0

ˆ(0)x x , where ˆ n
x is the estimated state vector, ŷ is the estimated output, f̂ is 
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the OLAD, ˆ q
  is a set of adjustable parameters, v is a robust term and would be 

defined later in the text, and K is a design constant, which is chosen such that 

G A KC  has all its eigenvalues within the unit disc.  The initial value of the OLAD in 

(3) is selected such that
0

ˆ ˆ(0)  , so that
0

ˆ ˆ, ) 0( ,f y u   for all yy and u U . Given the 

initial conditions, the next step involves the development of an adaptive law for the 

parameter ˆ( )k , so that the OLAD ˆ ˆ( ( ), ( ); ( ))f y k u k k  reconstructs the fault 

dynamics ( ( ), ( ))f y k u k . An accurate modeling of the nonlinear discrete-time system would 

enable us to track any changes in the system dynamics and helps in the development of a 

robust fault detection algorithm.   

Remark 2: Only upon detection of a fault, the OLAD and the robust term are initiated. 

During the last few years, several online approximation based models have been 

studied primarily in continuous-time in the context of intelligent and learning control.  In 

addition to conventional approximation models like polynomials, spline functions etc., 

various neural networks such as sigmoidal activation functions, radial basis functions, 

CMAC etc and others such as fuzzy logic systems and wavelets, have emerged.  For the 

OLAD, y and u are considered as the input vectors, ˆ( )k  is the vector of adjustable 

parameters, and ˆ ˆ( , ; )f y u  is the output.  In this paper, we consider a general class of 

sufficiently smooth online approximators, f̂ C


 . 

Next define the state estimation error as ˆe x x  . Also define ˆ
oe y Cx   as the 

output estimation error or residual.  Under the ideal conditions with no modeling errors, a 

fault is declared active whenever the output of the online approximator ˆ( ( ), ( ); ( ))ˆ y k u k kf   and 

the residual becomes nonzero. An intuitive way of generating robustness with respect to 
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modeling uncertainties is to start the adaptation whenever the residual is above a certain 

threshold.  This can be easily implemented by using a dead-zone operator [.]D , which is 

defined for improving the robustness of the fault detection scheme as 

( )

( )

0,  if 
[ ( )]

( ),if 

o

o

o

o

k

k

e

e
D e k

e k






 


                                      (4) 

where ( )oe k is the residual and 0  is a design constant. The dead-zone size clearly 

provides a tradeoff between reducing the possibility of false alarms (robustness) and 

improving the sensitivity of the faults.   

In the next section,  is derived in terms of the modeling uncertainty bound ( 0 ), 

which guarantees robustness in the presence of modeling uncertainty. Based on the 

estimation model in (3) and the dead-zone in (4), the following parameter update law is 

proposed for tuning the OLAD  

0
 B D[ ( )]ˆ ˆ ˆ( 1) ( ) ( )

T

oe kk k Z I ZZ k                                (5) 

where > 0 the learning rate or adaptation gain, 0 <  1  is a design parameter, 

0
B

n
 is a constant vector, and Z  is a q n matrix defined as 

ˆ ˆ( , ; )

ˆ

T

f y u
Z










 
 
 
 

                                                             (6) 

The key advantage of the proposed parameter update law is the relaxation of 

parameter drift, a phenomenon that may occur with standard adaptive laws in the 

presence of approximation errors and due to the lack of the persistency of excitation (PE) 

of input signals. The last term is similar to e-modification in continuous-time adaptive 
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control. Next we define the robust term as 

            
1

1

1

ˆ ˆ( ) ( )

ˆ( )
( )

T T

T

m
k B B k

B k
v k

c 





                          (7) 

where 1

q n
B


 is a constant matrix and its selection is addressed later in the paper and 

0
m

c   is a design constant. The performance of the parameter update law is shown 

mathematically by using Lyapunov theory in the next section.  

Remark 3: In our earlier work [23], the authors have developed a nonlinear estimator for 

robust fault detection in dynamic systems with full state feedback.  In the case of full state 

measurement with n states and m inputs, the input to the online approximator will be 

(n+m) whereas it is (1+m) for the proposed work.  This has a major impact on the online 

approximator especially for linearly parameterized approximators since for high 

dimensional input spaces, the number of adjustable parameters needed to achieve a given 

approximation accuracy increases with the input dimension [2].  Therefore, the use of 

output sensor data instead of full state vector has obvious practical advantages similar to 

the case of continuous-time systems. 

IV. Analytical Results 

 

In this section, the robustness, the sensitivity, and the stability of the nonlinear 

fault detection scheme is rigorously examined. The robustness analysis deals with the 

investigation of the behavior of the OLAD in the presence of modeling uncertainties prior 

to the occurrence of any faults. The sensitivity analysis examines the behavior of the 

OLAD after the occurrence of the fault and characterizes the class of faults that can be 
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detected by the robust fault detection scheme. On the other hand, the stability analysis 

included in this section deals with the asymptotic convergence of the system signals, even 

after the fault occurrence.  

In an ideal case, where there is no modeling errors and prior to the occurrence of a 

fault, i.e.,  0,k T , from (1) and (3), the state estimation error satisfy 

( 1) ( )e k Ge k                                                     (8)                                                             

 Since G is a stable matrix, hence the stability follows trivially, i.e., 

0e  as k   . Next, in the presence of modeling errors, (8) becomes 

( ( ), ( ))( 1) ( )e k Ge k x k u k                                      (9)                     

 To determine an appropriate value for  , we derive an upper bound for ( )oe k prior 

to the fault.  From (9), we have
1

1

0

( ( ), ( ))( )
k

k j

j

x j u je k G 


 



 . Hence the residual is given by 

1
1

0

( ) ( ( ), ( ))
o

k
k j

j

e k CG x j u j


 



 . Since the matrix G is stable, there exist two positive 

constants and c such that (Frobenius norm) 1k k

cG    . Therefore by using 

1C  [9], and taking c
   , we get ( )

(1 )

(1 )

k

o o
e k 










. Thus we choose the size of 

the dead-zone
(1 )

o






. Next to show the robustness of the proposed scheme (using 

equations (3), (4), (5), (9)), the following theorem is proposed.  

Theorem 1 (Robustness): The robust nonlinear fault detection scheme described by (3), 

(4), (5) and (9) guarantees that ˆ ˆ( ( ), ( ), ( )) 0f y k u k k  , for k T  prior to the occurrence of the 

fault. 
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Proof:  Let us assume that there exists a time
rk , 0 rk T  , such that ( )oe k   for 

rk k and  

0
( )

(1 )
o re k





 


                                                             (10)   

It is could be seen that the parameter ˆ( )k  has not adopted in the time interval 

[0, )rk by using (5) and the continuity of ( )oe k  [24]. Hence, in the time interval [0, )rk the 

state estimation error ( )e k satisfies                                                                                      

( ( ), ( ))( 1) ( )e k Ge k x k u k                                   (11)                 

  

Therefore, in the interval[0, )rk , the residual or the output estimation error is 

given by 

1
1

0

( ) ( ) ( ( ), ( ))

k
k j

o

j

e k Ce k C x j u jG 


 



 
 
  
  

By using 1C  ,

1
1

0

(1 )

(1 )

kk
k j

j

G
 




 







  and 0( ( ), ( ))x k u k   , we get 

(1 )

(1 )
( )

oo

k

e k









 (1 )

k
   . 

Hence, ( ) (1 )o

k
e k    for all [0, )k rk  Thus by using the continuity of 

( )oe k we obtain that ( )o re k  , which contradicts our assumption in (10). In other words, 

the residual remains within the dead-zone and the output of the OLAD remains zero.  

Remark 4: The proof of the theorem is quite analogous to the continuous-time case [24]. 
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Next after the occurrence of the fault at k T , by using equations (3) and (4), the 

state estimation error satisfies 

ˆ( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( )ˆe k Ge k x k u k k T f y k u k y k u k k v kf                       

            ˆ( ) ( ( ), ( ), )( ) ( ( ), ( )) k T f y k u kGe k x k u k         

           ˆ ˆ( ( ), ( ); ( )) ( ) ( )f y k u k k k v k                            

where the approximation error is given by ( ) ( )[ ( ( ), ( )) ( ( ), ( ), )]ˆy yk k T f k u k f k u k     

and is an optimal value chosen such that it minimizes the 
2

L norm distance 

between ˆ ˆ( , ; )f y u  and )( ,f y u  for all (y, u) in some compact domain Uy .  Also  is 

constrained to a compact set qw  . Based on the smooth assumptions on ˆ)ˆ( , ,f y u  [7], 

further, the above defined error equation can be expressed as 

1) ( )) [ ( ˆ( ( ) ( ), ( ( ( ), ( ), ))]Ge k e k x k u k I k T f y k u k        

ˆ ˆ( , ; )
ˆ ˆ( ) ( , ; , )

ˆ
( ) ( )

f y u
y u k v k


   





 


                       (12)                                                                

where 
ˆ ˆ( , ; )

ˆ( ; ( , )
ˆ

ˆ ˆ, , , ( )ˆ ˆ( , ; ) )
f y u

y yu uy u f f


 


   






      with ; , )ˆ( ,y u   represents the 

higher order terms of the Taylor series expansion of ˆˆ ( , ; )f y u   w.r.t to ̂ . Let ˆ    is 

the parameter estimation error, denote ( )]ˆ( ) ( , ; , ) [ ( ( ), ( ), )ˆy I yk u k T f k u k          

( ( ), ( )) ( )x k u k k   , and 1
( ) ( )( )

T
k Z kk   , then the error equation (12) becomes 

  1
( ) ( )1)( ( ) ( )k ke k Ge k v k                   

Now using the definition of the robust term from (7), we get  
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1

1

1

1

( ) ( )
ˆ ˆ( ) ( )

ˆ( )
1)( ( )

T T

T

m

k k

k B B k

B k

c

e k Ge k
 


  


   

Add and subtract
 1

1

1

1
ˆ ˆ( ) ( )

T

T T

m

C

k B B k

B

c 

 


 in the above equation, where 1

n
C   is a 

constant vector, to get   

 
1

1

1 2

1

1

1) ( )( ( ) ( ) ( )
ˆ ˆ( ) ( )

T T

T

m

k

C

e k Ge k k k

k B B k

B

c



 



   



 


                  (13) 

where 

 
1

1

2

1

1

( )
ˆ ˆ( ) ( )

( )

T T

T

m

C

k

k B B k

B k

c 



 




. Next we consider the sensitivity of the proposed 

fault detection scheme. The class of detectable fault is given by the sensitivity theorem 

and is shown below; this theorem is obtained under the worst-case detectable conditions 

[9]. 

Theorem 2 (Sensitivity): For some 0dk  , if the fault dynamics ( ( ), ( ))f y k u k  satisfies the 

following inequality 

1

( 1 )
( ( ), ( )) (1 )d

d

T k j

T k

c

j T

f y j u jCG  
  

 



                 (14) 

Then the residual is given by ( )o de T k   . 

Proof: The state estimation error in the presence of a fault and prior to the OLAD 

adaptation is given by  

1)( ( ) ( , ) ( , )e k Ge k x u f y u      

Therefore, for 0k  , the residual is given by  



 

 

76 

( 1 )

1

( ( ), ( ))( ) ( )
T k j

T k
k

j T

o x j u jT CGe T k CG e 
  

 



   
( 1 )

1

( ( ), ( ))
T k j

T k

j T

f y j u jCG
  

 



                         

Using
0

( )
(1 )

oe T






 , 

k k

cG   and the triangle inequality, we obtain 

( )

1

10

0 0
( ( ), ( ))

(1 )

(1 )
( )

(1 )

T k

T k j

j T

k k

c
f y j u jCGe T k

   







 

  




  





                             

  

1
( 1 )

( ( ), ( ))(1 )
T k

k T k j

j T

k

c f y j u jCG  
 

  



        

Using 1C  , 1
k k

cG     and taking 0k  , we obtain 1c  . If 1c  , 

1k   and also if there exists a time 0
d

k  and if the condition in (14) is satisfied then 

it can be concluded that 0 ( )
d

e T k   .  

 

This theorem shows that the OLAD would start adapting, if 0 ( )
d

e T k   and 

hence the output of the OLAD ( ˆ ˆ( ; ),f y u  ) becomes non-zero. 

Remark 5: The above theorem characterizes the class of faults that are detectable by the 

robust nonlinear discrete-time fault detection scheme.  Note that the left-hand side of (14) 

represents the fault function. Intuitively the sensitivity theorem states that if the 

magnitude of the fault function after some time 
dk  becomes greater than (1 )c  , then 

such faults can be detected under worst-case detectability conditions. In other words, 

similar to the continuous-time case, the inequality (14) is a sufficient (but not necessary) 

condition for activating adaptation of the OLAD in the presence of any modeling 
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uncertainty satisfying Assumption 4. 

 One of the most important parameters in fault detection is the time interval 

between the occurrence of a fault and the detection of the fault which is referred to as 

fault detection time.  The sensitivity theorem not only characterizes the class of faults but 

it also provides a measure of the detection time.  In other words, the smallest 
dk  for 

which the inequality (14) holds is equal to the detection time under the worst case 

detectability conditions. Hence, 
dk represents the maximum detection time over all 

allowable scenarios of modeling uncertainties.     

Next the stability and performance of the fault detection scheme is examined. For 

the following results, it is taken that ( )
o

ke  . For a gradient-based tuning updates used in 

a fault detection scheme [1, 3] which cannot exactly reconstruct certain unknown 

parameters because of the presence of unmodeled nonlinearities or approximation errors, 

cannot be guaranteed to yield bounded estimates. Then the PE condition is required to 

guarantee boundedness of the parameter estimates. However, it is very difficult to 

guarantee or verify the PE. In the next theorem, improved parameter tuning schemes for 

the fault detection scheme is presented so that PE is not required. 

Theorem 3 (Stability): (PE condition not required) let the initial conditions for the 

nonlinear estimator is bounded in a compact set
n

S   . In the event of a fault, the fault 

detection scheme guarantees robust stability in the presence of modeling and 

approximation errors, such that ( )oe k and ( )k are locally asymptotically stable. 

Proof: Consider a Lyapunov candidate as 

 1

5

2 1

3
( ) [ ( ) ( )]

T

oV e k k k


  
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The first difference is given by 

1 2

1

5 3

2 2 1
[( 1) ( ) ( 1) ( 1) ( ) ( )]

T T
o o

V V

V e k e k k k k k


  

 

                             

Consider the first term (
1

V ) in the first difference V and 

substituting ˆ ˆ
oe y Cx Cx Cx Ce     , using the error equation (13), and applying the 

Cauchy-Schwarz inequality (
1 2 1 2

( ... ) ( ... ).
n n

T
a a a a a a       

1 1 2 2
.( ... )

T T T

n n
n a a a a a a     gives us 

1 1 2

2 2 2 2
( ) ( )(( ( ) ) ( ) ( ( ) ) ( )

T T T T T T TT T
k kV e k G C C k C C       

            
 

 
 

1

1 1

2

21

2

1

5

( )

ˆ ˆ( ) ( )

T T

T T

T

m

CB

k B B k c

C

Ce k



 





 

 
 
 

  

           (15)                                                               

Next, considering the second term (
2

V ) in the first difference of the Lyapunov 

function V  

2
( )1

3

1
[ ( 1) ( ) ( )]

T T
V k k k k   


     

by using the parameter update law (5), applying the dead-zone operator in (4), and 

ˆ    , one obtains 

2 0
3

( ) ( ) B ( )
1 T

T
T

oII I ZZ k Z e kV I ZZ   


                

                    0
( ) ( )( ) ( ) B ( )

T T T

o k kI I ZZ I k Z e k I ZZ                                       

                      

Applying the Cauchy-Schwarz inequality (
1 2 1 2

( ... ) ( ... )
n n

T
a a a a a a       
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1 1 2 2
.( ... )

T T T

n n
n a a a a a a     in the above equation gives us 

2

3

1
3 ( )( )( ) ( )

T T T
I IV k I I ZZ I I ZZ k



                                  

                                      T

0 0

22 2
( ) B ( ) 3 ( ) ( )3 B

TT T T

o ok Z e k k kZ e I ZZ          


 

In the above equation, performing some mathematical manipulations would result 

in the following equation 

2

2
22 2

3

( ) ( ) ( ) ( ) ( ) ( )
T T T T T

k k k k k kV I ZZ I ZZ



 
     

 

                         

T

0 0

2
2

B ( ) B ( )
T T T

Z Ce k Z Ce k I ZZ


 



                          (16)       

Combining 
1

V  from (15) and 
2

V  from (16) results in the following equation  

1 2

2 2 2 2
( ) ( )(( ( ) ) ( ) ( ( ) ) ( )

T T T T T T T T T
k kV e k G C C k C C       

      

 

 
 

1 1

1 1

2

2

2

1

5

( )

ˆ ˆ( ) ( )

T T

T T

T

m

CB

k B B k

C

Ce k

c



 





 

 
 
 

  

 

  

2
22 2

3

( ) ( ) ( ) ( ) ( ) ( )
T T T T T

k k k k k kI ZZ I ZZ



 
     

 

                            

     
T

0 0

2
2

B ( ) B ( )
T T T

Z Ce k Z Ce k I ZZ


 



                      (17)                    

Next, we introduce the following Lemma 
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Lemma 1: The term ( )k in (17) comprising of the approximation error and the basis 

function of the OLAD, is assumed to be upper bounded by a smooth nonlinear function of 

state estimation and parameter estimation errors  [6, 11]  

0 1 2 3

2 22
( ) ( ) ( ) ( )( ( ) )

T T

M e k k e k kk C           

where 0 1 2
, , ,    and 3

 are computable positive constants. 

Proof: Use some standard norm inequalities, Assumption 1, and the fact that the 

reconstruction error can be expanded as a function of the residual error and error in 

adaptive estimation parameters.  The steps follow similar to the case in continuous-time 

in proving the boundedness for a NN controller [15]. 

  Then taking the Frobenius norm and using lemma 1, equation (17) could be 

rewritten as 

 
max

2

max

22 2

0 max 1 4

1

5

( )( )V G B Z e k        

        
2

1 2 4max

2
22

max

2 2

3

2 .T T

I ZZ Z B I ZZ



 
 

 

        
 
 
 

 

 
2 2

1 min 1 0max min min max

2
22 2 2

max 1 1 max
2( ) 2

T

B C C I ZZk B






            (18)        

where   min max
    ,  

min max
Z Z Z   , and  4 3

2/   .  

Taking 

2 2

1 1 0

min

max max

min

min

2
22 2

max max

1

1

2

2

T
B C I ZZ

C

B






 



  





  

Using this definition in (18) results in the following equation  
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max

2

max 1 4

22 2

0 max

1

5

( )( )V G B Z e k          

 2

1 2 4max

2
22

max

2 2 2
2

3

( )
T T

I ZZ Z B I ZZ k


 
  

 
      


 


 

Hence in the above equation, 0V   if we choose the following gains 

 
max

max

max0

G
B

Z


, 

1 4

max

1

5

2

G

 





, 1 4

1

5

    , 

1
min( )

T
a

I ZZ





 


, 

2

max 2 4max

2

1
1

1
( 2 )

3
T

I ZZ

Z B

a


  



   

 ,  and 1  . 

Thus as long as the first difference 0V   which indicates that the error signals are 

stable in the sense of Lyapunov. Additionally, in absence of measurement 

noise,
0

( ) ( )e Cek k , hence
0

( )e k and ( )k  are bounded, provided
0 0
( )e k and

0
( )k  are bounded 

in a set S. Hence 0
( )ke and ( )k converges asymptotically to zero.   

Remark 6: From the above theorem, it is observed that by using the robust term and the 

lemma on the approximation error, we proved local asymptotic stability of the closed 

loop system.  

 Next we propose stability without using the robust term and also removing the 

lemma 1, thus we present the following corollary. In this corollary, we show that the FD 

scheme is only semi-globally uniformly ultimately bounded (SGUUB). Thus (13) without 

the robust term could be written as  

( ) ( )1) ( )( k kGe ke k                               (19) 
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where ( ) ( )( )
T

k Z kk   and ( )]ˆ( ) ( , ; , ) [ ( ( ), ( ), )ˆy I yk u k T f k u k        ( )( ( ), ( ))x k u k k   . Next 

the corollary on the stability is presented.  

Corollary 1:  Consider the hypothesis given in Theorem 3 with the robust term being 

removed. In the presence of bounded uncertainties and reconstruction or approximation 

errors, the output estimation error or residual ( )oe k   and the parameter estimation error  

( )k  are SGUUB. 

Proof: Consider a Lyapunov candidate as 

1

3

2 1

3
( ) [ ( ) ( )]

T

oV e k k k


    

The first difference is given by 

1 2

1

3 3

2 2 1
[( 1) ( ) ( 1) ( 1) ( ) ( )]

T T
o o

V V

V e k e k k k k k


  

 

                             

Consider the first term (
1

V ) in the first difference V and 

substituting ˆ ˆ
oe y Cx Cx Cx Ce     , using the error equation (19), applying the Cauchy-

Schwarz inequality (
1 2 1 2

( ... ) ( ... )
n n

T
a a a a a a     

1 1 2 2
.( ... )

T T T

n n
n a a a a a a    ) in the 

above equation gives us 

     1

2 2 22

3

( ) ( ) ( )V CGe k C k C k                             (20) 

Next, considering the second term (
2

V ) in the first difference of the Lyapunov 

function V , we get  

2
( )1

1
[ ( 1) ( ) ( )]

T T
V k k k k   


     

by using the parameter update law (5), applying the dead-zone operator in (4), and 
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ˆ    , one obtains 

2 0
3

( ) ( ) B ( )
1

T T
T

oII I ZZ k Z e kV I ZZ   


                            

                           0
( ) ( )( ) ( ) B ( )

T T T

o k kI I ZZ I k Z e k I ZZ                 

Applying the Cauchy-Schwarz inequality  

(
1 2 1 2

( ... ) ( ... )
n n

T
a a a a a a     

1 1 2 2
( ... )

T T T

n n
n a a a a a a    ) in the above 

equation gives us 

2

3

( ) ( )
1

3 ( )( )
T TT

k I I kV I I ZZ I I ZZ



                                         

2 T

0 0

22
( )3 B ( ) B 3 ( ) ( )

T T T T

o o kZ e k Z e k kI ZZ        
  

 

In the above equation, performing some mathematical manipulations would result 

in the following equation 

2
2

2

2 2

3

( ) ( ) ( ) ( ) ( ) ( )
T T T T T

k k k k k kV I ZZ I ZZ



 
     

 

                           

0

T

0

2
2

B ( ) B ( )
T T T

Z Ce k Z Ce k I ZZ


 



                     (21)  

Combining 
1

V  from (20) and 
2

V  from (21) results in the following equation  

     
2 2 2 2

3

2
( ) ( )

3

( ) ( ) ( )
T

k kV CGe k C k C k


         



 

 

84 

 

2
22

( ) ( ) ( ) ( )
T T T T

k k k kI ZZ I ZZ
 

   

 

                   

                                  0

T

0

2
2

B ( ) B ( )
T T T

Z Ce k Z Ce k I ZZ


 



       

Applying Frobenius norm in the above equation gives us  

max

2

max

22 2

0 max

1

3

( )( )V G B Z e k           

 

2
2 22

max

22 2

3
( )

T T

M
I ZZ Z I ZZ Dk

 
 

  
     

 
 
 

                    

where  
2

max

2
22 2

max

T

M
I ZZD






   , max
( )k  . Then 0V  as long as the 

following conditions hold 

2

max max

2 2

0 max

1

3

( )
M

e k

G B Z

D





 
 
 
 

or
2

22

max

( )

2 2

3

M

T T

k
D

I ZZ Z I ZZ



 
 

  



    
 
 
 

   

also  max

max

max0

G
B

Z

 , max
0.408G  , 

2

max

1
1

3

T

Z

I ZZ

b









 , 

1
min( )

T
I ZZ

b 



 


, max

0.577Z  , and 1  .                 (22)   

Therefore, 0V   and it can be concluded that the residual or output estimation 

error ( )oe k  and the parameter estimation error ( )k are SGUUB.  
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Remarks 7: It is important to note that in the above two theorems (Theorem 3 and 

Corollary 1) the requirement of the PE condition and certainty equivalence (CE) 

assumption are relaxed for the adaptive estimator, in contrast to standard work in 

discrete-time adaptive control [13]. In the latter, two separate Lyapunov functions are 

considered to show the bound on the state estimation error and the parameter estimation 

error [13, 23]. By contrast in our proof, the residual, ( )oe k  and the parameter estimation 

errors ( )k  are combined in one Lyapunov function.  Hence the proof is exceedingly 

complex due to the presence of several different variables. However, it obviates the need 

for the CE assumption and it allows parameter-tuning algorithms to be derived during the 

proof, not selected a priori in an ad hoc manner.   

Remark 8: The parameter updating rule (5) is a nonstandard scheme that was derived 

from Lyapunov analysis and does include an extra term referred to as discrete-time -

mod [13], which is normally used to provide robustness due to the coupling in the proof 

between the residual and the parameter estimation error terms.  The Lyapunov proof 

shows that the term is necessary. Unless the term is utilized, the time to failure cannot be 

derived. 

  In this section we presented the robustness, sensitivity, and the stability of the 

proposed FD scheme. Additionally, two different stability results were obtained, i.e., 

asymptotic stability and SGUUB under certain conditions. In the next section, we would 

introduce a new method of predicting TTF.  
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V. Prediction Scheme 

 

The interest of most modern industrial maintenance is to predict impending faults 

and alert the concerned maintenance personal by predicting the TTF so that the failing 

component or system can be replaced thus avoiding any catastrophic failure. The 

prognosis scheme will help out in this regard so that costs can be controlled due to 

failures. Though it is usually difficult to predict failure, TTF can be approximately 

obtained by predicting time to limit,  In other words, systems parameters are monitored 

with fault and the TTF is obtained by projecting the time at which the value of the 

parameters reach their maximum limit usually set by a designer. The maximum limit 

could be the value up to which the system could perform it’s intend task or operation 

safely. In general for most physical systems, the system parameters could be related to 

physical parameters. Hence in the event of a fault, the parameters may tend to increase or 

decrease depending on the fault characteristics.  

To predict the TTF by using the parameter update law in (5), we propose the 

following theorem. In this theorem, we show that an explicit mathematical formula could 

be derived to predict the TTF. Before proceeding any further, we make the following 

assumption.  

Assumption 5: The parameter ˆ( )k  is an estimate of the actual system parameter.  

Remark 9: This assumption is satisfied when a system can be expressed as linear in the 

unknown parameters (LIP). For example in a mass damper system or civil infrastructure 

such as a bridge, the mass, damping and spring constants can be expressed as unknown 

parameters. Hence in the event of a fault, we assume that system parameters change and 
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tend to reach their limits defined by the designer. When any one of the parameters 

exceeds its limit, it is considered unsafe to operate.  TTF will be defined as the time that 

the first parameter reaches its maximum limit. Here the TTF analysis can be done with 

lower limits as well. 

Theorem 4 (Time to failure): Assume that the parameter update law can be treated time 

invariant during the time interval k and k+1 and consider system (1) can be expressed as 

LIP, the TTF for the i
th

 system parameter could be iteratively determined by solving 

0

0

0

0

0

1

1

max

0

log

log(1 )

T

T

f T

j

j

n

ij

j

n

ij

j

i i

i

i

B

B

k k

I zz

I zz e

I zz e

z

z

 

  

  








 

 

 

 

  
  
 

 
  

   
   




           (23)   

where fi
k is the TTF, 0i

k is the time instant when the prediction starts (starts at dk  and 

incremented with time), 
maxi is  the maximum value of the system parameter, and 

0i
 is 

the value of the system parameter at the time instant 0i
k .  

Remark 10: The mathematical equation (23) is derived for the i
th

 system parameter. In 

general for a given system, the TTF would be ), 1, 2, ........min(
fft i l
i

k k  , where l the 

number of system parameters. This also implies that for a fault that is occurring in the 

system, the TTF is obtained as the time that the first parameter reaches its limit.   

Proof:  In general for any system satisfying Assumption 5, the maximum value of the 

system parameter in the event of a fault is determined via physical limitation. Hence we 

take
max

ˆ ( )fi iki  . Note that the equation (23) holds only in the time interval [ ],
d f

k k k  
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when the residual and other terms are held constant at each k . Thus the values of  Z and 

0
e  are known and would be held fixed for the k

th
 time instant. Under the assumption, the 

parameter update law shown in (5) could be written as  

0 0
1ˆ ˆ( ) ( ) ( )  

T

I ZZm I I m Z B e        

where we use m as the time index to simplify the understanding of the theorem, and the 

above defined equation could be   written as  

.( 1) ( ) .Ax m x m B u                    (24) 

where ˆ( 1) ( 1)x m m   , ( )
T

I ZZ IA I    is a diagonal matrix, ˆ( ) ( )x m m , and 

B  , and 
0 0

 u Z B e . Since the above defined A matrix is diagonal, (24) could be written 

as  

( 1) ( )i ii i i ix m x m b ua                              (25) 

where 1
T

ii I ZZa   , ib  ,and 0 0

1
j

n

iji
j

Bu z e


  with the elements of input 

being constant between the time instant k and k+1.  

Solving (25) to determine TTF using [4], we get 

0

0

( ) ( )

0

1

( ) ( )

m

m m m

i

j m

j

i ii i ii imx m x ua b a



 



                      (26)           

Since at a given instance k , 
iu is time-invariant in (26), thus the above equation becomes  

0 0

0

( ) ( )

0

1

( ) ( )

m

m m m m

j m

i ii i i i iimx m x b ua a








    

   Now using results of geometric series, the above equation could be written as 
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0( )

0

0
( ) ( )

1

1

m m ii

ii

m m

i ii i i imx m x b ua
a

a




 




 
 
 

 

   After performing some simple mathematical manipulation, one obtains  

0

0

1

1

[ ( )( ) ]

[ ( )( ) ]

m m i ii i i
ii

i ii i im

x m b u

x b u

a
a

a

 








 

  Since 0 1iia  , take absolute value and logarithm on both sides and apply again the 

absolute operator to get 

0

0

log

log( )

( )(1 )

( )(1 )

ii

i ii i i

i ii i i

a

a

m m

a

x m b u

x m b u


 

 


 
 
 

 

Next we take fi
m k , and 00 i

m k . Additionally, we have  

max

( ) ( )
i i f ii

x m x k   ,
0 0 0

( ) ( )
i i ii

kx m x   , and we know that 1
T

ii I ZZa   , 

ib  ,and 0 0

1
ij j

n

i
j

Bu z e


 . Thus, we get equation (23).   Hence completes the proof.  
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Figure 1: Procedure to iteratively update the TTF. 

 

 

After fault detection, (23) is utilized iteratively to obtain TTF in the time 

interval [ ],
d fk k k . To better understand the idea of updating the TTF, refer to the 

flowchart in Fig. 1. From the flowchart, upon detecting the fault, at each time instance, 

( )kz , ˆ( )k  and 0
( )ke  are calculated. Then TTF is estimated by using (23), as the parameter 

max

ˆ( )k   as f
k k . This iterative procedure allows one to accurately assess the TTF 

at every time instant more accurately when compared to probabilistic methods [21], 

where the change in the direction of the fault parameter is not known.  

Yes 

No 
 

If 
ft f

k k (actual 

TTF)  

 

Calculate 
0

)(
i

kz ,
00

)(
i

ke and
0

ˆ )(
i

k at the 

0

th

i
k instant 

Fault detected, 0 di
k k   (time of 

fault detection) 

Calculate TTF using (23) 

Calculate min( )
ft if

k k  

System failed 

0 0 1
i i

k k 

 



 

 

91 

Next, the performance of the developed FDP scheme is simulated onto an 

application. The details of the simulation are given in the next section. 

 

VI. Simulation Results 

 

In this section the FDP scheme is simulated with a magnetic suspension system. 

The performance of the FDP scheme is shown with and without system uncertainty and 

measurement noise. The learning capability of the OLAD is also presented for the chosen 

example.  

A. Fault Detection Scheme 

To begin with, first we analyze the performance of the fault detection scheme. A 

simplified discrete time state space representation of a magnetic suspension system is 

given below [14] 

 

1 2 1

2 2 2

1

1

( ( ), ( ))( 1 ( ) ( )

1
( 1) ( ) 9.8 ( ( ) ( ))

) s

s

x k u kx k T x k x k

x k T k x k f F x k
m

y k

   

      
 
 
 

              

2
( ) ( )y k x k                                      (27) 

where 
1x and 

2x are the system states, F is the input for the system in (27) and for the 

estimator in (28) which is taken as 5sin( )
s

TkF  . A fault induced by changing the coil 

resistance in a nonlinear fashion by simply adding it to the system in (27) using (( ))f y k . 

The following nonlinear estimator is used to study the system described in (27) 
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  
1 2 1 1 2 3 1 2 2

2 1 2 2

( ) ( )

1
ˆ ˆ( ) 9.8 ( ) ( ( ), ( ))

ˆ ˆ ˆ( 1) a ( ) a ( ) a ( )

ˆ ( 1)

s

s

T x k x k

T k x k F x k f y k k

m

x k x k x k x k

x k 

 

    

   

 
             

   
2

ˆ ˆ( ) ( )y k x k                                  (28) 

where 
1

x̂ and 
2

x̂ are the estimated states of the system in (27), and ˆ ˆ( ( ), ( ))f y k k is the OLAD. 

For this simulation, the OLAD is chosen to be a single layer sigmoid function network 

with sixteen neurons, and the initial weights of the network ( ̂ ) are chosen randomly. The 

system is simulated with an abrupt fault that occurs at 15T  seconds and is given by 

 ( (( ) ( )) {5 sin(0.01 )),k T f y k y k if   15,k else 0 fi 15}k                                 

       The parameter values for the actual system (27) and the estimator (28) are taken as 

follows 1m  ,
1

0.5k  ,
1

0.0005a  ,
2

0.00005a  ,
3

0.009a  ,
4

0.5a  ,
5

0.000005a  ,
1
(0) 0x  ,

2
(0) 0x  ,

1̂
(0) 0x  ,

2
ˆ (0) 0x  , and 0.01sT  . In this simulation we present two different 

scenarios, where in the first scenario, it is assumed that no system uncertainty (i.e., 

1
( ( ), ( )) 0x k u k  ) is present with no measurement noise and in the second scenario, a 

fixed system uncertainty and a measurement noise of Gaussian type is considered.  For 

both the scenarios, to tune the OLAD, the parameter update law (5) is employed. The 

learning rate and the design constant in (5) are taken randomly as 0.03   

and 0.001  respectively. The simulation results for the first scenario are shown in Figs. 2 

and 3. Figure 2 shows the absolute value of the residual under normal operation wherein 

the residual appears to be zero. However, during a fault, this residual will increase above 

zero indicating the presence of a fault and by initiating the OLAD.  
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Figure 2: Absolute value of the residual. 

 

 

Figure 3 shows the evolution of the fault term and the OLAD response. From this 

figure, it could be observed that the chosen OLAD learns the occurring fault dynamics 

satisfactorily. Such online fault estimates are useful for fault isolation. To study the 

robustness of the scheme, we introduce a fixed system uncertainty, i.e.,  

1
( ( ), ( )) 0.5x k u k  and a measurement noise of Gaussian type with a  maximum  amplitude 

of 0.02.  
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Figure 3: Evolution of the actual fault term ( ( )f y ) and OLAD ( ˆ(ˆ , )f y  ) response. 
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The simulation results for this scenario are shown in Figs. 4 and 5 wherein the 

absolute value of the residual is illustrated in Fig. 4 and due to the presence of the 

modeling uncertainty, to improve robustness, a threshold is introduced. A fixed threshold 

of 0.1 is considered as observed in Fig. 4. The threshold is chosen based on the procedure 

developed in Section IV, where
0

(1 )








 and solving this equation using

0
0.5  , 0.9   

and 0.2c  , to get 0.18   and 0.1  . A fault is detected when the residual exceeds the 

threshold, which is verified as seen in Fig. 4. 

Figure 5 shows the performance of the OLAD during the fault in the presence of 

the system uncertainty and the measurement noise. Additionally from the figure, it could 

be seen that the learning of the fault dynamics by the OLAD appears to be highly 

satisfactory. An important point to be considered here is the selection of the design 

parameters, size and OLAD activation functions were kept unchanged from the previous 

simulation. Hence even in the presence of the uncertainty and noise, the performance of 

the fault detection scheme is not compromised.  
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Figure 4: Absolute value of the residual and the fault detection threshold. 
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Figure 5: Evolution of the fault ( ( )f y ) and OLAD ( ˆ(ˆ , )f y  ) response in the 

presence of the system uncertainty and the measurement noise. 

 

 

Thus, from the above simulation results, the robustness and the performance of 

the proposed fault detection scheme, and its learning capabilities of the OLAD were 

demonstrated. The scheme is able to learn online any type of unknown nonlinear faults, 

which is an inherent advantage. Although in this simulation, the system considered 

having abrupt faults, but still the fault detection scheme would be able to capture a wide 

range of fault conditions, which is evident from the mathematical results as seen in the 

previous section. This makes the OLAD based approach better than other quantitative or 

qualitative based methods [5, 10]. Next we illustrate the working of the prognostics 

scheme, where we assume the same type of fault, i.e., nonlinear change in coil resistance.  

B. Prediction Scheme 

For this simulation, a change in coil resistance in the form (( )) 5 sin(0.01 ( ))f y k y k is 

considered at the 10
th

 second of operation in (1) and the prognostics scheme is now 

demonstrated. By using the procedure outlined in Section V, we determine the TTF. The 

spring constant (
1

k ) is considered to be unknown. Next, the parameter update law (5) is 

utilized to estimate the unknown system parameter. The learning rate and the design 
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constant in (5) are chosen as 0.35  , 0.0011  , respectively.  The estimated system 

parameter is compared with the actual system parameter by defining a maximum 

acceptable limit (usually using safety limit) as shown in Fig. 6. As the fault continues to 

grow, the actual parameter tends to increase approaching the maximum defined parameter 

threshold value of 30. This value was chosen randomly to demonstrate the working of the 

proposed prediction scheme.  
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Figure 6: Comparison between the estimated and the actual system parameter, 

and also shown the safe threshold. 
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Figure 7: Prediction of TTF after the occurrence of the fault. 
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From the procedure outlined in the flowchart in Fig. 1, the TTF is estimated at 

each time instant after the occurrence of the fault and is shown in Fig. 7.  From the figure, 

after the first prediction of TTF, for few seconds the prediction seems to increase, this 

could possibly be due to the random selection of the gains of the parameter update law in 

(5) which needs some time to converge. However the prediction of TTF improves as the 

scheme learns the change in the system dynamics and converges to the actual time of 

failure of 17.27 seconds. This could also be observed in Fig. 7, where the TTF decreases 

as the system parameter approaches the threshold. 

Hence with the chosen example, the working of the FDP scheme was illustrated. 

The simulation results show promising performance of the proposed FDP scheme. 

Additionally, the robustness of the scheme was also studied by introducing uncertainty 

and measurement noise in the simulation results.  

 

VII. Conclusion and Future Work 

 

In this paper, we have shown a FDP algorithm for nonlinear discrete time system 

with input and output measurements. The scheme was developed based on the 

assumptions that the states and the input being bounded before and after the fault. The 

scheme also addressed the prediction of TTF. Further more it is assumed that not all the 

states of the system are available for measurement. A detailed mathematical analysis and 

the simulation results show the robustness and performance of the proposed FDP scheme. 

Further based on the proofs, it was seen that the proposed scheme could be used as a 

robust FDP scheme for nonlinear discrete time input-output systems. Future work 
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involves with developing fault isolation and fault accommodation techniques for a 

nonlinear discrete time input-output systems.  
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3. A Model Based Fault Detection and Prediction Scheme for 

Nonlinear Multivariable Discrete-Time Systems With 

Asymptotic Stability Guarantees 

Balaje T. Thumati and S. Jagannathan 

 

 

Abstract— In this paper, a novel, unified model-based fault detection and prediction 

(FDP) scheme is developed for nonlinear multi-input and multi-output (MIMO) 

discrete-time systems. The proposed scheme addresses both state and output faults 

by considering separate time profiles. The faults, which could be incipient or 

abrupt, are modeled using input and output signals of the system. The fault 

detection scheme comprises of online approximator in discrete-time (OLAD) with a 

robust adaptive term.  An output residual is generated by comparing the fault 

detection estimator output with that of the measured system output. A fault is 

detected when this output residual exceeds a predefined threshold. Upon detecting 

the fault, the robust adaptive terms and the OLADs are initiated wherein the 

OLADs approximates the unknown fault dynamics online while the robust adaptive 

terms help in ensuring asymptotic stability of the FD design. Using the OLAD 

outputs, a fault diagnosis scheme is introduced. A stable parameter update law is 

developed not only to tune the OLAD parameters but also to estimate the time-to-

failure (TTF), which is considered as a first step for prognostics. The asymptotic 

stability of the FDP scheme enhances the detection and TTF accuracy.  

The effectiveness of the proposed approach is demonstrated using a fourth order 
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multi-input-multi-output satellite system.  

Keywords—fault detection, prognostics, MIMO nonlinear discrete-time system, 

asymptotic stability. 

I.  Introduction  

 

Growing system complexity demands robust control schemes to mitigate system 

uncertainties and unknown disturbances.  However, due to the high risk of component 

failures, reliable fault detection and prediction (FDP) schemes are normally required to 

guarantee safe operation even under the presence of system uncertainties.  If the 

impending faults can be detected early through prediction, and via root cause analysis, 

prognostics can be performed.  

Traditionally, a fault is detected by manual inspection, which in turn requires a 

knowledgeable operator. As a consequence, manual inspection is time consuming, offline 

and costly for highly complex industrial systems and therefore not well suited. Therefore, 

in order to minimize the increasing operating costs, researchers developed the prominent 

qualitative and quantitative fault detection techniques [1-2].  

In the qualitative or data-driven schemes [2], experimental data are collected from 

the system and used for fault detection (FD). Previously reported data driven approaches 

[2] such as the immune system [3] require offline training and therefore do not have the 

online fault learning feature to approximate new faults.  Moreover, generating data offline 

for each fault is time consuming and costly. By contrast, in the quantitative method, a 

model representative of the system is utilized for detecting faults. This model is typically 

derived from either first principles or borrowed from control scientists/engineers. The 

system model provides an estimate of the system states by observing the inputs and 
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measured outputs of the nonlinear system. A residual signal is then generated by 

comparing the output of the model with that of the system. A fault is detected in a robust 

manner even under system uncertainties when the residual deviates beyond a predefined 

threshold value.  The selection of the threshold is a challenging task since an improper 

threshold selection might lead to false and missed alarms [1, 4-7]; however, several 

attempts have been made to address this issue [8-11] using analytical methods.  

In previously suggested quantitative works [4, 5, 12], the FD techniques are 

developed by considering a linear representation of the nonlinear system. Other fault 

detection schemes use parity relations [1], geometric relationships [13, 14], observers or 

estimators [1, 4-7, 15]. On the other hand, FD schemes for linear stochastic system are 

reported in [16].  

In the past decade, several quantitative methodology-based FD schemes, which 

include geometric [17, 18], and adaptive estimation [8-11, 19, 20] are introduced for 

nonlinear continuous-time systems while the authors in [21-24] use sliding mode observer 

or others [25, 26] use fuzzy based observers.  In [27], FD schemes have been developed 

for robot manipulators. A compilation of FD schemes for hydraulic systems, flight control 

etc., are given in [28]. A recent survey [6] on model-based FD techniques presents an 

excellent overview of the state-of-the art developments.  

A common issue that has been gaining interest is stability analysis using Lyapunov 

theory in the design of FD schemes [8-11, 14, 17-19, 29, 30].  However, the FD schemes 

[8-11, 19] render only uniform ultimate boundness (UUB) stability due to the presence of 

system uncertainties. However, in a recent work [31], asymptotic convergence of the 
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identification error in continuous-time is demonstrated for robot manipulators with 

actuator faults.  

Another important feature in general unavailable in the previously reported 

schemes [8-36] is the time-to-failure determination (TTF) since TTF is the first step for 

prognostics assessment. While none of the Lyapunov-based schemes offer TTF [8-11, 19], 

certain TTF schemes in data-driven approaches [37-39], assumed a specific degradation 

model which has been found to be limited to the system or material type under 

consideration. Another scheme [40] employs a deterministic polynomial and a 

probabilistic method for prognosis by assuming that certain parameters are affected by the 

fault while others [41] use a black box approach using neural network (NN) on the failure 

data. All these schemes [37-41] while being data-driven address only TTF prediction, 

require offline training and do not offer performance guarantees. It is envisioned that a 

unified FDP scheme will be necessary to alert an impending failure and provide the 

remaining useful life. 

On the other hand, implementation of the FD schemes using an embedded 

computer requires explicit discrete-time development since deriving a direct discrete-time 

equivalent of a continuous time scheme may cause stability issues [43]. However, due to 

the quadratic nature of first difference of the Lyapunov function, it is very hard to show 

stability [42] of the FD schemes in discrete-time. Therefore, limited FD schemes have 

been proposed in discrete-time [29, 33, 34, 43] out of which the ones proposed in [33, 34] 

consider nonlinear discrete-time systems with actuator faults and their stability is 

guaranteed only when persistency of excitation (PE) condition is satisfied.  In our previous 

work [29], a novel FDP scheme is developed for nonlinear discrete-time systems with 
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state faults by relaxing the PE condition and assuming that all the states are measurable.  

By contrast, this assumption of state measurability is relaxed in this work in contrast with 

[8, 10, 11, 29, 33, 34, 43] for the proposed online-based FDP scheme while focusing on 

both state and output faults for a general class of nonlinear multi-input-multi-output 

(MIMO) discrete-time systems. 

In this work, the state and output faults (sensor faults), which are incipient and 

abrupt in nature, are modeled as a nonlinear function of the inputs and measured outputs.  

These faults occur independently or simultaneously, and evolve at different rates while 

their time profiles are modeled by using exponential functions consistent with the 

literature [8-11]. A nonlinear fault detection estimator scheme, which is used to monitor 

and declare the presence of a fault in the nonlinear system, consists of an online 

approximator in discrete-time (OLAD) along with a robust adaptive term. One OLAD and 

a robust adaptive term are utilized to approximate the state faults whereas a second OLAD 

and another robust adaptive term for output faults. The robust adaptive terms use the 

corresponding parameters of the online approximators.  

The fault detection (FD) estimator and the measured system outputs are utilized to 

generate an output residual which when compared against an analytically selected 

threshold will determine the presence of a fault. Upon detection, the unknown fault 

dynamics are approximated online using the appropriate OLADs. Subsequently, the 

detected fault is identified as a state or an output fault by asserting thresholds on the 

OLAD outputs. Due to presence of robust adaptive terms, the asymptotic stability of the 

proposed FDP scheme is demonstrated using Lyapunov theory in contrast with all other 

boundedness–based FD schemes [8-11, 17, 19, 29, 33, 34].  Asymptotic stability enables 
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accurate TTF determination since the parameter update law or state estimator will be 

utilized.  

The TTF determination together with rigorous root cause or fault isolation will 

become prognostics.  Therefore prognostics are relegated as part of future work. A 

mathematically derived TTF determination is presented using the developed parameter 

update law by projecting the current value to its limit provided the limiting parameter 

value is defined by the designer. This process is iteratively performed to continuously 

predict TTF up to the failure threshold beyond which the system is considered unsafe. For 

most practical systems, the unknown parameters could be tied to physical entities thus 

making the parameter-based TTF determination very useful. Alternatively, the state 

trajectories from the FD estimator can be utilized for TTF determination due to asymptotic 

convergence.    

The contributions of this paper include an online fault detection and diagnosis 

scheme for multiple state or output faults for a class of nonlinear MIMO discrete-time 

systems using inputs and outputs, thus relaxing the need for state measurements. The 

scheme considers both incipient and abrupt, state and output faults. Unlike available 

adaptive estimation based fault detection schemes [8-11, 29, 33, 34, 43], asymptotic 

convergence of the state residual and the parameter estimation errors in discrete-time is 

demonstrated. In addition, by asserting suitable thresholds on the OLAD outputs, the 

declared fault is identified as a state or an output fault. Finally, an online parameter or 

state estimator-based TTF determination scheme is introduced.  

The paper is organized as follows: Section II introduces the system under 

investigation whereas Section III presents the proposed fault detection scheme in detail. In 
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Section IV, the stability and performance of the fault detection scheme are introduced and 

Section V discusses the TTF determination. Finally, in Section VI, a fourth order MIMO 

satellite system is used to illustrate the performance of the proposed FDP scheme. Section 

VII presents some concluding remarks and discusses future work.          

II. Problem Statement 

 

The nonlinear MIMO discrete-time system under consideration is described by  

 ( 1) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))s s sx k Ax k y k u k x k u k g y k u k       

  ( ) ( ) ( ( ), ( )) ( ( ))y yy k Cx k x k u k g u k                          (1) 

where nx represents state vector, mu is the input vector, p
y   denotes measurable 

system output, :
p m n

s    , :
n m n

s    , 

: p m n
sg    , :

n m p

y    , : m p

yg    are smooth vector 

fields,
n n

A


 , and
p n

C


 are known matrices. The system is assumed to be observable. 

The nonlinear function ( ( ), ( ))s x k u k   represents the modeling uncertainties 

whereas ( ( ), ( ))y x k u k represents the sensor modeling uncertainties while 

( ( ), ( ))s y k u k represents known system dynamics. Moreover,  

( ( ), ( )) ( ) ( ( ), ( ))ss s sg y k u k k T f y k u k   represents the evolution of the nonlinear fault dynamics 

modeled in terms of the measurable inputs and outputs, whereas   ( ( )) ( ) ( ( ))yy y yg u k k T f u k    

represents the nonlinear output fault dynamics modeled in terms of the input vector.  The 

diagonal matrices 
n n

s


  and 

p p

y


   denote the time profiles of the state and output 

faults, which are given by  
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1 2
( ) ( ( ), ( ), ...., ( ))

ns ss s s s s sk T diag k T k T k T         

1 2
( ) ( ( ), ( ), ...., ( ))

y ypy y y y y yk T diag k T k T k T         

where  

si
- ( )

( )

0  if    

1 -  ,  if  
i s

s

s k T

s

s

k T
k T

k Te
 




 







          i=1, 2… n 

and 

ym
- ( )( )

0  if    

1 -  ,  if  ym

y

k Ty

y

y

k T
k T

k Te
 


 







        m=1, 2… p 

with
i

0s  and 
my 0   are unknown constants denoting the rate at which the fault in the 

state ix and in output 
my  evolves. For small values of

is  and
my , the exponential term 

decays slowly, thus describing incipient faults whereas for large values of these terms, it 

decays faster thus represents abrupt faults, i.e., say si
   , then 0e

 . The use of 

exponential term is only to signify the fault growth rate. However, the nonlinear fault 

functions (.)sf and (.)yf denote the magnitude and type of fault, for example, they could be 

a stuck actuator, sensor fault etc. In addition, sT  and yT denote the unknown time of 

occurrence of state and output faults, respectively.  Its worth noting, that the proposed 

fault time profile encompasses most of the commonly occurring faults in a practical 

system [7].  

Remark 1: Use of the time profiles to address incipient and abrupt faults is common in 

fault detection [44] and used extensively by other researchers [8-11, 19, 20, 29, 30, 32, 33, 

35, 43].  
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Additionally, by asserting an assumption that the fault dynamics can be expressed as linear 

in the unknown parameters (LIP) [42], the fault dynamics in (1) could be written 

as 1 ( )( ( ), ( )) ( ( ), ( ))
T

s s ss kg y k u k y k u k     , where  
l n

s


 is the target and unknown 

parameter (or weight) matrix, 1l

s


  is a known nonlinear basis function vector such as 

RBF, sigmoid, sinusoidal etc, which is upper bounded by
maxs s  with the 

approximation error 
1 ( )s k  is considered bounded above [45]. The target parameters are 

also bounded, such that
maxs s   [42].  Similarly, the output fault (sensor fault) dynamics 

can be written using LIP assumption as 1
( )( ( )) ( ( ))

T

y y y y kg u k u k    , where 
q p

y



 is the 

target parameter matrix such that 
maxy y  , with

1q

y



   is a known nonlinear basis 

function , which is also upper bounded by 
maxy y  with 1 ( )y k  being the 

approximation error vector.  Finally, it is assumed that the initial system state vector is 

available, i.e.,
0(0)x x  and also the pair ( , )A C is observable consistent with the literature. 

Other assumptions include: 

Assumption 1: The modeling uncertainty is unstructured and bounded [10], i.e., 

( ( ), ( ))s sx k u k  , ( , )x u   and ( ( ), ( ))y yx k u k  , ( , )x u  , where 0s  and 

0y  are known constants, 
n

   , 
m

   are the state and control input regions of 

interest, respectively. Additionally, bounded time varying disturbances including process 

and sensor noise [41] could also be assumed to be present in the system defined in (1).  

However, the asymptotic stability guarantee depends upon the type of noise [46]. Note, in 

some of the previous works [15, 21], the modeling uncertainty is assumed to be structured, 
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thus simplifies the FD scheme design. Also, define  
+

T as the time interval prior to the 

occurrence of either state or sensor fault, i.e., 0, min( , )s yT T  T := [10]. This assumption is 

consistent with the literature.    

Unlike, other previously reported FD schemes [1, 4, 5, 14, 15], which considers 

only structured faults, the proposed framework addresses either process (or state) and 

sensor faults which are unstructured in nature. In the next section, the fault detection 

scheme and the parameter update law are introduced.  

III. Fault Detection and Diagnosis Framework 

 

Define the nonlinear FD estimator to monitor the system given in (1) as 

ˆˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( ); ( )) ( )s y s s sx k Ax k y k u k K k g y k u k k k
r

ve         

ˆˆ ˆ ˆ( ) ( ) ( ( ); ( )) ( )
y y vyy k Cx k g u k k k

r
                                               (2) 

where ˆ n
x is the estimated state vector, ˆ

p
y is the estimated output vector, 

ˆ :
p m l n n

sg


    and ˆ :
m h p p

yg


   are the OLAD outputs with 

ˆ
s

l n



 and ˆ

y

h p



 are the set of adjustable parameters, ˆ

ye y y   is the output 

residual, ( )k
rs

v  and ( )yr
v k denote the robust adaptive terms, and 

n p
K


 is a design 

constant matrix, which is chosen such that the matrix A KC has all its eigenvalues within 

the unit disc [42].  The purpose of the FD estimator is to generate the residual and not to 

estimate the system states typical in control applications. Additionally, in comparison with 

discrete-time FD schemes [29, 33, 34, 43], proposed FD estimator includes robust 

adaptive terms. 
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Now to better understand the difference between a fault and a failure, we refer to 

Fig. 1. The design matrix K will ensure that the state residual is asymptotically stable in 

the absence of uncertainties and faults. However, with bounded uncertainties and in the 

absence of faults, it is not difficult to show that the system states will be bounded (see 

next section), which will be utilized to define the detection threshold.  Now during faults 

of finite magnitude, the system parameter/state magnitudes change with time exceeding a 

failure threshold since the fault function can be viewed as an additional unwanted input. 

The failure threshold is used to determine TTF and to avoid any catastrophic failures.  It 

is up to the maintenance personnel to define an appropriate failure threshold, which is 

normally tied with unacceptable drop in performance, since it is considered unsafe to 

operate the system beyond this value. On the other hand, a fault function magnitude that 

increases indefinitely with time can be considered here as well except the system will 

become ultimately unstable in the presence of such faults. 

 

 
Figure 1: State trajectories from initial time to failure. 

 

Define the state residual as ˆ
se x x  . Since the system outputs are measurable, 

only the output residual will be used for fault detection.  Moreover, we consider a general 

class of online approximators in discrete-time (OLAD) such as neural networks, radial 
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basis functions, fuzzy logic and so on where their parameters are tuned online with an 

adaptive law. Many papers [8-11, 47] discuss various online approximator schemes and 

therefore the discussion is omitted. The initial parameter vector of the OLAD is chosen 

such that 0
ˆ ˆ(0)

ss  ,  
0

ˆ ( ) ( ), )ˆ( , 0, 0, ...., 0
TT

ssg k ky u    and 0
ˆ ˆ(0)

yy  , 

 
0

( ) ˆˆ ( , ) 0, 0, ...., 0
TT

y y
kg u   for all yy  and u U , where U and y define the admissible 

range of inputs and outputs. Define ˆ( ) ( ( ), ( )) ( ( ), ( ))s s sy u y uk k k k k    . Now before 

proceeding further, the following assumption is required.  

Assumption 2: The function (.)s is Lipschitz in y and u  with Lipschitz constant gc , 

i.e., ( ) ( )
gs yk kc e   [20]. 

Remark 2: This assumption allows one to relate the output OLAD basis function with the 

output residual. 

In order to avoid false alarms due to unmodeled dynamics, the proposed fault 

detection scheme utilizes a dead-zone [1, 5] operator defined by 

0,  if ( )
[ ( )]

( ), if ( )

y

y

y y

e k
D e k

e k e k














,with is the detection threshold obtained analytically in this 

section. The detection threshold is expressed in terms of the modeling error bounds viz. 

s and y  presented in Assumption 1.   By selecting the dead-zone based fault detection 

similar to continuous-time, which is absent in other model based schemes [4, 5], missed 

and false alarms can be minimized. 
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The dead-zone operator is utilized to turn the OLAD and robust adaptive terms 

online. Prior to the fault, i.e., ( )
y

e k  , ˆ ( )

0 . . . 0

. . . . .

. . . . .

0 . . . 0
l n

s k





 
 
 
 
 
 

, ˆ ( )

0 . . . 0

. . . . .

. . . . .

0 . . . 0
h p

y k





 
 
 
 
 
 

, 

0 k T  ,  ( ) 0, 0, ...., 0
TT

k
rsv  and  ( ) 0, 0, ...., 0

TT
k

ryv  . This 

means  ˆˆ ( ) ( ), ( ))( , 0, 0, ...., 0
TT

s sg k k ky u   ,  ( ) ( )ˆˆ ( , ) 0, 0, ...., 0
TT

y y
k kg u   ,  ( ) 0, 0, ...., 0

TT
k

rsv  , and 

 ( ) 0, 0, ...., 0
TT

k
ryv  in the time interval 0 k T   prior to a state or output fault.  In the 

next section, the robustness theorem will indeed demonstrate that the OLAD’s and the 

robust terms will not be initiated and tuned prior to the fault detection. 

When the output residual exceeds the detection threshold, i.e., ( ) 
y

e k  , a fault 

is declared active and the OLAD schemes that generate, ˆ
sg (.) and ˆ

yg (.), are initiated and 

tuned online using the following update laws as 

( ) D[ ( )] ( ) ( )ˆ ˆ ˆ( 1) ( ) ( )
TT

s s s s y s s s s sk e k B k kk k I k                                            (3)       

( ) ( ) ( ) D[ ( )]ˆ ˆ ˆ( 1) ( ) ( )
TT

y y y y y y y y y yk k ke kk k I k                                    (4) 

where 0s   and 0y  are the learning rate or adaptation gains,  0 <  1 s  and 

 0 <  1 y  are the design parameters, and B is an appropriately sized constant matrix 

chosen such that B  , with 0  .  

Additionally, the robust adaptive terms ( )k
rsv  and ( )

yr
v k  in (2) defined by 

as
1 1

1
( )

ˆ ( )

ˆ ˆ( ) ( )

T

T T

s

s s s

ksv
r

k B

B k k B c



 



 and  

2 2

2
( )

ˆ ( )

ˆ ˆ( ) ( )

T

y

T T

y

y

y y

k
r

v
k B

B k k B c



 



 respectively, are initiated 
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where
1B  and

2B are constant vectors to be defined later, with 0sc   and 0yc   denote 

positive constants. 

Remark 3: The parameter update laws proposed in (3) and (4) relaxes the critical 

requirement of the PE for non-ideal cases, i.e., system with modeling and approximation 

errors, and prevent parameter drift due to the extra terms embedded in them similar to 

other schemes [33, 34, 43]. Another important remark is that no prior offline training is 

needed for tuning the online approximators and therefore can be applied to learn new 

fault functions or dynamics [3].   

Remark 4: The asymptotic stability proofs can be demonstrated even in the presence of 

unmodeled dynamics and OLAD reconstruction errors without these extra terms in (3) 

and (4) [42] due to the new robust adaptive term included herein.  The proof is not 

included in here since it will be shown later that the extra terms are needed in (3) and (4) 

for the purpose of TTF determination.  

 Now for the purpose of diagnosis, once a fault is detected, it is identified as a state 

or an output fault based on the OLAD outputs. A state fault is considered to have 

occurred if the OLAD that approximates the state fault function exceeds a predefined 

threshold whereas an output fault has occurred if the OLAD output that approximates the 

output fault function has exceeded its threshold. When the OLAD outputs exceed their 

corresponding thresholds, then both state and output faults have considered to have 

occurred simultaneously. This result is explained in the form of a sensitivity theorem 

which is discussed in the next section. 

 Unless rigorous fault isolation can be performed, one cannot go beyond simply 

identifying a state or output fault. In other words, the proposed diagnosis scheme cannot 



 

        

115 

be utilized to identify which particular state or output a fault has occurred. Such rigorous 

fault isolation is outside the scope of this paper. Next analytical results on the detection 

and diagnosis scheme are introduced. 

IV. Analytical Results 

 

In this section, mathematical results for the sensitivity and the robustness of the 

FD scheme are derived in order to determine the class of detectable faults. Next, the 

stability of the FD scheme after the detection of a fault is introduced.  

 To derive the detection threshold, consider the residual dynamics prior to a fault 

obtained using (1) and (2) as 

( ) ( ( ), ( )) ( )( 1) ( )
s s s yse k Ae k k x k u k Ke k                              (5)                               

( ( ), ( ))( ) ( )y s ye k Ce k x k u k                                         (6)                        

Note prior to the fault, the OLAD and the robust terms in (2) 

are  
0

ˆ ( ) ( ), )ˆ( , 0, 0, ...., 0
TT

ssg k ky u   ,  
0

( ) ˆˆ ( , ) 0, 0, ...., 0
TT

y y
kg u   ,  ( ) 0, 0, ...., 0

TT
k

rsv   

and  ( ) 0, 0, ...., 0
TT

k
ryv  in the time interval 0 k T  .  Now by solving (5) for ( )s ke  first 

and then (6) for ( )y ke , we obtain  

0

0

( )( ) ( ( ), ( )) ( ( ), ( ))
k

k j
s y

j
s se k A x j u j j K x j u j 



     

and 

0

0

( ( ), ( )) ( ( ), ( ))( )( ) ( ( ), ( ))
yy

k
k j

s y
j

s K x j u j x j u je k C A x j u j j  



     

                   

This in turn yields 
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0 0 0

0 0 0

( )( )
k k k

y
j j j

k j k j k j

y s y g y kA A K Ae k C C C c e 
  

  
             (7) 

                                 

which could be written as  

1 2
( )( )

yy s s y ye k                                                     (8) 

where

0

0

0

0

1

:

k
k j

s
k

j

j

k j

g

A

A

C

c C













 
 
 




,

0

0

0

0

1

1

:

k
k j

j

k

j

k j

g

y

A K

A

C

c C













 
 
 




, 

and 0

0
2

11

k

j

k j

gy Ac C





 
 
 

 . Thus if the detection threshold is selected 

as
1 2

( )
s s yy y      , the output residual, ( )ye k , will remain within the dead zone for 

all Tk  and the output of the OLADs and the robust adaptive terms would remain zero.   

Therefore, the FD scheme given in (2) is robust in the sense that it is not affected by the 

modeling errors provided their upper bounds are known apriori.  If there are no modeling 

errors as in the ideal case, then the detection threshold will be zero as expected. 

 

Remark 5: The detection threshold,  , will be higher when an output residual based FD 

detection scheme is utilized due to the additional system uncertainties in the output 

equation in comparison to a state measurable FD scheme [8, 11, 29, 33, 34, 43]. This 

confirms that the output residual-based scheme will be less sensitive to incipient faults.   

A key performance measure of a FD scheme is its sensitivity to faults. Sensitivity is 

defined as the ability of the FD scheme to correctly determine the existence of a fault. 

One approach to analyze the fault sensitivity properties of a FD scheme is to characterize 

the set of faults that can be reliably detected. The following theorem characterizes the set 

of state and output faults that can be detected by the FD scheme. 
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 In this theorem, a suitable condition is derived for both state and output faults 

occurring independently or simultaneously. In the previous work [4, 5], the system 

uncertainties and the faults are assumed to be decoupled; however, in this paper, we relax 

this assumption by distinguishing the effects of the faults from those of uncertainties by 

using bounds on the uncertainties. Next, the sensitivity theorem is introduced.  

Theorem 1 (Sensitivity): Consider the system given by (1), detection estimator (2) and 

the OLAD tuning updates (3) and (4).  i) If there exist a time instant 0sk  , such that 

( ( ), ( ))sf y k u k  satisfies  

( )

0

2

1
2( ) ( ( 1), ( 1))

T k

T k

T

i

s s s
iy

s s
s s

s

CA i T f y i u i 




 



     ,             (9)   

Then the state fault will be detected, i.e., the output residual ( )
y s s

e T k  . 

ii) Also if there exists a time instant 0yk  such that ( ( ))yf u k satisfies  

( )

0

2

1
( ( 1)) 2( ) ( ( )) ( )

T k

T k i

y y y y y y

T

y y

y y

y

y y
iy

T u iCA K fk f u T k i 




 



                 (10)                                                                               

then the output fault will be detected,  i.e., ( )
y y y

e T k  . 

Proof: Refer to Appendix.  

 

Inequalities (9) and (10) are derived for worst-case scenario of modeling uncertainties.  

Moreover, for the purpose of applicability, the actual fault functions can be replaced by 

their approximations. 

 

Remark 6: From the sufficient conditions introduced in (9) or (10), the magnitude of the 

fault has to be sufficiently large to distinguish it from the modeling uncertainties. Upon 

detection, the magnitude of state or output OLAD would vary as per the conditions stated 
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above. Therefore, the OLAD with the highest magnitude is more sensitive towards the 

type of fault occurring in the system, thus helps in identifying the fault. Therefore by 

appropriately setting a threshold value defined in (9) and (10) on the OLAD outputs, one 

can identify whether or not a state or sensor fault has occurred. Subsequently, that 

particular OLAD will be used for the online estimation of the unknown fault dynamics 

and the other can be reset to zero.  In the event that both state and output faults occur 

simultaneously, both the conditions will be satisfied and OLAD outputs will exceed the 

thresholds defined in (9) and (10). This approach is used in the fault diagnosis.   

Next, the following theorem guarantees the robustness of the fault detection scheme. This 

theorem shows that the OLAD does not adapt prior to the fault and the FD scheme does 

not generate false alarms in the presence of uncertainties.  

Theorem 2 (Robustness): Consider the system given by (1), detection estimator (2) and 

the OLAD tuning updates (3) and (4). The proposed fault detection scheme ensures that 

the output of the online approximators (OLAD’s) and the robust adaptive terms would 

remain at zero prior to the occurrence of a state or output fault for  0, Tk  ,i.e., 

are  
0

ˆ ( ) ( ), )ˆ( , 0, 0, ...., 0
TT

ssg k ky u   ,  
0

( ) ˆˆ ( , ) 0, 0, ...., 0
TT

y y
kg u   ,  ( ) 0, 0, ...., 0

TT
k

rsv   and  ( ) 0, 0, ...., 0
TT

k
ryv  . 

Proof: Refer to Appendix.  

 As we understand from the above two theorems, only in the event of a fault, the 

output residual exceeds the threshold thus initiating the OLADs and the robust adaptive 

terms. As a consequence, the OLAD and the robust adaptive terms do not compensate for 

any faults prior to detection. Now assuming a worst case scenario of faults, then the state 

and the output residual dynamics from (1) and (2) are given by  

1 1

1ˆ ( ) ( )
ˆ ( )

ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ), ( ))
ˆ ˆ( ) ( )

( ( ), ( ))
T

T T

s
s s

s s s
s s s s s yg Ke k

k B
e k Ae k x k u k g y k u k k k

B k k B
y k u k

c



 

 
     



, 
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2 2

2
ˆ

ˆ ( )
ˆ( ) ( ) ( ( ), ( )) ( ( )) ( ( ), ( ))

ˆ ˆ( ) ( )

T

T T

y

y

y s y y y y

y y

g

k B
e k Ce k x k u k g u k u k k

B k k B c


 

 
    


 

                

Asserting the LIP assumption, then the state and the output residuals are expressed as 
ˆ( 1) ( ) ( ( ), ( )) ( ) ( ) ( )( ( ), ( )) ( ( ), ( ))

T T

ss s s y s s s se k Ae k x k u k Ke k ky k u k k y k u k                          

 
1 1

1
( )

ˆ ( )

ˆ ˆ( ) ( )

T

T T

s
s

s s s

k
k B

B k k B c




 
 


 

2 2

2
ˆ ( )

ˆ( ) ( ) ( ( ), ( )) ( ( )) ( ) ( ( )) ( )
ˆ ˆ( ) ( )

T

T T

T T

y

y s y y y y y y

y y y

k B
e k Ce k x k u k u k k u k k

B k k B c


     

 
     


  

Define the parameter estimation errors as ˆ( ) ( )s s sk k     and ˆ( ) ( )y y yk k    . Adding and 

subtracting 
 3

1 1

1

ˆ ˆ( ) ( )

T

T T

s

s

s s

B

B k k B

C

c



 




 and 

 
2

2 2

4

ˆ ˆ( ) ( )

T

T T

y

yy y

B C

B k k B c



 




in the above equation, 

where
3C and

4C are appropriate dimensioned constant vectors, the state and the output 

residuals are given by 

1 1

1
ˆ ( )

( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ) ( ) ( )
ˆ ˆ( ) ( )

T

T T

T

s

s
s s s s y s s

s s s

A
k B

e k e k x k u k k y k u k Ke k k

B k k B

k
c


   

 
     


  

                   

               3 3

1 1 1 1

1 1( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

T T T T

s s

s s s s s s

B B

B k k B B k k B

C C

c c

 

   

 
 

 
,                         

2 2 2 2

2 2 4
ˆ ( )

( ) ( ) ( ( ), ( )) ( ) ( ( )) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

T

T T T T

y y

y s y y y y

y y y y y y

k B B
e k Ce k x k u k k u k k

B k k B B k k B

C

c c

 
   

   
   




 
  

    
4

2 2

2
(

ˆ ˆ( ) ( )

)
T

T T

y

y y y

B

B k k B

C

c



 




  

The above dynamics can be rewritten as  

 

0
( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ) ( ( )) ( )

TT

ss s s s s s y y y yAe k e k x k u k k y k u k k K x k u k K k u k K kk                
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     

1 1

2 2 1 3 1 3

2 2 2 2 1 1

4 4 ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ( ) ( )
T

T T T T

T T T T T T T

y

y y s s

y y y y y s s s s s s

k B CB C B C

B k k B B k k B B k k B

k B C
K K

B k k Bc c c c



     

 

 



  


   


,             

( ) ( ) ( ( ), ( )) ( ) ( ( )) ( )
T

yy s y y ye k Ce k x k u k k u k k        

 

                     
 

2 2 2

2 4 2 4

2

( ) (

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

)
T T

T T T T

y

y y

y y y y y

k B C B

B k k B B k k B

C

c c

 

   






 
  

where
0

A A KC .Denote ( ) ( ) ( ( ), ( ))
T

ss sk k y k u k   , ( ) ( ) ( ( ))
T

y y yk k u k   , 

 
1 3

1 1

( )

ˆ ˆ( ) ( )

( )

T

T T

s
s

s s s

k B C

B k k B

v k
c



 





, and 

 

2 2

2 4
( )

ˆ ˆ( ) ( )

( )

T

T T

y

y

y

y y

k B C

B k k B

v k
c



 






. Therefore, the dynamics become 

0
( 1) ( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ) ( ) ( )s s s s s y y yA ye k e k x k u k k k K x k u k K k K k Kv k                             

            
 

2 3

2 2 1 1

4 1
( )

( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( )

T T

T T T T

y s
s s

y y y s s s

B C B

B k k B B k k B

C
K k v k

c c

 


   

 

 
    , 

2 2

2 4
(

( ) ( ) ( ( ), ( )) ( ) ( )
ˆ ˆ( ) ( )

)
( )

T

T T

y

y

y s y y y y

y y

B
e k Ce k x k u k k k

B k k B

v k
C

c


 

 
    





         (11)                             

     

Before proceeding, the following lemma is required.   

Lemma 1: The terms comprising of the OLAD approximation errors ( ( )
s

k and ( )
y

k ) and 

the system uncertainties ( ( ( ), ( ))s x k u k and ( ( ), ( ))y x k u k ) are bounded according to  

2 2

max max

2 22 22 2 2 2
6 6( , ) ( ) 3 ( , ) 3 ( ) ( , ) ( ) 6 ( , )

s y ys y g y g sx u k x u K k K c x u c k x u             

 
2

max max
( ) ( , ) ( ) ( , ) ( )

s y yy g y gk x u K k K c x u c k                                 

   
0 1

22 2

2 3 4 5
( ) ( ) ( ) ( ) ( ) ( ) ( )

s s ss y s yk k k k k k ke e e                                                                                                     

where
0 1 2 3 4
, ,, ,     and

5
  are computable positive constants.   
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Proof: Refer to Appendix. 

Remark 7:  It is important to note that such relationships mentioned in Lemma 1, and not 

necessarily the same, are available in continuous-time [46, 48-50, 51, 52] whereas it is 

not shown for discrete-time case. This relationship will aid in the asymptotic stability 

analysis. 

 Proving asymptotic residual convergence implies a more accurate approximation 

of the unknown fault dynamics by the OLADs which in turn is necessary for the TTF 

determination. In the following theorem, the asymptotic stability of the proposed fault 

detection scheme is shown. 

Theorem 3 (Asymptotic Stability Analysis after the Fault): Let the initial conditions for 

the detection estimator be bounded in a region n
U   . Let the parameter update laws be 

given by (3) and (4). In the presence of system uncertainties and OLAD approximation 

errors, the state residual ( )se k  and the parameter estimation errors, ( )s k and ( )y k  are 

locally asymptotically stable while the output residual ( )ye k  is bounded.  

Proof:  Refer to Appendix.  

 

 It is important to note that a time interval exists from the time of fault occurs to 

the time when a fault is detected which is termed as fault detection time [8-11]. 

Subsequently, the OLAD and the robust adaptive terms are initiated. Therefore after the 

detection time, the output residual bound changes to (A.21).  

 

Remark 8: The above theorem demonstrates that the first difference of the Lyapunov 

function is negative definite even in the presence of OLAD reconstruction vectors 
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provided the robust adaptive terms are used in (2).  By contrast, a uniformly ultimately 

bounded (UUB) result is given in the literature [8-11, 29, 33, 34, 43] if the robust 

adaptive terms are not applied. These robust adaptive terms and Lemma 1 enables one to 

express the system uncertainties and unmodeled dynamics as a function of state and 

output residuals as well as parameter estimation errors which when combined with other 

terms render a negative definite first difference. 

 In the event that the boundedness of the parameter estimates of the OLADs can 

only be demonstrated, then the accuracy of obtaining TTF will depend upon the bound on 

the parameter estimates. Additionally, if the parameters can be tied to physical 

parameters and used for TTF determination in conjunction with fault isolation, 

prognostics can be developed. Instead, based on the fault diagnosis scheme introduced in 

this paper, the parameters of the OLAD that approximates the fault function will be used 

for the purpose of TTF determination.  

 In the next section, the TTF scheme development is introduced by using 

parameter update laws. The algorithm and the mathematical equation used are derived.                                                                                      

V. Prediction Scheme 

 

In this section, parameter-based TTF determination is proposed by asserting the 

LIP assumption. This analysis can be easily extended to the state estimator based 

approach. The following assumption holds in deriving the TTF. 

Assumption 3: The actual parameter vectors ˆ ( )
s

k  and ˆ ( )
y

k  represents the true system 

parameters.  
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Remark 9: For many practical systems, for example, in a mass damper system, or in civil 

infrastructure such as a bridge system, the mass, damping constant and spring constant 

may be expressed as linear in the unknown parameters (LIP). In the event of a fault, 

system parameters change, and tend to reach their failure thresholds as defined by the 

designer. When any one of the parameters attains its corresponding failure threshold, 

failure is considered to have occurred. Similarly, for the mechanical system like hydraulic 

pump, the states represent outlet pressure, flow etc which could be utilized for detection 

and TTF determination.  

The TTF is defined as the time elapsed when the first parameter reaches its lower 

or upper failure threshold. Next the parameter update laws given in (3) and (4) could be 

used to project the system parameter online and will be used in the following theorem to 

develop an explicit mathematical equation for deriving TTF. This equation is then used to 

develop an algorithm for the continuous prediction of TTF at every time instant. 

Theorem 4 (Time to Failure Determination-Parameter based Approach): In the 

presence of a state fault, the TTF for the ij
th

 system parameter at the k
th

 time instant can 

be determined using  

  
  

max

0

0

log

log(1 )

 
T T

T T

Tf

s s s s s s y ij

s s s s s s s y ij

s s s s
ij i

s

s s

ij

i

j
k k

I

j

e B

e B

I

I







  

  

  

  

  
 

 









 
 
 
 

                                  (12)                                                          

                                                                                              

where 
fs
ij

k is the estimated TTF,
0s
ij

k is the time instant when the prediction starts (bearing 

in mind that 
dtsk  , is the fault detection time or initial value which increases 

incrementally), 
max

s ij
 is the failure threshold in terms of the maximum value of the 
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system parameter, and 
0

s ij
 is the value of the system parameter at the time instant 

0s
j

k
i

. 

Additionally, 1,.......,i l and 1,.......,j n . 

Similarly, in the presence of an output fault, the TTF for the mq
th

 system 

parameter at the k
th

 time instant can be determined using 

  
  

max

0

0
log(1 )

log

T T

y y y

T T

y y y

T

y y y

mq

mq

f mqmq

y
mq

y
mq

y

y y y y

y y y y

y yk k

I

I

I

e

e





    

    







  
 



 

 



 
 
 
 

                       (13)                                                                                                                                        

where 
fmq

yk is the estimated TTF, 
0mqyk is the time instant when the prediction starts 

(bearing in mind that 
dtyk  , is the output fault detection time which increases 

incrementally), 
maxmqy is the maximum value of the system parameter, and 

0mqy is the 

system parameter at the time instant 
0mqyk .  

Proof: Refer to Appendix.     
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Figure 2: Flow chart indicating the TTF determination. 

 

 

Figure 2 provides a flow chart to determine TTF ( s fij
k ) for each system parameter 

in the event of a state fault.  The TTF is determined at each time instant starting at the 

time when a fault is detected until the first system parameter reaches its failure threshold. 

Therefore, the TTF decreases as the parameter approaches its failure threshold. 

 

Remark 10: The mathematical equation (12) and (13) is derived for the ij
th

 and the mq
th

 

system parameter respectively. In general, for a given system with a state fault, the TTF 

would be ), 1, 2, ........,min(
fs sft ij

i lk k  , 1, .......,j n , where l n  are the number of 

parameters of the system states; for a system with an output fault, the TTF would 
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be ), 1, 2, ........,min(
ft fmq

y y m pk k  , 1, 2, ........,q h  where hp   are the number of output 

system parameters. The TTF is the time elapsed when the first parameter reaches its limit.   

Remark 11: In the development of the FDP scheme, the time interval that is of interest is 

the interval between the time of fault occurrence to the time of actual failure, which is 

determined from the failure threshold on the parameter or states of the system. In the 

event that a state and an output faults occur simultaneously, both the OLAD parameters 

will be projected to their limits.  The OLAD parameter that reaches its corresponding 

limit first will be utilized for TTF.  

Remark 12: The extra terms introduced in the parameter update laws (3) and (4), which 

are in the form of difference equations, allow the convergence of the parameters. 

However, for the purpose of fault detection estimator stability, these terms are not 

required which implies that the stability results in Theorem 3 could be obtained without 

the extra terms in (3) and (4). The extra terms are required for TTF determination.   

Remark 13: Apart from using the parameter trajectories for TTF prediction, the fault 

detection estimator state trajectory can be utilized for TTF determination. Since the state 

residual converges to zero asymptotically, the fault detection estimator states converge to 

the actual system states accurately.  Hence the state trajectory based TTF scheme could 

be used as an alternate method to the parameter trajectory based schemes for systems that 

do not satisfy LIP provided the states represent physical entities. 

It is important to note that the proposed mathematically rigorous approach of TTF 

determination is more accurate than data-driven methods [40, 53]. In the next section, an 

example is used to demonstrate the proposed FDP scheme.  
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VI. Simulation Results 

 

 

A fourth-order dynamic satellite system is utilized to show the robust FDP 

scheme. Consider a discrete-time MIMO representation of the satellite system [9] defined 

by  

( 1) ( ) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))s s sx k Ax k y k u k x k u k g y k u k     

( ) ( ) ( ( ), ( )) ( ( ))y yy k Cx k x k u k g u k                   (14)                          

where  
1 2 3 4

( ) ( ), ( ), ( ), ( )
T

x k x k x k x k x k  is the state vector, 
21

[ , ]
T

y y y  is the output vector, 

1 0 0

0 1 0

0 0 1 0

0 0 0 1

s

s
A

t

t


 
 
 
 
 
 

, 

1

1 1 1 2 2

2 2 3 / 2 2 2 1/ 2

1 2 1 2

2 1 2 2

2 2 3 / 2 2 2 1/ 2

1 2 1 2

0

0

( ) ( ) ( ) ( ) ( ) 1

( ( ), ( ))

( ( ) ( )) ( ( ) ( ))

( ) ( ) ( ) ( ) ( ) 1

( ( ) ( )) ( ( ) ( ))

c

c

ss

s

ky k u k y k u k y k

y k u k

y k y k m y k y k m

ky k u k y k u k y k

y k y k m y k y k m

t

t


 



 

 


 



 
 
 
  
    
  
    

, 

and
1 0 0 0

0 1 0 0

C 
 
 
 

.                            

The mass of the satellite is taken as 200kgm  , parameter
c E

Kk m , 

where
5 3 2

3.986 10 /
E

K km s  . The satellite is first observed in perigee 375km above the 

surface of the earth
0

375
E

R kmr  , where 3
6.378 10ER km  . The initial angular speed 

0s is 

computed using the orbital mechanics 3

00 ( 1)( / )s orbit EKe r   , where 0.162orbite   is the 

eccentricity. Control inputs 
1

u and 
2

u are the radial and tangential thrust forces, 

respectively which are taken as 
2 2 1/ 2

1 2 2 2 3/ 2

1 2

1 0.0001 sin(0.01 )( ) ( ( ) ( ))

( ( ) ( ))

c
k

k
u k y k y k

y k y k

  



 
 
 

 and 

2 2 1/ 2

1 22 1( ) ( ( ) ( )) cos(0.01 )mu k y k y k k  , where 1
0.0001m m  and 0.01

s
t  . The initial conditions of the 
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satellite system is taken as
1 2 30 0 0
(0) 0, (0) , (0)

s
r rx x x    , and

4
(0) 0x  . To monitor and detect 

faults in (14), the FD estimator is given by  

ˆˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( ); ( )) ( )s y s s sx k Ax k y k u k K k g y k u k k k
r

ve         

ˆˆ ˆ ˆ( ) ( ) ( ( ); ( )) ( )
y y vyy k Cx k g u k k k

r
                                       (15) 

where  
1 2 3 4

ˆ ˆ ˆ ˆ ˆ( ) ( ), ( ), ( ), ( )
T

x k x k x k x k x k  is the estimated system state vector  ˆ( ( ) , ( ) )s y k u k   

1
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, and

1
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0 0

0 0

K

a

a






 
 
 
 
 
 

.         

with 3

1 2 10a a


  .  Additionally, the initial conditions of the estimator is taken 

as
1 2 30 0 0
(0) 0.05, (0) , (0)ˆ ˆ ˆ

s
r rx x x     , and

4
(0) 0.01x   . In this simulation, two different scenarios 

are presented to show the robustness of the proposed FDP scheme.  

Scenario 1-State fault: In this simulation scenario, we consider the state fault as 

( ( ), ( )) ( ) ( ( ), ( ))
T

s s sg y k u k k y k u k  , 

where
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,
5

1 3 1 10 


   and 

4
2 4 1 10 


  . The fault occurs only in system states 

3
( )x k and

4
( )x k . Therefore, 

1 2
( ) ( ) 0

s s
k k   whereas 
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Note the state faults could be due to the inadvertent activation of the thrusters in 

the satellite system and are seeded at the 25
th

 second of system operation. Since only a 

state fault is considered for this simulation, we have ( ( )) 0, 0[ ]
T

yg u k  . Additionally, the 

output uncertainty in the system is taken as 0.04 sin(0.0001 ), 0( ( ), ( )) [ ]
TT

y x k u k k   whereas the 

state uncertainty is represented by 
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 The online approximator (OLAD) used in the FD estimator in (15) is given 

by ˆ ˆˆ ˆ ˆ( ( ), ( ); ( )) ( ) ( ( ), ( ))
T

ss s sg y k u k k k y k u k   , where 
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 is the estimated parameter matrix, and 
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 1 1 2 2 3 2 4 1
ˆ( ( ), ( )) cos cos cos sinˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))

T
y k u k

T

s y k y k y k y k      . The parameters are updated 

using the update law in (3) by taking 0.04s  and 0.41s  . However, their initial values are 

taken to be zero. The robust adaptive term is defined by
1 1

1
( )

ˆ ( )

ˆ ˆ( ) ( )
r

T

T T

s
s

s s s

kv
k B

B k k B c



 



, where 

 1 0.01 0.08 0.42 0.5
T

B     , and 0.85sc  . Since we have only a state fault, 

 0 0ˆ( ( ); ( ))ˆ
TT

y yu k kg   and  0 0( )
TT

yv k
r

 . 

To show the performance of the FD estimator, the state residual of the two 

measurable outputs defined in terms of, 
1
( )x k and

2
( )x k , are shown in Figs. 3 and 4. From 

the figures, it is evident that prior to the fault due to the system uncertainties, the state 

residuals remain bounded. However, after the fault, the residual converges asymptotically 

to zero as shown in the Theorem 3 since the OLAD and the robust term are initiated to 

learn the unknown fault dynamics. However, since the system has coupled dynamics and 

considering the manuscript length, the residuals of the remaining system states 

(
3

( )x k and
4

( )x k ) have not been shown.  

 To monitor the chosen system and detect faults, norm of the output residual is 

generated as shown in Fig. 5. We used a constant threshold of 0.77 unit magnitude 

(
1 2

( )s s y y y      , for the given value of C, A0 and, K matrices, we 

have 1.02s  , 0.71s  , 
1

5
1 10y


 , 

2
1y  , and 0.04y  , 0.77  ) to avoid false and 

missed alarms. In the event of a fault, the residual increases and exceeds the threshold as 

shown in Fig. 5 declaring the presence of a fault.  
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Figure 3: State residual (
1 11

ˆ( ) ( ) ( )se k x k x k  ). 

 

 

0   10 20 30 40 50 60 70 80
-0.4

-0.2

0

0.2

0.4

Time (Sec)

R
e

s
id

u
a

l:
 S

ta
te

 2
 (

k
m

)

 

Figure 4: State residual ( 2 22
ˆ( ) ( ) ( )se k x k x k  ). 
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Figure 5: Output residual norm and the detection threshold. 

 

 

Subsequently, the respective fault parameters are estimated online to learn its 

evolution as shown in Figs. 6 and 7. Note, in this case of a state fault, the condition (9) of 

the sensitivity theorem would be satisfied thus initiating the state OLAD. Moreover, from 

Figs. 6 and 7, it is evident that the parameter estimation error converges asymptotically. 

Additionally, failure thresholds on each of the parameters are assumed as shown in the 

figure. Usually, such thresholds could be derived from the design specification or system 
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operation. The failure thresholds on 
3 ( )k and 

4 ( )k  are taken as 1.55 and 0.57 units 

respectively. 
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Figure 6: Online estimation of the fault parameter
3 ( )k . 
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Figure 7: Online estimation of the fault parameter
4 ( )k . 
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Figure 8: The TTF determination due to the state fault
3

(.)sg . 
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Figure 9: The TTF determination due to the state fault
4

(.)sg . 

 

Using these failure thresholds on the parameters, we estimate the TTF for each 

parameter as shown in Figs. 8 and 9. Since we have two parameters, we consider the 

minimum of both the estimated TTF’s at each time instant. Hence by using Figs. 8 and 9 

the remaining useful life of the monitored system could be estimated. It is also observed 

that the TTF prediction coincides with the actual time of failure.   

This simulation result demonstrates the fact that the proposed FDP scheme could 

detect and learn the unknown fault dynamics and predict TTF.  

 

Scenario 2- Output fault: In this simulation scenario, a sensor fault is assumed on the 

system (14), which is described by ( ( )) ( ) ( ( ))
T

yy yg u k k u k  , 

where  1 2( ( )) cos( ( )) sin( ( ))
TT

y y yu k u k u k   , 0.1y  , 1
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. We assume the fault 

has occurred on the output, 
1( )ky . Therefore, 

2
( ) 0y k   and 

0

0
0

1

0
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25(1 )
y k k
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for

e
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 
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, where the fault is seeded at
0

23 seck  . The output 

OLAD used for the online learning of the output fault dynamics is given 



 

        

134 

by ˆ( ) ( ) ( ( ))ˆ( , ) ( )
T

yy y yu k k u kg k   , where 
11 12

21 22
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ˆ ( )
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y y
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k k

k

k k

 



 



 
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is the estimated parameters 

matrix. Additionally, the parameter ˆ ( )y k is tuned online using the update law (4) by 

taking 0.6y  and 0.0028y  . Also, the initial values of the parameters are assumed to be 

zero. The robust adaptive term is defined by
2

2 2

ˆ ( )
( )

ˆ ˆ( ) ( )

T

T

y

T

y y y
ry

k B
k

B k k B

v
c



 



, 

where,  
2

0.23 0.0001
T T

B  , and 0.7yc  . For this simulation, the output uncertainty is 

defined by sin(0.05 ), 0( ( ), ( )) [ ]
T

y x k u k k  . In addition, Gaussian/white measurement noise 

with a magnitude of 0.15 units in the output
2

( )ky  is introduced. Moreover, we have 

0 0 0 0( ( ), ( )) [ ]
T T

s
x k u k  , 0 0 0 0( ( ), ( )) [ ]

T T

sg y k u k  , 

0 0 0 0ˆˆ ˆ( ( ), ( ); ( )) [ ]
T

s sg y k u k k  ,and 0 0 0 0( ) [ ]
T T

rs
kv  . 

Figs. 10 and 11 represent the state residuals where the residuals converge 

asymptotically to zero with no faults and in the absence of state uncertainties. This 

implies that the proposed FD estimator follows the actual system accurately under these 

conditions. Additionally, these results are consistent with the theoretical conclusions. 

Since, an output uncertainty is considered and to avoid false alarms, a constant threshold 

of 1.1 unit magnitude (in this case, since there are no state uncertainties, i.e., 0s  , 

additionally, 5

1
1 10y


 , 

2
1y  , and 1y  , therefore, 1.1   is a conservative bound) is 

used on the output residual as shown in Fig. 12. In the event of a fault, the output residual 

norm exceeds the threshold. Subsequently, the online estimation of the output fault 

parameter is shown in Fig. 13 where the fault is found to evolve with time. Here only one 

parameter estimate and its corresponding threshold are shown due to space constraints. 
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Figure 10: State residual
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Figure 11: State residual
2 22

ˆ( ) ( ) ( )se k x k x k  . 
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Figure 12: Output residual norm and the detection threshold. 
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Figure 13: Online estimation of the fault parameter ( ( )y k ). 
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Figure 14: The TTF determination after the output fault. 

 

 

 

 

Using similar arguments from the previous simulation, for an output fault, the 

condition in (10) of the sensitivity theorem would be satisfied. Therefore, the output 

OLAD would be appropriate in learning the unknown output fault. However, by 

assuming a failure threshold limit of 24 units on the output fault parameter, we determine 

the TTF. Based on this estimate, the TTF due to the output fault is calculated as shown in 

Fig. 14.  The variations in the initial few seconds of the prediction could be attributed to 

the initial parameter values and adaptation gains. However, as the learning of the 

unknown fault function improves, the TTF estimation is found to be satisfactory and 

approaches the actual time of failure.  
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Through this simulation, the performance of the proposed FDP scheme is 

demonstrated satisfactorily. Although, the case of simultaneously occurring state and 

output faults have not been presented here, but by performing a separate simulation, the 

results were observed to be satisfactory. Thus a unified scheme such as the proposed one 

could detect an unknown fault, learn its dynamics, and provides the TTF. This 

information is vital for planning maintenance and thus would avoid catastrophic failures.  

VII. Conclusions and Future Work 

 

In this paper, a robust model-based FDP scheme for nonlinear discrete-time 

MIMO system was developed. Mathematical results show asymptotic stability of the 

proposed FDP scheme.  Improved stability results were obtained by using mild 

assumptions on the approximation errors and the use of robust adaptive terms which are 

functions of the OLAD parameters. The conditions under which the state and output faults 

can be detected are mathematically given and a fault diagnosis scheme is introduced based 

on the sensitivity theorem and OLAD outputs. Also, a parameter-based TTF scheme was 

developed and demonstrated. Finally, simulation results illustrate the satisfactory 

performance of the FDP scheme and the stability results.  Future effort includes the 

development of an online fault prognosis scheme with root-cause analysis for such class of 

nonlinear MIMO systems. Another future effort includes experimental verification of the 

proposed detection and prediction scheme.   
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Appendix 

 

Proof of Theorem 1: During the time interval when the state fault occurs and prior to the 

OLAD initiation, the state residual dynamics ( )se k and the output residual dynamics 

( )ye k satisfy  

0 ( ) ( ) ( ( ), ( )) ( ( ), ( ))( 1) ( ) ( ( ), ( ))s s s s s ys sk T f y k u k K x k u ke k A e k x k u k k          

( ( ), ( ))( ) ( )y s ye k Ce k x k u k                                                    (A.1) 

For anytime 0sk  , the solution of (A.1) is given by  

( ( ), ( ))( ) ( )y s s s s s y s s s se Ce x uT k T k T k T k      

 

0
( ( 1), ( 1)) ( 1)

( )
( ( 1), ( 1))) ( ( ), ( ))(

s s s s

s s
s s y y

i

x i u i

s s

s

T k
T k i

T

i K x i u iCA x uT k T k   


  


 

                                  

   

0

( )
( ( 1), ( 1))( )

s s
s s

s

T k i

s s s
i T

T k

y i u iCA i T f
 





     

By using triangle inequality and with some manipulation, we get 

( )

0

2

1
( ) ( ( 1), ( 1))( )

T k

T k

T

i

y s s s s s
iy

s s
s s

s

e T k CA y i u ifTi





 



       

If the condition in (9) is satisfied then a state fault is detected, i.e., ( )
y s se T k   . Next, 

during the time interval when the output fault occurs and prior to the adaptation of the 

online approximator, the residuals are given by  

0 ( ) ( ) ( ( ))( 1) ( ) ( ( ), ( )) ( ( ), ( ))
s s s y ys y yK k T f u ke k A e k x k u k K x k u k k          

( ) ( ( ))( ( ), ( ))( ) ( )
yy s y y yk T f u ke k Ce k x k u k                              (A.2) 
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Similarly for anytime 0yk  , the solution of (A.2) is given by  

( ( ), ( ))( ) ( ) ( ) ( ( ))y y y y y y y y y y y y ys y ye Ce x u k f u T kT k T k T k T k           

0

( )
( ( 1), ( 1)) ( 1) ( ( 1), ( 1))] ( ( ), ( ))[

y

y yT k
T k i

y y y y y
i T

y y

s s yCA x i u i i K x i u i x uT k T k   


 



                               

 0

( )
( ) ( ( )) ( ) ( ( 1))

y y

y y

y

T k
T k i

y y y y y y
i T

y yk f u K i T f u iT k CA


 



       

By using triangle inequality, we have 

0

2

( )1
( ) ( ( ))( ) ( ) ( ( 1))

T k
T k i

y y y y y y y y y y y
Ty

y y
y y

yi

k f u T ke T k CA K i T f u i





 



          

                 

As long as the condition (10) holds, an output fault will be detectable, i.e., 

( )
y y y

e T k  .  

Proof of Theorem 2: Let us assume that for a finite time interval
1

0 k T  ,  ( )ye k   for 

1k k and  

1( )ye k                                                    (A.3) 

From the continuity of ( )ye k and the adaptive laws (3) and (4), the parameters of the 

OLAD scheme and the robust term will not be updated or adapted in the interval  10, k . 

Hence in the time interval  10, k  the residuals ( )se k and ( )ye k satisfy 

( )0( 1) ( ) ( ( ), ( )) ( )
s s ss yke k A e k x k u k Ke k       

( ( ), ( ))( ) ( )y s ye k Ce k x k u k   

The solution of ( )ye k  is given as  
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1 0

0

1
1( )

)( ) ( ( 1), ( 1) ( 1 ( ( 1), ( 1))] ( ( 1), ( 1))[
y yy

i

k
k i

s se k x i u i i K x i u i x i u iCA   



           

0 0

0 0 0

0 0

0 0 0

(1 ) (1 ) (1 )

1j j

k k k

j j j

k k
k j k j

s y y
k j k j k j

g g g

A A K

A A A

C C

C c C c C c

 
 

  

 

  
  

  

 

  
1 2

( )
y ys s y          

Thus the above step contradicts our assumption in (A.3). Hence, we conclude that in the 

time interval  0, Tk  the output residual ( )ye k remains within the threshold. 

Consequently, it can be deduced that the scheme is robust and the output of the OLAD 

remains zero prior to the fault. This also implies that the robust term would remain zero 

prior to the fault.   

Proof of Lemma 1: Consider the state residual dynamics in (11), which is given by  

 

0
( 1) ( ) ( ( ), ( )) ( ) ( ) ( ( ), ( ))s s s s sA ye k e k x k u k k k K x k u k          

            
 

2 3

2 2 1 1

4 1
( )

( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( ) ( )

T T

T T T T

y s
y y y s s

y y y s s s

B C B
K k K k

B k k B B k k B

C
Kv k K k v k

c c

 
 

   



   


 
    , 

Solving for ( )se k , we have  

0 0

0

(0)( ) ( ( ), ( )) ( ) ( ) ( ) ( ( ), ( )) ( ) ( ) ( ) ( )
k k j T T

y

k

s s s s s s y y s

j

A A ye k e x j u j j j j K x j u j K j j K j j        




       

   

 
     1 3 23

2 2 1 1 1 1 2 2

2 4 41
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ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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T T T T T T T T
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j B C j B C B
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B j j B B j j B B j j B B j j B

B CC
K
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  

       

 




   
  





 

     

The above equation could be written as 

 0

0

( ( ), ( )) ( ) ( ( ), ( )) ( ) ( )
k j

k

s s y s

j

A yx j u j j K x j u j K j j    




   
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0 0

0

(0)( ) ( ) ( ) ( ) ( )
k k j T T
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s s s s y
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A Ae k e j j K j j   

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 
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Next, we apply the Frobenius norm to get 

0 0 0 0 0

0 0 0 0 0

( ( ), ( )) ( ) ( ( ), ( )) ( ) ( )
k j k j k j k j k j

k k k k k

s s y s
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A A Ae k e j j K j j   
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2

1 1 2 2

1

0 0

0 0
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
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T T T T

yk j k j

k k
s

j js s s y y y
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K
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

   

 
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                     (A.4) 

The summation term in the above equation could be solved 

as 0

0

max

max
0

( )

(1 )

( ) ( )
sk j T

s

k
s

s

j

k

A

A

j j

 

 


 

 . Constricting
max0 0.5A  in the unit disc 

(where
0maxmax0 ( )A A , is the maximum eigen value), will make the FD scheme even more 

stable. Then it can be written as
max max

max0 0max

( ) ( )

(1 )

ss s sk k

A A

   



 . In addition, similar result could 

be derived for the other terms. 
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Also,
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, and thus (A.4) could be 

rewritten as  
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Square and multiply 6 on both sides of the above equation, we have  
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expand the term on the right hand side of the above equation and factoring
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2
A , we have  
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In using this lemma, the system uncertainty and the approximation errors are expressed as 

a function of the state residual and the parameter estimation errors. This lemma and the 

robust adaptive terms intuitively lead to the negative definiteness of the first difference of 

the Lyapunov function during the stability analysis of the proposed scheme.   

Proof of Theorem 3: Consider the Lyapunov function candidate as   
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1 1
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s s ys s y

s y

k k k kV k ke e tr tr   

 
    

The first difference is given by 
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  
              (A.5) 

Substitute ( 1)se k   from (11) in
1

V of (A.5) to render                 

01

1
( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ) ( )

12

( )[ s s s s y y yA yV e k x k u k k k K x k u k K k K k Kv k                 

  
 

2 4 3

2 2 1 1

1
( )

( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

( ) ]

T T

y

T T T T

Ts
s s

y y y s s s

B C B

B k k B B k k B

C
K k v k

c c

 


   

 

 
      

 0
( ) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ) ( )[ s s s s y yA ye k x k u k k k K x k u k K k K k                         

  
 

3

2 2 1 1

2 4 1
( ) 1

( ) ( ) ( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) 12

( ) ( ) ]

T

T T T T

T

y T

s

s
y s s s

y y y s s s

B C B
k k

B k k B B k k B

C
Kv k K k v k e e

c c

 


   


 



 
      

Apply the Cauchy-Schwarz inequality 

(
1 2 1 2

( ... ) ( ... )
n n

T
a a a a a a     

1 1 2 2
( .. )

T T T

n n
n a a a a a a    ) in the above equation, to 

get 

0 01 ( ) ( ) ( ( ), ( )) ( ( ), ( )) ( ) ( ) ( ( ), ( )) ( ( ), ( ))
TT T T T T

ys s s s s s yV e k A A e k x k u k x k u k k k x k u k K K x k u k              

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
y y y

T T T T T T T T

y y s sy s sk K K k v k K Kv k k K K k k k k k                     

               

 
 

   

 

2 4 2 41 1

1 1 2 2

3 3

2 2

1
( ) ( )

12

( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T
T T T

y y

T T

y y y

T T T

T Ts s
s s s sT T

s s s

K K
k kv k v k

B C B CB C B C
e e

B k k B c B k k B c

  

   
  

  

 
  (A.6)                                                                                           

Substitute the weight update law (3) in 
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Consider the terms numbered as 1 in the above equation, apply the trace operator and 

using the Cauchy-Schwarz inequality 
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Incorporating the above modification in (A.9) to render  
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Consider terms numbered as 2 in (A.10), we have  
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Using (A.11)-(A.18) in (A.10), we have  
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Next, take the Frobenius norm, use Assumption 3, Lemma 1 (Note: using Lemma 1, the 

uncertainties are replaced by a bound expressed in terms of the state residual and the 

parameter estimation errors), and combine similar terms, (A.19) could be rewritten as  
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 Then the first difference of the Lyapunov equation is given by   
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The first difference, 0V  in (A.20), which shows stability in the sense of 

Lyapunov provided the gains are selected above.  Thus the state residual ( )se k , and the 

parameter estimation errors ( )s k and ( )y k are bounded, provided
0

( )s ke ,
0

( )s k , and
0
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are bounded in the compact set S. Additionally, due to the negative definiteness of the 

first difference of the Lyapunov function [42],  the state residual ( )se k , and parameter 

estimation errors ( )s k and ( )y k approach zero as k   . Next, consider the output 

equation  
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As k   , we have ( ) 0se k  , ( ) 0s k   and ( ) 0y k  . Since ( ) ( ) ( ( ))
T

y y yk k u k   , 

therefore, we have ( ) 0y k  . Similarly, we have ( ) 0yv k  . Therefore the output residual 

remains bounded since  

2 4max max max max
( )y y y y Ce k B             (A.21)  

This implies that due to the output uncertainties, the output residual remains upper 

bounded.  

 

Proof of Theorem 4: Since the TTF equation in (12) and (13) are very similar, proof for 

(12) is given here whereas (13) can be obtained in a manner similar to (12). Additionally, 

for deriving the proof, it is considered that only the state faults occur.  

     For a system satisfying Assumption 1, the maximum value of the system 

parameter in the event of a fault is determined by physical limitations. Thus 

ˆ ( )
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  . Equation (12) holds only in the time interval [ ],

d fk k k . Consequently, 

the update equation in (3) can be written as     
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time varying equation expressed as 

( ).( 1) ( ) . ( )A kx k x k B u k              (A.22) 
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The solution of the system defined in (A.23) is given by 
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In the above equation, for the time interval [
0s
ij

k ,
fs
ij

k ], ( )ii ka  and ( )ij ku  are 

assumed to be constant. This suggests that the system defined above can be considered a 

linearly time invariant system. This assumption is reasonable since 0 1iia   and stable 

while the input ( )ij ku would be bounded due to the guaranteed stability of the parameter 
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update law in (3). Also, TTF is continuously updated at each time instant in the 

interval [ ],
d fk k k , as explained below. Hence the above equation becomes  
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 Using results of geometric series, the above equation becomes  
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With some simple mathematical manipulation, one obtains  
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Finally, after performing some mathematical manipulation, we have 
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ku e B , equation (12) results.        

                   

References 

[1] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, 

Kluwer Academic publishers, MA, USA, 1999.  

 

[2] S. Dash and V. Venkatasubramanian,“Challenges in the industrial applications of 

fault diagnostic systems,” Computers and Chemical Engineering, vol. 24, no. 2-7, pp. 

785-791, 2000. 



 

        

156 

 

[3] G. C. Luh and W. C. Cheng,“Immune model-based fault diagnosis”, Mathematics 

and Computers in Simulation,” vol. 67, no. 6, pp. 515 – 539, 2005. 

  

[4] P. M. Frank and L. Keller,“Fault diagnosis in dynamic systems using analytical and 

knowledge-based redundancy–a survey and some new results,” Automatica, vol. 26, 

pp. 459-474, 1990. 

 

[5] J. Gertler,“Survey of model-based failure detection and isolation in complex plants", 

IEEE Control Syst. Mag.,” vol. 8, pp. 3-11, 1988. 

 

[6] R. Isermann,“Model-based fault-detection and diagnosis–status and applications,” 

Annual Reviews in Control, vol. 29, no.1, pp. 71-85, 2005.  

 

[7] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault 

Tolerance, Springer, Germany, 2006.  

 

[8] M. A. Demetriou and M. M. Polycarpou,“Incipient fault diagnosis of dynamical 

systems using online approximators,” IEEE Trans. on Automatic Control, vol. 43, no. 

11, pp. 1612-1617, 1998. 

 

[9] A. B. Trunov and M. M. Polycarpou,“Automated fault diagnosis in nonlinear 

multivariable systems using a learning methodology,” IEEE Trans. on Neural 

Networks, vol. 11, no. 1, pp. 91-101, 2000.  

 

[10] M. M. Polycarpou and A. J. Helmicki,“Automated fault detection and 

 accommodation: a learning systems approach,” IEEE Trans. on Systems, Man, and 

 Cybernetics, vol. 25, no. 11, pp. 1447-1458, 1995.  

 

[11] X. Zhang, M. M. Polycarpou and T. Parisini,“A robust detection and isolation 

 scheme for abrupt and incipient faults in nonlinear systems,” IEEE Trans. on 

 Automatic Control, vol. 47, no. 4, pp. 576-593, 2002.  

 

[12] M. Mahmoud,“Sufficient conditions for the stability of input delayed discrete time 

 fault tolerant control systems,” IEEE International Conference on Control 

 Applications, pp. 504 -509, 2008. 

 

[13] H. Hammouri, P. Kabore, and M. Kinnaert,“A geometric approach to fault 

 detection and isolation for bilinear systems,” IEEE Trans. on Automatic Control, 

 vol. 46, no. 9, pp.  1451 – 1455, 2001. 

 

[14] M. Massoumnia, G. C. Verghese, and A. S. Willsky,“Failure detection and 

 identification,” IEEE Trans. on Automatic Control, vol. 34, no. 3, pp. 316-322, 

 1989.  

 



 

        

157 

[15] C. Edwards, S. K. Spurgeon, and R. J. Patton,“Sliding mode observers for fault 

 detection and isolation,” Automatica, vol. 36, pp. 541-553, 2000. 

 

[16] T. Li, L. Guo, and L. Wu,“Observer-based optimal fault detection using PDFs for 

 time-delay stochastic systems,” Nonlinear Analysis, vol. 9, no.5, pp. 2337-2349, 

 2008.  

 

[17] H. Hammouri, P. Kabore, S. Othman, and J. Biston,“Failure diagnosis and 

 nonlinear observer. application to a hydraulic process,” Journal of the Franklin 

 Institute, vol. 339, no. 4-5, pp. 455-478, 2002.  

 

[18] C. De Persis and A. Isidori,“A geometric approach to nonlinear fault detection and 

 isolation,” IEEE Trans. on Automatic Control, vol. 46, no. 6, pp. 853 – 865, 2001. 

 

[19] B. Jiang and F. N. Chowdhury,“Parameter fault detection and estimation of a class 

 of nonlinear systems using observers,”Journal of the Franklin Institute, vol. 342, 

 no. 7, pp. 725-736, 2005. 

 

[20] H. A. Talebi, S. Tafazoli,  and K. Khorasani,“A recurrent neural-network-based 

 sensor and actuator fault detection and isolation for nonlinear systems with 

 application to the satellite's attitude control subsystem,” IEEE Trans. on Neural 

 Networks, vol. 20,  no.1,  pp. 45- 60 , 2009. 

 

[21] X. G. Yan and C. Edwards,“Nonlinear robust fault reconstruction and estimation 

 using a sliding mode observer,” Automatica, vol. 43, no. 9, pp. 1605-1614, 2007. 

 

[22] Q. Wu and M. Saif,“Robust fault detection and diagnosis in a class of nonlinear 

 systems using a neural sliding mode observer,” International Journal of Systems 

 Science”, vol. 38, no. 11, pp. 881-899, 2007.  

 

[23] C. P. Tan, F. Crusca, and M. Aldeen,“Extended results on robust state estimation 

 and fault detection,” Automatica, vol. 44, no. 8, pp. 2027-2033, 2008. 

 

[24] X. G. Yan and C. Edwards,“Adaptive sliding-mode-observer-based fault 

 reconstruction for nonlinear systems with parametric uncertainties,” IEEE Trans. on 

 Industrial Electronics, vol. 55, no. 11, pp. 4029-4036, 2008.  

 

[25] C. J. Lopez-Toribio and R. J. Patton,“Fuzzy observers for nonlinear dynamic 

 systems fault diagnosis,” Proc. of the 37th IEEE Conference on Decision and 

 Control, vol. 1, pp. 84-89, 1998.  

 

[26] C. J. Lopez-Toribio and R. J. Patton,“Takagi-Sugeno fuzzy fault-tolerant control for 

 a non-linear system,” Proc. of the 38th IEEE Conference on Decision and Control, 

 vol. 5, pp. 4368-4373, 1999.  

 



 

        

158 

[27] W. E. Dixon, I. D. Walker, D. M. Dawson, and J. P. Hartranft,“Fault detection for 

 robot manipulators with parametric uncertainty: a prediction-error-based approach,” 

 IEEE Trans. on Robotics and Automation, vol. 16, no. 6, pp. 689-699, 2000. 

 

[28] F. Caccavale and L. Villani, Fault Diagnosis and Fault Tolerance for Mechatronic 

 Systems: Recent Advances, Springer, UK, 2003.  

 

[29] B. T. Thumati and S. Jagannathan,“An online approximator-based fault detection 

 framework for nonlinear discrete-time systems,” Proc. of the IEEE Conference on 

 Decision and Control (CDC), pp. 2608-2613, New Orleans, LA, USA, 2007.  

 

[30] P. Kabore and H. Wang,“Using an equivalent feedback control of the residuals for 

 fault detection and identification,” Proc. of the 38th IEEE Conference on Decision 

 and Control, vol. 5, pp. 4466 – 4471, 1999.  

 

[31] M. L. McIntyre, W. E. Dixon, D. M. Dawson, and I. D. Walker,“Fault 

 identification for robot manipulators,” IEEE Trans. on Robotics and Automation, 

 vol. 21, no. 5, pp. 1028-1034, 2005. 

 

[32] D. H. Zhou and P. M. Frank,“Fault diagnostics and fault tolerant control,” IEEE 

 Trans. on Aerospace and Electronic Systems”, vol. 34, no. 2, pp. 420-427, 1998.  

 

[33] F. Caccavale and L. Villani,“An adaptive observer for fault diagnosis in nonlinear 

 discrete-time systems,” Proc. of the American Control Conference, June 30 -July 2, 

 pp. 2463-2468, Boston, MA, 2004. 

 

[34] G. Antonelli, F. Caccavale and L. Villani,“Adaptive discrete-time fault diagnosis 

 for a class of nonlinear systems: application to a mechanical manipulator,” Proc. of 

 the IEEE International Symposium on Intelligent Control, Oct. 5-8, pp. 667-672, 

 Houston, TX, USA, 2003. 

 

[35] A. Alessandri,“Fault diagnosis for nonlinear systems using a bank of neural 

 estimators,” Computers in Industry, vol. 52, no. 3, pp. 271-289, 2003.  

 

[36] Q. Zhang,“A new residual generation and evaluation method for detection and 

 isolation of faults in nonlinear systems,” Int. J. Adapt. Control and Signal Process., 

 vol. 14, pp.759-773, 2000.   

 

[37] J. Luo, M. Namburu, K. Pattipati, L. Qiao, M. Kawamoto, and S, Chigusa,“Model-

 based prognostic techniques,” AUTOTESTCON 2003: IEEE Systems Readiness 

 Technology Conference, Anaheim, California, USA, pp. 330-340, 2003.  

 

[38] J.  Luo, A. Bixby, K. Pattipati, L. Qiao, M. Kawamoto, and S. Chigusa,“An 

 interacting multiple model approach to model-based prognostics,” IEEE 

 International Conference on Systems, Man and Cybernetics, Washington, D.C., 

 USA, vol. 1, pp. 189-194, 2003.  



 

        

159 

 

[39] E. Phelps, P. Willett, and T. Kirubarajan,“Useful lifetime tracking via the IMM,” 

 Components and System Diagnostics, Prognostics, and Health Management II, 

 Proc.  of SPIE, vol. 4733, pp. 145-156, 2002. 

 

[40] M. J. Roemer and D. M. Ghiocel,“A probabilistic approach to the diagnosis of gas 

 turbine engine faults,” 53rd Machinery Prevention Technologies (MFPT) 

 Conference, Virginia Beach, VA, USA, pp. 325-336, 1999. 

 

[41] Y. Shao and K. Nezu,“Prognosis of remaining bearing life using neural networks,”

 Proc. of the Institution of Mechanical Engineers, Part I: Journal of Sys. and 

 Control Engg., vol. 214, no. 3, pp. 217-230, 2000. 

 

[42] S. Jagannathan, Neural Network Control of Nonlinear Discrete–time Systems, CRC 

 publications, NY, USA, 2006.  

 

[43] F. Cacccavale, F. Pierri, and L. Villani,“Adaptive observer for fault diagnosis in 

 nonlinear discrete-time systems,” ASME Journal of Dynamic Systems, 

Measurement,  and Control, vol. 130, no. 2, pp. 1-9, 2008.  

 

[44] J. Zhang and A. J. Morris,“On-line process fault diagnosis using fuzzy neural 

 networks,” Intelligent Systems Engineering, pp. 37-47, 1994. 

 

[45] A. R. Barrron,“Universal approximation bounds for superposition of a sigmoidal 

 function,” IEEE Trans. on Information Theory, vol. 39, no. 3, pp. 930-945, 1993.  

 

[46] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. Chen,“A continuous asymptotic 

 tracking control strategy for uncertain nonlinear systems,” IEEE Trans. on 

 Automatic Control, vol. 49, no. 7, pp. 1206-1211, 2004. 

 

[47] J. A. Farrell and M. M Polycarpou, Adaptive Approximation Based Control-

 Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, 

 Wiley Interscience, NJ, USA, 2006. 

 

[48] C. M. Kwan, D. M. Dawson, and F. L. Lewis,“Robust adaptive control of robots 

 using neural network: global tracking stability,”  Proc. of the Conf. on Decision and 

 Control, New Orleans, LA, pp. 1846-1851, 1995.  

 

[49] P. M. Patre, W. MacKunis, K. Kaiser, and W. E. Dixon,“Asymptotic tracking for 

 uncertain dynamics systems via a multilayer NN feed forward and RISE feedback 

 control structure,” Proc. of the American Control Conference, New York City, NY, 

 USA, pp. 5989-5994, 2007.  

 

[50] S. Huang, K. K. Tan, and T. H. Lee,“Decentralized control design for large-scale 

 systems with strong interconnections using neural networks,” IEEE Trans. on  

 Automatic Control, vol. 48, no. 5,  pp. 805-810, 2003. 



 

        

160 

 

[51] D. M. Dawson, Z. Qu, and S. Lim,“Re- thinking the robust control of robot 

 manipulators,” Proc. of the Conference on Decision and Control (CDC),  Brighton, 

 England, pp. 1043-1045, 1991.  

 

[52] F. L. Lewis, S. Jagannathan, and A. Yesilderek, Neural Network Control of 

 Robotics and Nonlinear Systems, Taylor and Francis, UK, 1999. 

 

[53] A. Mathur, S. Deb, and K. R. Pattipati,“Modeling and real-time diagnostics in 

 TEAMS-RT,” Proc. of the American Control Conference, Philadelphia, PA, USA, 

 pp.1610-1614, 1998. 



 161 

  

Abstract— In this paper, an online prognostics framework is proposed for a class of 

nonlinear discrete-time systems with simultaneous and multiple faults. In other 

words, for an n-dimensional system, more than one state could have a fault 

(multiple state faults) and also more than one fault could occur on the same state 

(multiple fault types). In this framework, a fault is detected first by using the fault 

detection (FD) estimator, which consists of an OLAD and a robust adaptive term. 

Subsequently, the prognostics scheme is activated, where the faults are identified by 

using the fault isolation (FI) estimator. Each state of the isolation estimator 

corresponds to a particular type of fault combination. Therefore, the fault isolation 

is successful when the corresponding FI residual converges to zero thus ensuring 

that the fault has been successfully identified unlike boundedness result common in 

the FI literature. In addition, the FI scheme is extended to a class of nonlinear 

discrete-time systems with multiple fault types. Subsequently, a parameter-based 

scheme is introduced using the parameter update law of the FI estimator in order to 

predict time-to-failure (TTF). In the event that a fault cannot be identified or if it is 

a new fault type, the FD estimator parameters can be utilized for identification. 
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Finally, a simulation example is used to demonstrate the proposed prognostics 

scheme.  

I. Introduction 

 

Quantitative methodology-based fault detection (FD) schemes have become 

popular due to the low implementation cost when compared to other techniques [1]. In 

the quantitative method, a model representative of the system is used in conjunction with 

the actual system output for residual generation and fault detection. The system model 

could be derived from either first principles or borrowed from control 

scientists/engineers. Normally, a predefined threshold on the residual is utilized to declare 

the presence of a fault and initiate diagnosis. Although, the selection of the fault detection 

threshold is important to improve detection while minimizing false alarms, a rigorous 

analytical procedure is now available to identify the fault detection threshold [1-3].  

Many available model-based FD and diagnosis methods [4-13] use some sort of 

residual signal. Such methods for linear systems use structured and fixed directional 

residuals [1], parity relations [2], geometric approach [3], and eigenstructure assignment 

[2] etc. However, the prognostics component is not addressed so far. 

Recently, the FD and diagnosis schemes are extended to nonlinear continuous-

time systems [4-13]. In particular, in [7, 11, 12], a nonlinear sliding mode observer-based 

FD design is proposed whereas in [10] a nonlinear diagonal observer method is 

introduced. On the other hand, in [13], geometric relationship is employed. Moreover, a 

good survey of fault detection and isolation (FDI) schemes for hydraulic systems, flight 

controls etc., are given in [14]. On the other hand, a recent survey [15] on model-based 
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FD techniques presents an excellent overview of the state-of-the art developments. A 

common issue that has been gaining interest in the literature is stability analysis using 

Lyapunov theory for the design of FD schemes [7-9].  However, the FD schemes [7-9] 

render only uniform ultimate boundness (UUB) of the closed-loop signals due to the 

presence of system uncertainties. By contrast, in the recent work [16], asymptotic 

convergence of the identification error in continuous-time is demonstrated for robot 

manipulators with actuator faults. However, the time to failure (TTF) determination is not 

discussed for prognostics although a TTF scheme is essential for next generation complex 

dynamic systems.   

By contrast, certain TTF schemes using data-driven framework [17-19], assumed 

a specific degradation model which has been found to be limited to the system or material 

type under consideration. Another scheme [20] employs a deterministic polynomial and a 

probabilistic method for prognosis by assuming that certain parameters are affected by the 

fault while others [21] use a black box approach using neural network (NN) on the failure 

data. All these schemes [17-21] while being data-driven address only TTF prediction, 

require offline training, and do not offer performance guarantees. Also, no analytical 

results are included. Therefore, it is envisioned that a combined FI and TTF determination 

scheme or else referred to as prognostics would not only provide the remaining useful life 

but also identify the fault occurred. Besides, analytical performance guarantees of the FI 

and TTF schemes are normally required. 

It is reported in [22-23] that a direct conversion of continuous-time FD schemes 

[4-13] to discrete-time requires high sampling rate whereas when implemented using low 

sampled embedded hardware results in stability problems. Therefore, FD of discrete-time 
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systems is explicitly addressed in [22-24] while ensuring that the detection residual is 

guaranteed to be bounded.  However, prognostics component is not studied. Additionally, 

to the best knowledge of the authors, there are no previously reported discrete-time 

schemes that can detect, isolate, and estimate TTF for systems with simultaneous and 

multiple faults. Hence, in this paper, prognostics framework, in discrete-time with 

guarantees of asymptotic convergence of the FI residual is introduced for a class of 

nonlinear discrete-systems with simultaneous and multiple faults.  

Simultaneous and multiple faults imply that for an n-dimensional system, the fault 

could occur in more than one state at the same time (multiple faults) and also more than 

one fault can occur on the same state (multiple fault types).  Therefore, in this paper, first, 

the FD estimator from [24] is revisited for the purpose of fault detection. Subsequently, 

the online approximator in discrete-time (OLAD) and the robust adaptive term in the FD 

estimator are initiated to learn the unknown fault dynamics. Upon detection, the fault is 

identified by using a novel FI estimator. Each state of the FI estimator corresponds to a 

particular type of fault combination. As a consequence, simultaneous and multiple faults 

occurring on the states are identified if the corresponding FI residual converges to zero 

asymptotically. Unlike other schemes [8, 9, 22, 23], asymptotic convergence is 

guaranteed even in the presence of system uncertainties due to the robust adaptive term in 

the FI estimator.  

Subsequently, after isolating the fault, its magnitude is estimated online using a 

parameter update law, which is used for determining TTF. A mathematical equation is 

derived to estimate TTF at each time instant by projecting the current value of the FI 
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parameters to their corresponding limits. The limits provided by the designer indicate that 

the system is unsafe to operate beyond these limits. Moreover, for most practical systems, 

the parameters could be tied to physical quantities that have a safe range of values. 

Alternatively, the state trajectories could be used for TTF determination due to 

asymptotic convergence of the residual. Finally, a simulation example is used to 

demonstrate the performance of the prognostics scheme. 

Therefore, the important contributions of this paper include an online prognostics 

scheme, which includes fault isolation and TTF determination, for a class of nonlinear 

discrete-time systems with abrupt or incipient faults which can occur simultaneously and 

more than one fault can occur on the same state. Unlike other schemes [8, 9, 22, 23], the 

proposed scheme delivers asymptotic stability in discrete-time, which means guaranteed 

isolation and reliable TTF determination in the presence of unstructured system 

uncertainties [1, 2, 10].  

The paper is organized as follows: Section II introduces the system under 

investigation whereas Section III revisits the fault detection scheme. In Section IV, the 

prognostic scheme is introduced. Finally, in Section V, a simulation example is used to 

illustrate the performance of the proposed prognostics scheme. Section VI presents some 

concluding remarks and discusses future work.    

II. System Description 

 

In this section, the system under investigation is introduced. The classes of faults 

that can occur on the states are discussed in detail. Consider the following general class of 
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nonaffine nonlinear discrete-time system 

0
( )( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))x k x k u k x k u k k k h x k u k                               (1) 

where nx  is the system state vector, mu  is the control input vector, 

: n m n    , :
n m n

    , :
n m n

h     are smooth vector fields. The 

term ( ( ), ( ))x k u k  represents the known nonlinear system dynamics whereas ( ( ), ( ))x k u k  

denotes the system uncertainty. The fault function ( ( ), ( ))h x k u k  represents a vector of 

possible faults that can occur and their associated dynamics. Moreover, the fault 

function ( ( ), ( ))h x k u k  is defined as 1 1 ( ( ), ( )), ......., ( ( ), ( ))(.)
T

T T

nx k u k x k u knh f f      

where
l

i
i  , 1, 2, ....,i n , is an unknown parameter vector referred to as the magnitude 

of the fault function and :
ln m

if
i   is a known smooth vector field referred to 

as the fault basis function consisting with the literature on fault isolation [8].  In the above 

definition, each fault vector is distinct and each if represents the fault function of 

the
th

i fault affecting the 
th

i state equation.  In addition, the unknown parameter i is the 

magnitude of the 
th

i fault. 

Remark 1: In this framework, the number of the faults cannot be greater than the number 

of system states [10]. However, more faults could be considered, if we relax the 

assumption of multiple faults and multiple fault types and consider only single faults. In 

such a case, a bank of FI estimators and decision logic could be used to identify the faults 

[8]. The time profile 
0

( )k k  of the faults are modeled by 

0 0 0 01 2( , , ...., )( ) ( ) ( ) ( )ndiagk k k k k k k k        
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where  

i-

0
( )

0

0,             if 
   for 1,2,...

if 1 -  ,
i i n

e
 







 







                  (2) 

and 0i   is an unknown constant that represents the rate at which the fault in the 

corresponding state ix  occurs. The term ( )i  approaches a step function when i is large, 

which in turn represents an abrupt fault. The use of exponential term is only to signify the 

fault growth rate. However, the nonlinear fault function (.)h denotes the magnitude and 

type of fault, such as a stuck actuator etc. 

Remark 2: Modeling of faults using time profiles is common in FD literature [25] and 

used extensively by others [8, 9, 22-24]. 

The type of faults considered in (1) is unstructured and belong to a more general 

class of faults which include step faults [10] unlike [1, 2]. The following assumption is 

required in order to proceed.  

Assumption 1: The modeling uncertainty is unstructured and bounded above [8, 9, 22, 

23], i.e., ( ( ), ( )) ,  ( , ) ( )
Mi ix k u k x u U     , 1, 2, ...i n  where 0

Mi   is a known constant.  

Remark 3: This assumption is required to distinguish uncertainties from the fault 

functions. 

In the above formulation, the faults are assumed to occur simultaneously, i.e., 

more than one state could have a fault at a given time instant.  However, we next 

consider a more complex scenario, where multiple faults occur on the same system state 

and also more than one state could have multiple fault types at a given time. Therefore, 

the system (1) could be rewritten as 
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1 1 1 0 1

2 2 2 0

0
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2

( )

1

1

( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))

( 1) ( ( ), ( )) ( ( ), ( )) ( ) ( , )

( 1) ( ( ), ( )) ( ( ), ( )) ,( ) ( )

.
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j j
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j
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x k x k u k x k u k k k h x u

x k x k u k x k u k uk k h x

 

 

 







    

     

     





               (3) 

In the above formulation, the faults are assumed to occur on the system states as 

stated in (3) where state 1 has only one fault occurring whereas state 2 can have two 

types of faults occurring simultaneously. Therefore, for isolating multiple fault types, the 

system under consideration should satisfy the upper triangular or lower triangular 

property.  

Remark 4: In the case of simultaneous faults on the states, the faults function on a 

particular state may affect other states.  For instance, a fault occurring on the first system 

state can have some influence on the remainder ( 1n  ) system states although this effect 

will not increase the magnitude of the fault function on the first state except it influences 

the basis function which is assumed to be known a priori. Consequently, the residual on 

the first state will still converge to zero despite faults occurring on the other states.     

The representation given in (3) considers a broad range of fault conditions, which 

include faults affecting its own state and other states of the system. Such fault conditions 

were not previously addressed in either continuous time or discrete time fault diagnosis 

scheme [8-10, 22, 23].  

 In the previously reported FD schemes [10, 26], the uncertainty is assumed to be 

structured which in turn helps in decoupling the faults from uncertainties thus 

simplifying the development of the FD and isolation scheme. However, such assumptions 
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are relaxed in this paper even with the revised formulation with multiple fault types. In 

the next section, the FD scheme is revisited first. Subsequently, the prognostics scheme 

will be studied in detail. 

III. Fault Detection Scheme 

 

Since, the system considered could be subjected to multiple faults and multiple 

fault types, the first step is to detect the faults, and then isolate them by identifying the 

faults that have occurred and finally use their magnitude to estimate the TTF. The block 

diagram representation of the proposed prognostics scheme is shown in Fig. 1.  As 

observed in the figure, the FD estimator is used to monitor and detect faults in the given 

system. Upon detecting a fault, the prognostics scheme is activated.  Upon its activation, 

the fault is isolated, and then the TTF is estimated, thereby rendering remaining useful 

life.  

 

Fig. 1: Overview of the prognostics scheme. 

 

For the purpose of FD, consider the nonlinear FD estimator  

( )ˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( )ˆ ˆ
d d d dk A k x k u k h x k u k k A x k F kx x                    (4) 
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where ˆ n
x   is the estimated state vector, ˆ :

n m p n n
dh


    is the detection 

OLAD output, with ˆ
d

p n



  is a set of adjustable parameters of the detection OLAD, 

11 22
,( ....., )d d d ddiag

nn
A A A A  is a diagonal matrix chosen by the user, and ( )F k is the robust 

adaptive term to be defined later. Prior to the fault, the initial values of the FD estimator 

(4) are taken as 0(0)ˆ xx  ,
0

ˆ ˆ(0)d d  , such that 
0

ˆ ˆ, ) 0( ,
d

h x u    for all x   and u U . 

It is worth mentioning that the FD estimator given in (4) reproduces the real 

behavior of the nonlinear discrete-time system. Thus the main aim is not to estimate the 

system states from the input or output measurements, but to generate residuals for FD in 

the given system [8, 22, 23].  The detection OLAD and robust adaptive term are initiated 

only upon detection and their outputs are zero prior to detection.  

Now define the FD residual as x̂e x  . Next a dead-zone operator defined by 

 
( )

( )

0,  
[ ( )]

( ),

if 

if 

i

i

i
i

i

i

e k

e k
D k

e k
e














                          (5) 

is used for FD to improve robustness by using a threshold where i is the th
i FD threshold 

since uncertainties are considered in (1). A fault is detected when the FD residual exceeds 

a predefined threshold. However, the selection of the FD threshold is a challenging task 

since it provides a trade-off between missed and false alarms. But, analytically, the time 

varying FD threshold
(1 )

(1 )

M

k

i

i i

i

i  








  or a constant threshold 
(1 )

Mi i

i
i

 



  can be 

determined using linear control theory [27], where i iic   , i and ci
  are positive 

constants such that the Frobenius norm 1k k
id iii

cA    . This intuitively explains that the 
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fault magnitudes have to be higher than the system uncertainties in order to detect faults.  

Remark 5: Upon fault detection, the detection OLAD and the robust adaptive terms in 

the FD estimator respectively approximate the unknown fault dynamics online and ensure 

the convergence of the FD residual to zero asymptotically.  

Therefore, using the dead-zone operator defined in (5), prior to the fault, 

i.e., ( )i ie k  , ˆ ( )

0 . . . 0

. . . . .

. . . . .

0 . . . 0

d

p n

k





 
 
 
 
 
 

, which means  ˆ ˆ( ( ), ( ); ( )) 0, 0, ...., 0
T

d dh x k u k k  , and 

 ( ) 0, 0, ...., 0
T

F k  in the time interval 0 k T  .  

When the residual exceeds the detection threshold, i.e., ( )i ie k  , a fault is 

declared active and the OLAD schemes that generate, ˆ (.)dh is initiated and tuned online 

using the following update law  

ˆ ˆ ( ) ( ) ( 1)( 1) D[ ]
T

d dk k k ke                              (6) 

where 0  is the learning rate and ( ) ( ( ), ( ))k x k u k   is the basis function such as a RBF, 

sigmoid etc. The robust adaptive term is defined by
 
 

( )ˆ

( )
ˆ ˆ( ) ( )

T

TT

d d d

d k B
F k

k kB B c



 




, where 

0dc  is a user defined constant and 
p

B  is a constant vector. The following theorem 

from [24] is revisited to show asymptotic performance of the FD estimator ((4)-(6)) upon 

detection. 

Theorem 1 (FD Estimator Stability Analysis after Detection):  Let the proposed 

estimator in (4) be used to monitor the system given by (1). Let the update law given in 

(6) be used for tuning the unknown parameters of the OLAD after detection. In the 
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presence of bounded uncertainties, the FD residual, ( )e k , and the parameter estimation 

errors ( )
d

k  are locally asymptotically stable.  

Proof: Refer to [24].  

In this theorem, the FD residual and the parameter estimation errors are 

guaranteed to converge to zero. This guarantees asymptotic tracking of the system states 

even in the presence of a fault and the system uncertainty. In the next section, the 

prognostics scheme is introduced.  

IV. Prognostics Scheme 

 

After the detection of the fault, as illustrated in Fig. 1, the prognostics scheme is 

activated. However, to estimate the remaining useful life of the system, the faults in the 

system have to be isolated and identified, and then the TTF has to be calculated at each 

time instant. Finally, by taking the minimum of all the estimated TTF’s, the remaining 

useful life of the system is determined. Before proceeding with fault isolation, it is 

essential to understand some common terminologies. Fault isolation (root-cause analysis) 

involves with identifying the fault type whereas fault identification involves with 

estimating the magnitude of the fault [8].  

Therefore, fault diagnosis involves fault isolation and identification. Next, in the 

following text, there are two subsections, where the first subsection considers the case of 

multiple state faults whereas the second subsection considers multiple fault types. In each 

of the design, a FI estimator is used for identifying the fault. Every state of the FI 

estimator has a unique fault function (for multiple faults, the states have a unique 

combination of fault functions). Subsequently, analytical results are derived to illustrate 
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the criteria for fault isolation. Next, we present the design of FI estimator for system with 

multiple faults only.  

A. Systems with Multiple Faults 

 

Consider the following FI estimator to identify the simultaneously occurring faults 

in (1) as 

ˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( ) ( )ˆ ˆk G k x k u k h x k u k k G k kx x x v                      (7) 

where 
1

( ) [ ( ), ......, ( )]ˆ ˆ ˆ
T

nk k kx x x is the estimated states,  

1 1( ) ( ( ), ( )), ......., ( ) ( ( ), ( ))ˆ ˆ ˆ( ).T
T

T T

n nk x k u k k x k u kh f f      is the approximation of the fault function 

with each ˆ
l

i
i  , 1, 2, ...., ni  is the estimated fault parameter of the th

i state variable 

and 11 22,( ....., )nnG diag g g g  with iig chosen such that all the poles are within the unit disc.   

 

The robust adaptive term for FI is given by 

1 1

1 1 1 1 1

ˆ ˆ( ) ( )
( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
,.....,

T T

T T T T

n n

n n n n n

k k
k

b k k b b k k b

b b

c c
v

 

   


 

 
 


, where

1li
ib


  is a constant vector, 

and ic , 1, 2, ...., ni   is a scalar constant.  

Remark 6: It is very important to note that the fault function is a function of the 

magnitude of the fault plus the basis function which is unique for a fault type.  This basis 

function is generally a function of all the system states and the input and is considered 

known. Therefore, a fault on another state will have some influence on the other states 

through this basis function. However, since the basis function of the proposed FI 

estimator is same as the basis function of the fault dynamics, isolation of the fault is 
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possible. Next, define the th
i  FI residual as ˆ( ) ( ) ( )i i ik x k x ke   . In order to learn the 

unknown fault parameters, which are required for the TTF determination, the following 

parameter update law defined as 

( 1)ˆ ˆ ˆ( 1) ( ) ( ) ( )
T

i i i i i i i i i ik k f k k I f f ke                           (8) 

is proposed, where 0i  is the learning rate and 0i   is a design parameter.  

Remark 7: The update law in (8) is similar to (6) without the dead-zone operator since 

the FI estimator is initiated only upon detecting a fault.  Moreover, (8) has an extra term 

normally utilized for relaxing the persistency of excitation (PE) condition. This extra term 

is needed here to render a stable TTF determination and not for FD. By contrast, this term 

is not utilized in continuous-time FI [8]. 

Remark 8: It is essential to note that the th
i system state FI estimator approximates the 

th
i fault function and is considered to be matched if a fault occurs. Consequently, an 

th
i fault function causes a fault mismatch with other fault functions, 1 1 1,...., , ,... ni ih h h h   

if it occurs in other states a concept utilized for isolating faults. This idea is also utilized 

for isolating multiple faults types.   

To guarantee the isolation of multiple state faults, we mathematically show the 

asymptotic convergence of the FI residual and the parameter estimation errors of the 

matched state of the FI estimator. In other words, in the following theorem, the 

asymptotic convergence of the 
th

i  fault residual of FI estimator is presented.  Before we 

proceed, the following Lemma is needed. 

Lemma 1: The bound on the 
th

i component of the system uncertainty ( ( ( ), ( ))x k u ki ) could 

be expressed in terms of the FI residual and the parameter estimation errors as 
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 
2 3

2 22
1

0 1
5 (2 1 / ) ( ) ( ) ( ) ( ) ( )

T

Mii i i i i i i i i i i i if f k e k e k k k                         

where
0 1 2
, ,i i i   and 

3i
  are known positive constants. 

Proof: Refer to Appendix.  

Remark 9: It is important to note that the lemma enables the system uncertainties and the 

NN reconstruction errors to be expressed a function of the residual and parameter 

estimation errors.  As a consequence, one can include these terms from the NN 

reconstruction errors and uncertainties along with other negative terms in the first 

difference of the Lyapunov function making the first difference negative definite.  Such 

results are available in the literature [28-31] for controlling systems in continuous-time. 

Next the performance of the FI estimator is demonstrated. 

Theorem 2 (FI Estimator Performance): Let the proposed FI scheme defined by (7) and 

(8) be used to identify th
i  fault function in the th

i state of the nonlinear discrete-time 

system given by (1). Then, in the presence of bounded uncertainties, the 
th

i  FI 

residual, ( )i ke , and the 
th

i parameter estimation error, ( )i k , converge to zero 

asymptotically. 

Proof: Refer to Appendix.  

In the above theorem, since ( ) 0i ke  as k    in the presence of a fault on the 

th
i system state, ˆ

i ix x  implies that the 
th

i fault would be isolated by the proposed FI 

estimator without any adaptive threshold unlike in [8]. An 
th

i fault function occurring on 

other system states would cause a fault mismatch forcing the other residuals not to 

converge to zero which can be effectively used to isolate all the n distinct faults occurring 

simultaneously in the system. Similar results can be shown for the ideal case when there 
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is no uncertainty in the nonlinear discrete-time system without using the robust adaptive 

term in the FI estimator since asymptotic convergence can be shown. 

Unlike in [10], this work also relaxes the additional assumption of separating 

faults as linear and nonlinear terms to render isolation of multiple faults.  

Remark 10: In the event of a new fault, the detection OLAD of the FD estimator could 

be used for estimating them.  

To perform prognostics, it is required that the multiple occurring faults have to be 

mutually isolable or mutually distinct.  In the following theorem, two faults are 

considered distinguishable if the th
i fault function  ( , )ih x u and the th

r estimated fault 

function  ˆˆ ( , ; )r rh x u  satisfy the condition defined in (9).  

In other words, a fault mismatch function can be interpreted as the difference 

between the th
r fault function and the estimated fault function in the th

i state equation. This 

fault mismatch will drive the residual greater than zero which is similar to continuous 

time FI scheme [8]. 

Theorem 3: Consider the fault isolation scheme given by (7) and (8). The 
th

i incipient 

fault in the system is isolable if for each state    \1, ....,r n i of the FI estimator there 

exists a time r dk k such that the following condition is satisfied: 

     0i
( )

- ( )
( , ) ( ) ( , )ˆ1 -  

d

T T
k

k j k

i i r
j k

g
j

rr rf x u j f x ue


 
 



 
      

                        ( ) ( )
d

M

d

k
k k k j

rr r rr i rd
j k

g k je g v
 



                 (9) 

Proof: Refer to Appendix.  
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When condition (9) is satisfied the isolation residual ( ) 0re k  . This implies that 

the r
th

 fault is excluded. If this condition satisfied, then for each  1, ......, \ { }r n i , the 

faults are distinguishable.  

Remark 11: It is noted from Theorem 3 that the fault function of each estimator state is 

unique. Therefore, the th
i fault in the system matches only to the th

i fault function of the FI 

estimator.  

A similar condition could be derived for abrupt faults. For such class of faults, we 

have i   in the definition of time profile in (2). Therefore, the following corollary is 

presented to guarantee that each of the abrupt faults is distinguishable. 

Corollary 1: Consider the fault isolation scheme given by (7) and (8). The th
i abrupt fault 

in the system is isolable if for each state    \1, ....,r n i  of the FI estimator there exists 

a time r dk k such that the following condition is satisfied: 

           ( )( , ) ( ) ( , ) ( )ˆ d

M

dd

T T
k k

k j k k k j

i i r rr r rr i rd
j kj k

g g krr rf x u j f x u je g v  
  



    
        (10) 

Proof: By taking i   in the fault time profile, this proof would become identical to the 

proof of theorem 3. Therefore, one could derive the condition given in (10).  

Remark 12: Since the basis function of th
r estimated fault is different from the basis 

function of the 
th

i fault function, the th
r robust adaptive term ( )r kv would not be able to 

compensate the 
th

i fault function. This results in a significant error as reflected in the 

magnitude since the update law for the th
r estimated fault will have a different basis 

function.  
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Remark 13: Typically, if only one fault occurs, then it’s isolated when the corresponding 

fault isolation residual converges to zero. However for faults occurring on different states 

simultaneously, the isolation residuals of more than one estimator state would converge 

to zero. On the other hand, when multiple fault types occur on a state, then a combination 

of isolation residuals should be considered.  In any case, a priori knowledge about the 

potential fault types that can occur on a given state needs to be accurately known.  

Another important criteria used for evaluating the performance of a FI scheme is 

the time to taken to identify a fault, which is normally referred to as fault isolation time. 

In the following theorem, we derive an analytical equation to estimate the FI time.  

Theorem 4: Consider the fault isolation scheme given by (7) and (8). For 

each  1, ....,r n , assume there would exists a time interval 1 2
,

r rd dk k k k  , such that the 

maximum fault-isolation time for all the incipient faults is given by  

 
 1 1max

1,....,
( )k k

isoli r r r
r n

k D


  

where 1( )rD k r is defined as  

    1

1
log log 1( ) /r r r rrD k C g


 .  Additionally,  

       ( )

1
11 1 2

( )1
1( )

M

d

r dk
r

k k
krr

r rr rr i r
j kr rr

g

rd
r dk k j

C j
g

e g v
g









 



 

  
  

  
  

with 0r  being a constant.  

Proof: Refer to Appendix.  

Note the above equation could be used also for calculating fault isolation time for 

the given system with abrupt faults. The above two theorems show that n-faults occurring 
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simultaneously would be isolated in a finite time provided only one fault occurs on a 

given state.  In the following subsection, we extend the above derived results for multiple 

fault types.  

B. Systems with Multiple Fault Types 

 

It is straightforward to see that the above FI design and the theorems could be 

extended to systems with multiple fault types. Therefore, the FI estimator used for 

identifying the multiple faults in (1) has to be modified to identity multiple fault types 

occurring on the same state as  

11 1 11 1 1

2 22 2 2 22 2 2

1 1 1 1

2

1

ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( ) ( )

ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( ))

ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( ))ˆ ( ) ( )

.

.

j

j

j

n nn n n j

j

j

x k g x k x k u k h x k u k k g k v k

x k g x k x k u k h x k u k k

x k x k x k u k x k u k k

x

g h g x k v k

 

 

 



     

   

     



1

( ) ( )nn n n

n

g k v kx


 

           (11) 

where 
11 22,( ....., )nnG diag g g g  with iig chosen such that all the poles are within the unit disc 

and ( )i kv , 1, 2, ...., ni  are the robust adaptive terms which are defined later in the text.  

Alternatively, (11) could be rewritten as  

11 11 1 1

2 22 2 2 22 2 2

1 1 1 1 1

2 2

ˆ
( ) ( ( ), ( ))

ˆ
ˆ ˆ( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( ) ( )

ˆ
ˆ ˆ( 1) ( ) ( ( ), ( )) ( ) ( ( ), ( )) ( )

ˆ ˆ( 1) ( ) ( ( ), ( )) ( ) ( )

.

.

T

T

T

n nn n n n n nn n

k f x k u k

x k g x k x k u k k f x k u k g k v k

x k g x k x k u k k f x k u k g k

x k x k x k u k

x

x

g g x k v k

 

 



     

    

     

( )nv k
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where  1
ˆ ˆ( ) ( ), ......, ( )

ˆ T

i ik k k    and  1( ) ( ), ....., ( )
T

i if k f k f k , 1, 2, ...., ni  . This representation is 

only for the purpose of understanding. However, for all subsequent discussions, we only 

refer to the FI estimator representation given in (11).    

Similar to isolating multiple faults, multiple fault types could also be isolated if 

the FI residual derived using (3) and (11) converge asymptotically to zero. This implies 

that if the fault combination in a given system state matches with the fault combination in 

the corresponding FI estimator estate, then, the multiple fault types would be identified. 

For the sake of understanding, we derive the th
i FI residual for the multiple fault types, 

which is given by  

   0
( ) ( )

i ( )

1

ˆ( ) ( ), ( ) ( ( ), ( )) ( ( ), ( )) ( )( 1) ( ) 1 -
-

 T T
k

i
k k

j j j j i i
j

f x k u k f x k u k x k u k v ki ii ik g ke e e


  




     
  (12) 

Next, to tune the parameters of the FI estimator given in (11), we propose the 

following parameter update law 

( 1)( 1) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆT

i i i i i i i i ik k f k k I f k f k kie                            (13) 

where 0i   is the learning rate and 0i   is a design parameter.  Before proceeding any 

further, the robust terms are defined by  

1 1

1 1 1 1 1

ˆˆ
( )( )

( )
ˆ ˆ ˆ ˆ

( ) ( ) ( ) ( )

,.....,
TT

T T T T

n n

n n n n n

kk
k

b k k b b k k b

bb

c c
v



   


 




 
, where

1qi
ib


 , 1...i il lq    , is a 

constant vector and ic is a scalar constant, 1, 2, ...., ni  . 

Next, to guarantee the asymptotic convergence, the following corollary is 

introduced. In this corollary, the FI residual and the parameter estimation errors are 

mathematically shown to converge asymptotically to zero.    
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Corollary 2: Let the proposed FI scheme defined by (11) and (13) be used to identify th
i  

combination of fault functions in the th
i state of the nonlinear discrete-time system given in 

(3). Then, in the presence of bounded uncertainties, the th
i  FI residual, ( )i ke , and the 

th
i parameter estimation error, ( )i k , converge asymptotically to zero. 

Proof: Define the Lyapunov function candidate as   

21

5

1
( ) ( ) ( )

T

i i i i

i

V k k ke  


   

where
ˆ

( ) ( )i i ik k    , where  1, ......,
T

i i   .  

Next, taking the first difference of the above defined Lyapunov function, then 

substitute (12) and (13), after which the proof will be identical to Theorem 2. Therefore, 

the asymptotic convergence can be proven, i.e., 0iV  . Thus we have 

( ) 0i ke  and ( ) 0i k   as k   .  

As in the case of multiple faults, similar conditions of fault isolability and fault 

isolation time could be derived for multiple fault types. For sake of completeness the 

following corollaries are stated, and moreover the proofs of the following corollaries are 

straightforward and are similar to the previous case. First the fault isolability condition is 

introduced and later the fault isolation time is derived.  

Corollary 3: Consider the fault isolation scheme given by (11) and (13). The 
th

i incipient 

or abrupt fault combination in the system is isolable if for each state    \1, ....,r n i of 

the FI estimator there exists a time r dk k such that the following condition is satisfied.  
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For incipient faults 

     0
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k
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g k g je v
 
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For abrupt faults 

           
1

( ) ( )

1

, ˆ ( ) ( , ) ( )
T T d
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 

  
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    

Corollary 4: Consider the fault isolation scheme given by (11) and (13). For 

each  1, ....,r n , assume that there exists a time interval 1 2
,

r rd dk k k k  , such that the 

maximum fault-isolation time for all the incipient faults is given by  

 
 1 1max

1,....,
( )

isoli r r r
r n

k k D k


  

where 1( )r rD k is defined as  
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1
log log 1( ) /r r r rrD k C g
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 

  
    

  

with 0r  being a constant.  

Note the same equation is applicable to calculate fault isolation time for systems 

with multiple fault types that are abrupt in nature.  

So far, we have discussed the isolation of multiple occurring faults and the 

multiple fault types. The next step is to estimate the remaining useful life of the system. 
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In the following section, a TTF scheme is presented, where an analytical equation is 

derived, which is used for estimating TTF at each time step after the detection of the fault 

until the actual failure.    

C. TTF Determination     

  

Before presenting the TTF scheme, it is worth noting that the magnitude of the 

estimated fault parameters associated with the corresponding state of the FI estimator will 

increase with time upon fault detection. Consequently, the parameters of the matched 

fault function can be utilized for TTF determination by projecting them at each time 

instant to their corresponding failure threshold. Initially, the TTF is determined for the 

case of multiple faults, later extended to multiple fault types. To determine TTF, an 

explicit mathematical equation is derived, which is based on the online parameter update 

law (8). This equation is then used to develop an algorithm for the continuous prediction 

of TTF as given next. 

Theorem 5 (TTF Determination for Multiple Faults): In the presence of multiple 

faults, the TTF for the 
th

j  parameter, 1, 2, ...., ij l  of the
th

i  fault, 1, 2, ....,i n , at the 
th

k time 

instant can be determined using 
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 

            (14)                            

where f
j

k
i

is the estimated TTF, 0i j
k is the time instant when the prediction starts 

(bearing in mind that dk  , is the FD time or initial value which increases incrementally), 
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maxji  is the limiting value of the parameter from the fault function, and 
0

i j
  is the value 

of the parameter at the time instant 0i j

k .  

Proof: Refer to Appendix.  

Figure 2 provides a flow chart to determine TTF (
f

j

k
i

) for each fault parameter.  

The TTF is determined at each time instant starting when a fault is detected until the 

parameter reaches its failure threshold. Therefore, TTF decreases as the parameter 

approaches its limit.  

Remark 14: The mathematical equation (14) is derived for the
th

j  parameter, 1, 2, ...., ij l  

of the
th

i  fault. In general, for a given system with n possible faults, the TTF would 

be ),min(fs f
j

k k
i

 1, 2, ...., ij l , 1, 2, ....,i n . The TTF is the time elapsed when the first 

parameter reaches its limit.   

Similar to Theorem 5, the TTF scheme could be derived for multiple fault types. 

Therefore, the following corollary is introduced, where the explicit equation for 

determining TTF is given  
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Fig. 2: Flow chart indicating the TTF determination. 

 

Corollary 4 (TTF Determination for Multiple Fault Types): In the presence of 

multiple fault types, the TTF for the 
th

j  parameter, 1, 2, ...., ij q  of the 
th

i  fault 

combination, 1, 2, ....,i n , at the th
k time instant can be determined using 

  
  

max

0

j

j

0

 

log

 

log(1 )

T

T

T

i i i i i i i i

i i i i i i i i

f

i i i i

j

j

jj

I f f f e

I f f f e

k k
I f f ii

   

   

 

 

 


 



 
 
 
 

             (15)                            

where
f

j

k
i

is the estimated TTF, 0i j

k is the time instant when the prediction starts (bearing 

in mind that 
d

k  , is the FD time or initial value which increases incrementally), 
maxji  is 

Yes 

No 

 

If 

fs ft
k k (actual   

TTF) 

 

Calculate 
0

)(f k
i j

i , 1)0(k
i j

ie  and ˆ )0(
j i j

i k at 

the 
0k
i j

instant 

Fault detected, 
0 di j

k k   (time of 

fault detection) 

Calculate TTF using (14) 

Calculate ( )mins fk k
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i ij j
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the limiting value of the parameter from the fault function, and 
0

i j
  is the value of the 

parameter at the time instant 0i j

k .  

Proof: Using the update law in (13) and following the proof of Theorem 5, it is 

straightforward to derive equation (15).  

Similar to the procedure outlined in Fig. 2, for the case of multiple fault types, the 

TTF could estimated at each time instant using (15).  Therefore, as we approach the 

failure threshold, the estimated TTF would decrease.  

In this section, a TTF scheme is introduced for nonlinear systems with either 

multiple faults or multiple fault types.  

Remark 15: As seen, the proposed prognostics scheme is carried out online and 

deterministic in contrast with available probabilistic methods in the literature [20].    

In the next section, the proposed prognostics scheme is demonstrated using a 

simulation example.  

V. Simulation Results 

 

To verify the proposed prognostics scheme, consider a three-tank system with the 

following discrete-time model [8]  

0
( )( 1) ( ( ), ( )) ( ( )) ( ( ))x k x k u k x k k k h x k        

where 1 2 3
( ) [ ( ), ( ), ( )]

T
k k k kx x x x , system uncertainty is taken 

as  -3 -2 -1
10 sin(0.7 ) 10 cos(0.8 ) 10 cos(0.5 )( ( ))

T

k k kx k  . Note the uncertainty is a time-
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varying disturbance. We assume that multiple incipient faults in terms of leakage in tanks 

1 and 2 occur. The multiple faults are given by  

0 1 1 2 2( ) 2( ( )) ( ) 2 ( ) 0
T

k k h x k gx k gx k     
   , where 

 1
0-0.5( )

1 -  0.0154
k k

e


 and  2
0-0.2( )

1 -  0.0182
k k

e


 .  Also, the faults are induced 

at
0

25 seck  . Finally, the nominal dynamics are described by 

1 1 3 1 3 1

3 2 3 2 3

2 2 2

1 1 3 1 3

3 3 2

1

2

( ( ) ( )) 2 ( ) ( ) ( )

( ( ), ( ))

( ( ) ( )) 2 ( ) ( )

( ( ) ( )) 2 ( ) ( )

( ( ) (

( )

2 ( ) ( )
( )

p

p

p

p

p

d sign x k x k g x k x k u k
T

T

x k u k

T

d

a

d sign x k x k g x k x k

A

d sign x k x k g x k x k

A

a sign x k x k

A

x k

a

d a gx k u k
x k

a

A







  

  

 





  


 
 
  













3 2

3

2 ( ) ( )))
( )

x k x kg
x k

A





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

The parameters used for this simulation are given by: 

1 1d  ,
2 0.8d  ,

3 1d  ,
5 2

5 10p ma


  ,
2

0.0154mA  , and 
2

9.8 /m sg  .  We use the following FD 

estimator to detect faults 

 ( )ˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ); ( )) ( )ˆ ˆ
d d d dk A k x k u k h x k k A x k F kx x        

where
1 2 3

( ) [ ( ), ( ), ( )]ˆ ˆ ˆ ˆ T
k k k kx x x x , 

0.001 0 0

0 0.001 0

0 0 0.001

dA

 
 
 
 

, detection OLAD 

being ˆ ˆ ˆ( ( ); ( )) ( ) ( ( ) )
T

Nd d dh x k k k Vx k B     , with 3 8ˆ
d


 , 

8 1
(.)


 is a vector of sigmoid 
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functions. Additionally, V and 
N

B are chosen randomly. The robust adaptive term is 

defined as
 
 

( )ˆ

( )
ˆ ˆ( ) ( )

T

TT

d d d

d k B
F k

k kB B c



 




, where B is randomly chosen and 0.04dc  . The 

parameters of the OLAD are tuned online using the update law in (6) with 0.098  .  

To detect the faults in the presence of system uncertainty, a constant threshold is 

selected for all the states by taking 0.001  0.138  , 0.1
M

   in
(1 )

M





 , so that 0.14  . 

With this detection threshold selection, prior to the fault, the norm of the FD residual 

remains within the threshold as shown in Fig. 3. However, after the fault has occurred at 

the 25
th

 second, the residual increases around 27.3
th

 second thus exceeding the threshold. 

In other words, the detection time appears to be approximately 2.3 seconds. The OLAD 

and the robust adaptive terms are initiated. As seen in Fig. 3, upon detection, the FD 

residual drops and converges to zero due to the initiation of the detection OLAD and the 

robust adaptive term in the FD estimator.  This confirms the theoretical results in the 

previous sections.  
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Fig. 3: Residual and the threshold for detecting faults. 
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Fig. 4: Convergence of the FI residual (
1( )ke ). 
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Fig. 5: Convergence of the FI residual (
2 ( )ke ). 

 

Next, to identify the fault, consider the following FI estimator   

ˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ); ( )) ( ) ( )ˆ ˆk G k x k u k h x k k G k kx x x v      

where
1 2 3

( ) [ ( ), ( ), ( )]ˆ ˆ ˆ ˆ
T

k k k kx x x x ,

0.001 0 0

0 0.001 0

0 0 0.001

G 

 
 
 
 

, 

1 1 2 22ˆ ˆ ˆ ˆ( ( ); ( )) ( ) ( ) ( ) 2 ( ) 0
T

h x k k k gx k k gx k    
  , with 1

ˆ ( )k and 2
ˆ ( )k  are estimated using 

the update law in (8) with 4-
0 38 10.  and

3-
0.62 10  . As stated in Theorem 2, a fault is 

isolated if the associated FI residual converges to zero. In fact, the norm of the FI 

residuals 1( )ke and 2 ( )ke  in Figs. 4 and 5 show asymptotic convergences indicating that 

the two faults can be isolated correctly.  Condition (9) appears to be satisfied.  

Additionally, from Figs. 4 and 5, we see that both the faults are isolated by 37.25 seconds. 
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This would roughly be 10 seconds after the fault is detected. Therefore, the two faults are 

isolated in a finite amount of time.  

The accuracy of fault isolation depends on the estimation of the fault magnitudes. 

This certainly helps in determining the TTF. The fault parameter 1
ˆ ( )k and 2

ˆ ( )k  

estimation is shown in Figs. 6 and 7. We set a failure threshold of 0.0155 and 0.017 on 

the first and the second fault parameter respectively. Additionally, it could be seen that 

the parameter estimation converges asymptotically.  
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Fig. 6: Online estimation of the fault parameter 1( ) . 
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Fig. 7: Online estimation of the fault parameter 2( ) . 
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Fig. 8: The TTF determination due to the state fault
1 (.)h . 
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Fig. 9: The TTF determination due to the state fault
2 (.)h . 

 

The TTF is determined for each of the fault parameters as shown in Figs. 8 and 9.  

In both the cases, the initial change is attributed to the random selection in the adaptation 

gains of the parameter update law. However, as the fault dynamics are learned, the 

parameter predictions becomes better and eventually converge indicating the actual time 

of failures, i.e., 41sec and 40.14 sec respectively. As outlined in Fig. 2, the minimum of 

the TTF’s at each time instant is taken to determine the remaining useful life of the 

system which in this case will be 40.14 seconds. Thus, the proposed online scheme 

isolates and identifies a fault, and estimates the TTF without any a priori offline training. 
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VI. Conclusions 

 

In this paper, a novel prognostics scheme providing online fault isolation and TTF 

determination for discrete-time systems are introduced for nonlinear systems with 

simultaneous faults occurring in the system provided the state experiences the expected 

fault. This approach has been extended to systems with multiple fault types acting on 

each state.  Under certain conditions, it was shown that the multiple faults and fault types 

can be successfully isolated and identified upon detection.   

Initially, the FD scheme is revisited. Upon detection, the asymptotic convergence 

of the FI residuals and the associated parameter estimation errors show that the FI scheme 

can isolate and identify multiple fault and multiple fault types. Finally, a simulation 

example shows that the prognostic scheme successfully isolates the multiple faults and 

determines the TTF. Future work involves relaxing the state measurement.  

Appendix 

 

Proof of Lemma 1: From (1) and (7), the FI residual dynamics are given by  

   0i ( )
( ) ( ) ( ( ), ( )) ( )ˆ( 1) ( ) 1 - ( ( ), ( ))( ( ), ( ))

-
 

k k T T

i i i i ik x k u k v ki ii i ik g k f x k u ke e f x k u ke


 


            

                                       (A.1) 

Substitute the robust adaptive term
ˆ ( )

( )
ˆ ˆ( ) ( )

T

T T

i i
i

i i i i i

k
v k

b k k b

b

c



 



, add and 

subtract
 

ˆ ˆ( ) ( )

T

T T

i i i

i i i i i

C

b k k b

b

c



  


in (A.1), where Ci is another constant, we have 
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   
   

0i ( ) ( )

( ) ( ) ( , )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ( 1) ( ) 1 - ( )( )
-

 

T T

T T T T

k k T T i i i i i i

i i i i

i i i i i i i i i i

k C C

k x u

b k k b b k k b
i ii i i

b b
k g k f ke e f k

c c
e

  


   

 


     
 

 

                                         (A.2)  

Solve (A.2) to obtain 

   
   

0

( )

i ( )

0

( ) ( )

( ) ( ) ( , )
ˆ ˆ ˆ ˆ( ) ( ) ( )

ˆ( ) (0) 1 - ( )( )
-

 

T T

T T T T

k k T T

b j

i i i i i i

i i i i

j i i i i i i i i i i

j b C k C

k x u

j b b k k b

k
k jk

ii i

b
k f ki i iie g e g f k

c c
e

  


   

 






   


 




 



 

            
 

ˆ ˆ( ) ( )

T

T T

i i i

i i i

i i

b C

b j j b c 






 



 

The above equation is rewritten as 

   
 

0i ( )

0 0

( )

( , ) ( ) ( )
ˆ ˆ( ) ( )

ˆ( ) (0) 1 - ( )( )
-

 

T

T T

k k T T i i i

i i i

j j i i i i i

k C

x u k

b k k b

k k
k j k jk

i ii i

b
k f kii i i iig e g e g f k

c
e

 

 
  


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  
 
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 
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T T

i i i

i i i

i i

b C

b j j b c 






 



  

Using
0( )

0 1 1
i 

- k k
e


 


 and applying Frobenius norm to obtain  

 ( )

0 0

, ( ) (0) ( ) ( )

k
k j T

ii i i i
j j

g x u k g k f k

k
k jk

iii i iie e g 


 


  

   

         
0 0

( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

T T

i i i i

T T

i i i i i i

T T
j ji i

k k
k j k j
ii ii

i i

j b b

b j j b b j j b

g g
c c

 

    

 
 

 
       (A.3) 

The summation term in the above equation can be solved 

as
max

max0 (1 )

( )

( ) ( )
T

j

k
i ik j

ii i i

ii

f k

j f j

g

g




 


 . Constricting

max
0.5iig  within the unit disc makes the 
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FD scheme stable. Then we obtain
max max

max max

( ) ( )

(1 )

i i i if k f k

ii iig g

 



 . Similarly bounds could be 

derived for the other terms in the above equation. Also, ( )
( )

ˆ ˆ( ) ( )

T

i i

T

i i i

T

iT

i

k bi

i

k b

b j j b c




 



, 

ˆ ˆ( ) ( )

T

i i

T

i i i

T

iT

i

bi

i

b

b j j b c




 



. Therefore (A.3) could be rewritten as 

max max max

max max max max

( ) ( )( )

( ) (0)
i ii i i ik

ii

k b k bk

k
i

i i

ii ii ii ii

f

e g e

g g g g

  

     

Take
max

0

max

(0)
i ik

ii

b

i

ii

b g e

g



 ,
max max1 i ib f b , then the above equation could be 

rewritten as 

max

2

2 12
( ) ( )

max
0

( )

k k
i

i i

ii

b k

g e b

gii


  

 
 
 
 

 

Expanding the square term on the right hand side of the above equation and after some 

mathematical manipulation, the following equation is obtained as 

1

2 2 22 2 2

0 maxmax max

2
1( ) 3 2 ( ) 2 ( ) 2 ( ) ( )i ii i ik b k k

ii iii ig g e b g b e k k               (A.4) 

Multiply (A.4) by 
max

2
1 5 (2 1 / )i i if   to render the following equation  

   
2 2 2

0max max max

2 2
1 ( ) 3 15 (2 1 / ) 5 (2 1 / )

ii
k g bi i i i i i if f                  

    2
max max

222 2 2 2

11 ( ) 2 1
max

5 (2 1 / ) 5 (2 1 / ) ( )i i i i i i i if g e k f b k
ii

                   
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                                       
max max

2

12 1 ( )5 (2 1 / ) ( )i i i ii i if g b e k k     

Take  
max

2 2 2

03 1
0 max

5 (2 1 / )
iii i i ib f g b   ,   2

max max

2
2 1

1
5 (2 1 / )

iii i i ib f g   , 

 
max max

2

12 1
2

5 (2 1 / )i i i i iib f g b   , and  
max

2 2

12 1
3

5 (2 1 / )i i i ib f b   , would give us  

 
max 2 3

2 22 2
1

0 1
5 (2 1 / ) ( ) ( ) ( ) ( ) ( )

Mii i i i i i i i i i i if k e k e k k k                 

Proof of Theorem 2: Consider the Lyapunov function candidate as                                          

21

5

1
( ) ( ) ( )

T

i i i i

i

V e k k k 


   

whose first difference is given by 

 

1
2

2 21
( 1) ( ) ( 1) ( 1) ( ) ( )

5

1 T T

i i

V
V

i i i i iV e k e k

i

k k k k   






                                (A.5)   

Substituting (A.2) in
1

V of (A.5), the first term is given by 

   
 

0i
1

( ) ( )
ˆ( ) ( ) ( ( ), ( ))

ˆ ˆ( ) ( )

1
( ) 1 - ( ( ), ( )) ( ( ), ( ))

5

-
 

T

T T

T T

k k i i i
V i i i i i

i i i i i

k C

k x k u k

b k k b
ii i

b
g k f x k u k f x k u ke

c
e
 

  
 


    







             

         
 

2

21
( )

ˆ ˆ( ) ( ) 5

T

T T

i i i

i i i i i

i

b C
e k

b k k b c



 











                                                    

Since 0( )
0 1 1
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Expand the square term in the above equation to get 
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Next substitute (7) in 
2

V of (A.5) to get 
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Expand terms in the above equation to obtain 

22

2

1
2{ 2 ( ) ( ) ( ) ( ) ( )( ).T T T T T T

i i i i i i i i i i i i i i i i i iV I f f k k I f f k k k I I f f

i

          


              

      
2

2( 1) ( )( ) ( 1) ( ) ( ) ( 1)
T T T T

i i i i i i i i i i i i i i i i ik k I I f f I f f k k k kf f fe e e              

     
22

2 ( 1) ( )
T T T T

i i i i i i i i i i i i i iI f f k k I f ffe            

After some manipulations, we have     
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where 0i  is a constant. Since
1 2iV V V    , combine (A.6) and (A.7). Then, the first 

difference of the Lyapunov function can be written as  
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Using lemma 1 in the above equation, we have  
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Consider terms numbered as (1) in (A.8), we have  
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 Next, consider terms numbered as (2) in (A.8), we have  
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Using (A.9) and (A.10) in (A.8), we have  
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Next, apply Frobenius norm, the first difference of the Lyapunov equation can be written 

as 
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. Therefore, (A.11) 

could be rewritten as 
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              (A.12) 

Hence 0iV   in (A.12) provided the design parameters can be selected as 
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The first difference, 0iV  in (A.12), indicates stability in the sense of Lyapunov, 

provided the gains are selected above. Summing both sides of the equation (A.12), and 

since 0V  , we have
0

( ) (0)( )

k

V VV k





     . Therefore, from [27, 31], taking limits on 

both sides one has ( ) 0i ke   and ( ) 0i k  as k  , provided 0( )kie and
0( )i k , are 

selected in the compact set S.  

Proof of Theorem 3: In the presence of the 
th

i fault, the isolation residual associated with 

the th
r fault isolation scheme is given by  
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Solving the above equation, we have  
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By using the triangle inequality (if a b c  , then, a b c  ), the above equation yields 
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Therefore, when the condition (9) is satisfied, ( ) 0re k  . This implies that the r
th

 

fault is excluded. If this condition satisfied, then for each  1, ......, \ { }r n i , each of the 

faults is distinguishable.  

Proof of Theorem 4: Consider the following definition of a mismatch function for the 

th
i incipient fault and the th

r fault isolation scheme 
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( ) ( )
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Next, consider the fault isolability condition from theorem 3 for the 

interval  1 2
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From the inequality  
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it follows that a sufficient condition for (A.14) to be satisfied is given by  
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The above equation could be rewritten as 
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Next, using (A.13), we obtain 
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Combine (A.15) and (A.16), we have  
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Therefore, solving the above equation for k , we have  
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After some manipulation, we have  

      
1

11)

1 1 1

( )
1(

1

log

2(1 )

1
log( ) log( )

( )
d

d

M

d

rr

rrr
r

rr rr

k k
k k jk

rr i rrr r d
j k

g k

r
rrg

g

k k
g g

g v je








 

 








  


 

   
    
 
 
 




 

Proof of Theorem 5: The TTF is estimated by using the maximum value or threshold, 

i.e., 
max

( ) if jj j
i k

i
  . Equation (14) holds only in the time interval [ ],d f

k k k . 

Consequently, the update equation in (8) can be written as     

 ( 1)ˆ ˆ( 1) 1 ( ) ( )( )
T

i i i i i i i i i j
k I f f k f k k

j j
e         

The above equation becomes linear time varying system at each time instant by 

considering other terms being held at the time of prediction as 

   ( )( 1) ( ) ( )kx k x k bu ka                               (A.17) 
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where ˆ( 1) ( 1)ix k k
j

  , ( ) 1( )
T

k i i i iI f fa   , b i , and  ( 1)( ) ( )i i j
u k f k ke  . 

Note ( )u k is the
th

j product of the th
i basis function and the th

i  fault isolation residual. 

Therefore, the solution of the system defined in (A.17) is given by 

0 0

0( ) ( ) ( ) ( )( )

i ij j

i

kkk

t k r k t r

x k a t x a t rk bu

  

 
 
 
 

          

Since the 
th

j system parameter reaches its maximum value at the time of failure, i.e.,
f

j

k
i

, 

then
max

( ) if jj j
i k

i
  . Additionally, the value of

0
0( ) i jj j

i k
i

  ; hence the above equation 

becomes 
0 0

( )
max 0

0( ) ( )( )

i ij j

fff iii jjj

i

kkk

i i
t k r k t r

a t x a t bu r
j j

k 

  

 

 
 
 
 
 

   . In the above equation, 

for the time interval [ 0
j

k
i

,
f

j

k
i

], ( )ka  and ( )ku  are assumed to be time invariant, scalars. 

This assumption is reasonable since 0 1a   and the input ( )ku would be bounded due to 

the guaranteed stability of the parameter update law in (8) although the input (in this case 

the residual) is continuously increasing due to the presence of a fault. Consequently, the 

system defined above can be considered a linearly time-invariant system. Also, TTF is 

continuously updated at each time instant in the interval [ ],d f
k k k , as explained below. 

Hence  

 
1

0

max 0
0

( ) ( )
fi j

f fii ijj j

i j

i
t

b
j

k
k k k t

i
k

u
j

a a 

 


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                       (A.18)         

Using results of geometric series, (A.18) becomes  
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0
0

max 0
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. With some simple mathematical 

manipulation, one obtains  
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 . Finally, after performing additional mathematical 

manipulation, we have 
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. Since a , b , and u are known, therefore equation 

(14) results.    
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5. An Asymptotically Stable Online Fault Detection and Ac-

commodation Scheme for Nonlinear Discrete-time Sys-

tems  

Balaje T. Thumati and S. Jagannathan 
 

Abstract- In this paper, a FDA framework is developed for non-affine nonlinear 

discrete-time systems by using online approximators. A residual signal is generated 

by comparing the measured system states with the output of a nonlinear fault detec-

tion estimator. A fault is declared active when the residual exceeds a mathematically 

derived threshold which is defined using the upper bounds on the system uncertain-

ties.  Subsequently, an online approximator and a novel robust term, which is de-

fined as a function of online approximator parameter vector, are activated in the 

nonlinear fault estimator. The online approximator reconstructs the unknown fault 

dynamics. Next, a novel controller design is introduced in order to accommodate the 

unknown fault by using a second online approximator and a different robust term. 

Stable adaptation laws in discrete-time are developed to tune the parameter vector 

of the online approximators used for both constructing the unknown fault dynamics 

and the reconfiguring of the controller. By using Lyapunov theory, asymptotic per-

formance of the detection and the accommodation schemes is demonstrated. Finally, 

a simulation example is utilized to illustrate the performance of the proposed FDA 

scheme.  

Keywords: Fault Detection, Fault Accommodation, Asymptotic Stability, and Lyapunov 
Theory. 
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1. Introduction 

 

In this paper, a model based FDA scheme is developed as they are considered 

more robust when compared to qualitative based techniques (Frank and Keller, 1990; 

Chen and Patton, 1999). In the past literature (Frank and Keller, 1990; Chen and Patton, 

1999; Gertler, 1988), FDA schemes are developed by assuming: 1) a linear model of the 

system, 2) sensor faults, and 3) system uncertainties and fault modes are decoupled. Since 

in most scenarios, practical systems are nonlinear in nature, the above discussed schemes 

(Frank and Keller, 1990; Chen and Patton, 1999; Gertler, 1988) have not been applied ex-

tensively.   

Now, with the development of adaptive control theory, different FDA schemes 

were developed (Polycarpou, 2001; Polycarpou and Helmicki, 1995; Jiang and Chowd-

hury, 2005; Chen and Saif, 2001) for nonlinear systems.  Such schemes are capable of de-

tecting both abrupt and incipient faults. In addition, the stability, robustness, and sensitiv-

ity of the schemes are studied extensively.  However, the drawbacks of the nonlinear 

FDA scheme (Polycarpou, 2001; Polycarpou and Helmicki, 1995; Jiang and Chowdhury, 

2005; Chen and Saif, 2001) include: 1) bounded performance guarantees of the FDA 

technique and 2) applicability to nonlinear continuous time systems. It is well-known in 

the literature that continuous-time development (Lewis et al., 1999) cannot be easily con-

verted directly into discrete-time for hardware implementation due primarily to the fact 

that Lyapunov first difference is quadratic with respect to the states whereas first deriva-

tive of the Lyapunov function is linear.  In addition, by increasing the sampling rates 

alone, one cannot ensure stability of nonlinear systems for discrete-time implementation 

even if the continuous-time counterpart is stable. 
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Therefore, Caccavale and Villani (2004) introduced a fault detection scheme in 

discrete-time by using the stringent persistent of excitation (PE) condition, which is very 

difficult to verify or guarantee. Therefore, in our previous work (Thumati and Jaganna-

than, 2007), a fault detection scheme using online approximators (OLA) is introduced by 

relaxing the PE requirement. However, uniform ultimate boundedness of all the signals is 

demonstrated similar to the case of fault detection algorithms in continuous-time. 

By contrast, in this paper, a novel FDA scheme is introduced for detecting and ac-

commodating faults in nonlinear discrete-time system in non-affine form. First, a nonli-

near fault detection estimator comprising of a nonlinearly parameterized online approx-

imator in discrete time (OLAD) using multilayer neural network (MNN) and a robust 

term is used for detecting and learning unknown nonlinear fault dynamics.  In contrast, 

the FDA schemes in continuous-time use linearly parameterized approximators. The pur-

pose of the fault detection estimator is to generate residuals for fault detection. Later, a 

novel online fault accommodation strategy is developed by reconfiguring the controller. 

The design of the corrective control for an unknown fault dynamics is acheived by using 

linearly parameterized and nonlinearly parameterized online approximators. Finally, the 

stability of the FDA scheme is analyzed extensively using the Lyapunov theory.  It is ob-

sereved that for a linearly parameterized approximator, the FDA scheme renders asymp-

totic stability of the closed loop systems, whereas, for a nonlinearly parameterized ap-

proximator, the FDA scheme renders asymptotic convergence of the residual and tracking 

error while parameters of the approximators remain bounded.  

These improved performance results obtained in this paper are possible due to the 

introduction of the robust term and making some mild assumptions on the uncertainities. 
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In summary, the major contribution of this paper is the introduction of a novel multilayer-

based fault detection and accommodation scheme for non-affine nonlinear discrete-time 

system. The proposed scheme renders asymptotic performance guarantees in the presence 

of NN reconstruction errors. To best of our knowledge there is no previously reported 

FDA scheme for such class of systems that renders asymptotic performance. In the next 

section, the system under investigation is explained. 

2. Problem Statement 

 

To address a wide range of physical systems, the following general class of nonli-

near discrete-time system is considered as  

( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))x k x k u k x k u k h x k u k                       (1) 

where nx  is the system state vector, mu  is the control input vector, and 

: n m n     , :
n m n

    , :
n m n

h     are smooth vector fields. The 

term ( ( ), ( ))x k u k  represents the known nonlinear system dynamics while ( ( ), ( ))x k u k  de-

notes system uncertainty. The unknown function 0( ) ( ( ), ( ))( ( ), ( )) k k f x k u kh x k u k   , 

represents the fault function where ( ( ), ( ))f x k u k  represents the unknown fault dynamics 

with 
0( )k k   being a n n  square matrix function representing the time profiles of the 

faults, and 
0 0k   is the starting time.   

Typically, the time profiles of the faults are modeled by 

0 0 0 01 2( ) ( ( ), ( ), ...., ( ))nk k diag k k k k k k         
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where  

- i

0
( )

0

0,             if 
   for 1,2,...

if 1 -  ,
i i n

e
 







 








                  (2) 

and 0i   is an unknown constant representing the rate at which the fault in the corres-

ponding state ix  occurs. The term ( )i   approaches a step function when i is large, 

which in turn represents an abrupt fault. The primary focus of this paper is on the abrupt 

faults; however, some aspects of incipient faults are considered as well.   

Remark 1: Modeling faults using the above time profile is quite common in the fault de-

tection literature as given in Zhang and Morris (1994), and used extensively by research-

ers (Polycarpou, 2001; Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998). 

The first step in any FDA scheme is fault detection. In this paper, for the purpose 

of fault detection, a MNN-based online approximator is introduced whereas for the pur-

pose of accommodation both a single layer and MNN based approximators will be used.  

Next, the following assumption is borrowed from the fault detection literature. 

Assumption 1: The modeling uncertainty is unstructured and bounded (Polycarpou, 

2001; Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998; Polycarpou and 

Helmicki, 1995), i.e.,   

( ( ), ( )) ,  ( , ) ( )Mx k u k x u U      

where 0M   is a known constant.  

Remark 2: This assumption is required to distinguish uncertainties from the fault func-

tions. 
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In the previously reported fault detection schemes (Frank and Keller, 1990; Chen 

and Patton, 1999; Gertler, 1988), the type of uncertainty assumed is structured and/or pa-

rametric. This may not be true for most physical system in an industrial setting and there-

fore in this paper, such assumptions are relaxed unlike other schemes where simple sen-

sor faults (Caccavale and Villani, 2004) are considered. In the next section, the fault de-

tection scheme is introduced.  

3. Fault Detection Scheme 

 

The nonlinear estimator presented below comprises of the OLAD and a novel 

adaptive robust term. It is worth noting that the purpose of the fault detection estimator is 

not to estimate the system states since they are measured, but to use the estimated states 

to generate residuals.  This is in contrast with a state estimator or an observer that is 

normally used for controller design. 

A. Nonlinear Estimator Dynamics 

Based on the system representation (1), a nonlinear fault estimator is given by 

0 0
ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( ) ( )A Ax k x k x k u k h x k u k k x k v k                           (3) 

where ˆ n
x  is the estimated state vector, ˆ :

n m l n n
h


    is the online approx-

imation in discrete-time (OLAD), ˆ l n



  is a set of adjustable parameters of the 

OLAD, 0A  is a constant n n  design matrix chosen by the user, and ( )v k is the robust 

term, which is to be defined later. Prior to the occurrence of the fault, the initial values for 

the fault detection estimator (3) are taken as ˆ(0) (0)x x ,
0

ˆ ˆ(0)  , such that 
0

ˆ ˆ, ) 0( ,h x u    for 

all x   and u U .  
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Remark 3: Only upon the detection of a fault, the OLAD and the robust term are in-

itiated. 

Define the residual as ˆe x x  . From (1) and (3) prior to the fault, the residual 

dynamics is written as 

0
( 1) ( ) ( ( ), ( ))Ak k x k u ke e                      (4) 

In order to detect faults in the system, the residual is compared against a known 

threshold by using a dead-zone operator in order to improve robustness (Frank and Kel-

ler, 1990). The dead-zone operator is defined as [ ]D  as   

if ( )0,  
[ ( )]

if ( )( ),

e k
D e k

e ke k














                  (5) 

where 0   is the threshold. The selection of the threshold size   clearly provides a tra-

deoff between reducing the possibility of false alarms (robustness) and improving the 

sensitivity of the faults.  

Remark 4: A threshold is widely used in existing fault detection schemes (Polycarpou, 

2001; Caccavale and Villani, 2004; Polycarpou and Helmicki, 1995; Thumati and Jagan-

nathan, 2007). To minimize false alarms, this threshold on the residual is normally se-

lected based on the bound on the system uncertainties and approximation errors.   

Prior to the fault, the residual, ( )e k , will remain within the threshold. But, in the 

event of a fault, the residual increases and exceeds the threshold declaring a fault is ac-

tive. The selection of an appropriate value for  is addressed next. 

B. Performance of the Detection Scheme 

For selecting an appropriate threshold, consider the residual dynamics defined in 

(4) prior to the fault. The solution of equation (4) can be obtained from standard linear 
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control theory (Chen, 1999) which is given by 
0

1
1

0

( ( ), ( ))( )
k

k j

j

x j u je k A 


 



  for zero initial 

conditions. Since the matrix
0A satisfies the Schur’s criterion (Chen, 1999), there exist two 

positive constants  and c  such that the Frobenius norm 0 1
k k

cA    . There-

fore, ( )
(1 )

(1 )
M

k

e k 








, where c  .  This implies that if the size of the dead-zone is 

selected as
(1 )

M





 , then the residual ( )e k would remain within the threshold for 

all 0k k . Under these conditions, the OLAD and the robust term are not initiated. 

Normally, a linearly parameterized OLAD is used for learning the unknown fault 

dynamics after the detection.  In contrast, in this paper, a nonlinearly parameterized 

OLAD or a MNN is used as OLAD since a MNN is more accurate than a linearly para-

meterized approximator (Jagannathan, 2006). Hence the fault dynamics in (1) could be 

written as  

3 2 1 13 2 1( ( )))( ( ), ( )) ( ( ), ( ) ( )
T T T

h x k u k x k u k k                       (6) 

where 
1 , 

2 , and 
3 are the target weights of the MNN-based OLAD and

1( )k  being the 

reconstruction errors. By appropriate selection of the MNN size, the approximation error 

could be made small (Barron, 1993).  Additionally, the target weights are considered to 

be bounded
1 1max
  , 

2 2 max
   and 

3 3max
   and

1
 (.), 

2
 (.) and

3
 (.) are the activa-

tion functions of the first, second and third layer of the NN respectively. 

Also, the OLAD output in (3) is expressed as  

3 2 1 13 2
ˆ ˆ( ( ), ( ), ( )) ( ) ( ( ) ( ) ( )))ˆ ˆ ˆˆ ˆ ˆ( ( ), ( )

T T T
h x k u k k k k k x k u k                        (7) 
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where 
1

( )ˆ k , 
2

ˆ ( )k , and
3

( )ˆ k are the actual weights of the first, second and third layers of the 

MNN OLAD and 
1

( ( ))ˆ x k  represent input layer activation function.  Then 

1 12
ˆ ˆ( ( ) ( ( ), ( )))ˆT

k x k u k   , 
2 1 13 2

ˆ ˆ ˆ( ( ) ( ) ( ( ), ( ))))ˆ ˆ(
T T

k k x k u k     denote the hidden layer and output 

layers activation function respectively at the th
k  instant. For a multilayer function approx-

imation, the activation function vector need not form a basis function (Jagannathan, 

2006). Define the weight or parameter estimation errors as  

1 1 1
( ) ( )ˆk k   ,

2 2 2
( ) ( )ˆk k    and

3 3 3
( ) ( )ˆk k   . 

Next the following fact can be stated. 

Fact 1: The activation functions for a MNN are bounded by known positive values such 

that 

1 1max
( )ˆ k  , 2 2max

( )ˆ k   and 3 3max
( )ˆ k  .  

Define activation function vector error as  

1 1 1
( ) ( )ˆk k    ,

2 2 2
( ) ( )ˆk k     and

3 3 3
( ) ( )ˆk k    .  

Using the definitions in (6) and (7), the residual dynamics from (1) and (3) upon detec-

tion would become  

3

1 3

3 3

0 1 3

ˆ ( )
( 1) ( ) ( ( ), ( )) ( ) ( ) ( ( ))

ˆ ˆ( ) ( )

T

T

T T

m

v

v v

k B
e k A e k x k u k k k x k

B k k B c


   

 
     


         (8)                

where
1 3 3

ˆ( ) ( ) ( ( ))
T

k k x k  , and 
3

3 3

( )ˆ

ˆ ˆ( ) ( )

( )

T

T T

m

v

v v

k B

B k k B

v k
c



 



 being the robust term, with 

0mc  is a constant and vB is an appropriate dimensioned constant vector, to be defined 
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later. Next by adding and subtracting 3

3 3
ˆ ˆ( ) ( )

T

T T

v v

v v m

B C

B k k B c



 




in (8), where 

vC  is an appropri-

ate dimensioned constant vector, would result in the following equation 

3

3 3

0 1 2

(
( 1) ( ) ( ) ( ) ( )

)

ˆ ˆ( ) ( )

T

T T

v v

v v m

B C
e k A e k k k k

B k k B c




 
   


  


             (9) 

where
31 3

( ) ( ( ), ( )) ( ) ( ( ))
T

k x k u k k x k      , 
3

3 3

2

( )
( )

ˆ ˆ( ) ( )

T

T T

v v

v v m

k B C
k

B k k B c



 






. 

Next, the following theorem is introduced to guarantee the asymptotic stability of 

the residual in the fault detection scheme with the nonlinear MNN-based OLAD. Before 

we proceed, the following Lemma is needed. 

Lemma 1: The term (  ), and the ideal weights of the MNN OLAD are assumed to be 

bounded above by a smooth nonlinear function of the residual and the last layer NN 

weights (Patre et. al, 2007; Kwan et. al, 1995; Lewis et. al, 1999) as 

3 3

2

2 3 3 3

22

2

3 3 3 0 12
4

max

2

1
ˆ ˆ ˆ ˆ5 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(

ˆ ( )

ˆ ( )(2 )

i i

T T

i i

i
k k e k k k k k ke

k

k

           

 




     





                        

where 
0 1 2, , ,   and 

3   are computable positive constants. 

Proof: Refer to Appendix.  

Theorem 1 (Fault Detection Estimator Performance): Let the proposed estimator in (3) 

comprising of a nonlinearly parameterized OLAD be used to monitor the system given by 

(1). Considering bounded system uncertainties and under Assumptions 1-2, let the MNN 

based OLAD weight tuning be provided by 

11 1 1 1 01
ˆˆ ˆ ˆ( 1) ( )  ( )[ ( ) ( )]

T
Ak k k y k B e k                   (10) 
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22 2 2 2 02
ˆˆ ˆ ˆ( 1) ( )  ( )[ ( ) ( )]

T
Ak k k y k B e k                             (11) 

with ˆˆ ˆ( ) ( ) ( )
T

i i iy k w k k  and i iB  , 1, 2i  . Let the weight update law for the third layer be  

33 3 3
ˆ ˆ ˆ( 1) ( )  ( ) ( 1)

T
k k k ke                      (12) 

where 0i  , 1, 2, 3i  , denotes the learning rate or adaptation gains. Then, the resi-

dual, ( )e k , is locally asymptotically stable, while the MNN OLAD weight estimation er-

rors
1

( )k , 
2

( )k and
3

( )k are bounded. 

Remark 5: Theorem 1 guarantees the asymptotic stability of the residual in the proposed 

fault detection scheme after the fault has occurred by using a nonlinearly parameterized 

OLAD. Such results using nonlinearly parameterized OLAD for continuous-time and for 

nonlinear discrete-time systems are currently not available. By contrast, in continuous-

time (Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998; Polycarpou and 

Helmicki, 1995), a bounded residual is only shown even with a linearly parameterized 

OLAD.   

Remark 6: The purpose of the fault detection estimator is to generate the residual signal.  

This is in contrast with the state estimators normally used in the controller designs. 

In the next section, the fault accommodation scheme is introduced.  

4. Fault Accommodation Scheme 

 

Fault accommodation involves the reconfiguration of the control input to compen-

sate the unknown fault function (Polycarpou 2001).  Here, the problem is more compli-

cated since the fault (.)h  is unknown and non-affine in nature. Prior to the fault detection, 

any bounded controller derived for non-affine systems can be used (see, Young et al., 
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2006)) and one such control design is presented later in this section.  

Next, the nonlinear system (1) with the fault function is expressed as 

( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))x k x k u k x k u k h x k u k      

This system could be transformed into affine-like form by using the technique 

from Yang et al. (2008) as       

( 1) ( ( )) ( ( )) ( )f gx k x k x k u k                   (13) 

where , : n n

gf     are unknown smooth vector fields due to the presence of un-

known fault function and system uncertainties included along with the known nominal 

dynamics, and ( ) ( ) ( 1)u k u k u k    , with (0) 0u  . Before introducing the fault accom-

modation control law, the following standard assumption is needed (Jagannathan, 2006). 

Assumption 2: The term ( ( ))g
n n

x k
  is a positive definite invertible diagonal matrix 

for each n  . Further, assume min   and max   represent the minimum and the 

maximum eigenvalues of the matrix ( ( ))g x k  such that
maxmin0     (see, Yang et. al 

2008). 

 Next, select the control input change after detection as 

( ) ( )
1

( ( 1) ( ( ))) ( )
( ( ))

d
g

k tf
v kcu x k x k le k

x k



                (14) 

where te is the tracking error, ( )d kx is the desired trajectory, ( )c kv is another robust adaptive 

term to be defined later and l is a user selectable design matrix.  

Since f
 and g  are not known in (14), this problem is overcome by utilizing another 

OLAD. Initially, a linearly parameterized NN is used, i.e., 
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( )( ( ), ( 1)) ( ) ( )( )
T

ktdW x k x k k ktk vcleu        

where 
n p

W


   is the target weight matrix and 
1

(.)
p




  is the basis function such as RBF, 

sigmoid function, with ( )kt is the NN approximation error. In addition, as seen in the 

previous section, the approximation error is considered to be bounded above such 

that ( )
Mt tk   . Therefore, the output of the linearly parameterized NN is given by  

( ( ), )ˆ( ) ( ) ( 1) ( )( )
T

dx k tk W k x k v kcu le k      

Next, define the robust term ( )c kv  as   

1

1 1( )

ˆ ( )
( )

ˆ ˆ( )

T

T T
B k

t
c

t t

W k B
k

W k W B t

v
c




, where 
1

1

p

tB


  is a constant vector and 0tc  is a con-

stant.  Therefore, the tracking error dynamics after detecting a fault becomes 

 1
1 2

1 1( )

( ( )) ( ) ( ) ( )
ˆ ˆ( )

( )( 1) )
T

T Tt g t t
B k

t
t mt

t t

W B
x k k k k

W k W B t

le ke k
c

      


      (15) 

where 1 ( ) ( ) ( )( )
T

t k W k k  , ( ( ) ( ) ( )( ) ( )
T

mt t k W k kk     , and
 1 1

2

1 1( )

( )

( )
ˆ ˆ( )

T

T T

t

B k

t

t

t t

W k B

k

W k W B t

C

c



 


, 

1

1

n

tC


 is a constant vector.  

Next, the following lemma is required before proceeding any further. 

Lemma 2: The term, ( )kt , can be expressed as a function of tracking and the NN weight 

estimation error bounds (Patre et al., 2007; Kwan et al., 1995; Lewis et al., 1999), i.e., 

  2 2

0 1 2 31 15 ( ) ( ) ( ) ( ) ( ) ( )
T T

Mt t tc t tk k b b e k b e k W k b W k                      (16)                                 

where 
0 1 2, , ,b b b and 

3b  are computable positive constants.   

Proof: Refer to Thumati and Jagannathan (2009).   
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Next, we present the following theorem, which guarantees the asymptotic stability of the 

closed loop system.  

Theorem 2 (Fault Accommodation Scheme): Consider the system (1) with the proposed 

fault detection scheme described in the previous section with a linear online approximator 

such as a single-layer NN. Upon detection of the fault, let the control signal be aug-

mented with ( ( ), )ˆ( ) ( ) ( 1) ( )( )
T

dx k tk W k x k v kcu le k     . Let the NN weight tuning be pro-

vided by  

( 1) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ( 1)
TT

c t c ck k k I k k kW W k We                  (17) 

where 0c  is the learning rate and 0c  is the adaptation rate. Then the tracking error 

( )kte  and the weight estimation error ( )W k  are locally asymptotically stable.  

Proof: Refer to Thumati and Jagannathan (2009).   

In addition to using a linearly parameterized NN for approximating the unknown 

input, a MNN could also be used to approximate the corrective control law as given be-

low 

3 2 1 23 2 1
( ) ( ( ( )))) ( ) ( )( ( )

T T T

m m mW W W tk z k k v kcu le k        

where ( ) [ ( ), ( 1)]
T

dz k x k x k  ,  
1W ,

2W , and 
3W  represent target weights and

2 ( )k  being the 

MNN approximation error.  Additionally, the target weights are considered to be 

bounded 1 1max
W W , 2 2max

W W and 3 3max
W W and

1m
 (.), 

2m
 (.) and

3m
 (.) are the acti-

vation functions of the first, second and third layer of the MNN respectively. Therefore, 

the output of the MNN is given by  

3 2 13 2 1

ˆ ˆ ˆ( ) ( ) ( ( ) ( ) ( ( )))) ( )ˆ ˆ ˆ( ( )T T T
m m m tk W W Wk k k z k v kcu le k      
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where 3 12
ˆ ˆ ˆ( ) ( ), ( ),W W W kk k are the actual NN weights of the third, second and first layer re-

spectively and
1

( ( ))ˆ
m x k  represent the input layer activation function. Then

2
( )ˆ .m  , 

3
( )ˆ .m  

denote the hidden layer and output layers activation function respectively at the th
k  in-

stant. 

Define the weight estimation errors as 
1 1 1

ˆ ( )( )W W W kk  ,
2 2 2

ˆ ( )( )W W W kk  , 

and
3 3 3

ˆ ( )( )W W W kk  . Next the following fact can be stated.    

Fact 2: Similar to Fact 1, we have
1 1

( )
max

ˆ
m k m  ,

2 2
( )

max
ˆ
m k m  and 

3 3
( )

max
ˆ
m k m  .  

Additionally,
1 1 1

( ) ( )ˆ
m m mk k    , 

2 2 2
( ) ( )ˆ

m m mk k    , and
3 3 3

( ) ( )ˆ
m m mk k    .  

It is essential to note that the control input change prior and after the fault is 

summarized as  

  
3 3

ˆ ( )

( )
ˆ ( ) (.) ( ) ( )( ) ( ) ( ) ( )

(1 / )( ( ) ( )) ( )

ˆ .
T T

c m
W k

d t

t t

k

W k le k v k or k le v kc

g k f k le k

u




  

 


 





d

d

fork k

fork k




 

where 0d  is an user-defined constant, ( ) ( , ) /g k x u u   , and ( ) ( , ) ( 1)df k x u x k    are 

known smooth vector fields obtained from the known nonaffine nominal dynamics. Fi-

nally, 
dk  is defined as the fault detection time. Using the above equation, ( )ku  can be ob-

tained. 

Next, define 3

3 3
( )

ˆ ( )
( )

ˆ ˆ( )

T

T T

m

m m

c

v

W k B
k

B W k W k B

v
c




, where mB  is an appropriate dimensioned 

constant vector, and 0vc  , is a constant. Therefore, the tracking error dynamics after 

detecting a fault becomes 
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 3

3 3

1 2
( )

( ( )) ( ) ( ) ( )
ˆ ˆ( )

( )( 1) )
( )T

t g mt mt T T

m mt
t mt

m m v

W B C
x k k k k

B W k W k B

le ke k
c

  


    


           (18) 

where 3 31
ˆ( ) ( )( ( ) )

T

mt mk kW k   , 
2 3 3

( ( ) ( ))( )
T

mt W mk kk     , and 3

3 3

2
( )

( )
( )

ˆ ˆ( )

( )T

T T

m mt

m mk
mt

v

W k B C
k

B W k W B c


 


, 

1n

mtC


 is a constant vector. Next, the following lemma is required before proceeding 

any further. 

Lemma 3: The approximation error term, ( )mt k  of the NN can be expressed as a smooth 

nonlinear function of the tracking error and the MNN weight estimation errors as 

 

2

2

max

3 3

22

2 3 3 3 33

1

2

( ) ( ) ( ) ( ) ( )

ˆ ( )

ˆ ˆ1 5

( )

ˆ(2 ( ) )

T T T
i

i

T T

m m mm

i

i m
i

g m m g g m mt mt

m m

B k B B k k B k k

W k

k

   



    

 


  




    

    
3 33 3

22

0 1 2 3
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )m mt tp p e k p e k W k k p W k k        (19)  

where 0 1 2, , ,p p p and 3p  are computable positive constants.  

Proof: Similar to Lemma 1.  

Next, the following theorem on the asymptotic stability of the tracking error after a fault 

is introduced.  

Theorem 3: Consider the hypothesis presented in Theorem 1, and upon detecting the 

fault, let the control input change be given by
33

ˆ ˆ( ) (.) ( ) ( )( )
T

m t cW k le k v ku k     , where the 

MNN weight tuning be provided by 

1 1 11 1 1

ˆ ˆ ˆ ˆ( 1) ( )  ( )[ ( ) ( )]
T

m m m tW Wk k k y k B l ke               (20) 

22 2 22 2
ˆ ˆ ˆ ˆ( 1) ( )   ( )[ ( ) ( )]

T

m mm tW Wk k k y k B l ke                (21) 

with ˆ ˆˆ ( ) ( )  ( )
T

i iW
imy k k k . Let the weight update law for the third layer be provided by  
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33 3 33

ˆ ˆ ˆ( 1) ( ) ( ) ( 1) 
T

m mm tW k W k k k Be            (22) 

where 0mi
  ,

m mi i
B  , 1, 2, 3i  , denotes the learning rate or adaptation gains. Then, the 

tracking error, ( )t ke , is locally asymptotically stable, whereas the MNN weight estimation 

errors
1( )W k , 

2 ( )W k and
3 ( )W k are bounded. 

Proof: Refer to Appendix. 

Remark 7: It is important to note that the objective of the OLAD in the case of FD is to 

learn the fault dynamics whereas during fault accommodation it approximates the fault 

dynamics plus any system uncertainties. Additionally, the update laws in (10)-(12) and 

(20)-(22) relaxes the need for PE without the extra term (Jagannathan 2006). 

Remark 8: With the addition of the robust term, the persistency of excitation (PE) condi-

tion is not required in contrast with the past discrete-time controls literature where the PE 

condition is normally asserted for boundedness of the weights under the NN reconstruc-

tion errors. 

In the next section, we present a simulation example to study the performance of 

the proposed FDA scheme. 

5. Simulation Results 

 

Consider the nonaffine nonlinear discrete system (Yang et al., 2008) described in 

the state space form as 

1 2( 1) ( )x k x k   

2 3( 1) ( )x k x k   

3 2 1 2 1 2 1( 1) ( ) ( ))) 0.4 sin(0.8( ( ) ( )) 2 ( ) ( 1)) 0.1(9 ( ) ( ))0.2cos(0.8(x k x k x k x k x k u k u k x k x k            
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2

2( ( ) ( 1))
( ) ( ) ( )

1 cos( ( ))

u k u k
d k h k u k

x k

 
  


, 2

( ) ( )k x ky          (23) 

where 1 2 3( ) [ ( ), ( ), ( )]
T

x k x k x k x k is the state vector, ( )ky is the output, ( )u k is the control input, 

and ( )d k is a bounded disturbance acting on the system, which is taken as 

1( ) 0.035 sin(0.1 ) ( )d k k d k  , with 1 ( )d k being a white noise with a magnitude of 0.003, and 

the sampling time is taken as 0.02sec. An incipient actuator fault is seeded in the system 

which is given by 

0.5( 50)

( )
(1 )0.5

0

k

h k
e
 







50 sec
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
.  Moreover,  

 2 1
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( ) x k x k u k u k
k
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xu
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    




 


 

Using the above equation, one can observe that Assumption 2 holds. A reference 

trajectory is defined for tracking purposes as  

0.8 0.05(sin( / 50) sin( / 100) sin( / 150))

( )

0
d k

k k k
y

    



0

0

fork

fork




 

The initial conditions on the state vector is given by (0) [0, 0, 0]
T

x  , with the no-

minal control law prior to the fault is defined as ( ) (1 / 7)( ( ) ( )) ( )tu k g k f k le k    , where 

0.0001l  , and  

2 1 2 1
( ) ( ))) 0.4 sin(0.8( ( ) ( )) 2 ( )( ) 0.2 cos(0.8( k k k k kf k x x x x u     

 2 1

2

( 1)

2( ( ) ( 1))
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u k x k x k
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 
   


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Note, this nominal controller guarantees a stable tracking performance prior to the 

fault as shown in the following simulation results.  

 Next to detect faults, the following FD estimator described by  

1 2 1 1
ˆ ˆ ˆ( 1) ( ) 0.5( ( ) ( ))x k x k x k x k    

2 3 2 2
ˆ ˆ ˆ( 1) ( ) 0.7( ( ) ( ))x k x k x k x k    

3 2 2 2 2 2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( 1) ( ) ( ))) 0.4 sin(0.8( ( ) ( )) 2 ( ) ( 1)) 0.1(9 ( ) ( ))0.2cos(0.8(x k x k x k x k x k u k u k x k x k              

  3 3

2

2( ( ) ( 1))
ˆ ˆ( ( ), ( )) 0.6( ( ) ( ))

ˆ1 cos( ( ))

u k u k
h u k k x k x k

x k


 
   


            (24) 

is employed where 1 2 3
ˆ ˆ ˆ ˆ( ) [ ( ), ( ), ( )]

T
x k x k x k x k is the vector of estimated states. The OLAD 

ˆ ˆ( ( ), ( ))h u k k is chosen to be a three layer NN with 4, 6, 6 sigmoid neurons in the first, 

second, and third layers respectively. Additionally, the weights of the MNN OLAD are 

tuned online using (10)-(12) with
1

0.58  , 2
0.21  , and 

3
0.12  . Parameters of the ro-

bust term, ( )v k , is taken as 0.02mc   with vB being a randomly chosen constant vector.  

Due to system uncertainties, a threshold is chosen to avoid missed or false alarms. 

By taking 1.13  , 0.035
M

  , 0.01  , we have 0.04  , which is a constant threshold. 

As observed in Fig. 1, the norm of the residual stays within the threshold prior to the fault 

although it is bounded.  However, after the fault occurs, the residual exceeds this thre-

shold thus indicating the presence of a fault. Moreover, the OLAD is initiated to learn the 

unknown fault dynamics online while the robust term ensures asymptotic tracking. There-

fore, the residual drops and converges asymptotically to zero. This verifies the theoretical 

results presented in this paper.  
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Fig. 1: Residual norm and fault detection threshold.  

 

Next, the tracking performance of the controller without the fault accommodation 

scheme is shown in Fig. 2. 
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Fig. 2: Tracking performance w/o fault accommodation. 

 

From the figure, one can observe that the tracking performance of the system de-

teriorates after the fault occurs. The change in the control input is summarized as 

(1 / 7)( ( ) ( )) ( )

( )

ˆ ( )ac

g k f k le k

u k

u k

t

 





 

d

d

fork k

fork k




 

where 3 3

ˆ ˆˆ ( ) ( ) (.) ( ) ( )
T

mac t cu k W k le k v k   by using a MNN. The MNN is chosen to be a three-

layer network with 6, 8, 3, sigmoid neurons and tuned online using the update law in 

(20)-(22) with 0.049
1m  , 0.039

2m  , and 0.28
3m  . Additionally, the parameters of the 
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robust adaptive term are taken as 0.085vc  , with mB  randomly chosen constant vector. 
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Fig. 3: Tracking performance with fault accommodation. 

 

Fig. 3 illustrates the fault accommodation scheme upon detection which clearly 

demonstrates the regained tracking performance. Therefore, this simulation demonstrates 

the satisfactory performance of the proposed FDA scheme.  

6. Conclusions 

 

In this paper, a FDA scheme comprising of a nonlinearly parameterized approx-

imator for nonaffine nonlinear discrete-time system is introduced. The proposed fault 

detection scheme quickly detects and learns the unknown faults online. Subsequently,  an 

online fault accommodation stragtegy was introduced, where the corrective control is 

derived using both a linearly and nonlinearly parameterized approximators. The scheme 

renders asymptotic stability by introducing a robust term and under mild assumptions on 

the system uncertainites. In addition, the stability is verified mathematically and also in 

simulation. Since the accommodation uses the measured states of the system, in the 

future, the state measurability will be relaxed.   
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Appendix 

Proof of Lemma 1: Consider (8), solve, and apply the Frobenius norm. Additionally, 

note 
max max0 0(1 )A A  if

max0 0.5A  (where 
max0A is the maximum singular value of

0A ), also de-

fine
0

(0)
max

max

0 0

vk
B

A e

A

b


   with the vector
vB  could chosen in such a way, such that 

3 3 3

0 0

( ) ( ) ( )

max max

ˆvk B k k

A A

  
 . Define 

0max

1

2

A

b  .  Then using (8), we have 

3 33 33 3

22
2 22 1

02

1

1

( ) ( )( ) ( )( ) ( )
2

0max
max max0max

2 10 1
0

0 0

ˆˆˆ ( )
( ) ( ) ( )

22 k kk kk k kb
k A k k

A A A

b eb b
b e e b

   
     


 


                                            

 Apply Cauchy-Schwarz inequality to terms numbered as 1 in the above equation, 

pre-multiply 3 3 3 4ˆ ˆ5 )(
T

    and add

22

2

max

2

1

ˆ2 ( )

ˆ ( )(2 )

i

i i

i

i

k

k

 








, take       

22

2

max

2

1
0

2 ˆ ( )

ˆ ( )(2 )

i i

i i

i

k

k













 

0

2 2
0 3 3 33 4

max
ˆ ˆ5 )(

T
A b     ,

0

2

1 3 3 32 4
max

ˆ ˆ5 )(
T

A     , 2 3 3 3 4
2
1

ˆ ˆ2 5 )(
T

b     , and 

3 3 3 3 4
max0 1

ˆ ˆ2 5 )(
T

A b     , will yield (9). 

Proof of Theorem 1: Consider a Lyapunov candidate as 

1 1 2 2 3 3

1 2 3

1 1
( ) ( ) ( ) ( ) ( ) ( ) [ ( ) ( )]

1
[ ] [ ]

T T T T
k k k k k kV tr k ke e tr tr     

  
          

whose first difference is given by    

1 1

1
1

2

1 1

1
( 1) ( 1) ( 1) ( 1) ( ) ( )( ) ( ) [ ]

T T T T

V

V

k k k k k kV k ke e tre e    






               
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3 3 3 3

3

4

2 2

3

2 2

2

1
( 1) ( 1) ( ) ( ) [ ( 1) ( 1) ( ) ( )]

1
[ ]

T TT T

VV
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           (A.1)             

Substitute (8) in 1V of (A.1) and perform some mathematical manipulations to yield 

0

0 3
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3 3
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Substituting (10) in 2
V of (A.1) and performing some mathematical manipulations to 

render 
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1
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Substituting (11) in
3

V of (A.1) and after performing mathematical manipulations to arrive 

at 
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Substituting (12) in 4
V of (A.1) and performing some mathematical manipulation would 
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result in the following equation  
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Since
1 2 3 4

V V V V V       , combining (A.2)-(A.5), and performing some mathemati-

cal manipulations, the first difference of the Lyapunov candidate is expressed as 
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Consider only terms numbered as ‘1’ in (A.6) as 
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Next, consider only terms numbered as ‘2’ in (18), to render 
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Use the modifications suggested in (A.7), (A.8), and Lemma 1 in (A.6), the first differ-

ence can be rewritten as  
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both sides of the equation (A.9), and since 0V  , we have
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Substitute tracking error dynamics (18) in 1J of (A.10), we have  
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Substitute (20) in 2J of (A.10) and perform some mathematical manipulation to yield 
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Substitute (21) in 3J of (A.10) and perform some mathematical manipulation to arrive at 
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Substitute the tracking error dynamics in the above equation and solve further to yield  
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where 0i  , 1, 2, 3, 4i   is a constant. Since 1 2 3 4
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Consider only terms numbered as 1 in (A.15), we have 
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Next, consider only terms numbered as 2 in (A.15), we have 
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Use (A.16), (A.17), and Lemma 2 in (A.15), then the first difference of the Lyapunov 
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From (A.18), 0J  , which shows stability in the sense of Lyapunov provided the 

gains are selected as 
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bounded. Additionally summing both sides of the equation (A.18), and using 0J  , we 
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 

Abstract—In this paper, an observer-based fault detection and prediction (FDP) scheme 

using artificial immune system (AIS) as an online approximator is introduced for a class of 

nonlinear discrete-time systems. Traditionally, AIS was considered as an offline tool for 

fault detection in an ad hoc manner. However, in this paper, the AIS utilized as an online 

approximator in discrete-time (OLAD) is considered while its parameters are tuned online. 

A nonlinear observer comprising of the AIS and a robust adaptive term is used for detecting 

faults in the given nonlinear system. A fault is detected by comparing the residual against 

apriori chosen threshold, which is obtained by comparing the output of the nonlinear 

estimator to that of the given system. Upon detection, the AIS and the robust adaptive term 

are initiated in the observer, where the AIS parameters are tuned online using a suitable 

update law for learning the unknown fault dynamics. Additionally, this update law is used 

to estimate the time-to-failure (TTF), which is considered as a first step for prognostics On 

the other hand, the robust term, which is a function of the AIS parameter vector, is used to 

deliver asymptotic convergence of the residual unlike bounded stability in other schemes. 

The performance of the proposed FDP scheme is first demonstrated on a two-link robot 
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arm and an axial piston pump in simulation and subsequently on an axial piston pump test 

bed.  

I. Introduction 

 

Modern engineering systems require early fault detection and warning system to 

render safe and reliable service. Therefore, numerous efforts have been under taken in 

addressing the problem of fault detection and prediction (FDP). Due to the presence of 

noise and system uncertainties, the problem of fault detection (FD) is complex thus 

requiring robustness. The commonly used FD methods include quantitative or model-based 

[1] and qualitative or data-driven based techniques [2]. The qualitative based techniques 

are found to be expensive [1] due to the need for large quantities of data and are dependent 

upon region of operation. However, quantitative methods require a suitable representation 

of the nonlinear discrete-time systems. Typically, an observer is utilized to represent the 

nonlinear system.  

In the past literature, FD efforts are limited to linear systems [1-5], by using a 

sliding mode observer [3], geometric approach [4], and parity relations [2] etc. Typically, 

in the observer based approach, a residual is generated by comparing the observer output 

with that of the actual system. Moreover, a fault is detected by comparing the generated 

residual against apriori chosen threshold. However, selection of the threshold is a 

challenging task due to the presence of uncertainties, but an analytical procedure has been 

developed to identify thresholds [5] analytically.  

 In the recent years, with better understanding of nonlinear control system theory, 

the techniques proposed for linear systems have been extended to nonlinear systems. Such 
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schemes include the sliding mode observers [6], geometric approach [7], adaptive and 

diagonal observers [5, 8, 9] and so on. A recent survey on the various FD schemes for 

nonlinear systems can be found in [10]. Another aspect that is of interest to the FD 

community is the stability and the robustness of the FD schemes. Recently, various FD 

schemes [5- 9] have been proven to be stable. However, most of the developments are in 

continuous-time and not much has been accomplished in the discrete-time.  

Another important feature in general unavailable in the previously reported 

schemes [3-9] is the time-to-failure determination (TTF) since TTF is the first step for 

prognostics assessment. Some TTF schemes like the data-driven approaches [11-13], 

assumed a specific degradation model which has been found to be limited to the system or 

material type under consideration. Another scheme [14] employs a deterministic 

polynomial and a probabilistic method for prognosis by assuming that certain parameters 

are affected by the fault while others [15] use a black box approach using neural network 

(NN) on the failure data. All these schemes [11-15] while being data-driven address only 

TTF prediction, require offline training and do not offer performance guarantees. 

Therefore, it is envisioned that a unified FDP scheme will be necessary to alert an 

impending failure and provide the remaining useful life. 

Discrete-time development is important due to the stability problems incurred in 

the direct conversion of the continuous time FD schemes to discrete-time [16]. Recent 

developments in discrete-time include [16, 17], where a FD scheme is introduced by using 

the persistent of excitation (PE) condition. Since it is very difficult to verify or guarantee 

PE, in our previous work [18], a FD scheme using linearly parameterized online 

approximators is introduced by relaxing the PE requirement. However, bounded stability of 
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all the signals is demonstrated similar to the case of fault detection algorithms in 

continuous-time.  

 In contrast, in this paper a FDP scheme for nonlinear discrete-time systems with 

guarantees of asymptotic stability is introduced by using an observer. To best of our 

knowledge not many FDP schemes in discrete-time render asymptotic stability. However, 

in [19], asymptotic stability of a continuous time FD scheme for robotic systems with 

specific actuator faults is undertaken. The FD scheme proposed in this paper comprises of a 

nonlinear observer, which is used for detecting faults in the given system. Additionally, the 

nonlinear observer comprises of an online approximator in discrete-time (OLAD) and a 

robust adaptive term generated by the OLAD parameter vector. The OLAD and the robust 

adaptive term are initiated only after the detection of a fault. Moreover, a fault is detected 

by comparing the generated residual against apriori chosen threshold. The residual is 

generated by comparing the outputs of the nonlinear system with that of the observer. By 

using a suitable update law, the parameters of the OLAD are tuned online to learn the 

unknown fault dynamics. Additionally, the robust adaptive term is used to guarantee the 

asymptotic convergence of the residual and the parameter estimation errors after the 

occurrence of the fault and in the presence of the uncertainties.   

Most of the previously proposed FD scheme [5, 9, 16-18] uses neural networks or 

fuzzy systems as online approximators. However, in this paper, we use an artificial immune 

system (AIS) as the OLAD since biological immune systems detect external virus and 

protect the human body. Conventionally, AIS has been considered as an offline tool for 

applications such as classification, pattern recognition and detection. Additionally, offline 

data based training schemes are proposed to obtain AIS [20-30] parameters. However, in 
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this paper a new online adaptive law is introduced for tuning the AIS parameter vector 

online while demonstrating that the AIS is an online approximator.  

 In general, AIS draws inspiration from the biological immune system. In the event 

of a disease causing antigen (such as virus, bacteria etc.) attacking the human body, the 

immune system detects the foreign bodies and responds to the antigen by releasing suitable 

antibodies. Based on the affinity between the released antibody and the antigen, the disease 

causing antigen is destroyed. Moreover, the immune system memorizes the type of 

antibodies utilized to kill the antigen, so that in future attacks it ensures a quick release of 

antibody to overcome the antigen. The inherent advantage of the immune system in 

detecting anomalies makes it as a natural candidate for system identification [21], FD 

[25-29] and control [30] when compared to neural networks (NNs) which are derived from 

neurological system.  

However, existing AIS-based methods [22, 25-30] are data driven, ad hoc and 

require extensive offline training to tune the AIS parameter vector. Therefore, in this paper, 

AIS is used as an OLAD, which is a part of the nonlinear FD observer. Moreover, the AIS 

parameter vector is tuned online without any apriori offline training. Moreover, 

mathematically, the asymptotic convergence of the residual and the parameter estimation 

errors of the FD scheme after the occurrence of the fault is shown by using Lyapunov 

analysis.   

Using the parameter update, mathematically a method is proposed to derive the 

TTF by projecting the current value of the parameter to its limit provided the limiting 

parameter value is defined by the designer. This process is iteratively performed to 

continuously predict TTF up to the failure threshold beyond which the system is considered 
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unsafe. For most practical systems, the unknown parameters could be tied to physical 

entities thus making the parameter-based TTF determination very useful. Alternatively, the 

state trajectories from the FD estimator can be utilized for TTF determination due to 

asymptotic convergence. Finally, simulation examples and experimental results are 

presented to show the performance of the proposed FDP scheme. 

 The important contribution of this paper is the asymptotic stability of the FD 

scheme for nonlinear discrete time systems using the robust adaptive term and the AIS as 

an OLAD. Addition of the robust adaptive term complicates the stability analysis whereas 

the Lyapunov proof is still offered.  In addition, the time to failure determination is 

introduced by using the AIS parameter vector. Finally, the online fault detection and 

prediction is verified on an experimental test bed. 

This paper is organized as follows: Section II provides background on the AIS. 

Section III introduces the system under investigation whereas Section IV explains the FD 

scheme and the stability analysis. Section V introduces the prediction scheme whereas 

Section VI provides simulation results and Section VII explains the experimental results. In 

Section VIII conclusions and future work are given.  

II. Artificial Immune System as Function Approximators 

 

In biological organisms, the function of the immune system is to protect the body 

from invasion by foreign objects, called antigens.  This is done by lymphocytes, which 

comprises of the two main types of white blood cells: T-cells and B-cells.  There are two 

classes of T-cells: killer T-cells and helper T-cells.  When an infection is detected, the killer 

T-cells destroys the infected cells whereas the helper T-cells assist in engulfing and 
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destroying the invading pathogens.  In addition, the helper T-cells stimulates B-cells to 

produce clones of antibodies to attack the pathogen.  The B-cells fine tunes the antibodies 

to increase their affinities to the antigen being encountered. The higher the affinity is, the 

stronger the immune response will be. Additionally, more antibodies will be released to 

mitigate the antigen. Antibodies with highest affinity are retained while a feedback is 

provided to the T-cells to store in memory the type of antibody required for a particular 

antigen. This would help in mitigating future attacks by the similar antigen. Interested 

readers for further reading could refer to [20].  

Based on this understanding, a recent work on AIS can be found in [21, 23] wherein 

the AIS is utilized to solve engineering problems. For instance, in [24], AIS is used for 

identification of nonlinear systems. In this method, an offline data based training scheme is 

proposed for the nonlinear system identification. However, an interesting contribution is 

the definition of a mathematical equation to describe the function of the AIS for system 

identification 

1

1

1

ˆ )(

N

N

N

d

i
i

j ij i
d

i

i

f

i ij

i ij

m a

a e

e

x














 





                           (1) 

where 1,...,i N  is the number of antibodies, 1,..., sj N is the number of data sets, ijm is the 

th
ji affinity function, i is the shape parameter, ia is the appropriate immune response, 

d x pj iij   is the Euclidean distance between the th
j antigen epitope vector ( x j ) and the 

th
i antibody receptor vector pi .  
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For engineering problems, the artificial immune response considers the unknown 

data as antigen, and the output is the net response of all the antibodies (i.e., output of 

equation (1)). Therefore, by calculating the error between the estimated and the actual 

value, the parameters of the AIS function are updated. However, the AIS training is an 

iterative process and is performed offline. Therefore, in this paper, a new online tuning 

mechanism is proposed to tune the parameters of the AIS online by using adaptive control 

techniques. Moreover, we use the same mathematical equation as that given in [24] to 

describe the function of the AIS and exploit the function approximation property.  

To guarantee that the AIS scheme could be utilized for approximating any unknown 

function over the compact set, in the following theorem we show that indeed an AIS 

possesses function approximation properties. This enables AIS to be an OLAD similar to 

an artificial neural network, fuzzy logic and other online approximators. However, AIS is 

preferred for FD due to its natural affinity of detecting and preventing antigen attacks when 

compared to other online approximators. 

Theorem 1: For every continuous smooth function f  , every AIS basis function , every 

probability measure  , and every 1an  , there exists a linear combination of AIS 

functions ˆ ( )af x , such that 

   
2

2 2ˆ( ) ( )a
B a

C

n
f x f x                               (2) 

where 0C  , B is a compact set, and an is the number of antibodies or the size of the AIS 

function.          

Proof: Follow steps similar to [31].     
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As shown in this theorem, the use of AIS in approximating unknown functions is 

valid.  Therefore, similar to neural networks, the unknown function ( ( )f x ) and the 

estimate of AIS could be written as  

)( ( ) ( )
T

f a kxx    , 

ˆ ) ( )( ( )
T

af ka xx  , 
1ˆ n

af


                            (3) 

where 
l n

a


 is the unknown ideal immune response, ( )k is the approximation error 

and bounded by a known constant, i.e., ( ) ak   . Also, ( )
l n

a k


 is a matrix of 

estimated immune response, 
1

( )
l

x


 is the basis function which is given by  

1 1

( )

1 1

,.....,

T

dd

l l
d d

i i

x

l l

i ij i ij

e e

e e



 




 

 



 
 
 
 
  
 

      

where i , 1, ....,i l  is a positive randomly chosen shape parameter, d x pii   , where 

1n
x


 is the input to the AIS basis function, 

1n
pi


 , 1, ....,i l  is a randomly chosen 

constant vector.  

With this understanding on AIS, we next proceed with the discussion on the system 

under investigation. 

III. Problem Statement 

Consider the following general class of nonlinear discrete-time systems described 

by 

( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))x k x k u k x k u k h x k u k                        (4) 

where nx  is the system state vector, mu  is the control input vector, : n m n     , 
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:
n m n

    , :
n m n

h     are smooth vector fields. The term ( ( ), ( ))x k u k  

represents the known nonlinear system dynamics while ( ( ), ( ))x k u k  is the system 

uncertainty. The unknown fault function
0

( ) ( ( ), ( ))( ( ), ( )) k k f x k u kh x k u k   with ( ( ), ( ))f x k u k  

representing the unknown fault dynamics while 
0

( )k k   being a n n  square matrix 

function representing the time profiles of faults, and 
0 0k   is the initial time. 

Typically, the time profile of the faults are modeled by 

0 1 0 2 0 0
( ) ( ( ), ( ), ...., ( ))

n
k k diag k k k k k k         

where  

i-

0

( )

0

0,             if 
   for 1, 2, ...

1 -  , if 
i i n

e
 








 








                   (5) 

and 0i   is an unknown constant that represents the rate at which the fault in the 

corresponding state ix  occurs. The term ( )i   approaches a step function when i is large, 

which in turn represents an abrupt fault whereas a small value of i implies incipient faults.  

It is important to understand that the exponential time profile is only used to classify the 

faults as incipient or abrupt. However, ( ( ), ( ))f x k u k represents the magnitude and the type 

of the fault. Since the fault function is expressed as a nonlinear function of the system states 

and the inputs, therefore, it represents a wide range of faults that can potentially occur in a 

given system.  For example, such faults could be a piston wear in a compressor or an 

actuator fault. 

Remark 1: The known nominal dynamics in (4) is in nonaffine form. However, for affine 

systems, the known nominal dynamics could be written 
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as ( ( ), ( )) ( ( )) ( ( )) ( )gfx k u k x k x k u k    , where, 
1n

f


 and 
n m

g


 are known smooth 

functions. However, the system uncertainty and the faults still be expressed in nonaffine 

form and are functions of the system states and the input. It is important to note that the 

following discussion for nonaffine systems is also applicable to affine systems.  

Remark 2: Modeling faults using the above time profile is quite common in the FD 

literature [32], and is used extensively by researchers [5, 9, 16-18].  

Before proceeding any further, we propose the following assumption.  

Assumption 1: The modeling uncertainty is unstructured and bounded [5, 9, 16-18] above 

satisfying ( ( ), ( )) ,  ( , ) ( )
M

x k u k x u U      where 0M   is a known constant.  

Remark 3: The uncertainties have to be bounded above in order to identify faults from 

system uncertainties.  

In certain previously reported FD schemes [3, 8], the system uncertainty is assumed 

to structured, which helps to simplify the development of the FD scheme. In other schemes 

[1-3], structured faults are assumed, which also simplifies the development of the FD 

scheme. However, such assumptions are not considered in this paper.  

In this paper, we consider a general framework for nonlinear systems with 

unknown system uncertainty. However, this complicates the design of a FD scheme, but is 

still undertaken in this paper.  In the next section, the fault detection scheme is introduced 

by using a novel nonlinear observer using AIS as the online approximator. Additionally, 

using Lyapunov theory, the asymptotic performance of the proposed FD scheme is shown.  
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IV. Fault Detection Scheme 

In this FD scheme, a nonlinear observer is designed to monitor and detect faults in 

the given system described in (4). It is essential to understand that the purpose of the FD 

observer is not to estimate the system states [16, 17] whereas to obtain residual for the 

purpose of detection.  

A. Observer Dynamics 

 

Consider the nonlinear observer described by 

0 0
ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( ) ( )A Ax k x k x k u k h x k u k k x k v k                         (6) 

where ˆ n
x  is the estimated state vector, 

0
A  is a constant n n  design matrix chosen by 

the user, ˆ :
n m q n n

h


    is the online approximator in discrete-time (OLAD) [18], 

ˆ q n



  is a set of adjustable immune system parameters, and ( )v k is the robust adaptive 

term, which is to be defined later. Prior to the fault, the initial values for the estimated 

model (6) are taken as ˆ(0) (0)x x ,
0

ˆ ˆ(0)  , so that 
0

ˆ ˆ, ) 0( ,h x u    for all x   and u U . 

Typically, the commonly used OLAD’s are neural networks, fuzzy systems etc. However, 

in this paper, we consider AIS as an OLAD. Therefore, the AIS based OLAD is defined by 

using (3) as  

ˆ ( )ˆ ˆ, ) ( )(
T

h kz z                                     (7) 

where [ , ]
T

x uz  is the input vector, ˆ( )
l n

k


 is a tunable immune system response, 

and ( )z is the AIS basis function as defined in (3).  

Remark 4: Upon the detection of the fault, the OLAD and the robust adaptive term are 

initiated. 
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Now define the detection residual or state estimation error as ˆe x x  . Then from 

(4) and (6) prior to the fault the residual dynamics are given by 

0
( 1) ( ) ( ( ), ( ))Ae k e k x k u k                         (8) 

In order to detect faults in the given system, the residual is compared against a known 

threshold via a dead-zone operator. The selection of the threshold is a challenging task; 

however a mathematical procedure is developed for selecting it by using (8). It is important 

to note that by using a threshold, the robustness of the fault detection scheme can be 

improved [1, 2, 5, 16-18].  

Prior to the fault, the residual, ( )e k , remains within the threshold.  However, in the 

event of a fault, the residual increases and crosses the threshold and therefore a fault is 

declared active.  We define the threshold operator as [ ]D     

if ( )0,  
[ ( )]

if ( )( ),

e k
D e k

e ke k














                           (9) 

where 0   is the threshold. The selection of the dead-zone size   clearly provides a 

tradeoff between reducing the possibility of false alarms (robustness) and improving the 

sensitivity of the faults. The selection of an appropriate value for  is addressed next. 

B. Fault Detection Threshold Selection 

 

A suitable threshold is selected by solving the residual dynamics (8) through 

standard linear control theory as
0

1
1

0

( ( ), ( ))( )
k

k j

j

x k u ke k A 


 



 . Since the matrix 0
A is stable 

with its poles chosen inside the unit disc, there exists two positive constants  and
c  such 

that the Frobenius norm [33] 0 1
k k

cA    . Therefore, ( )
(1 )

(1 )
M

k

e k 








, where c   .  
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This implies that the threshold can be selected as a constant value
(1 )

M



 or a 

time-varying function as
(1 )

(1 )

M

k










 . As a consequence, the residual ( )e k  remains within 

the threshold for all
0

k k and the OLAD and the robust adaptive terms stay at zero. 

The dead-zone operator is utilized to turn the OLAD and robust adaptive terms 

online. Prior to the fault, i.e., ( )e k  , ˆ( )

0 . . . 0

. . . . .

. . . . .

0 . . . 0
l n

k





 
 
 
 
 
 

, 0 k T  , and 

 ( ) 0, 0, ...., 0
T

kv  . This means  ˆ ˆ( ( ), ( ); ( )) 0, 0, ...., 0
T

h x k u k k  , in the time interval 0 k T   

prior to a state or output fault.  

When the residual exceeds the detection threshold, i.e., ( )e k  , a fault is declared 

active and the OLAD schemes that generate, ˆ(.)h is initiated. A standard delta-based 

parameter tuning algorithm [34] can be utilized whereas it is slower in convergence. To 

overcome this problem, the following parameter update law is used 

( )ˆ ˆ ˆ( 1) ( ) D[ ( 1)] ( ) ( ) ( )
T T

kk k k k k ke I                         (10) 

is proposed where 0  is the learning rate, 0  is the adaptation rate, and ( )k is the 

OLAD basis function. Now using Theorem 1 and equation (3), we rewrite the fault 

dynamics in (4) as  

1
( ( ), ( )) ( ( ), ( )) ( )

T
h x k u k x k u k k                            (11) 

where 
l n




  is the target parameter matrix such that the approximation error 
1
( )k  is 

bounded above and ( ( ), ( ))x k u k is the known basis function of the AIS. By appropriate 
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selection of the antibodies in the AIS scheme, the approximation error can be decreased. 

The output of the OLAD is given by  

ˆ ˆ ˆ( ( ), ( ); ( )) ( ) ( ( ), ( ))
T

h x k u k k k x k u k                           (12) 

where ˆ( )k
l n




  is the estimated AIS parameter matrix.  

 With this understanding of the proposed observer design, the stability of the 

proposed fault detection scheme will be studied next. By using (4) and (6), the residual 

dynamics after the fault is given by  

0
ˆ ˆ( ( ), ( )) ( ( ), ( ); ( )) ( )( 1) ( ) ( ( ), ( ))A h x k u k h x k u k k v ke k e k x k u k      

where the robust adaptive term is defined as
1 1

1
ˆ ( )

( )
ˆ ˆ( ) ( )

T

T T

c

k B
v k

B k k B c



 



,with

1

1l
B


  is a 

constant vector and 0cc   a constant. Next using (11) and (12), the residual dynamics is 

rewritten as 

1 1

1

0
( 1) ( ) ( ) ( , )

ˆ ( )
( )

ˆ ˆ( ) ( )

T

T

T T
k k k x u

c

k B
A e k

B k k B

e
c

 



 

 


                    (13) 

where 1( ) ( ) ( ( ), ( ))k k x k u k    with the parameter estimation error defined as ˆ( ) ( )k k    . 

Next, add and subtract
 

1 1

1 1

ˆ ˆ( ) ( )

T

T T

B C

B k k B cc



  


, in (13), where 

1

1

n
C


  is a constant vector.   

The residual dynamics become  

 
1 1

1

1 1

0 2
( 1) ( ) ( ) ( ) ( )

ˆ ˆ( ) ( )

T

T T

c

B C
k A e k k k k

B k k B

e
c




 


   


                       (14) 
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where 1
( )( ) ( , )

T
kk x u    and

 
2

1 1

1 1( )
( )

ˆ ˆ( ) ( )

T

T T

c

k B C
k

B k k B c



 


 


. Next the following lemma is 

needed in order to proceed.  

Lemma 1: The term, ( )k , comprising of the approximation error,
1 ( )k , and the system 

uncertainty, ( ( ), ( ))x k u k  are bounded above according to  

2 2

0 2 31 ( ) ( ) ( )( ) ( ) ( )
T

M k k kk k d d d e k d e                        (15) 

where 
0 1 2, , ,d d d and 

3d  are computable positive constants.   

Proof: Refer to Appendix.  

Remark 5: This lemma is necessary similar to the case of continuous-time [38] while such 

results are not available for discrete-time systems. This result is very mild [35-38] when 

compared to the case where the approximation error is considered bounded above by a 

known constant.   

Next, the following theorem guarantees the asymptotic stability of the proposed FD 

scheme after a fault occurs. Additionally, it is clear that prior to the fault the system remains 

stable for a bounded system uncertainty ( ( ), ( ))x k u k . This is evident from (8) since
0

A has 

eigen values within the unit disc.  

Theorem 2 (FD Observer Performance upon Detection):  Let the proposed nonlinear 

observer in (6) be used to monitor the system given in (4). Let the update law given in (10) 

be used for tuning the immune response of the AIS based OLAD. In the presence of a fault 

and bounded system uncertainties, the detection residual, ( )e k , and the parameter 

estimation errors ( )k  are locally asymptotically stable provided: 
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(a)  
 max 2

max

0

(1 / 5)

4 20 (2 1 / )

A
  




  ,  0 1                    (16) 

(b) 
1 1

( ) ( )

( ) ( )

1
T

T

Cr
I k k

I k k

 
 


 





                       (17) 

and 

(c) 0 0.5s  , 0 1                              (18) 

where 
max0 0A A , max

( )k  , and 0Cr  is a constant.  

Proof: Refer to Appendix.  

Remark 6: Theorem 2 guarantees the asymptotic stability of the proposed FD scheme after 

a fault occurs. In other words, the proposed OLAD will characterize the faults accurately in 

comparison with the detection schemes in continuous-time where a bounded residual is 

demonstrated [5, 9].  

 In the next section, the prediction scheme is introduced. 

V. Prediction Scheme 

 

Thus far, a new FD estimator design using the AIS as online approximator was 

introduced and its stability was studied rigorously.  Now TTF can be determined using the 

behavior of the immune system parameter trajectories before and after the occurrence of a 

fault. The following assumption holds in deriving the TTF. 

Assumption 2: The parameter vector ˆ( )k  is an estimate of the actual system parameters.  

Remark 7: This assumption is satisfied when a system can be expressed as linear in the 

unknown parameters (LIP). For example, in a mass damper system, or in civil 
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infrastructure such as a bridge, the mass, damping constant and spring constant may be 

expressed as linear in the unknown parameters. In the event of a fault, system parameters 

change, and tend to reach their limits. When any one of the parameters exceeds its limit, 

operation is considered unsafe.  TTF is defined as the time elapsed when the first parameter 

reaches its limit. The TTF can also be analyzed with lower limits. 

In this section, to develop an explicit mathematical equation for predicting TTF, we 

use the parameter update law given in (10). Subsequently, by using this equation, we 

develop an algorithm for the continuous prediction of TTF iteratively at every time instant. 

Alternatively, estimated state trajectories can be employed as well if the states can be 

related to physical quantities. Next, the mathematical equation is presented in the following 

theorem. 

Theorem 3 (Time to Failure): If the system in (4) can be expressed as LIP, the TTF for the 

ij
th

 system parameter at the k
th

 time instant can be determined using  

  
  

max

0

0
log(1 )

log

T T

T T

Tj jfi i

ij ij

ij ij

e

e

I

I

I

k k

  

  

 

 

 

 

 

 

 

 
  
 

                (19)   

where 
jfi

k is the TTF, 0 j
k

i
is the time instant when the prediction starts (bearing in mind that 

dt
k  was the initial value, which increases incrementally), 

maxij is the maximum value of 

the system parameter, and 
0ij is the value of the system parameter at the time instant 0 ji

k .  

Proof: Refer to [39].  

Remark 8: The mathematical equation (19) presents the TTF for the ij
th

 system parameter. 

In general, for a given system with a parameter vector, the TTF would 
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be )min( , 1, 2, ........
ft f ji

k k li  , 1, .......,j n , where l n  are the number of system parameters. 

The TTF is defined as the time elapsed when the first parameter reaches its limit.  The 

speed at which the actual parameters approach their target values is dictated by the learning 

rate or adaptation gain and the design constant in the parameter update law (10). A small 

value for the learning rate implies slower convergence which further means that the TTF is 

not as accurate when the learning rate is higher. However, a large value of the learning rate 

can speed up the convergence. Increasing the learning rate can cause hunting problems 

which will result in inaccurate prediction of TTF. 

Remark 9: Although the proposed prediction scheme is based on the parameter trajectory, 

estimated system states could also be used for prediction since asymptotic stability is 

proven.  A relationship similar to (19) can be derived for TTF using (6). However, for 

brevity, no further discussions on the use of state trajectories for prediction are included in 

this paper. 

Remark 10: The proposed prediction scheme could be applied to unknown systems that 

satisfy LIP. It could also be applied to systems with partial information that satisfy LIP. 

Such systems were addressed in Section III.  

Figure 1 provides a flow chart of the iterative algorithm to determine TTF ( ftk ) for 

each system parameter.  The TTF is calculated at each time instant starting when a fault is 

detected until the system parameter reaches its maximum value (threshold). Therefore, it is 

logical that the TTF decreases as the parameters approach their corresponding limits. The 

simulation results presented below will indeed show that the performance of the FDP 

scheme as indicated in the theorems can be demonstrated in simulation. By tuning the 
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system parameter estimate ( ˆ ( )i k ) to update the TTF recursively, the system could be more 

accurately monitored than would be possible with other methods [13, 14]. In fact, the TTF 

will not be accurate when the parameter estimate vector is just started. Over time when the 

parameter vector starts converging to its true values, the TTF prediction starts improving. 

Additionally, no prior offline training is required to estimate the system parameters, which 

significantly reduces the burden of collecting data. 

 

 

Figure 1: Flow chart indicating the TTF determination. 

 

    In the next section, we present some simulation example and later some 

experimental study to illustrate the proposed FDP scheme.  
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VI. Simulation Results 

 

In this section, two different simulation examples are presented to demonstrate the 

proposed fault detection scheme. Initially, a two link manipulator is considered followed by 

an axial piston pump.  Subsequently, in the next section, the proposed FDP scheme is 

verified on a pump test bed.  

A. Two Link Robot Manipulator 

 

A schematic of a two degree of freedom manipulator is shown in Fig. 2 and its 

dynamics model is given below [24] 

         FGVM  ,                              (20) 

where
1 2

[ , ]
T

   is the vector of angular positions and 1 2
[ , ]

T
   is the vector of angular 

velocity of  links 1 and 2 respectively. Additionally,  M  is the inertia matrix,   ,V is the 

coriolis or centripetal matrix,  G  is the gravity vector, and  F  is the friction vector. 

Moreover,  is a vector of torque input applied to the two link manipulator. 

 

 

 

Fig. 2: Schematic of a two link manipulator.  
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For convenience, we express (20) in the following discrete-time state space form  

21 1( 1) ( ) ( )k k kTxx x    

3 4 3
( 1) ( ) ( )k k kTxx x    

1 1 121

3 3 3

2 1 3

4 2 4 4

( 1)

( 1)
,

k

k

x
T M V G F

x

x x xx x

x x xx x









   

                 
                  

                 

2

4

( )

( )

x k

x k

 
  
 

 

where 1 2 3 4[ , , , ]T
x x x x x is the system state vector. We assume an actuator fault, which is 

expressed as 0.05( 40)

1( )[0,1.8(1( ) ) ,0,0]k T
keh k  

  . The fault is induced at the 40
th

 second of 

system operation with a growth rate of 0.05. Moreover, we assume the sampling time for 

this simulation is taken as 10 secT m . Additionally, a white noise is introduced in this 

simulation with a magnitude of 0.004 units and a constant uncertainty of 0.5 units. To 

monitor and detect faults in the given system, we use the following FD estimator  

21 1 1 1( 1) ( ) ( ) 0.005( ( ) ( ))ˆ ˆk k k k kTxx x x x     

3 4 3 3 3
( 1) ( ) ( ) 0.005( ( ) ( ))ˆk k k k kTxx x x x    

1 1 121

3 3 3

2 1 3 2 2 2

4 2 4 4 4 4 4

( 1) ( ) 0.005( ( ) ( ))

( 1) ( ) 0.005( ( ) ( ))

ˆ
,

ˆ

k x k k k

k x k k k

x
T M V G F

x

x x xx x x x

x x xx x x x






 

 
   

                   
                   

                   
(21) 

where 1 2 3 4
ˆ ˆ ˆ ˆ ˆ[ , , , ]T
x x x x x  is the estimated state vector, the OLAD is taken as 

1
ˆ( ) ( )[0,ˆ( ) ,0,0]T

k kh k   . Next, using (20) and (21), we generate the norm of the residual as 

shown in Fig. 3. Since we assumed some disturbances, therefore, we need a threshold to 

improve the robustness of the proposed fault detection scheme. The threshold is derived by 

taking 1.03  , 0.01  , and 0.5M  , we have 0.52  . As seen in Fig. 3, the residual 

remains within the threshold prior to the fault, however, after the fault occurs, the residual 

exceeds the threshold. Subsequently, the OLAD and the robust adaptive terms are initiated 
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to learn the unknown fault dynamics.  This is evidenced by the fact the residual quickly 

drops after initiating the OLAD and the robust adaptive term.  Additionally, the asymptotic 

convergence of the residual after the fault is guaranteed as seen in Fig. 3. Therefore, the 

theoretical results presented in this paper are validated.  
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Fig. 3: Residual and the FD threshold. 

 

Next, the online estimation of the fault magnitude using the proposed OLAD 

scheme is shown in Fig. 4. As seen in the figure, the online learning is found to be 

satisfactory. The parameter of the OLAD is tuned online using the update law in (9) with 

0.034  and 0.1  . Using the online estimation of the parameters, we estimate TTF as 

shown in Fig. 5. From the figure, it’s evident that the TTF prediction is satisfactory. 

However, it is noted that the first few seconds of TTF prediction after the fault detection 

didn’t render reliable results therefore, is not presented. This could be attributed to the 

random selection in the gains of the weight update law. However, after the 50
th

 second of 

the system operation, the TTF prediction seems to be reasonable and converges to the 

actual time of failure, which is 79.43 sec.  
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Fig. 4: Online estimation of the fault magnitude. 
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Fig. 5: The TTF determination due to the incipient actuator fault. 

 

To show that the proposed scheme is generic, next, an axial piston pump example is 

considered in simulation.  

B. Axial Piston Pump 

 

A discrete-time dynamic representation of the axial piston pump derived in [40] is 

given as 

          1 1, .., 9,
p p

pikpi
i

i ilpi

BT
x k Q k Q k Q k x k i

C A S
     


    

        10 101 p s

c

TBC
x k Q k Q k x k

V
      

   10y k kx                                     (22) 
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where,  kxi , 1,...,9i  are the system states. Additionally,    
1 9[ ,....., ]T

k kx x is the pressure in 

the nine pistons, 
10x is the pump outlet pressure, B is the bulk modulus of the hydraulic 

fluid, T is the sample timing, cV is the theoretical volume of flow, and pA  is the piston area. 

Moreover, 
piS , 

kpi
Q , piQ ,

lpi
Q , and sQ are the thi piston stroke length, kinematical flow from 

the piston chamber to the discharge chamber, internal leakage from piston to the case 

chamber, and the outlet flow of the pump respectively.  Additionally, they are obtained 

using the following equation  

 

2

tan .sin( ( 1) )
4

p

c pkpiQ k
d R

k i


     

 

3

( )(
6

)
g

cilpi
Q k k P

rh
x

L




  

  10

101

2 ( ) ( )
( ( ) ( ))

i

d di

c

pi iQ k
x k x k

C A sign x k x k



  1, .., 9, i   

   
9

1
p pi

i

Q kQ k



  

  10

2

2 ( )

d vs

c

x k
Q k C A


  

( ) tan (1 cos( ( 1) ))p ccpiS k R k i       

where is the angular velocity of the pump drive shaft (rad/s), d is the diameter of the 

piston (m), pR is the piston pitch radius on barrel, c is the angle of swash plate, p is the 

phase delay (rad), r is the radius of piston (m), gh is the radial clearance between piston 

and cylinder bore (m),  is the absolute fluid viscosity (N sec/m
2
), L is the length of 

leakage passage (m), 1dC is the flow discharge coefficient of the discharge areas for piston 
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port opening to discharge chamber, c is the flow density (kg/m
3
), diA is the th

i discharge 

area for piston port opening to the discharge chamber in valve plate (m
2
), 2dC is the 

discharge coefficient of needle valve orifice, and vA is the orifice area of the needle valve 

(m
2
). The values of the parameters used in this simulation are taken from [40] and we use a 

sampling interval of 10 secT m .  To monitor and detect faults in (22), we use the following 

FD estimator  

              0
ˆ ˆ1 ( )

p p

pikpi
i

i ilpi

BT
x k Q k Q k Q k x k A x k x k

C A S i i i     


   1, .., 9, i        

            10 10 0 10 1010
ˆ ˆ1 ( )p s

c

TBC
x k Q k Q k x k A x k x k

V
         10

ˆ ˆy k kx           (23)  

where,  x̂ ki , 1,...,10i  are the estimated system states. Also, 4

0 10 (0.0630,0.1796,0.8,0.0305,0.1431A diag


  

,0.1683,0.1567,0.1996,0.1172, 0.0001) is the estimator gain matrix. For this simulation, two different 

faults, i.e., piston wear fault and pressure sensor fault are seeded. First, we discuss the 

piston wear fault. 

B.1) Piston Wear Fault 

An incipient piston wear fault described by   

    0.02 100
][0,0,0,0,0,0,0,0,0,34 1

k Th k e
 

   

is induced at the 100
th

 minute of system operation. Additionally, a constant uncertainty of 

30 units is considered in the simulation. Next to detect the fault online, we generate norm of 

the residual (i.e.,      
10 10

ˆk k ke x x  ) from (22) and (23) as shown in Fig. 6.  Due to the 

presence of system uncertainties, a threshold is needed to guarantee robustness. Therefore, 

by taking 1.15  , 0.01  , and 30M  , we have 35  , a constant threshold as shown 
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in Fig. 6. From the figure, we see that the fault is detected at 105
th

 minute. After the 

detection, the OLAD is initiated to learn online the magnitude of the unknown fault 

dynamics as shown in Fig. 7. Additionally, parameters of the OLAD are tuned online using 

the update law in (9) with 0.1  and 0.001  . From the figure, it is observed that the 

online learning of the fault by the OLAD is satisfactory.  

Subsequently, the TTF is determined using the scheme outlined in Section IV and is 

shown in Fig. 8. From the figure, the initial TTF prediction and the oscillatory behavior in 

the prediction is attributed to the random selection of the gains. However, as the online 

estimation of the fault parameter improves, the TTF prediction improves and concurs with 

the actual time of failure, which 251 min. 
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Fig. 6: Residual and the FD threshold- Piston wear fault. 
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Fig. 7: Online estimation of the piston wear fault magnitude. 
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Fig. 8: The TTF determination due to the piston wear fault. 

 

B.2) Outlet Pressure Sensor Fault  

Next, a pressure sensor fault is induced, which may be due to loose wiring. 

Mathematically, the fault is described by   

  0.4
0 100 min

( 99) for 100< 300 min

1390  for 300 min
o

fork
k kh k

k


  

 





 

For sake of completeness, we assumed a time varying disturbance of 1 unit 

magnitude. Therefore, we need a threshold to avoid missed or false alarms. Thus by 

taking 1.48  , 0.01   and 1M  , we have 1.5  .  The fault is induced at the 100
th

 

minute of system operation.  After the fault is initiated, the norm of the residual tends to 

increase as observed in Fig. 9. Therefore, the fault is detected when the residual exceeds the 

threshold. Subsequently, the OLAD ( )ˆ( )ˆ ( )o k kh k    is initiated to learn online the unknown 

fault dynamics. Moreover, the OLAD parameter is tuned online using (9) 

with 0.61  and 0.001  .  Although, the fault begins at 100 minutes, the fault tends to 

grow and has a sudden increase in the magnitude, which is similar to a step fault. Therefore, 

we see that the magnitude of the fault changes to a large value, which increases the residual 

to a large value as seen at around 300 minutes in Fig. 9. However, as the OLAD continues 

to learn the fault online, eventually the residual converges to zero as seen in the figure.  
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Next, the online learning of the fault dynamics by the OLAD is given in Fig. 10 and 

it is found to be satisfactory.  
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Fig. 9: Residual and the FD threshold- Output sensor fault. 
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Fig. 10: Evolution of the pressure sensor fault and the OLAD learning. 

 

Till now, we presented two examples in simulation to verify the proposed scheme. 

However, in the next section, we verify the proposed FD scheme on an axial piston pump 

test bed. Additionally, the two faults, i.e., piston wear and pressure sensor faults are 

induced through accelerated testing as detailed below.   
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VII. Experimental Results 

 

The performance of the proposed FDP scheme is evaluated on a pump test bed. In 

addition, the two faults assumed in the simulation are used in the experimental study. The 

piston wear fault was induced by creating cavitation in the axial piston pump test stand, 

which shown in Fig. 11.  In addition, the sensor fault was due to the loosing wiring. In the 

test stand shown, we have a 10.5cc variable displacement axial piston pump with nine 

pistons.  On the test stand, the inlet, outlet, and case drain pressures were recorded 

continuously at 1 kHz using NI cDAQ 9172 hardware.  Additionally, the case drain flow, 

outlet flow, reservoir temperature, case drain temperature, and pump temperature were also 

recorded.  

The estimator model derived in (22) is used again for detecting faults in the pump. 

Moreover, from the model given in (22), we could see that only the output pressure is 

measurable. Therefore, we use the measured outlet pressure for detecting faults in the 

pump. Before using the data, due to the measurement noise, therefore, to attenuate them, 

we use a 10
th 

order band-pass pass Butterworth filter with a cut-off frequency of 250 Hz and 

300Hz. A snapshot of the raw data and the filtered data for the outlet pressure signal is 

shown in Figs. 12 and 13, respectively. As seen in Fig. 13, the raw data is filtered using the 

above defined filter and averaged over a one second fixed time window. Subsequently, the 

filtered data was used for the verification of the FDP scheme.   
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Fig. 11: Picture of the axial piston pump test bed. 
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Fig. 12: Raw outlet pressure signal. 
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Fig. 13: Processed outlet pressure signal. 

 

Therefore, the FD estimator in (23) is used for monitoring and detecting fault in the 

pump test bed. The residual generated by comparing the experimental outlet pressure with 
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that of the estimated outlet pressure from the FD estimator is shown in Fig. 14. In this case, 

the threshold is obtained by taking 1.1  , 0.01  and 25M  , we have 28  .  As seen 

in the figure, the residual remains bounded for the healthy system operation. However, as 

the fault occurs due to the accelerated testing, the residual tends to increase and thus 

exceeds the threshold. Subsequently, the fault is detected and the OLAD and robust term 

are initiated.  
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Fig. 14: Residual and the FD threshold- Piston wear fault (experimental results). 

 

Moreover, the OLAD is tuned online using (9) with 0.2  and 0.03  . From 

Fig. 15, we could see the satisfactory estimation of the fault magnitude by the OLAD. It is 

noted that the fluctuations in the magnitude of the OLAD response were reduced to 

demonstrate the learning. Subsequently, using the online estimation of the fault magnitude, 

the TTF prediction is determined as shown in Fig. 16. Since the initial online estimation of 

the fault magnitude was not accurate and also due the random selection in the gains, the 

TTF prediction was not accurate. However, as the learning improved and approached the 

actual failure, the TTF prediction was satisfactory. Therefore, in Fig. 16, the TTF 

prediction is shown only for the last few minutes before the failure.    
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Fig. 15: Online estimation of the piston wear fault magnitude (experimental results). 
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Fig. 16: The TTF determination due to the piston wear fault. 

 

In the next case, we assume a pressure sensor fault on the axial piston pump. The 

norm of the residual used for detecting the fault is shown in Fig. 17. Here again, the residual 

shown is the difference in the estimated and the experimental outlet pressure. Also, the 

threshold is obtained by taking 1.11  , 0.01  and 16M  , we have a constant FD 

threshold of 18  . From the figure, the fault occurs at the 100
th

 min of operation, where, 

the sensor fault is due to the loosening of the connect pin, and has a unique behavior. The 

fault grows with time and at around 300 minutes; the connecting pin is detached completely 

off the sensor. Therefore, we see a sharp increase in the residual as seen in Fig. 17. 

Although, the OLAD and the robust term were activated the first time the residual 
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exceeded the threshold, however, the residual converges to zero only after the second spike 

as in the figure.  

0 100 200 300 400 500 600
0

20

40

60

80

100

Time (min)

R
e
s
id

u
a
l 
(P

S
I)

 

 

Residual

Threshold

Sensor disconnected

Fault grows

Fault occurs

Fault detected

 

Fig. 17: Residual and the FD threshold- Pressure sensor fault (experimental results). 

 

Moreover, the learning of the fault by the OLAD is shown in Fig. 18, and is found to 

be highly satisfactory. Similar to the previous case, the OLAD is tuned online using (9) 

with 0.9  and
9

1 10


  . 
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Fig. 18: Evolution of the pressure sensor fault and the OLAD learning (experimental 

results). 

 

Therefore, from the simulation and experimental verification, one could see that the 

proposed scheme detects and learns both the incipient and abrupt faults online without any 
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apriori offline training. Moreover, the experimental results show the feasibility in the 

implementing the proposed scheme on an experimental hardware. Therefore, the proposed 

FDP scheme renders a stable performance both in simulation and in practice.  

VIII. Conclusions 

 

In this paper, an online fault detection scheme using a new online approximator 

using AIS is proposed for a class of nonaffine nonlinear discrete-time systems. An 

asymptotic estimator is designed to monitor and detect faults in the given system.  The 

scheme could detect both the abrupt and incipient faults. Mathematical asymptotic stability 

results of the proposed fault detection scheme are derived. Moreover, initially two 

simulation examples were presented to demonstrate the asymptotic stability and the online 

learning capabilities of the proposed AIS based FD estimator. Later, the FD scheme was 

verified on an axial-piston pump test bed. From the experimental results, the FD scheme is 

found to successful in detecting and learning online both the incipient and abrupt faults. 

Therefore, the proposed FD scheme renders asymptotic performance both in simulation 

and in experiment.  
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Proof of Lemma 1: Consider (14) and solving it would render 
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The above equation is rewritten as  
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The summation term in the above equation could be solved using [33] as 
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max0A  is the maximum singular value of 0A .  
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Squaring both side and factoring 
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A  would give us 
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Expand the term on the right hand side of the above equation, we have  
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Apply Cauchy-Schwarz inequality to terms numbered as 1 in the above equation, and 

combine similar terms, we would have the following equation  
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Proof of Theorem 2: Consider the Lyapunov function candidate 
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Substitute (14) in 1
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Next substitute the parameter update law (10) in
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Apply Cauchy-Schwarz inequality   (
2 2

2ab a b  ) to terms numbered as 1 in the above 

equation would reveal 
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where 0  is a constant. Next, substitute the residual dynamics (14) to the term numbered 

as 1 in the above equation and apply the Cauchy-Schwarz inequality  
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Next, the overall first difference of the Lyapunov function candidate,
1 2

V V V    , can be 

obtained from (A.2) and (A.3) as  
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Consider only terms numbered as 1 in (A.4), we have the following equation 
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Next, consider only terms numbered as 2 in (A.4), we have the following equation 
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then, equation (A.8) could be rewritten as  

1 2

22
( ) ( )m mk keV                                         (A.9)                                                                                                      

As long as the gains in (16)-(18) are satisfied, therefore, 0V  in (A.9), which 

shows stability in the sense of Lyapunov. Hence ( )e k and ( )k  are bounded, provided 

if
0

( )e k and 0
( )k  are bounded in the compact set S. Hence ( )e k and ( )k converges to zero 

asymptotically.                                      
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

In this dissertation, online learning techniques are used to develop robust model-

based fault prognostics and accommodation schemes for a class of nonlinear discrete-

time systems. A novel discrete-time estimator design guaranteed fault detection and 

isolation. Using the estimator parameters, a stable and reliable parameter based time to 

failure (TTF) prediction scheme was introduced. Consequently, by combining the fault 

isolation with TTF, prognostics schemes were introduced. In addition, for fault 

accommodation, a novel controller reconfiguration design guaranteed asymptotic 

performance for a class of nonaffine nonlinear system. The proposed fault prognostics 

and accommodation framework is able to detect and diagnose both the commonly 

classified incipient and abrupt fault types satisfactorily. Stability was guaranteed in the 

presence of system uncertainties, approximation errors and unknown fault dynamics. 

Additionally, the robustness and sensitivity of the fault detection scheme were 

demonstrated. Further, both a linearly parameterized approximator such as single layer 

NN and nonlinearly parameterized approximator such as multi-layer neural network 

(MN) were proposed for detection and accommodation.  

 

2.1 CONCLUSIONS 

In the first paper, a fault detection and prediction (FDP) scheme was developed 

for a class of multivariable nonlinear discrete-time system with state or process faults. 

The novel FD estimator design comprises of a robust adaptive term and an online 

approximator. After the detection, the unknown fault dynamics was learned online using 
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a suitable online approximator and it is observed that the fault learning is satisfactory. In 

addition, unlike other FD methods, the proposed update law relaxed the need of 

persistency of excitation (PE) condition. Using Lyapunov theory, the residual and the 

parameter estimation errors are shown to converge asymptotically. This result was 

achieved by using the robust adaptive term in the FD estimator, which is a function of the 

parameters of the online approximator. In addition, a TTF scheme using the parameter 

update law renders a satisfactory estimation of the remaining useful life. Finally, 

simulation results illustrate the satisfactory performance of the proposed FDP scheme. 

However, this FDP scheme assumes that all the states are available for measurement.  

Therefore, this assumption was relaxed in the second paper. In addition, the 

robustness and sensitivity of the FDP scheme proposed was analyzed mathematically 

while the parameter update law of the online approximator was modified to take into 

account the output signals. Stability results guarantee the asymptotic convergence of the 

fault detection residual and parameter estimation errors. The TTF scheme was modified 

to consider the output signals and still rendered a satisfactory performance.  However, 

this FDP scheme addressed only state faults.  

Therefore, in the third paper, the FDP scheme was extended to a multi-input-

multi-output (MIMO) nonlinear system with both state and sensor faults. A novel design 

of FDP scheme was proposed to successfully characterize both the state and the sensor 

faults. In addition, the sensitivity and the robustness were also addressed adequately. 

Using Lyapunov theory, asymptotic stability of the closed loop system was achieved by 

using the robust term design and making mild assumptions on the system uncertainties 

and online approximator reconstruction errors. The stability proof was complicated as the 
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residual and the parameter estimation errors of two online approximators were shown to 

converge asymptotically. The purpose of the two online approximators was to learn the 

state and sensor fault dynamics respectively. Individual TTF schemes for the process and 

sensor faults rendered satisfactory performance. Additionally, simulation results 

demonstrated the satisfactory performance in detecting and learning state and sensor 

faults.  

The first three papers discussed only fault detection and not fault isolation (root-

cause analysis). Thus in the fourth paper, a fault isolation scheme for a class of nonlinear 

system with state faults was introduced. Different fault conditions were considered, i.e., 

states with multiple faults and more than one fault type could effect the same state. Such 

fault conditions were not addressed in the previously reported isolation schemes. Unlike 

other schemes using adaptive thresholds for fault isolation, in this approach, a fault is 

successfully isolated if the corresponding fault isolation residual converges to zero. Such 

results were demonstrated in the presence of system uncertainties. Since fault isolation is 

combined with the parameter based TTF scheme, a stable prognostic scheme was 

developed.   

Using Lyapunov analysis, the scheme is guaranteed to be asymptotically stable in 

terms of fault isolation residual and the parameter estimation error. In addition to the 

stability analysis, the fault isolability and fault isolation time guaranteed the isolation of 

faults in a finite amount of time. The simulation results demonstrated the successful 

isolation of the multiple faults in the given system. Additionally, the results rendered a 

satisfactory estimation of the remaining useful life when there is more than one fault 

parameter affecting the system. 
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In the fifth paper, a fault accommodation scheme for a class of nonlinear discrete 

time system with unknown state or process fault dynamics was proposed. Both a linearly 

and nonlinearly parameterized online approximators were used for designing the 

corrective control. In this design, the fault accommodation is achieved by reconfiguring 

the controller after the detection of fault.  The tracking performance after the fault is 

verified through rigorous stability analysis, where the tracking and the parameter 

estimation errors converge asymptotically to zero for a linearly parameterized 

approximator. However, for a nonlinearly parameterized approximator only boundness of 

the parameter is shown while the tracking error still converges to zero. Additionally, the 

simulation results verify the theoretical conjectures.  

Finally, in the sixth paper, a new artificial immune system (AIS) as an online 

approximator was used in the fault detection scheme. Unlike conventional offline based 

tuning methods, a new online adaptive parameter update law relaxing PE condition was 

proposed to tune AIS.  Asymptotic convergence of the fault detection residual and the 

AIS parameter estimation error are demonstrated using Lyapunov theory. The proposed 

scheme demonstrates asymptotic performance both in simulation and experimentally.  

For the experimental results, a Caterpillar axial piston pump hydraulic test bed was used 

to demonstrate the satisfactory performance of the online learning and TTF 

determination.  

 

2.2 FUTURE WORK 

As part of the future work, the fault isolation scheme proposed could be extended 

to a nonlinear discrete system with state and sensor faults. This would complicate the 
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design and proving stability might be a challenge. In addition, deriving fault isolability 

condition and fault isolation time might require rigorous effort. However, the benefit is 

relaxing the requirement of all states measurability in using the isolation scheme. 

Additionally, this would help in simultaneous isolation of both the state and sensor faults.  

Another possibility would be to extend the proposed fault accommodation scheme 

to a multivariable system with state and sensor faults. This would require the design of a 

suitable strategy for modifying the control law. The design would certainly be 

complicated as the control law depends upon the output signals alone. Additionally, the 

stability of the fault accommodation scheme using a single layer NN or MNN for such a 

class of nonlinear system should be addressed. Finally, the tracking performance by using 

the fault accommodation in the presence of both the state and sensor faults has to be 

shown.  

In the context of AIS as online approximator, at present only one parameter of the 

AIS scheme is assumed tunable. However, in the future work the remaining other 

parameters could also be tuned. This would render better learning performance, but, 

verifying the stability of the parameters update law would be interesting and challenging. 

Additionally, with this online tuning capability, other possible application of AIS could 

be explored. Such areas could be control of nonlinear systems, system identification etc. 

However, deriving stability results for different applications of AIS might be an 

interesting area to explore.  
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