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ABSTRACT

Fault diagnostics and prognostics schemes (FDP) are necessary for complex
industrial systems to prevent unscheduled downtime resulting from component failures.
Existing schemes in continuous-time are useful for diagnosing complex industrial
systems and no work has been done for prognostics. Therefore, in this dissertation, a
systematic design methodology for model-based fault prognostics and accommodation is
undertaken for a class of nonlinear discrete-time systems. This design methodology,
which does not require any failure data, is introduced in six papers.

In Paper I, a fault detection and prediction (FDP) scheme is developed for a class
of nonlinear system with state faults by assuming that all the states are measurable. A
novel estimator is utilized for detecting a fault. Upon detection, an online approximator in
discrete-time (OLAD) and a robust adaptive term are activated online in the estimator
wherein the OLAD learns the unknown fault dynamics while the robust adaptive term
ensures asymptotic performance guarantee. A novel update law is proposed for tuning the
OLAD parameters. Additionally, by using the parameter update law, time to reach an a
priori selected failure threshold is derived for prognostics. Subsequently, the FDP scheme
is used to estimate the states and detect faults in nonlinear input-output systems in Paper
Il and to nonlinear discrete-time systems with both state and sensor faults in Paper 111.

Upon detection, a novel fault isolation estimator is used to identify the faults in
Paper IV. It was shown that certain faults can be accommodated via controller
reconfiguration in Paper V. Finally, the performance of the FDP framework is
demonstrated via Lyapunov stability analysis and experimentally on the Caterpillar

hydraulics test-bed in Paper VI by using an artificial immune system as an OLAD.
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SECTION

1. INTRODUCTION

In the past few decades, with the availability of cheap and reliable embedded
computer hardware along with sensors, scientists and engineers have developed complex
engineering systems such as automotive vehicles, UAVs, aircrafts, power plants, DoD
vehicles etc. These technological advancements have improved our quality of life but
with the potential risk of component failures. For instance, faults undetected in an
aircraft, blackout of 2003 in the northeast due to power system faults, could be disastrous
and may cost heavily.

In the earlier days, in industrial plants, a structured maintenance plan is not
utilized costing the manufacturer dearly. Subsequently, a scheduled maintenance plan
was implemented to reduce machine down. However, this has lead to increased false and
missed alarms. Therefore, a proactive maintenance scheme is being developed by
monitoring the complex industrial systems and in the event of a fault, an alarm is
generated. Such a maintenance scheme is expected to minimize missed and false alarms
and as well reduce machine down time and cost. Early fault detection schemes were soon
found to be unreliable and required human intervention. Later, many developed data
driven schemes heavily relied on sensor information for decision making. But, due to low
reliability of sensors, these schemes soon faded out.

With the progress of research, it was determined that any development on fault

detection and prediction should take into account the inherent system nonlinearities,



disturbances or noise. Thus robust fault detection (FD) schemes which reduce missed or
false alarms are being introduced in the literature.

In general, fault diagnosis and prognosis of complex industrial nonlinear systems
comprise of four major tasks: i) fault detection; ii) fault isolation; iii) fault
accommodation; and iv) prognostics. Detection of an abrupt, incipient and intermittent
fault in a given system is normally referred to as fault detection whereas isolation
involves determining the root cause and identifying the fault upon detection. In other
words, fault detection and isolation will render diagnostics. Moreover, in certain
applications it may be possible to reconfigure the controller in order to accommodate the
effects of the fault, which is known as fault accommodation. Finally, estimating the
remaining useful life of a system after a fault has occurred is referred to as prognostics.
Therefore, prognostics include fault isolation and time to failure determination.

In general, literature indicates that two most prominent fault detection
methodologies exist: hardware redundancy and analytical redundancy-based framework.
In the hardware redundancy framework, redundant hardware is used for detecting a fault
in the system. For example, in a process, two sensors of the same kind measuring the
same process variable can be deployed. When the measurements from one sensor deviate
from the other, a fault is alerted. However, such a scheme is not only expensive but also
consumes space.

Among the analytical-based fault detection framework, the two prominent
methods, qualitative and quantitative, are introduced. In the qualitative technique, process
or experimental data is used for detection. Qualitative techniques are generally referred

to as data-driven techniques. Figure 1.1 illustrates the detection of fault using signals,



where the process is monitored using sensors. Subsequently, features are extracted from
the measured signals using techniques such as Fourier analysis, Wavelet analysis etc.
These features are compared against normal signatures to detect faults in the process.
Additionally, to understand the failures better, data have to be obtained continuously
from the system. Therefore, this technique is found to be time consuming and expensive.
The detection depends upon the quality of the collected data. Finally, the data driven

techniques are sensitive to system and operational changes.

% Faults e
Input Output
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A 4

Feature
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!
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Fig. 1.1: A qualitative technique based fault detection.

By contrast, in the quantitative method, a model representative of the system is
utilized for detecting faults. This model is typically derived from either first principles or
borrowed from control scientists/engineers. The system model provides an estimate of the
system states by observing the inputs and measured outputs of the nonlinear system. A

residual signal is then generated by comparing the output of the model with that of the



system. A fault is detected in a robust manner even under system uncertainties when the
residual deviates beyond a predefined threshold value. The selection of the threshold is a
challenging task since an improper threshold selection might lead to false and missed
alarms; however, several attempts have been made to address this issue using analytical
methods. One such residual based FD design is shown in Fig. 1.2, where an observer with
online fault learning capabilities is used for fault detection. As explained above, the fault
is detected by comparing the generated residual against apriori chosen threshold.
Subsequently, the online approximator (OLA) such as neural networks, fuzzy systems
etc., are initiated online to learn the unknown fault dynamics. Additionally, the OLA
scheme is tuned online without any offline training. Therefore, in this way the fault is
successfully detected and learned in real-time without any offline training. The advantage
of using a quantitative based FD scheme is reduced cost and space requirements, and also

generic. Consequently, this online framework can be used for a range of applications.
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Fig. 1.2: Block diagram representation of a model-based fault detection scheme.



Next, an overview of current methodologies for fault diagnosis and prognosis is
presented, and their shortcomings are exposed. Subsequently, the organization of this

dissertation along with the contributions of this work is introduced.

1.1 OVERVIEW OF THE FAULT DETECTION METHODOLOGIES

There have been numerous research activities focusing on solving the problem of
fault diagnosis and prognosis. However, in the past couple of decades, many researchers
developed fault detection (FD) schemes by considering a linear representation of the
nonlinear system. Popular FD schemes include parity relations [1], geometric
relationships [2], and observers or estimators [3].

Recently, with better understanding of nonlinear systems, several gquantitative-
based FD schemes, which include geometric [4], adaptive estimation [5, 6], are
introduced for nonlinear continuous-time systems. Other techniques include the use of
sliding mode observer [7] and diagonal observer [8]. Additionally, FD schemes have
been developed for engineering applications such as robot manipulators, hydraulic
systems, flight control etc [9]. Moreover, numerous survey papers [10] providing an
excellent overview of the state-of-the art developments have been published on model-
based FD techniques.

Guaranteeing the stability of FD schemes using Lyapunov theory has gained
interest in the past few years. However, the existing FD schemes [4-8] render only
uniform ultimate bounded (UUB) stability due to the presence of system disturbances.

However, in the recent literature, some work on the asymptotic convergence of the



identification error in continuous-time is demonstrated for robot manipulators with
actuator faults [11].

Another aspect which lacked in the previously reported quantitative-based
schemes for nonlinear systems [4-11] is prognostics or predicting the remaining useful
life of the system. However, in certain data-driven techniques, TTF approaches [12-14]
assumed a specific degradation model which has been found to be limited to the system
or material type under consideration. Another scheme [15] employs a deterministic
polynomial and a probabilistic method for prognosis by assuming that certain parameters
are affected by the fault while others [16] use a black box approach using neural network
(NN) on the failure data. All these schemes [12-16] while being data-driven address only
TTF prediction, require offline training and do not offer performance guarantees.
Therefore, it is envisioned that a unified FDP scheme will be necessary to alert an
impending failure and provide the remaining useful life.

It is worth noting that most of the above discussed schemes [4-8] were developed
for continuous time nonlinear systems. However, FDP schemes in discrete-time are
necessary due to the stability problems incurred in the direct conversion of the continuous
time FD schemes [17]. Recent developments in discrete-time include [17], where a FD
scheme is introduced by using the persistent of excitation (PE) condition. Since it is very
difficult to verify or guarantee PE, in our earlier work [18], a FD scheme using linearly
parameterized online approximators is introduced by relaxing the PE requirement.
However, bounded stability of all the signals is demonstrated similar to the case of fault

detection algorithms in continuous-time.



In summary, the problem of fault diagnosis deals with detecting and isolating
faults in the system (root-cause analysis). On the other hand, prognostics deal with fault
isolation and predicting the remaining useful life of the system. In other words,
prognostics include detection, isolation and remaining useful life prediction while
accommodation aims at minimizing the risk due to the fault by reconfiguring the
controller. Each of the major tasks is challenging and involved, as there are issues
relating to sensitivity, robustness, and stability. However, in this dissertation,
mathematically rigorous schemes are outlined to address these issues pertaining to
quantitative or model-based fault detection, diagnosis, prognostics, and accommaodation.
Additionally, stability guarantees are provided for the schemes developed in the

dissertation when compared to the previously reported FDP schemes.

1.2 ORGANIZATION OF THE DISSERTATION

This dissertation deals exclusively on fault prognostics and accommodation
respectively for a class of nonlinear discrete-time systems and is presented in the form of
six papers as illustrated in Fig. 1.3.

In this dissertation, the two most commonly classified faults: incipient (slowly
growing) and abrupt (sudden), are considered. Paper | details the fault detection and
prediction scheme for a class of nonlinear discrete-time systems with state or process
faults. Additionally, the scheme is based on the assumption that all states are measurable.
The proposed fault detection scheme is guaranteed to be asymptotically stable due to a
novel nonlinear estimator comprising of the online approximator and a robust adaptive

term. It is also noted that the robust adaptive term is a function of the parameters of the



online approximator. In addition, a deterministic method for estimating the time to failure
by using the parameter vector of the online approximator is proposed. In comparison to
our previous work [18], the proposed method achieves asymptotic stability using novel

estimator design.

Scheme Using Asymptotic Estimators for Won-affine Monlinear Discrete-time

Paper I B.T Thumati and & Jagannathan,” & Fault Detection and Prediction
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Fig. 1.3: Dissertation overview.

Subsequently, the fault detection and prediction scheme has been extended in
Paper Il to a multivariable input-output nonlinear discrete-time system, and also to a
multi-input-multi-output (MIMO) nonlinear discrete time system with state and sensor
faults in Paper Ill. Due to the availability of outputs, in Paper Il, not all the states are
needed whereas the detection scheme becomes more challenging. Additionally, the TTF
scheme is developed using only the output signals. On the other hand, addition of sensor

faults in Paper Il complicates the stability of the MIMO system. However, suitable



performance guarantees is still shown. Separate TTF schemes are developed for process
and sensor faults, respectively.

By contrast, in Paper 1V, a novel fault isolation framework is addressed wherein a
fault isolation estimator is designed to isolate the fault in the system. It is noted that the
system could have more than one fault at a given time instance. Additionally, in the worst
case scenario, every system state can incur multiple faults and fault types. Therefore, this
complicates the design of a fault isolation scheme; however, it is still undertaken. In the
event of a new fault, the fault dynamics are characterized by the online approximator and
will be added to the fault isolation estimator. In addition, a prognostics scheme based on
the online estimation of the isolation estimator parameter vector is used for predicting the
time to failure. The prognostics scheme is based on an explicit mathematical equation and
an iterative algorithm.

On the other hand, Paper V introduces the idea of fault accommodation for a
general class of nonlinear discrete-time systems with state or process faults. In this paper,
for fault detection, a nonlinearly linearly parameterized online approximator such as
multi-layer neural network (MNN) is used instead of the linearly parameterized
approximators. This complicates the stability proof but is still offered. Subsequently,
using the online estimate of the unknown fault dynamics, a corrective control signal is
proposed, which could accommodate the effects of the fault in the system. This fault
accommodation scheme is developed for a nonlinear system under the assumption that all
the states are available for measurement.

Finally, Paper VI considers a new FD design using artificial immune system

(AIS) as online approximator. The fault detection process remains same as that of the
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above given in Paper I. However, AIS is used for the online learning of the fault
dynamics. Conventionally, AIS has been considered as an offline tool for applications
such as classification, pattern recognition and detection. In this paper, an adaptive online
parameter update law is proposed for tuning the AIS parameters. Using Lyapunov theory,
mathematically, the asymptotic convergence of the residuals and the parameter
estimation errors are demonstrated. Due to the asymptotic performance guarantees of the
parameter estimation errors, we use AlS parameters to develop a TTF scheme.

In summary, novel fault prognostics and accommodation framework is introduced
in this dissertation. Different fault classes and fault types are considered. The proposed
scheme is deterministic when compared to other schemes in the literature. Finally, both
simulation and Caterpillar hydraulics test-bed environments are used to illustrate the

performance of the proposed schemes.

1.3 CONTRIBUTIONS OF THE DISSERTATION

This dissertation introduces online model-based fault diagnosis, prognosis and
accommodation schemes for nonlinear discrete-time systems. In all of the designs
presented in this dissertation, asymptotic stability results are derived in the presence of
system uncertainties and faults. Asymptotic convergence of the residual is stronger when
compared to boundedness which is typical in other fault detection, diagnosis, and
accommodation schemes [6, 12-16, 17]. The proposed design does not require any
apriori offline training unlike other fault diagnosis schemes [1].

The contributions of paper I include the design of a FDP scheme that detects and

learns, online the state or process faults using suitable online approximators.
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Additionally, a new parameter based TTF scheme was introduced, unlike other data
driven or probabilistic approach [15]. This implies that the proposed TTF technique is
deterministic and accurate in estimating the system behavior. Next, these results are
extended to nonlinear systems with minimal state measurements, i.e., a FD scheme to
detect and learn state faults using output measurements alone is introduced in Paper II.
Another contribution includes the design of a FD scheme to detect both the state and
sensor faults.

In addition, an online fault isolation (root-cause analysis) method is developed to
identify the simultaneously occurring faults in a nonlinear discrete-time system.
Moreover, the performance of the fault isolation scheme is demonstrated for multiple
faults. In paper V, a single layer NN and a MNN design is proposed for fault
accommodation design. Additionally, asymptotic tracking performance is shown even in
the presence of system uncertainties and faults. Finally, a new fault detection scheme
using AIS as an online approximator is introduced for capturing the fault dynamics.
Adaptive parameter update law is proposed to tune the AIS scheme online, which

obviates the need of any apriori offline training as used in the conventional approach.
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PAPER

1. A Fault Detection and Prediction Scheme Using Asymptotic
Estimators for Non-Affine Nonlinear Discrete-Time Systems with
State Faults

Balaje T. Thumati” and S. Jagannathan

Abstract—In this paper, an asymptotic state estimator comprising of an online
approximator in discrete-time (OLAD) along with a robust term, which is a function of
the parameter vector of the approximator, is proposed for monitoring and detecting state
faults in a nonlinear discrete-time system although the states are considered measurable.
A fault in the system is detected by comparing the residual against a mathematically
chosen threshold.

Upon detecting a fault, the OLAD and the robust term are initiated and the OLAD
parameter vector is tuned online using a suitable update law in order to learn the
unknown fault dynamics, while the robust term is used to ensure local asymptotic
stability of the fault detection scheme, unlike other FD schemes rendering bounded
stability. Subsequently, the fault detection time and a parameter based time to failure
(TTF) prediction schemes are developed. Finally, the proposed FDP scheme is simulated
on two examples.

Keywords: fault detection, prediction scheme, nonlinear discrete-time system, Lyapunov
stability.
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1. Introduction

Complex engineering systems require automatic control methods to minimize

human intervention and attain the desired productivity. However, such systems are prone
to failures due to unnoticed wear and tear in the systems resulting in huge losses and at
times catastrophic problems. Therefore, a robust fault detection and prediction scheme
has to be designed to predict an impending fault which can be used to alert the operator
by providing the remaining useful life of the component or the system.

In the past (see, Chen and Patton (1999), Frank and Keller (1990), Gertler (1988))
analytical and hardware redundancy techniques were developed whereas a hardware
redundancy technique is found to be not practically feasible for many applications due to
its incurred cost. Therefore, analytical redundancy techniques reined more interest from
the fault detection community. Quantitative and qualitative methodologies were used
within the analytical redundancy framework. In the qualitative method (Dash and
Venkatasubramanian 2000), a simple rule based and/or a fault tree analysis is used to
detect a fault in the system. An associated drawback is the need of data for failure mode
analysis and also there is no opportunity to learn new faults (Liu et al. 2006). Data-driven
approaches (Luh and Cheng 2005) also have the same weakness that newer faults for
detection require a priori data which is expensive (Luh and Cheng 2005).

However, in the guantitative method, a model representative of the given system
is used for fault detection, where the models could be derived from physics of system
operation or borrowed from control engineers (see, Chen and Patton (1999), Frank and
Keller (1990), Gertler (1988)). Certain fault detection (FD) schemes developed under

guantitative approach, use parity-relations (Chen and Patton 1999) whereas others (see,
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Chen and Patton (1999), Frank and Keller (1990), Gertler (1988), Hermans and M.
Zarrop (1996), Edwards et al. (2000)) employ an observer for fault detection.
Alternatively, a geometric based approach was developed (Massoumnia et al. 1989).
Along the similar lines, an FD scheme has been developed for stochastic systems (Chen
and Speyer 2003). However, all of these schemes are useful for linear systems.

Recently, the FD schemes have been extended to nonlinear continuous time
systems. For instance, the geometric approach used is extended to a nonlinear system
(see, Hammouri et al. (1999), Hammouri et al. (2002), Persis and Isidori (2001),
Hammouri et al. (2001)), whereas, an adaptive estimation technique is proposed (see,
Demetriou and Polycarpou (1998), Jiang and Chowdhury (2005), Talebi et al. (2009)).
Others use sliding mode observer (Yan and Edwards 2007) whereas (Lopez-Toribio and
Patton 1998, Lopez-Toribio and Patton 1999) employ a fuzzy based observers. In (Dixon
et al. 2000) FD schemes for robot manipulators have been developed and in (Caccavle
and Villani 2003), a compilation of the FD schemes for numerous engineering
applications such as hydraulic systems, flight control etc. are given. A recent survey in
(Isermann 2005) on model based FD techniques gives an excellent overview of the state-
of-the art developments which indicates that stability and performance of FD schemes are
gaining interest within the community. Therefore, most of the reported schemes (see,
Demetriou and Polycarpou (1998), Hammouri et al. (1999), Jiang and Chowdhury
(2005), Yan and Edwards (2007), Hammouri et al. (2002), Persis and Isidori (2001),
Hammouri et al. (2001)) have utilized Lyapunov theory to study the stability and
performance of FD schemes. However, a uniform ultimate boundness (UUB) of the

signals is ensured with the schemes (Demetriou and Polycarpou (1998), Jiang and
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Chowdhury 2005). A recently proposed continuous time FD work renders asymptotic
stability (Mcintyre et al. 2005), but is only for robotic manipulators with specific types of
actuator faults.

For real-time applications, a discrete-time scheme would be more natural to
implement on a computer rather than a continuous-time scheme. In addition, a continuous
time scheme can be prone to instability without an appropriate sampling rate. Therefore,
in the literature (Mahmoud (2008), Kabore and Wang (1999), Caccavle et al. (2008),
Zhang et al. (2007)), there have been FD schemes developed for both linear and
nonlinear discrete-time systems. The nonlinear FD presented in (Caccavle et al. 2008) is
based on the adaptive estimation, but the stability is proven to be UUB under a stringent
persistency of excitation (PE) condition. In our recent work (Thumati and Jagannathan
2007), this assumption was relaxed when an online approximator is used although UUB
stability of the residual is proven.

Finally, it is important to note that all the above mentioned schemes (see,
Demetriou and Polycarpou (1998), Hammouri et al. (1999), Thumati and Jagannathan
(2007), Jiang and Chowdhury (2005), Mahmoud (2008), Talebi et al. (2009), Kabore and
Wang (1999), Caccavle et al. (2008), Hammouri et al. (2001), Zhang et al. (2007))
address fault detection and no attempt has been made to predict the impending faults. In
order to determine remaining useful life, time to failure (TTF) prediction is a first step.
However, in certain data-driven schemes (Luo et al. 2003), TTF is determined by
assuming a specific degradation model which has been found to be limited to the system
or material type under consideration. Another scheme relied on a deterministic

polynomial and a probabilistic method for prognosis (Roemer and Ghiocel (1999) and



18

Phelps et al. (2002)) by assuming that certain parameters are affected by the fault. On the
other hand, a black box approach using neural network (NN) was developed in (Shao and
Nezu 2000). All these schemes (see, Luo et al. (2003), Roemer and Ghiocel (1999),
Phelps et al. (2002), Shao and Nezu (2000)) address only prognostics, and there is no
method to learn the fault dynamics online, which is usually required for improving
system design and for fault accommodation. Moreover, obtaining data a priori for each
fault is expensive.

Developing FDP schemes in discrete-time is difficult due to stability analysis as it
is relatively easier to show stability using Lyapunov theory in continuous time since the
first derivative is linear with respect to the states whereas the first difference of a
Lyapunov function in discrete-time is quadratic with respect to the states (Jagannathan
2006). Lack of a robust discrete-time FDP scheme that offers better performance is the
main motivation of this paper.

In this paper, a FDP scheme is designed using the adaptive estimation techniques
for non-affine nonlinear MIMO discrete-time systems. All the states of the system are
assumed to measurable, and a FD estimator is used for generating the residual for
monitoring and fault detection. Unlike in control theory, where the estimator is used to
supplement the unknown states for controller design, the purpose of the proposed FD
estimator is to generate the residual signal. Since the states are measurable, the faults are
assumed to be a function of the system states and input. In addition, the faults considered
could be slowly growing (incipient fault) or suddenly occurring (abrupt fault). The
nonlinear estimator consists of an online approximator in discrete-time (OLAD) and a

robust term to monitor the nonlinear discrete-time system.
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A dead-zone operator with a mathematically derived threshold is utilized to detect
the occurrence of the fault even in the presence of bounded uncertainties and
approximation errors thus ensuring robust detection. When a fault is detected, the OLAD
and the robust term are initiated while the OLAD learns the dynamics of the unknown
fault. An adaptive parameter update law is proposed for tuning the unknown parameters
of the OLAD and the robust term. Additionally, the uniqueness of the proposed
parameter update law is the relaxation of the PE condition. By using the Lyapunov
theory, the local asymptotic stability of the proposed fault detection scheme is
demonstrated, which is unique in comparison to the previously reported FD schemes (see,
Demetriou and Polycarpou (1998), Hammouri et al. (1999), Thumati and Jagannathan
(2007), Caccavle et al. (2008)) that guarantees only bounded stability. In addition, the
robust term used in the nonlinear estimator facilitate the asymptotic convergence of the
residual and the parameter estimation errors.

The asymptotic convergence of the residual or state estimation error helps in
developing a prediction scheme or TTF determination based on the parameter
trajectories. When an unknown fault is detected, TTF is determined in tandem with the
online approximation of the fault dynamics. It is essential to understand that a system
may remain functional after a fault, whereas it cannot continue to function after a failure
(Isermann 2006). In other words, a fault is a first step in the failure occurrence. To
predict the remaining useful life of a system, the parameter update law used for tuning the
OLAD is utilized. For TTF, the parameters are projected to their limits where the system
operation beyond the limits is considered to be unsafe. Alternatively, knowledge of state

trajectories in real time could be used as well for prediction using the approach given
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here. The limits could also be obtained from simulation or by using tools such as in
(Phelps et al. (2002), Mathur et al., 1998).

Therefore, the contributions of this paper include the design of a FDP scheme
rendering asymptotic stability for a class of non-affine nonlinear discrete-time systems
even in the presence of system uncertainties and reconstruction errors. The proposed FDP
scheme considers nonlinear state faults while other schemes (Caccavle et al. (2008),
Mcintyre et al. (2005)) consider only structured faults.

In addition, the online learning feature provided by the OLAD could assist in fault
isolation and accommodation; however, it is not addressed in this paper. Published
literature, however, (Gertler (1988), Persis and Isidori (2001)), presents fault isolation
and accommodation schemes.

In terms of organization, Section 2 introduces the non-affine system under
consideration whereas Section 3 presents the proposed fault detection scheme in detail. In
Section 4, the stability and performance of the fault detection scheme are introduced and
Section 5 discusses the prediction scheme. Finally, in Section 6, a real-time example of a
magnetic levitation system and a mass damper system are considered. Section 7 presents

some concluding remarks and discusses future work.
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2. Problem Statement

Consider a class of non-affine nonlinear discrete time system described by

(K +1) = py (x(k), u(k)) + 77 (x(k), uk)) + hy (x(k), u(k))

Xy (k+1) = py (x(k), u(k)) + 1, (x(k), u(k)) + hy (x(k), u(k))
1)

X (k+1) = p (x(k), u(k)) + 7, (x(k), u(k)) + hy (x(k), u(k))
where x =[x,,....x ]e®"is the state vector, ue®™ is the input vector, p; :R"xR" >R,
7 R xR SR, B R xR" >R are smooth vector fields, and i =1.2,......n . Additionally,
p, IS the known system dynamics, is the system  uncertainty,
h (x(k), u(k)) = 11 (k - T) fy (x(k),u(k)) ~ represents unknown fault function  with f; (x(k), u(k)
represents the unknown nonlinear state or process fault dynamics. Further, m; e for

i=12,.....,n denotes the time profile of the state or process faults, which is given by

0 if k<T

i=1,2...n
1-e5% D jfk>T

O (k-T)=Qi(k=T) :{
where «; >0 is an unknown constant representing the rate at which the fault evolves in the
state x; (Zhang and Morris 1994). Here the use of an exponential term in the time profile

is to characterize the incipient and abrupt faults. Thus for small values of ;, this term

describes an incipient fault, whereas for large values it represents abrupt faults.

Additionally, T denotes the unknown time of occurrence of state or process faults (see,

Demetriou and Polycarpou (1998), Thumati and Jagannathan (2007), Caccavle et al.
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(2008)), Talebi et al. (2009)). In certain previous works on FD (see, Chen and Patton

(1999), Frank and Keller (1990), Gertler (1988), Isermann (2005)), structured faults are
assumed, which makes it easier to use other techniques like parity relation to decouple

the uncertainty from the fault. However, we relax such assumptions here.

Remark 1: The nonlinear fault function is modeled in terms of the system states and

inputs. This is a common means of representing nonlinear system faults (Demetriou and
Polycarpou 1998), unlike actuator faults (Caccavle et al. (2008)), which is a function of
the system inputs.

Typically, in an actuator fault (see, Chen and Patton (1999), Frank and Keller

(1990), Gertler (1988), Jiang and Chowdhury (2005)), part of its dynamics is assumed to
be known; however, in this case, the fault type assumed is nonlinear, thus encompassing
the various possible state or process faults.

Additionally, by using an assumption such as linear in the unknown parameters

(Jagannathan ~ 2006), the fault dynamics in (1) could be expressed

as hi(x(k),u(k))=6’iT¢i(x(k),u(k))+gli ®), Where ¢ <%"*is an ideal and unknown parameter (or
weight) matrix such that the approximation error, &y, () is bounded (Barron 1993). The
ideal parameter vector or weights are considered bounded, i.e., 4] <¢ __(Jagannathan
2006). In this case, ¢ e *is a known nonlinear basis function assumed to be upper

bounded byigll < ¢ __ . This is true for activation functions such as RBF, sigmoid etc. The

following assumption is standard in the fault detection literature:
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Assumption 1: The state and the input vectors are bounded prior to and after the fault

occurrence consistent with the past literature (see, Demetriou and Polycarpou (1998),

Thumati and Jagannathan (2007), Caccavle et al. (2008), Jiang and Chowdhury (2005),
Yan and Edwards (2007), Talebi et al. (2009), Kabore and Wang (1999), Alessandri
(2003)). Moreover, the system in (1) could have single and multiple state faults.

Figure 1 clarifies Assumption 1 by using a state trajectory to illustrate the
difference between a fault and the failure. Before the fault occurrence, the system states
are considered bounded for a given system uncertainty. After the occurrence of the fault,
the system behavior degrades and reaches a maximum limit beyond which the system is
considered to have failed. The system degradation behavior is described by an increase in
the system parameters, which also increases the magnitude of the states. As the states
enlarge, a maximum limit, or failure threshold, is reached beyond which the system will
be unable to perform its assigned task. The states or parameters that approximate the
uncertain nonlinear dynamics increase substantially while they still remain bounded.
However, the bound could be large. This bounding value is used to predict TTF and to
avoid any catastrophic failures. Therefore it is most important to detect a fault at the
incipient stage by learning its dynamics accurately so that TTF can be determined. This
also implies that the class of nonlinear discrete-time systems (1) considered here is
assumed to have slower escape time upon the occurrence of a fault so that Assumption 1

is still valid. Next the following assumptions are required before we proceed.
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Fault threshold

Tritial state

Figure 1: State trajectories from initial state to failure.

Assumption 2: The modeling uncertainty is unstructured and bounded (Demetriou and

Polycarpou 1998), i-€., | x(k).u(ky|< My, V00U € (rxU) where there exist the compact sets

i
7 k" andu c w", with n =0 @ Known constant, for i=12,....., n.
™M

In some of the previous works (see, Chen and Patton (1999), Frank and Keller
(1990), Gertler (1988), Edwards et al. (2000), Yan and Edwards (2007)), bounded and
structured system uncertainties are considered, which simplifies the development of fault

detection.

Assumption 3: The initial system states are available, i.e., Xj (0 = X, .
The representation given in (1) provides a general framework for a broad class of
nonlinear discrete-time systems with state or process faults. Now, the following section

introduces the fault detection scheme. Subsequent sections will present the prediction

scheme and TTF determination.
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3. Asymptotic Fault Detection Estimator

In this model based technique, it is required to generate residuals to monitor and
detect faults in (1). Therefore, a nonlinear asymptotic estimator that serves the purpose of
residual generation will be introduced. This clearly implies that the purpose of the
estimator is not to estimate the systems states as in the case of a controller design
(Jagannathan 2006) whereas it will be utilized solely for detection and prediction. This is
similar to the case of using observers or estimators (Demetriou and Polycarpou (1998),
Caccavle et al. (2008)) in the literature in lieu of the proposed asymptotic state estimator.
Following is the design of the nonlinear estimator, which is used for monitoring and

detecting faults in the system defined in (1)

% (k +1) = &, (x (k) = % (K)) + py (x(k), u(k)) + by (x(K), u(k): &; (K)) = vy (K)

%y (K +1) = @y (X, (K) = %, (K) + Py (x(K), u(k)) + iy (x(k), u(K): &, () = v,y (k)

)
%o (k+1) = a (¢, (k) = X (k) + py (x(k), u (k) + hy (x(k), u(k); 6, (K) = v, (k)
where  %=[%,...% Je®"is the estimated state vector,n :R"xR" xR >R for
I =1,2,....,n represents the OLAD used to approximate the unknown fault dynamics,

Ix1

A is a diagonal design matrix (i.e., A=diag(a,,.....,a,)), and & <%~ represents the

adjustable parameters for approximating unknown fault dynamics. Since the type of

faults considered in (1) is linearly parameterized, the structure of the OLAD could be
written as h, (x(k), u(k); & (k) = & ()¢ (x(k),uky) . Finally, v; € R represents the robust term

which is defined as
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i 6" ()b,
by 6, ()8 (K)b; +C;

©)

v (k)

where ¢, >0is a user defined constant and b is an appropriate dimensioned constant
vector and its selection is addressed later in the text. The use of the robust term in the
nonlinear estimator is one of the important design changes from other FD
observers/estimators (Demetriou and Polycarpou (1998), Caccavle et al. (2008))-

Next, define the state estimation error or residual ase,(k) = x (k) —% (k). Using

equations (1) and (2), the residual dynamics can be written as
€ (k+1) = ay;e; (k) + éiT (K)g, (x,u) +v; (k) + & (K) (4)

where &; (k) = &, (k) +7;(x(k).uk)), and the parameter estimation error is given as

0;(k) = 6, - 6, (k) . In order to detect faults in the system, the residual is compared with a
known threshold via a dead-zone operator. This dead-zone operator and the threshold
improve robustness of the fault detection scheme (see, Chen and Patton (1999), Frank
and Keller (1990), Gertler (1988)) in the presence of bounded disturbances and other
uncertainties. Selection of a threshold guarantees reliable performance in the presence of
system uncertainties. The threshold selection (Demetriou and Polycarpou 1998) is
difficult even for continuous-time systems; however, a mathematical procedure is
presented in this paper for discrete-time systems to simplify the process.

Prior to the occurrence of the fault, the residual, e (k), remains within the
threshold provided a suitable threshold is selected. In the event of a fault, however, the
residual increases and eventually crosses the threshold. Once the residual exceeds the

threshold, a fault is considered to have occurred through the dead-zone operator. Upon
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detecting a fault, the OLAD and the robust term are initiated online. The threshold

operator D[] is defined in terms of the residual as

0, ifle (k)< p
Dfe. (k)] =
Le; ()] {ei (k), Otherwise ©)

where p, >0is  the threshold for 1=12....n  p=[p,...p] e®", and
Dle(k)] =[D[e,]..... Dle, ]I e®". The selection of the dead-zone size p, clearly provides a

tradeoff between reducing the possibility of false alarms (robustness) and improving the

sensitivity of the faults. The selection of an appropriate value for 5, is addressed in the

following section.
Remark 2: Since the OLAD and the robust term are not initiated until a fault is detected,
the proposed FD estimator guarantees a bounded residual prior to the fault. Therefore,
any unforeseen incipient or abrupt state fault can only drive the residual to exceed the
threshold thus enabling the FD scheme to detect them. Consequently, the OLAD or the
robust adaptive terms do not compensate the residual prior to fault detection.

Next, to guarantee a stable learning of the fault function, the following weight

update law is used to tune the parameters of the OLAD
6; (k +1) = 6; (k) + a; ¢ ()D[ej (k + D] - T ||| - a4, (|<)¢iT (k)|| 6; (k) (6)

where ¢; > 0is the learning rate, ; >0 is the design constant, and ¢ () = ¢ (x(k), u(x)) i the

OLAD basis function, which could be an RBF, a sigmoid, etc. (Farrell and Polycarpou
2006). This online tuning law relaxes the need of PE condition, which is required for
some of the previously reported discrete-time FD scheme (Caccavle et al. 2008). Later,

it would be seen that the additional term commonly referred to as epsilon-modification in
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(6) not only relaxes PE but also renders a stable parameter based prediction scheme,
which is a uniqueness of the proposed update law. The following lemma is needed before
proceeding any further.

Lemma 1: The term () ), comprising of the reconstruction error (gli (k) ), the bounded

system uncertainty (7 (x(x).ux)) are bounded above by a function of residual and the

weight estimation errors (see, Dawson et al. (1991), Kwan et al. (1995), Xian et al.

(2004), Patre et al. (2007), Lewis et al. (1999)), i.e.,
(1451 aped 4 )ef 00 <, =ty +y [l 0ol +8 g ol oll+;, G 0" (7)
where b, ,b; ,b;, and b, are known positive constants.

Proof: Please refer to Appendix.

Remark 3: In most of the previous schemes (Demetriou and Polycarpou (1998),
Thumati and Jagannathan (2007), Caccavle et al. (2008)), the approximation error and
the system uncertainty are considered to be upper bounded by a known constant, thus
rendering UUB results. On the other hand, certain stringent assumptions such as the
approximation errors satisfy a conic sector (Hayakawa et al. 2008) is not needed here.
Instead, a novel procedure is proposed to take into account the approximation errors and
the system uncertainties in a more reasonable fashion, thus resulting in improved
stability without any assumptions.

Remark 4: In (Xian et al. 2004), disturbances are also included along with the
reconstruction errors and asymptotic stability of the tracking error is demonstrated
provided the disturbances are bounded above. In this paper, bounded disturbances and

round-off errors can be included with the OLAD reconstruction errors and asymptotic
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(eini _Ci)
stability can still be shown. Next, by adding and subtractin — in (4),
y y g g by 6 (k)& (K)b; +C, “)

where c; is an appropriate dimensioned constant vector, the residual dynamics is

rewritten as

(eini —Ci)

b, 6, (k)&; (K)b; +c;

(8)

el (k +1) = a"el (k) + "Vll (k) —‘in (k) + &j (k) —

(éiT (Kb, —Ci)

— for convenience.
b, 6,(K)6, (k)b +c;

where vy, (k) - d; (g (x,u), and ¥y () =

The uniqueness of the proposed FD scheme is the online learning feature of the
OLAD to learn the unknown fault dynamics and the asymptotic stability guarantees in
contrast with available fault detection schemes in both continuous (Demetriou and
Polycarpou 1998) and discrete-time (Thumati and Jagannathan (2007), Caccavle et al.
(2008), Alessandri (2003)) where UUB is only ensured. This implies that the residual
derived using the estimator is robust to system uncertainties and would render effective
fault detection. Unlike other schemes (Liu et al. (2006), Luh and Cheng (2005)), no prior
offline training is needed to tune the OLAD and thus facilitating the learning of unknown
fault dynamics online. Next, the performance of the FD scheme using the OLAD and the

robust term is examined mathematically.

4. Analytical Results

In this section, analytical results in terms of the performance of the detection
scheme and time to detection are discussed. First, prior to the occurrence of the fault, the

stability is examined to guarantee the boundedness of the residual thus ensuring the
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design of the estimator. In addition, based on the uncertainty, the selection of the

threshold is derived.

A) Stability Analysis

To begin with, assume first that the system in (1) has no uncertainties and with no
faults present, the system (1) is rewritten as x; (k +1) = p; (x(k),u(k)) . The estimator in (2) is
reduced to

%; (K +1) = a5 (% (k) = % (k)) + pj (x(K), u(k))
and the residual dynamics is obtained as

g (k +1) = a6 (k) 9)
where the eigen values of a;; is selected within the unit circle. Hence the stability of (9)
follows trivially, i.e., e -0 ask —oo. Next, the system described in (1) in the presence
of uncertainties and prior to the fault occurrence, is given by

X (k+1) = Py (x(K), u(k)) + 7 (x(K), u(k)) (10)
The proposed estimator to monitor the system (1) becomes

% (k+1) = ay; (0 (k) = % () + p; (x(K), u(k)) (11)

To derive a suitable threshold for detecting a fault and to show the stability of the
estimator prior to the fault occurrence, the residual dynamics are obtained from (10) and
(11) as

e (k +1) = aj;e; (k) + 7; (x(k), u(k)) (12)
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k-1 i
Using (Chen 1999), we solve (12) such thate; (k) = aiki_Jzyi(x(k),u(k)) provided the
j=0

initial conditions are zero. Since a;; is selected to remain within the unit circle and using

the upper bound on the system uncertainty, there exist two positive constants x4 and s,

k
such that ‘amﬁﬂtiyik <1. Therefore,|e (k)| < g.n % where fg = f 4. This
(Vi _,Ll|

implies that if the size of the dead-zone is selected as =ﬁ°‘n‘M , the residual, e (),
(1—/1i)
remains within the dead-zone for allk <7 . Given the individual thresholds, the overall

threshold p can be determined by using Frobenious norm which is compatible with the

Euclidean norm (DePree and Swartz 1988). This demonstrates that the estimator is
bounded prior to the fault.

Subsequent to the detection of a fault, the OLAD is used to learn the unknown
fault dynamics. To guarantee a stable learning environment in the presence of faults by
the OLAD-robust term, the update law proposed in (6) is exerted. To show that the

parameter update law in (6) renders a stable system, the following theorem is proposed.

Theorem 1 (Stability Analysis of the Fault Detector After a Fault Occurrence): Let
the proposed fault estimator design in (2) be used to monitor the system (1), and the
parameter update law given in (6) be used for tuning OLAD parameter vector.
Additionally, let the initial conditions be bounded in a compact set B. In the presence of
bounded OLAD reconstruction error and uncertainties, by using the adaptive robust term

(3), the residual, ¢ (k) , and 4 «) are locally asymptotically stable.

Proof: Please refer to Appendix.
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Remark 5: The above theorem demonstrates that the first difference of the Lyapunov
function is negative definite even in the presence of NN reconstruction vector provided if
the robust adaptive term is used in (2). By contrast, a uniformly ultimately bounded
(UUB) result will be observed in the literature (Demetriou and Polycarpou (1998).
Thumati and Jagannathan (2007), Caccavle et al. (2008)) if the robust term is not applied.
This robust term and Lemma 1 enables one to express the system uncertainties and
unmodeled dynamics as a function of tracking and estimation errors which are combined
with other negative terms for ensuring negative definiteness of the first difference in the
Lyapunov function.

Remark 6: Theorem 1 indicates that the fault detection scheme developed in this effort
would ensure stable learning of the fault function or dynamics in the presence of system
uncertainties while rendering asymptotic stability. The asymptotic convergence of the
residual in fact ensures that the fault function is approximated in a more accurate fashion
provided the initial parameters are within the compact set. The dead-zone operator is still
necessary even if system uncertainties are not present due to bounded disturbances and or
computer round off errors. Even if they are present, similar to continuous-time
(Hayakawa 2008), these bounded disturbances and round-off errors can be
accommodated while guaranteeing asymptotic stability of the residual and parameter
vector. In contrast, only asymptotic stability of the tracking error (Hayakawa 2008) can
be demonstrated in continuous-time.

Remark 7: An Euler discretization of the continuous time fault detection scheme cannot
be used here for discrete-time system since the update laws cannot be derived from the

continuous-time counterpart.
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B) Fault Detection Time

Besides stability, an additional metric to evaluate the performance of a fault
detection scheme is the detection time which is defined as how quickly a fault is
detectable once it has occurred. Previous works in discrete-time do not provide a

measure of the fault detection time (Thumati and Jagannathan (2007), Caccavle et al.
(2008)) unlike their continuous-time counterparts. This paper presents a mathematical

procedure to determine the fault detection time for nonlinear discrete time systems due to
incipient and abrupt faults. The explicit equation for deriving fault detection time is

shown in the following theorem, once a fault has occurred in the i state. For faults in

multiple states, the fault detection time is given by ky, =min(ky;),i =1.......n.
Theorem 2 (Fault Detection Time): During the time intervalk < [T +k,.7 +k,], if the i"
fault dynamics satisfies f; (x(k),u(k)) = 25, -, the upper bound on the fault detection time for

incipient and abrupt faults can be obtained by solving:

For incipient fault:

. . e ) —(e e ) 2,
1-a %) —a—a)ad(e™ /a G ! ! = 13
(1-2 ™) -a-aa ( ..)[ P p (13)
For abrupt fault:
2n;
Iog(l— IM)
ﬂ.
kg =——————+k (14)

log(a;;)
Proof: Please refer to Appendix.
The above mathematical equations (13)-(14) determines the fault detection time

explicitly. Next, a new parameter based prediction scheme is proposed.
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5. Prediction Scheme

Thus far, a fault detection scheme has been presented, its performance analyzed
and the fault detection time derived analytically. Now TTF can be determined using the
behavior of the parameter trajectories before and after the occurrence of a fault. The
following assumption holds in deriving the TTF.

Assumption 4: The parameter vector é ) is an estimate of the actual system parameters.

Remark 8: This assumption is satisfied when a system can be expressed as linear in the
unknown parameters (LIP). For example, in a mass damper system, or in civil
infrastructure such as a bridge, the mass, damping constant and spring constant may be
expressed as linear in the unknown parameters. In the event of a fault, system parameters
change, and tend to reach their limits. When any one of the parameters exceeds its limit,
operation is considered unsafe. TTF is defined as the time elapsed when the first
parameter reaches its limit. The TTF can also be analyzed with lower limits.

The parameter update law given in (6) is used to estimate the system parameter
online and will be used in this section to develop an explicit mathematical equation for
predicting TTF. This equation is then used to develop an algorithm for the continuous
prediction of TTF iteratively at every time instant. Alternatively, estimated state
trajectories can be employed as well if the states can be related to physical quantities.
Next, the mathematical equation is presented in the following theorem.

Theorem 3 (Time to Failure): If the system in (1) can be expressed as LIP, the TTF for

the j™ system parameter at the k™ time instant can be determined using
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(Vi L _ai¢i¢iTH9ijmax —O‘i‘r”.jei)
(J/i (L _ai¢i¢iTH0ij —“iﬂjei)
ke = 0

i Jlog(1—7; |1 - i |

log

+ Ko (15)

j

where Ky, is the TTF, ko, Is the time instant when the prediction starts (bearing in mind

that kg was the initial value, which increases incrementally), ¢, is the maximum value
Jmax

of the system parameter, and ¢, is the value of the system parameter at the time instant
Jo

ko, -
Proof: Please refer to Appendix.

Remark 9: The mathematical equation (15) presents the TTF for the j" system

parameter. In general, for a given system with a parameter vector, the TTF would

bek, = min(kfj ) i=12,....1, where 1 denotes the number of parameters. The TTF is

defined as the time elapsed when the first parameter reaches its limit. The speed at which
the actual parameters approach their target values is dictated by the learning rate or
adaptation gain and the design constant in the parameter update law (6). A small value for
the learning rate implies that slower convergence which further means that the TTF is not
as accurate when the learning rate is lower. However, a large value of the learning rate
can speed up the convergence. Increasing the learning rate can cause hunting problems
which will result in inaccurate prediction of TTF.

Remark 10: Although the proposed prediction scheme is based on the parameter
trajectory, estimated system states could also be used for prediction since asymptotic

stability is proven. A relationship similar to (15) can be derived for TTF using (2).
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However, for brevity, no further discussions on the use of state trajectories for prediction
are included in this paper.

Remark 11: This prediction scheme could be applied to unknown systems that satisfy
LIP. It could also be applied to systems with partial information that satisfy LIP. Such
systems were given in Section 2.

Figure 2 provides a flow chart of the iterative algorithm to determine TTF (k)

for each system parameter. The TTF is calculated at each time instant starting when a
fault is detected until the system parameter reaches its maximum value (threshold).
Therefore, it is logical that the TTF decreases as the parameters approach their
corresponding limits.

By tuning the system parameter estimate (4 () ) to update the TTF recursively, the

system could be more accurately monitored than would be possible with other methods
(Roemer and Ghiocel (1999), Phelps et al. (2002)). In fact, the TTF will not be accurate
when the parameter estimate vector is just started. Over time when the parameter vector
starts converging to its true values, the TTF prediction starts improving. Additionally, no
prior offline training is required to estimate the system parameters, which significantly

reduces the burden of collecting data.
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Fault detected, kOj =Ky, (time of

fault detection)
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Calculate ¢; (koj ), € (koj yand éi (koj yat the
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i

v
Calculate TTF using (15)

v

Calculate k¢ = min(kfj)

Yes l

System failed

Figure 2: Flow chart indicating the TTF determination.

Next the performance of this FDP scheme is tested on a practical application. The
simulation results presented below will indeed show that the performance of the FDP

scheme as indicated in the theorems can be demonstrated in simulation.

6. Simulation Results

In this section, two different simulation examples are considered to study the
proposed FDP scheme. In both the simulations, the detection, online learning, and TTF
are illustrated. The first example is a magnetic suspension system and the second

example considered is a mass-damper system. Next, we introduce the first example.
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Example 1: Magnetic levitation system

The following modified nonlinear discrete-time model is considered (Barie and

Chiasson 1996)

xl(k +1) = At(x2 (k) + xl(k)
2
X, (k +1) = At(g — (C ) 1 m)(xg (k) / %, (K))") + %, (K)
Xg (K +1) = AU(=(R(K) / L)X (K) + (2C 1 L)(x, (K) X5 (K) / xf(k))) + (UK 7 L) + n(x(K)) + X5 (K) (16)
where x() =[x (k), ,(k), x, (k)] is the state vector, and 7(x(k)) is the system uncertainty.

Prolonged use of the magnetic coil may cause wear and tear thus changing its resistance
nonlinearly. Hence, we consider an incipient fault that would change the resistance
nonlinearly. Moreover, the fault is seeded at the 60™ second of system operation and the

fault is defined by

27.7 foro < k < 60 sec
R(k) =
R(k - 1) - ((k + exp(=Kk)) / 5000) k > 60 sec

Finally, the input is taken as
u(k) = L(sin(0.1k) = At(=(Ry / L)x4 (k) = (2C ) / L)(x, (K)x5 (K) / x12 (K))) = (@1 At)Xg (K)

To monitor the system defined in (16) and to generate residual, the following

nonlinear FD estimator is used

% (k +1) = At(x, (K)) + %, (k) +0.1(x, (k) — %, (K))

R 2 R

Ry (K +1) = A(g = (C ) /M) (k) 1% (kD)) + x5 (k) + 0.10x, (K) = %, (K))

%g (k +1) = At(~(O(K) / L)xg (k) + (2C ) 1 L)(x, (K) %4 (K) / xf(k))) +(U(K) /L) + xg (K) + 0.2(x4 (K) = X (K)) + v(K) a7

where the estimated state vector is given by (k) = [% (k). %, (), %, (k)] , and A=o1l, With

I is an appropriately dimensioned identity matrix. Additionally, the robust term used to
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o 000D .
guarantee the convergence of the residual is given byv(k)=——F—— .t but is not
b:o" (k) +
f f

initiated until the fault is detected. The values of the system parameters used for this

simulation are m=1cC, = 12410 Nm’A’, R, = 27.70hm, L = 0.65Henry, t, =001,

X,(0) = x,(0) = 0.002, x,(0) =0.001, C; =15, and b, =ooes. In this simulation, the system
uncertainty is taken as»x«) =o2sand is assumed to exist from the start of the system
operation. The parameter éx) is estimated online, and prior to the fault
detection 6(k) = 27.7 .

Since uncertainty is considered in the simulation, a fault detection threshold has to

be utilized to avoid missed or false alarms. To overcome such problems, the threshold

derived in Section 4 of this paper is used, where we have , - %, Since 7,, =025, and
()

taking 4, = 0.935, « = 001, We have a constant threshold value of p = 027. Fig. 3 depicts the

residual and the detection threshold over the entire simulation interval.
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Figure 3: Residual signal with the detection threshold.
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From the figure, it is obvious that for the designed threshold value, the residual
remains always within the limit, but exceeds only after the occurrence of the fault. These
could be observed from the two arrow heads showing the occurrence and detection of the
fault. Upon detection of the fault, the residual converges to zero, which is attributed to the
online learning of the unknown fault and the use of the robust term. Additionally, this
shows that the proposed FD estimator tracks the actual system states accurately.

The online learning of the change in the fault parameter is shown in Fig. 4, where
the estimate converges to the target value asymptotically in real-time, i.e., unlike other
schemes (Liu et al. (2006), Luh and Cheng (2005)) neither apriori fault information nor
offline training is needed to learn the change in the parameter. However, the initial
variations in the parameter estimate may be attributed to the selection of the gains of the
parameter update law in (6), where « = 058 and y = o.001,

Using the online parameter estimate in Fig. 4 and setting a failure threshold value
of 0.8 units, the TTF is estimated using the procedure outlined in Section 5, thus we have
the TTF prediction as shown in Fig. 5. From the figure, the prediction seems to be
satisfactory as it converges to the actual time of failure of 93.7 seconds. The TTF is
estimated only after the detection of the fault and as seen in the figure, the estimated TTF

is consistent with the actual time of failure.
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Figure 5: The TTF determination after the fault detection.

Hence, through this simulation, the theoretical results derived in this paper are
verified. Additionally, another simulation example is introduced next to illustrate the

usability of the proposed FDP scheme.

Example 2: Mass damper system

Some of the commonly known systems such as bridges, automobile suspension
system etc., could be modeled as a mass damper system. Hence a FDP scheme to alert
users about any impending faults is necessary. Consider the following discrete time states

space model equivalent to a continuous time mass damper system (Demetriou and

Polycarpou 1998)
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X (k+1) = X, (k) +x (k)
1
X, (k +1) = E{TS (F —c,x, (k) = key (K)x (K)}+ X, (K) + (k) (18)

where x, (k) and x, (k) are the system states, representing the displacement and velocity
term of the mass damper system. The external force (input) applied to the system is
defined as F = 2sin(kt,) . In this simulation, a spring stiffness fault is assumed, which is

considered as a predominant fault (Demetriou and Polycarpou 1998). Hence, the fault is

assumed to cause the spring constant to vary as given below

0.55 foro < k < 15sec
1 00 -

K q (k —1) = (k / 90000) k > 15 sec

To monitor and detect faults in (18), the following nonlinear FD estimator is

considered

X (k+1) =T.X, (K) + X (K) +0.01(xq (k) — % (k))

. 1 - .
R, (K +1) = ;{TS (F —c X, (K) = 6, (k)X (K)}+ v(K) +0.01(x, (k) — Ry (k) (19)

where % (k) and X, (k) are estimated states of x (k) and x,(k). For this simulation, the
following values are consideredm=1,c =05, x(0)=0, x,(0)=0, %X(0)=0,%,(0)=0, and

6, (k)b

2 A2
bg f5 (k) + Cq

T, =00tsec. Additionally, vk) is the robust term which is given by ) - . We

take b, -os and c, -oos. From the definition, the fault is seeded at the 15" second of

operation. Initially, we calculate the residual and monitor constantly to detect faults in the
system. In this simulation, we consider the following defined constant disturbance

n(k) =0.48 for k > Osec
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Therefore, a threshold is required to avoid missed or false alarms. In this design,

we haver, -oss, and taking g, =099, x =001, using ,- 7/, we would have a constant
- )

threshold value of » -049. The above discussed results could be seen in Fig. 6, where the
residual remains within the threshold prior to the occurrence of the fault. Consequently,
after the fault, the residual tends to increase, which exceeds the chosen threshold.

Subsequent to detection, the fault parameter, i.e., 4, (k) has to estimated online using (6),
with « =05 andy = 0oo2. However, prior to the fault detection, we take 4, (k) =o055. In

addition, the robust term is triggered to guarantee asymptotic convergence of the residual,
which is observed in Fig. 6, where the residual converges to zero eventually. This is true

even with a disturbance.
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Figure 6: Residual signal with the fault detection threshold.

The online estimation of the fault parameter is shown in Fig. 7 along with the

failure threshold value of 0.074. This implies that the induced fault causes the spring
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constant to decrease and reach its lower limit beyond which the system is considered to
have failed completely. Using this online estimate and the procedure outlined in Section
5, TTF is estimated in real-time and is shown in Fig. 8. The initial prediction may not be
accurate, which is attributed to the random selection of the tuning parameter in (6).
However, as the online estimation of the fault parameter improves, TTF estimation
improves and is found to converge with the actual time of failure of 33 seconds.

The above two simulation examples demonstrate that the proposed FDP scheme
performs reliably even in the presence of uncertainties. The scheme learns any unknown
fault function and provides an estimate. It also predicts accurately the remaining useful
life of the system. Moreover, no apriori training is needed to learn new faults or for

estimating TTF (see, Liu et al. (2006), Luh and Cheng (2005), Luo et al. (2003), Roemer

and Ghiocel (1999), Phelps et al. (2002), Shao and Nezu (2000), Mathur et al. (1998)).
Additionally, in the first simulation example an increasing fault parameter was
considered for TTF estimation, whereas, in the second simulation example, a decreasing
fault parameter is considered to estimate TTF. This automatic FDP scheme, therefore,
can alert maintenance personnel the need for preventive measures by providing the TTF.
With a unified scheme, therefore, a system can be properly monitored from setup to

failure.
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Figure 8: The TTF determination after the fault occurrence.

7. Conclusions and Future Work

In this paper, a new asymptotic FD estimator and a parameter based prediction
scheme have been developed for a class of non-affine nonlinear discrete-time system with
state faults. The proposed scheme detects and learns unknown incipient and abrupt state
faults. By using a robust term and considering certain mild assumptions on the system
uncertainties and reconstruction errors, the FDP scheme is guaranteed to render
asymptotic stability in contrast with other schemes where a bounded stability is
demonstrated. A dead-zone operator enhances robustness of the proposed scheme. A key
feature of the proposed FDP scheme is the prediction of the remaining useful by using

information on the real-time change in the system parameter. The scheme was developed
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with the assumption that all states are measurable. Future work, therefore, would relax

the need for measuring all the states.
Appendix

Proof of Lemma 1: Consider the residual dynamics given in (8), solving it would render

_ T
" S ire 8 ()b, —C; _ (2 bi_ci)
gj (k) = a;e .(0)+Za" [Hi (DG (D) + 3 te( -7 7

j=0 bj 6; (1)6; (b +C; b, 6,(1)6; (I)b; +c;

The above equation is rewritten as

k ) k )
D i e =g 00 -aie @ Y an Ja (i) (x(i).u(i)

j=0 j=0
S (@am-c) S (g .—C)
DA A
U b amg (b e ST 80304 (b, + g

Apply Frobenius norm in the above equation to obtain the following

k K
Z i ‘gI(J) HI * ailiei Zau J9 (¢ (1)

=0 j=0

k

~T .
k=] 6, (ib,
+ Zaii T T,
j=0

bi Hi(J)gi (J)bl +C

k T |

Z b

0 b9(1)9 ()b, +C‘

(A1)

The summation term in the above equation could be solved

) _
- & ; (k) .. . e .
as| > ai 1a (e ()| < M Constrictinga; _ <o0sin the unit disc, this makes the FD
j=0 a-a )
- P Héi(")H B Héi (")H o
scheme even more stable. Then we obtain ( ) < . Similarly bounds
L Bl

could be derived for the other terms in the above equation.
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6, (o, B ob, r
Also, 7. .1 L T =% %, Therefore (A.1) could be
b, 6 (1)6; (i)b, +c; b, 6.(1)6; (i)b, +¢;

rewritten as

kool |

o 0] -2

Hmax fimax Hmax Tmax

Squaring both side and factoring aimax would give us

K 9 i i
< a || i + (@i €; (O)H ;= =
fimax aj 3 3
max max max

e 1]
k Imax ] A
Take b, = H ii i by =¢ . *h . » then the above equation could be
aiimax
rewritten as
2
e ] o 3 o
<a. g (K)|| +bg +—
limax aii
max

Expanding the square term on the right hand side of the above equation and after

some mathematical manipulation, the following equation is obtained

g 3a b voa’ +2b1 ||9 K| 2a”maxb1||e (k)””a (k)” (A.2)

. Jei ¢

Multiply  (A.2) by(1+5(2*1’5i)“i¢|2max) to render the following equation

2 2 2
< 3|1+ 52 +1/ &) a_
max

Hmax

2 2 2 2 2
14+5(2+1/ 5i )ai¢imax & bO +2{1+52+1/ 5i )ai¢imax aiimax ”el (k)”

+2 (1+ 5(2+1/ 5 )aiq}liax )bf Héi (k) ? + 2(1+ 5(2+1/ 6 )aiqiax )aiimaxbl Hei (k)HHéi (k)H

Takeb|0 =3(l+5(2+1/5i)ai¢i2max)a% bé, bll =2(1+5(2+1/6i)ai¢}|2max>a

Imax

2

imax '
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2 2 2 .
bj, = 2(1+5<2+1/6i)azi<z>.max )aiimaxbl’ and b, - 2(1+5(2+1/5i)oq¢.max )b1 , would reveal equation

(7). This completes the proof.

Proof of Theorem 1: Consider the Lyapunov function candidate as

1 2 1 T 5
V, = =€ (k) +—[6; (k)6; (k)]

5 a;

whose first difference is given by

1
1 ~T ~ ~T ~
AV = g[eiz(k +1)—ei2(k)} +; [0, (k+16 (k+1) -6, (K)G; (K)] (A.3)
1
%,—/
A, AV,

Substitute (8) inav, of (A.3) to render

1 K)+¥, (k)-¥, (k k (95 -¢) e k
(. ~ PO G L R
AV 5 38 (k) + ¥, () =, (k) + & (k) by 6, ()6 (k)b; +¢ i

Apply Cauchy-Schwarz inequality

((a +a,+..+a) (a +a, +..+a) <n(@a +aa, +. .+aa)) in the above equation to get

(A4)

2
0-C) |

(BT 004 (o o,

et

Next, substitute (6) inav, of (A.4), to render

.
AV, = i{[(| — iV =g 004" 0| )éi (0 -,y (x(kg; (k+ D +7; 1 - e (O (0|6, )]

%

x[( L= 7i||t — s kg w1 )61, (k) —axjdh (x(0g; (k + 1)+ 7 |1 iy () ()] )]—éiT k)6, (k)}

After some mathematical manipulation, the above equation becomes
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AV, = i-{zyi HI —a.p (K)g' (k)HéiT K)G: (K) + 77 HI —a.p (K)g' (k)H2 4. (k)6 (k)

~2a,d] (01— |1 — a0 1) 5 00ny ) 24 1 = (0] (0] ¢ (1 |1 = g (0 €01 )

1 1

2
vl 00y 008} (k=) 207, |1 = i (0T (K| w0, iy + 7|1 = e G0] ()| 6 0}

1

Apply Cauchy-Schwarz inequality (2ab <a’+b”) to terms numbered as 1 in the above

equation to obtain the following

=g (0] ()3 w0800+ 77 |1 ~erg, 008 R 6 006,00+ 268 00 (1- 7, |1 - (g K)|1)

1
AV, <— {’Z‘Vi
%

(| .y ||I —a¢ (K)g' (k)” |)éi (0 + @+118.)a’ 81 (0N xne’ (k4D + @ 116172 |1 = gy 00! 0 aiTei}

1

where s >0 is a constant. Substitute the residual dynamics (8), apply the Cauchy-

Schwarz inequality (((a,+a,+..+a) .(a +a,+..+a)<n(aa +aa +.+aa))) to terms

numbered as 1 in the above equation and after some mathematical manipulation, we
would have the following equation

1 - - 2 2 - - -
av, g—[—2(1+ 25,)7; ||| —ai¢i(k)¢iT(k)||9iT(k)9i(k)+(1+ 257)7; ||| —ai¢i(k)¢:(k)|| QiT(k)Qi(k)+25i9iT(k)9i(k):|
aj

(gn-c)
(b/6, (k)6 (k)b +c, )

+5(2 +1/ 5 )ai(AT(ﬁ.Tfi (k) +5(2+1/ 5 )aiq}quﬁ\,gf(k) +5(2+1/ 5 )aigblT;bl ~+5(2+1/ 6 )“i¢‘|T¢|‘I’§i (k)

2
7 2
+5(2+ 1/ )by 467 (K)ag; + 2 +116) == |1 — ag, (06 || 6] 6; (A.5)

j

Since AV = AV, + AV, from (A.4) and (A.5), the first difference of the Lyapunov function

candidate is given by
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(arb—cf
av | (k)@ + 2 (k) + 2+ 2 (K)+
N (bTe(k)eT(k)mc]

2

+—[-2(1+25 )7 ||I—a¢(k)¢ (k)||9 (K6, (k) + (L +25) 7] ||| a4, (K)4, (k)” 9 K)6; (k)+2§9 K)6; (k)]
I

T 2

T 2 T, 2 T (9. b. _Ci)

+5(2 +1/ 8}) e ¢ ¢|\P1i (k) + 52 +1/5;)ajd; die, (k) +52 +1/ ;)i ¢ ( — )2
b 6 (k)6 (k)b, +c
2

T, 2 T, 2 2 7’i2 T 2 7 1,

+5(2+1/ 87 )atjhy ¢|\y2i (k) +5(2+1/ 84 ¢ (K)aj +(2+1/5i)—||| - a,¢; ()4, (k)” 0, 6; —gei (k) (A.6)
aj

1

Consider only terms numbered as 1 and 2 in (A.6), would result in the following

(éiT (k)b —C, )2
(68,008 (b, +c,)

(1+5(2 +1/5i)ai¢|T¢| )‘Pgl (k) = (1+ 5(2+1/6; )ai¢\|T¢| )
< (1+5(2 +1/o‘i)ai¢|T¢| )(éiT (b, —C; )2
< z(1+ 52 +116)), ¢, )(bféi ()8, (k)b; + ciz) (A7)

Next, consider only terms numbered as 2 in (A.6), which is given by

(60 -¢) -

(1+5(2+1/5i)ai¢r¢\,)(bTé(k)éT(k)b ) )2 < 1+5(2+1/5i)ai¢,T¢,)(b 6.0/ b, - 2C; 0, by +Ci2) (A.8)
0 (k)0 (K)b. +c

Next, using (A.7), (A.8), and Lemma 1 in (7) in (A.6), would render the following
equation

AV <[e2(k)a2+'¥2 (k)] 7e2(k)+f[f 1+za)y,H| g (04" () HeT a0

2 2 T
+(L+25))7; ||| ~af, (k)¢iT (k)” eiT K)6; (k)+25i¢9iT x)6; (k):' +5(2+1/5 )ai¢,T¢,ei2(k)ai2i +5(2+1/5; )aiqﬁlT(ﬁllpfi (k)

2

+(2+1/5) ||| ~ a4, (K)4, (k)” 9 o, +2(1+5(2+1/a Yo d; ¢)(biTéi(k)éiT (k)b +Ci2)
|

+(1+5(z+1/5i)ai¢lT¢,)(b 0,07 b, —2C,0, b, +ci2)
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2 ~ ~ 2
iy + by lleg Gl + by, lleg 616 ol + b, [l6; ol (A.9)

-
1

Apply Cauchy-Schwarz inequality (ab <a’ +b") to the term numbered as 1 in the
above equation and apply Frobenius norm would result in the following first difference of

the Lyapunov function

21+2 5 2
AV <—2-af | —seaaisadl, 8 b —} o[ {‘“ a7 [t gl Gyt -2 _2 w“l a0 (9
PR
—5(2 +1/ 5 )ai;/},max —7 —2(1+5(2+1/5i)ai¢ ,max )lla (k)||
7 2
) :
+2(1+5(2+1/5i)ai¢ifnax Cir +@+16) 1 - 008 | 66, + by,
.
|
2 2
+1+5(2+1/ 5 [|¢; | )( b G~ 2Ci B O +Cimax) (A.10)
Take
bimin =
7 2
i T 2
[2+1/6) ||t - a0, 008 | 07 +10y V5@ +11 57 g 0ol 2 2
a; max 3C| i 9I
| . max max 'max
2Cimin eimin ZC 9'
S
andp,_ = :
max

) /2(1+ 15ai¢iiaX )

then (A.10) could be rewritten as

25, w2t I
'max a a

&, b —}e woff [MHI il ()4 0]~ —ag g 0o

Imax

AV s—[;—aizi —5(2+1/8, )

3bi3 5
R S AETL T b7 M wl” (A1)

X 4
-5+ 1/ 5p)aidy

This implies that the first difference in the Lyapunov function candidate av <oin (A.11)
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1/5

y 0<aj <1, 0<g <1,and

Hmax

provided if the gains are selected asa; < 5
(4+20Q2+1/ 6o )

1- 'I—Cri
_ <

1 <y <1 - e, 004 00,
1 = a9, 006 0

where

o 25, 3b' .
A 158 esqeuiod +— +2(1+5ai(2+1/5i)¢\|2 )bi2 ) Since

Cc, =
fi

v > oand the first difference is less than zero provided the gains are selected as above and

e (k)andé ,) are bounded in a compact set B. This concludes that (k) and
6, (k) converges to zero asymptotically. 0
Proof of Theorem 2: After the i fault occurs, and prior to triggering the i OLAD and
the robust term, the residual equation in (12) is given by

6, (k +1) = aye, (k) + 17; (x(k), u (k) + by (x(k), u(k)) (A12)

Incipient faults: Solve for e, (k) in (A.12) during the time intervalk [T +k , T +k, ],

would render

T+k

d
T+k, T -k (T +ky —m)
& (T +k,)=a;" ™7 e (T k) + > gt T (x(m -1, u(m -1)
m=T +k; +1
T+ky
+ Z aii(T+kd_m) (1—e_Kl(m_T))fi(X(m—l),U(m—l))
m=T +k; +1

Use the triangle inequality and \ei (T +k)| < pj, would reveal
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T+k

Z a; "™y (x(m 1), u(m - 1))

m=T +k; +1

(kg — kl)

2 =&

T+kyg

+ > a T ™A e M) (x(m - 1), u(m - 1)

m=T +k, +1

From Assumption 2, the maximum bound on the system uncertainty is given

by | (x().ut)] < m;,, thus we have

ky —k T+k,
|ei(T+kd)|2—a(d D, Z all ke m)’7|M

m=T +k; +1

T+ky

> g™ e M) g (x(m - 1),u(m 1))

m=T +k +1

+

T+k kg —k
Since +Z:d a_(_T+kd’m) =5 w

ii iy 'l

m=T +k, +1 (1—,Ui)

and solve further to have

T+kg
Z aii(T+kd -m) - efrq (me)) fi (x(m — 1), u(m — 1))

m=T +k; +1

|ei(T+kd)|Z—pi +

Hence a fault is detected only if

T+kg

a-a,) > a "™ a—e ")t (x(m-1),um-1))

m=T +k +1

22y and  therefore|e (T +k,)|2 5. The

fault term is assumed to satisfy f; (xx),u(x)) > 20 - Thus there exists a new constant s, > 2,

such that| ; (x(c). u(| = 4, and

T+kg
a-a;) > a ™ e "Dy (x(m-1),u(m-1)
m T+k1+1
Tk T4k (m-T)
(T+kg -m) —Kj (m-
>plL-a;) D, ay @-e Ty
m=T +k; +1
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kg

W-a;) 2 aii(kdim) (1-e ")

m=Kk; +1

Now if the inequality

kg

a-a,) >, a M a-e ™)

m=k; +1

2n.
2h holds, then the fault detection time can be
B

obtained as

kg

L-a;) D a;“ ™@a-e" ™M)=

m=k; +1

277iM

(A.13)

& (ky—m) & (ky-m) _—x:m 277iM
(@-a;)( Z g ' - Z & e )=—r-

m=k;+1 m=k;+1 ﬁi

Solve further to get

kg —ky
(l1-a.) L TR Z a; (ka-m) _ 2m,,
" 1—8.” m=k; +1 B,

It is easy to see that solving the above equation further would render (13).

Abrupt faults: For abrupt faults, . — «using (A.13), therefore,

kg 2; k. —k 21,
k,— i A _ _ M
(1-a;) Z a; "™ =—" solve further to derive (1 a; ' ) =
m=k, +1 B, B;

After performing some mathematical manipulations in the above equation, (14) could be

derived. 0

Proof of Theorem 3: In general, for any system satisfying Assumption 6, the maximum

value of the system parameter in the event of a fault is determined by their physical
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limitations. Thus éij (k)= 6’ij . Equation (15) holds only in the time
interval k € [k, , k; ]. Consequently, the update equation in (6) can be written as

0. (k+1) = (1 =, ||1 = 2, (08 (|| 1DE () + a0, (K) €5 (k +1)

The above equation is a linear time varying equation which can be written as
X(k+1) = AK).X(K)+B.U(K) (A.14)

where X(k+12) = 4 (k+12), AKk) = (I -7 |l ~ &4, (04" ([|1) is a diagonal matrix, x(k) =4 () ,
B=a,and T(k) =4k ek+1. Since the above defined A matrix is diagonal, (A.14) can
be written as

X (k +1) = & (0% (k) +b;T; (k) (A.15)
where @; () =17 1 - 6,004 (0, 5 =;, and Tj(0 =4, 0k +D , is a product of the

basis function and the residual, additionally j =12, ........ l.

The solution of the system defined in (A.15) is given by

k k k
Yj (K) = H gjj (t)YJ. (kOj ) + Z ( Ejj (t))bj-ﬁj (r)

= r=koj \ t=r
Since the " system parameter reaches its maximum value at the time of failure, i.e., e s

theng; «, )=6;
] |

Jmax

. Additionally, the value of éij (ko;) = 9ij ; hence the above equation
0

becomes
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tj K (K
% T [13 0, = 2| 50 pmo
t=ko; 0 r=koj \_t=r

In the above equation, for the time interval [koj Tk, I3 andt; ) are assumed to
be constant. This suggests that the system defined above can be considered as a linearly
time invariant system. This assumption is reasonable since0 <aj; <1 and it is stable and
the input ) would be bounded due to the guaranteed stability of the parameter update
law in (6). Also, TTF is continuously updated at each time instant in the

interval k [k, ,k, 1, as explained below. Hence the above equation becomes

— _ (kg1
i+ bU; > a; (A.16)




S7

Sinced; k) =1-7 i ~ag g ©|, by =¢, and Uj() = ¢ij (K€ (k+1) | equation (15)

results. ¥
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2. A Robust Fault Detection and Prediction Scheme for
Nonlinear Discrete Time Input-Output Systems®

Balaie T. Thumati” and S. Jacannathan

Abstract—Model-based fault detection (MFD) techniques are preferred over
hardware based schemes due to low cost and minimal changes to the system
when the system states are available. However, one of the major challenges in
model based monitoring, diagnosis and prognosis (MDP) approach was to
develop a detection and prognosis (DP) scheme in discrete-time in the presence
of partial state information since discrete-time schemes are normally preferred
for ease of implementation. Therefore, in this paper, we propose a unified fault
detection and prediction (FDP) scheme for a nonlinear discrete-time input-
output system in the presence of modeling uncertainties when certain states are
not available for measurement. A nonlinear estimator with an online tunable
approximator and a robust term is introduced to monitor the system. A residual
is generated by comparing the output of the system with that of the estimator. A
unknown fault is detected when the generated residual exceeds a
mathematically derived threshold. Subsequently, the online approximator and
the robust terms are initiated. The approximator uses the system input and

output measurements while its own parameters are tuned online using a novel
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update law. Additionally, robustness, sensitivity, and the stability of the fault
detection scheme are rigorously examined. The proposed scheme is guaranteed
to be asymptotically stable due to the introduction of the robust term and using
some mild assumption on the system uncertainty. Subsequently the process of
determining the time to failure (TTF) is introduced. Finally, the FDP scheme is
simulated on a magnetic suspension system.

Keywords: Fault detection and prognostics, nonlinear discrete time system, online
approximator, Lyapunov stability.

. Introduction

Traditionally, fault detection and prognostics schemes were developed

individually due to lack in understanding of how to learn the fault dynamics. In general,

the process of fault detection, prognosis and accommodation consists of: (a) detection
deals with determining if a fault has occurred; (b) diagnosis considers the problem of root
cause and location of the fault; (c) prognosis deals with the prediction of TTF and (c)
accommodation attempts to correct a particular fault, through controller reconfiguration.
In particular, prognostic schemes have been found to be vital since the prediction of TTF
helps the maintenance personnel to take action in the event of a fault.

From the available fault detection (FD) schemes, the model based FD appear to be
most preferred [5, 9] over any hardware based schemes due to reduced cost. In such an
approach, a model representative of the nonlinear system behavior is first developed and
residuals are obtained by comparing the response of the model with that of the actual
system. A fault is detected when the residuals exceed a pre-determined threshold.

However, modeling uncertainties can cause performance degradation of the FD scheme
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rendering false alarms and missed detection thus demanding a robust FD scheme.
Quantitative modeling schemes such as state-space [9], parity relations [5] as well as the
qualitative schemes such as expert systems [10] have been introduced for linear systems
[5, 9, 10] as a robust FD scheme.

With the development of advance nonlinear modeling techniques [8], it is now
possible to develop FD schemes for nonlinear systems with nonlinear incipient or abrupt
faults [1, 3, 7, 20, 23, 24]. This classification of faults is based on the time profile, where
an incipient fault would be a slowly growing whereas an abrupt fault would be suddenly
occurring [7]. However, most of the above discussed schemes [5, 9, 7, 10, 20, 24] of FD
are for continuous-time systems. There has been limited previous work on FD of discrete
time system [1, 3], but has mainly been on sensor or actuator faults, and requires the
persistency of excitation (PE) condition to prove the stability of the scheme. It is noted
that the development of a FD scheme in discrete-time is difficult due to the stability or
convergence. In other words, the first difference of a Lyapunov function is quadratic with
respect to the states which makes the detection scheme in discrete-time difficult whereas
it is linear in the case of continuous-time systems. Therefore, the authors have recently
introduced a robust FD framework for nonlinear discrete-time systems [8] by assuming
that all the states are available for measurement and relaxing the requirement of the PE
condition. However, availability of all the states means the need for more sensors, which
makes the scheme expensive. This is the main focus of this paper.

One of the noted problems in the literature for the above mentioned schemes even
for continuous-time systems is the lack of prognostics or TTF determination. One of the

earlier works on prognostics [16, 17] assumed a specific degradation model of the system,
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which is found to be quite limited to the system or material type under consideration. On
the other hand, deterministic polynomial and a probabilistic method were developed for
prognosis [19, 21] by assuming that only certain parameters affect the fault. The fault
dynamics are not being learned online making the prediction inaccurate. Finally, a black
box approach using NN was developed in [22] using failure data which is expensive to
collect apriori.

By contrast, in this paper, we unify the development of the fault detection and
prognostics (FDP) scheme for nonlinear discrete-time input-output systems [7, 20, 24].
Such an approach has not been previously developed either in continuous or discrete time
systems [1, 3]. First, a systematic learning methodology and some analytical results for
the FDP scheme are introduced for a class of nonlinear discrete time input-output systems
by using a robust term and assuming an upper bound on the modeling uncertainties. As a
consequence, the proposed FDP scheme guarantees asymptotic stability in contrast to
other schemes where a bounded stability [1, 3, 7, 20, 23, 24] is ensured. The proposed
FDP scheme could detect nonlinear system faults, which are modeled as a nonlinear
function of the input and output variables rather than actuator faults [1, 3]. Subsequently,
the TTF is introduced by using the learning methodology.

The main idea behind this methodology, is to monitor the system for any
abnormal behavior (which could be due to the faults or modeling uncertainties) utilizing a
nonlinear estimator consisting of an online approximator in discrete-time (OLAD) with
adjustable parameters and a robust term. Commonly used OLAD models are neural
network, fuzzy logic, and spline function. By comparing the output of the estimator and

the system output, residuals are generated and compared against a mathematically derived
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threshold for FD. After the detection of a fault, the OLAD and the robust term are
initiated to learn the fault dynamics online. A stable adaptive update law is proposed for
tuning the OLAD. Subsequently, the parameter update law is utilized to solve for the
TTF. Further, the stability, the sensitivity, and the robustness of the FDP scheme are
demonstrated through Lyapunov analysis in the presence of reconstruction errors and
unmodeled dynamics. Finally, it is important to note that fault detection schemes and
adaptation laws developed in continuous-time [7, 20, 24] cannot be directly applied to
nonlinear systems represented in discrete-time.

This paper is organized as follows: In Section Il the nonlinear discrete-time input-
output system under consideration is explained. In Section Ill, the fault detection scheme
is introduced. In Section IV, the robustness, the sensitivity, and the performance of the
fault detection scheme is shown extensively with mathematical proofs by using the
Lyapunov theory and in Section V the prognostics scheme is developed. In Section VI, a
magnetic suspension system is used to illustrate the fault detection and prognostics
scheme. Finally, in Section VII some concluding remarks and some possible future work
are given. This paper introduces a fault detection and prediction algorithm in discrete-
time and not a fault isolation and accommodation scheme. However, published literature

on fault isolation and accommodation could be found elsewhere [10, 20, 26].

I1. Problem Formulation

The discrete time input-output system under consideration is described by
x(k +1) = Ax(k) + ¢(y(k), u(k)) + 7(x(k), u(k)) + II(k = T) f (y(k), u(k))

y(k) = Cx(k) (@8]
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where x e R" is the state vector, y e %is the output, £, f : RxR" > R",7:R" xR" > R" are
smooth vector fields, t>o0is the starting time of the fault, c(y(k),u(k)) represents the
nominal dynamics of system, (x(k),u(k)) is the modeling uncertainty, f(y(k),u(k)) is the fault
dynamics, andIi(k-T), a nxn square matrix function representing the time profiles of

the fault.

A system fault typically changes the parameters of the system or its dynamics
which is expressed as a nonlinear function of the output and input. It is important to note
that (1) does not address sensor faults. The time profiles of the incipient faults are

modeled by [23]
(k- T) =diag(Q, (k= T),Q,(k —T),...,Q,(k=T))

where

o 0if r<o0 _
i(7) = 1- e ifr20 i=1,2...n (2)

with &j > 0 is an unknown constant that represents the rate at which the fault in the state x;

occurs. For large values of «;, the time profile function €; (z) approaches a step function

to model an abrupt fault. In this paper, we address only abrupt faults.

Remark 1: Modeling of faults using time profile is commonly found in the fault
detection literature [25], and is used extensively by researchers [1, 3, 7, 20, 23, 24].

Next, throughout this paper, we make the following assumptions.

Assumption 1: Initial state of the system is known, i.e., x(0) = x,.
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Assumption 2: The state and the inputs are bounded before and after the fault, a standard
assumption often made in the literature [7].

Assumption 3: The nominal system is assumed to be observable [24] in some domain of
interest.

Assumption 4: The modeling uncertainty is unstructured and bounded [7, 24], i.e.,
[7(x(k), uk)|| < 79, V(x,u) € (xxU)
where there exists the compact sets y < %" andu < %", with ; >0 a known constant.

During the past decade, many design schemes so called the robust fault diagnosis
schemes have resulted in a variety of tools in continuous-time for dealing with modeling
uncertainties [5]. In these robust detection schemes, when the system dynamics change
above a predefined threshold, then a fault is declared [7, 20, 24]. On the other hand,
another approach [5] attempts to decouple the effects of faults and modeling errors as a
way of improving robustness. In the following section, a fault detection scheme is
developed by using a mathematically derived threshold and OLAD. Subsequently, the

parameter tuning scheme of the OLAD is utilized for prediction.
I11. Fault Detection Scheme

The input-output system with fault under study uses the following nonlinear
estimator given by
%(k +1) = (A= KC)K(K) + ¢ (y(K), u(k)) + Ky(k) + f (y(k),u(k); 8(k)) - v(k)
y(k) = CR(k) ®3)

with x(0) = x,, where % e ®" is the estimated state vector, y < %tis the estimated output, f is
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the OLAD, deRfis a set of adjustable parameters, vis a robust term and would be
defined later in the text, andKis a design constant, which is chosen such that

G = A—KC has all its eigenvalues within the unit disc. The initial value of the OLAD in
(3) is selected such thaté(0) = 4,, so that f(y,u,4,)=0for all ye yandueU . Given the
initial conditions, the next step involves the development of an adaptive law for the
parameterd(k), so that the OLAD f(y(k)u(k);(k)) reconstructs the fault
dynamics f (y(k),u(k)) . An accurate modeling of the nonlinear discrete-time system would

enable us to track any changes in the system dynamics and helps in the development of a
robust fault detection algorithm.
Remark 2: Only upon detection of a fault, the OLAD and the robust term are initiated.
During the last few years, several online approximation based models have been
studied primarily in continuous-time in the context of intelligent and learning control. In
addition to conventional approximation models like polynomials, spline functions etc.,
various neural networks such as sigmoidal activation functions, radial basis functions,
CMAC etc and others such as fuzzy logic systems and wavelets, have emerged. For the

OLAD, yand uare considered as the input vectors, §() is the vector of adjustable

parameters, and f(y,u;0)is the output. In this paper, we consider a general class of

sufficiently smooth online approximators, f € C”.
Next define the state estimation error ase = x — X. Also define e, = y—CX as the

output estimation error or residual. Under the ideal conditions with no modeling errors, a
fault is declared active whenever the output of the online approximator f (y(k), u(k); é(k)) and

the residual becomes nonzero. An intuitive way of generating robustness with respect to
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modeling uncertainties is to start the adaptation whenever the residual is above a certain

threshold. This can be easily implemented by using a dead-zone operator D[.], which is

defined for improving the robustness of the fault detection scheme as

o, if |eo(k)| <g

Dle, (k)] = {e it @

e, (k| > &
wheree (k)is the residual ands>0is a design constant. The dead-zone size e clearly
provides a tradeoff between reducing the possibility of false alarms (robustness) and
improving the sensitivity of the faults.

In the next section, ¢ is derived in terms of the modeling uncertainty bound (775 ),

which guarantees robustness in the presence of modeling uncertainty. Based on the
estimation model in (3) and the dead-zone in (4), the following parameter update law is

proposed for tuning the OLAD

Ok +1) = (k) + aZ BOD[eO(k)]—y/HI —azZ"||6(k) (5)

wherea > 0 the learning rate or adaptation gain, o<y < 1is a design parameter,

n. . . .
B, € M is a constant vector, andz is a qxnmatrix defined as

]
o f(y,u;0)
00

(6)

The key advantage of the proposed parameter update law is the relaxation of
parameter drift, a phenomenon that may occur with standard adaptive laws in the
presence of approximation errors and due to the lack of the persistency of excitation (PE)

of input signals. The last term is similar to e-modification in continuous-time adaptive
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control. Next we define the robust term as

.
B, d(k)
V() = ———— @)
6 (k)B,B O(K)+C_

gxn . : : . .
where B, € R s a constant matrix and its selection is addressed later in the paper and

C, >0 is a design constant. The performance of the parameter update law is shown

mathematically by using Lyapunov theory in the next section.

Remark 3: In our earlier work [23], the authors have developed a nonlinear estimator for
robust fault detection in dynamic systems with full state feedback. In the case of full state
measurement with n states and m inputs, the input to the online approximator will be
(n+m) whereas it is (1+m) for the proposed work. This has a major impact on the online
approximator especially for linearly parameterized approximators since for high
dimensional input spaces, the number of adjustable parameters needed to achieve a given
approximation accuracy increases with the input dimension [2]. Therefore, the use of
output sensor data instead of full state vector has obvious practical advantages similar to

the case of continuous-time systems.

IV. Analytical Results

In this section, the robustness, the sensitivity, and the stability of the nonlinear
fault detection scheme is rigorously examined. The robustness analysis deals with the
investigation of the behavior of the OLAD in the presence of modeling uncertainties prior
to the occurrence of any faults. The sensitivity analysis examines the behavior of the

OLAD after the occurrence of the fault and characterizes the class of faults that can be
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detected by the robust fault detection scheme. On the other hand, the stability analysis
included in this section deals with the asymptotic convergence of the system signals, even
after the fault occurrence.

In an ideal case, where there is no modeling errors and prior to the occurrence of a
fault, i.e., k e[0,T), from (1) and (3), the state estimation error satisfy

e(k +1) = Ge(k) (8)

Since Gis a stable matrix, hence the stability follows trivially, i.e.,
€ — 0 ask — o . Next, in the presence of modeling errors, (8) becomes

e(k +1) = Ge(k) +n(x(k), u(k)) 9)

To determine an appropriate value fore , we derive an upper bound fore_ (k) prior

k-1 _
to the fault. From (9), we havee(k) = ZGk‘l‘Jn(x(j),u(j)) . Hence the residual is given by

j=0

k-1 _
e, (k) =D>_CG* ™ n(x(i).u(i)) . Since the matrix G is stable, there exist two positive
j=0

constants zzand B, such that (Frobenius norm)HGkHSﬂCykgl. Therefore by using

(1-u")
(=)

Ilcll=1[9], and taking B = B, L, we getle, (k)| < B7, . Thus we choose the size of

the dead-zonegz%. Next to show the robustness of the proposed scheme (using
—H

equations (3), (4), (5), (9)), the following theorem is proposed.

Theorem 1 (Robustness): The robust nonlinear fault detection scheme described by (3),

(4), (5) and (9) guarantees that f (y(k),u(k), 6(k)) =0, for k <7 prior to the occurrence of the

fault.
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Proof: Let us assume that there exists a timek,, 0<k, <T, such that |e (k)| <e for

k <Kk, and

A1,
(y7)

ey (ke )| = & = (10)

It is could be seen that the parameter (k) has not adopted in the time interval
[0,k,) by using (5) and the continuity of e, (k) [24]. Hence, in the time interval [0,k, ) the
state estimation error e(k) satisfies

e(k +1) = Ge(K) + n(x(k),u(k)) (12)

Therefore, in the interval[0,k,), the residual or the output estimation error is

given by

=

k— .
e, (k) = Ce(k) = C [ > G n(x(, u(j))}

j=0

S k-1 ﬂ(l_,uk)
By using||c| =1, ZG < ——— and|n(x(k).uk)| <7, , we get
j=0 (D)
(- u)
e, 00 < o, = = ut).

Hence, e, (k)| <e@-x*) for all ke[0,k.) Thus by using the continuity of
e, (k) we obtain that|e, (k)| < &, which contradicts our assumption in (10). In other words,

the residual remains within the dead-zone and the output of the OLAD remains zero.

Remark 4: The proof of the theorem is quite analogous to the continuous-time case [24].
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Next after the occurrence of the fault atk >T, by using equations (3) and (4), the

state estimation error satisfies
e(k +1) = Ge(k) +n(x(k),u(k)) +I1(k =T) f (y(k),u(k)) — fA(y(k), u(k); 6(k)) +v(k)
= Ge(K) +n(x(k),u(k)) + 1(k - T) f (y(k), u(k), 0)

—f(y(k), u(k); O(K)) + &(k) +v(k)
where the approximation error is given by e(k) =11k —T)[f (y(k), u(k)) - f (y(k), u(k), 0)]
andeis an optimal value chosen such that it minimizes the L norm distance
between f (y,u;0)and f(y,u) for all (y, u) in some compact domain yxU . Also ¢ is
constrained to a compact setw < %, Based on the smooth assumptions on f (y,u,8)[7],
further, the above defined error equation can be expressed as
ek +1) = Ge(k) +(x(K), u(k)) - [1 - 11k = T)] f (y(K), u(k), 6)

of (y,u;6) . -
+——(0-6)+A(y,u;0,0) + &(k) +Vv(k) (12)
00

of (y,u; 0)

00

where A(y,u;é,@):—f(y,u;é)-l—f(y,u,@)f 6-6) withA(y,u;é,a)representS the

higher order terms of the Taylor series expansion of f(y,u;é) w.rtto d.Letd=0-4is

the parameter estimation error, denote  w(k)=A(y,u;d,6)[1 -Ti(k -T)f (y(k),u(k),0)
+n(x(k),u(k))+&(k), and ¥, (k) = z' (k)a(k) , then the error equation (12) becomes
e(k +1) = Ge(k) + ¥, (k) + a(k) + V(K)

Now using the definition of the robust term from (7), we get
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T ~
B, O(k)

e(k +1) = Ge(k) + v, (k) + o(k) + - -
0 (k)BB O(k)+cC,

1 1

n
Add and subtract —; . in the above equation, where C; € % s a
6 (k)BB, (k) +C

(BTH—C)

constant vector, to get

T
(elo-c,)

e(k +1) = Ge(k) + ¥, (k) + (k) = ¥, (k) + — . (13)
0 (k)BB, O(k)+C_

‘o (BlTé(k)—Cl)

where .
6' (k)BB, A(k) +c¢_

. Next we consider the sensitivity of the proposed

fault detection scheme. The class of detectable fault is given by the sensitivity theorem
and is shown below; this theorem is obtained under the worst-case detectable conditions
[9].
Theorem 2 (Sensitivity): For somek, >0, if the fault dynamics f(y(k),u(k)) satisfies the
following inequality
T+kg -1
D CGT T e (y()u(in|= @+ B)e (14)
j=T

Then the residual is given byle, (T +k;)|> ¢.

Proof: The state estimation error in the presence of a fault and prior to the OLAD
adaptation is given by
e(k +1) = Ge(k) +n(x,u) + f(y,u)

Therefore, fork >0, the residual is given by



76

T+k-1 T+k-1

&, (T +k)=CG e(T)+ > CC™ * yix(j)u(i) + Z CG " Pt (y(i)u(j)

j=T j=T

. A, . . . :
Using |e0 M) < (1—° , ”Gk ” < ﬁcuk and the triangle inequality, we obtain

— H)

T+k-1

D e iy uiy

j=T

pr B L- )
le, (T +K)| > -=2—— g

1-4) " -

+

T+k-1

D ™ ey (i

j=T

> —g[ﬂc,uk +(l—uk)]+

Using||C||=1,||Gk|| < pu" <1 and takingk=0, we obtaing, <1. Ifg, =1,
,u" <1 and also if there exists a time k, >0and if the condition in (14) is satisfied then

it can be concluded that|e, (T +k,)|> ¢ .

This theorem shows that the OLAD would start adapting, if |e,(T +k,)|> ¢ and

hence the output of the OLAD ( f (y,u;6) ) becomes non-zero.

Remark 5: The above theorem characterizes the class of faults that are detectable by the
robust nonlinear discrete-time fault detection scheme. Note that the left-hand side of (14)
represents the fault function. Intuitively the sensitivity theorem states that if the
magnitude of the fault function after some time k, becomes greater than (1+ 5,)s, then
such faults can be detected under worst-case detectability conditions. In other words,

similar to the continuous-time case, the inequality (14) is a sufficient (but not necessary)

condition for activating adaptation of the OLAD in the presence of any modeling
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uncertainty satisfying Assumption 4.

One of the most important parameters in fault detection is the time interval
between the occurrence of a fault and the detection of the fault which is referred to as
fault detection time. The sensitivity theorem not only characterizes the class of faults but

it also provides a measure of the detection time. In other words, the smallest k, for

which the inequality (14) holds is equal to the detection time under the worst case

detectability conditions. Hence, k,represents the maximum detection time over all

allowable scenarios of modeling uncertainties.
Next the stability and performance of the fault detection scheme is examined. For

the following results, it is taken that|e, ()| > ¢ . For a gradient-based tuning updates used in

a fault detection scheme [1, 3] which cannot exactly reconstruct certain unknown
parameters because of the presence of unmodeled nonlinearities or approximation errors,
cannot be guaranteed to yield bounded estimates. Then the PE condition is required to
guarantee boundedness of the parameter estimates. However, it is very difficult to
guarantee or verify the PE. In the next theorem, improved parameter tuning schemes for
the fault detection scheme is presented so that PE is not required.

Theorem 3 (Stability): (PE condition not required) let the initial conditions for the
nonlinear estimator is bounded in a compact sets c ®". In the event of a fault, the fault
detection scheme guarantees robust stability in the presence of modeling and

approximation errors, such that e, (k)and é(k) are locally asymptotically stable.

Proof: Consider a Lyapunov candidate as

V _r.2 LT )
= eo(k)+3 [0 (k)o(k)]
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The first difference is given by

AV ==l (k+1)-e?(k) Ty (k+1)Ak +1)-8" (K)A(K)]

5 3

Consider  the first term (av,) in the first differenceav and

substitutinge, =y-Cx=Cx-C&=Ce, Using the error equation (13), and applying the
Cauchy-Schwarz inequality ((a, +a, +...+a ) .(a +a, +..+a)
<n(aa +aa, +..+a a) gives us

AV, < (€' (G'CT) + (v (k") + (@ ()Y’ + (v) ke’

T T T
- c
* T(Blgfl) 7 | |- (ceto) (15)
(é (k)B,B, é(k)+cm) 5

Next, considering the second term (av,) in the first difference of the Lyapunov

function av
AV = 1 ~T ~ ~T ~
L =—1I[0 (k+1)0k+1 -0 (K)F(K)]
3a

by using the parameter update law (5), applying the dead-zone operator in (4), and

0 =6-6,one obtains

AV, = i{[(l ~7|V—azz"[1)6) - az B ey (k) +7||1 —azZ

9]T

DO(K) ~azBe, (k) + 7 |1 ~azZ”

><|:(I ~y|1-azz’

9} vy (k)é(k)}

Applying the Cauchy-Schwarz inequality ((a +a, +..+a) (a +a, +..+a)
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<n.(aja +a,a,+..+a a ) in the above equation gives us

AV, < i{[séT k)1 -y |1 —azz"||na -7 |1 - azz"||néK)
3a

+30°B]Z" e, (k)2B,e, (k) +37 H | —azZ'| eTe} " (k)é(k)}

In the above equation, performing some mathematical manipulations would result

in the following equation
2

AV, < 25 ()6 (k) —2—y||| —azZ’ || 0" (K)6(K) +7—||| —azz' ||2 0" (K)O(K)
a

3a o

2
4 2
+aB 2" Ce(k)ZB Ce(k) + — |1 —azz" | 0"0 (16)
a

Combining aAv, from (15) and Av, from (16) results in the following equation

AV < (6" ()G CT) + (¥, (IC ) + (@' ()Y + (v, C")

T T T
+ (819—01) ¢ 5 —i(Ce(k))2+
(éT(k)BlBlTé(k)+Cm) 5

2
Sy (K)H(K) —2—7||I —azZ' ||éT (k) (k) +7—||| —azz' ||2 6" (K)6(k)
3a o o
2

2
+aB] 2" Ce(k)ZB,Ce(k) +7—||| ~azz'|| o'0 (17)
(04

Next, we introduce the following Lemma
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Lemma 1: The term o) in (17) comprising of the approximation error and the basis
function of the OLAD, is assumed to be upper bounded by a smooth nonlinear function of

state estimation and parameter estimation errors [6, 11]
(@ 0T ey =g, + 4, el + 2, a0l + 4, el laco]

where 5,.5,,8,, and B, are computable positive constants.

Proof: Use some standard norm inequalities, Assumption 1, and the fact that the
reconstruction error can be expanded as a function of the residual error and error in
adaptive estimation parameters. The steps follow similar to the case in continuous-time
in proving the boundedness for a NN controller [15].

Then taking the Frobenius norm and using lemma 1, equation (17) could be

rewritten as

1 2
AV < _(_ - G:]ax - aBgmax Ziax - ﬂl - ﬂ4) ||e(k)||
5

2

2y T 2 T
- :”I—aZZ —zmax—zBlmaX—;—:Hl—aZZ — 5, =8,
a 2
~ 2 T
[000l" + 8 0 =28, 0., +20,  +—[1-azz’|[ 6 + 1, (18)
o

where 6. < ||9|| SOnx » 2. <lZ|l<z_ ,and B, = (ﬂ3 /2) .

2
B 02, +2¢" + | -azz"| 02, + 5,
a

Lhax Mmax max

Taking B, =
9 Py 20 ¢

min ~ Loin

Using this definition in (18) results in the following equation
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1
AV < _(_ _G:1ax _aBOZmaXZ:’IaX _ﬂl —ﬁ4)||9(k)||2

5

2
—[zl||| —azz' ||—z§1ax —28° —i—y—”I fazzT”Z — 5, -B)6®)|°
o 3a o

Imax

Hence in the above equation, AV < 0 if we choose the following gains

1 1
min(a) < y <

||| —azz2' || ’

a= ; and a <1,

Thus as long as the first difference av <0 which indicates that the error signals are

stable in the sense of Lyapunov. Additionally, in absence of measurement

noise, e, (k) = ce(k) , hencee,(k)and ¢(k) are bounded, providede,(k,)anddk,) are bounded

in asetS. Hence e,(k)and (k) converges asymptotically to zero.

Remark 6: From the above theorem, it is observed that by using the robust term and the
lemma on the approximation error, we proved local asymptotic stability of the closed
loop system.

Next we propose stability without using the robust term and also removing the
lemma 1, thus we present the following corollary. In this corollary, we show that the FD
scheme is only semi-globally uniformly ultimately bounded (SGUUB). Thus (13) without
the robust term could be written as

e(k +1) = Ge(k) + w(k) + (k) (19)
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where (k) = 2" (K)o and  o(k) = A(y,u:6,0)~[1 ~Tik =T)1f (y(k), u(k), 6) +7(x(k),u(k)) +eky.  Next
the corollary on the stability is presented.

Corollary 1: Consider the hypothesis given in Theorem 3 with the robust term being
removed. In the presence of bounded uncertainties and reconstruction or approximation

errors, the output estimation error or residual e, (k) and the parameter estimation error

d(k) are SGUUB.

Proof: Consider a Lyapunov candidate as

_ ieg(k)+3i[éT<k)é<k)]

The first difference is given by

AV = Eeg (k+D)-e2(k)+ i[éT (k+DA(k+1)-6" (K)A(K)]
3 3
AV, Av,

Consider  the first term (av) in the first differenceav and
substitutinge, = y—C% =Cx—Cx =Ce, Using the error equation (19), applying the Cauchy-
Schwarz inequality ((a, +a, +..+a) (a +a, +..+a) <n(a'a +aa +..+a'a)) in the

above equation gives us

AV, < 2(cee()’ +(c¥() + (Con))’ (20)

3

Next, considering the second term (av,) in the first difference of the Lyapunov

functionav , we get
1 o < oo
AV, ==[6" (k+D)Ok+) -0 (k)O(K)]
[24

by using the parameter update law (5), applying the dead-zone operator in (4), and
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0 =6-46,one obtains

AV, = i{[(l —y |V -azz||)ék) - az B ey (k) +7 | —ogzzT||¢9]T

><|:(I |V -azz"|)6() - azB ey () + ¥ ||| —azZT

6’} 4" (k)é(k)}
Applying the Cauchy-Schwarz inequality

((a +a,+..+a) (a +a +..+a) <n(@a +aa +..+aa)) in the above

equation gives us

AV, < i{[SéT w1 -y |1 —azz' ||y - 7|1 - azz" | Héw
3a

+3a"B.2"e_(K)ZB g, (k) +3)° H | —aZZ" H2 GTQJ 9" (k)é(k)}

In the above equation, performing some mathematical manipulations would result

in the following equation

2

2 4 ~ 2y T ~7 ~ '4 T2 -1 ~
AV, <—0 (k)e(k)——”l —azz ||9 (k)H(k)+—||I —azz || 6" (K)6(K)
3a o a
2 2
+aB] 2 Ce(k)zB,Ce(k) + |1 —azz"|| "0 1)
(24

Combining av, from (20) and Av, from (21) results in the following equation

AV < E(cc;e(k))2 +(evm) +(com) +=i wiw

3 3a
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2

Z |1 - azz"|| 6" waw + || - azz” ||2 6" ()a(K)
[04 [04
? 2
+aB 2" Ce(k)ZB Ce(k) + y—||| —azz'| 60
o

Applying Frobenius norm in the above equation gives us

1 2
&V <—(=-6., —aB; 7; )ew|
3

2y T 2 2 72 T N5 2 2
—(—”IaZZ ||—zmax————|||—azz || j||0(k)|| +D
o 3 «

2

D2 = o 7_”' ZZT”Z 2
where  Pm T Dpa t -a Omax | ||a)(k)|| <@ . Then av<oas long as the
o

following conditions hold

M D

ecoll > orllawl > 2
E G2 2 2 2y T 2 2 7/2 T2
\/( - max—aBomaXZmax) \/(”I ~azz'|-z2, - |1 ~azZ’|| J
3 a 3a «a
1 2
1¥4|——aZ
also B, o —om , G <0408, b= s T
~ az, ™ |1 -a22’]
1
min(b) <y < m 2, <0577 and a <1, (22)

Therefore, AV <0 and it can be concluded that the residual or output estimation

errore, (k) and the parameter estimation error d(k) are SGUUB.
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Remarks 7: It is important to note that in the above two theorems (Theorem 3 and
Corollary 1) the requirement of the PE condition and certainty equivalence (CE)
assumption are relaxed for the adaptive estimator, in contrast to standard work in
discrete-time adaptive control [13]. In the latter, two separate Lyapunov functions are
considered to show the bound on the state estimation error and the parameter estimation

error [13, 23]. By contrast in our proof, the residual, e, (k) and the parameter estimation

errors 4(k) are combined in one Lyapunov function. Hence the proof is exceedingly
complex due to the presence of several different variables. However, it obviates the need
for the CE assumption and it allows parameter-tuning algorithms to be derived during the
proof, not selected a priori in an ad hoc manner.
Remark 8: The parameter updating rule (5) is a nonstandard scheme that was derived
from Lyapunov analysis and does include an extra term referred to as discrete-time¢ -
mod [13], which is normally used to provide robustness due to the coupling in the proof
between the residual and the parameter estimation error terms. The Lyapunov proof
shows that the term is necessary. Unless the term is utilized, the time to failure cannot be
derived.

In this section we presented the robustness, sensitivity, and the stability of the
proposed FD scheme. Additionally, two different stability results were obtained, i.e.,
asymptotic stability and SGUUB under certain conditions. In the next section, we would

introduce a new method of predicting TTF.
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V. Prediction Scheme

The interest of most modern industrial maintenance is to predict impending faults
and alert the concerned maintenance personal by predicting the TTF so that the failing
component or system can be replaced thus avoiding any catastrophic failure. The
prognosis scheme will help out in this regard so that costs can be controlled due to
failures. Though it is usually difficult to predict failure, TTF can be approximately
obtained by predicting time to limit, In other words, systems parameters are monitored
with fault and the TTF is obtained by projecting the time at which the value of the
parameters reach their maximum limit usually set by a designer. The maximum limit
could be the value up to which the system could perform it’s intend task or operation
safely. In general for most physical systems, the system parameters could be related to
physical parameters. Hence in the event of a fault, the parameters may tend to increase or
decrease depending on the fault characteristics.

To predict the TTF by using the parameter update law in (5), we propose the
following theorem. In this theorem, we show that an explicit mathematical formula could
be derived to predict the TTF. Before proceeding any further, we make the following
assumption.

Assumption 5: The parameter (k) is an estimate of the actual system parameter.

Remark 9: This assumption is satisfied when a system can be expressed as linear in the
unknown parameters (LIP). For example in a mass damper system or civil infrastructure
such as a bridge, the mass, damping and spring constants can be expressed as unknown

parameters. Hence in the event of a fault, we assume that system parameters change and
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tend to reach their limits defined by the designer. When any one of the parameters
exceeds its limit, it is considered unsafe to operate. TTF will be defined as the time that
the first parameter reaches its maximum limit. Here the TTF analysis can be done with
lower limits as well.

Theorem 4 (Time to failure): Assume that the parameter update law can be treated time
invariant during the time interval k and k+1 and consider system (1) can be expressed as

LIP, the TTF for the i system parameter could be iteratively determined by solving

n
(yHI -az'|6,, —a2.z, BOje‘)j
j=1
n
(Ap_auwﬁ%_azgaﬁw%j
j=1

i " logt—7 1 a2 )| " (@)

where K. is the TTF, koi is the time instant when the prediction starts (starts at k4 and

incremented with time), 6 is the maximum value of the system parameter, and ‘9io IS

the value of the system parameter at the time instant koi .
Remark 10: The mathematical equation (23) is derived for the i system parameter. In
general for a given system, the TTF would bekg =min(k )i =12.....I where |the

number of system parameters. This also implies that for a fault that is occurring in the
system, the TTF is obtained as the time that the first parameter reaches its limit.
Proof: In general for any system satisfying Assumption 5, the maximum value of the

system parameter in the event of a fault is determined via physical limitation. Hence we

take §; (k¢ ) = 6, - Note that the equation (23) holds only in the time interval kelk,,k]
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when the residual and other terms are held constant at eachk . Thus the values of z and

e, are known and would be held fixed for the k™ time instant. Under the assumption, the
parameter update law shown in (5) could be written as
om+1) = (1 =y |1 - azz" | 1)O(m) + 2z B,

where we use m as the time index to simplify the understanding of the theorem, and the

above defined equation could be written as
X(M+1) =AX(m)+B.U (24)
where X(m+1) = d(m+1), A = (I —7”' —azz' || 1) is a diagonal matrix,x(m)=ém), and

B-«a,and T =2Z B, . Since the above defined A matrix is diagonal, (24) could be written

as

X (m+1) =% (m) + BT (25)

where Ty =17l ez §

n
a.and Y = Z Z;B,& with the elements of input
i1

being constant between the time instant k and k+1.

Solving (25) to determine TTF using [4], we get
— — (m—my) — T — (m—j)_
X(m)=2g; " 'X(m)+ Z ba; T (26)
j=my+1
Since at a given instancek , u, is time-invariant in (26), thus the above equation becomes
— — (m—my) — —_ - = (m-my)
R =7""X(m) + By D &
j=my+1

Now using results of geometric series, the above equation could be written as
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— = (m—mg)— — 1_§iim_m0
X (m) = g % (mgy) + b4 -

After performing some simple mathematical manipulation, one obtains

— ey _ X (M-F) - BT]
" [% (m,)(1- &) — B ]

Since0 < @; <1, take absolute value and logarithm on both sides and apply again the

absolute operator to get

(|xma-5)-bg
og —
X (mo)(l_gn) _biUi
m= +mO
llog(z))|

Next we take m = kfi ,and My = koi . Additionally, we have

x(m=xk) =6 X(m)=X(k,)=¢, and we know that & =17 -azz',

=y
[

n
aand U = Z Z; Bo, € . Thus, we get equation (23). Hence completes the proof.
j=1
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Fault detected, koi =k, (time of
fault detection)
2 N

Calculate z(k,. ) , e, (k, ) and é(kor ) at the
1 1 1

k;h instant
1

v
Calculate TTF using (23)

v

Calculate k, = min(K, )

Yes l

System failed

Figure 1: Procedure to iteratively update the TTF.

After fault detection, (23) is utilized iteratively to obtain TTF in the time

intervalk e [k,,k,]. To better understand the idea of updating the TTF, refer to the
flowchart in Fig. 1. From the flowchart, upon detecting the fault, at each time instance,

Z(k),o(k) and€,(k) are calculated. Then TTF is estimated by using (23), as the parameter

o(k) - 0_ . ask = K; . This iterative procedure allows one to accurately assess the TTF

at every time instant more accurately when compared to probabilistic methods [21],

where the change in the direction of the fault parameter is not known.
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Next, the performance of the developed FDP scheme is simulated onto an

application. The details of the simulation are given in the next section.

V1. Simulation Results

In this section the FDP scheme is simulated with a magnetic suspension system.
The performance of the FDP scheme is shown with and without system uncertainty and
measurement noise. The learning capability of the OLAD is also presented for the chosen
example.
A. Fault Detection Scheme

To begin with, first we analyze the performance of the fault detection scheme. A
simplified discrete time state space representation of a magnetic suspension system is

given below [14]

X (kK +1) = Tx, (K) + X (k) + 7, (x(k), u(k))

m

X (k+1) =T, {i(—klxz(k) +9.8+ f(y(K)) + F)} +, (k)

y(k) =x, (k) (27)

where x and x,are the system states, Fis the input for the system in (27) and for the

estimator in (28) which is taken as F =5sin(kr,) . A fault induced by changing the coil

resistance in a nonlinear fashion by simply adding it to the system in (27) using f (yk)) .

The following nonlinear estimator is used to study the system described in (27)
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% (K +1) = Tx (k) +x (k) +a% (k) +a% (k) +a x (k)

1
% (k+1) =T, {—(—klxz (k) + 9.8 + F)} #x, (k) + T (y(K), B(K))

m

y(k) =X, (k) (28)
where  and %, are the estimated states of the system in (27), and f (y(k), (k)) is the OLAD.

For this simulation, the OLAD is chosen to be a single layer sigmoid function network

with sixteen neurons, and the initial weights of the network () are chosen randomly. The

system is simulated with an abrupt fault that occurs at T =15seconds and is given by
(k= T) f (y(k)) = {5sin(0.01y(k)), if k >15,else o if K <15}

The parameter values for the actual system (27) and the estimator (28) are taken as
followsm =1,k =05,a =0.0005,a, = 0.00005, a, =0.009, &, =—0.5,a, =0.000005,x (0)=0,
x,(0)=0,%(0)=0,%,(0)=0, andT, =0.01. In this simulation we present two different
scenarios, where in the first scenario, it is assumed that no system uncertainty (i.e.,
1, (x(k),u(k)) =0) is present with no measurement noise and in the second scenario, a

fixed system uncertainty and a measurement noise of Gaussian type is considered. For
both the scenarios, to tune the OLAD, the parameter update law (5) is employed. The
learning rate and the design constant in (5) are taken randomly as «=0.03
and y = 0.001respectively. The simulation results for the first scenario are shown in Figs. 2
and 3. Figure 2 shows the absolute value of the residual under normal operation wherein
the residual appears to be zero. However, during a fault, this residual will increase above

zero indicating the presence of a fault and by initiating the OLAD.
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Figure 2: Absolute value of the residual.

Figure 3 shows the evolution of the fault term and the OLAD response. From this
figure, it could be observed that the chosen OLAD learns the occurring fault dynamics
satisfactorily. Such online fault estimates are useful for fault isolation. To study the

robustness of the scheme, we introduce a fixed system uncertainty, i.e.,
n, (x(k),u(k)) = 0.5 and a measurement noise of Gaussian type with a maximum amplitude

of 0.02.

Magnitude

r r r r

5 16 17 18 19 20
Time (Sec)

'__;'—-on—‘mmhmov

Figure 3: Evolution of the actual fault term ( f(y)) and OLAD ( f(y,d)) response.
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The simulation results for this scenario are shown in Figs. 4 and 5 wherein the
absolute value of the residual is illustrated in Fig. 4 and due to the presence of the
modeling uncertainty, to improve robustness, a threshold is introduced. A fixed threshold

of 0.1 is considered as observed in Fig. 4. The threshold is chosen based on the procedure

o

A-p)

developed in Section IV, where & = and solving this equation using 7, =05, f# =09

and s, -0z, to get # =018 and & = 0.1 . A fault is detected when the residual exceeds the

threshold, which is verified as seen in Fig. 4.

Figure 5 shows the performance of the OLAD during the fault in the presence of
the system uncertainty and the measurement noise. Additionally from the figure, it could
be seen that the learning of the fault dynamics by the OLAD appears to be highly
satisfactory. An important point to be considered here is the selection of the design
parameters, size and OLAD activation functions were kept unchanged from the previous
simulation. Hence even in the presence of the uncertainty and noise, the performance of

the fault detection scheme is not compromised.

1.5

Residual
— Threshold

Magnitude

il
T . A —. l
10 15 20 25
Time (Sec)

oo
[6)]

Figure 4: Absolute value of the residual and the fault detection threshold.
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Figure 5: Evolution of the fault ( f(y)) and OLAD ( f(y,)) response in the
presence of the system uncertainty and the measurement noise.

Thus, from the above simulation results, the robustness and the performance of
the proposed fault detection scheme, and its learning capabilities of the OLAD were
demonstrated. The scheme is able to learn online any type of unknown nonlinear faults,
which is an inherent advantage. Although in this simulation, the system considered
having abrupt faults, but still the fault detection scheme would be able to capture a wide
range of fault conditions, which is evident from the mathematical results as seen in the
previous section. This makes the OLAD based approach better than other quantitative or
qualitative based methods [5, 10]. Next we illustrate the working of the prognostics
scheme, where we assume the same type of fault, i.e., nonlinear change in coil resistance.
B. Prediction Scheme

For this simulation, a change in coil resistance in the form f(yk)) = 5sin(0.01y(k)) IS
considered at the 10™ second of operation in (1) and the prognostics scheme is now
demonstrated. By using the procedure outlined in Section V, we determine the TTF. The

spring constant (k ) is considered to be unknown. Next, the parameter update law (5) is

utilized to estimate the unknown system parameter. The learning rate and the design



96

constant in (5) are chosen as«=os3s, »=oo0011, respectively. The estimated system
parameter is compared with the actual system parameter by defining a maximum
acceptable limit (usually using safety limit) as shown in Fig. 6. As the fault continues to
grow, the actual parameter tends to increase approaching the maximum defined parameter
threshold value of 30. This value was chosen randomly to demonstrate the working of the

proposed prediction scheme.

80

Actual
6oL Estimated
Threshold

40

Magnitude

20 25
Time (Sec)

Figure 6: Comparison between the estimated and the actual system parameter,
and also shown the safe threshold.

60
50 -
40

30

10 11 12 13 14 15 16 17
Time (sec)

Time to failure (sec)

Figure 7: Prediction of TTF after the occurrence of the fault.



97

From the procedure outlined in the flowchart in Fig. 1, the TTF is estimated at
each time instant after the occurrence of the fault and is shown in Fig. 7. From the figure,
after the first prediction of TTF, for few seconds the prediction seems to increase, this
could possibly be due to the random selection of the gains of the parameter update law in
(5) which needs some time to converge. However the prediction of TTF improves as the
scheme learns the change in the system dynamics and converges to the actual time of
failure of 17.27 seconds. This could also be observed in Fig. 7, where the TTF decreases
as the system parameter approaches the threshold.

Hence with the chosen example, the working of the FDP scheme was illustrated.
The simulation results show promising performance of the proposed FDP scheme.
Additionally, the robustness of the scheme was also studied by introducing uncertainty

and measurement noise in the simulation results.

VII. Conclusion and Future Work

In this paper, we have shown a FDP algorithm for nonlinear discrete time system
with input and output measurements. The scheme was developed based on the
assumptions that the states and the input being bounded before and after the fault. The
scheme also addressed the prediction of TTF. Further more it is assumed that not all the
states of the system are available for measurement. A detailed mathematical analysis and
the simulation results show the robustness and performance of the proposed FDP scheme.
Further based on the proofs, it was seen that the proposed scheme could be used as a

robust FDP scheme for nonlinear discrete time input-output systems. Future work
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involves with developing fault isolation and fault accommodation techniques for a

nonlinear discrete time input-output systems.
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3. A Model Based Fault Detection and Prediction Scheme for
Nonlinear Multivariable Discrete-Time Systems With
Asymptotic Stability Guarantees

Balaje T. Thumati and S. Jagannathan

Abstract— In this paper, a novel, unified model-based fault detection and prediction
(FDP) scheme is developed for nonlinear multi-input and multi-output (MIMO)
discrete-time systems. The proposed scheme addresses both state and output faults
by considering separate time profiles. The faults, which could be incipient or
abrupt, are modeled using input and output signals of the system. The fault
detection scheme comprises of online approximator in discrete-time (OLAD) with a
robust adaptive term. An output residual is generated by comparing the fault
detection estimator output with that of the measured system output. A fault is
detected when this output residual exceeds a predefined threshold. Upon detecting
the fault, the robust adaptive terms and the OLADs are initiated wherein the
OLADs approximates the unknown fault dynamics online while the robust adaptive
terms help in ensuring asymptotic stability of the FD design. Using the OLAD
outputs, a fault diagnosis scheme is introduced. A stable parameter update law is
developed not only to tune the OLAD parameters but also to estimate the time-to-
failure (TTF), which is considered as a first step for prognostics. The asymptotic

stability of the FDP scheme enhances the detection and TTF accuracy.

The effectiveness of the proposed approach is demonstrated using a fourth order

Research supported in part by NSF I/UCRC on Intelligent Maintenance Systems award. Contact author:
bttr74@mst.edu
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multi-input-multi-output satellite system.

Keywords—fault detection, prognostics, MIMO nonlinear discrete-time system,
asymptotic stability.

I. Introduction

Growing system complexity demands robust control schemes to mitigate system
uncertainties and unknown disturbances. However, due to the high risk of component
failures, reliable fault detection and prediction (FDP) schemes are normally required to
guarantee safe operation even under the presence of system uncertainties. If the
impending faults can be detected early through prediction, and via root cause analysis,

prognostics can be performed.

Traditionally, a fault is detected by manual inspection, which in turn requires a
knowledgeable operator. As a consequence, manual inspection is time consuming, offline
and costly for highly complex industrial systems and therefore not well suited. Therefore,
in order to minimize the increasing operating costs, researchers developed the prominent

qualitative and quantitative fault detection techniques [1-2].

In the qualitative or data-driven schemes [2], experimental data are collected from
the system and used for fault detection (FD). Previously reported data driven approaches
[2] such as the immune system [3] require offline training and therefore do not have the
online fault learning feature to approximate new faults. Moreover, generating data offline
for each fault is time consuming and costly. By contrast, in the quantitative method, a
model representative of the system is utilized for detecting faults. This model is typically
derived from either first principles or borrowed from control scientists/engineers. The

system model provides an estimate of the system states by observing the inputs and
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measured outputs of the nonlinear system. A residual signal is then generated by
comparing the output of the model with that of the system. A fault is detected in a robust
manner even under system uncertainties when the residual deviates beyond a predefined
threshold value. The selection of the threshold is a challenging task since an improper
threshold selection might lead to false and missed alarms [1, 4-7]; however, several

attempts have been made to address this issue [8-11] using analytical methods.

In previously suggested quantitative works [4, 5, 12], the FD techniques are
developed by considering a linear representation of the nonlinear system. Other fault
detection schemes use parity relations [1], geometric relationships [13, 14], observers or
estimators [1, 4-7, 15]. On the other hand, FD schemes for linear stochastic system are

reported in [16].

In the past decade, several quantitative methodology-based FD schemes, which
include geometric [17, 18], and adaptive estimation [8-11, 19, 20] are introduced for
nonlinear continuous-time systems while the authors in [21-24] use sliding mode observer
or others [25, 26] use fuzzy based observers. In [27], FD schemes have been developed
for robot manipulators. A compilation of FD schemes for hydraulic systems, flight control
etc., are given in [28]. A recent survey [6] on model-based FD techniques presents an

excellent overview of the state-of-the art developments.

A common issue that has been gaining interest is stability analysis using Lyapunov
theory in the design of FD schemes [8-11, 14, 17-19, 29, 30]. However, the FD schemes
[8-11, 19] render only uniform ultimate boundness (UUB) stability due to the presence of

system uncertainties. However, in a recent work [31], asymptotic convergence of the
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identification error in continuous-time is demonstrated for robot manipulators with

actuator faults.

Another important feature in general unavailable in the previously reported
schemes [8-36] is the time-to-failure determination (TTF) since TTF is the first step for
prognostics assessment. While none of the Lyapunov-based schemes offer TTF [8-11, 19],
certain TTF schemes in data-driven approaches [37-39], assumed a specific degradation
model which has been found to be limited to the system or material type under
consideration. Another scheme [40] employs a deterministic polynomial and a
probabilistic method for prognosis by assuming that certain parameters are affected by the
fault while others [41] use a black box approach using neural network (NN) on the failure
data. All these schemes [37-41] while being data-driven address only TTF prediction,
require offline training and do not offer performance guarantees. It is envisioned that a
unified FDP scheme will be necessary to alert an impending failure and provide the

remaining useful life.

On the other hand, implementation of the FD schemes using an embedded
computer requires explicit discrete-time development since deriving a direct discrete-time
equivalent of a continuous time scheme may cause stability issues [43]. However, due to
the quadratic nature of first difference of the Lyapunov function, it is very hard to show
stability [42] of the FD schemes in discrete-time. Therefore, limited FD schemes have
been proposed in discrete-time [29, 33, 34, 43] out of which the ones proposed in [33, 34]
consider nonlinear discrete-time systems with actuator faults and their stability is
guaranteed only when persistency of excitation (PE) condition is satisfied. In our previous

work [29], a novel FDP scheme is developed for nonlinear discrete-time systems with
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state faults by relaxing the PE condition and assuming that all the states are measurable.
By contrast, this assumption of state measurability is relaxed in this work in contrast with
[8, 10, 11, 29, 33, 34, 43] for the proposed online-based FDP scheme while focusing on
both state and output faults for a general class of nonlinear multi-input-multi-output

(MIMO) discrete-time systems.

In this work, the state and output faults (sensor faults), which are incipient and
abrupt in nature, are modeled as a nonlinear function of the inputs and measured outputs.
These faults occur independently or simultaneously, and evolve at different rates while
their time profiles are modeled by using exponential functions consistent with the
literature [8-11]. A nonlinear fault detection estimator scheme, which is used to monitor
and declare the presence of a fault in the nonlinear system, consists of an online
approximator in discrete-time (OLAD) along with a robust adaptive term. One OLAD and
a robust adaptive term are utilized to approximate the state faults whereas a second OLAD
and another robust adaptive term for output faults. The robust adaptive terms use the

corresponding parameters of the online approximators.

The fault detection (FD) estimator and the measured system outputs are utilized to
generate an output residual which when compared against an analytically selected
threshold will determine the presence of a fault. Upon detection, the unknown fault
dynamics are approximated online using the appropriate OLADs. Subsequently, the
detected fault is identified as a state or an output fault by asserting thresholds on the
OLAD outputs. Due to presence of robust adaptive terms, the asymptotic stability of the
proposed FDP scheme is demonstrated using Lyapunov theory in contrast with all other

boundedness—based FD schemes [8-11, 17, 19, 29, 33, 34]. Asymptotic stability enables
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accurate TTF determination since the parameter update law or state estimator will be

utilized.

The TTF determination together with rigorous root cause or fault isolation will
become prognostics. Therefore prognostics are relegated as part of future work. A
mathematically derived TTF determination is presented using the developed parameter
update law by projecting the current value to its limit provided the limiting parameter
value is defined by the designer. This process is iteratively performed to continuously
predict TTF up to the failure threshold beyond which the system is considered unsafe. For
most practical systems, the unknown parameters could be tied to physical entities thus
making the parameter-based TTF determination very useful. Alternatively, the state
trajectories from the FD estimator can be utilized for TTF determination due to asymptotic

convergence.

The contributions of this paper include an online fault detection and diagnosis
scheme for multiple state or output faults for a class of nonlinear MIMO discrete-time
systems using inputs and outputs, thus relaxing the need for state measurements. The
scheme considers both incipient and abrupt, state and output faults. Unlike available
adaptive estimation based fault detection schemes [8-11, 29, 33, 34, 43], asymptotic
convergence of the state residual and the parameter estimation errors in discrete-time is
demonstrated. In addition, by asserting suitable thresholds on the OLAD outputs, the
declared fault is identified as a state or an output fault. Finally, an online parameter or

state estimator-based TTF determination scheme is introduced.

The paper is organized as follows: Section Il introduces the system under

investigation whereas Section 11 presents the proposed fault detection scheme in detail. In
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Section 1V, the stability and performance of the fault detection scheme are introduced and
Section V discusses the TTF determination. Finally, in Section VI, a fourth order MIMO
satellite system is used to illustrate the performance of the proposed FDP scheme. Section

VI presents some concluding remarks and discusses future work.

Il. Problem Statement

The nonlinear MIMO discrete-time system under consideration is described by

x(k +1) = Ax(k) + o5 (y(K), u(k)) + 75 (x(k), u(k)) + g5 (y(k), u(k))

y(k) = Cx(k) + 77, (x(K), u(k)) + gy (k) 1)

where x e R"represents state vector, u < %™is the input vector, y e R” denotes measurable
system output, P, R xR 5 R g R xR >R
gy 1RO xR" SR, 77, R xRT > RC g TR >R are  smooth  vector
fields, Ac ®™", andc < ®""are known matrices. The system is assumed to be observable.
The nonlinear  function 7 (x(k), u(k)) represents the modeling uncertainties
whereas ny (x(k),u(k)) represents the sensor modeling uncertainties while
o (y(k), u(k)) represents known system dynamics. Moreover,
g (y(K), u(k)) = g (k — T,) fs (y(k), u(k)) represents the evolution of the nonlinear fault dynamics
modeled in terms of the measurable inputs and outputs, whereas gy () =TTy (k=) fy (u(k))
represents the nonlinear output fault dynamics modeled in terms of the input vector. The
diagonal matrices n; " "and 1, € ®**" denote the time profiles of the state and output

faults, which are given by
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M, (k=T,) = diag(Q, (k-T,),Q, (K -T,),..Q, (k-T,)

I, (k~T,) = diag(Q, (k-T,).Q, (k=T)).....Q, (k-T,)

where
0 if k<T,
Q (k-T,) = Ko (K-T) i=1,2...n
L R R T
and
0 if k<T,
Q, (k-T))= m=1,2...p

1- " ifkeT,
withxg >o0and «, >0 are unknown constants denoting the rate at which the fault in the

state x; and in output y,, evolves. For small values of«; andxy_, the exponential term

decays slowly, thus describing incipient faults whereas for large values of these terms, it

decays faster thus represents abrupt faults, i.e., say &5 — «, then e™ -=o. The use of

exponential term is only to signify the fault growth rate. However, the nonlinear fault

functions f;()and f,()denote the magnitude and type of fault, for example, they could be

a stuck actuator, sensor fault etc. In addition, 7, and T, denote the unknown time of

occurrence of state and output faults, respectively. Its worth noting, that the proposed
fault time profile encompasses most of the commonly occurring faults in a practical

system [7].

Remark 1: Use of the time profiles to address incipient and abrupt faults is common in
fault detection [44] and used extensively by other researchers [8-11, 19, 20, 29, 30, 32, 33,

35, 43].
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Additionally, by asserting an assumption that the fault dynamics can be expressed as linear
in the unknown parameters (LIP) [42], the fault dynamics in (1) could be written
as gq (y(k),u(k)) = 6, g (y(k),u(k)) + &< (k) , where esem'xn is the target and unknown

1

parameter (or weight) matrix, ¢, <%"* is a known nonlinear basis function vector such as

RBF, sigmoid, sinusoidal etc, which is upper bounded by||¢s|| < ¢, With the
approximation error & (k) is considered bounded above [45]. The target parameters are

also bounded, such that|e,[|<¢, [42]. Similarly, the output fault (sensor fault) dynamics
can be written using LIP assumption as g, (u(k)) = 6,4, (u(k)) + &, (k) , where 6, « ®*? is the
target parameter matrix such that [lo,] <6, , with¢, < %™ is a known nonlinear basis

function , which is also upper bounded by ||<15y||£¢ymaX with z, ) being the

approximation error vector. Finally, it is assumed that the initial system state vector is

available, i.e., x(0) = x, and also the pair (A,C)is observable consistent with the literature.

Other assumptions include:

Assumption 1: The modeling uncertainty is unstructured and bounded [10], i.e.,
[l xo,ugn]| < 7, V(o u) € XxQ and”ryy(x(k),u(k))”sﬁy,V(x,u)eXxQ, where 7, >o0and
7, =oare known constants, x %", oc%"are the state and control input regions of

interest, respectively. Additionally, bounded time varying disturbances including process
and sensor noise [41] could also be assumed to be present in the system defined in (1).
However, the asymptotic stability guarantee depends upon the type of noise [46]. Note, in

some of the previous works [15, 21], the modeling uncertainty is assumed to be structured,
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thus simplifies the FD scheme design. Also, define = < %" as the time interval prior to the

occurrence of either state or sensor fault, i.e., =0, min(T,,7,) | [10]. This assumption is
consistent with the literature.

Unlike, other previously reported FD schemes [1, 4, 5, 14, 15], which considers
only structured faults, the proposed framework addresses either process (or state) and
sensor faults which are unstructured in nature. In the next section, the fault detection

scheme and the parameter update law are introduced.

I11. Fault Detection and Diagnosis Framework

Define the nonlinear FD estimator to monitor the system given in (1) as

X(k +1) = AX(K) + o5 (¥(K), u(k)) — Ke, (k) + g (§(k), u(k); 0, (K)) + Vg, ()
I(k) = CR(K) + G, (u(k); B, (K) + vy (K) )

where xe®"is the estimated state vector, ye<%"is the estimated output vector,

G, iR xR xR >R and G, R"xR"" >R are the OLAD outputs with

A

0, c i and éy c®™Pare the set of adjustable parameters, e, =y-y is the output

residual, vs (k) and vy, (k)denote the robust adaptive terms, and K e ®"" is a design

constant matrix, which is chosen such that the matrix A+ kc has all its eigenvalues within
the unit disc [42]. The purpose of the FD estimator is to generate the residual and not to
estimate the system states typical in control applications. Additionally, in comparison with
discrete-time FD schemes [29, 33, 34, 43], proposed FD estimator includes robust

adaptive terms.
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Now to better understand the difference between a fault and a failure, we refer to
Fig. 1. The design matrix K will ensure that the state residual is asymptotically stable in
the absence of uncertainties and faults. However, with bounded uncertainties and in the
absence of faults, it is not difficult to show that the system states will be bounded (see
next section), which will be utilized to define the detection threshold. Now during faults
of finite magnitude, the system parameter/state magnitudes change with time exceeding a
failure threshold since the fault function can be viewed as an additional unwanted input.
The failure threshold is used to determine TTF and to avoid any catastrophic failures. It
is up to the maintenance personnel to define an appropriate failure threshold, which is
normally tied with unacceptable drop in performance, since it is considered unsafe to
operate the system beyond this value. On the other hand, a fault function magnitude that
increases indefinitely with time can be considered here as well except the system will

become ultimately unstable in the presence of such faults.

Fault thresheld

Tnitial state

Figure 1: State trajectories from initial time to failure.

Define the state residual ase, =x—X. Since the system outputs are measurable,

only the output residual will be used for fault detection. Moreover, we consider a general

class of online approximators in discrete-time (OLAD) such as neural networks, radial
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basis functions, fuzzy logic and so on where their parameters are tuned online with an
adaptive law. Many papers [8-11, 47] discuss various online approximator schemes and

therefore the discussion is omitted. The initial parameter vector of the OLAD is chosen

such that 4, (0) = 6, , 61 (y(k), u(k), 6,) =[0,0,....0]" andé, (0) = 6,

6, (U(k).6,,) =[0,0.....0] for all yey anducU, where Uand y define the admissible

range of inputs and outputs. Define g, (k) = o, (y(k), u(k)) — o  (J(k),u(k)) . Now before

proceeding further, the following assumption is required.

Assumption 2: The function ¢()is Lipschitz in yand u with Lipschitz constantc,,
i, o, 00 < c, ey 00| [20].

Remark 2: This assumption allows one to relate the output OLAD basis function with the

output residual.

In order to avoid false alarms due to unmodeled dynamics, the proposed fault

detection scheme utilizes a dead-zone [1, 5] operator defined by

0, if e, (k)| <&

. ,with ¢ is the detection threshold obtained analytically in this
e, (k). if [le, (K)||>

Dle, (k)] = {

section. The detection threshold is expressed in terms of the modeling error bounds viz.
n,and 7, presented in Assumption 1. By selecting the dead-zone based fault detection

similar to continuous-time, which is absent in other model based schemes [4, 5], missed

and false alarms can be minimized.
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The dead-zone operator is utilized to turn the OLAD and robust adaptive terms

o . . . O o . . 0

online. Prior to the fault, i.e.|e )| <e,d,00= Cam-l |

o . . . 0 o . . .0

Ixn hxp

T .
0<k<T, vy, 00 -[0,0,..,0] and vy, ©=[0,0,....0] . This
T « T T - T T T
means g (y(k), u(k), 6 (<) =[0,0,....0]", g, U@, 4, ) =[0,0,...0] , vy « =[0,0,..,0] , and

v;r (k) = [0,0,----,0]T in the time interval 0 <k <T prior to a state or output fault. In the

next section, the robustness theorem will indeed demonstrate that the OLAD’s and the
robust terms will not be initiated and tuned prior to the fault detection.
When the output residual exceeds the detection threshold, i.e., ||ey(k)|| > ¢, afault

is declared active and the OLAD schemes that generate, g, (.) and g, (.), are initiated and

tuned online using the following update laws as

0, (k +1) = 0, (k) + g, (k) Dley (K)]B — 7, 6, (k) ()

| — g (k) (K)
By (K +1) = By (K) + () Dley, (0] - 7 |1 =y, G018 0| () (4)
wherea, >0 and «, >0are the learning rate or adaptation gains, o<y, < 1 and

0<y, < 1are the design parameters, andBis an appropriately sized constant matrix

chosen such that||B|| < «, with « > 0.

Additionally, the robust adaptive terms v, « and v @ in (2) defined by

AT

& (k)B 9, (K)B, _ -
% LB, and vy (0= respectively, are initiated
B, 4, (K)0! (K)B, +C, B, 0, (K)8) (K)B, +C,

asvs, (k) -
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where B, andB,are constant vectors to be defined later, with ¢ >0 and c >0 denote

positive constants.

Remark 3: The parameter update laws proposed in (3) and (4) relaxes the critical
requirement of the PE for non-ideal cases, i.e., system with modeling and approximation
errors, and prevent parameter drift due to the extra terms embedded in them similar to
other schemes [33, 34, 43]. Another important remark is that no prior offline training is
needed for tuning the online approximators and therefore can be applied to learn new

fault functions or dynamics [3].

Remark 4: The asymptotic stability proofs can be demonstrated even in the presence of
unmodeled dynamics and OLAD reconstruction errors without these extra terms in (3)
and (4) [42] due to the new robust adaptive term included herein. The proof is not
included in here since it will be shown later that the extra terms are needed in (3) and (4)

for the purpose of TTF determination.

Now for the purpose of diagnosis, once a fault is detected, it is identified as a state
or an output fault based on the OLAD outputs. A state fault is considered to have
occurred if the OLAD that approximates the state fault function exceeds a predefined
threshold whereas an output fault has occurred if the OLAD output that approximates the
output fault function has exceeded its threshold. When the OLAD outputs exceed their
corresponding thresholds, then both state and output faults have considered to have
occurred simultaneously. This result is explained in the form of a sensitivity theorem

which is discussed in the next section.

Unless rigorous fault isolation can be performed, one cannot go beyond simply

identifying a state or output fault. In other words, the proposed diagnosis scheme cannot
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be utilized to identify which particular state or output a fault has occurred. Such rigorous

fault isolation is outside the scope of this paper. Next analytical results on the detection

and diagnosis scheme are introduced.

IV. Analytical Results

In this section, mathematical results for the sensitivity and the robustness of the

FD scheme are derived in order to determine the class of detectable faults. Next, the

stability of the FD scheme after the detection of a fault is introduced.

To derive the detection threshold, consider the residual dynamics prior to a fault

obtained using (1) and (2) as
e, (k +1) = Ae, (K) + ¢ (K) + 7, (X(K), u(k)) + Key (k)

e, (K) = Ce, (K) + 7, (x(K),u (k)

Note prior to the fault, the OLAD and

A T ~ T
are g, (y(0,u(), by,) - [0,0,...,0]", 4, (U(k), 6,,) =[0,0,.....0]

(5)

(6)

the robust terms in (2)

,v; (k) = [O, o,..., 0]T

and v;r (k) = [0,0,----,0]T in the time interval 0 <k <T . Now by solving (5) for € (k) first

and then (6) fore, (), we obtain

koo
es (k) = Z;)A;k_’ (17, (X(3),u(i)) + G5 () + K, (x(i),u(i)) |
=

and

k .
e, (k) = CZO A [ (XD, (D)) + @5 (1) + Kany (x(D U ]+ 7, (X))
j=

This in turn yields
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k ) k . Kk .
Hey(k)HS CZAbk_’ s + CZAOk_JK iy + CZ/shk_J cq Hey(k)HJrﬁy 7)

j=0 j=0 j=0
which could be written as
le, ()| < at, + (g + 12, (8)

k .
CZKZAK“ ‘CZAOkJK
— =i o =0

where #s = ) My = <D

(1—0gj W (1—(:g cy ! j

j=0 j=0

and Ay, :%(1_(:9

ase = ug, +(uy, + 1y, )7, the output residual, e, (k) , will remain within the dead zone for

-
CZ% JD Thus if the detection threshold is selected

allk <7 and the output of the OLADs and the robust adaptive terms would remain zero.
Therefore, the FD scheme given in (2) is robust in the sense that it is not affected by the
modeling errors provided their upper bounds are known apriori. If there are no modeling

errors as in the ideal case, then the detection threshold will be zero as expected.

Remark 5: The detection threshold, &, will be higher when an output residual based FD
detection scheme is utilized due to the additional system uncertainties in the output
equation in comparison to a state measurable FD scheme [8, 11, 29, 33, 34, 43]. This
confirms that the output residual-based scheme will be less sensitive to incipient faults.

A key performance measure of a FD scheme is its sensitivity to faults. Sensitivity is
defined as the ability of the FD scheme to correctly determine the existence of a fault.
One approach to analyze the fault sensitivity properties of a FD scheme is to characterize
the set of faults that can be reliably detected. The following theorem characterizes the set

of state and output faults that can be detected by the FD scheme.
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In this theorem, a suitable condition is derived for both state and output faults
occurring independently or simultaneously. In the previous work [4, 5], the system
uncertainties and the faults are assumed to be decoupled; however, in this paper, we relax
this assumption by distinguishing the effects of the faults from those of uncertainties by
using bounds on the uncertainties. Next, the sensitivity theorem is introduced.

Theorem 1 (Sensitivity): Consider the system given by (1), detection estimator (2) and

the OLAD tuning updates (3) and (4). i) If there exist a time instantk, >0, such that
f.(y(k),u(k)) satisfies

Ts+Kg

> CAT I (1 -T,) £ (y(i—1),u(i —1))

i=Tg

1

2 2¢, ©9)

Hy

2

Then the state fault will be detected, i.e., the output residual |e, (T, +k,)[ > « .

i) Also if there exists a time instant k, > 0such that f (u(k))satisfies

Ty+ky

I, (k,) f, (T, +k, )+ >, CA™ ™K (i -T,)f, (u(i-1)

I :Ty

1

> 2¢ (10)

Hy,

then the output fault will be detected, i.e., [e, (T, +k )=«

Proof: Refer to Appendix.
Inequalities (9) and (10) are derived for worst-case scenario of modeling uncertainties.
Moreover, for the purpose of applicability, the actual fault functions can be replaced by

their approximations.

Remark 6: From the sufficient conditions introduced in (9) or (10), the magnitude of the
fault has to be sufficiently large to distinguish it from the modeling uncertainties. Upon

detection, the magnitude of state or output OLAD would vary as per the conditions stated
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above. Therefore, the OLAD with the highest magnitude is more sensitive towards the
type of fault occurring in the system, thus helps in identifying the fault. Therefore by
appropriately setting a threshold value defined in (9) and (10) on the OLAD outputs, one
can identify whether or not a state or sensor fault has occurred. Subsequently, that
particular OLAD will be used for the online estimation of the unknown fault dynamics
and the other can be reset to zero. In the event that both state and output faults occur
simultaneously, both the conditions will be satisfied and OLAD outputs will exceed the
thresholds defined in (9) and (10). This approach is used in the fault diagnosis.

Next, the following theorem guarantees the robustness of the fault detection scheme. This
theorem shows that the OLAD does not adapt prior to the fault and the FD scheme does
not generate false alarms in the presence of uncertainties.

Theorem 2 (Robustness): Consider the system given by (1), detection estimator (2) and
the OLAD tuning updates (3) and (4). The proposed fault detection scheme ensures that
the output of the online approximators (OLAD ’s) and the robust adaptive terms would

remain at zero prior to the occurrence of a state or output fault forke[o,1),i.e.,

X A T T
are 7 (y(, ut. 6y, =[0,0,...,0], 4 (k. 6,,) =[0.,0,....0]" v 0 = [0,0,....0]" andvy o =[0,0.....0] .

Proof: Refer to Appendix.
As we understand from the above two theorems, only in the event of a fault, the

output residual exceeds the threshold thus initiating the OLADs and the robust adaptive
terms. As a consequence, the OLAD and the robust adaptive terms do not compensate for
any faults prior to detection. Now assuming a worst case scenario of faults, then the state

and the output residual dynamics from (1) and (2) are given by

L
B/ 0 (k)6 (K)By +Cs

es(k +1) = Aes (k) +775 (x(K), u(k)) + g (Y (K),u(k)) — G5 (y(K), u(k), 65 (k) + s (K) + Key (k) -
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AT
0, (K)B,

e, (K) = Cey (k) + 77, (x(K), u(k)) + 9, (U(K) - G, (u(k), B, (K)) - ———
B, 6, ()9, (K)B, +C,

Asserting the LIP assumption, then the state and the output residuals are expressed as
eg (k +1) = Aeg (K) + 7 (x(K), u(K) + Ke, (k) + 6] g (y(K), u(K)) + G, (k) — 8, (k) (¥(K), u(k))

6; (k)B,
B, 0, (k)6; (k)B, +C,

+¢& (k) —

AT
0, (K)B,

e, (k) =Ce (k) +7 (x(k),u(k))+0T¢ (U(k))—é’T (K)g, (u(k)) + &, (k) ——— -
y s Y v e y B, 0, ()0} (K)B, +C,

Define the parameter estimation errors as g, () = 6, - 6, () anda, () = 0, -0, (k). Adding and

U T
(‘95 Bl_Ca) and (Hsz_Czl)

T — in the above equation,
B, 6, (k)6, (k)B, +C, B, 0, (K)o, (k)B, +C,

subtracting

whereC,andC, are appropriate dimensioned constant vectors, the state and the output

residuals are given by

AT
0, (K)B,

eg (k +1) = Aeg (K) + 75 (x(K), u(K) + 6, (k) (y(K), u(k) + Key (k) + @5 (K) + &5 (k) -
B, 6 k)4, (K)B, +C,

(6.8,-C,) . 0,8, -C,
~ ~ ~ ~ )
B, 6,(k)6; (k)B, +C, B/ 6,(k)6; (k)B, +C,

AT T
0, (k)B, . 0,8, -C,

e, (K) = Ceg (K) + 1, (x(K), u(K) + Gy (KD, (UCK)) + &, (K) —————— —
B, 0, (K)0, (K)B, +C, B, 0, (K)d, (K)B, +C,

(0,8, -C,)

B:éy (k)é; (k)B, +C,
The above dynamics can be rewritten as

g (k+1) = Ay (K) + 75 (x(K), U(K)) + 6, ()b, (y(K), U(K)) + £ (K) + G (K) + Kz (x(K), u(K)) + K8y (k) (u(k)) + K, (K)
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o7 T T T
1K (9y (k)BZ_C4) _K (9y827c4) i (‘gs (k)Bl‘Cs) _ (658, —C;)
B,0,(K)0, (K)B, +C,  B,6,(K)d, (K)B,+C, B4, (k)] (B, +C; B[O, (k)G (K)B, +C,

e, (K) = Ceg (k) + 77, (x(K), u(K)) + 6, (K}, (u(k)) + &, (K)

(6y 008, -, ) (0,8, -C,)

+
TA AT TA AT
B, 0, ()0, (K)B, +C,  B,0, (k)0 (K)B, +C,

where A, = A+KC .Denote v (k) = éST (k)¢ (y(k), u(k)) vy (k) = é; (K4, (u(k)) ,

(65 (8, - ) (5008, -c,)

,and vy (k) = ———
B, 0, ()9, (k)B, +C,

. Therefore, the dynamics become

VS (k) T AT
B, 0, (k)6 (k)B, + Cg

g (K +1) = Ageg (K) + 7 (x(K), U(K)) + W (K) + & (k) + Ky (x(K), (k) + KW (k) + Kz, () + Ky, (K)

T T
6,8, -C 6.B —C
—K TA(ij ) + g (K) +vg (K) — TA(S}T ) ,
B, 0, (k)9 (k)B, +C, B, 0, (k)0 (k)B, + Cg
T
6,8,-C,)

e, (K) = Ceg (k) + 7, (x(K), u(K) + ¥, (K) + &, (K) + v, (K) - (11)

BZéy(k)é; (K)B, +C,
Before proceeding, the following lemma is required.

Lemma 1: The terms comprising of the OLAD approximation errors (-, (x)and (v ) and
the system uncertainties (7, (xx), ukyand , xx).u(y ) are bounded according to

2
K2 +3

max

2 2
gy(k) Kmax+6cg ny(x,u)

gy(k)H)2

gy(k)H2 < 6(||775(x, w)|

2 62
+Cg

[ e PR +3H77y(x,u)

£y (k)H Kmax + cg Hny (x, u)H +cg

e, 0 [y 06 0] €y +

es<k)HHéy (k)H

2 . 2 . 2 .
e, 00+, a0l + |3, 00+, e, ool s o + 54

< B +B

where s, 5, 5,, 5,, 5, and g, are computable positive constants.
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Proof: Refer to Appendix.

Remark 7: It is important to note that such relationships mentioned in Lemma 1, and not
necessarily the same, are available in continuous-time [46, 48-50, 51, 52] whereas it is
not shown for discrete-time case. This relationship will aid in the asymptotic stability

analysis.

Proving asymptotic residual convergence implies a more accurate approximation
of the unknown fault dynamics by the OLADs which in turn is necessary for the TTF
determination. In the following theorem, the asymptotic stability of the proposed fault

detection scheme is shown.

Theorem 3 (Asymptotic Stability Analysis after the Fault): Let the initial conditions for
the detection estimator be bounded in a regionu — %" . Let the parameter update laws be
given by (3) and (4). In the presence of system uncertainties and OLAD approximation

errors, the state residuale (k) and the parameter estimation errors, 6,(k)and 6, (k) are

locally asymptotically stable while the output residuale, (k) is bounded.

Proof: Refer to Appendix.

It is important to note that a time interval exists from the time of fault occurs to
the time when a fault is detected which is termed as fault detection time [8-11].
Subsequently, the OLAD and the robust adaptive terms are initiated. Therefore after the

detection time, the output residual bound changes to (A.21).

Remark 8: The above theorem demonstrates that the first difference of the Lyapunov

function is negative definite even in the presence of OLAD reconstruction vectors
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provided the robust adaptive terms are used in (2). By contrast, a uniformly ultimately
bounded (UUB) result is given in the literature [8-11, 29, 33, 34, 43] if the robust
adaptive terms are not applied. These robust adaptive terms and Lemma 1 enables one to
express the system uncertainties and unmodeled dynamics as a function of state and
output residuals as well as parameter estimation errors which when combined with other

terms render a negative definite first difference.

In the event that the boundedness of the parameter estimates of the OLADs can
only be demonstrated, then the accuracy of obtaining TTF will depend upon the bound on
the parameter estimates. Additionally, if the parameters can be tied to physical
parameters and used for TTF determination in conjunction with fault isolation,
prognostics can be developed. Instead, based on the fault diagnosis scheme introduced in
this paper, the parameters of the OLAD that approximates the fault function will be used

for the purpose of TTF determination.

In the next section, the TTF scheme development is introduced by using

parameter update laws. The algorithm and the mathematical equation used are derived.

V. Prediction Scheme

In this section, parameter-based TTF determination is proposed by asserting the
LIP assumption. This analysis can be easily extended to the state estimator based

approach. The following assumption holds in deriving the TTF.

Assumption 3: The actual parameter vectors és(k) and éy(k) represents the true system

parameters.
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Remark 9: For many practical systems, for example, in a mass damper system, or in civil
infrastructure such as a bridge system, the mass, damping constant and spring constant
may be expressed as linear in the unknown parameters (LIP). In the event of a fault,
system parameters change, and tend to reach their failure thresholds as defined by the
designer. When any one of the parameters attains its corresponding failure threshold,
failure is considered to have occurred. Similarly, for the mechanical system like hydraulic
pump, the states represent outlet pressure, flow etc which could be utilized for detection
and TTF determination.

The TTF is defined as the time elapsed when the first parameter reaches its lower
or upper failure threshold. Next the parameter update laws given in (3) and (4) could be
used to project the system parameter online and will be used in the following theorem to
develop an explicit mathematical equation for deriving TTF. This equation is then used to
develop an algorithm for the continuous prediction of TTF at every time instant.
Theorem 4 (Time to Failure Determination-Parameter based Approach): In the
presence of a state fault, the TTF for the ij™ system parameter at the k™ time instant can

be determined using

(73 esijmax & ((Dse;B)ij )

log
T T
(75 I — P gsijo —a ((oseyB)ij)

= k
S fij |Iog(1—yS ||I —asgosqo; ||)| ' S0j (12)

T
| - a,0,0.]

where k, is the estimated TTF, k__is the time instant when the prediction starts (bearing
]

ij K

in mind that «_ -, is the fault detection time or initial value which increases

incrementally), 05”_ is the failure threshold in terms of the maximum value of the

max
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system parameter, and 95” is the value of the system parameter at the time instant Kg,
0

i
Additionally, i=1,.....,1and j=1,.....n.

Similarly, in the presence of an output fault, the TTF for the mg"™ system

parameter at the k™ time instant can be determined using

(s -aye0ile,,. - (e]),,)

(7y ||| - ay(py(p; ||‘9quo %y ((Dye; )mq)

k = k
Y tng llogz—7, [[1 - x, 0,0 ) "o (13)

log

where «, is the estimated TTF, « qis the time instant when the prediction starts
q

Yom

m

(bearing in mind that « , IS the output fault detection time which increases

Yt

incrementally), - Is the maximum value of the system parameter, and Oy is the

system parameter at the time instant kyqu .

Proof: Refer to Appendix.
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Fault detected, k, =K, (time
0jj dt
of fault detection)
Ta
¢

Calculate (p(kson ), e(ksoij y and 0"(kSOij ) at

™ instant
Soij

v

Calculate TTF using (12)

v

Calculate =mi
kg n min(kg i )

System failed

Figure 2: Flow chart indicating the TTF determination.

Figure 2 provides a flow chart to determine TTF (k, . ) for each system parameter
ij

in the event of a state fault. The TTF is determined at each time instant starting at the
time when a fault is detected until the first system parameter reaches its failure threshold.

Therefore, the TTF decreases as the parameter approaches its failure threshold.

Remark 10: The mathematical equation (12) and (13) is derived for the ij™ and the mq™

system parameter respectively. In general, for a given system with a state fault, the TTF

would bek; =min(kSfij Li=12 ., L,i=1 n, where Ixn are the number of

parameters of the system states; for a system with an output fault, the TTF would
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bek,  =mink, )m=12... P, 9=12, .., h where pxh are the number of output
ma

Y ft

system parameters. The TTF is the time elapsed when the first parameter reaches its limit.
Remark 11: In the development of the FDP scheme, the time interval that is of interest is
the interval between the time of fault occurrence to the time of actual failure, which is
determined from the failure threshold on the parameter or states of the system. In the
event that a state and an output faults occur simultaneously, both the OLAD parameters
will be projected to their limits. The OLAD parameter that reaches its corresponding
limit first will be utilized for TTF.
Remark 12: The extra terms introduced in the parameter update laws (3) and (4), which
are in the form of difference equations, allow the convergence of the parameters.
However, for the purpose of fault detection estimator stability, these terms are not
required which implies that the stability results in Theorem 3 could be obtained without
the extra terms in (3) and (4). The extra terms are required for TTF determination.
Remark 13: Apart from using the parameter trajectories for TTF prediction, the fault
detection estimator state trajectory can be utilized for TTF determination. Since the state
residual converges to zero asymptotically, the fault detection estimator states converge to
the actual system states accurately. Hence the state trajectory based TTF scheme could
be used as an alternate method to the parameter trajectory based schemes for systems that
do not satisfy LIP provided the states represent physical entities.

It is important to note that the proposed mathematically rigorous approach of TTF
determination is more accurate than data-driven methods [40, 53]. In the next section, an

example is used to demonstrate the proposed FDP scheme.
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V1. Simulation Results

A fourth-order dynamic satellite system is utilized to show the robust FDP
scheme. Consider a discrete-time MIMO representation of the satellite system [9] defined
by
x(k +1) = Ax(k) + o5 (y(k), u(k)) + 17 (x(K), u(k)) + g5 (y(k), u(k))

y(k) = Cx(K) + 7, (x(k), u(K)) + gy (u(K)) (14)

where x(k) =[x, (k), x, (), x, (<), x, ()] is the state vector, y =[y,,y,]" is the output vector,

_ . —
0
1 0t 0 - -
-y, (k) ke (K)y, (k) +u,(K)y, (k) 1
0 10 ts ¢s(y(k)'u(k)): tS 2 2 3/2_+ 2 2 1/2 -
A=l 0 1 ol :(yl<k)+y2<k)) m (y, (k) +, (k) md
00 0 1 : -y, (k) ke UKy, () —u, (K)y, (k) 1
S 2 2 3/2 + 2 2 1/2
L,y (k) m (y, (K) +y, (k) m] |

1 0 0 0
andc - )
0 1 0 0

The mass of the satellite is taken asm=20k, parameterk =«.m,
where k. -3ssx10°km’ /s*. The satellite is first observed in perigee 375km above the

surface of the earthr, =r_ +375m, Wherer; = 6.378x10°km. The initial angular speed o, is

computed using the orbital mechanics w,, =\/(e0rbit+1)(KE/r03), where e

orbit

=o162 IS the

eccentricity. Control inputs uand u,are the radial and tangential thrust forces,

k

respectively which are taken as u; (k) = (y (k) + y; (k)" * {ﬁ+0.0001sin(0.01k):| and

(5 (k) + y5 (k)

uy (k) = my (v (k) + y2 (k)" cos(0.01k) , Where m =o0.0001m andt, - oor. The initial conditions of the
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satellite system is taken asx (o) -o,x,() = r,,x,0) = o, aNdx,© -o. TO monitor and detect
faults in (14), the FD estimator is given by

R(k +1) = AR(K) + 5 (9(K), u(K)) — K&y (K) + G (9(K), u(K); 65 (K)) + Vg, (K)
J(k) = CR(K) + G, (u(k); 6y, (K) + vy (K) (15)

where (k) = [ (k), %, (k), %, (k), 24(k)]T Is the estimated system state vector o, (y (k)u k=

0
0 __31 0 |
. 0k u005,00+u,009,00 1 ] e
LER)+ k)T M (§AK) + L (k)" m ||, and 0o 0
t i -9,(k) k_c+ul(k)92(k)—u2(k)9l(k) 1_ |0 0 |
CACEAC) S AR A R

witha, =a, =10°.  Additionally, the initial conditions of the estimator is taken
aS % (0) = 005, X,(0) = K, X,(0) = o, , aNdx,(0) = -001. In this simulation, two different scenarios

are presented to show the robustness of the proposed FDP scheme.

Scenario 1-State fault: In this simulation scenario, we consider the state fault as

gs (y(k), u(k)) = HST (k) (y(k), u(k))

_ysl(k) 0 0 0 | ~ cos(@,y, (K))
0 0, () 0 0 cos(a, Yy, (k)) "
where o, (k) = ’ , 95 (y(), u(k)) = , @ = w3 =1x10 and
0 0 O, (k) 0 cos(w,y, (k))
0 0 0 0 (k) | sin(w,y, (k) |
L 4 .

w0, =0, =1x10"*. The fault occurs only in system states x ()andx, ). Therefore,

b (k) = 6 () = 0 whereas
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0 foro < k < 25sec
0. (k) = ~ B
% 181 C0T2), k > 25sec
and
0 foro < k < 25sec
Os, (k) = ~0.06(k—25)
0.75(1-¢ ) k > 25sec

Note the state faults could be due to the inadvertent activation of the thrusters in

the satellite system and are seeded at the 25™ second of system operation. Since only a

state fault is considered for this simulation, we have gy(u(k)):[O,O]T. Additionally, the

output uncertainty in the system is taken as n;(x(k),u(k))=[0.04sin(0.0001k),0]T whereas the

state uncertainty is represented by

0
0
0.000024x, (k) k. 0.06(u, (K)x, (k) +u, (K)x, (k) 1

ns(y(k)'u(k)) = 2 2 a2 2 2 12
(x, () +x, (k) m (x, (K) + x, (k) 0.97m

0.000032x, (k) k. 0.08(u, (K)x, (k) +u, (K)x, (k) 1

2 2 3/2 2 2 1/2
i (%, (k) +x, (k) m (%, (k) +x, (k) 0.97m_
The online approximator (OLAD) used in the FD estimator in (15) is given

by 6, (9(k), u(k); 6, (k) = 6, () ((k), u(k)) , Where

s . . 5 . is the estimated parameter matrix, and
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de (00, u(k) = [—cos(ay 91 (K))  cos(@, ¥, (K))  cos(@s T, (K)) sin(w4yl(k))]T. The parameters are updated
using the update law in (3) by taking « - o.04and, = 0.41. However, their initial values are

6; (k)B,
TA AT J
B, 0, (k)6 (k)B, +C,

taken to be zero. The robust adaptive term is defined by v, () - where

B -[001 008 -042 -05] , and cg-o0s5. Since we have only a state fault,
Gy (8, () =[o o] and v, y=[o ol .

To show the performance of the FD estimator, the state residual of the two

measurable outputs defined in terms of, x ) andx, (), are shown in Figs. 3 and 4. From

the figures, it is evident that prior to the fault due to the system uncertainties, the state
residuals remain bounded. However, after the fault, the residual converges asymptotically
to zero as shown in the Theorem 3 since the OLAD and the robust term are initiated to
learn the unknown fault dynamics. However, since the system has coupled dynamics and
considering the manuscript length, the residuals of the remaining system states

(x,(x) and x, (x)) have not been shown.

To monitor the chosen system and detect faults, norm of the output residual is
generated as shown in Fig. 5. We used a constant threshold of 0.77 unit magnitude

(g:,,sﬁs+(yyl+yy2)ﬁy, for the given value of C, Ay and, K matrices, we

have y, ~102,7 ~071, m, ~1x10", u, =1, and 7, =004, £=~077) to avoid false and

Y2
missed alarms. In the event of a fault, the residual increases and exceeds the threshold as

shown in Fig. 5 declaring the presence of a fault.



131

£
<3
—
(0]
J5i
®
©
=]
3 -
)
(0]
[ad -1 r r r r r r r
0 10 20 30 40 50 60 70 80
Time (Sec)
Figure 3: State residual (eSl (k) = x, (k) = % (k) ).
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Figure 4: State residual (e52 (k) = X, (K) = %, (k) ).
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Figure 5: Output residual norm and the detection threshold.

Subsequently, the respective fault parameters are estimated online to learn its
evolution as shown in Figs. 6 and 7. Note, in this case of a state fault, the condition (9) of
the sensitivity theorem would be satisfied thus initiating the state OLAD. Moreover, from
Figs. 6 and 7, it is evident that the parameter estimation error converges asymptotically.
Additionally, failure thresholds on each of the parameters are assumed as shown in the

figure. Usually, such thresholds could be derived from the design specification or system
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operation. The failure thresholds on ¢,(k)and ¢,(k) are taken as 1.55 and 0.57 units

respectively.

T 3 3 T 3 3 3 T T T——
15F e g
o
2 1k Time of failure J
£ yZ
g
Actual
- :
Estimated
Failure threshold
0 4 r r r r r r r r r r
25 30 35 40 45 50 55 60 65 70 75 80

Time (Sec)

Figure 6: Online estimation of the fault parameter g, (k).
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Figure 7: Online estimation of the fault parameter o, ) .
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Figure 8: The TTF determination due to the state fault O, () -
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Figure 9: The TTF determination due to the state fault g, () -

Using these failure thresholds on the parameters, we estimate the TTF for each
parameter as shown in Figs. 8 and 9. Since we have two parameters, we consider the
minimum of both the estimated TTF’s at each time instant. Hence by using Figs. 8 and 9
the remaining useful life of the monitored system could be estimated. It is also observed
that the TTF prediction coincides with the actual time of failure.

This simulation result demonstrates the fact that the proposed FDP scheme could

detect and learn the unknown fault dynamics and predict TTF.

Scenario 2- Output fault: In this simulation scenario, a sensor fault is assumed on the
system (14), which is described by gy (k) = 9; (k)@ (k) ,

0, () 0

where ¢; (u(k)) = [cos(wyul(k)) sin(wyu2 (k))]T Oy = 0.1, ‘9y (k) =[ ] . We assume the fault

0 0,0

has occurred on the output, AGE Therefore, 9,,() =0 and

0 foro < k <k,
0, (k) = ) i
Vi 25 (1_8—0.3(k—k0)) s, where the fault is seeded atk, - 2ssec. The output

OLAD wused for the online learning of the output fault dynamics is given
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0. (k) 6
yll() Y12

()
by g, (w(), 6, ) = 6, ()g, wky, Where éy(k)={
()

}s the estimated parameters

(k)

[
y21 Y22

matrix. Additionally, the parameter 4, () is tuned online using the update law (4) by
taking «, -osandy, -ooms. Also, the initial values of the parameters are assumed to be

T
0, (K)B,

T~ T '
B, 6, ()6, (k)B, +C,

zero. The robust adaptive term is defined byv, (=

where, 8] ~[023 00001] , and cy =07. For this simulation, the output uncertainty is

defined by 77y (x(k), u(k)) = [sin(0.05k), ol . In addition, Gaussian/white measurement noise

with a magnitude of 0.15 units in the outputy,« is introduced. Moreover, we have

T T

e (x(k)uk) =fo o o of, g: (y(k),uk)=[o o o o,

T

G5 (9(k),u(k); 6, (k) =[0 0 0 o]T,andv;r(k):[o o o o .

Figs. 10 and 11 represent the state residuals where the residuals converge
asymptotically to zero with no faults and in the absence of state uncertainties. This
implies that the proposed FD estimator follows the actual system accurately under these
conditions. Additionally, these results are consistent with the theoretical conclusions.
Since, an output uncertainty is considered and to avoid false alarms, a constant threshold

of 1.1 unit magnitude (in this case, since there are no state uncertainties, i.e., 7, ~o,
additionally, Hy, ~1x107°, Hy, =1, and 7, =1, therefore, ¢ ~1.1 is a conservative bound) is

used on the output residual as shown in Fig. 12. In the event of a fault, the output residual
norm exceeds the threshold. Subsequently, the online estimation of the output fault
parameter is shown in Fig. 13 where the fault is found to evolve with time. Here only one

parameter estimate and its corresponding threshold are shown due to space constraints.
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Figure 13: Online estimation of the fault parameter (Hy(k) ).
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Figure 14: The TTF determination after the output fault.

Using similar arguments from the previous simulation, for an output fault, the
condition in (10) of the sensitivity theorem would be satisfied. Therefore, the output
OLAD would be appropriate in learning the unknown output fault. However, by
assuming a failure threshold limit of 24 units on the output fault parameter, we determine
the TTF. Based on this estimate, the TTF due to the output fault is calculated as shown in
Fig. 14. The variations in the initial few seconds of the prediction could be attributed to
the initial parameter values and adaptation gains. However, as the learning of the
unknown fault function improves, the TTF estimation is found to be satisfactory and

approaches the actual time of failure.
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Through this simulation, the performance of the proposed FDP scheme is
demonstrated satisfactorily. Although, the case of simultaneously occurring state and
output faults have not been presented here, but by performing a separate simulation, the
results were observed to be satisfactory. Thus a unified scheme such as the proposed one
could detect an unknown fault, learn its dynamics, and provides the TTF. This
information is vital for planning maintenance and thus would avoid catastrophic failures.

VII. Conclusions and Future Work

In this paper, a robust model-based FDP scheme for nonlinear discrete-time
MIMO system was developed. Mathematical results show asymptotic stability of the
proposed FDP scheme. Improved stability results were obtained by using mild
assumptions on the approximation errors and the use of robust adaptive terms which are
functions of the OLAD parameters. The conditions under which the state and output faults
can be detected are mathematically given and a fault diagnosis scheme is introduced based
on the sensitivity theorem and OLAD outputs. Also, a parameter-based TTF scheme was
developed and demonstrated. Finally, simulation results illustrate the satisfactory
performance of the FDP scheme and the stability results. Future effort includes the
development of an online fault prognosis scheme with root-cause analysis for such class of
nonlinear MIMO systems. Another future effort includes experimental verification of the

proposed detection and prediction scheme.
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Appendix

Proof of Theorem 1: During the time interval when the state fault occurs and prior to the

OLAD initiation, the state residual dynamics e (k)and the output residual dynamics

e, (k) satisfy

es (K +1) = Ageg (K) + 775 (x(K), u(k)) + @5 (K) + TTg (k = T,) £ (y(k), u(k)) + Kny, (x(k), u(k))
e, (k) = Ce, (k) +n, (x(k), u(k)) (A1)
For anytimek, >0, the solution of (A.1) is given by

e, (T, +Kg) = Ce (T, + ko) + 7, (x(Tg +Ko), uT, +k,)

Ts+kg .
= CAO(TS+kS_') (g (x(i 1), u(i ~ 1)) + p (i —1) + Kay (x(i =2),u(i -1)) + 71, (X(T, + k), u(T, +k))
i=Tg
Ts+Kg )
+ > AT (1 =T,) f, (v - 1), u(i - 1)
i=T,

By using triangle inequality and with some manipulation, we get

Tg+kg

Z CAO(TS+ks—i)HS (i _Ts) f (y(i—1),u(i-1)

i=Tg

1
>—&+—

Hy

Hey (Tg +k)

2

If the condition in (9) is satisfied then a state fault is detected, i.e., Hey(Ts +kg)|| 2 € . Next,

during the time interval when the output fault occurs and prior to the adaptation of the

online approximator, the residuals are given by
e, (k +1) = Age, (k) + 71, (x(k), u(k)) + Kn, (x(k), u(k)) + o (k) + KITy (k =T,) fy, (u(k))

e, (k) = Ce, (K) + 7, (x(K), u(K)) + Ty (k =T, ) f, (u(k) (A.2)
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Similarly for anytime k, > 0, the solution of (A.2) is given by

ey(Ty + ky) = Ces(Ty + ky) +;7y(x(Ty +ky),u(Ty +ky)) +11y (k) fy (u(T, +ky)

Ty+ky )
(Ty+ky—i) o . .
= > A Y Ing (x( -1, uli 1) + @ ~1) + Kny (i -, uli ~D)] + 7, (X(T, +k ), u(T, +K,)

i:Ty

Ty+ky (T +koi)
+ky—i
T, (k) fy (T, +K)) + D>oca KIT, (i ~T, ) f, (u(i - 1)

i:Ty

By using triangle inequality, we have

Ty+ky )
s =g+ |, (k) F, (T, +k )+ > CATY KT (-T,) £, (UG - 1)
Y2 i=Ty

Hey (T, +k,)

As long as the condition (10) holds, an output fault will be detectable, i.e.,
e, (T, +Kk,)||> .
Proof of Theorem 2: Let us assume that for a finite time intervalo <k <T, Hey(k)H <& for
k <k and

ey (k) =¢ (A.3)
From the continuity of e (k)and the adaptive laws (3) and (4), the parameters of the
OLAD scheme and the robust term will not be updated or adapted in the interval[o,k, ).
Hence in the time interval [ok) the residuals e (k)and e, (k)satisfy
e, (k +1) = Age, (k) + ¢ (k) + 77, (x(k), u(k)) + Key, (k)
ey (k) = Ceg (k) + 7 (x(k), u(k))

The solution of e, (k) is given as
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k F
e, 0] = 13- CA ™ 7 (x(G 2, 0 ~2) + 5 G~ + K, (G ~2),ui ~D)]-+77, (xGG ~D), u )|
i=0
k K Kk
cy A! cy Ak .
< iy + R iy = Mol + (1, + 1, )77, =€
cY A larey cY A larcy cY A Ia+cy
j=0 j=0 j=0

Thus the above step contradicts our assumption in (A.3). Hence, we conclude that in the
time interval ke[oT)the output residuale (k)remains within the threshold.
Consequently, it can be deduced that the scheme is robust and the output of the OLAD
remains zero prior to the fault. This also implies that the robust term would remain zero

prior to the fault.

Proof of Lemma 1: Consider the state residual dynamics in (11), which is given by

g (K +1) = Ageq (K) + 7 (x(K), U(K)) + W (K) + & (K) + Krgy, (x(K), u(K))

GTBZ—C 0.B, —C
(y 4) +¢~7S(k)+VS(k)— (S 1 3)

+K‘Py(k) +Ke, (k) + KVy (k)—-K

TA AT TA AT !
B, 6, ()9, (K)B, +C, B, 6, (k)& (k)B, +C,

Solving fore, (k) , we have

k
eg (k) = Ave )+ DAY [ng (xCidu(i) + 85 (D) () + 5 (1) + Kagy (x(D). (D)) + K8, (i), (i) + Key (3) + 5 ()
j=0

~T . ~T .
o Bome)  (Hne) sy | (inc)
B;éy(j)é;(j)sz+cy B, 6, ()6, ()B,+C, B, 6, (i)6; (i)B, +Cq B;éy(j)é;(j)Bz+Cy

The above equation could be written as

k
Ay [ (X0 U(iD) + £ (3) + Ky (ki) U + Ky () +5 (D)
j=0



Kk
= e (0~ e, @ - DA | A (e, (1) + K (1)ay ()
=0

T T T
6y (i)B, - C, 0, (i)B, - C, (0.8, -C,)
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(,8.-C.)

+K + T(
B, 0

B, 0, ()6, (i)B, +C, ()6 (i)B, +C,

Next, we apply the Frobenius norm to get

TA AT . -
B, 0, (i), (i)B, +C,

TA AT .
B, 0, (i)0, (i)B, +¢,

k k k k k
Dy g i) [ A e [+ [ D Ay Ky e i+ [ D Ay ke, (D] + D A (i)
j=0 i=0 j=0 j=0 =0
K ) k )
< Jles 00 | e @ + [ 40T (g (i + | D 4K (ivay (i)
j=0 j=0
k ST T
. ZA;—J'K - HYAT(J)BZ . k AT — HSAij)Bl |
i=0 B,0, ()0, (DB, +C, || [0 B 6,(é; ()8, +c,
< k=i 0,8, | : k-j 9;'32 |
+ ZAO TA . AT . + ZAO K TA AT, (A4)
j=0 B, 65 ()65 (1)B, +Cq j=0 B, 6, ()6, (1)B, +Cy‘

The summation term in the above equation could be solved
K k=j~T ,. ¢Smax és(k)” . . . .
as Ay O (DNgs(D||s———. Constricting s, <osin the unit disc

20 1- Aomax) max

(Where n, =4, (A), is the maximum eigen value), will make the FD scheme even more

ool s Ll
@ Ao ) Ay,

stable. Then it can be written as

be derived for the

other

. In addition, similar result could

terms.
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~T T
0, (K)B, 0, (B,

T
<0 (K)B

~T
T T 7 <0, (k)B,, and thus (A.4) could be
B, 6, (k)0 (K)B, +cg B, 6, ()6, (K)B, +c,

Also

rewritten as

bl eatoll [y 0] Koax [y 00 K g 1y 0] e e, 00 k
+ + + + < ”eS (k)” + HAOeS (O)H
||0~5(k)||¢smax ||9~y(k)| KmaX¢ymax ||0V|Kmaszmax
+ + +
AOmax Aomax Aomax
[ 0ol K, Nleestlleg [3,00]egty, [20legms, Tawley, loley,
+ + + + + +
Ao Ao Ay Ay Ay Ay

max max max max max max

Square and multiply 6 on both sides of the above equation, we have

2
[ P 2T S PO S e S P3| k
6 + + + + 36[||e5(k)||+ AoeS(O)‘
Aomax Aomax AOITIBX Aomax Aomax Aomax
||05(k)||¢3max ||9Y(k)| KmaX¢Ymax
+ +
AOmax AOmax
Hﬁy(k) KmaXBzmax ||Ce3(k)||cg Hey(k)ucg¢ymax Hey(k)HCngmax ||05(k)|| Blmax ||05||Blmax
+ + + + + +
Aomax Aomax Aomax AOITIBX Aomax Aomax
2
Cg ||0y|| Bzmax ||9y| Kmaszmax
+ +
Aomax AOmax

||95||Blmax Hey‘ K e B Cg HQY‘
+ +

A Ay

B
Zmax

Take dy = [|age, o] +

max max max
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c.C B )
g max Lrmax Smax ¢ymax K e KmaxBZmax + ¢ymax Cg + Cg BZmaX . Then

, and d; = +

A A P A A B A

expand the term on the right hand side of the above equation and factoring Aj , We have

Kirax +cg Hny (x, u)” + cg

£, ()

o gy(k)u]z

2 2 2 2 2~ 2 2~ 2 - -
<6A (4d0 +2d, ||es(k)|| +2d, 16,00l + 2, [|6, )| + 24,4, ||6’S(k)||||es (k)||+2d1d3 ||0y(k)||||es(k)||)
max

0| +H77y(x, u)H K, +

UNGS u)” +

Taking s, = 24A§max dey B = 12A§ o, B, =12A° di, p =12A° di, p,=12A° dd,, and

max Omax Omax Omax

2
s =12A° d,dy, 10 get

max

&y (k)H:|2

conlfye

£y (k)H K max +cg Hny (x, u)” + cg

, (k)||+”ny(x,u)H K, +

UNGS u)” +

ol

e, o o] + 24

2
+ B,

2 - 2 ~
e, 00| 4|0 + 4 Hay(k)

< B, + B,

In using this lemma, the system uncertainty and the approximation errors are expressed as
a function of the state residual and the parameter estimation errors. This lemma and the
robust adaptive terms intuitively lead to the negative definiteness of the first difference of

the Lyapunov function during the stability analysis of the proposed scheme.

Proof of Theorem 3: Consider the Lyapunov function candidate as

1 T 1 ~T ~ 1 ol -
V = —e (k)& (k) +—1tr[o, (k)6 (k)] +—tr[9y (k)ey(k)]

12 as C{y

The first difference is given by

AV == [ef (k+D)es (k+1)—e{ (K)es(k) | + Mitr[ésT (k +1)05 (k +1) - 63 (k)dg (K)]
S

-1
12
AV,
1 AV,
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1 ~T - woi] -

+ 1[0, (k+ 10, (k+1) - 6, ()6, (k)] (A.5)
. :
y

AV,

Substitutee (k +1 from (11) inav, of (A.5) to render
1
AV, = E[Aoes(k) 15 (X(k), U (K)) + W g (K) + & (k) + Ky (x(k),u(K) + KW (K) + K (k) + Ky, (k)

T T
0B -C 6.8, —C
-K TA( 2 ) + g (K) +vg (K) — (68 ~%)
B,0, (K)9, (K)B, +C,

TA AT ' X
B, 0 (k)0 (K)B, + C,

[ages (k) + 7 (x(K), (k) + W () + 24 (K) + Kazy, (x(K), u(K)) + KW, (K) + Kz, (K)

T T
6 B,-C 6.8, —C 1
Ky, (K) — K ——— ) + @, (K) + v, (k) — TA( — L 1-—e] (key (k)
B, 6, ()8, (K)B, +C, B, 0, (k)0 (k)B +C, 12
Apply the Cauchy-Schwarz

inequality
((a +a, +..+a) (a +a +..+a) <n(@a +aa,+.+aa)) in the above equation, to

get
AV; < eg (K)A) Ay (K) + 75 (x(K), (k)75 (x(K), u(K)) + W () (K) + 1y (x(K), u(k)K " Kz, (x(Kk), u(k))

¥ (K K, (k) + v (KT Ky, (k) + ey (K Ke (K)+ &, (K), (K) + @y (), (K)

T L T
v, (k) (k)+(HSTBl_C3)T(03TBl_C3)+(6y B, ~C.) K'k(4 BZ_C“)-—eT(k)e ) (A6)
S S A A A A S S .
(BT0,008] ()B +c,)”  (B,()0 (B, +c,)” 12

Substitute the weight update law (3) in av, of (A.5) to render
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1 T ~ T
AV, = —te{[(1 - 7 || — gty ()] (K| 1), 00 - arg ()€ ()B
24

7 |1 =, (08 (0| 6T X[ -7 1 — e, 04 (0] 1) 00
~agd, (ke (KB + 74 |1 = gy ()5 (K] 05 144 a0}
Apply the Cauchy-Schwarz inequality

((a +a,+..+a) (8 +a,+..+a) <n(@a +a'a +.+aa)) in the above equation, to

reveal

AV, < aitr{s(l 75 |1 = e ()8 ()| 18] (08 (1 7, 1 - e (R0 0| 1)

S

2 o ~
+3al g5 (K)ey ()BB e, (k)¢ (K)+ 377 |1 = gy ()L (k)| 6 6 — 8] (085 0}

After some mathematical manipulations, the above equation becomes

2 ~T ~ 6 T ~T -
AV, <trq— 0, (k)05 (k) - — 7 ||| —a g, (K)g, (k)|| 0 (k)0 (k)
s s

3 . 2 i 3 52 . 2
e 72 1 = g, (06l (8] w1, 00 + |1 =, (00T (| 6 o
as aS
+3agg, (e ()BB"e, (k)9 (k) (A7)

Substitute the weight update law (4) in av, of (A.5) to render

1 T - T
AV, = a—tr{[(l |l a8, )8 (0] 13, 00 - ayg, (e (k)
y

sy |V =a,8, 008, 10 0, T X [(1 -7, |1 - a,0, 4] (|| 1), 0

—ayd, (K] (K)+ 7, |1 - a8, ()] ()]| 0,14, (03, 00}

Apply the Cauchy-Schwarz inequality
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((a +a,+..+a) (a +a +..+a) <n(@a +a a +..+aa)) in the above equation, to

reveal

1 . T
AV < —trf3(1 -7, |1 = a8, (K)g; (K[| D8] (1, (1~ 7y |1 =, 8, (K)g] ()| 1) +3alg, ()e] (Ke, (), (K)
(24

y

T 2 ~ ~
3|1~ a8, gy )| 0y 0, -4, 108, (0}

After some mathematical manipulation, the above equation becomes

2 ~T ~ 6 T ~T ~
AV <trq—0, (K)o, (k) -—7, ||I —ay¢y(k)¢y (k)||9y (K)o, (k)
“y “y

2
3 . -
eI =y, 000] GO 6 08, (0 + 3y, (06 (e, (0 00+ 2|1 - a8, (KT (O ] «%} (A.8)
ey %y

Since av = av, +av, +av,, combining (A.6)-(A.8), to get

AV < eg (K)A) Ayeg (k) + 15 (x(K), u(k)) g (x(K), u(K)) + P (k)P (K)

17y (x(K), U (DK Kapy (x(K), u(K)) + ¥, (KT KW (K) + g (K)o (K)

+v, (k) K' Kv, (k) + g; (K" Ke, (k) + zq (K), (K) + V. (K)V, (K)

U Tor T
(9:Bl—c3)T(esTBl—C3) (HyBZ—C4) K K(gsz_Ca) 15
+ + -—¢€_ (k)e. (k)
T A AT 2 T AT 2 1 s s
(B/6, ()6, (k)B, +c;) (B,6,(K)6, (K)B, +c, )

T 3 2 1
8, (08, (k) + — 72 |1 — agdy (01 (0| 61 G065 ()
a

S

A s

2 ~T - 6 T
HIr 4 — 8, ()6 (k) - — 74 ||| —ap (K)g, (k)
a

2
S

+3agd, (k)eTy (k)BBTey (K)ds (k) +

3y
a
1 S

T AP T 2 1
I —ag, (K)g, (k)H 0, 05 (Htrq—0, (K)o, (k)
a
y
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6 3 - 2 1
-7y ||I y¢y(k)¢>y (k)||9 ()0, (k) +—7y ||I ay ¢, (K)g, (k)|| 0y (k)0 (k)
%y %y
T T 37; T 2 7
+3a,4, (K)e] (Ke, (K)g, (K) +a_H' ~ a8, (08, ()| o0, (A.9)
y

1
Consider the terms numbered as 1 in the above equation, apply the trace operator and

using the Cauchy-Schwarz inequality
((a +a,+..+a) (a +a +..+a) <n(@a +aa,+..+aa)), to renders
tr {3as¢s (k)e; (k)BBTey (K)g, (k) + 3,9, (k)e, (K)e, ()¢, (k)}

<18a4, (K)g, (K)e. (K)C BB Ce, (k) +18a ¢, (k)¢ (k)‘}’; (k)BBT‘Ify(k)

(08,-c,) 88" (4/B,-C,)

A A 2
(B;6,(K)0; (KB, +c,)

1826, (k) ()77, (x(K), u(K)) BB 1, (x(K), u(K)) +18ar g (k)4 (k)
+18a4, (K)g, (k)g; (k)BBTgy (k) +18a 4, (K)¢, (k)v; (k)BBTvy (k)

+18at, ¢, (k) (K)eg (K)C' Ce, (k) +18cr, g, (K)g, (K)

(0/8,-c,) (4B, -C,)

(B6,(k)4, (K)B, +c,)

1801, 4, (K), ()7 (x(K), (k)7 (x(K), u(K)

+180, 4, (K)g, (K)V, (K)V, (K) +18a, ) (K)g, (K)¥, (K)¥, (K) +18a, ) ()4, (K)z, (K)&, (K)
Incorporating the above modification in (A.9) to render

AV < e] (K)A) A (K) + 775 (x(k), u(k))77g (x(K), u(K) + ¥ (k) (K) + 75 (x(K), u(K)K ' Ky (x(K), u(k)) + %3 () KK (K)

5 (K)g (K) + v, (K Ky, (k) + g; (KK Ke, (k) + &g (k)& () + vy (), (K)
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T T o7 T
(esTBl_C3)T(95TBl_C3) (HYBZ_C4) K K(QVBZ_C4) 1 7
L . - — - —e, (ke (k)
(B4, (k)6, (k)B, +c,) (B, 6, (k)6, (k)B, +c,) 12

1 1

2 -T - 6 T
HES 6] (00,00 -— 7 [[1 — e, ()6 (K)
[04

a

- 2 .
8 (008,00 +— - 1 = argdh, (W) (0| 67 0065 00

S S S

2
+3£||| - a4, (k)q)sT (k)||2 9;93 } +tr {i éyT (k)éy (k) 7£yy ||I - ocy(/ﬁy(k)qﬁyT (k)”éyT (k)éy(k)
a

as ay y

2
2 72 =y, 008y | 6y 00d 0 + iﬁ 1 = a8, 008} 00| oo,
y

“y

+18a¢, (K)¢, (K)e, (k)C BB Ce_ (k) +18a 4, (K)4, (k)\PTy(k)BBT\Py (k)

(0)8,-c,) ee' (o8, -c,)

(8] éy (k)é; (K)B, +c, )2

+18ag] (k) (k) (x(K), u(k))BB 7, (x(K), u(K) +18a, 4] (K)g; (k)

1

+18a1,g, (k) (K)V, (K)BB'v, (k) + 18cxeg, (K)g (k) (K)BB' &, (k) +18cx, 4, (K)g, (K)eg (K)C' Ce, (k)

(9y8,-c.) (9/8,-c,)

(B;éy (k)é; (k)B, +c, )2

+18a,4] (K), (k)7 (x(), u(k)n, (x(K), u(k) + 180, 8] (k)4 (K)

1
+18a, 4, ()4, (K)v, (), (k) +18a,d) (K)g, (K)¥, ()P, (K) + 18, g, (K}, (K)e, (K)e, (K) (A.10)
Consider terms numbered as 1 in (A.10), we have

(6;B,-C,)'(6.B,-C))
(876, (06 ()B, +¢,)’

<(6;B -C,)'(6;B,—C,)<(B0,6.B,—2B/4,C,+C.C,) (A.11)



(6;8,-C,) K'k(6}B,-C,)

TA AT 2
(B4, (k)0, (k)B, +c, )

(6/8,-c,) 8" (4)B,-C,)

18a,4, (K)¢, (K) < 18a,4, (K¢, (K)

TA AT 2
(836, (k)6, (K)B, +c, )

(B;6,B8'9,B, -2B]6,BB'C, +C,BB'C, )

(9;82 _("’4)T (H)T/Bz _C4)

A~ A 2
(86, (K4, (k)B, +c, )

18a,4, (K)g, (k) <18a, gy (K)gy (K)

(B;0,0,B,-2B;6,C, +C,C,)
Consider terms numbered as 2 in (A.10), we have

(87 (B, -c,) K'k(8 (B, -C,)

A A 2
(B;6, (k)4 (K)B, +c,)

T T T T T T,,T
<(B;6,K"K6, B, ~2B]6,K'KC, + C,K'KC, )
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(A.12)

(A.13)

(A.14)

<(/ (B, -C,) K'K(8] (B, -C,) <28}, (OK'KE] (K)B, +2C,K'KC, (A.15)

(67 B -c,) (4! (B -C,)

(B4, ()6 (k)B, +c, )2

(6 (B, -C, )T BB (&) (K)B, -C, )

18a5¢: (k)¢s (k) TA AT 2
(876, (k)] (k)B, +c,)

< 36a,4, ()4, (K)B, 0, (k)BB' 6, (K)B, + 36,4, (k)¢, (K)C,BB'C,

o T /a1
(6; B, -C,) (8, (x)B, -C,)

N A 2
(B,4, k)4, (K)B, +c, )

18a,4, (), (k)

<(8] B, ~c,) (& (B, -C,)< 284,00, (K)B, +2C[C, (A.16)

(A.17)
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< 36,4, ()¢, (K)B, 8, (k)G (K)B, +36a,4, ()4, (IC,C, (A.18)
Using (A.11)-(A.18) in (A.10), we have
AV < g (K) Ay Ageg (K) + 75 (x(K), (k)7 (x(K), u(K)) + ¥ ¢ (k)P (K)

+;7; (x(K), u(K))K " Krry (x(K), u(k)) + \PTy KK' K, (k) + s (K)@, (K) + g; kK" Ke, (k) + 24 (k)24 (K)

T 2
|-, ()41 ()| -

1 5 2 1 6 T T - 3
——e] (eg () +tr S —a, ()G, (k) - — 7, ||l — e, (g, (]| ] 108 () + — 7
12 a a a

S S S

3

2
_ . 14 2 2 . 6 ~ .
GST(k)es(k)+ = ||I —as¢5(k)¢ST(k)|| Q;FHS}-FU {— Bl(k)ﬁy(k)——yy ||| —ay¢y(k)¢; (k)|| el(k)ey(k)
a

as ay y

2

3 2 ~ 3y 2T

+a—}/§ |1 -a,8, 008 || 4 (k)ey(k)+a—y||l ~a 4, (9, () Hyey}+18as¢;(k)¢s(k)e: (k)c 88" Ce, (K)
y y

+18a gy (), (k)2 (K)BB W (K) +18a,g] (K)g ()77, (x(K), u(K))BB 1 (x(K), u(K))
18] (k) (K)ey (BB &, (K) +18ac, 4, (), (K)'¥y (), (k) +18a, 4] (K}, (K)eg (K)C' Ceg (k)
+18a, g, (), (K)ey (K)e, (K) + 18, g; (K)g, (K)my (x(K), UKDy (x(K), u(K))
+(B;6,K'K6) B, -2B]6 K'KC, +C,K'KC, )+ (B 6,0, B, —2B;6,C, +C]C,)

+18ag, (K)g, (k) (B 6,BB"6) B, ~2B,6,BB'C, +C, BB'C, ) +18a,9, ()¢, (k) (B} 6,6, B, —2B] 6,C, +C,C, )

+28, 0, (k)K' K&, (k)B, +2C,K'KC, +2C]C, +2B] 6, (k)0, (k)B, +36a,4; ()4, (k)B, 6, (k)BB'J; (K)B,
= AT
+36a,¢. (K)4, (K)C, BB'C, + 36ay¢; ()4, (k) B, 6, ()6, (k)B, + 36ay¢; ()¢, (k)C,C, (A.19)

Next, take the Frobenius norm, use Assumption 3, Lemma 1 (Note: using Lemma 1, the
uncertainties are replaced by a bound expressed in terms of the state residual and the

parameter estimation errors), and combine similar terms, (A.19) could be rewritten as



2 2 2 2

Corax ~18a5d;  Cp K

max max " “max

1 2 2
< - —— —
AV < ( A3ma1x 18ay¢ymax

12

_2ﬂ1)”es (k)”2 -

s s %

—7s||| —a g, (08 () -4 S22

2_2

-6¢.C

g~ max

Sy 1=, 008 QO k2, = [ g, (00 G0 280,

y y %
_ 3 % 2
718a5¢5max ¢y max B e “ ¢5max 2max mex

2 2 2 2 2
282max max 6cg¢Ymax _12C9 Bzmax

3 . 2 3 3, . 2 5
~sba,g; B =), 00 + =21 - e, g | 6+ =121 a8, 000 ) 0
2 ag ay
2 2 2 2 2 2 2 2 2
+Bzmax max ™ Ymax - 2min Ymin Kmin(:4min +3C4max Kmax + Blmax esmax —ZBlmin Smin C3min +3C3max
2 2 2 2
18 ||¢, ()| ( Bl —2B, 0, B..C, +C, Bmax)+18a e, ol ( S
—2B +C? )+18c2C2 +6c26° B’ —12¢20 B, C
2min Ymin 4min Amax 9 " 4max 9 Ymax  2Zmax ﬂ 9" Ymin Zmin  4min
2 2 2 2
+36a5¢5max Bmaxc4max + 36ay¢ymax C4max
2 2 T 2
B! 67+ — o (04, (|| 6
o
s
TakeB, = and
2C
3min  Smin
1|3
2 2 2 T 2 2
B ax Yimax +C4max T 7Y||| _ay¢y(k)¢y (k)” 0
a, \ o
y
B, =
min
2C:4mir| HYmin
2 2 2 2 2 2
+3C4max K e +36as¢ BmaXC4 +36ay¢ymaXC4 y +1sch4max)
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Then the first difference of the Lyapunov equation is given by

1 2 2 2 2 2 2 2 2
AV < (— -A 8ayg  Ch —18agl Cr oK' —6c,Cr =2, |[eso

2

-—— -

o,

6 T 2 T 2 2 3
_(— 76 |1 - et (04! (0 - | —ag, (K)g, (K)| o8, __ﬁzj
@ 2

Smax
s g G4

6 T 2 2 2 3 , T 2 4 2 2 2
=7, 1=y, (00} ()| - <0y, ——-= 1=y, 0y () —18cr,9, 1806 g, B2,
y y y

2 2 2 2

—36a,4. B -2B) K

Smax Zmax max 2max M 2max

2 2 8 =P
. —6Cqd,  —12c;B, —36ay4, B _;ﬁ3)H9y(k)H (A.20)

Hence av <o in (A.20), if the design parameters are selected

K2 K2 3—\/3—3% (¢, +28,  +GI2B)
3|1 - o, ()0 ()|

<7, <1 |1 g, (08 (),

- 2
18¢5max Blax 18¢Ymax

3-[3-3aa, ]
2y <1l -, (06, 0

3|1 - a8, (kg ()|

2 2 4 2 2 2 2 2 2
where a, = Kmax¢ymax + 18ay¢ymax + 18as¢smax ¢Ymax Bmax + 36as¢smax Bzmax Bmax

2 2 2 2 2 2 2
Ko+ Gcg ¢ymax + 12cg Bzmax + 36ay¢ymax B

2max M

2 2
—24cg Crax T4 ’576cgcmax - 25a,
take A, < , Where
25

3
+2B += f. In addition, we
2

2max

1

2 2 2 2 2 2.2
ag = 18ay¢ymax Crrax +18as¢smaxcmameax +3chCmaX —-——.
12

The first difference, Av <0in (A.20), which shows stability in the sense of
Lyapunov provided the gains are selected above. Thus the state residuale(k), and the

parameter estimation errors 4, (x)and b, (k) are bounded, providede(k,),d(k,), and 0y (ky)
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are bounded in the compact set S. Additionally, due to the negative definiteness of the
first difference of the Lyapunov function [42], the state residual e (k)|, and parameter
estimation errors ||9*S(k)||anngy(k)Happroach zero ask — oo, Next, consider the output
equation

(0,8, -C,)

ey (K) = Ceg (k) + 1, (x(K), u(K)) + W, (K) + &, (k) + v (K) = ————
B,0, ()6, (K)B, +C,

Ask >, we havele |- o,[lawl|-0 and |[g,w|-o0. Since H‘Py(k)H =

a3, (g, W)
therefore, we haVGH‘{'y(k)H - 0. Similarly, we have|v, «)| - 0. Therefore the output residual

remains bounded since

Hey(k>H STy + ey +O (A.21)

B +C
Ymax  Zmax 4max

This implies that due to the output uncertainties, the output residual remains upper

bounded.

Proof of Theorem 4: Since the TTF equation in (12) and (13) are very similar, proof for
(12) is given here whereas (13) can be obtained in a manner similar to (12). Additionally,
for deriving the proof, it is considered that only the state faults occur.

For a system satisfying Assumption 1, the maximum value of the system
parameter in the event of a fault is determined by physical limitations. Thus

. Equation (12) holds only in the time interval k [k, ,k, 1. Consequently,
max

the update equation in 3 can be written as

O, (k+1) = (1 = 7, |1 ~ agp ()05 () D, (K) + g (k) € (K)B The above equation is a linear
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time varying equation expressed as

X(k+1) = AK).X(K)+ B.U(k) (A.22)
where X(k+1) = 8, (k +1), A) = (1 = 7 ||1 - ag0, 0o, (|| 1) is a diagonal matrix, B = a,l,,
where 1 an identity matrix and 1, an identity vector, and U (k) = ¢4 (k) eTy(k)B. Since the

above defined A matrix is diagonal, (A.22) can be written as

% (k+1) = 3 (0% (K) + b (k) (A.23)
where % () = 6, (), 00 =1-7, | - ago, Goul ], B =, and T ) = (008, 0B), , a
product of the basis function, the output residual and a constant matrix.
The solution of the system defined in (A.23) is given by

k k k
AR | EAC AR (H%«)}%m
t=r

t=ksoij r:ksoij
Since the ij™ system parameter reaches its maximum value at the time of failure,

ek, then ésij R Additionally, the value oféSij (kg ) = b5y, hence the above
) ; ,

ij max

equation becomes

k k k
S fij S fij S fj

H a (00, Z g; (t) [ouy; ()
k 0 t=r

r=Kk

0 _
o %

In the above equation, for the time interval [k, ks ] %) andg;c are

i
assumed to be constant. This suggests that the system defined above can be considered a
linearly time invariant system. This assumption is reasonable since 0 < &; <1 and stable

while the input ; () would be bounded due to the guaranteed stability of the parameter
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update law in (3). Also, TTF is continuously updated at each time instant in the

interval k €[k, ,k; ], as explained below. Hence the above equation becomes

— 7. 1] T E 3. 1

Using results of geometric series, the above equation becomes

ks, —k
(ks ¢ —ksg.) 1- o (o1 o)
— f” O|J
0 — a . + .. —
i Sij, ij 1- 7.

Sii i
Umax

(ks kgy) [y (1= 8i) ~ DUl

Finally, after performing some mathematical manipulation, we have

93 ijmax (1_ Ei ) B b_Ulj
08 ijO (1_ Ei ) - b_Ulj

ke = +k
S fij ||°9(E| )|

log

S Oij

Since &; (k) =1— 7, |1 - ey, or ||, D =« , and T k) = (6056;3) equation (12) results.

ij
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4. A Novel Prognostics Scheme for Nonlinear Discrete-time
Systems with Multiple State Faults and Fault Types

Balaje T. Thumati and S. Jagannathan
Abstract— In this paper, an online prognostics framework is proposed for a class of
nonlinear discrete-time systems with simultaneous and multiple faults. In other
words, for an n-dimensional system, more than one state could have a fault
(multiple state faults) and also more than one fault could occur on the same state
(multiple fault types). In this framework, a fault is detected first by using the fault
detection (FD) estimator, which consists of an OLAD and a robust adaptive term.
Subsequently, the prognostics scheme is activated, where the faults are identified by
using the fault isolation (FI) estimator. Each state of the isolation estimator
corresponds to a particular type of fault combination. Therefore, the fault isolation
is successful when the corresponding FI residual converges to zero thus ensuring
that the fault has been successfully identified unlike boundedness result common in
the FI literature. In addition, the FI scheme is extended to a class of nonlinear
discrete-time systems with multiple fault types. Subsequently, a parameter-based
scheme is introduced using the parameter update law of the FI estimator in order to
predict time-to-failure (TTF). In the event that a fault cannot be identified or if it is

a new fault type, the FD estimator parameters can be utilized for identification.
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Finally, a simulation example is used to demonstrate the proposed prognostics

scheme.

. Introduction

Quantitative methodology-based fault detection (FD) schemes have become
popular due to the low implementation cost when compared to other techniques [1]. In
the quantitative method, a model representative of the system is used in conjunction with
the actual system output for residual generation and fault detection. The system model
could be derived from either first principles or borrowed from control
scientists/engineers. Normally, a predefined threshold on the residual is utilized to declare
the presence of a fault and initiate diagnosis. Although, the selection of the fault detection
threshold is important to improve detection while minimizing false alarms, a rigorous
analytical procedure is now available to identify the fault detection threshold [1-3].

Many available model-based FD and diagnosis methods [4-13] use some sort of
residual signal. Such methods for linear systems use structured and fixed directional
residuals [1], parity relations [2], geometric approach [3], and eigenstructure assignment
[2] etc. However, the prognostics component is not addressed so far.

Recently, the FD and diagnosis schemes are extended to nonlinear continuous-
time systems [4-13]. In particular, in [7, 11, 12], a nonlinear sliding mode observer-based
FD design is proposed whereas in [10] a nonlinear diagonal observer method is
introduced. On the other hand, in [13], geometric relationship is employed. Moreover, a
good survey of fault detection and isolation (FDI) schemes for hydraulic systems, flight

controls etc., are given in [14]. On the other hand, a recent survey [15] on model-based
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FD techniques presents an excellent overview of the state-of-the art developments. A
common issue that has been gaining interest in the literature is stability analysis using
Lyapunov theory for the design of FD schemes [7-9]. However, the FD schemes [7-9]
render only uniform ultimate boundness (UUB) of the closed-loop signals due to the
presence of system uncertainties. By contrast, in the recent work [16], asymptotic
convergence of the identification error in continuous-time is demonstrated for robot
manipulators with actuator faults. However, the time to failure (TTF) determination is not
discussed for prognostics although a TTF scheme is essential for next generation complex

dynamic systems.

By contrast, certain TTF schemes using data-driven framework [17-19], assumed
a specific degradation model which has been found to be limited to the system or material
type under consideration. Another scheme [20] employs a deterministic polynomial and a
probabilistic method for prognosis by assuming that certain parameters are affected by the
fault while others [21] use a black box approach using neural network (NN) on the failure
data. All these schemes [17-21] while being data-driven address only TTF prediction,
require offline training, and do not offer performance guarantees. Also, no analytical
results are included. Therefore, it is envisioned that a combined FI and TTF determination
scheme or else referred to as prognostics would not only provide the remaining useful life
but also identify the fault occurred. Besides, analytical performance guarantees of the FI

and TTF schemes are normally required.

It is reported in [22-23] that a direct conversion of continuous-time FD schemes
[4-13] to discrete-time requires high sampling rate whereas when implemented using low

sampled embedded hardware results in stability problems. Therefore, FD of discrete-time
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systems is explicitly addressed in [22-24] while ensuring that the detection residual is
guaranteed to be bounded. However, prognostics component is not studied. Additionally,
to the best knowledge of the authors, there are no previously reported discrete-time
schemes that can detect, isolate, and estimate TTF for systems with simultaneous and
multiple faults. Hence, in this paper, prognostics framework, in discrete-time with
guarantees of asymptotic convergence of the FI residual is introduced for a class of

nonlinear discrete-systems with simultaneous and multiple faults.

Simultaneous and multiple faults imply that for an n-dimensional system, the fault
could occur in more than one state at the same time (multiple faults) and also more than
one fault can occur on the same state (multiple fault types). Therefore, in this paper, first,
the FD estimator from [24] is revisited for the purpose of fault detection. Subsequently,
the online approximator in discrete-time (OLAD) and the robust adaptive term in the FD
estimator are initiated to learn the unknown fault dynamics. Upon detection, the fault is
identified by using a novel FI estimator. Each state of the FI estimator corresponds to a
particular type of fault combination. As a consequence, simultaneous and multiple faults
occurring on the states are identified if the corresponding FI residual converges to zero
asymptotically. Unlike other schemes [8, 9, 22, 23], asymptotic convergence is
guaranteed even in the presence of system uncertainties due to the robust adaptive term in

the FI estimator.

Subsequently, after isolating the fault, its magnitude is estimated online using a
parameter update law, which is used for determining TTF. A mathematical equation is

derived to estimate TTF at each time instant by projecting the current value of the FI
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parameters to their corresponding limits. The limits provided by the designer indicate that
the system is unsafe to operate beyond these limits. Moreover, for most practical systems,
the parameters could be tied to physical quantities that have a safe range of values.
Alternatively, the state trajectories could be used for TTF determination due to
asymptotic convergence of the residual. Finally, a simulation example is used to

demonstrate the performance of the prognostics scheme.

Therefore, the important contributions of this paper include an online prognostics
scheme, which includes fault isolation and TTF determination, for a class of nonlinear
discrete-time systems with abrupt or incipient faults which can occur simultaneously and
more than one fault can occur on the same state. Unlike other schemes [8, 9, 22, 23], the
proposed scheme delivers asymptotic stability in discrete-time, which means guaranteed
isolation and reliable TTF determination in the presence of unstructured system

uncertainties [1, 2, 10].

The paper is organized as follows: Section Il introduces the system under
investigation whereas Section Il revisits the fault detection scheme. In Section IV, the
prognostic scheme is introduced. Finally, in Section V, a simulation example is used to
illustrate the performance of the proposed prognostics scheme. Section VI presents some

concluding remarks and discusses future work.

Il. System Description

In this section, the system under investigation is introduced. The classes of faults

that can occur on the states are discussed in detail. Consider the following general class of
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nonaffine nonlinear discrete-time system

x(k +1) = a(x(k), u(k)) +n(x(k), u(k)) + 1i(k —ky)h(x(k), u(k)) 1)
wherexeR" is the system state vector, ue®R™ is the control input vector,
@R xR SR, 7R xR SR, hR"«R™ > R" are smooth vector fields. The
term w(x(k), u(k)) represents the known nonlinear system dynamics whereas 7r(x(k), u(k))
denotes the system uncertainty. The fault function h(x(k) u(k)) represents a vector of

possible faults that can occur and their associated dynamics. Moreover, the fault
. . . T T T

function h(x(k), u(k)) is defined as  hQ) =[91 £ (x(K), u(K)), s O fn(X(k).U(k))]

whereg; € R ,1=12,..,n is an unknown parameter vector referred to as the magnitude

. li . .
of the fault function and f; TR"xR™ > N s a known smooth vector field referred to

as the fault basis function consisting with the literature on fault isolation [8]. In the above

definition, each fault vector is distinct and each f represents the fault function of

thei" fault affecting the i"state equation. In addition, the unknown parameter 6, is the

magnitude of the i" fault.

Remark 1: In this framework, the number of the faults cannot be greater than the number
of system states [10]. However, more faults could be considered, if we relax the
assumption of multiple faults and multiple fault types and consider only single faults. In
such a case, a bank of FI estimators and decision logic could be used to identify the faults

[8]. The time profile 1i(k -k,) of the faults are modeled by

ik —k,) = diag (2, (K —K;), @, (K=K), ..., (K=K;))
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where

Q 0 Ifr<0 fori=12,..n 2
1(7) = 1-e" ifr>0 o @)

and; >0 is an unknown constant that represents the rate at which the fault in the

corresponding state X; occurs. The termq; () approaches a step function when; is large,

which in turn represents an abrupt fault. The use of exponential term is only to signify the
fault growth rate. However, the nonlinear fault function h()denotes the magnitude and
type of fault, such as a stuck actuator etc.

Remark 2: Modeling of faults using time profiles is common in FD literature [25] and

used extensively by others [8, 9, 22-24].

The type of faults considered in (1) is unstructured and belong to a more general
class of faults which include step faults [10] unlike [1, 2]. The following assumption is

required in order to proceed.

Assumption 1: The modeling uncertainty is unstructured and bounded above [8, 9, 22,

23], 1.8, (x(),u()| <y o VX U) € (7 xU) i=12.n wherez; >0 isa known constant.

Remark 3: This assumption is required to distinguish uncertainties from the fault
functions.

In the above formulation, the faults are assumed to occur simultaneously, i.e.,
more than one state could have a fault at a given time instant. However, we next
consider a more complex scenario, where multiple faults occur on the same system state
and also more than one state could have multiple fault types at a given time. Therefore,

the system (1) could be rewritten as
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X, (k +1) = o (x(k), u(k)) +n, (x(k), u(k)) + 11 (k = ky)h, (x(k), u(k))

2
X, (k +1) = @, (x(k), u(k)) + 1, (x(K), u(k)) + ., T (k = ko)h; (x,u)

j=1

©)

n
X, (k +1) = @ (x(k), u(k)) + 7, (x(K), u(K)) + an (k —ky)h; (x, u)

=

In the above formulation, the faults are assumed to occur on the system states as

stated in (3) where state 1 has only one fault occurring whereas state 2 can have two
types of faults occurring simultaneously. Therefore, for isolating multiple fault types, the
system under consideration should satisfy the upper triangular or lower triangular
property.
Remark 4: In the case of simultaneous faults on the states, the faults function on a
particular state may affect other states. For instance, a fault occurring on the first system
state can have some influence on the remainder (n-1) system states although this effect
will not increase the magnitude of the fault function on the first state except it influences
the basis function which is assumed to be known a priori. Consequently, the residual on
the first state will still converge to zero despite faults occurring on the other states.

The representation given in (3) considers a broad range of fault conditions, which
include faults affecting its own state and other states of the system. Such fault conditions
were not previously addressed in either continuous time or discrete time fault diagnosis
scheme [8-10, 22, 23].

In the previously reported FD schemes [10, 26], the uncertainty is assumed to be
structured which in turn helps in decoupling the faults from uncertainties thus

simplifying the development of the FD and isolation scheme. However, such assumptions
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are relaxed in this paper even with the revised formulation with multiple fault types. In
the next section, the FD scheme is revisited first. Subsequently, the prognostics scheme

will be studied in detail.

I11. Fault Detection Scheme

Since, the system considered could be subjected to multiple faults and multiple
fault types, the first step is to detect the faults, and then isolate them by identifying the
faults that have occurred and finally use their magnitude to estimate the TTF. The block
diagram representation of the proposed prognostics scheme is shown in Fig. 1. As
observed in the figure, the FD estimator is used to monitor and detect faults in the given
system. Upon detecting a fault, the prognostics scheme is activated. Upon its activation,
the fault is isolated, and then the TTF is estimated, thereby rendering remaining useful

life.

L X

S -
Fault detected
..| Fault detection scheme »

tal
l Arctivates

Progrostics scheme

I
Fau]l + | TTF Rettrating usefial life
o ignlation

Fig. 1: Overview of the prognostics scheme.

For the purpose of FD, consider the nonlinear FD estimator

X (K +1) = Ay X (K) + @(x(K), u(k)) + iy (x(K), u(k); 6 (k) — Agx(k) — F (k) (4)
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where X € ®" is the estimated state vector, hy :R"xR" xR”" - R"is the detection
OLAD output, with 6, € %" is a set of adjustable parameters of the detection OLAD,
Aq = diag(Adll, Ag,, eeeen Adm) Is a diagonal matrix chosen by the user, and ) is the robust
adaptive term to be defined later. Prior to the fault, the initial values of the FD estimator
(4) are taken as X (0) = X , 4, (0) = 6y, » such that (x,u,4, ) =0 forall xe and ueU.

It is worth mentioning that the FD estimator given in (4) reproduces the real
behavior of the nonlinear discrete-time system. Thus the main aim is not to estimate the
system states from the input or output measurements, but to generate residuals for FD in
the given system [8, 22, 23]. The detection OLAD and robust adaptive term are initiated

only upon detection and their outputs are zero prior to detection.

Now define the FD residual as& = x—X . Next a dead-zone operator defined by

0, if[gl<p

. 5
& (k),if [g (k)| > p; ®)

mawn={

is used for FD to improve robustness by using a threshold where p, is the i" FD threshold

since uncertainties are considered in (1). A fault is detected when the FD residual exceeds
a predefined threshold. However, the selection of the FD threshold is a challenging task

since it provides a trade-off between missed and false alarms. But, analytically, the time

k
) Bimi,, A= #i) B
varying FD thresholdp, =————— or a constant threshold p, = M_ can be
- 44) - 14)

determined using linear control theory [27], where 5 = Pe, iy Hi and ﬂci are positive

constants such that the Frobenius normHA(l;__Hgﬂciﬂik <1. This intuitively explains that the
1
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fault magnitudes have to be higher than the system uncertainties in order to detect faults.
Remark 5: Upon fault detection, the detection OLAD and the robust adaptive terms in
the FD estimator respectively approximate the unknown fault dynamics online and ensure
the convergence of the FD residual to zero asymptotically.

Therefore, using the dead-zone operator defined in (5), prior to the fault,

o .. .0

ie., gl < p; . Which means iy (x(k), u(k); 6, (k) =[0,0,...,0]", and

Yoy =|

o . . .0

pxn

T . . .
Fk) =[0,0,...,0] in the time interval 0<k <T.

When the residual exceeds the detection threshold, i.e.,|g k)| > p;, a fault is
declared active and the OLAD schemes that generate, n, () is initiated and tuned online
using the following update law
04 (k +1) = 94 (k) + ap(K)D[E " (k +1)] (6)

where « >0 is the learning rate and (k) = o(x(k),u(k)) is the basis function such as a RBF,

(éd (k))T B

BT 4, (k) (4, (k) B+c,

sigmoid etc. The robust adaptive term is defined by F(k) = , Where

¢, >0is a user defined constant and B € %" is a constant vector. The following theorem

from [24] is revisited to show asymptotic performance of the FD estimator ((4)-(6)) upon
detection.

Theorem 1 (FD Estimator Stability Analysis after Detection): Let the proposed
estimator in (4) be used to monitor the system given by (1). Let the update law given in

(6) be used for tuning the unknown parameters of the OLAD after detection. In the
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presence of bounded uncertainties, the FD residual,€(k), and the parameter estimation
errors g, (k) are locally asymptotically stable.

Proof: Refer to [24].

In this theorem, the FD residual and the parameter estimation errors are
guaranteed to converge to zero. This guarantees asymptotic tracking of the system states
even in the presence of a fault and the system uncertainty. In the next section, the

prognostics scheme is introduced.

IV. Prognostics Scheme

After the detection of the fault, as illustrated in Fig. 1, the prognostics scheme is
activated. However, to estimate the remaining useful life of the system, the faults in the
system have to be isolated and identified, and then the TTF has to be calculated at each
time instant. Finally, by taking the minimum of all the estimated TTF’s, the remaining
useful life of the system is determined. Before proceeding with fault isolation, it is
essential to understand some common terminologies. Fault isolation (root-cause analysis)
involves with identifying the fault type whereas fault identification involves with
estimating the magnitude of the fault [8].

Therefore, fault diagnosis involves fault isolation and identification. Next, in the
following text, there are two subsections, where the first subsection considers the case of
multiple state faults whereas the second subsection considers multiple fault types. In each
of the design, a FI estimator is used for identifying the fault. Every state of the FlI
estimator has a unique fault function (for multiple faults, the states have a unique

combination of fault functions). Subsequently, analytical results are derived to illustrate
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the criteria for fault isolation. Next, we present the design of FI estimator for system with
multiple faults only.

A. Systems with Multiple Faults

Consider the following FI estimator to identify the simultaneously occurring faults

in (1) as
R(k +1) = GR(K) + @(x(K), u(k)) + h(x(k), u(k): (k) — GX(k) + V(K) (7
where R(K) = [R, (K), s % (O] 1S the estimated states,

A A ~ T - - - -
h' (.)=[elT (k) £ ((K), UQK)), - erT](k)fn(x(k),u(k))] is the approximation of the fault function

with each 4 eR', i=12..,nis the estimated fault parameter of the i"state variable

and G = diag(g;1, 95+ 9nn) With gj; chosen such that all the poles are within the unit disc.

The robust adaptive term for Fl is given by

AT AT
4 (k k it
V(k) =| = 1# ), — 0”# )y , Whereb; e ®" " is a constant vector,
by 6;(K)G) (K)by +C by 6, (K)6, (K)by, +C,,
andc;, i =1,2,..,n is ascalar constant.

Remark 6: It is very important to note that the fault function is a function of the
magnitude of the fault plus the basis function which is unique for a fault type. This basis
function is generally a function of all the system states and the input and is considered
known. Therefore, a fault on another state will have some influence on the other states
through this basis function. However, since the basis function of the proposed FI

estimator is same as the basis function of the fault dynamics, isolation of the fault is
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possible. Next, define the i" FI residual as g (k) = x (k) -% (k) . In order to learn the
unknown fault parameters, which are required for the TTF determination, the following
parameter update law defined as

6 (k+1) = 6, (K) + o f; (0 (k+ 1) — 7 |[1 = o ;' [| 65 (k) (8)
is proposed, where ¢; > 0is the learning rate and y; >0 is a design parameter.

Remark 7: The update law in (8) is similar to (6) without the dead-zone operator since
the FI estimator is initiated only upon detecting a fault. Moreover, (8) has an extra term
normally utilized for relaxing the persistency of excitation (PE) condition. This extra term

is needed here to render a stable TTF determination and not for FD. By contrast, this term

is not utilized in continuous-time FI [8].
Remark 8: It is essential to note that the i"system state Fl estimator approximates the

i" fault function and is considered to be matched if a fault occurs. Consequently, an
i" fault function causes a fault mismatch with other fault functions, hy,....,hi_y, hi4,.-.h,

if it occurs in other states a concept utilized for isolating faults. This idea is also utilized
for isolating multiple faults types.

To guarantee the isolation of multiple state faults, we mathematically show the
asymptotic convergence of the FI residual and the parameter estimation errors of the
matched state of the FI estimator. In other words, in the following theorem, the
asymptotic convergence of the i fault residual of FI estimator is presented. Before we

proceed, the following Lemma is needed.
Lemma 1: The bound on the i component of the system uncertainty (7 (x(«), uk)) could

be expressed in terms of the FI residual and the parameter estimation errors as
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(1+ 50 (2+1/5) ;' )Wiz(k) Sty = Fig T By ey coll” + A, llei collll6; coll+ 5, 116, Oll§
where s, , 5, , 5, and g, are known positive constants.

Proof: Refer to Appendix.

Remark 9: It is important to note that the lemma enables the system uncertainties and the
NN reconstruction errors to be expressed a function of the residual and parameter
estimation errors. As a consequence, one can include these terms from the NN
reconstruction errors and uncertainties along with other negative terms in the first
difference of the Lyapunov function making the first difference negative definite. Such
results are available in the literature [28-31] for controlling systems in continuous-time.
Next the performance of the FI estimator is demonstrated.

Theorem 2 (FI Estimator Performance): Let the proposed FI scheme defined by (7) and
(8) be used to identify i" fault function in thei"state of the nonlinear discrete-time
system given by (1). Then, in the presence of bounded uncertainties, the i" FI
residual,e;(k), and the i" parameter estimation error, é(k), converge to zero
asymptotically.

Proof: Refer to Appendix.

In the above theorem, sincee;(k) »o0ask —»co in the presence of a fault on the
i" system state, % =x implies that the i"fault would be isolated by the proposed FI

estimator without any adaptive threshold unlike in [8]. An i"fault function occurring on
other system states would cause a fault mismatch forcing the other residuals not to
converge to zero which can be effectively used to isolate all the n distinct faults occurring

simultaneously in the system. Similar results can be shown for the ideal case when there
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IS no uncertainty in the nonlinear discrete-time system without using the robust adaptive
term in the FI estimator since asymptotic convergence can be shown.

Unlike in [10], this work also relaxes the additional assumption of separating
faults as linear and nonlinear terms to render isolation of multiple faults.
Remark 10: In the event of a new fault, the detection OLAD of the FD estimator could
be used for estimating them.

To perform prognostics, it is required that the multiple occurring faults have to be

mutually isolable or mutually distinct. In the following theorem, two faults are

considered distinguishable if the i"fault function (h;(x,u))and the r"estimated fault
function (h, (x,u; 4,) ) satisfy the condition defined in (9).

In other words, a fault mismatch function can be interpreted as the difference

between the r" fault function and the estimated fault function in the i" state equation. This
fault mismatch will drive the residual greater than zero which is similar to continuous

time FI scheme [8].
Theorem 3: Consider the fault isolation scheme given by (7) and (8). The i"incipient

fault in the system is isolable if for each stater € {1,...,n}\{i} of the FI estimator there

exists a time k, > k4 such that the following condition is satisfied:

Zk: (or,) [(1 i), (4 fi(x,u))f(érT(j)fr(X,U))]‘

i=kg

k .
>(grr )k . |er(kd )|+ Zk (grr )k J(77i,\,, +|Vr(j)|) (9)
J=Ky

Proof: Refer to Appendix.
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When condition (9) is satisfied the isolation residual|er(k)| > 0. This implies that

the r'" fault is excluded. If this condition satisfied, then for eachr e {1,....n} \{i}, the

faults are distinguishable.
Remark 11: It is noted from Theorem 3 that the fault function of each estimator state is

unique. Therefore, the i" fault in the system matches only to the i" fault function of the FI
estimator.

A similar condition could be derived for abrupt faults. For such class of faults, we
have &; - cin the definition of time profile in (2). Therefore, the following corollary is
presented to guarantee that each of the abrupt faults is distinguishable.

Corollary 1: Consider the fault isolation scheme given by (7) and (8). The i" abrupt fault

in the system is isolable if for each state r € {1,....,n}\{i} of the FI estimator there exists

atime k. > kg such that the following condition is satisfied:

k . k .
> (o) (8 000) (6 D ) || > (o) v+ D (0r) " (i, +Me D) (20)

j=ky j=ky

Proof: By taking x; — o in the fault time profile, this proof would become identical to the
proof of theorem 3. Therefore, one could derive the condition given in (10).
Remark 12: Since the basis function of r"estimated fault is different from the basis

function of the i"fault function, the r"robust adaptive term v, (k) would not be able to

compensate the i"fault function. This results in a significant error as reflected in the

magnitude since the update law for ther"estimated fault will have a different basis

function.
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Remark 13: Typically, if only one fault occurs, then it’s isolated when the corresponding
fault isolation residual converges to zero. However for faults occurring on different states
simultaneously, the isolation residuals of more than one estimator state would converge
to zero. On the other hand, when multiple fault types occur on a state, then a combination
of isolation residuals should be considered. In any case, a priori knowledge about the
potential fault types that can occur on a given state needs to be accurately known.

Another important criteria used for evaluating the performance of a FI scheme is
the time to taken to identify a fault, which is normally referred to as fault isolation time.
In the following theorem, we derive an analytical equation to estimate the FI time.

Theorem 4: Consider the fault isolation scheme given by (7) and (8). For
eachr e {1,....n}, assume there would exists a time interval [k, «k, ,k; +k,, ], Such that the

maximum fault-isolation time for all the incipient faults is given by

where D, (k) is defined as

D, (k) = (109 (<, )/log (55" )) 1. Additionally,

r Orr J=kg

— kg tkir ki
r:{]""%[((‘]rr)(klr_l)|er(kd)|+i Z (grr)(kd r J)(UiM +|Vr(J)|)]}

with 5, > 0 being a constant.

Proof: Refer to Appendix.
Note the above equation could be used also for calculating fault isolation time for

the given system with abrupt faults. The above two theorems show that n-faults occurring
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simultaneously would be isolated in a finite time provided only one fault occurs on a
given state. In the following subsection, we extend the above derived results for multiple
fault types.

B. Systems with Multiple Fault Types

It is straightforward to see that the above FI design and the theorems could be
extended to systems with multiple fault types. Therefore, the FI estimator used for
identifying the multiple faults in (1) has to be modified to identity multiple fault types

occurring on the same state as

% (k +1) = Gy % (k) + @y (x(k), u(k)) + Ry (x(K), u(k); 6, (k) = Ty, X, (K) + 7, (K)

2
%, (K +1) = TypRy (K) + @, (X(K), u(K)) + _Zlﬁj (x(k), u(K); 6 (K)) = T X, (K) + T (K)
J:

(11)

n
R (K +1) = G &y (K) + 0, (x(K), u(K)) + ), ﬁ,— (x(k), u(k); éj (K)) = G Xp (k) + v (k)

j=t
where G = diag(Ty;, Tpp--+ T ) With g;; chosen such that all the poles are within the unit disc
and Vi (k), 1 =1,2,...,nare the robust adaptive terms which are defined later in the text.

Alternatively, (11) could be rewritten as

%y (k +1) = Ty, % () + oy (x(K), u(K) + 37 ()T (k). u(k) = Ty, %, (K) + T (K)

Xy (K +1) = T X, (k) + @, (x(k), u(k)) + E’LZT () T (x(K), u(K)) = Gpp X, (K) + 75 (K)

Xn (k+1) = G Xy (k) + e (x(K), u(k)) + HLnT () Fy (x(K), U (K)) = Gy X () + T, (K)
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where 3¢ =[400.....a,00]" and ) =[ ;). n00], 1 =12,...,n. This representation is

only for the purpose of understanding. However, for all subsequent discussions, we only
refer to the FI estimator representation given in (11).

Similar to isolating multiple faults, multiple fault types could also be isolated if
the FI residual derived using (3) and (11) converge asymptotically to zero. This implies
that if the fault combination in a given system state matches with the fault combination in
the corresponding FI estimator estate, then, the multiple fault types would be identified.
For the sake of understanding, we derive the i"FI residual for the multiple fault types,

which is given by

— I =& (k—k T R
e.(k+1):giie.(k)+2[(1 - 7507 (07 1 0c0.000) (8] 00 1 000,000 ) |+ 000000 00 (12)

j=1
Next, to tune the parameters of the FI estimator given in (11), we propose the

following parameter update law
Bk +1) =8 () + 7 (K8 k+ 0 -7 |1 -7 F 0T ]| 8 k) (13)

where «; >0 is the learning rate and 7; >0 is a design parameter. Before proceeding any

further, the robust terms are defined by

=T — -7 —

_ g, (k 6, (k)b — i x1 .

V(k) = = 1;5— )bl_ —yreees —— n;g) n_ — | Wherebi em(hx ’ql = || +...+|1, IS a
b 6 (k)6 (k)b +¢ by 6, (K)6, (k)b +Cy

constant vector and C; is a scalar constant,i =1,2,...,n.

Next, to guarantee the asymptotic convergence, the following corollary is
introduced. In this corollary, the FI residual and the parameter estimation errors are

mathematically shown to converge asymptotically to zero.
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Corollary 2: Let the proposed FI scheme defined by (11) and (13) be used to identify i"

combination of fault functions in thei" state of the nonlinear discrete-time system given in
(3). Then, in the presence of bounded uncertainties, the i FI residual, § (k) , and the

i" parameter estimation error, k) , converge asymptotically to zero.

Proof: Define the Lyapunov function candidate as

— 1 = ad
Vi = iE,Z(k) +—8" (k)6 (K)
5

%

= — s — T
where g (k) =  — 4 (<), where & =[6;,....6,] .

Next, taking the first difference of the above defined Lyapunov function, then
substitute (12) and (13), after which the proof will be identical to Theorem 2. Therefore,

the asymptotic convergence can be proven, e,V <0. Thus we have

& (k) >0and 8 (k) >0 ask — oo |

As in the case of multiple faults, similar conditions of fault isolability and fault
isolation time could be derived for multiple fault types. For sake of completeness the
following corollaries are stated, and moreover the proofs of the following corollaries are
straightforward and are similar to the previous case. First the fault isolability condition is
introduced and later the fault isolation time is derived.

Corollary 3: Consider the fault isolation scheme given by (11) and (13). The i" incipient

or abrupt fault combination in the system is isolable if for each state r € {1,...,n}\{i} of

the FI estimator there exists a time k, > ky such that the following condition is satisfied.
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For incipient faults

r
(65 (i)t (x, u))j‘
s=1

Zk: (grr)k_m [Zi:[(l ] e-Kj(m_kO))(ggfj(X,U))j'

m=Kky j=1

k .
> (T0) B o]+ D (3) T (i, 1% D)

i=kq

For abrupt faults

k .
> (grr)k_kd |e_r(kd )|+ z (g_rr)k_J (niM +|Vf(j)|)

i=kq

Zkl (7)) " (Zi‘,[(e} f,-(x,u>)]—si(él () fs (x.u)))

m=Kky j=1 1
Corollary 4: Consider the fault isolation scheme given by (11) and (13). For
eachre{1,..,n}, assume that there exists a time interval [kd + K,y kg +F2r], such that the

maximum fault-isolation time for all the incipient faults is given by

Tisol - re{TaXn} {k_lr ’ Br (k_ir)}

where D, (k) is defined as

By (kyr) = (100(&; ) /10g (1)) -1, additionally,

_ k  +k

_ 1- K1) 2 O (ky k- | _

Cr :{1+(_ir)[(§rr)(klr 1)|er(kd)|+__ Z (grr )( ar J)(77iM +|Vr(j)|)
o, Irr J=kg

with 5, > 0 being a constant.

Note the same equation is applicable to calculate fault isolation time for systems
with multiple fault types that are abrupt in nature.
So far, we have discussed the isolation of multiple occurring faults and the

multiple fault types. The next step is to estimate the remaining useful life of the system.
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In the following section, a TTF scheme is presented, where an analytical equation is
derived, which is used for estimating TTF at each time step after the detection of the fault
until the actual failure.

C. TTF Determination

Before presenting the TTF scheme, it is worth noting that the magnitude of the
estimated fault parameters associated with the corresponding state of the FI estimator will
increase with time upon fault detection. Consequently, the parameters of the matched
fault function can be utilized for TTF determination by projecting them at each time
instant to their corresponding failure threshold. Initially, the TTF is determined for the
case of multiple faults, later extended to multiple fault types. To determine TTF, an
explicit mathematical equation is derived, which is based on the online parameter update
law (8). This equation is then used to develop an algorithm for the continuous prediction
of TTF as given next.

Theorem 5 (TTF Determination for Multiple Faults): In the presence of multiple
faults, the TTF for the ;" parameter, j=12,...I; of thei” fault,i =1.2,...n, at the k" time

instant can be determined using

(7i |- e, fiT||6’ijmaX —a; (fig), )
(7i (e fiT||‘9ijO o (fig); )

K, = K,
fi llog@—7; [[1 - i ;7| * 0, (14)

log

where kfi_ is the estimated TTF, koij is the time instant when the prediction starts
j

(bearing in mind that k, , is the FD time or initial value which increases incrementally),
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6. is the limiting value of the parameter from the fault function, and eijo is the value
Jmax

of the parameter at the time instant ko, -
]

Proof: Refer to Appendix.

Figure 2 provides a flow chart to determine TTF (k; ) for each fault parameter.
I.
j

The TTF is determined at each time instant starting when a fault is detected until the
parameter reaches its failure threshold. Therefore, TTF decreases as the parameter

approaches its limit.

Remark 14: The mathematical equation (14) is derived for the j" parameter, j =1,2,....|;

of thei™ fault. In general, for a given system with n possible faults, the TTF would

bekg =min(ks. ), j=12...I;, i=12..,n. The TTF is the time elapsed when the first
I.
j

parameter reaches its limit.
Similar to Theorem 5, the TTF scheme could be derived for multiple fault types.
Therefore, the following corollary is introduced, where the explicit equation for

determining TTF is given
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Fault detected, ky. =K, (time of
i
J

fault detertinn)

Te
*‘ A

Calculate f; (koij ) € (kOij +1)and éij (koij ) at

the | instant
0j .
j
v
Calculate TTF using (14)

v

Calculate k = min(k
S ( fij )

No gy =kp +1

']

Yes l

System unsafe

Fig. 2: Flow chart indicating the TTF determination.

Corollary 4 (TTF Determination for Multiple Fault Types): In the presence of

th

multiple fault types, the TTF for the ;" parameter,j=12..q of the i" fault

combination, i =12,...n, at the k"™ time instant can be determined using

(7i ”' -~ fif ||§ijmax —a; (i), )

og — —
(7i (e ||'9ijO —a; (i), )

T ||)| + kOij (15)

fi; ~ log(1— 7 |1 -

wherek is the estimated TTF, k_0i is the time instant when the prediction starts (bearing
I; i
j j

in mind that k; , is the FD time or initial value which increases incrementally), 6. IS
Jmax
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the limiting value of the parameter from the fault function, and Eij is the value of the
0

parameter at the time instant k_0i :
j

Proof: Using the update law in (13) and following the proof of Theorem 5, it is
straightforward to derive equation (15).

Similar to the procedure outlined in Fig. 2, for the case of multiple fault types, the
TTF could estimated at each time instant using (15). Therefore, as we approach the
failure threshold, the estimated TTF would decrease.

In this section, a TTF scheme is introduced for nonlinear systems with either
multiple faults or multiple fault types.
Remark 15: As seen, the proposed prognostics scheme is carried out online and
deterministic in contrast with available probabilistic methods in the literature [20].

In the next section, the proposed prognostics scheme is demonstrated using a

simulation example.

V. Simulation Results

To verify the proposed prognostics scheme, consider a three-tank system with the
following discrete-time model [8]

X(k +1) = o(x(k), u(k)) +7(x(k)) + T1(k =k, )h(x(k))

where x(k) = [x, (), X, (k), %, ()], system uncertainty is taken

_ _ R T
asn(X(k))=[103sin(0.7k) 102cos(0.8k) 1olcos(0-5k)] . Note the uncertainty is a time-
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varying disturbance. We assume that multiple incipient faults in terms of leakage in tanks

1 and 2 occur. The multiple faults are given by

.
H(k—ko)h(x(k))=[91\/2gx1(k) 92\/ng2(1<) 0] , Where

-0.5(k—k -0.2(k—k .
912(1 e 0))0.0154and¢92 =(1 e 0))0.0182. Also, the faults are induced

atk, - 2ssec . Finally, the nominal dynamics are described by

. |:—dlapsign(xl(k) ~ %4 (K))+ /2g [x, (k) = %, (k)| + ul(k):|

A
+% (k)
. |:d3apsign(x2 (k) = X, (k))+f29 |, (k) = %, (K)]

A

o(x(K), u(k) = dzap4/29x2(k)+u2(k):| "
+ X

A

; {dlapsign(xl(k) — Xy (k)22 ] %, (K) = %, (K)|
A

A

—dsapsign(xa(k) — %, (K))y/29 |X3(k) — (k)l j| + X3 (k)

The  parameters used for this  simulation are given  by:
d=1,d,=08,d;=1,a

o =5x10°m’, A=oosm’, and g =ssm/s*. We use the following FD

estimator to detect faults

X (k +1) = AgX(K) + @(x(K), u(k)) + iy (x(K); G (k) — Ayx(K) = F(K)

0.001 0 0
where X (k) = [X, (k), X, (k), X, ()", Ay =| o oo o |, detection OLAD
0 0 0.001

being hy (x(k); 6, (k) = 63 (K)PVx(K) +By) , With 4, e R*®, @() e »>%is a vector of sigmoid
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functions. Additionally, vand B, are chosen randomly. The robust adaptive term is

N T
(6500) B
B' 4, () (4, () B+cy

defined asF(k) = , Where sis randomly chosen andc, -oos. The

parameters of the OLAD are tuned online using the update law in (6) with « = 0.00s .
To detect the faults in the presence of system uncertainty, a constant threshold is

pn,,
(1-4)

, SO that p~o014.

selected for all the states by taking . =0.001 g =013, n,, =01 in, -

With this detection threshold selection, prior to the fault, the norm of the FD residual
remains within the threshold as shown in Fig. 3. However, after the fault has occurred at
the 25" second, the residual increases around 27.3" second thus exceeding the threshold.
In other words, the detection time appears to be approximately 2.3 seconds. The OLAD
and the robust adaptive terms are initiated. As seen in Fig. 3, upon detection, the FD
residual drops and converges to zero due to the initiation of the detection OLAD and the
robust adaptive term in the FD estimator. This confirms the theoretical results in the

previous sections.

o
©

— FD Residual
— FD threshold |

o
o

Fault detected

Magnitude
o
N

o
)

Fault occurs

N\
5 10 15 20 25 30 35 40 45
Time (Sec)

oo

Fig. 3: Residual and the threshold for detecting faults.
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o
-

T T T T T T L

[~ “Time of isolation=37.25sec Flresidual
0 r T 3 \r r r r

273 293 313 333 353 373 393 413 433
Time (Sec)

Magnitude
o
o
o1

Fig. 4: Convergence of the FI residual (e ) ).

0.2 3 3 3 3 3 T T

T
Flresidual

o1 Time of isolation=34.4sec i
0 \rv— \ r r r r r

273 293 313 333 353 373 393 413 433
Time (Sec)

Magnitude

Fig. 5: Convergence of the FI residual (e, ()).

Next, to identify the fault, consider the following FI estimator
R(k +1) = GR(k) + @(x(K), u(k)) + h(x(k); O(K)) — GX(k) + V(K)

0.001 0 0

where %(k) = [, (k), %, (k), %, (k)] ,G =| o oo o |

0 0 0.001
A ~ A~ ~ T - A A - -
h(x(k);a(k)){éﬁ(k) 2gx (k) 05 (K)4f29%, (k) 0] , with 4 (k)and é,(k) are estimated using

the update law in (8) with « =0.38x10™andy = 0.62x10° . As stated in Theorem 2, a fault is
isolated if the associated FI residual converges to zero. In fact, the norm of the FI
residuals e (k)and e,(k) in Figs. 4 and 5 show asymptotic convergences indicating that

the two faults can be isolated correctly. Condition (9) appears to be satisfied.

Additionally, from Figs. 4 and 5, we see that both the faults are isolated by 37.25 seconds.
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This would roughly be 10 seconds after the fault is detected. Therefore, the two faults are
isolated in a finite amount of time.

The accuracy of fault isolation depends on the estimation of the fault magnitudes.
This certainly helps in determining the TTF. The fault parameter ¢ (k)and é,(k)
estimation is shown in Figs. 6 and 7. We set a failure threshold of 0.0155 and 0.017 on
the first and the second fault parameter respectively. Additionally, it could be seen that

the parameter estimation converges asymptotically.

0.015

Time of failure

0.01

Magnitude

0.005 - Actual
/ —— Estimated
. Failure threshold

S r r r r r r
25 27 29 31 33 35 37 39 41 43 45
Time (Sec)

Fig. 6: Online estimation of the fault parameter (4) .

0.02

0.015 — T B
Time of failure

Actual
0.005 - — Estimated
/ Failure threshold

Magnitude
o
o
=
T
1

rt r r r r T
25 27 29 31 33 35 37 39 41 43 45
Time (Sec)

Fig. 7: Online estimation of the fault parameter (¢,) .
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8
oo
£ Q6 . .
=0 Time of failure=41sec
T
g5
£EF
= L
|_|_| 8
o r ; r r r ; r
25 27 29 31 33 35 37 39 41
Time (Sec)

Fig. 8: The TTF determination due to the state faultn, ().

m -~
=
=0
S ~ 4 -
o o
® S
ET 2r i
£8 ) .
N o Time of failure =40.14 sec
L + 0 r r
25 30 35 40
Time (Sec)

Fig. 9: The TTF determination due to the state faultn, ).

The TTF is determined for each of the fault parameters as shown in Figs. 8 and 9.
In both the cases, the initial change is attributed to the random selection in the adaptation
gains of the parameter update law. However, as the fault dynamics are learned, the
parameter predictions becomes better and eventually converge indicating the actual time
of failures, i.e., 41sec and 40.14 sec respectively. As outlined in Fig. 2, the minimum of
the TTF’s at each time instant is taken to determine the remaining useful life of the
system which in this case will be 40.14 seconds. Thus, the proposed online scheme

isolates and identifies a fault, and estimates the TTF without any a priori offline training.
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V1. Conclusions

In this paper, a novel prognostics scheme providing online fault isolation and TTF
determination for discrete-time systems are introduced for nonlinear systems with
simultaneous faults occurring in the system provided the state experiences the expected
fault. This approach has been extended to systems with multiple fault types acting on
each state. Under certain conditions, it was shown that the multiple faults and fault types
can be successfully isolated and identified upon detection.

Initially, the FD scheme is revisited. Upon detection, the asymptotic convergence
of the FI residuals and the associated parameter estimation errors show that the FI scheme
can isolate and identify multiple fault and multiple fault types. Finally, a simulation
example shows that the prognostic scheme successfully isolates the multiple faults and

determines the TTF. Future work involves relaxing the state measurement.

Appendix

Proof of Lemma 1: From (1) and (7), the FI residual dynamics are given by
- (k—ko) (T T
gi(k+) =gjg )+ - € )(Hi fi (x(k),U(k)))—(ei () £ (x(K), (k) ) + 7 (x(K), u(k)) —v; (K)
(A1)

AT
. . 6; (k)b
Substitute  the  robust  adaptive  termvj(k) = ————— , add and
by 6 (k)6 (K)b; + ;

(9ini —ci)

by 6; ()6 (K)b; +C;

subtract in (A.1), where C; is another constant, we have
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T T
-& (k—k . 6; (k)bj —C; 6; b —C;
ek +2) = ggi (k) + @ - €1 ) (0T 6,00) (4 00 §0)) + ) + T(A' - ) - TA( — )
b 6 (k)6 (K)o +C; by 6 ()G (K)b; +C;
(A2)
Solve (A.2) to obtain
k _ _ AT 5T b._c.)
k k—j =i (k—kg) T AT (el ())b; CI) (0| (k)b i
e (k) = giies (0 Slla-e 6" (k) -(6" k) f (k) + ——L— s (x0) 4
i () = giie; ( )+Zgll [ ( i i )) ( (0 f(K)) T (03 o+ 1 (% +biT9i(k)0iT(k)bi+Ci

=0

(eini —ci)

by 6 (1)0; (i)b; +¢;

The above equation is rewritten as

(éiT (k)b —Ci)

by 6; ()4 (k)b +C;

k k

K—j K—j - (k—k, -
> ot w00 -afieg @~ Dl a - e (07 (00) (0 00 00)+
=0 j=0

(eini —ci)

_biTéi(j)éiT(j)bi e

-K; (k— :
(ko) <1and applying Frobenius norm to obtain

K
Yo (4 wrw)
=0

Usingo<1 —e

<l o +Hgi'§ei (O)H "

k

k—j
Z gjj "7 (x,u)
j=0

-
k—j 0, b;

. . (A3)

S8 am6 (b o | [T BlaME b+

The  summation term in  the above equation can be  solved

K .
K=j~1 . . fimax Hgi (k)H .- cy- -
as Zgii 6 (Dfi(D|s— . Constricting gj; < 05within the unit disc makes the
j=0 = i, )
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[l i 0]

)

FD scheme stable. Then we obtain . Similarly bounds could be

“Oiing ) Dy

4. ()b,

~T
derived for the other terms in the above equation. Also, 7 < 6 (K)by |

b 6.(7)é; ()b, +c,

0. b,

.
T~ AT . < 9 b, Therefore (A.3) could be rewritten as
b, 6,(1)6; (I)b; +¢;

||’7i (k)” < ” k fie ”éi(")” D ”éi (k)” D o ||9i ”
<8 (K| + ;i€ )| + + +

il imax Giimax Gilirmax

K 50 1] _
Take o=H9iiei(°) + 0 by =1 +b _, then the above equation could be

max
rewritten as
B 2

ol <52 [ o] 200

- limax

Expanding the square term on the right hand side of the above equation and after some
mathematical manipulation, the following equation is obtained as

bg +2g2 Hei (k)‘

Imax

"o 0| + 205, by le ()6 ) (A.4)

2
ZI0) R
Multiply (A.4) by(1+ 50 (2+1/6;) fifm ) to render the following equation

2 2 2 2 2
14507 (2+1/6) [0 <3(1+5a@ 4175082 )od b

e )9 Il )t Aol
+2 1+5(Z|(2+1/§|)flmax g”max el(k) +2 1+5(Z|(2+1/§|)flmax bl Gl(k)
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+2(1+ 5o (2+1/ ;) firiax ) i, Bt Hei (k)H Hé‘} (k)H

2

2 2 2 2
Takeb, :3(1+5ai(2+1/6i)fimax)g by , by :2(1+5ai (2+1/5i)fimax)giimax ,

2 2 2 .
by, =2(1+5ai(2+1/6i)fimax)giimaxbl, and b, :2(1+5ai (2+1/6i)fimax)b1 , would give us

2 2 2 ~ o~ 2
(1+ Saj(2+116) )’7i (k) <m, =Fiy + A5y lei 6oll” + 5, lles colllé ol + A, e ol
Proof of Theorem 2: Consider the Lyapunov function candidate as

1 . -
Vi = —e2 () +—a (k) ()

5 Qi

whose first difference is given by

1 1r. ) oo
A ==[e (k+) -ef(k)]+—[ef(k +1G (k+1)—8' (k)G (k)] (A.5)
5 a
AV, ,

Substituting (A.2) inav, of (A.5), the first term is given by

(éiT k)b, —ci)

1 =K (k=K R
=] giiei 00+ @ - €717 (o7 0x00,0000) (4 00 0000 7 (xC0u6 + 7

2
6 b; —C
_ TA( i AIT |) :| —leiz(k)

(éiT ()b; —ci)

by 6 ()67 (K)b; +C;

. - (k— i
Sinceo<1 —e 1) <1, denote g2 (k):(HiT (k) f; (x(k),u(k))) andw,, (k) =

Expand the square term in the above equation to get

T —C. )’ A.6
Avlg{eiz(k)gizi‘F‘Pi(k)+77i2(k)+‘{’§i(k)+ Gl ]—éef(k) (A9

b6, (k)G (k)b +c;
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Next substitute (7) in av, of (A.5) to get
1 ~ -
AV, = —{[-7; [0 - e 6 67 DG ) — i § (Oe k+ 0+ 75 11— 57 16 T xT-7; 1 - o %67 D6 )
4

Expand terms in the above equation to obtain

1 - - 2 . - -
Ny < =427 1= 5167 050+ 77 I - 57 6 0063000 =266 01 - I -5 57 -
aj

fies (k+1)+26 ()1 -7 |1 - i Dl - 5 |6 + aizei (k+1) ' (k) F; (k)& (k +1)

2 T2 T T T
+7i [V -aifi i || 6 6 — 2058 (k+ D F (07 [1 - i 6 (|6
After some manipulations, we have

2
2(1+268;)7; AT - L +268;)7; T2 T~ 28 1 .
AV, < ——Lli a6 5 (|16 k)6, (k) + g fi 6 06 k) + 6 (06 (k)
aj % %

(66 -ci )2

by 6; (k)G (K)b; +c;

505 (2+11 ;) F;' (k) F; (K) eiz(k)gizi + \yi (k) + niz(k) + \ygi (k) +

2
(2+116)7; 2
-5 g (A7)

2
where s >o0is a constant. Since ay, =av, +4v,, combine (A.6) and (A.7). Then, the first
difference of the Lyapunov function can be written as

(orb-c)’
BT 6,000 (0B +

AV; <|ef(k)gf + ¥ (k) +f (k) + w3 () +

2
201+ 26;)7; ~ - 1+ 26;)7;
2022007 ||I—aififiT||61|T(k)9i(k)+—( D%
a; [0 4]

2 -
S |
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2 . _ 25; -
- e 67| 6 (06 () + =87 (08 (k) +5e; (2+1/ 5) ;' () f; (K) [eiz(k)gizi +ly]21_ (k) + 1 (K)
ai

(QTbi—Ci) +(2+1/5i)}/i2 Ih-
b/ 6, ()& (k)b, +c, o

2

o fify ||2 6

2
+‘P2i (k) +

Using lemma 1 in the above equation, we have

ab-C,) 1
i e g (0 vy (k)+bTé((k)éT(k)t)>+c 500
2
2 28:)7; . - 25:)7; 2 . - 20; . -
SRR T (008 00+ T T 6T 0060+ L 6 (06, 0
ai ai ai
2
6'b; —C:
50, 2411 5) T (0, ()| &2 () g + P2 (k) + P (k) + TA(' L )
4 ' b 6, (K)E; (K)b; +¢;
2
2
(2+118)y 2 i )
a6 66+ i+ |’ + 4, e llllg; coll + s, llo ol (A.8)

%
Consider terms numbered as (1) in (A.8), we have
(l+5ai @+115) % f, )\Pgi (k) < 2(1+5ai 2+115)a | )(éiT (b G (k) + ¢ ¢;) (A9)
Next, consider terms numbered as (2) in (A.8), we have

(aini - Ci )2
b/, (k)d" ()b, +c,

2
(1+5ai(2+1/5i)fiT fi) S(1+5ai(2+1/5i)fiT fi)(Hini -¢)
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Using (A.9) and (A.10) in (A.8), we have

T ~T T~ T
AviSeiz(k)gizi+‘{'i(k)—%ei2(k) +2(1+5ai(2+1/5i)fi fi)(é’i (k)b;b; 6; (k) +Cj C;)

T T T T T

2
21+ 25; )7 . L+ 2687 2 4+ . 26 1 .
i LA - 67167 (06 (k) + ——71 /i I =e i 61 67 006 (k) + =6 ()6 (k)
a; ; “i
(2+1/a‘-)y-2 2
+5ai(2+1/5i)fiT(k)fi(k)[ef(k)gﬁ+\yi (k):| T e e X A

9
2 ~ ~ 2
+Bi, + A ey 00ll” + 4, e ollllg; oll + 4, 116 ol

Next, apply Frobenius norm, the first difference of the Lyapunov equation can be written

as
1 2 2 2 3 2
AV <—(g—9iimax —5¢; (2+1/5) fi Gjj. . _;ﬂilj”ei(k)”

2(1+25')}/' T 2 2 2
_(—' S -a i [ — fii  —2Q+5q(2+1/5)f b
o
I

2

(1 +25; );/iz ”
- . : imax

2 26 3 - 2
- —ai | _06—-'_ﬁr,,;,i(z+1/5i)fi:]ax _;ﬂig)”@i(k)”z +2(1+5ai(2+1/§i)||fi(k)|| )c
1 1

+(1+5ai(2+1/5i)”fi(k)||2)(92 2 9 b ¢ 2 )

imax 0i i B G+ G
max  'max min ‘'min ‘min max

2
(2+116})7; T2 2
- | Bimax + Py (A1l)
j
2 2 2
_ 5i ( Cimax * max imaX)
Take bj .. = and b = i

\/2(1 +5aj(2+116) ) mn 2G O
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2
(2+116))7; T 2 9 2
7”| —ai b (K)F (k)” 0.  +b |la+sa 2+1/8) |l
i i imax o i i1

%

Therefore, (A.11)
2C:imin imin

could be rewritten as

1 2 2 2 3 2
Av; < (g— Biip — 5@ @+ 116 T i _;ﬁilj”ei(k)”

2(1+ 25))7;j T 2 2 2
—[—”| -aififi ”_ fimax —2(1+5¢; (2+1/§i)fimax)bimax
a
i

2
(L+28)y: 2 25 3 .
aj aj 2 3

Hence av, <o in (A.12) provided the design parameters can be selected as

1-,[J1-C
(1/5) r ;
(4+20ai(2+1/5i)fimax) I -t 5
where C. = —+f +50;(2+1/5)f  +——+2(1+5¢;2+1/5)f |b; _
1 (2+l/§|) al max max 2 max max

The first difference, av; <oin (A.12), indicates stability in the sense of Lyapunov,

provided the gains are selected above. Summing both sides of the equation (A.12), and

~|vee)-vo| <. Therefore, from [27, 31], taking limits on

iAV(k)

k=0

sinceav <o, we have

both sides one has [lej (k)| =0 and [|g; (k)| > 0ask -0, provided e;(k,)and4i(k,), are

selected in the compact set S.
Proof of Theorem 3: In the presence of the i" fault, the isolation residual associated with

the r™ fault isolation scheme is given by
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i (K— .
e (k+) =g &K+ - € il kO))(aiT fi(x,u))—(az(k)fr(x,u))+77i(x(k),u(k))+vr(k)

Solving the above equation, we have

e () - (o)< kd)+2(grr e 1079 (T inucin) - Z(grr (6 i xinucin)

J=kq =
k i< k=i
e (op) - Y (o) v ()
J=kq J=kg

By using the triangle inequality (ifa=b+c, then,|a| > |b| -|c|), the above equation yields

i k(i
Fa - e (6 i uin)

ler (0| 2

Z (grr) _J

J=kg

Z (o, )< Vi x(ivucin| -

J=kq

’(grr )k_kd |er (kg )| -

k .
_ Z (g,,)¢ (é:(j)fr(X(j),U(J')))

i=ky

Therefore, when the condition (9) is satisfied, |er (k)| > 0. This implies that the r™"

fault is excluded. If this condition satisfied, then for eachr € {4,......, n}\{i}, each of the

faults is distinguishable.

Proof of Theorem 4: Consider the following definition of a mismatch function for the

Mincipient fault and the r™ fault isolation scheme
-7 (k—kg) .
p(k)=(L - 1 o )(eiT fi(x,u))—(HI(k)fr(x,u))
Assume there exists a time interval [kd + Ky s kg +k2r] and a scalar constant 5, >0 for

each € {L .....n} such that, for all k & [ky +k, ,ky +ky, |, we define
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|p(0)| = 7y, + vy (0] + 5, (A.13)
Next, consider the fault isolability condition from theorem 3 for the

interval k & [k, k,, |as

kq+k .
_zk(g”)““k-” o) > (orr )" Jer tkg)] + z 0 ) D (i, +lve (0] (A.14)
1=Kyq i=k
From the inequality
kq+k ) kq+k ) kq+k )
Z (orr )(kd+k71)p(j) = Z (orr )(kd+k71)p(j) - Z (orr )(kdﬂ(i])p(j)
j=kg J=ky+ky, i=kq
it follows that a sufficient condition for (A.14) to be satisfied is given by

AR (kg +k—1) Kk k k- j)

S (o)™ ™ Vot (o) e s+ 3 (0,0 (o, 1w D))
J=kq +kyy J=kq

Kg +Kqr .
H3 (ap ) o)
J=ky

The above equation could be rewritten as

o K iy (kg +k—

Z ( rr) p(l) grr) |er(kd)|Jr Z (grr) i ( |V (J)|)‘
j=kg +ki j=kg +ki

k ) o ky +k o (kg +kae—J) :
o) ] 20 (o o o)+ Z (9) Y (s, +v. (D)) (A15)
i=kq J=kq

Next, using (A.13), we obtain

e ky-+k— AR k k-

Z (grr)(d JIO(J) Z (grr ‘ J‘P(J)‘
J=kg +ky J=Kg +kg
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kq+k (k+1-ky, )
rr )

> z (grr )(kd+k—j) I:’IiM +|Vr (k)|:|+5r (1—9—

(A.16)
j=kg ke, A-9,)

Combine (A.15) and (A.16), we have
(1 gk, ) (ki) kg +ker (ks gy 1)
g #2(9]”) |er(kd)|+2(9rr) o { Z (grr) o (UiM +|Vr(J)|)}

r
A-9,) j=kg

Therefore, solving the above equation fork , we have

k, +k
+_ 1- o K, d ""r r*- .
-6 > S92 (g ) e g+ 2o ) { > (o) (i, +Ivr<nl)D

r J=kq

After some manipulation, we have

ky +k
) o ( Katker otken i _
1+(1:]rr)[(9rr )(kqu) ler g g{ j_Zk (grr)( o J)(nim +|Vr(J)|)ﬂ
r —d

k =k, —1+log L =) + 1
log(g,, ) log(g,, )

Proof of Theorem 5: The TTF is estimated by using the maximum value or threshold,

i.e., aij(kfi_)zeijmax Equation (14) holds only in the time intervalk e[ky,k;].

J

Consequently, the update equation in (8) can be written as
A T A

G (k+) = (-7, -t f ||)‘9ij (0 +a (f (0e; (k +1))j

The above equation becomes linear time varying system at each time instant by

considering other terms being held at the time of prediction as

X (k +1) = @ k)X (K) + bu (k) (A.17)



203

Where?(k+1):éij(k+l),§(k)=(1—7/i”I—aififiT”), b =aj, andU(k)z(fi(k)ei(k+1))j.

Note w(k)is the ;" product of the i"basis function and thei"™ fault isolation residual.
Therefore, the solution of the system defined in (A.17) is given by

k K [ k
=[] TR (kg, ) + >, (Ha(t)jﬁﬁ(r)

t:k()ij I’=k0ij t=r

Since the j™ system parameter reaches its maximum value at the time of failure, i.e., ke
I.
j

theng, (k. )=¢. . Additionally, the value ofe, (k, )=¢ ;hence the above equation
T jmax T jo

i fii i
j j j
becomes Hijmax =tl;[ E(t)Y(koi )Hijo + Zk: Hﬁ(t) bu(r). In the above equation,
J J

for the time interval [k, ,k; ],ax) andu) are assumed to be time invariant, scalars.
I; I;
i

This assumption is reasonable since 0 <a <1 and the input T (k) would be bounded due to
the guaranteed stability of the parameter update law in (8) although the input (in this case
the residual) is continuously increasing due to the presence of a fault. Consequently, the

system defined above can be considered a linearly time-invariant system. Also, TTF is

continuously updated at each time instant in the interval k € [ky, K¢ ], as explained below.

Hence
(g ko ) Gk, 0
6. =a 1 o b Z a | (A.18)
J

Using results of geometric series, (A.18) becomes
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Ke. —k,
(ks o) La | |
. 'V +bt| ——— |. With some simple mathematical
J max Jo 1-a

manipulation, one obtains

a(kfij —koij ) [Hijmax (1-a)-bu]

[9ij T —bu Finally, after performing additional mathematical
0

manipulation, we have

o (l—ﬁ)—BU‘
log J max _
0, (1-a)-bu ‘
ki = — +ko. . Sincea,b, and T are known, therefore equation
I [log(@)| I

(14) results.
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5. An Asymptotically Stable Online Fault Detection and Ac-
commodation Scheme for Nonlinear Discrete-time Sys-
tems

Balaje T. Thumati and S. Jagannathan

Abstract- In this paper, a FDA framework is developed for non-affine nonlinear
discrete-time systems by using online approximators. A residual signal is generated
by comparing the measured system states with the output of a nonlinear fault detec-
tion estimator. A fault is declared active when the residual exceeds a mathematically
derived threshold which is defined using the upper bounds on the system uncertain-
ties. Subsequently, an online approximator and a novel robust term, which is de-
fined as a function of online approximator parameter vector, are activated in the
nonlinear fault estimator. The online approximator reconstructs the unknown fault
dynamics. Next, a novel controller design is introduced in order to accommodate the
unknown fault by using a second online approximator and a different robust term.
Stable adaptation laws in discrete-time are developed to tune the parameter vector
of the online approximators used for both constructing the unknown fault dynamics
and the reconfiguring of the controller. By using Lyapunov theory, asymptotic per-
formance of the detection and the accommodation schemes is demonstrated. Finally,
a simulation example is utilized to illustrate the performance of the proposed FDA

scheme.

_IK_ﬁywords: Fault Detection, Fault Accommodation, Asymptotic Stability, and Lyapunov
eory.
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1. Introduction

In this paper, a model based FDA scheme is developed as they are considered
more robust when compared to qualitative based techniques (Frank and Keller, 1990;
Chen and Patton, 1999). In the past literature (Frank and Keller, 1990; Chen and Patton,
1999; Gertler, 1988), FDA schemes are developed by assuming: 1) a linear model of the
system, 2) sensor faults, and 3) system uncertainties and fault modes are decoupled. Since
in most scenarios, practical systems are nonlinear in nature, the above discussed schemes
(Frank and Keller, 1990; Chen and Patton, 1999; Gertler, 1988) have not been applied ex-
tensively.

Now, with the development of adaptive control theory, different FDA schemes
were developed (Polycarpou, 2001; Polycarpou and Helmicki, 1995; Jiang and Chowd-
hury, 2005; Chen and Saif, 2001) for nonlinear systems. Such schemes are capable of de-
tecting both abrupt and incipient faults. In addition, the stability, robustness, and sensitiv-
ity of the schemes are studied extensively. However, the drawbacks of the nonlinear
FDA scheme (Polycarpou, 2001; Polycarpou and Helmicki, 1995; Jiang and Chowdhury,
2005; Chen and Saif, 2001) include: 1) bounded performance guarantees of the FDA
technique and 2) applicability to nonlinear continuous time systems. It is well-known in
the literature that continuous-time development (Lewis et al., 1999) cannot be easily con-
verted directly into discrete-time for hardware implementation due primarily to the fact
that Lyapunov first difference is quadratic with respect to the states whereas first deriva-
tive of the Lyapunov function is linear. In addition, by increasing the sampling rates
alone, one cannot ensure stability of nonlinear systems for discrete-time implementation

even if the continuous-time counterpart is stable.
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Therefore, Caccavale and Villani (2004) introduced a fault detection scheme in
discrete-time by using the stringent persistent of excitation (PE) condition, which is very
difficult to verify or guarantee. Therefore, in our previous work (Thumati and Jaganna-
than, 2007), a fault detection scheme using online approximators (OLA) is introduced by
relaxing the PE requirement. However, uniform ultimate boundedness of all the signals is
demonstrated similar to the case of fault detection algorithms in continuous-time.

By contrast, in this paper, a novel FDA scheme is introduced for detecting and ac-
commodating faults in nonlinear discrete-time system in non-affine form. First, a nonli-
near fault detection estimator comprising of a nonlinearly parameterized online approx-
imator in discrete time (OLAD) using multilayer neural network (MNN) and a robust
term is used for detecting and learning unknown nonlinear fault dynamics. In contrast,
the FDA schemes in continuous-time use linearly parameterized approximators. The pur-
pose of the fault detection estimator is to generate residuals for fault detection. Later, a
novel online fault accommodation strategy is developed by reconfiguring the controller.
The design of the corrective control for an unknown fault dynamics is acheived by using
linearly parameterized and nonlinearly parameterized online approximators. Finally, the
stability of the FDA scheme is analyzed extensively using the Lyapunov theory. It is ob-
sereved that for a linearly parameterized approximator, the FDA scheme renders asymp-
totic stability of the closed loop systems, whereas, for a nonlinearly parameterized ap-
proximator, the FDA scheme renders asymptotic convergence of the residual and tracking
error while parameters of the approximators remain bounded.

These improved performance results obtained in this paper are possible due to the

introduction of the robust term and making some mild assumptions on the uncertainities.
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In summary, the major contribution of this paper is the introduction of a novel multilayer-
based fault detection and accommodation scheme for non-affine nonlinear discrete-time
system. The proposed scheme renders asymptotic performance guarantees in the presence
of NN reconstruction errors. To best of our knowledge there is no previously reported
FDA scheme for such class of systems that renders asymptotic performance. In the next

section, the system under investigation is explained.

2. Problem Statement

To address a wide range of physical systems, the following general class of nonli-

near discrete-time system is considered as
x(k +1) = w(x(k), u(k)) +n7(x(k), u(k)) + h(x(k), u(k)) )
wherexe®" is the system state vector, uex™ is the control input vector, and
@R xR SR, 7R xR SR, R xRw" > R" are smooth vector fields. The
term w(x(k),u(k)) represents the known nonlinear system dynamics while ;(x(k),u(k)) de-
notes system uncertainty. The unknown function h(x(k),u(k)) = Ti(k —k,) f (x(k), u(k)) ,
represents the fault function where f (x(k),u(k)) represents the unknown fault dynamics
with 1i(k—k,) being a nxn square matrix function representing the time profiles of the
faults, and i >0 is the starting time.

Typically, the time profiles of the faults are modeled by

T1(k —k,) = diag (@, (k — K, ), 2, (K =K, .., @, (K —k,))
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where

T jfr>0

0, if £ <0
Qi(r):{l o 7% fori=1,2,.n @)
-e 1 ,

andz; >0 is an unknown constant representing the rate at which the fault in the corres-
ponding state x occurs. The term;(r) approaches a step function wheng;is large,

which in turn represents an abrupt fault. The primary focus of this paper is on the abrupt
faults; however, some aspects of incipient faults are considered as well.
Remark 1: Modeling faults using the above time profile is quite common in the fault de-
tection literature as given in Zhang and Morris (1994), and used extensively by research-
ers (Polycarpou, 2001; Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998).
The first step in any FDA scheme is fault detection. In this paper, for the purpose
of fault detection, a MNN-based online approximator is introduced whereas for the pur-
pose of accommodation both a single layer and MNN based approximators will be used.
Next, the following assumption is borrowed from the fault detection literature.
Assumption 1: The modeling uncertainty is unstructured and bounded (Polycarpou,
2001; Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998; Polycarpou and

Helmicki, 1995), i.e.,
[nexto.utN]| < Vlxu) € (7 <U)
where 7, >0 is a known constant.

Remark 2: This assumption is required to distinguish uncertainties from the fault func-

tions.
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In the previously reported fault detection schemes (Frank and Keller, 1990; Chen
and Patton, 1999; Gertler, 1988), the type of uncertainty assumed is structured and/or pa-
rametric. This may not be true for most physical system in an industrial setting and there-
fore in this paper, such assumptions are relaxed unlike other schemes where simple sen-
sor faults (Caccavale and Villani, 2004) are considered. In the next section, the fault de-

tection scheme is introduced.

3. Fault Detection Scheme

The nonlinear estimator presented below comprises of the OLAD and a novel
adaptive robust term. It is worth noting that the purpose of the fault detection estimator is
not to estimate the system states since they are measured, but to use the estimated states
to generate residuals. This is in contrast with a state estimator or an observer that is

normally used for controller design.

A. Nonlinear Estimator Dynamics

Based on the system representation (1), a nonlinear fault estimator is given by
X(k +1) = AyX(k) + (x(K), u(k)) + ﬁ(x(k), u(k); é(k)) — AgX(K) +v(k) 3)

where X € R" is the estimated state vector, i : " x®™ x®"" — %" is the online approx-

imation in discrete-time (OLAD), 6"

is a set of adjustable parameters of the
OLAD, A, is a constant nxn design matrix chosen by the user, and v(k)is the robust
term, which is to be defined later. Prior to the occurrence of the fault, the initial values for

the fault detection estimator (3) are taken as (0) = x(0) , 6(0) = §,, such that n(x,u,4,) =0 for

all xey andueU.
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Remark 3: Only upon the detection of a fault, the OLAD and the robust term are in-
itiated.
Define the residual ase =x—X. From (1) and (3) prior to the fault, the residual

dynamics is written as

e(k +1) = Aye(k) + n(x(k), u(k)) (4)
In order to detect faults in the system, the residual is compared against a known
threshold by using a dead-zone operator in order to improve robustness (Frank and Kel-

ler, 1990). The dead-zone operator is defined as D[] as

0, if le(k)||< o

5
e(k), if [lek)]| > » ©)

Dh&ﬂ={

where p >0 is the threshold. The selection of the threshold size p clearly provides a tra-

deoff between reducing the possibility of false alarms (robustness) and improving the
sensitivity of the faults.

Remark 4: A threshold is widely used in existing fault detection schemes (Polycarpou,
2001; Caccavale and Villani, 2004; Polycarpou and Helmicki, 1995; Thumati and Jagan-
nathan, 2007). To minimize false alarms, this threshold on the residual is normally se-
lected based on the bound on the system uncertainties and approximation errors.

Prior to the fault, the residual, e(k), will remain within the threshold. But, in the

event of a fault, the residual increases and exceeds the threshold declaring a fault is ac-

tive. The selection of an appropriate value for  is addressed next.

B. Performance of the Detection Scheme

For selecting an appropriate threshold, consider the residual dynamics defined in

(4) prior to the fault. The solution of equation (4) can be obtained from standard linear
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k-1 i
control theory (Chen, 1999) which is given by e(k)=>_ AT uggy for zero initial
j=0

conditions. Since the matrix A, satisfies the Schur’s criterion (Chen, 1999), there exist two

positive constants zand 8, such that the Frobenius normHA(‘szﬁcy"d. There-

(1— u*)

fore, (k)| < pny , Where 8 = .. This implies that if the size of the dead-zone is

A : L

selected asp = « M), then the residuale(k) would remain within the threshold for
—H

all k >k, . Under these conditions, the OLAD and the robust term are not initiated.

Normally, a linearly parameterized OLAD is used for learning the unknown fault
dynamics after the detection. In contrast, in this paper, a nonlinearly parameterized
OLAD or a MNN is used as OLAD since a MNN is more accurate than a linearly para-
meterized approximator (Jagannathan, 2006). Hence the fault dynamics in (1) could be

written as
h(x(K), u(K)) = 8] @4 (6, 9, (6, 9, (x(K), u(KD) + &1 (K) (6)
where ¢, ¢,, and g,are the target weights of the MNN-based OLAD and ¢, (k) being the

reconstruction errors. By appropriate selection of the MNN size, the approximation error

could be made small (Barron, 1993). Additionally, the target weights are considered to

be bounded|g||<q, . lo,]<e,  and |lof<e,  andg (), ¢, () ande,(.) are the activa-

tion functions of the first, second and third layer of the NN respectively.

Also, the OLAD output in (3) is expressed as

h(x(k), u(k), (k) = 6, (K), (0, (), (0, (K), (X(K), u(K)) @)
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where 4, , 4, , and 4, are the actual weights of the first, second and third layers of the

MNN OLAD and 4 xxy represent input layer activation function. Then

6,0, (09, (x(K), uK)) |, 33(6) (06, (6] (¢, (x(k)u()) denote the hidden layer and output

layers activation function respectively at the «" instant. For a multilayer function approx-
imation, the activation function vector need not form a basis function (Jagannathan,
2006). Define the weight or parameter estimation errors as

6,(K) =6, - 6,() , 6,(<) = 0, —6,(c) and (k) =6, - 6,(k) .

Next the following fact can be stated.

Fact 1: The activation functions for a MNN are bounded by known positive values such

that

||¢1(k)” < Prax ? “(/32 (k)” < P2max and ”(/33('()“ < §03max .
Define activation function vector error as
P, (k) =, —@,(K) , §,(K) = @, =@, (k) and ¢, (k) = ¢, — @, (k) .

Using the definitions in (6) and (7), the residual dynamics from (1) and (3) upon detec-

tion would become

AT
6, (KB,

e(k +1) = Age(k) + n(x(k), u(k)) + ¥, (k) + & (K) + 0 5 ((K)) - (8)

TA AT
B, 0, (k)d, (K)B, +C,

~T
0, (k)B,

where ¥, (k) = 4, (), (x)), and V(k) = being the robust term, with

TaA AT
B, 6, (K)6, (K)B, +C,

¢, >01s a constant and B, is an appropriate dimensioned constant vector, to be defined
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0B, -C

later. Next by adding and subtractin s v in (8), where is an appropri-
y g g B, 6,(k)d, (k)B, +C, ®) “ pprop

ate dimensioned constant vector, would result in the following equation

T
(93 Bv B Cv)

ek +1) = Aye(k) + ¥, (k) + ¥, (k) + (k) - 9)

TA AT
B, 0, (K)d, (K)B, +Cp,

~T
g, (k)B, -C,

where s(k) = n(x(k), u(k K)+ 0. G (x(k)) , Yo (K) =7 — .
&(k) = n(x(k), u(k)) + & (k) + 6, o5 (x(k)) 2 B\T,6’3(k)6’3T(k)BV e

Next, the following theorem is introduced to guarantee the asymptotic stability of
the residual in the fault detection scheme with the nonlinear MNN-based OLAD. Before
we proceed, the following Lemma is needed.

Lemma 1: The term (&), and the ideal weights of the MNN OLAD are assumed to be
bounded above by a smooth nonlinear function of the residual and the last layer NN

weights (Patre et. al, 2007; Kwan et. al, 1995; Lewis et. al, 1999) as

2

>
max

i=1

. 2
o, ()|

~ T . T 2 ~ R 2 ~ R
+ (Bagpy by + e () < f, + A llell” + 5, 16,006, 00| + £, llecolllld, cé,

2-a 6,0

where 4,4, 5,,and s, are computable positive constants.

Proof: Refer to Appendix.

Theorem 1 (Fault Detection Estimator Performance): Let the proposed estimator in (3)
comprising of a nonlinearly parameterized OLAD be used to monitor the system given by
(1). Considering bounded system uncertainties and under Assumptions 1-2, let the MNN

based OLAD weight tuning be provided by

0,(k +1) = 6,(k) — o, oy (K)[F, (K) + B,Ae()]' (10)
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0,(k +1) = 6,(K) —, ¢, (I, (k) + B,A ()]’ (11)

with §; (k) = ij (k) ¢;(k) and||B;|| < x;, i =1.2. Let the weight update law for the third layer be

0;(k +1) = O, (k) + a, ;2)3(|<)eT (k +2) (12)
whereo; >0,vi=123, denotes the learning rate or adaptation gains. Then, the resi-
dual, ek), is locally asymptotically stable, while the MNN OLAD weight estimation er-
rorsé,« , 6,(anda, ) are bounded.

Remark 5: Theorem 1 guarantees the asymptotic stability of the residual in the proposed
fault detection scheme after the fault has occurred by using a nonlinearly parameterized
OLAD. Such results using nonlinearly parameterized OLAD for continuous-time and for
nonlinear discrete-time systems are currently not available. By contrast, in continuous-
time (Caccavale and Villani, 2004; Demetriou and Polycarpou, 1998; Polycarpou and
Helmicki, 1995), a bounded residual is only shown even with a linearly parameterized
OLAD.

Remark 6: The purpose of the fault detection estimator is to generate the residual signal.
This is in contrast with the state estimators normally used in the controller designs.

In the next section, the fault accommodation scheme is introduced.

4. Fault Accommodation Scheme

Fault accommodation involves the reconfiguration of the control input to compen-
sate the unknown fault function (Polycarpou 2001). Here, the problem is more compli-

cated since the faulth(.) is unknown and non-affine in nature. Prior to the fault detection,

any bounded controller derived for non-affine systems can be used (see, Young et al.,
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2006)) and one such control design is presented later in this section.
Next, the nonlinear system (1) with the fault function is expressed as
x(k +1) = o(x(k), u(k)) +7(x(k), u(k)) + h(x(k),u(k))
This system could be transformed into affine-like form by using the technique

from Yang et al. (2008) as

x(k +1) = ¢ (x(k)) + 174 (x(k))Au(k) (13)

where 7¢ .74 R" - R" are unknown smooth vector fields due to the presence of un-

known fault function and system uncertainties included along with the known nominal
dynamics, and Au(k) = u(k) —u(k -1), with Au(0) = 0. Before introducing the fault accom-
modation control law, the following standard assumption is needed (Jagannathan, 2006).

Assumption 2: The term 1y (x(K)) € RN js a positive definite invertible diagonal matrix
for each y —R". Further, assume 7. € R and 7,,,, € R represent the minimum and the

maximum eigenvalues of the matrix 7g (x(k)) such thato<z,; <n.. (see, Yang et. al

2008).

Next, select the control input change after detection as

Au(k) (Xg (K +1) —n ¢ (x(k))) +leg (k) +ve (k) (14)

g (x(K)
where g, is the tracking error, x, (k) is the desired trajectory, v, (k) is another robust adaptive

term to be defined later and | is a user selectable design matrix.

Since 7 and »y are not known in (14), this problem is overcome by utilizing another

OLAD. Initially, a linearly parameterized NN is used, i.e.,
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AUK) =W G(x(k), xg (K +1)) + & (k) + leg (k) + v (k)

where w < 2™ is the target weight matrix and () < %™ is the basis function such as RBF,
sigmoid function, with « () is the NN approximation error. In addition, as seen in the
previous section, the approximation error is considered to be bounded above such
that ||, (K)|| < &;,, . Therefore, the output of the linearly parameterized NN is given by
AU(K) =V T (K)(x(K), X (k +1)) + e (K) + v (k)

Next, define the robust term v, () as

T
W' (k)B
Ve (K) = 1

1 . .
T , where &, <% is a constant vector and ¢, >0is a con-

stant. Therefore, the tracking error dynamics after detecting a fault becomes

.
W By

& (K +1) = g (x(k) (leg (k) + ¥ (K) + gy (k) = ¥ (K) + — (15)

N AT
ByW (W ' (k)By; + ¢

(" w8y -y

Bth\/\"/(k)\/\"/T (K)By +Ct

where Wy (k) = (W' (K)g(K), &, (K) = (-5 K)+ W Kg), andw,, (k) =

x1 .
Cy € %" s a constant vector.
Next, the following lemma is required before proceeding any further.
Lemma 2: The term, ¢ (k), can be expressed as a function of tracking and the NN weight

estimation error bounds (Patre et al., 2007; Kwan et al., 1995; Lewis et al., 1999), i.e.,
(1415007 6) &7 (0200 < sy = b+ [l CO|* + by [l GO I G0 + b [ (16)

where by,b;,b,,and b, are computable positive constants.

Proof: Refer to Thumati and Jagannathan (2009).
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Next, we present the following theorem, which guarantees the asymptotic stability of the
closed loop system.

Theorem 2 (Fault Accommodation Scheme): Consider the system (1) with the proposed
fault detection scheme described in the previous section with a linear online approximator
such as a single-layer NN. Upon detection of the fault, let the control signal be aug-

mented with Au(k) =W (K)g(x(k), x4 (k +1)) + le; (K) +ve (k) . Let the NN weight tuning be pro-
vided by

Wk +1) =W + aedgy (k+1) - |1 = aed’ (00| W (k) (17)
where o >0is the learning rate and . > ois the adaptation rate. Then the tracking error

e; (k) and the weight estimation error W (k) are locally asymptotically stable.

Proof: Refer to Thumati and Jagannathan (2009).
In addition to using a linearly parameterized NN for approximating the unknown
input, a MNN could also be used to approximate the corrective control law as given be-

low
AUG) =5 @, (W, gy (W (200) + &, (k) + e (K) + v (K)

where z(k) = [x(k), x; (k +DI", w;,w,, and w, represent target weights and,(k) being the
MNN approximation error. Additionally, the target weights are considered to be

bounded [w[| <w,__ W, <w, and|w,<w, andg, (), 4, () ands, (.) are the acti-

max
vation functions of the first, second and third layer of the MNN respectively. Therefore,

the output of the MNN is given by

AU(K) =Wy (K)o, A (K)m, (i (), (20 + e (k) +ve (k)
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where w, (k), W, (k),W, (k) are the actual NN weights of the third, second and first layer re-
spectively and om (x(0) Tepresent the input layer activation function. Then Prry )+ By )
denote the hidden layer and output layers activation function respectively at the «" in-
stant.

Define the weight estimation errors as  w(k) =w -W (k),W,(k) =W, -W, (k) ,
andw, (k) =w, -w, (k) . Next the following fact can be stated.

Fact 2: Similar to Fact 1, we have s, «|< o, _ [y, o] < on, and 6, 00 < Oy -

Additionally, ¢, (<) = ¢, = dm k), P, () = P, — P, (K), @nd G, (K) = @, — By, () .
It is essential to note that the control input change prior and after the fault is

summarized as

—(17 By )g(k) f(k)) +ley (k) fork <k,

AU =9 T
Vi (K)g0) + T (K) + v, (K)ONV, (K)@y, () +leg (0 +vg (k) fork 2 K,

where g, >ois an user-defined constant, g(k) = do(x,u)/ou, and f(k) = w(x,u) - x4 (k +1) are
known smooth vector fields obtained from the known nonaffine nominal dynamics. Fi-
nally, k, is defined as the fault detection time. Using the above equation, u(k) can be ob-
tained.

~T
. W, (k)B
Next, definev, k)= s (08

— , Where B, is an appropriate dimensioned
B W, ()W, (k)B,, +C,

constant vector, andc,, > 0, is a constant. Therefore, the tracking error dynamics after

detecting a fault becomes
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W, B -C
6 (K +1) = 15 (x(k)) (e (K) + W1 () + g (K) = W00 (K) + (W, By ~Cry )

N 18
B, (KW, (K)By, + ¢, (18)

(W3T (k)Bm B Cmt)

T o~ AT ’
ByW, (KW, (k)B, +C,

where ¥t (k) = (W (K)i, () , 25 (K) = (=, (0) + W iy, (0, AN W () =

Cot € R®"is a constant vector. Next, the following lemma is required before proceeding
any further.

Lemma 3: The approximation error term, ¢, (x) of the NN can be expressed as a smooth
nonlinear function of the tracking error and the MNN weight estimation errors as

2
2> W2, (| i )
i=1

(2= atp, [, GO

T AT A T T T
+ (728m3ng (KB, +1+ 50 G P, By 17 (07g (K)Bry, )smt (K)&mt ()

< 9o+ byl 001" + e G, B 0+ 03 s 03, 0 (29)

where py, p;s P,y and pg are computable positive constants.
Proof: Similar to Lemma 1.

Next, the following theorem on the asymptotic stability of the tracking error after a fault

is introduced.

Theorem 3: Consider the hypothesis presented in Theorem 1, and upon detecting the
fault, let the control input change be given by Au(k) =W, (K) @y, () +leg (k) +v; (k) , where the
MNN weight tuning be provided by

Wi (k +1) =W (K) = ey 9y, (KL, (K) + By ey 1" (20)

Wy (k+1) =V (K) =ty o ()9, (k) + By, ley ()] (21)

with ¥; (k) =V\7iT (k) (ﬁmi (k). Let the weight update law for the third layer be provided by
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W, (k +1) = W, (k) + A O, (e (k +1By, (22)

whereq -o0,(B . |<x. ,Vi=123, denotes the learning rate or adaptation gains. Then, the
ml mj

< K, 1
tracking error, g (k), is locally asymptotically stable, whereas the MNN weight estimation

errorsw, () , W, (k) andws ) are bounded.

Proof: Refer to Appendix.
Remark 7: It is important to note that the objective of the OLAD in the case of FD is to
learn the fault dynamics whereas during fault accommodation it approximates the fault
dynamics plus any system uncertainties. Additionally, the update laws in (10)-(12) and
(20)-(22) relaxes the need for PE without the extra term (Jagannathan 2006).
Remark 8: With the addition of the robust term, the persistency of excitation (PE) condi-
tion is not required in contrast with the past discrete-time controls literature where the PE
condition is normally asserted for boundedness of the weights under the NN reconstruc-
tion errors.

In the next section, we present a simulation example to study the performance of

the proposed FDA scheme.

5. Simulation Results

Consider the nonaffine nonlinear discrete system (Yang et al., 2008) described in

the state space form as
X1 (k+1) = x5 (k)
X, (k +1) = x5 ()

x3(k+1)=0.2 €08(0.8(x, (k) + xq (k))) + 0.45in(0.8(x, (k) + X1 (K)) + 2u(k) +u(k —1)) + 0.1(9 + X, (k) + X (k))



225

2(u(k) +u(k —1))
+——————+d(k) + h(ku(k) , Y(k) = x, (k) (23)
1+ cos(x, (k)

where x(k) = [x, (k). x, (k). x5 (k)] IS the state vector, y(k)is the output, u(k)is the control input,

and d()is a bounded disturbance acting on the system, which is taken as

d(k) = 0.035sin(0.1k) + d, (k), with d; (k) being a white noise with a magnitude of 0.003, and
the sampling time is taken as 0.02sec. An incipient actuator fault is seeded in the system

which is given by

(1- e—0-5(k—50))0.5 fork > 50 sec

h(k) =
0 fork < 50sec® Moreover,

ow
— =g(k) = 0. 8(x, (k k k k- .
" g (k) 08003(08(X2( )+X1( )) +2u(k) +u( l))+%l+COS(X2(k)))

Using the above equation, one can observe that Assumption 2 holds. A reference

trajectory is defined for tracking purposes as

0.8 + 0.05(sin(zk / 50) + sin(zzk /100) + sin(zzk /150)) 07K > 0
Yq (K) =

0 fork <0
The initial conditions on the state vector is given by x(0) =[0,0,01" , with the no-

minal control law prior to the fault is defined as Au(k) = -7 7)(g(k) f (k)) +le; (k) , where

I =0.0001, and
f (k) = 0.2c0s(0.8(x, (k) + X (k))) + 04 in(0.8(X,, (k) + X, (K)) + 2u(k)

2(u(k) + u(k — 1))
+u(k = 1) + 0.9 + X, (k) + X, (K) + ————————— -y (k +1)
1+ cos(X, (k))
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Note, this nominal controller guarantees a stable tracking performance prior to the
fault as shown in the following simulation results.

Next to detect faults, the following FD estimator described by
Ry (K +1) = R, (k) +0.5(x (k) — %; (k)
Ro (K +1) = R (K) +0.7(x, (K) = Xy (K))
%3 (k +1) = 0.2€08(0.8(X, (k) + X, (k))) + 0.45in(0.8(%, (K) + &y (K)) + 2u(K) +u(k —1)) +0.1(9 + X, (k) + %; (k))

2(u(k) +u(k —1))
el el Sl

- +h(u(k), O(k)) + 0.6(x5 (k) — %5 (k)) (24)
1+ cos(X, (k))

is employed where 2(k) = [% (k). , (k), %3 (K)]" is the vector of estimated states. The OLAD

h(u(k), 6(k)) is chosen to be a three layer NN with 4, 6, 6 sigmoid neurons in the first,

second, and third layers respectively. Additionally, the weights of the MNN OLAD are
tuned online using (10)-(12) witha, =058, @, =021, and «, =012, Parameters of the ro-

bust term, v(k) , is taken as C,, = 0.02 with B, being a randomly chosen constant vector.

Due to system uncertainties, a threshold is chosen to avoid missed or false alarms.

By taking s =113 n,, =0035, 1 =0.01, we have p ~0.04, which is a constant threshold.

As observed in Fig. 1, the norm of the residual stays within the threshold prior to the fault
although it is bounded. However, after the fault occurs, the residual exceeds this thre-
shold thus indicating the presence of a fault. Moreover, the OLAD is initiated to learn the
unknown fault dynamics online while the robust term ensures asymptotic tracking. There-
fore, the residual drops and converges asymptotically to zero. This verifies the theoretical

results presented in this paper.
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Fig. 1: Residual norm and fault detection threshold.

Next, the tracking performance of the controller without the fault accommodation

scheme is shown in Fig. 2.
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Fig. 2: Tracking performance w/o fault accommodation.

From the figure, one can observe that the tracking performance of the system de-

teriorates after the fault occurs. The change in the control input is summarized as

~(/ 7)(g (k) f (k) + leg (k) fork <k
Au(k) =
Uye (K) fork > kg

where iy (k) =W, (K)o, () + ey (k) +v¢ (k) by using a MNN. The MNN is chosen to be a three-
layer network with 6, 8, 3, sigmoid neurons and tuned online using the update law in

(20)-(22) with oy, = 0049, ap = 0039, and a, , =028, Additionally, the parameters of the
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robust adaptive term are taken asc, - ooes, with B, randomly chosen constant vector.
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Fig. 3: Tracking performance with fault accommodation.

Fig. 3 illustrates the fault accommodation scheme upon detection which clearly
demonstrates the regained tracking performance. Therefore, this simulation demonstrates

the satisfactory performance of the proposed FDA scheme.

6. Conclusions

In this paper, a FDA scheme comprising of a nonlinearly parameterized approx-
imator for nonaffine nonlinear discrete-time system is introduced. The proposed fault
detection scheme quickly detects and learns the unknown faults online. Subsequently, an
online fault accommodation stragtegy was introduced, where the corrective control is
derived using both a linearly and nonlinearly parameterized approximators. The scheme
renders asymptotic stability by introducing a robust term and under mild assumptions on
the system uncertainites. In addition, the stability is verified mathematically and also in
simulation. Since the accommodation uses the measured states of the system, in the

future, the state measurability will be relaxed.
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Appendix

Proof of Lemma 1: Consider (8), solve, and apply the Frobenius norm. Additionally,

note A, <a-A, )ifa, <os(where ,__isthe maximum singular value of 4;), also de-

finebO_HAge(O)H+BVLM with the vectors, could chosen in such a way, such that
AOI'TK-AX

0, (k)B 0, (k)95 (k)
H 3 VH < ”6’3 P3 ” Define by :L. Then using (8), we have
Aomax Aomax Aomax

b2 (14, e (ol
ol <2, o8 ool 220200y

Omax 1 max AOmax
1

20ty 00,00 201 Jeco 1 0 ]

Apply Cauchy-Schwarz inequality to terms numbered as 1 in the above equation,

2 2
ZZ 00 I Gl 2> 0% 3, 00|
pre-multiply (sa3¢;" 4, +4yand  add —=—————, take gy =L 2
2-a g0 @2-a g0
3A b2(5 bl G +4), P — oA (Sa(ﬁTgB + 4) Yii :2b12(5a p +4) d
+ omax 0 azp3 ¢3+4), A Omax 373 ¥3 ) 2 3P3 P3 ) an

By =28y by (5aggy 95 +4), Will yield (9).

Proof of Theorem 1: Consider a Lyapunov candidate as

T 1 T - 1 ~T - 1 ~T ~
V =e (kek)+—tr[e, (ke (k)] +-—tr[o, (K)o, k)] +-—tr[6, (k)6,(k)]
oy a, a3

whose first difference is given by

T T 1 -T - -T -
AV =€ (k+Dek+1)—e (k)ek) +—tr[4, (k+1d (k+1) -4, (k)G k)]

AV, *

AV,
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+ itr[ézT (k +1), (k +1) - éZT (k)é, (k)] + itr[é; (k +1)8, (k +1) - 4, (k)0, (k)] (A1)
0!2 a,
AV, AV,

Substitute (8) in AV; of (A.1) and perform some mathematical manipulations to yield

T T, T

e (K)A, (6, B, -C

AV, =€ (A Age(k) +2€" (K)A ¥y (k) + 28" () Ay ¥, (K) + 26" (KA £(k) -2 T(A )AOA(T3 v + ] (¥, (k)
By 6, (K)6; (K)B, + ¢,y

T T T T
¥! (k)(@. B, -C 2w, (k)(6, B, —C
_ f( )(AT3 v =) + 2w (k)7 (K) + 2, (K)E(K) + ¥ (), (K) — TAZ( )ET3 v = Cy)
6,()6; (K)By +¢,, By 6,(K)4, (K)B, +C,,

2¢' (K)O. B, -C 0B, -C,) (0.8, -C
- TEA ()(j v | GB mC) (OB VZ)+2‘P;(k)g(k)+gT(k)g(k)—eT(k)e(k) (A.2)
T A AT
By 03(K)0 ()By +Cry (B, 6, (k)5 (K)By +Cpy )

Substituting (10) inav, of (A.1) and performing some mathematical manipulations to

render

1 a,¢; (K)p,(K))
(2-ayp) (K)9,(K))

: Y a2 O
w, < —(2- ] (06,0067 (K0, (k) - o e (90O
2-o ||¢1(k)” )

T A
(6, ¢, (k) + B

2
A _Nlecall Ky +2Aomax lecoll <o, o
2 - a9, ()@, (k) 2 -, 9] ()@, (k)

(A3)

Substituting (11) in av, of (A.1) and after performing mathematical manipulations to arrive

at
L _— A-a,p, (K)o, (k A e, w0
AV, < (2= e,y (), (K)) |16, (K), (K) - 2%( )(liz( ) x(62T¢2(k)+Bone(k))H % ”(p I
(2- a9, (K)¢, (K)) 2-a,|¢,0|)
2 2 2
A el ;24 fewllx,e, 0,
+ (A.4)

2-a,p; (K9, (K) (2=, (K), (K))

Substituting (12) inav, of (A.1) and performing some mathematical manipulation would
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result in the following equation
AV, < —2¢' (k)/{wl(k) - 2\{JI (K)Wq (k) — ZWI ()W, (k) — 2\1{ (k)& (k)

T T
¥, (k)(6, B, -C,)

~TA T T AT A T
— + 50305 9,8 (K)Ay Age(K) +Bagpy p3W (k)W (K)
B, 6, (k) (K)B, +c,,

T T T
AT T a0 T T, (638, -Cy) (638, -C
+Bagpy P35 (K)Wy (K) + 5040, P ()E(K) + Sa,p, ¢y

V (A5)

. R 2
(8] 6,006, (B, +C,,)
Since AV = AV, +Av, + AV, +Av,, combining (A.2)-(A.5), and performing some mathemati-
cal manipulations, the first difference of the Lyapunov candidate is expressed as

T T
(6,8,-C,) (6;,B,-C,)

AV < 4e" (K)Ag Ag(k) + 4wy (K)¥y (K) + 4 ——— >+ ae (K)e(k) — 1 ()P () — €' (Ke(k)
" (By4;(K)&; (K)B, +cp )
3

A ()¢, (k)
(2- ] (), (K))

- 2
—(2-ad] (07,00 | (), (k) - ] 310 + ByAge(v)|

2 2
o 1) Ae e &7 +A§max lecoll” 7

C-alawl) C-alo®l) @-ale®@l)

o ol

@-a om0

2

1-a,p; (), (k)

T A
- - x(8, @, (K) + By Aje(k))
@-a,py (K, (k)

(2-a,p, (K3, () [|6; (K), (K) -

max max

@-a,lle,0])  @-a,lle, ) @-a, e, @) @-a,]é,®])

o o, ) A eco]® 7 ) A edol” 7 o I, (0|

+5a,0 pe' (K)A) Age(K) + 5,y p, W1 ()W (K) + 5, @l @, %5 ()W, (K) +5a,0] " (k) (K)
1

T T, T
AT A (93 Bv_cv) (@ BV_C\/)

+ 50,05 95 B - > (A.6)
(By4,(K)6; (K)By +cpy )
2

Consider only terms numbered as ‘1’ in (A.6) as
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~T T ~T
T, T, 4, (K)B, - C 6! (K)B, —C
(4 + 52,0, gos)w; (K)¥, (k) = (4+ 5505 93) | —— & ——— x| = 3 ——
B 4, (K)é: (K)B, + ¢, B! 6, (k)4} (K)B, +c,,

< 2(4+ 50,05 43)(By 6, ()G, (K)B, +C, C,) (A7)
Next, consider only terms numbered as ‘2’ in (18), to render

(0;- BV — CV)T (9;- BV B CV)
(B]6,(K)6] (K)B, +¢,, )’

AT A
(4 +5a,04 ¢3)

~ T T T T T
< (4+5a,05 §3)(B, 0,0, B, —2B,0,C, +C,C,) (A.8)

Use the modifications suggested in (A.7), (A.8), and Lemma 1 in (A.6), the first differ-

ence can be rewritten as

AV < e’ (K)A) Age(k) — ¥, (K)¥, (k) —e' (K)e(k)

2 2 2
AT 2 2 lecol|” «
(-0 (K)g, (k) x(engal(kHBlee(k)) + Mo 21

& (1)

(2 @] (), (k) (2-a

~(2-a,9, (K¢, (k) [6] (K)p, (k) -

(1-a,p, ()9, (k)
(2-a,9, ()9, (k)

~ 2
—(2= a9, (), ()16, (K), (k) - %(6, , (k) + B, Aoe(k»H

2
2A§max ”e(k)” KZZ AT A T 00T T

+ - S+ Say 3 Pa¥q (K)Wq(K) + 5050, 9.8 (K)A) Age(k)
@-a,llg, ()

12(4 + 5,5 45)(By 6, (K)G, (K)By +Cy C,)
+(4+5a,p, ¢,)(By 0,05 B, — 2B, 6,C, +C, C,)

2 - 2 -
8o + B llell” + 5, |6, )¢, (|| + 5, lecollle (0,

Take B = \/2@3 ®

- and apply Frobenius norm, we have
»\/(8+10a3|I¢3<k)II )
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L -a,¢, (K)¢,(K))
2 - a4, (), (K)

6, (), (k) -

3
AV < (14A§max —ijmax ——ﬁljlle(k)llz ~(2- a6, (K)¢,(K)
2

(- a,p; k)9, (k)
(2-a,9, (), (k)

2 - 2
(6] 100 + B — (2= ] (006,00 0] (K, (K) - (6] 6, () + B, Ae(K)

(- 5agllgs 0N -y 5, - 5)]|5 05 0|

2 2

R 22 R 2. 2
+2(4 + 5ay [ o5 (k)| )Cy,  * Fo + (4+5a, llo, coll )8, 05 —2B, 0

)

+C
min  Ymin Vimax

2
2

2K 2 2 2 AT
B [ +3C +(B, (4+5a.0, ¢.))
2 V, 3 0 3% 73
+ 50, (/33(k)H . Takec, - —mex—mex , then
2B

i=1
@-a a0 ’

where y =

min  3min

first difference of the Lyapunov function is given by

AV <-l1-an  —yA A 5 5 G +4) ||e(k)||2
=70 Momax 7 Momax Omax “3%3 73

(1-a,9] (K)§,(K))
(2- a9 (K)j,(K))

~(2- 2, (06, (KD [[6] (K)p, (k) — (6] 6,() + BAR(K)|

(1_ az(t&; (k)é)z (k))

~(2-a,f; ()6, () |16, (), (k) - D
T o e g, ()

(0] ¢,()+ B,Ae(K)|

(- 53 g, (WI° - oy —fﬂz)llég(k)qb?,(k)ll2 (A.9)

The first difference, AV < 0in (A.9), which shows stability in the sense of Lyapu-

nov provided the gains are selected as

3

1 L 3

A, < - ) Oy =;2, and — 5, <1.Hencee(),d,(k), 6,(k), anda (k)
max 4+y+3(5a,p, ¢, +4) 1+5lp, (0l 2

are bounded, provided e(,),4,,), 4,(k,), anda k,) are bounded. Additionally summing
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iAV(k)

k=0

both sides of the equation (A.9), and since av <o, we have

= v () -v(0)| < 0. Taking

limits on both sides of this equation, and using Lin and Narendra (1980), it can be con-

cluded that the residual [le(x)|| - 0 ask - «.

Proof of Theorem 2: Consider the following Lyapunov candidate function

3
1 1 - -
3= ——ef (ep (k) + > ——tr[vi,| (kWi (k)]
577gmax i=1 ami

whose first difference is given by

1 1
Al = 52—[etT (k + 1€ (k +1) — etT (k)& (k):| + —tr[\/\71T (k +Dw, (k +1) —WlT (kK)w, (k)]
ﬂgmax aml
A AJ,

T ) . 1 ) .
+ [V, (k+ DV (k +2) — W, (KW, (k)] + ——tr[viy (k + v (k +1) -V, (k)i ()] (A.10)
amz am3

INE A,

Substitute tracking error dynamics (18) in AJ; of (A.10), we have

- T
(Ws Bm_cmt) )i| %

1
NS 2—{[779(x(k))(let(k)+\I’1mt(k)+gmt(k)—‘{12mt(k)+ —
B, W, (K)W, (K)B, +¢,

Gmax

:
W, B, —Cpy)
{%(x(k»(let(k)+~v1mt(k)+emt(k>—w2mt(k)+ — T )}—e{ (k)et(k)}
B, W, (KW, (k)B, +cC,

Apply Cauchy-Schwarz to the first term in the above equation, and then we have

T
Imt

a3y < [(ef (Ot (k) + W ()W, (K) + e (K)o, () + Fh (KW, (K) +

T T T
T (\NS Bm _Cmt) (WB Bm Cmt)):|

(BoVi, (W, (K)B,, +c, )2
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1 7
- =5 e (K)ep (k) (A.11)
g0

Substitute (20) inaJ,of (A.10) and perform some mathematical manipulation to yield

(1= atp G, (0, (K) e om0

+ 2
(2= am i, 00

8, < ~(2= agy G (Vi (D |V ()G (K) - X Gy () + By leg (k)

(2= ctyy, P, ()P, (K))

o lec QI 2, 2l e 00, [
+

a - (A12)
(2=t Gy (V0 (K (2=t Gy (KN, (K))

Substitute (21) in AJ; of (A.10) and perform some mathematical manipulation to arrive at

2 . 2
Wi o, ]

A=, G, K)o, (K) X
2, o, 0]

— - x(W, ¢3m2 (k) + By, leg (k)
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Substitute (22) in s, of (A.10) to render
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Expand the terms in the above equation, we have
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Substitute the tracking error dynamics in the above equation and solve further to yield
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where y; >0, Vi=1234 is a constant. Since AJ =AJ, +AJ, +AJ, +AJ,, combining

(A.11)-(A.14), the first difference of the Lyapunov candidate is expressed as
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Consider only terms numbered as 1 in (A.15), we have
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Next, consider only terms numbered as 2 in (A.15), we have
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Use (A.16), (A.17), and Lemma 2 in (A.15), then the first difference of the Lyapunov

function can be rewritten as
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From (A.18), AJ < 0, which shows stability in the sense of Lyapunov provided the

gains are selected as
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Hencee, k), w, (k) ,w, (k) andw, (k) are bounded, provided e (k,) ,w(k,), W,(k,)andw(k,) are

bounded. Additionally summing both sides of the equation (A.18), and usingas <o, we

iAJ(k)

k=0

have =|9(=) - 3(0)| < 0. Taking limits and using Lin and Narendra (1980), it can be

shown that the residual e, (k)| -0 ask —»o.
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6. A Novel Fault Detection and Prediction Scheme in
Discrete-time Using a Nonlinear Observer and Artificial
Immune System as an Online Approximator

Gary R. Halligan, Balaje T. Thumati, and S. Jagannathan

Abstract—In this paper, an observer-based fault detection and prediction (FDP) scheme
using artificial immune system (AIS) as an online approximator is introduced for a class of
nonlinear discrete-time systems. Traditionally, AIS was considered as an offline tool for
fault detection in an ad hoc manner. However, in this paper, the AIS utilized as an online
approximator in discrete-time (OLAD) is considered while its parameters are tuned online.
A nonlinear observer comprising of the AlIS and a robust adaptive term is used for detecting
faults in the given nonlinear system. A fault is detected by comparing the residual against
apriori chosen threshold, which is obtained by comparing the output of the nonlinear
estimator to that of the given system. Upon detection, the AIS and the robust adaptive term
are initiated in the observer, where the AIS parameters are tuned online using a suitable
update law for learning the unknown fault dynamics. Additionally, this update law is used
to estimate the time-to-failure (TTF), which is considered as a first step for prognostics On
the other hand, the robust term, which is a function of the AIS parameter vector, is used to
deliver asymptotic convergence of the residual unlike bounded stability in other schemes.
The performance of the proposed FDP scheme is first demonstrated on a two-link robot
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arm and an axial piston pump in simulation and subsequently on an axial piston pump test
bed.

l. Introduction

Modern engineering systems require early fault detection and warning system to
render safe and reliable service. Therefore, numerous efforts have been under taken in
addressing the problem of fault detection and prediction (FDP). Due to the presence of
noise and system uncertainties, the problem of fault detection (FD) is complex thus
requiring robustness. The commonly used FD methods include quantitative or model-based
[1] and qualitative or data-driven based techniques [2]. The qualitative based techniques
are found to be expensive [1] due to the need for large quantities of data and are dependent
upon region of operation. However, quantitative methods require a suitable representation
of the nonlinear discrete-time systems. Typically, an observer is utilized to represent the
nonlinear system.

In the past literature, FD efforts are limited to linear systems [1-5], by using a
sliding mode observer [3], geometric approach [4], and parity relations [2] etc. Typically,
in the observer based approach, a residual is generated by comparing the observer output
with that of the actual system. Moreover, a fault is detected by comparing the generated
residual against apriori chosen threshold. However, selection of the threshold is a
challenging task due to the presence of uncertainties, but an analytical procedure has been
developed to identify thresholds [5] analytically.

In the recent years, with better understanding of nonlinear control system theory,

the techniques proposed for linear systems have been extended to nonlinear systems. Such
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schemes include the sliding mode observers [6], geometric approach [7], adaptive and
diagonal observers [5, 8, 9] and so on. A recent survey on the various FD schemes for
nonlinear systems can be found in [10]. Another aspect that is of interest to the FD
community is the stability and the robustness of the FD schemes. Recently, various FD
schemes [5- 9] have been proven to be stable. However, most of the developments are in
continuous-time and not much has been accomplished in the discrete-time.

Another important feature in general unavailable in the previously reported
schemes [3-9] is the time-to-failure determination (TTF) since TTF is the first step for
prognostics assessment. Some TTF schemes like the data-driven approaches [11-13],
assumed a specific degradation model which has been found to be limited to the system or
material type under consideration. Another scheme [14] employs a deterministic
polynomial and a probabilistic method for prognosis by assuming that certain parameters
are affected by the fault while others [15] use a black box approach using neural network
(NN) on the failure data. All these schemes [11-15] while being data-driven address only
TTF prediction, require offline training and do not offer performance guarantees.
Therefore, it is envisioned that a unified FDP scheme will be necessary to alert an

impending failure and provide the remaining useful life.

Discrete-time development is important due to the stability problems incurred in
the direct conversion of the continuous time FD schemes to discrete-time [16]. Recent
developments in discrete-time include [16, 17], where a FD scheme is introduced by using
the persistent of excitation (PE) condition. Since it is very difficult to verify or guarantee
PE, in our previous work [18], a FD scheme using linearly parameterized online

approximators is introduced by relaxing the PE requirement. However, bounded stability of
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all the signals is demonstrated similar to the case of fault detection algorithms in
continuous-time.

In contrast, in this paper a FDP scheme for nonlinear discrete-time systems with
guarantees of asymptotic stability is introduced by using an observer. To best of our
knowledge not many FDP schemes in discrete-time render asymptotic stability. However,
in [19], asymptotic stability of a continuous time FD scheme for robotic systems with
specific actuator faults is undertaken. The FD scheme proposed in this paper comprises of a
nonlinear observer, which is used for detecting faults in the given system. Additionally, the
nonlinear observer comprises of an online approximator in discrete-time (OLAD) and a
robust adaptive term generated by the OLAD parameter vector. The OLAD and the robust
adaptive term are initiated only after the detection of a fault. Moreover, a fault is detected
by comparing the generated residual against apriori chosen threshold. The residual is
generated by comparing the outputs of the nonlinear system with that of the observer. By
using a suitable update law, the parameters of the OLAD are tuned online to learn the
unknown fault dynamics. Additionally, the robust adaptive term is used to guarantee the
asymptotic convergence of the residual and the parameter estimation errors after the
occurrence of the fault and in the presence of the uncertainties.

Most of the previously proposed FD scheme [5, 9, 16-18] uses neural networks or
fuzzy systems as online approximators. However, in this paper, we use an artificial immune
system (AIS) as the OLAD since biological immune systems detect external virus and
protect the human body. Conventionally, AIS has been considered as an offline tool for
applications such as classification, pattern recognition and detection. Additionally, offline

data based training schemes are proposed to obtain AIS [20-30] parameters. However, in
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this paper a new online adaptive law is introduced for tuning the AIS parameter vector
online while demonstrating that the AIS is an online approximator.

In general, AIS draws inspiration from the biological immune system. In the event
of a disease causing antigen (such as virus, bacteria etc.) attacking the human body, the
immune system detects the foreign bodies and responds to the antigen by releasing suitable
antibodies. Based on the affinity between the released antibody and the antigen, the disease
causing antigen is destroyed. Moreover, the immune system memorizes the type of
antibodies utilized to kill the antigen, so that in future attacks it ensures a quick release of
antibody to overcome the antigen. The inherent advantage of the immune system in
detecting anomalies makes it as a natural candidate for system identification [21], FD
[25-29] and control [30] when compared to neural networks (NNs) which are derived from
neurological system.

However, existing AlS-based methods [22, 25-30] are data driven, ad hoc and
require extensive offline training to tune the AIS parameter vector. Therefore, in this paper,
AIS is used as an OLAD, which is a part of the nonlinear FD observer. Moreover, the AIS
parameter vector is tuned online without any apriori offline training. Moreover,
mathematically, the asymptotic convergence of the residual and the parameter estimation
errors of the FD scheme after the occurrence of the fault is shown by using Lyapunov
analysis.

Using the parameter update, mathematically a method is proposed to derive the
TTF by projecting the current value of the parameter to its limit provided the limiting
parameter value is defined by the designer. This process is iteratively performed to

continuously predict TTF up to the failure threshold beyond which the system is considered
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unsafe. For most practical systems, the unknown parameters could be tied to physical
entities thus making the parameter-based TTF determination very useful. Alternatively, the
state trajectories from the FD estimator can be utilized for TTF determination due to
asymptotic convergence. Finally, simulation examples and experimental results are
presented to show the performance of the proposed FDP scheme.

The important contribution of this paper is the asymptotic stability of the FD
scheme for nonlinear discrete time systems using the robust adaptive term and the AIS as
an OLAD. Addition of the robust adaptive term complicates the stability analysis whereas
the Lyapunov proof is still offered. In addition, the time to failure determination is
introduced by using the AIS parameter vector. Finally, the online fault detection and
prediction is verified on an experimental test bed.

This paper is organized as follows: Section Il provides background on the AlS.
Section 111 introduces the system under investigation whereas Section IV explains the FD
scheme and the stability analysis. Section V introduces the prediction scheme whereas
Section VI provides simulation results and Section V1l explains the experimental results. In

Section VIII conclusions and future work are given.

Il. Artificial Immune System as Function Approximators

In biological organisms, the function of the immune system is to protect the body
from invasion by foreign objects, called antigens. This is done by lymphocytes, which
comprises of the two main types of white blood cells: T-cells and B-cells. There are two
classes of T-cells: killer T-cells and helper T-cells. When an infection is detected, the killer

T-cells destroys the infected cells whereas the helper T-cells assist in engulfing and
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destroying the invading pathogens. In addition, the helper T-cells stimulates B-cells to
produce clones of antibodies to attack the pathogen. The B-cells fine tunes the antibodies
to increase their affinities to the antigen being encountered. The higher the affinity is, the
stronger the immune response will be. Additionally, more antibodies will be released to
mitigate the antigen. Antibodies with highest affinity are retained while a feedback is
provided to the T-cells to store in memory the type of antibody required for a particular
antigen. This would help in mitigating future attacks by the similar antigen. Interested
readers for further reading could refer to [20].

Based on this understanding, a recent work on AIS can be found in [21, 23] wherein
the AIS is utilized to solve engineering problems. For instance, in [24], AIS is used for
identification of nonlinear systems. In this method, an offline data based training scheme is
proposed for the nonlinear system identification. However, an interesting contribution is
the definition of a mathematical equation to describe the function of the AIS for system
identification

i=1

z e—ﬁidij

i=1

wherei=1,...,N is the number of antibodies, j-1,..,n,is the number of data sets, m;; is the

ij" affinity function, fjis the shape parameter, a is the appropriate immune response,

djj = ij—pi H is the Euclidean distance between the j" antigen epitope vector (xj) and the

i" antibody receptor vector Pj -
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For engineering problems, the artificial immune response considers the unknown
data as antigen, and the output is the net response of all the antibodies (i.e., output of
equation (1)). Therefore, by calculating the error between the estimated and the actual
value, the parameters of the AIS function are updated. However, the AIS training is an
iterative process and is performed offline. Therefore, in this paper, a new online tuning
mechanism is proposed to tune the parameters of the AIS online by using adaptive control
techniques. Moreover, we use the same mathematical equation as that given in [24] to
describe the function of the AIS and exploit the function approximation property.

To guarantee that the AIS scheme could be utilized for approximating any unknown
function over the compact set, in the following theorem we show that indeed an AIS
possesses function approximation properties. This enables AIS to be an OLAD similar to
an artificial neural network, fuzzy logic and other online approximators. However, AlS is
preferred for FD due to its natural affinity of detecting and preventing antigen attacks when
compared to other online approximators.

Theorem 1: For every continuous smooth function f , every AIS basis functiony, every

probability measure o, and every n, >1, there exists a linear combination of AIS

functions f, (x), such that

;( f(x)— fa(x))z o< (2:)2 2)

a

wherec >0, Bis a compact set, and n, is the number of antibodies or the size of the AIS

function.

Proof: Follow steps similar to [31].
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As shown in this theorem, the use of AIS in approximating unknown functions is

valid. Therefore, similar to neural networks, the unknown function ( f(x)) and the
estimate of AIS could be written as

F(X) =a p(x)+e(k),

L) =3 (e, f, eR™ (3)
where @ € ™" is the unknown ideal immune response, £(k)is the approximation error
and bounded by a known constant, i.e., Hs(k)HSSa . Also, a(k)e %" is a matrix of

estimated immune response, o(x) < %'is the basis function which is given by

T

e A% e A
p(x) = T . v
Z ﬁ|d|J Ze_ﬂidlj
i=1 i=1
where g, Vi=1..11is a positive randomly chosen shape parameter, d; = |x—pj|, where
x e ®"™is the input to the AIS basis function, p; e ®™ vi=1..1is a randomly chosen

constant vector.
With this understanding on AlS, we next proceed with the discussion on the system

under investigation.

I11. Problem Statement

Consider the following general class of nonlinear discrete-time systems described
by
x(k +1) = o(x(k), u(k)) +7(x(k), u(k)) + h(x(k), u(k)) 4)

where x e R" is the system state vector, ue®™ is the control input vector, o:R"xR™ > %",
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7R xR 5>R", R =xR" >R" are smooth vector fields. The term w(x(k),u(k))
represents the known nonlinear system dynamics while n(x(k),u(k)) is the system
uncertainty. The unknown fault function h(x(k), u(k)) = ri(k - k,) f (x(k), u(k)) with f (x(k), u(k))
representing the unknown fault dynamics while ri(k—k,) being a nxn square matrix
function representing the time profiles of faults, and i > is the initial time.

Typically, the  time profile of the faults are modeled by
Ti(k —ky) = diag (e, (k —k,), Q, (k —kg), .. @ (k —Kj))

where

0, ifr<o
Q. (1) = - fori=12,..n
| 1-e"ifr=0 ©

and z; >0 is an unknown constant that represents the rate at which the fault in the
corresponding state x, occurs. The term;(r) approaches a step function when; is large,
which in turn represents an abrupt fault whereas a small value of &, implies incipient faults.

It is important to understand that the exponential time profile is only used to classify the
faults as incipient or abrupt. However, f(x(k),u(k))represents the magnitude and the type
of the fault. Since the fault function is expressed as a nonlinear function of the system states
and the inputs, therefore, it represents a wide range of faults that can potentially occur in a
given system. For example, such faults could be a piston wear in a compressor or an
actuator fault.

Remark 1: The known nominal dynamics in (4) is in nonaffine form. However, for affine

systems, the known nominal dynamics could be written
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85 w(x(k),u(k) = g (x(K)) + o5 ((KNu() , Where, of & ®"™ and og € R are known smooth

functions. However, the system uncertainty and the faults still be expressed in nonaffine
form and are functions of the system states and the input. It is important to note that the
following discussion for nonaffine systems is also applicable to affine systems.
Remark 2: Modeling faults using the above time profile is quite common in the FD
literature [32], and is used extensively by researchers [5, 9, 16-18].

Before proceeding any further, we propose the following assumption.
Assumption 1: The modeling uncertainty is unstructured and bounded [5, 9, 16-18] above

satisfying ||n(xk), u)||<m,, Y(x,u) e (zxU) Where 5, >0 is a known constant.

Remark 3: The uncertainties have to be bounded above in order to identify faults from
system uncertainties.

In certain previously reported FD schemes [3, 8], the system uncertainty is assumed
to structured, which helps to simplify the development of the FD scheme. In other schemes
[1-3], structured faults are assumed, which also simplifies the development of the FD
scheme. However, such assumptions are not considered in this paper.

In this paper, we consider a general framework for nonlinear systems with
unknown system uncertainty. However, this complicates the design of a FD scheme, but is
still undertaken in this paper. In the next section, the fault detection scheme is introduced
by using a novel nonlinear observer using AIS as the online approximator. Additionally,

using Lyapunov theory, the asymptotic performance of the proposed FD scheme is shown.



254

1V. Fault Detection Scheme

In this FD scheme, a nonlinear observer is designed to monitor and detect faults in
the given system described in (4). It is essential to understand that the purpose of the FD
observer is not to estimate the system states [16, 17] whereas to obtain residual for the

purpose of detection.

A. Observer Dynamics
Consider the nonlinear observer described by
R(k +1) = AR(K) + @(x(K), u(k)) + h(x(k), u(k); O(K)) — Ax(K) +V(K) (6)

where % %" is the estimated state vector, a, is a constant nxn design matrix chosen by

the user, h: %" xR" xR — R"is the online approximator in discrete-time (OLAD) [18],
6 <x™" is a set of adjustable immune system parameters, and v(k)is the robust adaptive
term, which is to be defined later. Prior to the fault, the initial values for the estimated
model (6) are taken as x(0)=x(0), é(0)=4,, SO that n(x,u,4,)=0 for all xe y and ueU .
Typically, the commonly used OLAD’s are neural networks, fuzzy systems etc. However,
in this paper, we consider AIS as an OLAD. Therefore, the AIS based OLAD is defined by

using (3) as
h(z,0) = 6" (K)p(2) (7
where z =[x,u]is the input vector, 6(k) e®""is a tunable immune system response,

and ¢(z) is the AIS basis function as defined in (3).

Remark 4: Upon the detection of the fault, the OLAD and the robust adaptive term are

initiated.
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Now define the detection residual or state estimation error ase = X — X . Then from
(4) and (6) prior to the fault the residual dynamics are given by
e(k +1) = Aye(k) +7(x(k), u(k)) (8)
In order to detect faults in the given system, the residual is compared against a known
threshold via a dead-zone operator. The selection of the threshold is a challenging task;
however a mathematical procedure is developed for selecting it by using (8). It is important
to note that by using a threshold, the robustness of the fault detection scheme can be
improved [1, 2, 5, 16-18].

Prior to the fault, the residual, e(k) , remains within the threshold. However, in the
event of a fault, the residual increases and crosses the threshold and therefore a fault is

declared active. We define the threshold operator as D[]

0, if Je)|<p

9
e(k),if [le(k)]| > o ©)

Dle(k)] = {

where p >0 is the threshold. The selection of the dead-zone size » clearly provides a
tradeoff between reducing the possibility of false alarms (robustness) and improving the

sensitivity of the faults. The selection of an appropriate value for o is addressed next.

B. Fault Detection Threshold Selection

A suitable threshold is selected by solving the residual dynamics (8) through

k-1 i
standard linear control theory ase(k) = > A 1y(x(),u(k)) . Since the matrix A, is stable
j=0

with its poles chosen inside the unit disc, there exists two positive constants x and s, such

k
that the Frobenius norm [33] HA&H < ,Bc,uk <1. Therefore, |e)| < pn,, A-47) \where g = Bl
1
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This implies that the threshold can be selected as a constant V&|U€p=% or a
—u
k
time-varying function as , = @1 Asa consequence, the residual e(k) remains within
A=)

the threshold for all k > k,and the OLAD and the robust adaptive terms stay at zero.

The dead-zone operator is utilized to turn the OLAD and robust adaptive terms

0. ..0
online. Prior to the fault, i.e., |e)|<p ,

o) =|
v(k) =[o0,0,..., 0]T . This means h(x(k), u(k); 6(k)) = [0,0, ..., 0]T , inthe time interval 0<k <T

prior to a state or output fault.

When the residual exceeds the detection threshold, i.e.,|le(k)|| > o , a fault is declared

active and the OLAD schemes that generate, h() is initiated. A standard delta-based
parameter tuning algorithm [34] can be utilized whereas it is slower in convergence. To

overcome this problem, the following parameter update law is used

Ok +1) = 6(k) + ap(0DIe’ (k+ 1]~ 7|1 = apre” (0| 600 (10)
is proposed where « > 0is the learning rate, y > ois the adaptation rate, and ¢(k) is the
OLAD basis function. Now using Theorem 1 and equation (3), we rewrite the fault
dynamics in (4) as

h(x(k), u(k)) = 6" p(x(k), u(k)) + &, (k) (11)
where 0 < %" is the target parameter matrix such that the approximation error & (k) is

bounded above and ¢(x(k),u(k))is the known basis function of the AIS. By appropriate
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selection of the antibodies in the AIS scheme, the approximation error can be decreased.
The output of the OLAD is given by
h(x(k), u(k); B(k)) = A(k)" p(x(k), u(k)) (12)
where 6() < %" is the estimated AIS parameter matrix.

With this understanding of the proposed observer design, the stability of the

proposed fault detection scheme will be studied next. By using (4) and (6), the residual

dynamics after the fault is given by
e(k +1) = Aje(k) + 7(x(k), u(k)) + h(x(k), u(k)) = h(x(k), u(k); O(k)) —v(k)

6" ()8,

where the robust adaptive term is defined asv(k)=— ,with B, en™ s a

A AT
B, O(k)0 (K)B, +C,

1

constant vector and C. > 0 a constant. Next using (11) and (12), the residual dynamics is

rewritten as

6" ()8,

e(k +1) = Aje(k) + 6" (K)p(x,u) — + (k) (13)

B 6(k)0' (K)B, +C,

1

where (k) = & (k) + n(x(k),u(k)) with the parameter estimation error defined as d(k) = 6 - o(k) .

.
(0 Bl—Cl)

TA AT
B, (k)" (k)B, +Cg

Next, add and subtract , in (13), where C; 2" is a constant vector.

The residual dynamics become

(¢8,-¢,)

TaA AT
B, 6(k)8' (K)B, +C,

ek +1) = Aje(k) + ¥, (k) + W, (k) + & (k) - (14)
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(6" w8, -c,)
B, O(k)0" (k)B, +C,

where lPl(k)ze~T (K)e(x,u) and ¥, (k) = . Next the following lemma is

needed in order to proceed.

Lemma 1: The term, ), comprising of the approximation error, ¢ (), and the system

uncertainty, 7(x(k), u(k)) are bounded above according to
e (K)e(k) <&y =dy +d, ||é(k)||2 +d, |[eco|[[|oco]| + o, ||e(k)||2 (15)
where d,,d,,d,,and d¢, are computable positive constants.

Proof: Refer to Appendix.
Remark 5: This lemma is necessary similar to the case of continuous-time [38] while such
results are not available for discrete-time systems. This result is very mild [35-38] when
compared to the case where the approximation error is considered bounded above by a
known constant.

Next, the following theorem guarantees the asymptotic stability of the proposed FD
scheme after a fault occurs. Additionally, it is clear that prior to the fault the system remains

stable for a bounded system uncertainty 7(x(k),u(k)) . This is evident from (8) since a, has

eigen values within the unit disc.

Theorem 2 (FD Observer Performance upon Detection): Let the proposed nonlinear
observer in (6) be used to monitor the system given in (4). Let the update law given in (10)
be used for tuning the immune response of the AIS based OLAD. In the presence of a fault

and bounded system uncertainties, the detection residual, e(k) , and the parameter

estimation errors &(k) are locally asymptotically stable provided:



259

(/5)
@ Ay, < Y, 0<a<t (16)
e (4+ 20a(2+1/5)(pmax)
1-4f1-C, T
(b) m <y <1||r - aptro ®| (17)
and
() 0<A3<05,0<5<1 (18)

where [|All< A, ol <, and ¢, >0 s a constant.

Proof: Refer to Appendix.

Remark 6: Theorem 2 guarantees the asymptotic stability of the proposed FD scheme after
a fault occurs. In other words, the proposed OLAD will characterize the faults accurately in
comparison with the detection schemes in continuous-time where a bounded residual is
demonstrated [5, 9].

In the next section, the prediction scheme is introduced.

V. Prediction Scheme

Thus far, a new FD estimator design using the AIS as online approximator was
introduced and its stability was studied rigorously. Now TTF can be determined using the
behavior of the immune system parameter trajectories before and after the occurrence of a
fault. The following assumption holds in deriving the TTF.

Assumption 2: The parameter vector (k) is an estimate of the actual system parameters.
Remark 7: This assumption is satisfied when a system can be expressed as linear in the

unknown parameters (LIP). For example, in a mass damper system, or in civil
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infrastructure such as a bridge, the mass, damping constant and spring constant may be
expressed as linear in the unknown parameters. In the event of a fault, system parameters
change, and tend to reach their limits. When any one of the parameters exceeds its limit,
operation is considered unsafe. TTF is defined as the time elapsed when the first parameter
reaches its limit. The TTF can also be analyzed with lower limits.

In this section, to develop an explicit mathematical equation for predicting TTF, we
use the parameter update law given in (10). Subsequently, by using this equation, we
develop an algorithm for the continuous prediction of TTF iteratively at every time instant.
Alternatively, estimated state trajectories can be employed as well if the states can be
related to physical quantities. Next, the mathematical equation is presented in the following
theorem.

Theorem 3 (Time to Failure): If the system in (4) can be expressed as LIP, the TTF for the

ij™ system parameter at the k™ time instant can be determined using

(V”' ~adg’ ||9i'max —a(ge’ )ij )
(7”' —“¢¢T||9ijo —a (e’ )ij)

fij llog(L— 7 |1 - ags” || " 19)

where kfij isthe TTF, ko, is the time instant when the prediction starts (bearing in mind that
i

kg Was the initial value, which increases incrementally), i is the maximum value of

the system parameter, and %, is the value of the system parameter at the time instant koi' :
]

Proof: Refer to [39].
Remark 8: The mathematical equation (19) presents the TTF for the ij™ system parameter.

In general, for a given system with a parameter vector, the TTF would



261

bek, = min(kfij 2i=12, 0l =1 n,where I xn are the number of system parameters.

The TTF is defined as the time elapsed when the first parameter reaches its limit. The
speed at which the actual parameters approach their target values is dictated by the learning
rate or adaptation gain and the design constant in the parameter update law (10). A small
value for the learning rate implies slower convergence which further means that the TTF is
not as accurate when the learning rate is higher. However, a large value of the learning rate
can speed up the convergence. Increasing the learning rate can cause hunting problems
which will result in inaccurate prediction of TTF.

Remark 9: Although the proposed prediction scheme is based on the parameter trajectory,
estimated system states could also be used for prediction since asymptotic stability is
proven. A relationship similar to (19) can be derived for TTF using (6). However, for
brevity, no further discussions on the use of state trajectories for prediction are included in
this paper.

Remark 10: The proposed prediction scheme could be applied to unknown systems that
satisfy LIP. It could also be applied to systems with partial information that satisfy LIP.

Such systems were addressed in Section Ill.

Figure 1 provides a flow chart of the iterative algorithm to determine TTF (k¢ ) for

each system parameter. The TTF is calculated at each time instant starting when a fault is
detected until the system parameter reaches its maximum value (threshold). Therefore, it is
logical that the TTF decreases as the parameters approach their corresponding limits. The
simulation results presented below will indeed show that the performance of the FDP

scheme as indicated in the theorems can be demonstrated in simulation. By tuning the
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system parameter estimate (éi (k) ) to update the TTF recursively, the system could be more

accurately monitored than would be possible with other methods [13, 14]. In fact, the TTF
will not be accurate when the parameter estimate vector is just started. Over time when the
parameter vector starts converging to its true values, the TTF prediction starts improving.
Additionally, no prior offline training is required to estimate the system parameters, which

significantly reduces the burden of collecting data.

Fault detected, kOj =Ky, (timeof

fault detection)

| P
*‘7 A

Calculate ¢; (Ky.), € (kq.)and &; (k. )at the
i Ko )& Ko, i o,

th .
ko- instant
i

v
Calculate TTF using (19)

v

Calculate k¢ = min(kfj)

Yes ¢

System failed

Figure 1: Flow chart indicating the TTF determination.

In the next section, we present some simulation example and later some

experimental study to illustrate the proposed FDP scheme.
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V1. Simulation Results

In this section, two different simulation examples are presented to demonstrate the
proposed fault detection scheme. Initially, a two link manipulator is considered followed by
an axial piston pump. Subsequently, in the next section, the proposed FDP scheme is

verified on a pump test bed.

A. Two Link Robot Manipulator
A schematic of a two degree of freedom manipulator is shown in Fig. 2 and its

dynamics model is given below [24]

r=M(0)i+V(6,6)+G(0)+F(9) (20)
where o =[g,, 0,]" is the vector of angular positions and & =[6,,6,]" is the vector of angular
velocity of links 1 and 2 respectively. Additionally, m (¢) is the inertia matrix, v (o, 9’)is the
coriolis or centripetal matrix, G(@) is the gravity vector, and F(é) is the friction vector.

Moreover, 7 is a vector of torque input applied to the two link manipulator.

Fig. 2: Schematic of a two link manipulator.
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For convenience, we express (20) in the following discrete-time state space form
X, (k +1) = Tx, (k) + X, (k)

X, (k +1) = TX, (k) + X, (k)

oo S b (i ) )

where x =[x, x,, %, x,]" is the system state vector. We assume an actuator fault, which is

2

7

expressed as h(k) =[0,1.8(1—e*®*““*?)z,(),0,0]" . The fault is induced at the 40" second of

system operation with a growth rate of 0.05. Moreover, we assume the sampling time for
this simulation is taken asT =10msec. Additionally, a white noise is introduced in this
simulation with a magnitude of 0.004 units and a constant uncertainty of 0.5 units. To

monitor and detect faults in the given system, we use the following FD estimator

R, (k +1) =TX, (k) + X, (k) +0.005(X, (k) — X, (k))

X, (k +1) = Tx, (k) + X, (k) +0.005(X, (k) — X, (k))

ol CIERGIECI-CDH )
X, (k +1) X, X || X X Xy %, (k)

where £=[%&,%,%,%] is the estimated state vector, the OLAD is taken as

7, 0.005(X, (k) — X, (k))

(21)

7, 0.005(X, (k) — X, (k)
h(k) =[0,6()7, (k),0,0]" . Next, using (20) and (21), we generate the norm of the residual as

shown in Fig. 3. Since we assumed some disturbances, therefore, we need a threshold to

improve the robustness of the proposed fault detection scheme. The threshold is derived by
taking =103, w =001, andn,, ~05, we have p~o052. As seen in Fig. 3, the residual

remains within the threshold prior to the fault, however, after the fault occurs, the residual

exceeds the threshold. Subsequently, the OLAD and the robust adaptive terms are initiated
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to learn the unknown fault dynamics. This is evidenced by the fact the residual quickly
drops after initiating the OLAD and the robust adaptive term. Additionally, the asymptotic
convergence of the residual after the fault is guaranteed as seen in Fig. 3. Therefore, the

theoretical results presented in this paper are validated.

o
o

3 3 3 3 T

‘/Fault detected

o
o
T

Fault occurs/'

Residual |
Threshold

Residual (rad)
o [=}
N S

o

r r r r r r =
10 20 30 40 50 60 70 80
Time (sec)

o

Fig. 3: Residual and the FD threshold.

Next, the online estimation of the fault magnitude using the proposed OLAD
scheme is shown in Fig. 4. As seen in the figure, the online learning is found to be
satisfactory. The parameter of the OLAD is tuned online using the update law in (9) with
a =0.034and y = 0.1, Using the online estimation of the parameters, we estimate TTF as
shown in Fig. 5. From the figure, it’s evident that the TTF prediction is satisfactory.
However, it is noted that the first few seconds of TTF prediction after the fault detection
didn’t render reliable results therefore, is not presented. This could be attributed to the
random selection in the gains of the weight update law. However, after the 50" second of
the system operation, the TTF prediction seems to be reasonable and converges to the

actual time of failure, which is 79.43 sec.
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Fig. 4: Online estimation of the fault magnitude.
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Fig. 5: The TTF determination due to the incipient actuator fault.

To show that the proposed scheme is generic, next, an axial piston pump example is

considered in simulation.

B. Axial Piston Pump
A discrete-time dynamic representation of the axial piston pump derived in [40] is

given as

% (k+1)= %(Qkpi (k)-Qpi (K)-Qp (k))+ x (k),i=1.,9

o (k1) = (@ (K) Q4 (K)) 140 (K)

y (k) =X, (k) (22)
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where, x (), i=1..,9are the system states. Additionally, [x (k),....., xg (W] is the pressure in
the nine pistons, x,is the pump outlet pressure, B is the bulk modulus of the hydraulic

fluid, T is the sample timing, v, is the theoretical volume of flow, and A, is the piston area.
Moreover, s, Qg1 Qpi» Qi+ ando,are thei® piston stroke length, kinematical flow from

the piston chamber to the discharge chamber, internal leakage from piston to the case
chamber, and the outlet flow of the pump respectively. Additionally, they are obtained

using the following equation

2

wrxd Rp _ .
Qupi (k)= 2 tan f3,.sin(ewk — (i _1)%)

ﬂrhg
Qi (k) :m(xi (K)-F.)

(k) — k .
Qi (k):cmﬂm/wsignm (k) =%, (K)) i =1,..,9

9
Qp (k) =2y ()
=

2%, (K)

Pe

QS (k) = CdZA/

Spi (k) =R, tan S (1—cos(ewk — (i —1)e))
where @ is the angular velocity of the pump drive shaft (rad/s), d is the diameter of the
piston (m), R, is the piston pitch radius on barrel, 4, is the angle of swash plate, ¢ is the

phase delay (rad), r is the radius of piston (m), h, is the radial clearance between piston

and cylinder bore (m), 4 is the absolute fluid viscosity (N sec/m?), Lis the length of

leakage passage (m), Cy, is the flow discharge coefficient of the discharge areas for piston
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port opening to discharge chamber, 2 is the flow density (kg/m%), Ay is the i discharge
area for piston port opening to the discharge chamber in valve plate (m?), C,, is the

discharge coefficient of needle valve orifice, and A, is the orifice area of the needle valve

(m?). The values of the parameters used in this simulation are taken from [40] and we use a
sampling interval of T =10msec. To monitor and detect faults in (22), we use the following

FD estimator

)A(I (k+l):L(Qkp| (k)_Qpl (k)_Q|p| (k))+xl (k)+A0 ()2| (k)_X| (k)) ' i = 11 i 9
C-AS, I
o (1) =@ ()~ () 355 )+ Ay (i (K) =3 () 90) =R () (23)

where, % (k), i=1..,10are the estimated system states. AlSO, A, =10~ diag(0.0630,0.1796,0.8,0.0305,0.1431

0.1683,0.1567,0.1996,0.1172, 0.0001) IS the estimator gain matrix. For this simulation, two different
faults, i.e., piston wear fault and pressure sensor fault are seeded. First, we discuss the
piston wear fault.

B.1) Piston Wear Fault

An incipient piston wear fault described by

h(k)=[0,0,0,0,0,0,0,0,0, 34(1—e’°'°2(k’1°°) )]T

is induced at the 100™ minute of system operation. Additionally, a constant uncertainty of
30 units is considered in the simulation. Next to detect the fault online, we generate norm of

the residual (i.e., [e(k)] =|x, (k) - %, (x)]) from (22) and (23) as shown in Fig. 6. Due to the
presence of system uncertainties, a threshold is needed to guarantee robustness. Therefore,

by taking #=1.15, £ =0.01, and 7, =30, we have p ~ 35, a constant threshold as shown
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in Fig. 6. From the figure, we see that the fault is detected at 105" minute. After the
detection, the OLAD is initiated to learn online the magnitude of the unknown fault
dynamics as shown in Fig. 7. Additionally, parameters of the OLAD are tuned online using
the update law in (9) with « = 0.1and » = 0.001. From the figure, it is observed that the
online learning of the fault by the OLAD is satisfactory.

Subsequently, the TTF is determined using the scheme outlined in Section IV and is
shown in Fig. 8. From the figure, the initial TTF prediction and the oscillatory behavior in
the prediction is attributed to the random selection of the gains. However, as the online
estimation of the fault parameter improves, the TTF prediction improves and concurs with

the actual time of failure, which 251 min.

— o Fault Residual |
2 occu\rs‘ Threshold
= Al Fault detected
C_g 40 N /
S
0 20
Q
[0
0 : : . : .
0 100 200 300 400 500 600
Time (min)

Fig. 6: Residual and the FD threshold- Piston wear fault.
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Fig. 7: Online estimation of the piston wear fault magnitude.
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Fig. 8: The TTF determination due to the piston wear fault.

B.2) Outlet Pressure Sensor Fault

Next, a pressure sensor fault is induced, which may be due to loose wiring.

Mathematically, the fault is described by
0 fork <100 min
hy (k) _ {OA(k —99) for 100<k < 300 min
-1390 for k >= 300 min

For sake of completeness, we assumed a time varying disturbance of 1 unit
magnitude. Therefore, we need a threshold to avoid missed or false alarms. Thus by
taking g =148, £ =001 andn,, =1, we have p~15. The fault is induced at the 100"
minute of system operation. After the fault is initiated, the norm of the residual tends to
increase as observed in Fig. 9. Therefore, the fault is detected when the residual exceeds the
threshold. Subsequently, the OLAD h, (k) = 6(k)p(k) is initiated to learn online the unknown
fault dynamics. Moreover, the OLAD parameter is tuned online using (9)
witha = 0.61and » = 0.001. Although, the fault begins at 100 minutes, the fault tends to
grow and has a sudden increase in the magnitude, which is similar to a step fault. Therefore,
we see that the magnitude of the fault changes to a large value, which increases the residual
to a large value as seen at around 300 minutes in Fig. 9. However, as the OLAD continues

to learn the fault online, eventually the residual converges to zero as seen in the figure.
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Next, the online learning of the fault dynamics by the OLAD is given in Fig. 10 and

it is found to be satisfactory.

20 T T T
) Sensor / Residual
’a\ 5L disconnected Threshold ||
S
® 10- A
5 10 Fault
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O s5f g
o 4 Fault detected
00 100 200 300 400 500 600
Time (min)
Fig. 9: Residual and the FD threshold- Output sensor fault.
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Fig. 10: Evolution of the pressure sensor fault and the OLAD learning.

Till now, we presented two examples in simulation to verify the proposed scheme.
However, in the next section, we verify the proposed FD scheme on an axial piston pump
test bed. Additionally, the two faults, i.e., piston wear and pressure sensor faults are

induced through accelerated testing as detailed below.
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VIl. Experimental Results

The performance of the proposed FDP scheme is evaluated on a pump test bed. In
addition, the two faults assumed in the simulation are used in the experimental study. The
piston wear fault was induced by creating cavitation in the axial piston pump test stand,
which shown in Fig. 11. In addition, the sensor fault was due to the loosing wiring. In the
test stand shown, we have a 10.5cc variable displacement axial piston pump with nine
pistons. On the test stand, the inlet, outlet, and case drain pressures were recorded
continuously at 1 kHz using NI cDAQ 9172 hardware. Additionally, the case drain flow,
outlet flow, reservoir temperature, case drain temperature, and pump temperature were also
recorded.

The estimator model derived in (22) is used again for detecting faults in the pump.
Moreover, from the model given in (22), we could see that only the output pressure is
measurable. Therefore, we use the measured outlet pressure for detecting faults in the
pump. Before using the data, due to the measurement noise, therefore, to attenuate them,
we use a 10" order band-pass pass Butterworth filter with a cut-off frequency of 250 Hz and
300Hz. A snapshot of the raw data and the filtered data for the outlet pressure signal is
shown in Figs. 12 and 13, respectively. As seen in Fig. 13, the raw data is filtered using the
above defined filter and averaged over a one second fixed time window. Subsequently, the

filtered data was used for the verification of the FDP scheme.
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Fig. 11: Picture of the axial piston pump test bed.
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Fig. 12: Raw outlet pressure signal.
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Fig. 13: Processed outlet pressure signal.

Therefore, the FD estimator in (23) is used for monitoring and detecting fault in the

pump test bed. The residual generated by comparing the experimental outlet pressure with
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that of the estimated outlet pressure from the FD estimator is shown in Fig. 14. In this case,
the threshold is obtained by taking g =11, z=0.01andn, ~ 25, we have p~28. As seen
in the figure, the residual remains bounded for the healthy system operation. However, as
the fault occurs due to the accelerated testing, the residual tends to increase and thus

exceeds the threshold. Subsequently, the fault is detected and the OLAD and robust term

are initiated.

[
o

= Fault detected Residual
o0 40r- b
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< 20 i
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2 10f \ .
0
0 100 200 300 400 500 600

Time (min)

Fig. 14: Residual and the FD threshold- Piston wear fault (experimental results).

Moreover, the OLAD is tuned online using (9) with @ =0.2andy =0.03. From
Fig. 15, we could see the satisfactory estimation of the fault magnitude by the OLAD. It is
noted that the fluctuations in the magnitude of the OLAD response were reduced to
demonstrate the learning. Subsequently, using the online estimation of the fault magnitude,
the TTF prediction is determined as shown in Fig. 16. Since the initial online estimation of
the fault magnitude was not accurate and also due the random selection in the gains, the
TTF prediction was not accurate. However, as the learning improved and approached the
actual failure, the TTF prediction was satisfactory. Therefore, in Fig. 16, the TTF

prediction is shown only for the last few minutes before the failure.
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Fig. 15: Online estimation of the piston wear fault magnitude (experimental results).
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Fig. 16: The TTF determination due to the piston wear fault.

In the next case, we assume a pressure sensor fault on the axial piston pump. The
norm of the residual used for detecting the fault is shown in Fig. 17. Here again, the residual
shown is the difference in the estimated and the experimental outlet pressure. Also, the
threshold is obtained by taking # =111, £ = 0.01andp,, =16, we have a constant FD
threshold of p ~18. From the figure, the fault occurs at the 100™ min of operation, where,
the sensor fault is due to the loosening of the connect pin, and has a unique behavior. The
fault grows with time and at around 300 minutes; the connecting pin is detached completely

off the sensor. Therefore, we see a sharp increase in the residual as seen in Fig. 17.

Although, the OLAD and the robust term were activated the first time the residual



276

exceeded the threshold, however, the residual converges to zero only after the second spike

as in the figure.
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Fig. 17: Residual and the FD threshold- Pressure sensor fault (experimental results).

Moreover, the learning of the fault by the OLAD is shown in Fig. 18, and is found to

be highly satisfactory. Similar to the previous case, the OLAD is tuned online using (9)

with a =09andy = ZI.><1079 .
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Fig. 18: Evolution of the pressure sensor fault and the OLAD learning (experimental

results).

600

Therefore, from the simulation and experimental verification, one could see that the

proposed scheme detects and learns both the incipient and abrupt faults online without any
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apriori offline training. Moreover, the experimental results show the feasibility in the
implementing the proposed scheme on an experimental hardware. Therefore, the proposed

FDP scheme renders a stable performance both in simulation and in practice.

VI1IIl. Conclusions

In this paper, an online fault detection scheme using a new online approximator
using AIS is proposed for a class of nonaffine nonlinear discrete-time systems. An
asymptotic estimator is designed to monitor and detect faults in the given system. The
scheme could detect both the abrupt and incipient faults. Mathematical asymptotic stability
results of the proposed fault detection scheme are derived. Moreover, initially two
simulation examples were presented to demonstrate the asymptotic stability and the online
learning capabilities of the proposed AIS based FD estimator. Later, the FD scheme was
verified on an axial-piston pump test bed. From the experimental results, the FD scheme is
found to successful in detecting and learning online both the incipient and abrupt faults.
Therefore, the proposed FD scheme renders asymptotic performance both in simulation

and in experiment.

Appendix

Proof of Lemma 1: Consider (14) and solving it would render

k ~T . T

K N 6 (j)B -C . (‘9 B _C)

o) = Age® + DAy J|:9T(J)<P(J)+ )
j=0 B, 6(j)0 (i)B, +C; B, 0(j)0 (i)B, +C;
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The above equation is rewritten as

k k
D A ety = et - age@ - D Ay 8 (o)
j=0 j=0

—iAfl)(_j (éT(j)Bl_Cl) +iAlg—i (QTBl_Cl)

Toa, AT T . AT .
=0 B, 0())0 (j)Bl+CC =0 B, 6(j)@ (j)Bl+CC

Take the Frobenius norm to render

k

+Z}Ffumn

e

S |

k

~T
k—j 0 ()B;
* ZAO T T

j=0 Bl 9(])9 (])Bl+CC

-
k k—j 981 |
n

i B, 0())0 (i)B, +cc‘

The summation term in the above equation could be solved using [33] as

wmax || @l

ZAO 8" (e(i)|| <

, where A, is the maximum singular value of &, .

max

Additionally, A, <a-A, )ifa_ <i, where s is a positive constant, therefore, we

s !

s [000] _ o 0]

have . Similar result could be derived for the other terms for instance,
(1_ Aomax) Aomax
~T T
0 (k)B, T 0 B . . .
e <0 (KB, —/ <¢ B, The above equation could be rewritten
B, 0(k)é (k)B, + Cc B, (k)& (k)B, +C,
as
Rl oo [0 B [00O] e, o]
+ +

< ”e(k)” + HA(I)(e(O)H +
max A0 max Aormax Aormax

Squaring both side and factoring Aj would give us
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B 2
Jocolf < & {”e(k)n TR L L IIHIIJ
b Aomax AOmﬁX Aomax

Takeb, - HAge(O)H +81LM by =0, + B, then the above equation could be rewritten as

max

Jocol |
k
o [||e<k>||+bo “;%]

max

o

Expand the term on the right hand side of the above equation, we have

200ty 0] 28y e o
P

S~ 112
e(k)H2 il il Hf(k)u

2 2 2
ol <52 [ Aol
Omax

Omax 1 max
1
Apply Cauchy-Schwarz inequality to terms numbered as 1 in the above equation, and

combine similar terms, we would have the following equation

2

" ol + 244, by o] o]

2 2 2
e <3A” bl i2A ”e(k)
” Omax ° Omax

m;

Taking @ =3A, b, 3 —2a; , d, = 2v7  and @, = 27, by, would reveal equation (15).

ax Omax

Proof of Theorem 2: Consider the Lyapunov function candidate

v = €' (k)ek) + itr[éT (K)O(K)]
[04

whose first difference is given by

v = € (k+De(k +1)—€ ()8(K) + 24" (+ DAk +1) -6 (0] (A1)

a
A

AV,

Substitute (14) in av, of (A.1), therefore, we have

@8-C) yr
BJ 6(K)&" (K)B; +C¢

AV, = (Age(k) + ¥ (k) + ¥y () + £(k)
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(0 B, -C)
B, 6(k)8" (K)B, +C,

(Age(K) + ¥, (K) + W, (K) + &(K) - ) —e' (k)e(k)

Perform some mathematical manipulations to render

T T T
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Next substitute the parameter update law (10) in av, of (A.1), to obtain

1 . i .
AV, = —tr{|:(l — 7|l - ap0” || )6(k)—a(p(x(k))e (K +1)

o
ey 1 = atoe G0y | {(. 7|t - aot00” o1 )
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After some mathematical manipulation, the above equation could be rewritten as

AV, = itr{72y||| —ap(k)p' 0|87 ()AK) +7°||1 - ap)p’ (k)||2 8" (K)6(K)
o
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1

Apply Cauchy-Schwarz inequality (2ab <a’+b”) to terms numbered as 1 in the above

equation would reveal
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where s > 0is a constant. Next, substitute the residual dynamics (14) to the term numbered

as 1 in the above equation and apply the Cauchy-Schwarz inequality
(((a,+a,+..+a ) (a +a,+..+a ) <n(aa +aa, +.+aa))) to the same term and perform

some mathematical manipulation to render the following equation

AV, < i [72 @+ 0y |1 - ap®)e (k)6 k)
a

2 T % AT, 5 ST~
1+ 2007 |1 = ap)e” 0| 0" k1K) + 256 (k)e(k):l
+5(2+1/ 5)ap' ¢’ (K)AyAGe(K) +5(2 +1/ S)ag' P¥, (k)P (K)

T T T
(6'B,-C)) (6'B,-C))

2

+5(2+1/ 8)ag pe' (K)e(k) +52+1/5)ap ¢ +5(2 41/ S)ap PV, ()W, (K)

B/ 6(k)6' (K)B, +¢; )

2
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(24

Next, the overall first difference of the Lyapunov function candidate, av = av, +av, , can be

obtained from (A.2) and (A.3) as
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Consider only terms numbered as 1 in (A.4), we have the following equation

BN @ w8 ) (w8, -c)
(1+5(2+1/5)a¢) ¢)xy2(k)xy2(k) = (1+5(2+1/5)a¢ 0
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Next, consider only terms numbered as 2 in (A.4), we have the following equation

T T, T
( T )(9 B, -C)) (¢ B, -C))
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TA AT 2 -
(B 6K)6 (K)B, +cq )
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Consider Lemma 1 and multiply(1+ 5a(2 +1/6)¢>T¢) throughout (14) and using it along with
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(A.5) and (A.6) in (A.4), would render the following equation
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where d, :(1+5a(2 +1/5)¢;T(p)d_0 , d :(1+5a(2+1/5)¢T¢)ch , d, :(1+5a(2+1/5)¢T¢)d_2 , and

d3:(1+5a(2+1/5)¢T¢)d_3. Apply Cauchy-Schwarz inequality (ab<a®+b”*) to the term

numbered as 1 in (A.7), then, take Frobenius norm in the above equation, therefore, the first
difference of the Lyapunov function is given by
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1 2 2 2 3dy
where Om =\~ Ay~ 590max 2 +1/5)AOmax -— and
5 2
2
22+ 0)y 1+28)y 2
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a
2 20 4 2 2 3d2
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2 2
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then, equation (A.8) could be rewritten as
2 - 2
AV <=5, [eF ~0,0, 60K (A.9)

As long as the gains in (16)-(18) are satisfied, therefore, av <oin (A.9), which

shows stability in the sense of Lyapunov. Hence e(k) and 4() are bounded, provided

ife(k,) and 6(k,) are bounded in the compact set S. Hence e(k) and é(k) converges to zero
asymptotically. O
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SECTION

2. CONCLUSIONS AND FUTURE WORK

In this dissertation, online learning techniques are used to develop robust model-
based fault prognostics and accommodation schemes for a class of nonlinear discrete-
time systems. A novel discrete-time estimator design guaranteed fault detection and
isolation. Using the estimator parameters, a stable and reliable parameter based time to
failure (TTF) prediction scheme was introduced. Consequently, by combining the fault
isolation with TTF, prognostics schemes were introduced. In addition, for fault
accommodation, a novel controller reconfiguration design guaranteed asymptotic
performance for a class of nonaffine nonlinear system. The proposed fault prognostics
and accommodation framework is able to detect and diagnose both the commonly
classified incipient and abrupt fault types satisfactorily. Stability was guaranteed in the
presence of system uncertainties, approximation errors and unknown fault dynamics.
Additionally, the robustness and sensitivity of the fault detection scheme were
demonstrated. Further, both a linearly parameterized approximator such as single layer
NN and nonlinearly parameterized approximator such as multi-layer neural network

(MN) were proposed for detection and accommodation.

2.1 CONCLUSIONS

In the first paper, a fault detection and prediction (FDP) scheme was developed
for a class of multivariable nonlinear discrete-time system with state or process faults.
The novel FD estimator design comprises of a robust adaptive term and an online

approximator. After the detection, the unknown fault dynamics was learned online using
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a suitable online approximator and it is observed that the fault learning is satisfactory. In
addition, unlike other FD methods, the proposed update law relaxed the need of
persistency of excitation (PE) condition. Using Lyapunov theory, the residual and the
parameter estimation errors are shown to converge asymptotically. This result was
achieved by using the robust adaptive term in the FD estimator, which is a function of the
parameters of the online approximator. In addition, a TTF scheme using the parameter
update law renders a satisfactory estimation of the remaining useful life. Finally,
simulation results illustrate the satisfactory performance of the proposed FDP scheme.
However, this FDP scheme assumes that all the states are available for measurement.

Therefore, this assumption was relaxed in the second paper. In addition, the
robustness and sensitivity of the FDP scheme proposed was analyzed mathematically
while the parameter update law of the online approximator was modified to take into
account the output signals. Stability results guarantee the asymptotic convergence of the
fault detection residual and parameter estimation errors. The TTF scheme was modified
to consider the output signals and still rendered a satisfactory performance. However,
this FDP scheme addressed only state faults.

Therefore, in the third paper, the FDP scheme was extended to a multi-input-
multi-output (MIMO) nonlinear system with both state and sensor faults. A novel design
of FDP scheme was proposed to successfully characterize both the state and the sensor
faults. In addition, the sensitivity and the robustness were also addressed adequately.
Using Lyapunov theory, asymptotic stability of the closed loop system was achieved by
using the robust term design and making mild assumptions on the system uncertainties

and online approximator reconstruction errors. The stability proof was complicated as the
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residual and the parameter estimation errors of two online approximators were shown to
converge asymptotically. The purpose of the two online approximators was to learn the
state and sensor fault dynamics respectively. Individual TTF schemes for the process and
sensor faults rendered satisfactory performance. Additionally, simulation results
demonstrated the satisfactory performance in detecting and learning state and sensor
faults.

The first three papers discussed only fault detection and not fault isolation (root-
cause analysis). Thus in the fourth paper, a fault isolation scheme for a class of nonlinear
system with state faults was introduced. Different fault conditions were considered, i.e.,
states with multiple faults and more than one fault type could effect the same state. Such
fault conditions were not addressed in the previously reported isolation schemes. Unlike
other schemes using adaptive thresholds for fault isolation, in this approach, a fault is
successfully isolated if the corresponding fault isolation residual converges to zero. Such
results were demonstrated in the presence of system uncertainties. Since fault isolation is
combined with the parameter based TTF scheme, a stable prognostic scheme was
developed.

Using Lyapunov analysis, the scheme is guaranteed to be asymptotically stable in
terms of fault isolation residual and the parameter estimation error. In addition to the
stability analysis, the fault isolability and fault isolation time guaranteed the isolation of
faults in a finite amount of time. The simulation results demonstrated the successful
isolation of the multiple faults in the given system. Additionally, the results rendered a
satisfactory estimation of the remaining useful life when there is more than one fault

parameter affecting the system.
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In the fifth paper, a fault accommodation scheme for a class of nonlinear discrete
time system with unknown state or process fault dynamics was proposed. Both a linearly
and nonlinearly parameterized online approximators were used for designing the
corrective control. In this design, the fault accommodation is achieved by reconfiguring
the controller after the detection of fault. The tracking performance after the fault is
verified through rigorous stability analysis, where the tracking and the parameter
estimation errors converge asymptotically to zero for a linearly parameterized
approximator. However, for a nonlinearly parameterized approximator only boundness of
the parameter is shown while the tracking error still converges to zero. Additionally, the
simulation results verify the theoretical conjectures.

Finally, in the sixth paper, a new artificial immune system (AIS) as an online
approximator was used in the fault detection scheme. Unlike conventional offline based
tuning methods, a new online adaptive parameter update law relaxing PE condition was
proposed to tune AIS. Asymptotic convergence of the fault detection residual and the
AIS parameter estimation error are demonstrated using Lyapunov theory. The proposed
scheme demonstrates asymptotic performance both in simulation and experimentally.
For the experimental results, a Caterpillar axial piston pump hydraulic test bed was used
to demonstrate the satisfactory performance of the online learning and TTF

determination.

2.2 FUTURE WORK
As part of the future work, the fault isolation scheme proposed could be extended

to a nonlinear discrete system with state and sensor faults. This would complicate the
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design and proving stability might be a challenge. In addition, deriving fault isolability
condition and fault isolation time might require rigorous effort. However, the benefit is
relaxing the requirement of all states measurability in using the isolation scheme.
Additionally, this would help in simultaneous isolation of both the state and sensor faults.

Another possibility would be to extend the proposed fault accommodation scheme
to a multivariable system with state and sensor faults. This would require the design of a
suitable strategy for modifying the control law. The design would certainly be
complicated as the control law depends upon the output signals alone. Additionally, the
stability of the fault accommodation scheme using a single layer NN or MNN for such a
class of nonlinear system should be addressed. Finally, the tracking performance by using
the fault accommodation in the presence of both the state and sensor faults has to be
shown.

In the context of AIS as online approximator, at present only one parameter of the
AIS scheme is assumed tunable. However, in the future work the remaining other
parameters could also be tuned. This would render better learning performance, but,
verifying the stability of the parameters update law would be interesting and challenging.
Additionally, with this online tuning capability, other possible application of AIS could
be explored. Such areas could be control of nonlinear systems, system identification etc.
However, deriving stability results for different applications of AIS might be an

interesting area to explore.
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