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ABSTRACT 

Rapid technological advances have led to more and more complex industrial 

systems with significantly higher risk of failures.  Therefore, in this dissertation, a model-

based fault diagnosis and prognosis framework has been developed for fast and reliable 

detection of faults and prediction of failures in nonlinear systems. 

In the first paper, a unified model-based fault diagnosis scheme capable of 

detecting both additive system faults and multiplicative actuator faults, as well as 

approximating the fault dynamics, performing fault type determination and time-to-

failure determination, is designed.  Stability of the observer and online approximator is 

guaranteed via an adaptive update law.  Since outliers can degrade the performance of 

fault diagnostics, the second paper introduces an online neural network (NN) based 

outlier identification and removal scheme which is then combined with a fault detection 

scheme to enhance its performance. Outliers are detected based on the estimation error 

and a novel tuning law prevents the NN weights from being affected by outliers. 

In the third paper, in contrast to papers I and II, fault diagnosis of large-scale 

interconnected systems is investigated. A decentralized fault prognosis scheme is 

developed for such systems by using a network of local fault detectors (LFD) where each 

LFD only requires the local measurements. The online approximators in each LFD learn 

the unknown interconnection functions and the fault dynamics. Derivation of robust 

detection thresholds and detectability conditions are also included.  The fourth paper 

extends the decentralized fault detection from paper III and develops an accommodation 

scheme for nonlinear continuous-time systems. By using both detection and 

accommodation online approximators, the control inputs are adjusted in order to 

minimize the fault effects.  

Finally in the fifth paper, the model-based fault diagnosis of distributed parameter 

systems (DPS) with parabolic PDE representation in continuous-time is discussed where 

a PDE-based observer is designed to perform fault detection as well as estimating the 

unavailable system states. An adaptive online approximator is incorporated in the 

observer to identify unknown fault parameters. Adaptive update law guarantees the 

convergence of estimations and allows determination of remaining useful life.  
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1. INTRODUCTION 

Faults and failures are inevitable in any kind of industrial systems. The risk of 

failure is high with an increase in system complexity. Therefore, reliable fault diagnosis 

and prognosis schemes are required to guarantee the safety of system operation and 

human operators, and to minimize the risk of irreversible damage to components. 

In the past decade, significant advances in theoretical and applied research have 

occurred in the area of fault diagnosis. The fault diagnosis schemes are based on either 

data-driven or model-based. Data-driven methods [1] can be very useful when the 

mathematical model of a linear or nonlinear system is not available. What is common 

among all data-driven methods is the need for data from both healthy and fault operating 

conditions of the system under consideration. Therefore, it is more difficult to design a 

generic data-driven fault diagnosis method applicable to a wide range of systems. 

Moreover, collecting measurements in faulty conditions can be very costly and in some 

cases even impossible.  

In contrast, model-based methods [2] minimize the need for a priori data and can 

perform online, but they require accurate mathematical model of the system. However, 

the two aforementioned classes of fault diagnosis have become closer, as researchers 

have recently been trying to combine both methods, in order to eliminate the 

disadvantages of each method and construct more reliable and functional fault diagnosis 

schemes [3,4].  For instance data, if available, can be utilized to tune the system model 

and also to determine robust fault detection thresholds. In both the cases, fault diagnosis 

is done whereas prognosis is still in its infancy. 

The design of all model-based fault diagnosis schemes starts with development of 

an observer, based on the available system model [5]. Figure 1.1 illustrates the general 

structure of model-based fault detection. The observer provides estimates of system states 

in healthy operating conditions though the system state vector is measured.  A residual 

signal is generated by comparing the measured and estimated system states. As long as 

the system is working under healthy operating conditions, the difference between actual 

and estimated states will be less than a certain threshold, provided the observer is 

designed appropriately. When a fault occurs, the actual system dynamics will be changed, 
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but the observer dynamics remains unaltered. As a result, the actual system states will 

deviate from the estimated states, thus increasing the detection residual. Fault detection is 

performed by comparing the residual with a predefined detection threshold. 

 

 

 

Figure 1.1. Model-based fault detection 

 

 

Although the detection of a fault is the most important step, it is only a first step. 

When a fault is detected, the estimation of fault dynamics, determination of fault type and 

its location become important, since they can facilitate the root cause analysis of faults 

for system maintenance and repair. Moreover, it is imperative to determine the remaining 

life of the system in order to improve the system availability and prevent either 

component damage or complete system failure.  

Given the importance of fault diagnosis and prognosis, this topic has attracted a 

large number of researchers who have worked on different aspects of it over the past 

decade. An overview of current fault diagnosis methodologies and their shortcomings are 

discussed next. Subsequently, the contributions of this dissertation are introduced. 
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1.1. OVERVIEW OF FAULT DIAGNOSIS METHODOLOGIES 

Many different approaches to model-based fault detection and diagnosis has been 

introduced recently, all of which require an estimator/observer. Fault diagnosis is 

performed based on adaptive estimators in [6], by using neural network (NN) based 

estimators in [7], and by utilizing fuzzy observers in [8]. 

Based on their mathematical representation, faults can be classified into two 

classes of additive and multiplicative faults. Additive fault representation, which is 

generally used to model system and component faults, is very common in the fault 

detection literature including [9,10] and previously mentioned model-based FD literature 

[6-8]. On the other hand, actuator faults which result in partial loss of control action are 

commonly modeled as multiplicative faults.  

Fault diagnosis of systems with multiplicative actuator faults have been done by 

utilizing parameter similarity measures [11], sliding mode observers [12], and NN based 

techniques [13]. However, all of these FD methods [6-13] are designed for continuous 

time systems, and more importantly each of them can only handle either additive or 

multiplicative faults, whereas practical systems can be subjected to both types of fault 

and the fault diagnosis should be capable of detecting them and determination of detected 

fault type. 

Another need of the current fault diagnosis schemes [6-13], is that they do not 

consider noise and outliers in measurements. An outlier, by definition, is an observation 

which deviates significantly from other observations thus creating suspicion that it was 

generated by a different system. The measured data in industrial systems usually involve 

noise and outliers, which not only degrades the data quality but also can render inaccurate 

decisions during fault diagnosis. Therefore, reliable fault detection schemes are required 

to perform the fault detection online without missed or false alarms due to outliers. For 

this purpose, preprocessing of measured data is necessary to detect and remove outliers 

before they can affect the fault detection decision. 

Several outlier detection schemes have been proposed in the literature, such as 

distribution-based [14], distance-based [15], and density based methods [16]. However, 

these methods cannot work online, thus impossible to be implemented as a preprocessing 

unit for online fault detection. Therefore, online outlier detection and removal methods 
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have also been proposed recently by using Kalman filter and its variations [17,18]. These 

methods need the system dynamics to be known and fixed and assume that the underlying 

distribution of system states is fixed, whereas this assumption cannot always be satisfied 

in practical systems due to change in system operating conditions. Moreover, when a 

fault occurs in the system, it can change both the system dynamics and the distribution of 

states. Therefore, a novel scheme is required for online detection and removal of outliers 

for nonlinear systems in nonstationary conditions. 

Another important problem in the area of fault diagnosis is related to the 

decentralized systems. Several practical systems such as power generation and 

distribution systems, telecommunication networks, traffic networks, etc, exhibit complex 

and spatially distributed dynamics and are referred to as large scale interconnected 

systems. The aforementioned FD literature [6-13] addresses centralized schemes which 

are not suitable for distributed systems.  Due to the extensive effort required in 

transmitting the entire system measurements for a centralized scheme, decentralized 

control of distributed systems by using local subsystem states is introduced recently 

[19,20]. Distributed fault diagnosis schemes have also been proposed for dealing with 

large scale interconnected systems assuming that the entire system states or entire 

estimated states are available at all subsystems. Since it is very expensive and time 

consuming to gather and process all the measurements from a distributed large scale 

system at one place and the measurements can be outdated due to delay in transmission, 

the need for a pure decentralized FD scheme which only uses local measurements at each 

subsystem is desirable.  Moreover, the remaining useful life information is not included 

in the above schemes [19,20]. 

Although certain faults are critical and the overall system must be forced to shut 

down upon their detection, other faults at an incipient stage can be accommodated for a 

limited time, which allows uninterrupted operation of the system with a desired 

performance in the presence of faults.  Many centralized fault accommodation schemes 

like observer-based methods [21,22] have been proposed. As previously mentioned, large 

scale interconnected systems require decentralized schemes, which motivated researchers 

to work on distributed approaches for fault accommodation [23,24]. Similar to current 

distributed fault diagnosis, these accommodation methods are not completely 
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decentralized and still require the interconnection functions to be known and the entire 

state vector to be available at all subsystems. In contrast, this dissertation proposes 

decentralized fault diagnosis and fault accommodation schemes by using only the local 

states at each local fault detector. 

Another class of systems which require careful attention is distributed parameter 

systems (DPS). In such systems, the variables evolve both in time and space in contrast 

with other nonlinear systems mentioned above that evolve only with time. Distributed 

parameter systems are generally described by partial differential equations (PDE) in 

contrast to ordinary lumped parameter systems which are described by ordinary 

differential equations (ODE) [25]. Current DPS fault diagnosis methods, like [26-28] 

require the transformation of PDE model to a finite dimensional ODE using Galerkin’s 

method [29,30], which can render inaccurate results due to certain physical aspects of the 

system being neglected. Furthermore, when a fault happens in the system, the system 

PDE dynamics will change, which can make the approximated ODE model even more 

inaccurate. This is the motivation behind the last chapter of this dissertation, which is the 

design of a more accurate and reliable fault diagnosis and prognosis method for 

distributed parameter systems. 

 

1.2. ORGANIZATION OF THE DISSERTATION 

In this dissertation, novel model-based fault diagnosis and prognosis schemes are 

introduced for classes of nonlinear systems which are experienced by faults. In addition, 

a new online outlier identification and removal scheme which can be used as a 

preprocessing unit for fault detection is introduced. The dissertation, which is illustrated 

in Figure 1.2, is presented in the form of five papers. The common theme in the five 

papers is the model-based fault prognosis of nonlinear systems. The first three papers 

deal with discrete-time systems, whereas the fourth and fifth papers present methods for 

continuous-time systems. 

In the first paper, a unified model-based fault diagnosis scheme for nonlinear 

systems which is capable of detecting both additive system faults and multiplicative 

actuator faults. Fault is detected using the detection residual generated by comparing the 

actual and estimated states. Two online approximators, which are both offline prior to 
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fault detection, are incorporated in the nonlinear observer. Upon detection, the first online 

approximator is turned on to learn the input signal. Subsequently an input residual is 

generated and compared against a user-defined threshold to identify the type of fault. 

Identification of fault type allows the activation of appropriate online approximator to 

learn the fault dynamics. Lyapunov techniques are used to show that detection residual 

and parameter estimation errors are uniformly ultimately bounded. Time-to-failure is also 

determined by using the parameter update law, the active online approximator 

parameters, and their designer specified failure thresholds. 

 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Dissertation outline 
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Paper 1: Hasan Ferdowsi and S. Jagannathan, “A Unified Model-

Based Fault Diagnosis Scheme for Nonlinear Discrete-Time 

Systems with Additive and Multiplicative Faults,” Trans. of the Inst. 

of Measurement and Control, Vol. 35, No. 6, pp. 742-752, 2013. 

Paper 2: Hasan Ferdowsi, S. Jagannathan, and M. Zawodniok, “An 

Online Outlier Identification and Removal Scheme for Improving 

Fault Detection Performance,” accepted for publication in IEEE 

Transactions on Neural Networks and Learning Systems. 

Paper 3: Hasan Ferdowsi and S. Jagannathan, “Decentralized Fault 

Diagnosis and Prognosis Scheme for Interconnected Nonlinear 

Discrete-Time Systems,” revised and under review with IEEE 

Transaction on Neural Network and Learning Systems. 

Paper 4: Hasan Ferdowsi and S. Jagannathan, “A Decentralized 

Fault Detection and Accommodation Scheme for Interconnected 

Nonlinear Continuous-time Systems,” under review with IEEE 

Transactions on Systems, Man, and Cybernetics. 

Paper 5: Hasan Ferdowsi and S. Jagannathan, “Fault Diagnosis of a 

Class of Distributed Parameter Systems Modeled by Parabolic 

Partial Differential Equations,” to be submitted to Automatica. 
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The second paper deals with the problem of outliers in measured data. An online 

NN based method of outlier identification and removal (OIR), which acts as a prefilter to 

detect and eliminate outliers from measured data before fault detection, is introduced. A 

two layer feedforward NN is used to estimate the system states and state estimation error 

is defined as the difference between measured and estimated states. At each time instant, 

median and standard deviation of the state estimation error is calculated over a limited 

time window. Then, an outlier is detected if the difference between state estimation error 

and the calculated median is higher than three standard deviations. A novel adaptive 

weight update law is used to prevent the update of NN weights by the detected outlier. 

For the purpose of fault detection, a different observer with known nominal dynamics of 

the system is introduced. This observer uses the estimated outlier-free states instead of 

the measured states which contain outliers. The stability of both the OIR and the fault 

detection scheme are discussed in the paper. 

In the third paper, a new decentralized fault diagnosis and prognosis scheme for 

discrete-time nonlinear systems is presented. A network of local fault detectors (LFD) is 

designed, where each LFD only requires the local system states and inputs. Each local 

fault detector is constructed as a nonlinear observer which includes an online 

approximator. A residual is generated by comparing the estimated and measured states, 

but it is only used to update the unknown parameters of online approximator. The online 

approximator is activated all the time, and is used to approximate the interconnection 

function and the possible fault function. Since the magnitude of interconnection term is 

supposed to be bounded in healthy operating conditions, the detection of fault is 

performed by comparing the output of online approximator with the bound on 

interconnection term. Robust detection thresholds, fault detectability conditions, and 

time-to-failure determination formula are mathematically derived and a fault isolation 

algorithm is also included to determine the location of fault. 

Subsequently, the decentralized fault detection and accommodation of a class of 

large scale interconnected systems is addressed in the fourth paper. Each local fault 

detector involves an online approximator (OLA) which is turned off prior to detection. 

When the detection residual in one subsystem crosses the detection threshold, a fault is 

detected and the online approximator in that subsystem is activated to learn the fault 
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dynamics. At the same time, the online approximators in all the other subsystems are 

notified to remain offline. Upon detection, an accommodation online approximator is also 

initiated at each subsystem. The outputs of detection OLA along with the accommodation 

OLA are utilized to modify the control inputs to minimize the effect of fault. Lyapunov 

proofs are offered for the local fault detection and accommodation schemes. Moreover, 

time-to-failure and time-to-accommodation are introduced, which allow determination of 

whether the accommodation unit can bring the system performance back to normal before 

the system reaches a failure. 

Finally, in the last chapter, the fault diagnosis of distributed parameter systems is 

investigated. A fault detection observer is designed by directly utilizing the nominal PDE 

model of the system instead of the approximated ODE representation. Residual is 

generated for fault detection by comparing estimated and actual system outputs. An 

adaptive approximator which is incorporated in the observer is activated upon detection 

in order to identify unknown fault parameters and approximate fault dynamics. Adaptive 

parameter update law guarantees the observer convergence and allows time-to-failure 

determination.  

 

1.3. CONTRIBUTIONS OF THE DISSERTATION 

The contributions of the first paper include the development of a unified fault 

diagnosis and prognosis scheme via a novel observer for detecting both multiplicative 

actuator and additive system faults in contrast with the literature [6-13] where a single 

fault type is normally handled.  Fault type is identified by using the input residual and 

fault detectability conditions and upper bound for detection time are derived analytically 

depending upon the fault type. Subsequently an online TTF determination scheme is 

introduced while such schemes are unavailable in the literature for model-based methods.  

The contributions of second paper involve the design of a new outlier detection 

and removal scheme, which can operate online in contrast with data-driven methods [14-

16]. This scheme can be applied to both linear and nonlinear systems in nonstationary 

environments in compaison with existing Kalman filter-based schemes [17,18]. The 

proposed OIR scheme is combined with a model-based fault detection scheme, to 

enhance its performance in the presence of noise and outliers. However, the OIR scheme 
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can be utilized both for data driven and model-based fault diagnosis schemes, since it is 

generic and does not use the system representation or model. 

The major contributions of the third paper include the development of a 

decentralized fault diagnosis scheme for nonlinear discrete-time systems wherein a LFD 

only uses local measurements in contrast with [19,20]. Each LFD is designed to detect 

faults regardless of their location and then determine if the fault is local or nonlocal by 

using a centralized isolation module. Furthermore TTF estimation is performed upon 

fault detection whereas such scheme is not available in most of the model-based methods 

[6-13,19,20].  

On the other hand, the fourth paper contributes to the field of fault diagnosis and 

prognosis by proposing a new decentralized fault detection and accommodation scheme 

for nonlinear interconnected continuous-time systems. Both the detection and 

accommodation schemes use only local subsystem states and inputs to detect and 

accommodate the faults in contrast with existing methods [21-24]. In addition, analytical 

formulas for online calculation of time-to-failure and time-to-accommodation are 

derived. Based on the information, the human operator can make a decision on keeping 

the system running or shutting it down based on safety assessment. 

Finally the fifth paper considers the problem of fault diagnosis and prognosis of 

distributed parameter systems represented as parabolic PDE models. In contrast with 

existing schemes [26-28], the PDE model of the system is not going to be transformed 

into a finite dimensional ODE model before performing the fault detection. Instead, the 

detection observer is going to be designed based on the PDE model with an incorporated 

online approximator. This method allows more accurate estimation of states, thus 

providing more reliable fault detection and approximation results. 
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I. A Unified Model-Based Fault Diagnosis Scheme for Nonlinear Discrete-Time 

Systems with Additive and Multiplicative Faults 

 

Hasan Ferdowsi and S. Jagannathan 

 

 

Abstract 

In this paper, a unified model-based fault diagnosis (MFD) scheme that deals with both 

multiplicative actuator and additive system faults is designed. For a class of uncertain 

nonlinear discrete-time systems, this MFD scheme is capable of not only detecting both 

additive and multiplicative actuator faults but also to identify the fault type. Faults are 

detected by using a novel fault detection observer (FD) consisting of two online 

approximators in discrete-time (OLAD) and a robust adaptive term.  Upon detection, a 

fault diagnosis scheme is introduced to determine the fault type by monitoring the input 

residual generated via the first OLAD output. Upon performing the diagnosis online, the 

appropriate OLAD is activated in the observer and the other OLAD is switched off. 

Thereafter, by using both the parameter update law of the active OLAD and user-selected 

failure threshold, an online time-to-failure (TTF) scheme is introduced. In the case of 

multiplicative faults, boundedness of the detection residual and parameter estimation 

errors is shown while in the case of additive faults, the asymptotic convergence of the 

detection residual and parameter estimation errors is guaranteed due to the robust 

adaptive term. Finally a simulation example is used to demonstrate the proposed fault 

diagnosis scheme. 
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1. INTRODUCTION 

Today’s industrial systems have become more complex and are prone to failures.  

Faults are considered as a precursor to failures and they can occur both in the sensors and 

actuators. Therefore, reliable fault diagnosis schemes are required to guarantee safe 

operation of the physical system even in the presence of uncertainties and faults. If the 

faults can be detected early enough, performance loss and damage to the system can be 

prevented. 

Faults are classified based on their representation into additive and multiplicative 

faults. Additive fault representation, which is very popular in the fault diagnosis 

literature, is used to model system and component faults, whereas actuator faults which 

represent partial loss of control action are commonly modeled as multiplicative faults. 

Despite the fault type, the diagnosis schemes are generally divided into data-driven and 

model-based methods. Data-driven fault diagnosis approaches need healthy and faulty 

data [1] for each fault which can be very expensive.  In addition, an offline training 

session is normally needed. As a result, these methods are not preferred since they result 

in false alarms when the operating conditions change. 

On the other hand, model-based fault diagnosis methods [2] minimize the need 

for a priori data and can detect faults online. In this approach, an observer or estimator 

representative of the system is utilized for detecting faults [2-4]. The observer provides 

an estimate of the system states. Then a residual signal is generated by comparing the 

estimated states with that of the actual system states, and when this residual exceeds a 

predefined threshold, a fault is detected [3]. These model-based FD methods have been 

implemented on both linear and nonlinear systems that have a linear representation [5,6].  

Availability of a priori data during healthy and faulty operation from the system can aid 

in the fine tuning of the model-based schemes. 

As part of model-based FD framework, in [7,8], fault diagnosis schemes using 

adaptive estimators have been discussed while in [9,10] neural network (NN)-based 

estimators have been utilized for the purpose of fault detection. Fuzzy observers have 

been utilized in certain model-based fault detection schemes [11,12]. 

Numerous researchers have worked on the detection of additive faults 

[7,8,10,13,14]. On the other hand, fault diagnosis for systems with multiplicative faults 
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has also been done using a fuzzy observer [11], parameter similarity measures[15], 

sliding mode observer [16], and NN-based methods [17]. However all these papers 

[11,15-17] deal with continuous time systems, whereas in this paper discrete time 

systems are considered. Moreover in this paper, a fault diagnosis scheme, which is 

designed for multiplicative faults, enables detection threshold selection in an analytical 

manner, and that is utilized to determine time-to-failure (TTF) upon detection, in contrast 

to the literature.  Detectability conditions are also introduced. Further, in all these papers 

[7,8,10-14,16,17] only one type of fault is normally considered while practical nonlinear 

systems can be subject to both additive and multiplicative faults which is the focus of this 

paper. 

Therefore, the nonlinear discrete-time system considered in this paper is subjected 

to both additive and multiplicative faults by assuming the entire state vector is available 

for measurement. A novel observer design is proposed wherein two OLADs, one for each 

fault type, is introduced as part of the unified prognosis framework. A neural network 

(NN) is used as an OLAD [10] whereas any online approximator can be utilized.  

Initially, prior to detection, both the OLADs and robust adaptive term are zero. Detection 

residual is generated first by comparing the estimates state vector of the observer with 

that of the nonlinear system. A deadzone operator is used to declare the presence of a 

fault when the detection residual exceeds a user defined threshold. 

Upon detection, the first OLAD is activated to learn the fault dynamics and to 

generate an estimate of the input signal using which an input residual is obtained.  This 

input residual is compared against a user defined threshold to identify the type of fault 

that has occurred. Upon identifying the fault type, a decision is made to activate the 

appropriate OLAD. In other words, upon detection, only one OLAD out of the two will 

be active at any given time. 

Next, TTF is determined online by using a mathematical equation relating to the 

active OLAD parameters. In this mathematical equation, the appropriate parameter 

estimates are compared against the designer specified limits since for most practical 

systems the parameters could be tied to physical quantities which have a safe range of 

values [13]. Then the overall TTF for the system can be found by taking the minimum 

TTF for all system parameters. In this paper, TTF determination is performed for the 
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system both with additive or multiplicative faults provided a single fault type can occur at 

a given time. 

Thus the contributions of this paper include the development of a unified fault 

diagnosis and prognosis scheme via a novel observer for detecting both multiplicative 

actuator and additive system faults in contrast with the literature [7,13,15-17,20] where a 

single fault type is normally handled. The novel observer design includes two OLADs in 

contrast with traditional schemes [2,5,8,9,13] where one OLAD is utilized.  Fault type is 

identified by using the input residual and then the appropriate OLAD is used to estimate 

additive or multiplicative fault dynamics.  Fault detectability conditions and upper bound 

for detection time are derived analytically depending upon the fault type. Subsequently 

an online TTF determination scheme is then introduced while such schemes are 

unavailable in the literature for model-based methods [7,11,14,20]. In this framework, a 

model-based additive fault detection scheme from [13] is utilized for demonstrating the 

unified framework. 

This paper is organized as follows: Section 2 describes the system under 

consideration and the possible faults while Section 3 discusses the FD and diagnosis 

scheme to identify the type of fault. Section 4 describes the TTF determination. In 

Section 5, a simulation example is used to verify the performance of the proposed scheme 

and finally Section 6 presents conclusions and future works. 

 

2. SYSTEM DESCRIPTION 

Consider the nonlinear discrete-time system described by 

           1 , ,x k x k u k x k u k     

where mu  is the control input vector, nx  is the system state vector which 

is assumed to be measurable, : n m n    represents the known nonlinear system 

dynamics, and : n m n    represents the system uncertainties. Due to an additive 

fault, the nonlinear system is given by 

                  01 , , Π ,x k x k u k x k u k k k h x k u k       
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where    ( ( ), )h x k u k  represents a vector of possible additive fault dynamics, 

which are defined as            1 1. , , , ,T T

n nh f x k u k f x k u k     . 

 ,   1, ,il

i i n     , is an unknown parameter vector, and :  ,  1, ,iln m

if i n     , 

is a known fault basis function. Each if  represents the fault function of the i
th

 fault 

affecting the i
th

 state equation, and each i  is the unknown magnitude of the i
th

 fault 

function. The time profile of a fault is given by  0Π k k . 

Let      , : n m m

AT x k u k     denote the vector of unknown 

multiplicative actuator faults [17], and therefore          , .f Au k diag T x k u k u k   

Now during the fault conditions, we replace  u k  by  fu k , then the nonlinear system 

dynamics with the additive and multiplicative faults can be rewritten as 

                  01 , , +Π ,f f fx k x k u k x k u k k k h x k u k              (1) 

The time profile  0Π k k  is modeled by 

        0 1 0 2 0 0Π Ω ,Ω , ,Ωnk k diag k k k k k k       

where 

   0

0

i 0

0

0,                     
Ω       1, ,

1 ,      i k k

if k k
k k for i n

e if k k
 


   

 
 

and i  is an unknown constant that represents the rate at which a fault occurs. A larger 

value of i indicates that it is an abrupt fault. The use of such time profiles is common in 

fault diagnosis literature [7,13,18]. Next standard assumptions are needed in order to 

proceed. 

Assumption 1: The modeling uncertainty is bounded, i.e. 

     , ( ,, ) ( , )M x Xx k u u Uk    , where M is a positive known constant and X and U 

define the range of possible states and inputs. 

Assumption 2: Only a single fault type of either multiplicative or additive can 

occur in the system at any given time. This means that both additive and multiplicative 



 

 

18 

faults cannot happen simultaneously while multiple faults of the same type can still 

occur. 

Remark 1: Assumption 1 is needed to distinguish between faults and system 

uncertainties while Assumption 2 is needed to identify the fault types. 

Assumption 3: The nonlinear system dynamics  ,x u  is Lipschitz inu , i.e., 

   1 2 1 2( ), ( ) ( ), ( ) ( ) ( )gx k u k x k u k c u k u k    , where 0gc   is the Lipschitz 

constant [20]. 

Assumption 4: For the purpose of TTF, fault functions can be expressed as 

nonlinear in the unknown parameters (NLIP) [19], i.e. both additive and multiplicative 

fault functions can be approximated by two-layer NN with bounded activation functions 

and weight parameters. 

Assumption 5: Due to finite actuator bandwidth, the control input u  has a finite 

upper bound such that ( ) maxu k u  where maxu  is a positive constant.   

For practical systems, actuator output is finite and the boundedness assumption is 

also considered in the fault diagnosis literature [7,8]. Next the proposed fault diagnosis 

scheme is introduced. 

 

3. FAULT DIAGNOSIS SCHEME 

In this section, the proposed fault diagnosis scheme for detecting additive and 

multiplicative faults will be described. For this purpose, we first introduce the fault 

detection (FD) estimator by which both types of faults can be detected. Upon detection of 

a fault, a method of identifying the fault type is introduced. Finally the stability of the 

detection residual is demonstrated for the nonlinear system subjected to faults. 

Consider the nonlinear FD estimator or observer 

                    

          

ˆ ˆˆˆ ˆ1 , , ( ) , ;

  , ( ) , ; ( )

ˆ

ˆˆ ˆˆ

d f A d d d

f A A A

x k A x k x k u u k T k h x k u k k A x k F k

u u k T k diag T x k u k k u k

 



     



 (2) 

where ˆ( ) nx k   is the estimated state vector,  :ˆ  n m q m m

AT    is the output of 

the first OLAD  with ˆ q m

A
  being its set of adjustable parameters, 
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:ˆ n m p n n

dh     is the output of the second OLAD with ˆ p n

d
  being its set 

of unknown parameters, ( )F k  denotes the robust adaptive term, and dA  is a user defined 

diagonal matrix, which must be selected in a way that the eigenvalues of the closed loop 

system lies within the unit disc [19]. Initial values of the FD estimator are taken to be 

   
000 ,   0ˆ ˆˆ ˆ

d dx x    ,  
0

ˆ ˆ0A A  , such that 

 
0 0 1, , 0,   ( , , ) [1,...,1]ˆ      ˆ ˆˆ ,T

d A A ph x u T x u x X u U       .  

Remark 2: The proposed observer uses two OLADs to identify additive and 

multiplicative faults in contrast with other FD schemes which use a single OLAD 

[7,8,13]. 

 

In the proposed FD estimator, NNs are used as the OLADs. Both NN-based 

OLADs are off prior to the detection of a fault and thus their outputs are zero.  Note that 

as long as the first OLAD is off, all the elements of its output ( ˆ
AT ) are set to 1. Upon 

detection of a fault the first OLAD is turned on to estimate the input by assuming that it 

could be a multiplicative fault.  A decision is made to identify the type of fault occurred 

by monitoring the input residual which is defined as the difference between the actual and 

estimated input vectors.  Depending upon this decision, the appropriate OLAD is left on 

and the other is switched off.  Next the process of detecting a fault is introduced. 

Define the detection residual as ( ) ( ) ( )ˆe k x k x k  .  Prior to the detection of a 

fault, the residual dynamics are given by 

        1 ,de k A e k x k u k                 (3) 

which is considered bounded with the appropriate selection of dA . Now consider a dead-

zone operator 

 
 

0,                ( )
( )

,    ( )  

if e k
D e k

e k if e k

 
 






 

where    is the FD threshold. A fault is detected, regardless of its type, when the FD 

residual exceeds the predefined threshold. However these thresholds must be chosen 
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carefully in order to minimize false or missed alarms. The selection of the detection 

threshold is presented next. 

 Consider the above residual dynamics prior to the occurrence of a fault.  If

 ˆ 0 (0)x x , the solution to this equation can be obtained as 

       
1

1

0

,
k

k j

d

j

e k A x j u j


 



               (4) 

By taking the Frobenius norm, (4) can be represented as 

       
1

1

0

,
k

k j

d

j

e k A x j u j


 



 
 

Using Assumption 1, we can find a bound on the residual in the healthy operating 

conditions, as follows 

 
1

1

0

d

k

j

k j

Mde k A 







                (5) 

Using this bound, a time varying threshold 
(1 )

(1 )

k

M d

d

A

A








  or a constant 

threshold  
(1 )

M

dA


 


 can be determined, where 1   is a constant. 

When the detection residual exceeds the detection threshold, a fault is declared 

active through the dead-zone operator and the first OLAD that generates ˆ (.)AT , is initiated 

and tuned online using the following update law 

           1 1 1 1 1 11 1 (ˆ ˆ ˆ )T T

A A Ak k k D e k I k k k                    (6) 

where 1 0   is the learning rate, 10 1   is the forgetting factor, and 

      1 1 ,k x k u k   is a basis function such as sigmoid or RBF.  Then, the output of 

the first OLAD that estimates the multiplicative fault function is given by 

        1
ˆˆ ,T

A AT k k x k u k                          (7) 

The input residual is then computed online using actual input and its estimate 

from the first OLAD. On the other hand, if a fault is identified as additive based on the 
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input residual, then the first OLAD will be turned off and the second OLAD will be 

activated and tuned online by using the parameter update law 

           2 2 2 2 2 21 1ˆ ˆ ˆ ( )T

d d

T

dk k k e k I k k k                        (8) 

where 2  0   is the learning rate, 20 1   is the forgetting factor, and 

      2 2 ,k x k u k   is a basis function like sigmoid or RBF. Moreover the output of 

the second OLAD to estimate the fault function will be given by 

        2
ˆ ,ˆ T

d dh k k x k u k                (9) 

A robust adaptive term is also turned on with the second OLAD.  The last terms 

in (6) and (8) overcome the persistent of excitation (PE) condition which is normally 

utilized to keep the parameters bounded. This assumption is not needed in here and 

stability is still demonstrated.  In the following theorem, conditions for fault detectability 

are presented.  

 

Theorem 1 (Fault detectability): Consider the nonlinear discrete-time system 

defined by (1) and the FD estimator described by (2). The fault will be detected, if there 

exists a time instant dk , such that the fault function satisfies 

          
0

0

0

1
11

, ,
2

d

d

d

k k
k k j

d fk
j kd

A x j u j x j u j
A

  
 

  



 


                (10) 

in the case of multiplicative actuator fault or 

       
0

0

0

1
1

0

1
Π ,

2

d

d

d

k k
k k j

d fk
j kd

A k k h x k u k
A


 

  



 


                     (11) 

in the case of additive fault respectively. 

 

Proof: In the multiplicative fault case, the residual dynamics after the occurrence 

of fault and prior to the detection of fault is defined by 

                  1 , , ,d f fe k A e k x k u k x k u k x k u k                (12) 

If the fault occurs at time 0k  then after a time instant, dk , the solution to the above 

state equation is given by 
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                  
0

0

0

1
1

0 0 , , ,
d

d d

k k
k k k j

d d d f

j k

e k k A e k A x j u j x j u j x j u j  
 

  



      

       

          

0

0

0

0

0

0

1
1

0

1
1

,

, ,

d

d d

d

d

k k
k k k j

d d

j k

k k
k k j

d f

j k

A e k A x j u j

A x j u j x j u j



 

 
  



 
  



 

 





 

By taking the Frobenius norm and applying some mathematical manipulations, 

we have 

                  

 

0 0

0 0

0 0

1 1
1 1

0

0

, , ,
d d

d d

d

k k k k
k k j k k j

d d d f

j k j k

k

d

e k k A x j u j A x j u j x j u j

A e k

  
   

     

 

   



   

          

       

0

0

0

0

0

0

1
1

1
1

0

, ,

,

d

d

d

d d

k k
k k j

d f

j k

k k
k k j k

d d d

j k

A x j u j x j u j

A x j u j A e k k

 



 
  



 
  



 

  





 

Now, by using the results we obtained for the detection threshold, we will get 

              
0

0

0

1
1

01 , ,
d

d d

k k
k k k j

d d d f

j k

A e k k A x j u j x j u j  
 

  



      

or equivalently 

            
0

0

0

1
1

0

1
, ,

1

d

d

d

k k
k k j

d d fk
j kd

e k k A x j u j x j u j
A

  
 

  



 
    

   
     (13) 

Thus, the fault will be detected if 

          
0

0

0

1
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, ,
1

d

d

d

k k
k k j

d fk
j kd

A x j u j x j u j
A

   
 

  



 
   

   
  

which is equivalent to the detectability condition given in (10) for the case of 

multiplicative faults. 

 

Now consider the residual dynamics after the occurrence of an additive fault and 

prior to the detection 

               01 Π , ,d f fe k A e k k k h x k u k x k u k                   (14) 
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After occurrence of fault and dk  time instants, the solution to the above equation 

is given by 

               
0

0

0

1
1

0 0 0, Π ,
d

d d

k k
k k k j

d d d f

j k

e k k A e k A x j u j k k h x k u k
 

  



    

 

Similar to the multiplicative fault case, by taking the Frobenius norm and then 

using the definition of the detection threshold we will get 

           
0

0

0

1
1

0 0 0Π ,
d

d d

k k
k k j k

d d f d d

j k

e k k A k k h x k u k A e k k 
 

  



     

 

and consequently 

         
0

0

0

1
1

0 0

1
Π ,

1

d

d

d

k k
k k j

d d fk
j kd

e k k A k k h x k u k
A


 

  



 
    

   
       (15) 

Therefore the detectability condition for the additive fault is defined by (11). The 

next important issue, after fault detectability condition is the fault detection time. The 

next theorem gives an upper bound on the detection time. 

 

Theorem 2 (Detection Time): Let the FD estimator in (2) be used to monitor (1). 

Assume that a fault occurs at 0k k . Also assume there are constants 1 0M   and 

2 0M  , such that 

          1, ,fx j u j x j u j M                    (16) 

or 

      0 2Π , fk k h x k u k M              (17) 

for 
0 0 maxdk k k k    for multiplicative or additive faults respectively where 

maxdk is 

defined by 

 
 

 
 

1 2

1 2

2 1 2 1
max log ,log

1 1max d d

d d

d A A

d d

M A M A
k

M A M A

       
     

           

 

 
 

Then the fault detection time has an upper bound, given by 

  0max
maxdetection dk k k 
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Proof: In the case of a multiplicative fault we have  

            
0 0

0 0

0 0

1 1
1 1

1 1

1
, ,

1

d
d d

d d

kk k k k
dk k j k k j

d f d

j k j k d

A
A x j u j x j u j A M M

A
 

   
     

 


  


   

Using the result of theorem 1, a sufficient condition can be found for the fault to 

be detected, as follows 

 1

1
2

1

d

d

k

kd

d

d

A
M A

A



 


            (18) 

where dk  is the constant from theorem 1. (18) can be rewritten as 

     1 11 2 1dk

d d dM A A M A     
 

Therefore, an upper bound for dk  in the multiplicative fault case, can be found as 

1

1

1

2 (1 )
log

(1 )max d

d

d A

d

M A
k

M A





  
       

Similarly, an upper bound for dk  in the additive fault case, is given by 

2

2

2

2 (1 )
log

(1 )max d

d

d A

d

M A
k

M A





  
       

Since in practice the type of fault is not known, we should take the maximum 

between 
1maxdk and

2maxdk . Then we can find an upper bound for the detection time ( detectionk ) 

 
 

 
 

1 2
0

1 2
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1 2

max( , )

2 1 2 1
max log , log

1 1

max max
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detection d d

d d

A A

d d

k k k k

M A M A
k

M A M A

 

 

 

       
      

           

 

 

Next the performance of the proposed fault diagnosis observer is evaluated on 

multiplicative faults first and then additive faults. 

 

3.1. MULTIPLICATIVE ACTUATOR FAULT CASE 

As mentioned previously, when a fault is detected, only the first OLAD is turned 

on, while the output of the second OLAD, ˆ (.)dh , will remain at zero. Therefore after 

detection, the FD estimator dynamics would be described by 
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           

         

1 , , ( )  

, ( ) , ; ( )

ˆˆ ˆ ˆ

ˆˆ ˆˆ

d f A d

f A A A

x k A x k x k u u k T k A x k

u u k T k T x k u k k u k





   



  (19) 

Consequently, the detection residual dynamics are given by 

                  , , ˆ1 ,d f f fe k A e k x k u k x k u k x k u k         (20) 

Define the input residual ˆ
fu u u   . The next theorem will assure the 

boundedness of the detection residual dynamics upon detecting a multiplicative fault. 

Hence the multiplicative fault can be estimated by the first OLAD, which will result in a 

noticeable difference between the actual and estimated input in a finite time or when the 

input residual exceeds a user defined threshold.  Using this input residual, the fault 

diagnosis is carried out to identify the fault type. 

 

Theorem 3 (Fault Diagnosis Observer Performance with Multiplicative 

Actuator Faults): Let the proposed observer defined in (19) be used to monitor the 

system described by (2), with the first OLAD being turned on upon the detection of a 

fault. Let the update law in (6) be used to update the unknown parameter vector ˆ
A . In the 

case of multiplicative faults, the FD residual,  e k , and the parameter estimation errors,

   A k , will be uniformly ultimately bounded (UUB).  Moreover, the input residual will 

exceed the user-defined threshold. 

 

Proof: Consider the following Lyapunov function candidate 

        T T

A AV e k e k tr k k   
 

where    ˆT

A A Ak k    . The first difference of the Lyapunov function is given by 

                 
1 2Δ Δ

Δ 1 1 1 1T T T T

A A A A

V V

V e k e k e k e k tr k k k k                 (21) 

By substituting  1e k   from the error dynamics in 1ΔV , it can be rewritten as 

                       1Δ , ,
T

T

d f d fV A e k k x k u k A e k k x k u k e k e k          

where            , , ˆ
f fk x k u k x k u k    . 
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By using the Cauchy-Schwarz inequality (

   1 2 1 2 1 1 2 2  ( )
T T T T

n n n ns s s s s s n s s s s s s        ) we get 

                 

 

1Δ 3 3 3 , ,
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T T T T

d d f f

T

V e k A A e k k k x k u k x k u k

e k e k
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
      (22) 

Now we substitute ˆ ( 1)A k   from the update law, in 2ΔV  

              

              
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 
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

       




 

Then substituting ( 1)e k   in the above equation to get  

          
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Applying the Cauchy-Schwarz inequality on the above equation yields 

 

            
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Therefore, 
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By using equations (21),(22), and (23), the first difference of the Lyapunov 

function candidate, ΔV , can be found as 

                   

           

            
               

      

1 2

1 1 1 1

2 2
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1 1 1 1 1 1 1 1
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1 1 1 1 1 1
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4 10
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5 5
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T T T T T

d d f f

T T T

A A A A

T T T T

A A A A

T T T T T

d d

T

f

V V V

e k A A e k k k x k u k x k u k e k e k

tr k k I k k k k

I k k k k I k k

e k A A e k k k k k k k

x k u k x k

   

       

           

       

  

    

   

  

   

 

       1 1

T

fu k k k 

 

Taking the Frobenius norm, the above inequality can be rewritten as 

           

           

          

22 2 2 2 22 2 2 2

1 1 1 1 1 1

2 222 2 2 2 2

1 1 1 1

22
2

1 1 1 1 1 1 1 1 (24

Δ 3 3 5 5

5 3  , 5   ,

4 10 5 )

max max

max max max

T

d A

d f f

T T

A

V A e k k k e k I k k

A e k x k u k x k u k

I k k I k k k

        

     

        

     

  

    

 

Assumption 3 yields   ˆ( ) ( )g f fc u k kk u   .Therefore by using Assumptions 

4 and 5 to get 

              

   
max

2
2 2

2 222 2 2 2 2

1 max 1

ˆˆ ( )

( ) ( ) ( ) ( )
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2
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,

M

g

g
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A

A g

c diag u k

c u k di

k T x k u k T x k u

ag k k k c u k

k k

 



   

 

   


 

where ( )A k  represents the first OLAD approximation error which is bounded above, i.e. 

( )
MA Ak  . By using the above inequality and the result of Assumption 1 and 

combining the similar terms in (24), the following inequality is obtained 

   

          

   

max

2 2 2

max

22 2 2

1 1

22
2
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d

T T

T
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V A e k

I k k I k k kc u

uI k ck

 

        

       





   

     

    

 

Hence, the detection residual and parameter estimation errors are uniformly ultimately 

bounded, if the design parameters are selected by using  

2 2 2

1 1(3 5 ) 1
max maxdA                  (25) 
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         max

1 1 1 1 1 1 1

2 2 2

max

1

14

5

2
2

gT T
c

I k I k k
u

k    


 



                  (26) 

Moreover, the bounds on the residual and parameter estimation error are given by 

 
1

e k or



      (27) 

 
2

A k





       (28) 

where  , 1 , and 2  are defined by 

   
2 22 2 2 2

1 1 1 1 1 1

2 2 2

max(3 5 ) 5 2
m x Ma

T

A AM gI k k c u            , 

2 2 2

1 1 11 (3 5 )
max maxdA     , 

       
max

2
2

2 1 1 1 1 1 1

2 2 2

max 11 110 5 24T T

gI k k I k c uk               

 

It is obvious that when a multiplicative actuator fault occurs, the difference 

between 
fu  and u  will not be zero anymore, but will satisfy ( )f Au u I T u     , and 

therefore, 
fu u T u   where 0 AT I T   . Since ˆ

fu  is the estimated value of
fu , 

the input residual, ˆ
fu u u  , can be used to determine whether or not a multiplicative 

actuator fault is present. Upon detection, if the input residual exceeds a predefined 

threshold,  , in a finite time, T , then the fault type is identified as multiplicative and the 

first OLAD is kept online while the second OLAD will never be turned on. By contrast, if 

the input residual stays below , within the interval of T , then the fault type is declared 

as additive and the second OLAD is turned on and the first one is turned off. If an upper 

bound for the input u  is available, i.e. Mu u , then the threshold   can be determined 

by 0 Mu   where 0  is a positive constant, otherwise a time-varying threshold 

0 u   can be selected. 

Remark 3: The time threshold, T , which depends on the time constants of the 

system and the rate of possible multiplicative faults, is only used to limit the isolation 

time for the additive faults. This time threshold does not play a significant role in 
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identifying fault types, since the multiplicative faults can be identified even without using 

it.  

 

3.2. ADDITIVE FAULT CASE 

Since the first OLAD is designed to estimate the multiplicative fault function, it 

will not be compensating an additive fault. Therefore, in case of an additive fault the 

estimated input, ˆ
fu , will be close to the actual input, u  or the input residual will be 

below the threshold. So in this case, the second part of Theorem 3 will help identify the 

fault type after a finite time T ,  once a fault is detected. 

Since in this case only the second OLAD is online.  The FD estimator dynamics 

are described by 

                 1 , , ; ˆ ( )ˆˆ ˆ
d d d dx k A x k x k u k h x k u k k A x k F k          (29) 

where the robust adaptive term, ( )F k , defined by 

 
 

   

ˆ

ˆ ˆ

T

d

T T

d d

k B
F k

B k k B c



 



                    (30) 

is utilized with the OLAD. Here B is a constant vector and 0c   denotes a positive 

constant. The following theorem guarantees the performance of the observer with 

additive faults. 

 

Theorem 4 (Fault Diagnosis Observer Performance with Additive Faults) 

[13]: Let the proposed observer in (29) be used to monitor the system in (1), with the 

second OLAD and the robust adaptive term are turned on upon identifying an additive 

fault. Let the update law in (8) be used to update the unknown parameter set ˆ
d . Then the 

FD residual,  e k , and the parameter estimation errors,    T

d k , converge to zero 

asymptotically. 

So far, the detection of a fault and the fault type identification is done. The next 

section discusses the TTF scheme. 
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4. PREDICTION SCHEME 

Time to failure (TTF) determination is necessary for prognostics. This is also 

referred to as remaining useful life of the system. Upon detection of a fault, by comparing 

the estimated parameters obtained from the OLAD to the user defined limits, TTF can be 

determined [13]. The TTF is defined as the time elapsed when the first parameter reaches 

its limit. The following theorem provides an analytical formula for finding TTF. 

Theorem 5 (TTF Determination): In the presence of multiplicative faults, TTF 

for the j
th

 parameter of the i
th

 fault, at the k
th

 time instant can be determined using 

 

 

i , j max

i , j

1 1 1 1 1 1

1 1 1 1 1 1

,

1 1 1 1

γ
log

γ
( )

lo

ˆ

g 1 γ

i

i

T T

A j

T T

A j

i j
T

I e

I k e
TTF k

I

    

    

 

  
 
  
 


 

             (31) 

where 
i , j maxA  is the failure limit in terms of maximum value of the system parameter , 

i , j A , and  
i , j

 ˆA k  is the estimated system parameter at the time instant k.  

Similarly in the presence of additive faults, TTF for the j
th

 parameter of the i
th

 

fault, at the k
th

 time instant can be determined using 

 

 

i , j max

i , j

2 2 2 2 2 2

2 2 2 2 2 2

,

2 2 2 2
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γ
( )
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ˆ

g 1 γ
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i

T T

d j

T T

d j

i j
T

I e

I k e
TTF k

I

     

     

  

  
 
  
 


 

               (32) 

where 
i , j maxd  is the failure limit in terms of maximum value of the system parameter , 

i , j d , and  
i , j

 ˆd k  is the estimated system parameter at the time instant k. 

 

Proof: Suppose that a fault is detected and identified as multiplicative. Let 

     1 1 1 11 Ta k I k k      , and let      1 1
i

T

jv k k e k  . Then the parameter 

update law in (6) can be rewritten as 

     
, , 1

ˆ ˆ  1 ( )
i j i jA Ak a k k v k                    (33) 
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which is in the form of the state equation of linear time-varying system with 
,

ˆ
i jA  being 

the state and  v k  being the input. 

We know that 0 1a   and ( )v k  is bounded since the activation functions are 

bounded and the boundedness of the residual has been proven earlier. So we can assume 

that  a k  and ( )v k  are time invariant. Hence (33) can be rewritten as 

 
, , 1

ˆ ˆ1 ( )
i j i jA Ak a k v                         (34) 

which is in form of a linear  time-invariant state equation.  

At the time of failure, 
,i jfk , estimated parameter will be equal to  

i , j maxA , which 

means 
, , i , j max

)ˆ  (
i j i jA f Ak  . Therefore by finding the solution to the linear time-invariant 

equation in hand, at the time instant 
,i jfk , we get 

     
, ,

, , ,

i , j max , , , ,1 1

1

ˆ 1ˆ
1

ˆ
f fi j i j

f f fi j i j i j

i j i j i j i j

k k k
k k k h k k

A A f A A

h k

a
k a k a v a k v

a
     


  

 


    


  

Since 
,, i ji j fTTF k k  , by simple mathematical manipulations, we will have 

 

 

i , j max

i , j

1

1

,

(1 a)
log

(1 a)

log

ˆ

A

A

i j

v

k v
TTF

a

 

 

  
 
  
 

  

By replacing a  and v  by 
1 1 1 1(1 )TI     and 1i

T

je  respectively, the desired 

result will be obtained.  The theorem can be proven for the additive fault case by 

following the same argument as that of the multiplicative case. 

Figure 4.1 illustrates the process of finding the TTF after a fault is detected. At 

each time instant, after calculating the TTF for all of the system parameters, one should 

take the minimum of time to failure for all of the parameters, to get the overall TTF for 

the system. This is because the system will be unsafe even if only one of its parameters 

reaches its limit. 
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Figure 4.1. Flow chart of the TTF determination 

 

 

5. SIMULATION RESULTS 

In this section, a three-tank water system [21] is used to verify the proposed fault 

diagnosis and prediction schemes. Figure 5.1 depicts this system consisting of three tanks 

connected to each other with input pumps on tank 1 and tank 2 respectively and one 

water outlet on tank 2.  

The three-tank system dynamics are described by 

         1 ,x k x k u k x k     

where        1 2 3, ,
T

x k x k x k x k     is the state vector and     ,x k u k  is the known 

nonlinear dynamics of the system [21] given by 

Yes 

No 

      

 

 

Calculate     , and also       and      
    if 

the fault is multiplicative, or       and 

     
    if the fault is additive 

Fault detected 

              

Calculate         

for all the system parameters 

Calculate                 

System unsafe 
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    
 

       (35) 

where T  is the sampling time chosen to be 0.01 seconds, 20.0154 A m  is the cross 

section  of the tanks, 
5 25 10  pS m   is the cross section of the connecting pipes, 

1 21,  0.8, c c  and 3 1c   are the outflow coefficients, and 29.8  /g m s  is the standard 

gravity. Moreover,         3 2 1.6510 sin 0.7 1  0 cos 0.8 1  0 cos 0.5
T

x k kT kT kT      

represents the modeling uncertainty.  

 

 

Figure 5.1. Schematic view of the three-tank system 

 

This system is subjected to additive faults which are given in terms of leakage in 

tank 1 and tank 2 and multiplicative actuator faults which can occur in pump 1 and pump 

2. Nevertheless it is assumed that both types cannot be present at the same time. Hence, 

in this simulation either an additive or a multiplicative fault can occur at time 0t  25 sec.  
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The additive and multiplicative fault functions are described by 

  
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The following FD estimator is used to detect the faults 

                  1 , , ( ) , ;ˆ ˆˆˆ ˆ ˆ
d f A d d dx k A x k x k u u k T k h x k u k k A x k       

where          ˆˆ, ( ) , ; (ˆˆ )f A A Au u k T k T x k u k k u k , and 3 30.001dA I  . The first 

OLAD output is given by       1 1 1
ˆˆ T

A AT k k V x k B   , where 
8 3ˆ

A
  is the 

estimated parameter while 8

1   is a vector of sigmoid functions. The second OLAD 

output is given by         2
ˆ ,ˆ T

d dh k k x k u k  , where 
8 3ˆ

d
  is the estimated 

parameters while 8

2   is a vector of sigmoid functions. Moreover, 1V , 1B , 2V , and 2B  

are selected randomly and the update law parameters are 4

1 10.5,  10     and 

4

2 20.1,  10     respectively for the first and second OLADs. 

The detection threshold,  , is selected to be 0.05 while the identification 

threshold,  , is chosen to be 0.01 since the input is upper bounded by 0.01u  . Now 

we need to verify the proposed FD scheme in two cases; first when only multiplicative 

faults occur at time 0 25t   sec, and second when only additive faults occur at time 

0 25t   sec.  

Figure 5.2 shows the norm of the detection residual and the FD threshold when a 

multiplicative fault occurs. It is clearly seen that the residual remains below the detection 

threshold prior the occurrence of fault. After the fault occurs, the norm of residual starts 

to increase and it finally exceeds the threshold at a detection time 25.44t   sec. At this 

point the first OLAD is activated and its update law will estimate the fault function.  
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About 6 seconds after the detection of the fault, the FD residual falls below the 

threshold due to the OLAD function approximation property. This means that the OLAD 

has successfully estimated the fault function. As observed in Figure 5.3, the norm of 

input residual ( )u k  crosses the identification threshold in the interval of 2 T  sec after 

the detection, indicating that the fault is of type multiplicative. 

 

 

Figure 5.2. Norm of FD residual when the fault is multiplicative 

 

 

Figure 5.3. Norm of input residual with a multiplicative fault 

 

 

Figure 5.4 shows the norm of the detection residual along with the detection 

threshold when additive faults are present. Again the residual remains below the 

threshold prior to the fault and after that it increases and reaches the detection threshold 

at time 26.31t   sec. At this point a fault is declared active and the first OLAD is turned 
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on, but since the fault is additive it cannot estimate the fault function. As seen in Figure 

5.5, norm of the input residual u  remains below 0.01   within 2 seconds after the 

detection of fault. Therefore in this case the fault is identified to be additive and the FD 

estimator uses the second OLAD alone to estimate the fault function upon identifying the 

fault type. As a consequence, when the second OLAD approximated the fault function, 

the FD residual converges to zero. 

 

 

Figure 5.4. FD residual norm with an additive fault 

 

 

Figure 5.5. Norm of input residual with an additive fault 

 

 

TTF is determined for each of the multiplicative actuator faults as shown in 

Figure 5.6 and Figure 5.7. In both cases the initial estimate of TTF is not accurate due to 

the random selection of weights in the parameter update law. The time of failure is 
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determined to be at 30.07seconds and 28.30 seconds, for the fault in the first and second 

inputs respectively. Furthermore Figure 5.8 and Figure 5.9  display TTF estimation 

versus time for the additive fault in first and second states respectively. The time of 

failure is determined to be 55.79 seconds for the first fault and 36.63 seconds for the 

second fault. 

This example indicates that the proposed method of fault detection works for both 

additive and multiplicative fault types, the type of fault can be identified using the 

proposed method of fault type identification, and furthermore time to failure can be 

determined using the result of Theorem 5. 

 

 

Figure 5.6. TTF determination due to multiplicative fault in input 1 

 

 

Figure 5.7. TTF determination due to multiplicative fault in input 2 

 

 

Figure 5.8. TTF determination due to additive fault in state 1 
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Figure 5.9. TTF determination due to additive fault in state 2 

 

 

6. CONCLUSIONS 

In this paper, a model-based fault detection scheme is proposed that detects both 

additive system faults and multiplicative actuator fault types, identifies fault type, and 

performs TTF determination. Input residual generation would help in the detection of 

multiplicative faults and to identify the type of fault that has occurred in the system.  

However, this process requires a careful selection of threshold on the input residual. 

Identification of fault type will help the process of finding the fault location for repair and 

maintenance purposes. The TTF estimation will in turn improve system availability. The 

proposed scheme does not need any a priori data or offline training and so it is generic 

and can be applied to a wide range of systems with a mathematical model available. The 

only drawback of this scheme is that it requires all the system states to be available. 

Hence, future work will involve relaxing this assumption. 
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II. An Online Outlier Identification and Removal Scheme for Improving Fault 

Detection Performance 

Hasan Ferdowsi, S. Jagannathan, and M. Zawodniok 

 

 

Abstract 

Measured data or states for a nonlinear dynamic system is usually contaminated by 

outliers.  Identifying and removing outliers will make the data (or system states) more 

trustworthy and reliable since outliers in the measured data (or states) can cause missed 

or false alarms during fault diagnosis. In addition, faults can make the system states 

nonstationary needing a novel analytical model-based fault detection framework. In this 

paper, an online outlier identification and removal (OIR) scheme is proposed for a 

nonlinear dynamic system. Since the dynamics of the system can experience unknown 

changes due to faults, traditional observer-based techniques cannot be used to remove 

the outliers. The OIR scheme uses a neural network (NN) to estimate the actual system 

states from measured system states involving outliers. With this method, the outlier 

detection is performed online at each time instant by finding the difference between 

estimated and measured states and comparing its median with its standard deviation over 

a moving time window. The NN weight update law in OIR is designed such that the 

detected outliers will have no effect on the state estimation which is subsequently utilized 

for model-based fault diagnosis.  In addition, since the OIR estimator cannot distinguish 

between faulty or healthy operating conditions, a separate model-based observer is 

designed for fault diagnosis which uses the OIR scheme as a preprocessing unit to 

improve the fault detection performance. The stability analysis of both OIR and fault 

diagnosis schemes are introduced. Finally a three-tank benchmarking system and a 

simple linear system are used to verify the proposed scheme in simulations, and then the 

scheme is applied on an axial piston pump testbed.  The scheme can be applied to 

nonlinear systems whose dynamics and underlying distribution of states are subjected to 

change due to both unknown faults and operating conditions. 
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1. INTRODUCTION 

Outliers are present in data sets of practical industrial systems. By definition [1], 

an outlier is an observation which deviates sufficiently from other observations thus 

creating suspicion that it was from a different system. In industrial systems, outliers can 

appear in the measured data. If measured data from a system is contaminated by outliers, 

processing the data becomes difficult since these outliers can render inaccurate decisions 

during fault diagnosis. In many cases, the underlying distribution of the measured data 

can change due to outliers. 

 On the other hand, due to the high risk of component and system failures, reliable 

fault diagnosis schemes are required to guarantee safe system operation even in the 

presence of uncertainties, outliers, and faults. A reliable fault detection scheme is the one 

that can detect faults at an early stage, without missed or false alarms before the root 

cause analysis.  

Recently the topic of fault detection and diagnosis has attracted a number of 

researchers around the world. Fault detection is performed data-driven [2], model-based 

[3] or a combination of both [4, 5]. Several model-based fault detection techniques have 

been developed in the past decade [6-10]. However, even the best fault detection schemes 

can become unreliable in the presence of data corrupted with outliers since outliers can 

cause false alarms.  

Several outlier identification and removal schemes have been proposed in the 

literature such as distribution-based [11], distance-based [12, 13], clustering [14, 15], and 

density-based methods [16]. Also surveys of different outlier detection methods are given 

in [17, 18]. However these methods are data-driven and work offline. An online outlier 

detection scheme is a prerequisite for improving the performance of the model-based 

fault detection scheme where system states are utilized. Therefore, several online outlier 

removal methods have also been developed for linear systems with known dynamics by 

using Kalman filter and its variations [19-21] by assuming that the system states and 

measurement noise belong to the Gaussian distribution. However, due to changes in the 

operating conditions and presence of faults, the underlying distribution of states is not 

necessarily fixed and therefore nonstationary. Therefore a novel scheme to detect the 
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presence and the removal of outliers from system states is needed for both linear and 

nonlinear systems in nonstationary environments. 

Since the system states are considered to be contaminated with noise and outliers, 

the main objective of this paper is to develop an online outlier identification and removal 

(OIR) scheme for system states prior to fault detection stage in contrast with traditional 

model-based fault detection framework where outlier-free state assumption is made [22]. 

The robustness and reliability of the model-based fault detection scheme is evaluated by 

using detection rate, missed and false alarms with and without outliers. In model-based 

fault detection, data points are system states or outputs.  

Since in practice outlier-free system states are not available, they need to be 

estimated and then compared to the measured states to detect outliers. Here, traditional 

observers cannot be used because the system dynamics are not known and subjected to 

unknown faults. Therefore a two-layer feedforward neural network (NN) is utilized to 

estimate the actual system states and at the same time to identify and remove the outliers. 

The NN outputs are the estimated states filtered for noise and outliers. At each time 

instant, the estimated state vector from the OIR scheme is calculated for the next instant 

of time and compared to the measured states to generate the state estimation error.  

Next, median and standard deviation of the state estimation error in a limited time 

window are found. If the state estimation error and the calculated median are both higher 

than three standard deviations, an outlier is detected.   A novel NN weight update law is 

derived by using the state estimation error. In order to prevent an update of the NN 

weights in the state estimator in response to an outlier, a variable learning rate is selected 

such that it takes on a zero value when an outlier is detected. The stability of the state 

observer utilized for OIR is discussed in the paper.  

For the purpose of fault detection, a different observer with known nominal 

dynamics of the system is introduced. Since the OIR scheme estimates the known system 

dynamics, uncertainties, and fault function, it cannot be used as a fault detection 

observer. Moreover by using a second observer for fault detection, the fault function can 

be approximated for isolation and prognostics. Therefore, an observer-based fault 

detection scheme is introduced that uses the estimated outlier-free state vector instead of 

the measured state vector. A fault is detected by comparing the observed states with the 
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outlier-free system state vector. Upon detection, an online approximator is activated to 

estimate the fault dynamics. The performance of the fault detection scheme is evaluated 

with and without the proposed outlier scheme. Again note that the state estimation for the 

OIR scheme is different than the one used for fault diagnosis.   

Therefore the contributions of this paper involve the development of an OIR 

scheme which can operate online in contrast with data-based methods[11-16], and can be 

applied to both linear and nonlinear systems in nonstationary environments in contrast 

with existing Kalman filter-based schemes [19-21]. Since the proposed NN estimator is 

quite generic and does not use the system representation or model, it is useful even when 

the system dynamics are not known. In other words, the OIR scheme can be utilized both 

for data driven and model-based fault diagnosis schemes. 

 Moreover, a model-based fault detection scheme which uses the estimated 

outlier-free states instead of the actual measured states of the system is presented and the 

stability analysis of the proposed fault diagnosis scheme is included when the underlying 

distribution of states are nonstationary in contrast with all the available model-based fault 

diagnosis [3-8]. This requires a complete novel analytical framework. 

To verify the performance and effectiveness of the proposed outlier removal 

technique and observe its effect on fault detection process, a three-tank water system is 

used. A fault is seeded in one of the tanks and outlier removal is performed on both 

healthy and faulty data. It is shown that fault detection can only provide reliable results 

when the outliers are removed from the measured data. Also a linear example is used to 

compare the proposed scheme with a Kalman filter-based method. Simulations have been 

repeated for a significant number of times to evaluate the proposed scheme in different 

cases of random noise and outliers. Further, an experimental study has been conducted on 

an axial piston pump testbed in healthy operating conditions and it is shown that the 

measured outlet pressure involves several outliers which will trigger false alarms during 

fault detection. The outliers are shown to be removed successfully from the measured 

outlet pressure by using this online OIR scheme. 

This paper is organized as follow: Section II introduces the system description 

and required assumptions. Section III presents the outlier detection and removal 
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technique while fault detection scheme is introduced in Section IV. Section V discusses 

simulation and experimental results. 

 

2. SYSTEM DESCRIPTION 

Consider the nonlinear discrete-time system described by the following state 

space representation 

           1 , ,x k x k u k x k u k     

where      is the control input vector,      is the system state vector,      

      represents the known nonlinear system dynamics, and            

represents the system uncertainties. 

Now consider the nonlinear system with a fault as 

                  01 , , Π ,x k x k u k x k u k k k h x k u k         (1) 

where              represents a vector of possible fault dynamics. The time profile of a 

fault is given by        . The time profile         is modeled by         

                                   where 

 i 0

0 ,      0
Ω       1, ,

1 ,      0i

if
k k for i n

e if
 






   

 
 

is the time profile variable and     is an unknown constant that represents the rate at which 

a fault occurs. A larger value of     indicates that it is an abrupt fault. The use of such time 

profiles is common in fault diagnosis literature [6].   

Note that this fault will definitely change the system dynamics and might even 

change the underlying distribution of system states. Normally in the literature [6-9], it is 

assumed that the states are free with noise and does not change its underlying distribution 

which is not practical. Consequently, Kalman filters [23]  cannot be used to eliminate 

noise and outliers from the measured states because they require system states and noise 

to have a fixed distribution and also require the exact system representation which is not 

available in our case due to unknown fault. In this paper, a NN-based approach will be 

taken with appropriate selection of NN weights such that this assumption is relaxed. 
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For the purpose of monitoring the system and performing fault detection, state 

measurements are required. Usually, the measured system states are contaminated with 

noise and outliers. The measured state vector      can be represented by 

               

where      includes measurement noise and outliers which is considered bounded above 

such that          . The distribution of the measurement noise can change over time.  

According to the definition [1], if the measured states      deviates significantly from 

the actual system states     , the data point is said to be an outlier. Model-based fault 

detection schemes cannot distinguish a residual increasing due to a fault or an outlier. 

Therefore, outliers in the measured states can cause false alarms during fault detection 

and diagnosis. This fact clearly emphasizes the importance of detection and removal of 

outliers before fault detection. The following standard assumptions are needed in order to 

proceed. 

Assumption 1: The modeling uncertainty is bounded, i.e.                   

            , where    is a positive known constant. 

Remark 1: Assumption 1 is needed to distinguish between faults and system 

uncertainties and to analytically determine the fault detection threshold. 

Assumption 2: The nonlinear system dynamics        is Lipschitz in  , i.e., 

                           , where      is the Lipschitz constant. 

Remark 2: This assumption is only required for the fault detection part, mainly 

because the estimated outlier-free states are used in the proposed FD estimator instead of 

the actual system states. This assumption has been used in other articles on fault 

diagnosis [6, 24] where the entire state vector is not available and estimated states have to 

be used in the estimator dynamics instead of actual system states. 

Assumption 3: The functions             ,             , and              

can be expressed as nonlinear in the unknown parameters (NLIP), thus can be 

approximated by two-layer neural networks with bounded weights and approximation 

errors. 

Next the proposed outlier detection scheme is introduced. 
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3. OUTLIER IDENTIFICATION AND REMOVAL SCHEME 

The main objective of this work is to design an outlier scheme which can detect, 

identify and remove the outliers online, before an outlier triggers a false alarm during 

fault diagnosis. Therefore, the outlier detection must be performed online and prior to 

fault detection and root cause analysis. 

According to Chebschev’s theorem and outlier detection method [25], almost all 

the observations in a data set of system states will fall into the interval            , 

where   and   are the mean and standard deviation of the data set respectively, and the 

data points outside this interval are declared outliers. If the distribution of the actual 

system states was fixed over time, traditional outlier detection methods [25, 26] can be 

employed whereas for the present scenario, these methods cannot be utilized. Now 

initially assume that the measured system state vector   has following fixed distribution  

  2( ) ~ ,y k x k   

where         is a Gaussian distribution with mean   and variance   . In this case an 

outlier can be defined as a point where                where     is the absolute 

value operator. If the mean value of the actual states is equal to  , then this definition can 

be rephrased as            .  But this method is offline and also it cannot be used 

when the system states do not have a fixed distribution. In this work, we have assumed 

that the system is subjected to a fault, which can change the nominal dynamics of the 

system as well as the underlying distribution of the states. 

In order to develop a method of online outlier detection for a system with 

changing dynamics, we will investigate the measured state vector in a fixed time window, 

assuming that the measurement noise has a fixed distribution over each of these small 

time windows. Suppose that the state vector at time instant   is being investigated and 

consider a finite window of time with length   in which the measured state vector is 

available, i.e.       1 , , 1 ,y k p y k y k    . 

If the outlier-free state vector in the current window is available, then the 

difference between actual and measured state vector can be calculated by       and 

its mean and variance over the selected time interval can be found by 
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Since the distribution of measurement noise is normal, assuming that its variance 

is constant within the considered time window, an outlier can be detected at time  , when 

                 . Although this is an online outlier detection method which can 

also handle the changes in the system dynamics, it is impossible to implement since the 

outlier free system states are not available in practice and the only available data would 

be the measured states contaminated with noise and outliers.  

To overcome this issue, an estimator will be proposed to estimate the unknown 

system states by assuming that the states are available for measurement. In the literature, 

the outlier removal is traditionally done without an estimator while an observer is 

normally utilized for model-based fault detection and not for outlier removal.  In contrast, 

by using an observer, we are estimating the actual states and also performing outlier 

removal.  

If the system dynamics was known, it could be used to construct an observer to 

estimate the system states, similar to Kalman filter-based outlier detection methods. But 

this is only possible when the system is working in healthy conditions with known 

dynamics. In our case, the system is subjected to unknown changes like faults. So an 

estimator which is able to approximate the system states without using the system 

dynamics is required. To construct this online approximator and its learning mechanism, 

initially we consider the case when the measured data does not have outliers, and then the 

general case will be investigated. Since            ,             ,              are 

all smooth functions,        in equation (1) can be approximated by a two layer NN, if 

   does not involve outliers. So        can be written as  

      (1 , )) (T kx k W x k u k k     

where        is the unknown parameter matrix which will change when a fault 

occurs in the system or the model parameters change due to shift in the operating 

conditions, which can also change the distribution of the states,              is a basis 

function like sigmoid, and      is the approximation error which is bounded by    [27]. 
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Now let the estimated states be denoted as    and consider the NN output as 

       1 (ˆ ) ,T

s sx k W k x k u k      (2) 

where         represents the unknown weights of the output layer of NN. Now an 

update law for training    is required. Define the state estimation error            

      and parameter estimation error                . When there is no noise and 

outliers in the measured states, which means   is equal to   at all times, the weight 

update law can be selected as 

          

           

1 , 1  

, ,

ˆ ˆ

ˆ

T

s

T

s s

W k W k x k u k e k

I x k u k x k u k W k



  

   

 
      (3) 

where     is a constant learning rate,      , and                    

  . Note that the NN weights are updated by the difference between measured states and 

estimated states, because the actual system states are not available. Then the state 

estimation error can be written as 

         (1 ( ) ( )) ,T T

sx k W k W k x k uk k k       

where                                 . 

 

Remark 3: Instead of the measured state vector  , the delayed output of the NN 

(     ) along with the input vector     are used as NN inputs, in order to prevent the 

outliers in measured data from affecting the state estimates whereas   is only used for 

updating the NN weights. Later on, the weight update law in (3) will also be modified in 

order to cancel the effect of outliers on the NN weights. 

By choosing the following Lyapunov function candidate 

     
1

{ ( )}T TV x k x k tr W k W k


   , 

it can easily be shown that state and parameter estimation errors will be uniformly 

ultimately bounded. However, measured states involve outliers, so this approach cannot 

be utilized since the outlier-free state vector is not available. In other words, when   is 

contaminated with outliers and this measured data is used to update the NN weights in 
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(3), the actual states will not be estimated correctly while the outlier detection will also be 

unreliable. 

To solve this problem the outlier detection and state estimation processes will be 

combined to properly detect outliers and design a new weight update law that is not 

affected by the outliers. The parameter update law in (3) is modified by using a variable 

learning rate whose value will be zero when an outlier is detected at time       and not 

zero otherwise. Suppose that        is an outlier. In this case        which is used 

to update the parameters will be large, even if the weights are close to their desired values 

and         is close to its desired value       . To prevent the NN weights to be 

updated by an outlier at this time instant, the variable leaning rate        used in the 

update law should take zero value.  

Since       is available at the time instant  ,         can be calculated and 

used for outlier detection before updating the weights. To perform the outlier detection on 

      , again consider a finite window of time with length  . The median value of 

           (where     is the norm operator) in a window ending at time       is 

defined by 

        1 2 , , ,  1M k Median e k p e k e k       

and the standard deviation in the same time window is defined by 

        1 2 , , ,  1k Var e k p e k e k        

Similar to the first case, it can be assumed that the variance of the measurement 

noise is constant within the time window. Therefore, a threshold value of three times the 

standard deviation is used to detect the outliers. Because of the limited time window, the 

mean value of the data set inside a window might be significantly affected even by a 

single outlier, which might increase the probability of a false or missed alarm. In contrast, 

median value is not easily affected by a single outlier. Therefore if mean value is used for 

outlier detection, the unwanted change in the mean value can definitely degrade the 

performance of outlier detection process. This simple example clarifies the reason why 

median is used in this outlier detection scheme instead of mean value. 

Thus, median value is used instead of mean value to overcome this problem. 

Finally the data point at time       is considered an outlier if  
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   1 ( 1) 3 1e k M k k      

Now that the outlier detection is performed for the data set comprised of system 

states at time      , we need to construct an analytical formula to find the variable 

learning rate        based on whether or not an outlier exists at this time instant. The 

idea is to reduce the learning rate, preferably to zero, when an outlier is detected at time 

     , in order to prevent the NN weights from getting updated by an outlier. Also, the 

learning rate needs to be small when outliers are not present with relatively large 

amplitude noise.  

For this purpose, define the function      as 

   
2

21         1

0                   

z for z
S z

otherwise

  
 


 

This bell-shaped function achieves its maximum at     and takes zero value when 

   . This function is utilized to construct the robust variable learning rate given by 

     
1

1 1 1
3 ( 1)

Mk S e k M k
k

 


 
     

 
 

where    is the maximum possible learning rate parameter which keeps the estimator 

stable. Larger noise amplitude will result in larger values for                  , 

thus smaller values for the learning rate. Particularly when                   

       (which means an outlier is detected at time      )        will 

automatically be set to zero, so the weights will not be updated upon detecting an outlier. 

Further, considering the definition of outliers, it can be inferred that an outlier is detected 

at time   if       . 

Finally, the proposed parameter update law can be represented by 
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The definition of the learning rate implies that, if        is relatively close to     

  , then the corresponding learning rate        which appears in the parameter update 

law, will be close to maximum possible learning rate. Whereas, if        is largely 

deviated from        then the corresponding learning rate, will be zero or close to 
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zero. This means that measurement noise cannot make significant change on the NN 

weights while the effect of outliers on the weight update law is completely eliminated. In 

the following theorem, the performance of state estimation with the proposed outlier 

detection and removal scheme is discussed. 

Theorem 1: Let an adaptive observer in (2) be used to estimate the state vector of 

system (1) when the measured state vector   is contaminated with outliers. Then the state 

estimation error,                 , and the NN weight estimation error       are 

uniformly ultimately bounded (UUB) in the mean if the user-defined variables are 

selected such that 

 

       
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Proof: Consider the following Lyapunov function 
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3
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where E(.) is the expectation operator.  The first difference of this function is given by 

         

         

Δ 1 1

1
1 1

3

T T

T T

V E tr x k Ix k x k Ix k

E tr W k W k W k W k

   

   

 

By substituting         from the state estimation error equation and         

from the update law in the above equation and applying Cauchy-Schwarz inequality, it 

can be shown that 
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where                    . Note that                               

  
 . Assuming that the basis function      is a Lipschitz function with the Lipschitz 

constant   , leads to 
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Where     and     are the maximum norm values of    and  . Substituting 

        from the state estimation error equation and combining similar terms yields 
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Define   ,   , and   as 
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 If the design parameters are selected such that      and     , the state and 

weight estimation errors will be UUB in the mean with the following bounds given by 

     
22

1 2

,
D D

E x k E W k
B B

 

 

 

Remark 4: The conditions in Theorem 1 can be satisfied by proper selection of 

the basis function   and user defined parameters including   ,     ,   , and  . 

In summary, the proposed NN and weight update law can both detect and remove 

outliers from the measured data or system state or output vector  . First of all, if      is 

zero then an outlier is detected in      which will have no impact on NN weight update. 

Therefore, outliers will automatically be removed in the state estimates    and 

measurement noise will be moderated. Further, by reducing the effect of outliers on the 

weight update law, the state estimation issue is resolved and boundedness of state and 

parameter estimation errors can be obtained similar to the case of no outliers. 

After detection and removal of outliers, the estimated outlier-free state vector    

can be used for fault detection without the risk of having false alarms. Figure 3.1 shows 

an overview of the combined online outlier detection/removal and fault detection scheme. 

The next section briefly discusses fault diagnosis after outlier removal.  

 

 

Figure 3.1. Overview of the combined outlier removal and fault detection scheme 
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4. FAULT DIAGNOSIS SCHEME 

Model-based fault detection schemes require an observer to estimate the system 

states. Then a fault detection (FD) residual will be generated by comparing the actual and 

estimated system states [28]. Traditional model-based fault detection schemes use the 

measured states in the fault detection observer and then compare them with observer 

states to detect faults. But when the measured states are not reliable and involve outliers, 

false alarms could be triggered. Therefore in this section the outlier-free state vector    is 

used for the purpose of fault diagnosis, instead of the actual measured state vector  . As 

mentioned in previous section, it can be shown that         is bounded in the mean, 

i.e.                    . 

 Consider the nonlinear FD estimator 

                 ˆ ˆˆ ˆ1 , , ;d s d s d d sx k A x k x k u k h x k u k k A x k          (5) 

where          is the estimated state vector,       
          is the output of the 

online approximator in discrete time (OLAD) with          being its set of unknown 

parameters, and    is a user defined diagonal matrix, which must be selected in a way 

that the eigenvalues of the closed loop system lie within the unit circle [27]. Initial values 

of the FD estimator are taken to be                      
, such that             

   . 

In the proposed FD estimator, NNs are used as the OLADs. NN-based OLAD is 

off prior to the detection of a fault and thus its output is zero.  Upon detection of a fault 

the OLAD is turned on to estimate the fault dynamics. 

Define the detection residual as         .  Prior to the detection of a fault, the 

residual dynamics are given by 
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where                                 . As mentioned earlier    which is the 

difference between actual system states   and estimated outlier-free states   , is bounded. 

Also from assumptions 1 and 2, we know that    and   are bounded. Therefore with the 
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appropriate selection of   , the detection residual    will remain bounded in healthy 

operating conditions of the system.  

Now consider a dead-zone operator 

 
0,                 

,                 

if z
D z

z if z





 
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
 

where   is the FD threshold. When the detection residual exceeds the detection threshold, 

a fault is declared active through the dead-zone operator and the OLAD that generates 

       is initiated and tuned online using the following update law 

           ˆ ˆ ˆ ˆ1 )ˆ (ˆT T

d d dk k k D e k I k k k                      (6) 

where     is the learning rate,       is the forgetting factor, and       

              is a basis function like sigmoid or RBF. Moreover the output of the 

OLAD will be given by 

        ˆ ,ˆ T

d d sh k k x k u k   

After detection, the residual dynamics can be described by 
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Asserting the NLIP assumption on the fault function the above equation can be 

rewritten as 

          

        
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   
      (7) 

where                  is the OLAD parameter estimation error, and      is the 

approximation error which is bounded by   . 

The stability of the proposed scheme will be investigated in the following theorem  

Theorem 2 (Fault Diagnosis Observer Performance): Let the proposed 

observer in (5) be used to monitor the system in (1), with the OLAD turned on upon 

detection of a fault. Let the update law in (6) be used to update the unknown parameter 

set    . Then the FD residual,      , and the parameter estimation errors,        are 

uniformly ultimately bounded in the mean. 
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Proof : Consider the following Lyapunov function candidate 
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Then the first difference of the Lyapunov function is given by 
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By substituting         from (7) in     and applying the Cauchy-Schwarz 

inequality we get 
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Now substitute          from (6) in     and use the Cauchy-Schwarz inequality 

to arrive at 
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By combining     and    , taking Frobenius norm, and using assumption 2, we 

arrive at 
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Therefore,    and     are uniformly ultimately bounded in the mean if the 

following conditions are satisfied 
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5. SIMULATION RESULTS 

In this section a three tank water system is selected to verify the performance of 

the proposed schemes in simulations and then an axial piston pump testbed is used as an 

experimental study to show the effectiveness of the proposed outlier removal technique in 

practice. 

 

5.1. EXAMPLE 1: THREE-TANK BENCHMARKING SYSTEM 

A schematic view of the three-tank benchmarking system [29] is shown Figure 

5.1. This system consists of three tanks connected to each other, two input pumps on tank 

1 and tank 2 and one water outlet on tank 2.  

The three-tank system dynamics are described by          1 ,x k x k u k x k     

where             
  is the state vector and              is the known nonlinear 

dynamics of the system [20] given by 

              

 
 
 
 
 
 
 
 
 
 

 

 
                                        

              
 

 

 
                                            

                           
 

 

 
                                            

                                               
 
 
 
 
 
 
 
 
 

 

where T  is the sampling time chosen to be 0.01 seconds,             is the cross 

section  of the tanks,              is the cross section of the connecting pipes, 

             and      are the outflow coefficients, and            is the 

standard gravity. Moreover 

                                                           

represents the modeling uncertainty.  

This system is subjected to a fault which is given in terms of leakage in tank 1 and 

occurs at time    40 s. The fault function is described by 

        00.5

10.0154 1 2 , 0, 0
T

T k k
h x k e gx k

   
 

 

 



 

 

60 

 

Figure 5.1. Schematic view of the three-tank system 

 

The FD estimator in (5) is used to detect the faults, where            . The 

OLAD output is given by           
               , where          is the 

estimated parameters while      is a vector of sigmoid functions. Moreover  ,   are 

selected randomly and the update law parameters are             . The detection 

threshold,  , is selected to be 2.5. 

Figure 5.2 shows the actual system states while Figure 5.3 depicts the measured 

system states involving a number of outliers. The state distribution for healthy and faulty 

periods is depicted in Figure 5.4. The mean and variance of the distribution in healthy 

period are 2.33 and 2.05 respectively, while mean and variance values for the faulty 

period are 54.24 and 1479.53, respectively. If the measured data is used for fault 

detection, the outliers will cause false alarms to be triggered. This can be observed in 

Figure 5.5 where the detection residual is plotted along with detection threshold. Fault is 

seeded at t=40 s, but a false alarm will be triggered at about t=8 s. It is obvious that in 

this case, the estimated fault given by the OLAD cannot be close to the actual fault at all. 

 

 

Figure 5.2.  Actual system states   
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Figure 5.3. Measured system states 

 

 

Figure 5.4. Distribution of the measured data    

 

 

Figure 5.5.  Detection residual without outlier removal 

 

In order to fix this problem, the proposed outlier removal scheme is first utilized 

to remove outliers from the measured data. A NN with 12 hidden layer neurons and 

sigmoid activation functions is used to estimate    and   which is the window size is 

selected as 100 (that means 1 second). The estimated    is shown in Figure 5.6. It can be 
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observed that the outliers are removed from the measured states.  Table 5.1 shows the 

outlier detection results for several cases with different number of outliers at randomly 

selected times. It is observed that the proposed scheme has been able to detect 100% of 

the outliers in most cases, with low number of false positives. 

 

 

Figure 5.6. Estimated outlier-free states    

 

 

Table 5.1. Outlier detection statistics 

* The presented plots correspond to case 1 

Case # 
Total number 

of outliers 

Number of 

True positives 

Number of 

False positives 

1* 12 12 1 

2 8 8 0 

3 14 14 2 

4 18 17 1 

5 9 9 0 

6 11 11 0 

 

 

When    is used in the fault detection observer, no false alarm will be triggered 

and the actual fault is detected at t=74 seconds (Figure 5.7). Figure 5.8 shows the 

estimated and actual fault magnitudes in this case. Unlike the previous case, when no 

outlier removal was performed, the fault can be estimated with a small error. The 

simulation results clearly illustrate the effectiveness of the proposed outlier 
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detection/removal scheme. Furthermore the importance of removing the outliers before 

performing fault detection is clarified. 

 

 

Figure 5.7. Detection residual with outlier removal 

 

 

Figure 5.8. Detection residual with outlier removal 

 

 

5.2. EXAMPLE 2: LINEAR MATHEMATICAL EXAMPLE 

A linear system has been selected as the second example to compare the proposed 

scheme with a Kalman filter-based approach. The system is described by  1 ( )x k Ax k  , 

where   is defined by 
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with        . In fact the system dynamics are slightly changed during the simulation, 

in order to test the proposed scheme and compare its performance with a Kalman filter-

based method under nonstationary operating conditions. The entire simulation time is 
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taken to be 100 seconds and the sampling time is 0.1 seconds, and the states are measured 

as follows   1

2

( ) 0.25 0
~ ( ),

0 0.25 0 ( )

r k
y k x k

r k

   
    

    

where       is set to 1 with probability 

  and to zero with probability    .  

Figure 5.9 shows the actual system states  , along with measured states   when 

       and Figure 5.10 depicts the distribution of       for      and     . In 

the first half of the simulation the mean and variance of       are 0.049 and 0.82 

respectively, whereas mean and variance in the second half of the simulation are -0.008 

and 1.37. The proposed outlier detection and removal scheme is applied on the measured 

data, with     ,       , and randomly selected   matrix. The estimated states are 

shown in Figure 5.11. It is worth mentioning that the performance of the scheme is not 

degraded after the change in the system dynamics at t=50 s. 

 

 

Figure 5.9. Actual and measured system states 

 

 

Figure 5.10. Distribution of the difference between actual and measured states 
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Figure 5.11. Estimated states using the proposed NN-based scheme 

 

 

Next an outlier-robust Kalman filter whose parameters are fitted according to the 

Maximum Likelihood criterion [19], is applied on the same measured data and the result 

is shown in Figure 5.12. Although this method has a good performance in the first 50 

seconds of the simulation, its performance is extremely degraded when the dynamics of 

the system changes. Mean squared error of state estimation for both of the methods are 

presented in Table 5.2 for comparison. This simulation clearly shows that unlike Kalman 

filter-based approaches, our outlier removal method is robust to changes in the system 

dynamics (which could be due to faults or changes in the operating conditions). Although 

the state estimation error of the Kalman filter method after the occurrence of fault seems 

to be useful for fault detection, the large error in estimation makes this method useless for 

outlier removal in the presence of fault. 

 

 

Figure 5.12. Estimated states using an outlier robust Kalman filter 
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Table 5.2. Outlier removal performance comparison 

Method Mean squared error 

Proposed scheme 2.14 

Outlier robust Kalman filter 110.29 

 

The simulations have been repeated for 4000 times using the proposed method. 

The noise and outliers are random, thus vary from one simulation to the other. The 

average and maximum mean squared error of state estimation and the average percentage 

of detected outliers are shown in Table 5.3. The results imply that the proposed method is 

able to detect and remove the outliers with consistently high performance. The important 

point is that the average percentage of detected outliers is as high as 97% and the 

maximum mean squared error in all the simulations is less than 4 which is still very low 

compared to the Kalman filter method [19]. 

 

Table 5.3. Results of the repeated simulations using NN-based scheme 

Total 

number of 

simulations 

Average 

MSE 

Maximum 

MSE 

Average 

percentage of 

detected outliers 

4000 1.98 3.56 %97 

 

 

5.3. EXAMPLE 3: AXIAL PISTON PUMP 

An axial piston pump testbed is used to test the performance of the proposed 

outlier removal scheme and observe its effect on fault detection in an experimental study. 

A picture of this testbed is shown in Figure 5.13. The nonlinear dynamics of this system 

is described by 
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where                 represent the pressures in the nine pistons,        is the pump 

outlet pressure,   is the bulk modulus of the hydraulic fluid,    is the theoretical volume 

of flow,    is the piston area,     is the discharge coefficient of needle valve orifice,   is 

the orifice area of the needle valve,    is the flow density, and   is the sampling time. 

Furthermore                               are obtained by 

 

2 3

10

1 1

( ) tan( )sin( ( 1) ), ( ) ( ( ) )
4 6

2 ( ) ( )
( )
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p g

kpi c p lpi i c

i

pi d d

c

pi p c c

d R rh
Q k k i Q k x k P

L

x k x k
Q k C A

S k R k i

    




   

 
  





  

 

where   is the angular velocity of the pump drive shaft,   is the diameter of the piston, 

   is the piston radius on barrel,   is the angle of swash plate,    is the phase delay,   is 

the radius of piston,   is the absolute fluid velocity, and   is the length of leakage 

passage.  

 

 

Figure 5.13. Picture of the axial piston pump testbed 

 

In this system only one of the states, namely the pump outlet pressure is 

measurable. Therefore for the purpose of fault detection an output observer [24] is 

constructed using the model of the system. The dynamics of the output observer is 

slightly different from the full state observer presented in this paper, in that it uses the 
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output of the system instead of the entire state vector. The sampling time for measuring 

the data is 0.1 second. The output of the system is measured in healthy operating 

conditions for 200 seconds and is shown in Figure 5.14. Mean and variance of the whole 

data set are 1428.79 and 59.34 respectively. 

 

 

Figure 5.14. Measured pump outlet pressure 

 

 

If the measured data is directly used for fault detection, several false alarms will 

be triggered. This can be clearly observed in Figure 5.15 which shows the fault detection 

residual and threshold without any outlier removal performed. To solve this problem, we 

use our proposed outlier removal scheme. The user defined parameters of the update law 

are selected as       and     . The estimated state    is plotted in Figure 5.16 and 

the fault detection residual when    is used for fault detection is shown in Figure 5.17. It 

is clearly observed that the outliers are removed and no false alarm is triggered.  

 

 

Figure 5.15. Detection residual without outlier removal 
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Figure 5.16. Estimated outlier-free pump outlet pressure 

 

 

Figure 5.17. Detection residual with outlier removal 

 

 

6. CONCLUSIONS 

In this paper, a NN-based online outlier detection and removal scheme was 

presented and combined with a model-based fault detection scheme. It was demonstrated 

that the underlying distribution of data in the case of a data driven scheme or states in the 

case of model-based fault detection is nonstationary due to presence of changing 

dynamics, outliers and noise.  Moreover, it was shown that a separate OIR scheme is 

necessary prior to any fault detection and diagnosis.  On the other hand when the outliers 

are removed by the proposed scheme, fault detection can be performed successfully. The 

proposed observer-based method changes the learning rate to zero when an outlier is 

detected. The proposed OIR scheme can function even when the measured data which is 

going to be used for monitoring and fault detection is contaminated with outliers. Then a 

data driven fault detection scheme can yield low detection rate and high false alarm rate 

similar to the model-based fault detection framework. 
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III. Decentralized Fault Diagnosis and Prognosis Scheme for Interconnected 

Nonlinear Discrete-Time Systems 

 

Hasan Ferdowsi and S. Jagannathan 

 

 

Abstract 

This paper deals with the design of a decentralized fault diagnosis and prognosis 

methodology for large-scale interconnected nonlinear dynamical discrete-time systems 

which are modelled as the interconnection of several subsystems. For each subsystem, a 

local fault detector (LFD) is designed based on dynamic model of the local subsystem 

and estimated states. Each LFD consists of an observer with an incorporated online 

approximator. Online approximators only use local measurements as their inputs and are 

always turned on and continuously learn the interconnection function as well as possible 

fault dynamics. A fault is detected by comparing the output of each online approximator 

with a predefined threshold instead of using the residual. Derivation of robust detection 

thresholds and fault detectability conditions are also included. Due to interconnection 

nature of the large scale system, the effect of faults propagate to other subsystems, thus a 

fault might be detected in more than one subsystem. Upon detection, faults local to the 

subsystem and from other subsystems are isolated by using a central fault isolation unit 

which receives detection time information from all LFDs.  The proposed scheme also 

provides the time-to-failure or remaining useful life information by using local 

measurements. Simulation results provide the effectiveness of the proposed decentralized 

fault detection scheme. 
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1. INTRODUCTION 

Several practical systems such as the well-known power generation and 

distribution systems, telecommunication networks, water distribution networks, traffic 

networks, exhibit complex and spatially distributed dynamics and can be referred to as 

large scale interconnected systems. With increasing complexity with these systems, there 

is a high possibility of occurrence of faults. Therefore, suitable fault diagnosis schemes 

which permit the operation of such large scale interconnected systems reliably at all times 

are needed.  In this paper, a quantitative decentralized fault diagnosis scheme for a large-

scale interconnected system in discrete-time and its rigorous analysis are introduced.  

Out of the data driven and model-based fault diagnosis schemes, data driven 

methods [1] need healthy and faulty data from the system, which can be quite expensive 

to collect, store and process. Model-based fault diagnosis schemes [2], on the other hand, 

do not require significant quantities of data for development whereas require data to 

detect faults online. Therefore, a number of researchers have worked on model-based FD 

schemes, using adaptive estimators or observers [3-5], neural network based observers 

[6,7], fuzzy observers [8,9], etc, for several practical industrial systems.  

In the recent literature, decentralized control of distributed systems [10-12] by 

using local subsystem states is introduced due to the effort involved in transmitting entire 

system state vector for a centralized control scheme. In contrast, the fault diagnosis 

articles [4-8] for such interconnected systems offer centralized FD schemes that require 

all the states of the system to be measured.  

Recently by using overlapping decomposition [13], a large-scale system is 

decomposed into a set of subsystems which are interconnected by unknown nonlinear 

functions and distributed fault diagnosis scheme is introduced by assuming the entire 

state vector is available. On the other hand, decentralized fault diagnosis schemes in 

[13,14] are introduced for continuous-time systems by assuming that the interconnection 

functions are known and the entire estimated system state vector is available at each 

subsystem.   

However, for large-scale interconnected systems, it is very expensive and time 

consuming to gather and process all the measured system states while the measurements 

can be outdated due to delay in transmission although availability of all the state 
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information at each subsystem can help in an accurate diagnosis. Additionally, time-to-

failure (TTF) information is not included upon detection in all the above schemes 

[8,13,14].  

By contrast, our objective in this paper is to design a network of local fault 

detectors (LFD) or observers for interconnected nonlinear discrete-time systems so that 

each LFD monitors a single subsystem by making use of the local information or states in 

contrast with [13,14]. In addition, partial isolation of faults and TTF will be included 

upon detection. 

Since discrete-time implementation is preferred for hardware implementation 

[15], in this work, the nonlinear system is modeled in discrete-time along with external 

disturbances, unmodeled dynamics and interconnection effects.  The class of faults 

considered is allowed to be nonlinear with respect to the state and input, and includes 

both abrupt and incipient faults. Incipient faults may be difficult to deal with owing to the 

fact that their small effects on residuals can be hidden as if they are due to the modeling 

uncertainty. Here, we stress the design of truly decentralized fault diagnosis scheme for 

incipient faults in discrete-time.  

Each local fault detector mainly consists of a nonlinear observer with an 

incorporated online approximator which is used to estimate the unknown part of the 

subsystem dynamics, i.e. interconnection term and possible fault function.  A local 

residual signal is generated by comparing the estimated local states from the observer 

with the measured system states. However, this residual is not used for performing fault 

detection, whereas it is used to update the unknown parameters of the online 

approximator. In contrast with other model-based fault detection methods [3-9,13,14], the 

online approximator is always turned on and the detection is performed by comparing the 

output of the OLAD with a predefined threshold. This is possible due to the fact that the 

interconnection term remains bounded as long as the system works in healthy operating 

conditions and the system states remain bounded in the absence of fault. In addition, a 

mathematically rigorous approach to the derivation of robust detection thresholds and 

fault detectability condition is given. 

 This approximator only uses the local states and learns the interconnection and 

fault dynamics at each subsystem. It is mathematically shown that although the 
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interconnection term is a function of nonlocal states, it can be estimated by an online 

approximator whose inputs are the measured local states at current and next time instant. 

In order to make this method practical, we have considered the observers one time step 

behind the actual system. 

Upon detection, a fault isolation algorithm is utilized to determine whether or not 

the fault is local by making use of a central fault isolation unit. The proposed isolation 

scheme requires minimal transmission of information, as the only information which 

needs to be transmitted is the detection time from the LFDs. Local faults affects local 

measurements quicker than non-local faults. Therefore by comparing the detection time 

at all the subsystems that are made available at the centralized isolation unit, the location 

of the fault is identified and appropriate action can be taken subsequently.  

The accurate approximation of interconnection and fault functions allows a good 

estimation of the states, thus allowing proper estimation of time-to-failure by comparing 

the system state estimates against the user defined failure limits [16]. The TTF ensures 

that the system will not be operated beyond this limit as it is unsafe. In this paper, the 

TTF is determined by using estimated system states instead of parameter estimates. 

Thus the major contributions of this paper include the development of a 

decentralized fault diagnosis scheme for nonlinear discrete-time systems wherein a LFD 

only uses local measurements in contrast with [3-9]. Each LFD is designed to detect 

faults regardless of their location and then determine if the fault is local or nonlocal by 

using a centralized isolation module. Furthermore TTF estimation is performed upon 

fault detection whereas such scheme is not available in most of the model-based methods 

[2-5].  

This paper is organized as follows. Section 2 gives a problem formulation for 

large-scale interconnected nonlinear discrete-time systems. Section 3 proposes the 

decentralized fault detection scheme including the main results on detectable faults, and 

discusses the partial isolation of faults as well as TTF determination, and finally Section 

4 reports simulation results. 
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2. SYSTEM DESCRIPTION 

Consider the interconnected nonlinear discrete-time systems described by 

         01 ( ), ( ) ( ), ( ) Π ( ), ( )x k x k u k x k u k k k h x k u k       

where      is the control input vector,      is the system state vector,         

   represents the nonlinear system dynamics,            represents the system 

uncertainties, and            represents a vector of possible fault dynamics. Suppose 

that this system is comprised of N interconnected subsystems. The ith subsystem 

dynamics are given by 

     

     0

1 ( ), ( ) ( ), ( ), ( )

( ), ( ) Π ( ), ( ) (1)

i i i i i i i i

i i i i i i

x k f x k u k g x k x k u k

x k u k k k h x k u k

  

  
 

where        is the local control input vector,        is the local state vector,          is 

the vector of interconnection states,     
           and     

                

represent the known local and unknown interconnection functions respectively,     
   

        denotes the system uncertainties, and     
           is the local fault 

function or fault dynamics. 

The time profile          is modeled by 

        
1 20 0 0 0Π Ω ,Ω , ,Ω

ni
i i i ik k diag k k k k k k     

 

where 

 
0,                     0

Ω       1, ,
1 ,      0

j j
i i

if
for j n

e if
 









  

   

is the fault profile and     is an unknown constant that represents the rate at which a fault 

occurs. A larger value of     indicates that it is an abrupt fault. The use of such time 

profiles is common in fault diagnosis literature [16,17]. Next standard assumptions are 

needed in order to proceed. 

Assumption 1 [4]: The modeling uncertainty is bounded, i.e.                  

                          , where     is a positive known constant. 

Remark 1: Assumption 1 is needed to distinguish between faults and system 

uncertainties. 
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Assumption 2 [16]: Interconnection functions and fault functions are expressed 

as nonlinear in the unknown parameters (NLIP) [18], i.e. they can be approximated by 

two-layer NN with bounded activation functions and weight parameters.   

Assumption 3 [9]: The interconnection terms are bounded by polynomial-type 

nonlinearities as                       
        

 
             .  For such system, it is 

considered that there exists a controller that is capable of keeping the system states 

bounded during healthy operating conditions. Thus, the bound on interconnection 

function given above in the healthy operating condition can be rewritten as 

                    
          , where      is a positive constant. 

Remark 2: The second part of the Assumption 3 is needed only in the healthy 

operating conditions, to analytically derive the fault detection threshold, whereas it is not 

used to prove the stability of the local FD observers.  Boundedness of the interconnection 

term during healthy operating condition is mild since a number of decentralized control 

techniques [10,12] demonstrate stability of such systems. On the other hand, during fault 

conditions, the interconnection term being bounded above is no longer needed since it 

will not hold. Instead, the online approximator to be defined in the next section 

approximates the interconnection function as it propagates the fault from one subsystem 

to the other. 

Assumption 4: It is assumed in this paper that faults occur one at a time in the 

subsystems. This assumption is required for partial isolation of faults. 

 

3. FAULT DIAGNOSIS AND PROGNOSIS SCHEME 

In the first part of this section, the proposed fault detection scheme is introduced. 

 

3.1. FAULT DETECTION (FD) 

In order to monitor the system states, local estimators which only use local 

measurements are designed. Since the interconnection functions and fault functions are 

not known, an online approximator is incorporated in each local estimator to approximate 

these functions. Unlike other fault detection schemes where the OLAD is turned on only 

after the detection, the online approximators used in our proposed estimators are always 
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turned on, in order to learn the possible fault dynamics as well as the interconnection 

dynamics. 

Let    be defined as the summation of interconnection term and fault function in 

subsystem i 

     0( ) ( ), ( ), ( ) Π ( ), ( )i i i i i i i ik g x k x k u k k k h x k u k     

It is clear, based on (1), that the interconnection term at time k, will affect the 

local states at the next time instant k+1.Using this fact, the interconnection term at time k 

can be represented as a function of local states at time k+1 and local states and inputs at 

time k. Thus,       can be approximated by an online approximator such as a two layer 

neural network (NN) whose inputs consist of      ,      , and        , with bounded 

weights and approximation error, i.e. 

        ( ) 1 , , ( )T

i i i i i i ik k x k x k u k k       

where       is the unknown parameter matrix,               is a basis function like 

sigmoid, and       is the approximation error which is bounded by    
. However, since 

the measured state vector,        , is not available at time k, we will consider the 

online approximator one time step behind the actual system, in order to make the 

proposed scheme practical. Thus, the NN approximator will be incorporated in a 

nonlinear observer which is designed to work one time step behind the actual system. The 

residual, which is defined as the error between measured and estimated states, will then 

be used to update the NN weights. 

Remark 3: The target weights are assumed to be time variant, because even when 

the interconnection term is time invariant, the occurrence and evolution of fault will make 

      a time variant function. 

Consider the local nonlinear estimator for the i
th

 subsystem described by 

          

        

ˆ 1 1 , 1 1

ˆ , 1 , 1 ; 1 )

ˆ

ˆ (2

i i i i i i

i i i i i

x k x k f x k u k x k

x k x k u k k

 

 

      

   
 

for    , where            is the estimated local state vector of the i
th

 subsystem, 

     
                  is the output of the OLAD with            being its set 

of unknown parameters and   is a user defined constant, which must be selected in a way 



 

 

80 

that the eigenvalues of the closed loop system lie within the unit disc [18]. Initial values 

of the local fault detection (FD) estimator are taken to be                        . 

During the healthy operating conditions of the system, the following inequality 

holds     ( ) ,i i ik g x k u k  so that         remains bounded based on Assumptions 3.  

When a fault occurs, the magnitude of fault function and interconnection function will 

increase. Therefore, a fault can be detected by comparing the norm of OLAD output, 

     , with a detection threshold    which will be defined later by using the bound on the 

interconnection functions in the healthy conditions as well as the bound on the OLAD 

approximation error. This is in contrast with detecting a fault by using the residual or 

state estimation error. 

To move forward, define the i
th

 subsystem residual as                   .  

Prior to the occurrence of a fault, the local residual dynamics are given by 

     

        

( 1) ( 1), ( 1) ( 1), ( 1)

ˆ , 1 , 1 ; 1 (3ˆ )

i i i i i i i

i i i i i

e k e k g x k u k x k u k

x k x k u k k

 

 

       

   
 

The next step in the design is to determine an update law for the online 

approximators which is given by 

( ) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1

ˆ ˆ

) (4)ˆ

T

i i i i i

T

i i i i i

k k k e k

I k k k

   

    

    

    
 

where   >0 is the learning rate,        is the forgetting factor, and       

                is a basis function such as sigmoid or RBF.  Then, the output of the 

OLAD is calculated as 

          ˆˆ 1 1 , 1 , 1 (5)T

i i i i i ik k x k x k u k        

Upon detection the local error dynamics can be derived by comparing (1) and (2) 

at time k as 

     

          

( 1) ( 1), ( 1) ( 1), ( 1)

ˆ( 1), ( 1) , 1 , 1 ; 1 (6ˆ )

i i i i i i i

i i i i i i i i

e k e k g x k u k x k u k

h x k u k x k x k u k k

 

 

       

      
 

Asserting the NLIP assumption on the local fault function, the above equation can 

be rewritten as 
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   

        

( 1) ( 1), ( 1)

1 , 1 , 1 ( 1) (7)

i i i i i

T

i i i i i i

e k e k x k u k

k x k x k u k k

 

  

    

     
 

where                     represents the parameter estimation error and       is the 

OLAD approximation error, which is bounded by     as a result of assumption 2. 

Next the stability of the local FD residual and parameter estimation errors is 

discussed.  

 

Theorem 1 (Local Fault Detection Observer Performance): Let the proposed 

local FD observer defined in (2) be used to monitor the subsystem described by (1), and 

let the update law in (4) be used to update the unknown parameter vector,       . In the 

presence of system uncertainties, the local FD residual,      , and the parameter 

estimation error,       , are uniformly ultimately bounded, provided the user-defined 

constants,   and   , and the basis function     , are selected such that        , 

                  

  , and      
    . 

 

Proof: Refer to the appendix. 

 

Theorem 1 guarantees the stability of the local FD residual and parameter 

estimation errors provided the design parameters are selected as derived in the theorem. 

As a result the interconnection functions can be approximated during the healthy 

conditions using only the local measurements in each subsystem. When a fault happens, 

the fault function is also approximated in the subsystem where it has occurred. Although 

the fault function only exists in one of the subsystems, it will affect the other subsystems 

through the interconnection term. Therefore, the estimation of interconnection functions 

in non-faulty subsystems, allows determination of non-local fault effects. This feature is 

also used for partial isolation of faults. 

 

Theorem 2 (Robustness and Detectability): Consider the nonlinear subsystem 

defined by (1) and the local observer (2). No fault is detected under healthy operating 

conditions if the detection threshold is selected as 



 

 

82 

max 2/
M Mi i i i ig D C q                   (8) 

where    is a small positive constant. On the other hand, the fault in subsystem i will be 

detected by its local fault detector, if there exists a time instant   , at which the following 

condition on the fault function is satisfied 

( ( ), ( )) 2i i d i d i ih x k u k q     (9) 

 

Proof: Refer to the appendix. 

 

Remark 4: In the case of a nonlocal fault, the interconnection term causes the 

local residual to exceed its threshold by carrying the effects of nonlocal fault from a 

different subsystem. In this case, there is no local fault function and the online 

approximator will try to follow the change in the interconnection term caused by a 

nonlocal fault. Thus the local OLAD will not provide the approximation of a nonlocal 

fault function and thus TTF calculation is not accurate. Therefore, upon isolation of a 

nonlocal fault, the TTF module will not be continued. 

 

Next section will discuss the partial fault isolation, upon detection of a fault by a 

local FD. With the proposed isolation method, the detected fault can be characterized as 

local or non-local fault. 

 

3.2. FAULT ISOLATION 

As discussed earlier, the online approximator in faulty subsystem estimates both 

the local fault function and the interconnection term, while the OLADs in other 

subsystems estimate only their interconnection function, which could be affected by the 

nonlocal fault. Therefore, not only the output of OLAD where the fault has occurred will 

increase above the detection threshold, but also the outputs of other OLADs can possibly 

increase due to interconnection effects. Thus, detection of fault could happen in more 

than one subsystem. However, it is important to note that local faults affect local 

measurements quicker than the non-local faults and they have shorter propagation delay. 

There is a stronger correlation between the local fault magnitude and corresponding 
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OLAD output magnitude. Using this fact, a fault can be isolated as local or nonlocal to a 

particular subsystem based on the time when it is detected. 

In the proposed isolation method, communication between the LFD and the 

centralized isolation unit is required. However there is no need for the transmission of the 

measured or estimated state vector of all the subsystem. The only information which must 

be transmitted is the detection time in each local fault detector and there is no need for 

the detection information to be transmitted at each and every time instant. In fact this 

information must be sent from all the subsystems to a central isolation unit at time 

instants      where          and   is a positive integer which determines the rate at 

which detection information must be collected from all the subsystems. In other words, 

the time interval between two consecutive transmissions will be equal to    where   is 

the sampling time. Larger value of   will result in fewer number of transmissions over 

the network, while smaller value of   leads to faster isolation of faults. So there is a 

tradeoff here which means that   should be selected according to both the required 

isolation speed and preferred transmission interval in a specific system.  

To formulate the isolation scheme, let   
   

 be the variable used to store the 

detection information of subsystem i and let   
        . The value of   

   
 will remain at 

zero unless a fault is detected by the LFD of subsystem i. Once a fault is detected by this 

LFD,   
   

 will be set to the detection time, i.e.,   
                  

                    
   

. 

Note that   
       is sent to the central isolation unit only when      where         .  

The fault isolation flowchart is depicted in Figure 3.1. Once detection information 

   
     is sent to the isolation unit by all the subsystems, the minimum among all of the 

nonzero detection times is calculated. Then for each subsystem, say subsystem i,   
   

 is 

first compared to zero. When   
   

 is equal to zero obviously no fault has been detected in 

subsystem i. However, when   
      a local or nonlocal fault has been detected in 

subsystem i. In this case, if the detection time   
   

 is equal to the minimum of all nonzero 

detection times, then the fault will be isolated local to subsystem i, otherwise the fault is a 

nonlocal fault which has propagated to subsystem i. 
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Remark 5: Note that with this method of decentralized fault detection and 

isolation, not only the location of fault can be determined, but also all the subsystems 

which are affected by this fault are identified. 

 

 
Figure 3.1. Flowchart of the fault isolation 

 

 

3.3. FAILURE PREDICTION 

The TTF determination is necessary for prognostics. This is also referred to as 

remaining useful life of the system. After the detection of a fault, by comparing the 

estimated states obtained from the observer to the user defined limits, time to failure can 

be determined [16]. The TTF is defined as the time elapsed when the first state reaches its 

limit. As mentioned before, a fault might be detected in more than one subsystem, since 

any local fault can influence other subsystems as well. Therefore, time-to-failure 

estimation should be performed for all the subsystems which are significantly affected by 
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the fault, i.e. all subsystems where detection has occurred. TTF estimation starts in a 

subsystem immediately after detection. 

In order to predict the time of failure, the dynamics of the system can be used 

which will help determine the rate of change of system states. Since there exist unknown 

terms in the actual system dynamics (1), the observer dynamics (2) is utilized. According 

to the stability analysis presented earlier, the observer states follow the actual states with 

a bounded error which can be decreased by proper selection of design parameters.  

Therefore, in the TTF determination, the estimated state dynamics in (2) are 

utilized to project the estimated state to reach a predefined threshold.  The estimated state 

is driven by the fault approximator. The following theorem provides an analytical 

formula for finding time-to-failure. 

 

Theorem 3 (TTF Estimation): Upon detection in subsystem i, TTF for the j
th

 

state at the k
th

 time instant can be estimated using 

 
 

     
, ,

,

, ,

(1 ) 1
log

1 1ˆ 1

Mi j i j

i j

i j i j

x v k
TTF

x k v k




  

  


   
          (10) 

where      
 is the failure threshold of the j

th
 state of the i

th
 subsystem,       is the 

estimated value of the corresponding state, and           is the j
th

 element of the vector 

        which is defined by 

 
        

        ˆ

1 1 , 1 1

, 1 , 1 ; 1 (11)ˆ

i i i i i

i i i i i

v k f x k u k x k

x k x k u k k



 

     

   
 

 

Proof: Refer to the appendix. 

 

Figure 3.2 illustrates the process of finding the TTF after a fault is detected in 

subsystem i. At each time instant, after calculating the TTF for all of the local subsystem 

parameters, one should take the minimum of time to failure for all of the parameters, to 

get the overall TTF for the subsystem. This is because the system will be unsafe even if 

only one of its parameters reaches its limit. 
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Figure 3.2. Flow chart of the TTF determination 

 

 

4. SIMULATION RESULTS 

A five-tank water system [13] which is shown in Figure 4.1, is considered to 

verify the proposed decentralized fault diagnosis scheme. This system has two input 

pumps with five connected water tanks, and can be decomposed into two subsystems; 

subsystem 1 includes tanks 1, 2, and 3, whereas subsystem 2 includes tanks 3, 4, and 5. 

The system dynamics are described by [13] 

            
           

1 1 2

1 1 1 1

1 2 1

1 1 1 1

1   .

. 2

T
x k u cs sign x k x k

A

g x k x k x k

   

  


 

            

        
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1   . ( ) ( )   2 ( ) ( )
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T
x k cs sign x k x k g x k x k

A

cs sign x k x k g x k k x kx  

   

   
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            
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where          
         

         
       

 

  is the first subsystem state vector,       

   
         

         
       

 

 is the second subsystem state vector, T  is the sampling time 

chosen to be 0.1 seconds,             is the cross section  of the tanks,     

        is the cross section of the connecting pipes,     is the outflow coefficient, and 

           is the standard gravity. Note that the two subsystems share one of the 

states, i.e.   
   

   
   

. Moreover,                                              

represents the modeling uncertainty and is defined by 

       2 2 2 2 2[10 sin 0.7   10 cos 0.8   10 cos 0.5    10 sin 0.6    1  0 (0.7 )]  Tk k k k cos k       

 

 Figure 4.1. Five tank benchmarking system 

 

An incipient actuator fault in pump 1 (located in subsystem 1) is seeded at time 

     s. The dynamics of actuator fault in subsystem 1 is described by 
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   
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   
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Online approximators      and     are both made up of 7-input 3-output neural 

networks which consists of 8 basis functions. The basis functions are sigmoid type and 

they satisfy      
    . The inputs are local states at current and next time instants and 

the local input. The estimator and adaptive law parameters are taken as            

               . The bounds on the uncertainty and interconnection terms are 

          and          . In order to calculate the detection thresholds from (8), the 

maximum neural network approximation errors     are required. Unless the 

interconnection term is represented as a linear function of states and inputs,     cannot be 

found analytically. However, we know that the approximation error in healthy conditions 

is definitely less than the upper bound on interconnection term. Thus, we will replace     

by    . By using these parameter values in (8), the detection thresholds are calculated as 

       .  

Figures 4.2 and 4.3 show the actual states of subsystem 1 and 2, respectively. 

Obviously, the behavior of the system changes due to fault which starts to evolve 50 

seconds into the simulations. As mentioned previously, the online approximators are 

always online to learn the interconnection dynamics in all subsystems. After the 

occurrence of fault, the OLAD in faulty subsystem will also approximate the fault 

dynamics. Norms of the outputs of both OLADs are plotted along with the detection 

threshold in Figure 4.4. As expected, the fault in subsystem 1 not only affects the local 

states, but also affects the interconnection terms. That is why the output of both OLADs 

increase after occurrence of fault. However, the growth rate of the output of OLAD in 

subsystem 1 (where the fault is initiated) is significantly higher than the growth rate of 

the output of OLAD in subsystem 2. Thus the fault is detected first in subsystem 1. 

 

 
Figure 4.2. States of subsystem 1 
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Figure 4.3. States of subsystem 2 

 

 

Figure 4.4. OLAD outputs and detection threshold 

 

Local residuals, which are generated by comparing the actual and estimated 

subsystem states, are mainly used for updating the NN weights. The norm of local 

residual of both subsystems is plotted in Figure 4.5. Norm of residuals is small and 

bounded both before and after the fault, which shows the boundedness of the state 

estimation errors due to successful estimation of unknown dynamics by the stable weight 

update laws. 

 

 

 

 
Figure 4.5. Residuals in subsystem 1 and subsystem 2 
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The output of OLAD in subsystem 1,       , is plotted along with the actual 

values of the function       over time in Figure 4.6. The OLAD reasonably tracks the 

unknown vector function       and this allows accurate estimation of time-to-failure 

which is done based on the estimated parameters and their failure thresholds.  

Figures 4.7 and 4.8 show the estimated time-to-failure for subsystem 1 and 

subsystem 2 respectively when the failure simulation is accelerated. Time-to-failure is 

calculated for each state based on the proposed algorithm, and then the subsystem time-

to-failure is obtained by taking the minimum among estimated TTF for all states of the 

corresponding subsystem. The TTF of subsystem 1 approaches zero faster than 

subsystem 2, because the fault is seeded in subsystem 1 and it has an attenuated and 

delayed effect on second subsystem. It should be noted that, the whole system should be 

stopped before the TTF in any subsystem reaches zero. In this example, the operation of 

system is unsafe after t=100.2s where TTF for subsystem 1 reaches zero. 

 

 
Figure 4.6. Actual and estimated magnitude of       

 

 

Figure 4.7. TTF vs. Time for first subsystem 1 
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Figure 4.8. TTF vs. Time for first subsystem 2 

 

 

5. CONCLUSIONS 

The proposed decentralized fault prognosis scheme renders satisfactory 

performance when the faults are either local or non-local to the subsystem. Only the local 

subsystem states were used and partial isolation of faults is possible. Fault can be 

detected in all the subsystems that are significantly affected. Consequently, local and 

non-local faults can be distinguished by using a central isolation unit. Upon detection in 

each subsystem, time to failure can be predicted by using the estimated state dynamics 

driven by the fault approximation.  No prior offline training or fault data is necessary in 

order to detect or isolate faults whereas local state measurements are utilized for 

detection and isolation. Hence, this scheme can save both time and cost while it is easily 

implementable on embedded system by measuring the local subsystem states. The 

simulation results verify the effectiveness of this approach. 
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7. APPENDIX 

Proof of Theorem 1: Consider the following Lyapunov function candidate 

        1 1 1 1 ( .1)T T

i i i iV e k e k tr k k A        

The Lyapunov function is deliberately selected at time    , because the 

observer is one time step behind the actual system and its output is not available at time 

 . In other words,     is the current time instant for the observer. The first difference 

of the Lyapunov function is given by 

        

        
1
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Δ

Δ

Δ 1 1

1 1 ( .2)

T T

i i i i
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T T

i i i i
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V e k e k e k e k

tr k k k k A   

   

   
 

Substitute        from the local error dynamics (7), in     to get 

 

        

 
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1Δ ( 1) ( 1), ( 1) ( 1)

1 , 1 , 1
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  

 
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    

      

      

 

Use the Cauchy-Schwarz inequality ( (s1+s2+…+sn )
T
(s1+s2+…+sn) 

≤n(s1
T
s1+s2

T
s2+…+sn

T
sn) ) to arrive at 
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Now substitute        from (4), in     
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Applying the Cauchy-Schwarz inequality yields 
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By combining     and      from (A.3) and (A.4), the difference of Lyapunov 

function can be represented by 
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Taking the Frobenius norm, and using the result of assumptions 1 and 2, it can be 

shown that 

   
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If the following conditions are satisfied (which are guaranteed with the selection 

of user-defined parameters as stated in the theorem) 
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Therefore, with the appropriate choice of design parameters, the local FD 

residual,      , and the parameter estimation error       , will be uniformly ultimately 

bounded with the bounds given in (A.6). 
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Proof of Theorem 2: Consider the output of local OLAD in subsystem i 
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By taking Frobenius norm and using Assumptions 1 and 3 as well as the result of 

theorem 1, the limit on    in healthy conditions is obtained as 

 
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Therefore, if the detection threshold is selected as in (8), then no fault is detected 

as long as the system is working under healthy operating conditions. 

To find the detectability condition, the output of OLAD in the faulty subsystem is 

utilized 
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Therefore, if there exist a time instant    at which the following condition is 

satisfied 

max 2( ( ), ( )) /
M Mi i d i d i i i ih x k u k g D C            (A.8) 

or equivalently  

( ( ), ( )) 2i i d i d i ih x k u k q   

then the fault will be detected in the faulty subsystem. 

 

Proof of Theorem 3: Consider the observer dynamics in (2) represented as 

    ˆ ˆ 1 ( 1)i i ix k x k bv k                     (A.9) 

where b=1 and    , defined in (11), acts as the input to the linear system of (A.9). By 

assuming that the fault is detected at time kd, the response to this set of linear state space 

equations at time       is given by 

    
1

1 1

1

1ˆ ( )ˆ
f

f f

k
k k k l

i f i i

l k

x k x k bv l 


   

 

          (A.10) 
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With the assumption that               for          (which is 

reasonable, since the fault is assumed to be incipient type), (A.10) can be rewritten as 

     
1

1 1

1

ˆ ˆ 1
f

f f

k
k k k l

i f i i

l k

x k x k bv l 


   

 

     

   
1

1
ˆ

1
1 1

1

f

f

k k
k k

i ix k bv k





 
  

   


 

Now suppose that      
 is the time when the j

th
 state of subsystem i, reaches its 

failure threshold, i.e.            
        

.  

   
,

,

1
1

, , ,

1
1

1
ˆ 1

fi j

fi j

M

k k
k k

i j i j i jx x k v k





 
  

   


 

 

      ,

, ,

, ,
ˆ

(1 ) 1

1 1 1

M

fi j

i j i j

k k

i j i j

x v k

x k v k



 


   

    
 

 

     
,, ,

, ,

(1 ) 1

1 1 1ˆ

fi jM
k ki j i j

i j i j

x v k

x k v k




  

  
 

   
 

Therefore, the time to failure for the j
th

 state of the i
th

 subsystem can be estimated 

by 

 

     ,

, ,

,

, ,

(1 ) 1
log

1 1 1ˆ
M

i j

i j i j

i j f

i j i j

x v k
TTF k k

x k v k




  

  
  

   
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IV. A Decentralized Fault Detection and Accommodation Scheme for 

Interconnected Nonlinear Continuous-time Systems 

 

Hasan Ferdowsi and S. Jagannathan 

 

 

Abstract 

In this paper, a novel decentralized fault detection and accommodation (FDA) 

methodology is proposed for interconnected nonlinear continuous-time systems by using 

local subsystem states alone in contrast with traditional distributed FDA schemes where 

the measured or the estimated state vector of the overall system is needed.  The proposed 

decentralized FDA scheme uses local state and input vectors and minimizes the fault 

effects on all the subsystems. For this purpose, a network of local fault detectors (LFD) is 

proposed for fault detection where a fault is detected by generating a residual from the 

measured and estimated state vectors while the fault dynamics are estimated by using an 

online approximator (OLA) upon detection. Subsequently, a fault accommodation scheme 

is initiated in the subsystem by using a second OLA to augment the control input of each 

subsystem in order to minimize the effects of the faults on the overall system. Stability of 

both detection and accommodation schemes are discussed in the paper. Moreover time-

to-accommodation is introduced.  Finally the proposed methods are verified in the 

simulation environment. 
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1. INTRODUCTION 

Many industrial systems such as power or water distribution networks, 

telecommunication networks, and so on are complex, large-scale, spatially distributed 

and interconnected nonlinear systems. Suitable fault detection schemes are required for 

these systems to ensure that a fault at any given location can be detected at an incipient 

stage in order to prevent catastrophic failure of the overall system. Although certain faults 

are critical and force the overall system to shut down, other faults at an incipient stage 

can be accommodated for a limited time. 

Basically two types of fault detection schemes are available in the literature [1]: 

data-driven and model-based schemes. Model-based schemes are more desirable as they 

function online and in the absence of significant faulty or healthy data since they use a 

state estimator as a reference model for fault detection. State estimators are designed by 

using high gain observers [2], neural network observers [3], and geometric techniques 

[4]. On the other hand, a fault accommodation scheme is also available by utilizing 

observer-based schemes [5], adaptive estimators [6], and so on. However, these schemes 

are all centralized where the entire state vector is needed. 

Recently design of distributed fault detection schemes for interconnected systems 

have been proposed by using    based method [7], multiblock kernel partial least 

squares [8], fuzzy observers [9] and so on. In addition, several distributed 

accommodation schemes [10-12] have been introduced for such interconnected systems. 

However, most of them [7-12] require either entire state or estimated state vector for each 

local fault detector (LFD) since these are merely distributed schemes. Typically, it is not 

always possible to provide the information of the entire state or its estimated value for 

LFDs of a large-scale spatially distributed system unless some information from other 

subsystems is communicated. Even if this is possible, the information will be delayed and 

outdated, besides being expensive. 

In contrast to the aforementioned schemes [7-12], in this paper our objective is to 

design a LFD for each subsystem. Each LFD uses local states of that subsystem alone to 

detect a fault and approximate its dynamics. Upon detection, a fault accommodation 

scheme is proposed in which the control input of each subsystem is augmented in order to 

accommodate the effects of the fault by using the local subsystem states alone.  
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Each LFD is a nonlinear observer that acts as a reference model and it estimates 

the local subsystem states by using the known part of the system dynamics and inputs. A 

local residual signal is generated at each subsystem by comparing the estimated states 

with that of the actual subsystem states. Whenever the local detection residual exceeds its 

threshold, a fault is detected in that subsystem. Consequently an online approximator 

(OLA) or a fault detection OLA will be turned on in the LFD to approximate the local 

fault dynamics and the other LFDs are notified in order to keep all the OLAs in those 

subsystems offline, even if their local residual exceed the detection threshold afterwards. 

This is required because a fault in one subsystem can also affect other subsystems 

through the interconnections, but the actual fault that needs to be approximated only 

exists in the subsystem where the detection is performed first. 

Upon detection, a novel fault accommodation scheme is initiated at each 

subsystem which will modify the control input vector of all subsystems to minimize the 

effect of the fault and force all system states to continue tracking their desired 

trajectories. A second OLA is also initiated in the faulty subsystem as well as all other 

subsystems for accommodation. The fault detection OLA output will also be utilized in 

the faulty subsystem to mitigate the local fault dynamics. 

Since a fault in one subsystem can propagate to other subsystems via 

interconnection terms, an accommodation OLA will be initiated in each of the other 

subsystems to mitigate this effect. Lyapunov proofs are offered for the local fault 

detection and accommodation schemes. Furthermore, utilization of two OLAs for 

detection and accommodation in the faulty subsystem enables the proposed scheme to 

provide an estimation of fault dynamics and perform accommodation simultaneously. 

The estimation of fault dynamics can be further used for classification of fault type and 

time-to-failure (TTF) determination.  

The TTF which is the time left until the system reaches its failure limit, is 

approximated by using the fault parameter update law. In addition, time to 

accommodation (TTA) is introduced. Estimation of TTF and TTA determines whether or 

not the accommodation unit can bring the system performance back to normal before the 

system reaches a failure. Simulation results verify theoretical claims.  
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The contributions of this paper include the development of a new decentralized 

fault detection and accommodation scheme for nonlinear interconnected continuous-time 

systems. Both the detection and accommodation schemes use local subsystem states and 

inputs to detect and accommodate the faults. Lyapunov stability analysis is included for 

these schemes. In addition, analytical formula for calculating TTF and TTA online is 

derived. 

Next, the interconnected nonlinear continuous-time system description is 

presented followed by decentralized detection and accommodation schemes. 

 

2. SYSTEM DESCRIPTION 

Consider a nonlinear continuous-time system that is comprised of N 

interconnected subsystems. The dynamics of the i
th

 subsystem with    states are 

described by 

   

           

( 1)

0

1,2,..., 1

( ), ( ) ( ), ( ) ( ) ( )
i

ij i j i

in i i i i i i i i i i

x t x t j n

x t f x t u t g x t x t x t t t h x t

  

    
 (1) 

where      is the local control input,        is the local state vector,          is the 

vector of interconnection states,     
         and     

          represent the 

known local and unknown interconnection functions respectively,     
     denote the 

system uncertainties, and     
     is the local fault function.  

The time profile of a fault          is modeled by 

 
0

0

0 ( )

0

0,                     
Ω    

1 ,      ii t t

if t t
t t

e if t t
 


  

 
 

where     is an unknown constant that represents the rate at which a fault occurs. A larger 

value of     indicates that the fault is an abrupt fault while small values of     indicate that 

the fault is of an incipient type. The use of such time profiles is common in the fault 

diagnosis literature [5]. Next three standard assumptions from the literature are presented. 

 

Assumption 1: The modeling uncertainty is bounded, i.e.                

                      , where     is a known positive constant.  
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Remark 1: Assumption 1 is required to differentiate between faults and modeling 

uncertainties and to analytically define fault detection thresholds to prevent false or 

missed alarms. 

Assumption 2: A fault occurs only in one of the subsystems and the fault 

functions can be expressed as nonlinear in the unknown parameters (NLIP) [13]. The 

NLIP representation for fault functions allows the use of two-layer NNs with nonlinear 

activation functions.  

Next the proposed fault detection scheme is introduced. 

 

3. DECENTRALIZED FAULT DETECTION 

Our objective for the fault detection scheme is to design a network of LFDs such 

that a LFD monitors a subsystem using the local states of that subsystem. Now consider 

the nonlinear observer for the subsystem ‘i’ described by 

       

               
( 1)

ˆ 1,2,..., 1

ˆ

ˆ

ˆ ˆˆ , ;
i i i

ij ij i j ij i

in in i i i in i i i

x t x t x t x t j n

x t x t f x t u t x t h x t t

 

  

     

    
  (2) 

where            is the estimated local state vector of the i
th

 subsystem,      
   

      is the output of the online approximator with         being the set of unknown 

parameters, and   is a user defined scalar. Initial values of the LFD are taken as       

                , such that                        . 

Define a local detection residual         . Under healthy system operation, the 

local residual dynamics are described by 

   

         

1,2,..., 1

, ( )
i i

ij ij i

in in i i i i

e t e t j n

e t e t g x t x t x t



 

   

   
 

Since the system states are bounded in the healthy operation, the interconnection 

terms                 are bounded (            in healthy conditions). The 

uncertainty term          is also bounded by Assumption 1. So by appropriate selection 

of  , the local detection residual will remain bounded prior to the occurrence of a fault. 

In this work, neural networks (NNs) are used as online approximators, which are 

off prior to the detection of a fault.  When the local detection residual of the k
th

 subsystem 
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exceeds its detection threshold,   , a fault is declared active in that particular subsystem, 

and the local OLA that generates        is initiated. Upon detection, the unknown 

parameter vector of the k
th

 OLA will be tuned online using the following update law 

        ˆˆ ( ) ( ) (3)
kk k k k kn k k k kt H e t e t x t t           

where      is the NN learning rate,       ,           is the basis function such 

as sigmoid or RBF, and      is the Heaviside operator defined by 

 
1                   0

0                   0

if x
H x

if x


 


 

Then, the output of the OLA is calculated by 

      ˆ ˆT

k k k kh t t x t 
 

To analytically determine thresholds, consider the solution to the residual 

dynamics in healthy operating conditions by assuming that the initial values of estimator 

are equal to those of the actual system  

        
0

( )) (i i i i

t t

i x xe t B e g d
 

  
 

   

where        is defined by              . By taking Frobenius norm and using 

result of Assumption 1, we will have 

   
0

( )
MMi i i

t t
e e g dt

 
 

 
   

where     is the upper bound on interconnection term          in healthy conditions. 

Therefore, no fault will be detected as long as the system is working in healthy 

operating conditions, if the detection threshold is selected as                

    /  or   =   +   / . 

Upon detection, the local detection residual dynamics of subsystem k becomes 

   

                 

1,2,..., 1

, ( ) ;ˆ ˆ
k k

kj kj k

kn kn k k k k k k k k k

e t e t j n

e t e t g x t x t x t h x t h x t t



  

   

     

 The NLIP assumption on the fault function is asserted to get

 
       ( ) ( ), ( ) ( ) ( ) ( ) ( )

k k k

T

kn kn k k k k k k ke t e t g x t x t x t t x t t                  (4) 
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where                  is the parameter estimation error and       is the OLA 

approximation error. Upon detection of the fault in subsystem ‘k’, other subsystems are 

notified and their fault detection OLADs are not tuned online. 

Consequently, for the rest of the subsystems          and        , and their 

local residual dynamics are given by 

     ( ) ( ), ( ) ( ) 1,..., ,
i iin in i i i ie t e t g x t x t x t for i N i k            (5) 

Next fault detectability condition and detection scheme performance are 

introduced. 

 

Theorem 1 (Fault detectability): Consider the nonlinear subsystem defined by 

(1) and the local fault detector in (2). A fault in subsystem k will be detected, if there 

exists a time instant,   , such that 

     
0

( )( ) 2
d

d

k

t t

k k
t

k xe g x h d
 

  
 

     

 

Proof: The local residual dynamics after the occurrence of fault and prior to the 

detection is defined by 

       ( ) ( ), ( ) ( ) ( )k kk k k k k k ke t e t B g x t x t x t h x t         

If the fault occurs at time,   , then the solution to the above residual dynamics at 

time        is given by 

          

      
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 
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




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 

 

 

 

 

 

  

 

  







 

By taking the Frobenius norm, applying Assumption 1, and using the definition of 

detection residual, it is shown that 

                
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 
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 

    

 

     

 

    
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  
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Thus, the fault will be detected if 
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      
0

( () )
d

d

k k

t t

k k
t

xxe g h d
 

    
 

    

which is equivalent to the given detectability condition. 

 

Note that, in the faulty subsystem, the magnitude of local fault function 

          grows and at some point (td) it can satisfy the detectability condition. 

However, there is no local fault function in other subsystems, but a fault can still be 

detected in those subsystems if the magnitude of their interconnection term increase due 

to the nonlocal fault, and satisfy the detectability condition. 

Next the following assumption on the interconnection terms is needed before the 

stability of the proposed observer is discussed upon detection. 

Assumption 3: The interconnection terms are unknown and expressed as a 

function of detection residuals                         
 
             , where 

                  and                          are unknown constants and smooth 

functions respectively such that         . 

Remark 2: Assumption 3 has been used in a variety of forms in the decentralized 

control or fault detection literature [14, 15]. Although after the detection of faults, one of 

the residuals, namely   , can go to zero or near zero because of the approximation 

property of the OLA, other residuals do not, because OLAs in their subsystems are 

offline. Therefore the bound on the interconnection terms defined in Assumption 3 will 

hold upon fault detection.  

 

Theorem 2 (Fault Detection Observer Performance): Let the LFD observer 

network defined in (2) be used to monitor the overall system described by (1), with the 

local OLA being turned on upon the detection of a fault in the k
th

 subsystem. Let the 

update law in (3) be used to update the unknown parameter vector      . In the presence 

of system uncertainties, the local FD residuals,               , and the parameter 

estimation error,       , will be uniformly ultimately bounded (UUB), provided the 

design parameters are selected as 
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   max

2

1

3
max (6)

2

i

i N

N 


 

 
  

 

Proof: Consider the Lyapunov function candidate 

1

( ) ( )
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i

i

V t V t



 

where        
1 1

( )
2 2
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i i i i i

i

V t e t e t t t 


  . Since                 , the first derivative 

of the Lyapunov function is given by 

      
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T

i i

i
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Substitute        from residual dynamics in (4) and (5) and                  from 

the parameter update law in    to get 

   

        
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 
 

Now apply the Cauchy-Schwarz inequality to arrive at 
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Assumption 3 and Cauchy-Schwarz inequality are utilized to get 
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After manipulating, the following result is obtained 
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2 2 2 20

1 1 1

2 2
2 2

1

2

( )
( ) ( ) ( ) ( )

2 2 2

( )
( )

2 2 2 2

i

i M

i i

k M

n NN
in ii

ij in in ji

i j j

kn k k k
k k

k k

i

Ne t
V t e t e t e t e t

e t
t


  

  
 

 



  

  
       

 

   

  
 

max

1
22 2 2

1 1 1

22 2 2
2 20

1

2
( ) ( ) ( )

2

( )
( )

2 2 2

1

2

2 2

i

i

kM M

n NN

ij in ji i

i j j

N
kni i k k k

k k

i k k

N
e t e t e t

e t
t

  

    
 

 



  



   
     

   

  
     

 



 

  



 

max

222 2

1 1

22 2 2
20

1

12
( ) ( ) ( )

2 2

( )

2

2

2 2 2

i

kM M

nN
k

ij i i k

i j k

N
kni i k k

k

i k

N
e t e t t

e t


  



   




 



  
     

  

  
    

  

 



 

where 
max max

2 2

1

N

i ji

j

 


 . Then, the derivative of the Lyapunov function can be rewritten as 

max max

2 2
22 2

1

2 2 2
20

1

2 3
( ) ( ) ( ) ( )

2 2 2

2 2 2

M M

N
i k k

i k k

i k
i k

N
i i k k

k

i k

N N
V t e t e t t

  
  



   









        
            

     

  
   

  





 

Therefore, if (6) is satisfied, the derivative of the Lyapunov function will less than 

zero when  

max

2
( ) 1,..., ,

2

2

M
i

i

D
e t i N i k or

N 


  
 



 

max

2
( )

3

2

M
k

k

D
e t or

N 



 



2
( ) k M

k

k

D
t





  

where 
2 22

20

1 12 2 2 2

M M

N N
i ki k

M k

i i k

D
  


 

      .

 
So the local detection residuals and the parameter estimation errors of the online 

OLA are UUB with the bounds given above. 
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Remark 3: The bound on    is separated from all the other residuals because the 

bound found for    is larger than the bound on other residuals. However the bound on all 

the residuals, including   , can be presented in one condition by taking the supremum 

among the bounds. 

Remark 4:  The fault location is identified by communicating the fault detection 

time at each subsystem to a centralized unit which then compares and finds the minimum 

time when the fault is detected and its associated subsystem.  Then this subsystem will 

become the fault location. Fault isolation will be dealt in the future. 

 

4. DECENTRALIZED FAULT ACCOMMODATION 

Upon determination of the fault location, fault accommodation is performed to 

mitigate the effect of the fault both in the faulty subsystems and in the other subsystems, 

because the fault in one subsystem can affect the others through the interconnection 

terms. The main objective of fault accommodation is to alter the control inputs in order to 

keep all the system states track their desired trajectories even after the occurrence of an 

incipient fault. This accommodation is performed in all the subsystems including the one 

where a fault is detected.  As mentioned before, the subsystem where a fault occurs will 

have two OLAs one for approximating the fault dynamics while the other for 

accommodation whereas the other subsystems each will have one OLA for 

accommodation. 

 

First a suitable control input in the healthy conditions is defined, when the i
th

 

subsystem dynamics is described by 

   

       

( 1) 1,2,..., 1

( ), ( ) ( ), ( ) ( )
i

ij i j i

in i i i i i i i

x t x t j n

x t f x t u t g x t x t x t

  

  
 

Using the technique introduced in [16] this can be rewritten as 

   

         

( 1)

1 2

1,2,..., 1

( ) ( ) ( ) ( ), ( ) ( )
i

ij i j i

in i i i i i i i i i

x t x t j n

x t f x t f x t u t g x t x t x t

  

   
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where        and         are known smooth functions. If the control objective is to make 

       track the desired trajectory,       , the tracking error dynamics in healthy 

operating condition, is described by 

   

 

       

( 1)

( )

( )

1 2

1,2,..., 1

( ) ( )

( ) ( ) ( ) ( ), ( ) ( ) ( )

i

i i

i

ij i j i

n

in in id

n

i i i i i i i i i id

e t e t j n

e x t x t

f x t f x t u t g x t x t x t x t

t



  

 

    

 

where     represents the vector of local tracking errors in the i
th

 subsystem. Now let    and 

   be defined as 

   

 
 
 
 
 
   
   
   

    
  
  
  

   
   

    
  
   

 
 
 
 

           

 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

Then tracking error dynamics can be rewritten in the matrix form 

            ( )

1 2( ) ( ) ( ) ( ), ( ) ( ) ( )in

i i i i i i i i i i i i i ide t Ae t B f x t f x t u t g x t x t x t x t       

 
Since                  and          are both bounded in healthy operating 

conditions, the control input              defined by 

      
1 ( )

2 1( ) ( ) ( ) ( )in T

id i i id i i i iu t f x t x t K e t f x t


  
 

can keep tracking error bounded if        is selected such that        
  is Hurwitz. 

 

With the presence of fault, the control input         can no longer satisfy the 

control objective. Thus after detection, the local control input is selected as       

             , where        is the augmented term to keep the local states track their 

desired trajectories after the fault. Using this augmented input, the tracking error 

dynamics can be represented as 

   

         2 0( ) ( ) ( ) ( ) ( ), ( ) ( )

i i i

T

i i i i i ic i i i i i i i

e t Ae t

B K e t f x t u t x t g x t x t t t h x t



        

 

Ideally,        should be selected as  

          
1

2 0( ) ( ), ( ) ( )ic i i i i i i i iu t f x t g x t x t t t h x t


    
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However, since the fault function and interconnection term are unknown,        

cannot be practically determined this way. Therefore the output of detection OLA 

                  which is the estimation of fault, along with another online approximator 

referred to as fault accommodation OLA which is used to compensate for the 

interconnection effects, are utilized to construct the estimated        as follows 

                   
1 1

2 2
ˆˆ ˆ( ) ; ; ( )ˆ ˆ T

ic i i i i i i i i i i i i i iu t f x t q e t W t h x t t f x t l B Pe t
 

        (7) 

where    is a positive constant defined by the user and      is obtained from the 

Lyapunov equation           
           

          for any positive definite 

matrix   . Moreover                    is defined as the output of the online approximator 

from accommodation          ˆ ˆˆ ; T

i i i i i iq e t W t W t e t  which is turned on upon 

detection of a fault,            is the basis function and     is the estimated parameter 

vector which will be updated by an adaptive update law (to be defined later) in order to 

ensure the stability of the accommodation scheme. 

Note that        ;ˆ 0ˆ
i i i i ih x t h x t t if i k   . Thus 

 ( ) ( ) ( ) 0T

i i i i it x t t h if i k      . Then the tracking error dynamics can be rewritten 

as 

          

     

ˆ( )

( ) ( ), ( ) ( ) ( ) ( )

T T T

i i i i i i i i i i i i

T

i i i i i i i i

e t Ae t B K t te t B Pe t W x

x t g x t x t t x t t



   

    

    

     (8) 

Furthermore, combined tracking error is defined as         
          for 

convenience in the proof of next theorem. Next Assumption 4 is introduced which is 

similar to Assumption 3, before considering the performance of fault accommodation 

scheme in Theorem 3.  

Assumption 4 [14]: The interconnection terms are unknown but expressed as 

                          
 
             , where                   are 

unknown constants and                          are unknown smooth functions, such 

that          
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Theorem 3 (Performance of the Fault Accommodation Scheme): Consider the 

large-scale interconnected system described by (1). Upon detecting a fault in the k
th

 

subsystem, let the control input of all the subsystems be augmented as              

        where         is defined in (7) and the parameter update law of the accommodation 

online approximator is given by 

ˆ ˆ( ) ( ( )) ( ) ( ) (9)i i i i i i iW t e t s t W t    

with    and    being positive constants. Then the tracking errors       , and parameter 

estimation errors                  are UUB, if the design parameters are selected 

such that 

max

23 1,..., (10)i i i il and for i N      

Proof: Consider the Lyapunov function candidate as 
1

( ) ( )
N

i

i

V t V t


  where 

               
1 1 1 1

( )
2 2 2 2

T T T T

i i i i i i i i i i

i i

V t e t Pe t W t W t e t e t t t 
 

     

Then the derivative of the Lyapunov function is given by 

            

      

1

1

1

( )

1
( )

2

1

N
T T T

i i i i i i

T

k k

i i

i i

N
T

i i

ki

V t e t Pe t e t Pe t W t W t

e t e t t t



 






 
   

 

 





 

And after substituting        from the tracking error dynamics, it  can be described by 

        

             

           

1

1

1 1 ˆ( )
2

ˆ( ) ( ) ( ), ( )

1
( ) ( ) ( ) ( )

N
T T T

i i i i i i i i

i i

T T T

i i i i i i i i i i i i i i i i

N
T T T

k k k k k k k i i

i

T

k k

k

t

V t e t A P PA e t W t W t

e t PB K e t l B Pe t x t W e g x t x t

e

t

t P B t x t t tte e t t



 

    







  



      

   





 

       

           

         

1

1

1 1 ˆ
2

ˆ( ) ( ), ( ) ( )

1
( ) ( ) ( ) ( ) ( )T

k k

k

N
T T

i i i i i

i i

T

i i i i i i i i i i

N
T T

k k k k k i i

i

e t Q e t W t W t

s t l s t W e g x t x t x t

s t t x t t e e

t t

t t t t



 

    







  



      

   




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Now we use the result of assumption 4 and the Cauchy-Schwarz inequality to get 

              

  
  

    
    
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2
2 2 2 2

2 0
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2
22 2

1

21 1 ˆ ˆ( ) ( )
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( )( ) ( ) ( )

2 2 2 2 2 2

( ) ( ) ( )( ) ( ) 1
           

2
)

2
(

2 2

N
T T T

i i i i i i i i i i

i i

N
ii i i i

i

k

ij j

j

T

k k k T

k

k

N
Tk k

i i

i

V t e t Q e t W t W t l t s t W e

x ts t s t s tN
s t

t x t ts t s

s

t
e

t

t

t

tt e




 


  











    






      


     





  k t

 

Since ( )ij is a smooth function for i,j=1,…,N, there exists another smooth 

function ( )ij  such that ( ) ( )ij j j ij js s s   for i,j=1,…,N [14]. Applying this result to 

the derivative of the Lyapunov function and changing the order of the summations leads 

to

 

              

    
  

    
      
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2
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2 2 0
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2
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2

2

1
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2 2
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2 22
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( ) ( ) ( ) 1
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2
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T T T

i i i i i i i i i i
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N
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N

T

k

i

i i

k k k k T

i k

k

i

i

k

V t e t Q e t W t W t l t s t W

x t
s t s t

t x t t
s t

s t e t

N

te e t t t




 


  
 









  
       

 




  


   











 

The function       2

1

( )
2

N

i i ii ji

j

e t s t t
N

sq 


   is a smooth function, so it can be 

approximated by using two-layer NN with bounded activation functions, target weight 

parameters, and estimation error as       ( ) ( )T

i i i i iiq te t W e t t   , where         . 

Now use             and rewrite the derivative of the Lyapunov function as 

         

    
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2 2
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T T

i i i i i i
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


 
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





  
      

 



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

    
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Taking the same steps as in the proof of theorem 2, the last line in the above 

inequality can be rewritten as 

       max max

2 2
2 2

1 1

2 2 2
2 20

1

2 31
( ) ( )

2 2
( )

( )
2 2 2 2

M M

N N
i kT

i i i k

i i
i k

N
i i kk k

k k

ik

k

k

k

T

k

N N
e e t t t e t e tt

t

 
   



   
 

 

 




        
           

     

  
    

  

 



 

If the update law is selected as in (9), then 

         
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So all the tracking errors     and the parameter estimation errors     will be UUB 

with the bounds provided above. Furthermore, this proof shows the stability of the overall 

system, since it also guarantees the boundedness of detection residuals    and the 

parameter estimation error    . 

 

Remark 5: Note that the detection OLA approximates the fault function     (with 

a bounded error), while the accommodation OLA which is generating      is not 

estimating the interconnection function   but it’s used to approximate 

      2

1

)
2

(
N

T T

i i i i ii ji i i

j

e t
N

e t PB e t PBq 


   . In fact, all the accommodation OLAs must be 

utilized together to cancel all the interconnection terms. 

 

Another approach for performing fault accommodation is to apply a single OLA 

in each subsystem right after detection, and refrain from utilizing the detection OLA. 

When this approach is chosen, the complexity of the overall scheme is reduced and less 

processing is required. In this case, the accommodation OLA will estimate           

         . Although the output of this OLA is used to cancel the fault effect, it does not 

have any other benefits since there is no physical interpretation of the function which is 

being estimated.  In addition, the time to failure determination cannot be conducted upon 

detection. 

In contrast, the proposed detection and accommodation scheme which uses two 

online approximators is more involved since one OLA continues to provide fault 

approximation while the other is used for accommodation in the faulty subsystem while a 

fault accommodation OLA in the others. The estimation of fault dynamics can be utilized 

to perform time-to-failure determination (which has been done in our previous work [17] 

for nonlinear interconnected discrete-time systems), at the same time when 

accommodation is being done. It’s worth mentioning that although the effect of a fault on 

the overall performance of the system can be mitigated by the accommodation scheme, 

the root cause of the fault will not be eliminated and at some point it could result in 

internal damage to system components. Determination of fault type and time-to-failure 

will definitely be helpful in preventing such problems. 
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5. PREDICTION 

The stability of tracking error dynamics after initiation of fault accommodation 

was demonstrated in Theorem 3.  However, in practice it is important to know the time 

that is required by the accommodation scheme to regain the desired tracking 

performance. More importantly, it is necessary to know if the accommodation goal can 

be achieved before the system reaches a failure point. This problem can be addressed by 

using both time-to-failure and time-to-accommodation estimation.  

Time-to-failure (TTF) which is also referred to as remaining useful life of the 

system can be estimated upon detecting a fault, by comparing the estimated parameters of 

the OLAD to the user defined failure limit. The following theorem, which is introduced 

in our previous work [18], provides an analytical formula for TTF estimation. 

 

Theorem 4 (TTF Determination) : If the fault location is found to be the i
th

 

subsystem, TTF for the j
th

 parameter of the fault, at the time t, can be determined by  

   
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 
 
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    (11) 

where        
 is the failure limit regarding the j

th
 parameter of fault in the i

th
 subsystem, in 

terms of maximum value of the system parameter ,     
.  

 

Proof: Upon detection of fault in the i
th

 subsystem, the parameter update law of 

the detection OLA in that subsystem is defined by 

       ( )ˆ ˆ
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Since     , this state space equation represents a stable system and its solution 

is given by 

       0

0

( ) ( )

0 ( )ˆ ˆi i

i

t

t t t

i i i in i i

t

t e t e e x d
           

    

We know that the basis function       is upper bounded and it was shown in 

Theorem 2, that the detection residual is bounded. Thus, the term       
              in 
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the above equation is bounded and if assumed to be held constant at time t. Suppose that 

   is the time at which the system attains failure. Then         can be described by 
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Therefore,          , which is the j
th

 element of        , can be represented by 
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where    
 is the j

th
 element of the basis function of fault in the i

th
 subsystem. After 

substituting           with        
 we get 
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Since    is the time of failure and t is the current time,        is the time to 

failure or TTF. With simple mathematical manipulations we finaly arrive at 
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Figure 5.1 shows magnitude of the tracking error in the faulty subsystem. The 

fault will definitely cause the tracking error to increase, since the nominal controller does 

not have any information about it. Upon detecting the fault, the accommodation scheme 

will modify the controller to mitigate fault effects and decrease the tracking error. The 

problem of time-to-accommodation estimation is then defined by continuously estimating 

the time left until the tracking error magnitude decreases below a desired limit defined by 

the user. In the next theorem, linear approximation is used to estimate time-to-

accommodation (TTA) online. 
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Figure 5.1. Tracking error with fault accommodation 

 

Theorem 5: Upon detecting a fault in the subsystem “i” and initiation of fault 

accommodation scheme, time-to-accommodation can be estimated online by using  
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where       is the desired tracking error limit for the j
th

 state in subsystem i. 

 

Proof: By using linear approximation time-to-accommodation for each of the 

states at time t can be found by 
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Since the tracking error for all of the states must be less than their limits, the total 

TTA is obtained as the maximum among all the individual time-to-accommodations, i.e. 
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Theorems 4 and 5 provide analytical formulas for online estimation of TTF and 

TTA. This can be utilized to determine whether or not the accommodation scheme can 

bring the system performance back to normal before the complete failure of the system. 

Figure 5.2 illustrates the process of detection and accommodation. Upon detecting a fault, 

the accommodation unit is activated and TTF and TTA are activated. Then estimated 
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TTF and TTA are compared to each other. If either the TTF decreases below a certain 

limit (TL) or TTF is smaller than TTA, then the system is shut down for maintenance, 

since the accommodation unit cannot keep the system in safe operating conditions. If 

both of these situations do not happen, the accommodation scheme and TTF/TTA 

estimation continues and the system will keep running uninterruptedly. 

 

 

Figure 5.2. Detection and accommodation flow chart 

 

 

6. SIMULATION RESULTS 

A system of double inverted pendulums [14], which is depicted in Figure 6.1 [19], 

is used to verify the proposed decentralized detection and accommodation schemes. The 

pendulums are connected to each other by a spring and their motion dynamics are 

described by 
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where        and        are the angular displacements of the pendulums from the 

vertical position,        and        are the angular velocities of the pendulums,    

and    are damping coefficients,   is standard gravity,     and    are masses and    and 

   are lengths of the pendulums. Moreover 
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Figure 6.1. Double inverted pendulums 

 

Uncertainties in the form of                          are added to the 

dynamics of the system and a fault is seeded in the first pendulum subsystem at time 

         . The fault is described by 
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The values of system parameters are provided as       ,        ,       

     ,       ,       ,       ,        ,       ,     , and      . The 

initial states are                                      , the desired trajectories 

are                            and                            and the 

simulation runs for 50 seconds. The control inputs in healthy conditions are 
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where     is the tracking error vector defined by                       
  and   

         

To perform the decentralized fault detection, the local fault detectors in (2) are 

utilized. Upon detection the parameter update law in (3) is used to update the unknown 

parameter vector such that the online approximator in the first LFD estimates the fault 

function. The LFD parameters are selected as     ,    ,      , and         . 

Also after the detection, decentralized fault accommodation is performed and control 

inputs are augmented as             to cancel the fault effects.          is calculated by 

               2 2ˆ ˆˆˆ ˆ ; ; 1,2T

ic i i i i i i i i i i i i i iu t m l q e t W t h x t t m l c B Pe t i       

where     is the output of online approximator in i
th

 LFD,     is the output of 

accommodation OLA in i
th 

subsystem,              ,         , and    and    

are obtained from solving the Lyapunov equation           
           

      

   . By choosing            we get        
           
           

 .  

The unknown parameter vector    is tuned online using update law in (8) with 

         and            . It should also be mentioned that neural networks 

with five hidden layer neurons are used as online approximators. 

Figure 6.2 shows the detection residual of the first pendulum (subsystem 1) along 

with the detection threshold. The residual is below the threshold in the healthy operating 

conditions. When the fault occurs at          , this residual starts to increase and 



 

 

121 

eventually it exceeds the detection threshold at             . At this point the fault is 

detected in the first subsystem, the online approximator is turned on to approximate the 

fault dynamics, and the parameter update law in (3) is used to update the unknown 

parameters. As observed in Figure 6.3, the online approximator is able to estimate the 

fault function with a small error, after the fault is detected. Because of this approximation 

property of the OLA, the estimator is able to adapt with the changes in the actual system 

due to the fault and the detection residual falls below the threshold again. 

 

 

Figure 6.2. Subsystem 1 detection residual and threshold 

 

 

Figure 6.3. Actual and estimated fault functions 

 

Figure 6.4 depicts the tracking error if no fault accommodation is performed. In 

this case the fault causes the tracking error to increase. In contrast, when the proposed 

decentralized fault accommodation strategy is adopted, the estimated fault function and 
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another neural network are used to cancel the fault effects. It can be observed in Figure 

6.5 that the tracking error of pendulum 1 is brought back close to zero upon detection of 

the fault, when the accommodation scheme is applied. The effectiveness of the proposed 

scheme, which does not require transmission of actual or estimated states among 

subsystems, can be concluded by comparing the tracking errors in Figures 6.4 and 6.5. 

The estimation of time-to-accommodation is shown in Figure 6.6. The accommodation 

scheme requires about 0.06 seconds to bring the system in desired operating condition. 

 

 

Figure 6.4. Pendulum 1 tracking error without accommodation 

 

 

 

Figure 6.5. Pendulum 1 tracking error with accommodation 
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Figure 6.6. Estimated time-to-accommodation 

 

 

7. CONCLUSIONS 

The new decentralized fault detection and accommodation scheme presented in 

this paper is easy to implement on large-scale industrial systems, where significant 

amount of communication between subsystems due to state vectors is not possible or 

desirable. With the proposed scheme, the fault can be detected, its dynamics can be 

estimated by the detection OLA, and the accommodation can be performed to cancel the 

effects of the fault on all subsystems. Moreover, time-to-failure and time-to-

accommodation are also approximated, which increases the system availability and 

reliability. These are all possible without the need for offline data from the system, 

known interconnection between subsystems, or the need for the overall measured or 

estimated state vectors. The only requirement of the proposed method is relatively 

accurate models of the subsystems consistent with other model-based schemes. 
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V. Fault Diagnosis of a Class of Distributed Parameter Systems Modeled by 

Parabolic Partial Differential Equations 

 

Hasan Ferdowsi and S. Jagannathan 

 

 

Abstract 

Many industrial systems are classified as distributed parameter systems (DPS) and the 

behavior of such systems is best described by partial differential equation (PDE) models. 

However, due to complex nature, a PDE model is traditionally transformed into a finite 

set of ordinary differential equations (ODE) prior to the design of control or fault 

detection schemes. As a result, significant approximations have to be made reducing the 

accuracy and reliability of the system. In this paper, the PDE representation of the 

system is directly utilized to construct a fault detection observer for DPS in contrast with 

the traditional fault detection observers which are based on the approximated ODE 

model of the system.  A fault is detected by comparing the detection residual, which is the 

difference between measured and estimated outputs, with a predefined detection 

threshold. Once the fault is detected, an online approximator is activated to learn the 

fault function. An update law is introduced for updating the unknown parameters of the 

online approximator. The stability of the observer along with the online approximator is 

discussed analytically in the paper. Upon detecting a fault, the estimated fault 

parameters are compared with their failure thresholds to provide an estimate of the 

remaining useful life of the system. Further, a rigorous method for estimating the 

remaining useful life of the system in the presence of fault is introduced for DPS.  The 

scheme is verified in simulations on a Lithium-ion battery system which is described by 

parabolic PDEs. 
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1. INTRODUCTION 

Fault diagnosis has become an attractive research topic in the past couple of 

decades due to increased complexity of industrial systems and safety for such systems 

has become more important than ever. Among the different methods of fault diagnosis, 

model-based methods have become both popular and more suitable when a mathematical 

model of the system under consideration is either available or can be obtained [1] because 

they do not need extensive amounts of offline data and can operate online without 

requiring additional sensors.  Therefore, model-based fault diagnosis schemes have been 

developed for lumped parameter systems based on their ordinary differential equation 

(ODE) representation using sliding mode observers [2], fuzzy observers [3], and adaptive 

observers [4]. 

A large number of industrial systems which involve heat transfer, fluid dynamics, 

electromagnetic, etc. are classified as distributed parameter systems (DPS). Application 

examples of such DPS include hydraulic systems, chemical processes, flexible robots, 

and aerospace systems. Due to the wide range of such systems and their important and 

sensitive role in the industry, reliable fault detection and diagnosis schemes are required 

to guarantee their safe operation. 

The variables in DPS are defined over a continuous range of space [5], which 

makes them different from lumped parameter systems where each variable only evolves 

in time. The most comprehensive and accurate mathematical representation for these 

systems is given in terms of partial differential equations (PDEs).  Limited work has been 

done on DPS when compared to the systems with ODE models, because dealing with 

PDEs is much more complicated due to boundary conditions and infinite number of states 

[5]. 

In order to simplify the problem of dealing with PDE model, it can be represented 

as an infinite set of ordinary differential equations (ODEs) and then apply the Galerkin’s 

method to obtain an approximate finite dimensional ODE model [6, 7] which is then 

utilized for further analysis. Although this method has opened new doors to the problem 

of control and fault detection of DPS, it has a number of serious problems. First of all, 

these methods [6, 7] can possibly render inaccurate results since they are neglecting a 

significant portion of the system dynamics. Also there is no guarantee that the system 
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output can be generated as a function of only the states of the finite dimensional ODE 

system. Further, when a fault happens in the system, the PDE dynamics will change, 

which can make the approximated ODE model even more inaccurate.  

Several fault detection methods for DPS have been proposed recently. For 

example, a learning systems approach is introduced in [8, 9] for fault detection of such 

systems whereas fault detection and isolation of such DPS with actuator faults are 

discussed in [10, 11], and a geometric approach is proposed for fault detection and 

isolation of dissipative parabolic PDEs [12]. However, all of them use the approach of 

transforming the PDE representation into an approximate finite dimensional ODE making 

these schemes [8-12] inaccurate and unreliable necessitating the need for a new technique 

for DPS. 

In this paper, a fault diagnosis scheme by using the PDE representation of the 

DPS is introduced to increase the reliability and functionality of the entire system. In 

contrast with existing schemes [8-12], the PDE representation is not transformed into a 

finite dimensional ODE model before performing the fault detection. Instead, the 

detection observer is designed directly based on the PDE model. It is shown that the 

proposed observer can estimate both measured and unmeasured system states in the 

healthy operating conditions with a bounded error. Detection residual is generated by 

comparing the measured and estimated system outputs. Since the residual is bounded in 

healthy conditions, a fault can be detected by comparing it with a predefined detection 

threshold. 

Upon detecting a fault, an online approximator, which is incorporated in the PDE 

observer, is activated to estimate the fault dynamics. An adaptive update law is proposed 

to tune the unknown parameters of the online approximator. The stability of both the 

proposed observer and the online approximator is investigated analytically. Furthermore, 

by using the parameter update law and comparing the estimated fault parameters with 

their failure thresholds an analytical formula for online estimation of the time to failure 

(TTF) or remaining useful life of the system is derived.  

The effectiveness and stability of the proposed scheme is verified in a simulation 

example, a Lithium-ion battery system. The dynamics of the system is described by 

parabolic PDEs. The proposed PDE observer is utilized to estimate the unmeasurable 
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system state, Lithium concentration, and provide an estimation of the system output 

which is used to generate detection residual. Fault detection and approximation as well as 

remaining useful life estimation are successfully performed in simulations and the results 

are presented in the last section of this paper. 

The paper is organized as follows: Section II describes the system and its model. 

Section III presents the PDE observer and Section IV discusses the online approximation 

of fault dynamics and Section V introduces the online failure prediction scheme. The 

verification of proposed scheme in simulations is presented in Section VI. 

 

2. SYSTEM DESCRIPTION 

Consider the class of nonlinear system described by the following normalized 

PDE 
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where   is the state of the system, u is the control input applied at z=1, a>0 and q are 

constants, and      and      are smooth functions. Further, suppose that the only 

measurement is taken at the same end with actuation, i.e. 

( ) (1, )y t x t      (3) 

Now b(z) can be eliminated from the equation by using the following 

transformation [13] 
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Next consider a fault in the system which can be modeled by            .    Then 

the system representation in (1) and (2) can be rewritten in the presence of a fault as 
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subject to the boundary conditions  
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Moreover, the fault function can be represented by 
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where   is an unknown constant determined by the growth rate of the fault. Although, 

this time profile is basically used to model incipient faults, it can also address abrupt 

faults by large values of  . 

The following standard assumption is needed in order to proceed. 

Assumption 1: The fault function can be expressed as linear in the unknown 

parameters (LIP) [14], i.e.           where   is the vector of unknown parameters 

and      is a known nonlinear function which is bounded by         . 

Next the PDE observer is designed to monitor the system states and output. 

 

3. FAULT DETECTION OBSERVER 

In order to detect a fault, an observer is utilized to estimate the system output in 

healthy conditions. Then the estimated and measured outputs will be compared to 

generate fault detection residual. Traditionally when dealing with PDEs, the system 

representation is transformed into an infinite set of ordinary differential equations, and 

then divided into an infinite dimensional fast and stable subsystem and a finite 

dimensional slow subsystem [8-12]. This way, the infinite dimensional part of the system 

is ignored and an ordinary ODE observer is designed to estimate the states of the finite 

dimensional part. Although this method has provided a basic solution to the problem of 

control and fault detection of DPS, it has several issues.  
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One of the most obvious shortcomings of the traditional method is the fact that a 

large part of the system dynamics has to be neglected, which can lead to inaccurate or 

even unreliable results. The other important issue arises from the limited number of 

measurements in a DPS which has infinite number of states. There is no guarantee that all 

the states of the slow subsystem can be measured in the actual system and an output 

observer might be useless, since the output of the system cannot always be represented as 

a function of slow subsystem states. 

On the other hand, the ODE observer, designed based on the finite dimensional 

part of the system dynamics, is only reliable when the dynamics is completely known and 

fixed.  In other words, unknown changes in the system dynamics, such as fault, can 

modify the eigenvalues, thus require a different transformation which will result in a 

different ODE representation. These issues motivated us to design a fault detection 

observer, directly based on the PDE model of the system. 

Using the original PDE representation of the system and based on the Luenberger 

observer design, the following distributed parameter observer is proposed 
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ˆ ˆ( ) (1, )y t x t      (8) 

where    and    are the estimated state vector and estimated output vector respectively, L1 

and L2 are the output injection matrices of appropriate dimension which are used along 

with the output error,     , to correct the observer error due to different initial 

conditions.  

The next important issue is how to implement this fault detection observer in 

practice, because the online estimation is required while the PDE needs to be solved 

backward in time.  In order to tackle this problem, the PDE observer will be discretized 

for implementation. Suppose the measurements are taken with a sampling rate of T, 

which means the output      is only available at times      for        . Then the 

solution to the set of partial differential equations (6-8) is calculated in the time interval 
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(t-T,t) where t  is the current time instant. For this purpose,   is assumed to remain 

constant in each sampling interval (t-T,t)  and the final values of estimated states from the 

previous step, i.e.           for      , are used as the initial values for solving the 

PDE in the time interval (t-T,t). 

Since the only available measurement is y(t), the detection residual is defined as 

the difference between the measured and estimated outputs, i.e.       . However, in 

order to analyze the stability of the observer, a state residual is also defined as        . 

Then the residual dynamics in healthy operating conditions are described by 
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As long as the system works in healthy operating condition, the residual dynamics 

should be stable and the state residual as well as detection residual must remain bounded. 

For this purpose we will look for a transformation [13] in the following form 

       
1

, ,, ,
z

x L zz t z t dt                        (11) 

which can transform the PDE in (9),(10) to 
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where   is a user defined parameter introduced in order to keep the PDE system 

described in (12) and (13) stable. Therefore, we first substitute (11) in the system (9) and 

(10) and use Leibniz integral rule to get 
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By using integration by parts and rearranging the terms in the above equations, we 

arrive at 
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In order for the transformed PDE to be equivalent to the PDE described in (12) 

and (13), the following conditions which are obtained by comparing (14),(15) with 

(12),(13), must be satisfied 
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Note that (16) describes a partial differential equation which has a unique solution 

[13] with the boundary condition defined in (17). Since (16) and (17) are time 

independent, its solution can be found offline and can be used to determine the observer 

parameters from conditions (18) and (19). 

The next theorem discusses the stability of the residual dynamics in (9) and (10) 

under healthy operating conditions of the system. 

 

Theorem 1 (PDE Observer Performance in the Healthy Conditions): Let the 

PDE observer introduced in (6) and (7) be used to estimate the states of the system 

described by (1) and (2), with L1 and L2 defined in (18) and (19). Then the state residual    

is exponentially stable (in the healthy operating conditions), if   is selected to be positive. 

Proof: It is already shown that there exists a unique transformation which can 

convert the residual dynamics in (9) and (10) into the target system of (12) and (13), if L1 

and L2 are defined using (18) and (19). Since the transformation (11) is invertible [15], it 

only remains to be shown that the target system of (12) and (13) is asymptotically stable. 

To investigate the stability of the PDE in (12) with boundary conditions in (13), 

the following Lyapunov function candidate is selected 
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respect to time and use integration by parts to get 
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By substituting (12) and (13) in the above equation and then using integration by 

parts again, we arrive at 
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By applying the Poincare inequality [16] on the second term in the derivative of 

Lyapunov function, it can be rewritten as 

 
2 22

1 1 1
2

0 0 0

22
1 1

2

0 0

( , ) (1, ) ( , )
( ) ( , )

4

4 ( , )
( , ) ( )

4

a z t t z t
V t z t dz dz a dz

z z z

z t
z t dz a dz

z

   
  

 
  

     
        

     

   
      

  

  

 

 

The first derivative    is negative definite if   is selected to be positive. Therefore 

the target system in (12) and (13) is asymptotically stable, which completes the proof. 

Based on Theorem 1, fault detection can be performed by comparing the detection 

residual with a pre-defined threshold. This threshold needs to be determined based on the 

initial conditions of the system and the observer. When a fault occurs, the dynamics of 

the actual system will be changed, but the observer still estimates the system states and 

output based on the nominal system representation. Thus, the difference between 

measured and estimated states increases as the magnitude of fault grows. Once the 

detection residual reaches the detection threshold, a fault is declared active.   

The next step in fault diagnosis is to determine the behavior of fault or 

approximating its dynamics, which allows further analysis of fault as well as estimation 

of remaining useful life of the system.  To this end, an online approximator is added to 

the observer, which is discussed in the next section. 

 

4. ONLINE FAULT APPROXIMATION 

As mentioned above, the proposed detection observer is able to estimate the 

distributed system states and output with an asymptotically decreasing error in healthy 

operating conditions. When a fault occurs, the residual is no longer bounded and the fault 

is detected when the residual exceeds detection threshold. Upon detecting a fault, an 

online approximator is activated in the observer to estimate the fault dynamics. The 

online approximator is incorporated in the observer as  
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where    is the output of online approximator defined by 
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with    being the estimated matrix of unknown parameters. 

By comparing the observer dynamics in (20) with the actual system dynamics in 

(4) and utilizing the Assumption 1, the residual dynamics after the detection of a fault can 

be represented by 

   
   

2

12
(

, ,
, 1,) (( ) ( , ))T

z t z t
z

x x
a c z x L xt t w t zy t

t z


 
   

 
             (22) 

where         is the parameter estimation error. The stability of the proposed 

observer with the incorporated online approximator is discussed in the following 

theorem. 

 

Theorem 2 (Fault Diagnosis Observer Performance): Let the proposed PDE 

observer in (20) with boundary conditions defined by (7) be used to monitor the system 

in (4) and (5), with the online approximator turned on upon detection of fault. If the 

parameter update law is defined as 

ˆ ˆ( ) ( ,( 1) ( ) ( ))y t ew wtt t             (23) 

where     is the learning rate and     is the stabilizing term, then the FD residual,  , 

and the parameter estimation errors,    are uniformly ultimately bounded (UUB), if the 

design parameters are selected such that 
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Proof: First apply the transformation (11) on the residual dynamics 
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Consider the following Lyapunov function candidate 
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The derivative of this Lyapunov function is given by 
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Then we apply integration by parts and use the boundary conditions in (25) to get 
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The next step is to substitute (24) in the derivative of Lyapunov function and use 

integration by parts again to obtain 
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Now we employ the inequality    
       

 
  where        and        
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To cancel out the positive term ( ) ( ,1)( ) (1, )T y tw t t , the parameter update law is selected 

as 

( ,1)ˆ ˆ( ) ( ) (1, ) ( )w t y t t w t     

In order to represent this update law in terms of available measurements of the 

system, the inverse of transformation (11) needs to be found. But an easier way is to set 

z=1 in (11) to get 
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Therefore,  ,( 1)t te x can be used instead of  1, t  in the update law to get (23).   By 

substituting the proposed parameter update law in the derivative of Lyapunov function, it 

can be rewritten as 
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Finally, we apply the Poincare inequality and rearrange the terms in the above 

inequality to get 
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Provided the conditions in Theorem 2 are satisfied, the derivative of Lyapunov 

function will be less than zero if the following are satisfied 
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     (26) 

Therefore, the state estimation error and parameter estimation errors are UUB with the 

bounds defined by (26). 
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It has been shown so far, that the proposed method can perform fault detection 

and approximation with limited and adjustable error bounds. Using these results, we can 

move on to the next step which is the prediction of failure. 

 

5. FAILURE PREDICTION 

Despite the words fault and failure generally imply similar concepts they have 

different meanings in the field of fault diagnostics and prognostics. This difference 

originates from the fact that a fault does not necessarily make a system inoperable 

immediately after its occurrence and the system can continue to work with the existence 

of that fault for a limited time before it reaches a point called failure, when the system is 

no longer safe to operate or does not satisfy the minimum performance requirements. 

Therefore, once a fault is detected, it is crucial to determine the amount of time left 

before the system reaches a failure. This is generally called remaining useful life or time-

to-failure prediction. 

Another advantage of online model-based method of fault detection can be 

highlighted here, because the online estimation of fault and analytical parameter update 

law allows online estimation of failure time. For this purpose, the parameter update law 

in (23) is utilized along with failure thresholds for each of the fault parameters to derive a 

rigorous formula for time-to-failure estimation, which is discussed in the following 

theorem. 

 

Theorem 3 (Time-to-Failure Prediction): Upon detection of fault through the 

PDE observer, the time-to-failure can be estimated using the following formula 
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   (27) 

Proof: In order to estimate the time of failure, the future values of the fault parameters 

should be estimated and then compared with the corresponding failure thresholds. 

Consider the parameter update law in (23) as a state space equation where the term 

( ,1( ) ( ))y t e t  acts as an input. Then the solution to (23), which determines the value of 

estimated parameters in the future, can be described by 
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where t is the current time instant and    refers to future times. Since      is a bounded 

function and it has been shown that e remains bounded after the detection of fault, we 

will assume, as an approximation, that the term ( ,1( ) ( ))y e    remains constant. Now let 

    denote the i
th

 element of the estimated parameter vector and suppose    
 is the time 

when the value of this element reaches its failure limit     for the first time. Then we will 

have 
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Define            
  , which clearly refers to the time-to-failure 

corresponding to the i
th

 parameter of the fault. By substituting this in the above equation 

and rearranging the terms we arrive at 
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This gives a formula for calculating time-to-failure for each fault parameter. Since the 

system fails if one of the fault parameters reaches its limit, the overall time-to-failure of 

the system is the small among time-to-failures of all parameters. This completes the 

proof. 

 

6. SIMULATION RESULTS 

To verify the proposed fault detection and prognosis scheme, it has been applied 

on a Lithium-ion battery in simulations using MATLAB. Two types of models are 

available for Lithium-ion batteries. One is the electrical circuit model which is described 

in terms of ordinary differential equations [17]. The other type of model is derived based 

on the chemical reactions inside the battery. This model is described in terms of partial 

differential equations and provides more information about the system can be found in 

[18]. Not only it is a more accurate model, but also it can provide estimates of Lithium 

concentration which is an unmeasurable distributed variable in the battery. 
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The system dynamics can be represented by the single particle model [19] which 

is in the form of following partial differential equations 
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where   
  is the lithium concentration in anode, r is the radial coordinate,   

  is the 

diffusion coefficient in solid phase,   
  is the particle radius, F is the Faraday’s constant, 

   is the specific interfacial surface area, A is the cell cross sectional area,    is the 

thickness of the anode, and I is the input current. 

The battery model defined by (28) and (29) can be normalized using the following 

change in coordinates 
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and then converted to the form of the PDE in (4) using the state transformation 

( , ) ( , )sc r t rc r t  

Therefore, the system dynamics in healthy conditions can be represented by 
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Note that the actual measurable output of the battery is the terminal voltage, but 

       can be calculated as a function of the terminal voltage. In order to simplify the 

notations,        is selected as the output. To seed a fault in the simulations, an internal 

fault is added to the PDE dynamics in (28) at the time       , resulting in 
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The states of the system described by (28) and (29) are estimated using the proposed PDE 

observer which is described by 
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where    and    are obtained by numerically solving the PDE defined in (16) and (17). 

The observer parameters are selected as         which satisfy the stability condition 

in theorem 2. In order to implement the observer in simulations, it is solved in discrete 

time intervals with the length of one second and the observer is one second behind the 

actual system. In each time interval the observer takes      and        as inputs and is 

solved backward in time. Then the final values of that interval are used as initial values 

for the next time interval and so forth.  

The drive cycle which is used in the simulations as the input to the system is 

depicted in Figure 6.1. The evolution of the distributed system variable, the Lithium 

concentration, is shown in Figure 6.2. As mentioned earlier, this variable is not 

measurable, but can be estimated by the PDE observer. It should be noted that estimated 

lithium concentration can be very useful in determination of the battery’s state of charge. 

Although value of the system state at     does not change due to the constant boundary 

condition, the lithium concentration at     does not remain constant and its behavior 

significantly changes after the occurrence of fault. 

The detection residual is generated by comparing actual and estimated value of 

the lithium concentration at    , i.e.                    . It can be observed in 

Figure 6.3, that the detection residual remains bounded below the detection threshold as 

long as the system works in healthy conditions. Upon initiation of fault at       , the 

residual starts to increase, because the estimated value of the system states will deviate 

from the actual values due to the change that the fault applies to the system dynamics. 
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Once the detection residual exceeds the detection threshold, a fault is detected and the 

parameter update law is immediately activated to learn the dynamics of the fault. 

 

 

Figure 6.1. Input current 

 

 

Figure 6.2. Lithium Concentration in Anode 

 

 

 Figure 6.3. Detection residual and threshold 
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It can be seen in Figure 6.4, that the fault is seeded at time       . However, 

the estimated fault which is the output of the online approximator remains at zero until 

the detection happens, because the unknown parameters are initialized at zero and are not 

updated before the detection of fault. When the fault is detected at time       , the 

unpdate law starts to tune the unknown parameters and the estimated fault magnitude 

reaches the actual fault magnitude in less than 5 seconds. Accurate estimation of fault 

parameters not only results in accurate estimation of fault as seen in Figure 6.4, but also 

allows reasonable estimation of time to failure. Time to failure is estimated online using 

the formula given in (27) and the result is shown in Figure 6.5. Initial estimation of TTF 

is not accurate because the fault parameters have been initialized at zero. As the update 

law drives the parameters closer to their actual values, the estimation of time-to-failure 

becomes more accurate. 

 

 

Figure 6.4. Actual and estimated fault 

 

 

Figure 6.5. Estimated time-to-failure 
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7. CONCLUSIONS 

Since the PDE model is not approximated with lower order models and it is 

directly used to construct the detection observer, the proposed scheme is more accurate in 

estimating the system states and more reliable in performing fault detection than the 

existing fault diagnostic methods for distributed parameter systems. As seen in the 

simulation example, it can also provide useful information about the unavailable system 

states. It was shown that if the stability conditions are satisfied with proper selection of 

design parameters, the observer will track the actual system states in healthy conditions 

and the adaptive update law will learn the unknown parameters of fault with a bounded 

error, which allows determination of time-to-failure. Accurate and fast fault detection 

enhances the reliability and decreases the maintenance costs while the time-to-failure 

determination increases the system availability. 
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2. CONCLUSIONS AND FUTURE WORK 

In this dissertation, adaptive nonlinear observers are designed to estimate system 

states and perform model-based fault diagnosis and prognosis. Novel parameter update 

laws guarantee the stability of the overall system during detection and prognosis and 

allow determination of time-to-failure upon detection of fault. Furthermore, a neural 

network (NN) approximator is used to develop an online outlier detection and removal 

scheme in order to prevent false fault alarms in the model-based schemes. One can use 

any online approximator in the diagnosis and prognosis schemes. 

 

2.1. CONCLUSIONS 

In the first paper, a fault diagnosis scheme is proposed that can handle both 

additive system faults and multiplicative actuator faults. The importance of this work lies 

in the fact that all industrial systems can be subjected to both types of faults. While the 

detection of fault regardless of its type is the crucial step, determination of fault type can 

narrow down the possible root causes of the detected fault and also allow the initiation of 

appropriate failure prediction scheme which will in turn improve system availability. The 

proposed scheme does not need large quantities of offline training data, it is generic, and 

can be applied to a wide range of systems provided a mathematical model is available. 

However, limited amount of input-output data is required to determine robust detection 

and identification thresholds. The only drawback of this scheme is that it requires all the 

system states to be available, which is not always possible. The fault diagnosis scheme 

can be applied on industrial systems with only a software upgrade and can help 

decreasing the repairing and down time costs. 

In the second paper, a NN-based online outlier detection and removal scheme is 

presented and combined with a model-based fault detection scheme. While the existing 

methods of online outlier removal cannot provide a satisfactory performance in real 

applications because of the nonstationary environment, the proposed scheme can operate 

online in the presence of outliers, noise, fault, and change in operating conditions, since it 

does not require the system dynamics or underlying distribution of measurements to be 

fixed and known. The use of OIR scheme as a preprocessing unit guarantees removal of 
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outliers and so it can eliminate false fault alarms that are triggered by outliers. The 

estimation of outlier-free states is initially inaccurate due to random selection of neural 

network weights, but the learning algorithm quickly captures the system behavior and 

reduces the estimation error. Although in this paper, the OIR scheme is only combined 

with a model-based fault diagnosis scheme, it can also be used to enhance the 

performance of data-based fault detection. 

The third paper proposes a decentralized fault prognosis scheme for spatially 

distributed systems. Unlike centralized schemes, asymptotic convergence cannot be 

guaranteed in the proposed decentralized scheme, but with a small sacrifice in accuracy a 

scheme is constructed which is more practical and easily implementable without the need 

for both complex centralized units and transmission of large amounts of data. Moreover, 

the scheme has higher reliability when compared to the centralized or consensus-based 

distributed schemes since the decentralized units are completely separated. The failure in 

one of the fault detector units does not interfere with the performance of other units 

which can prevent catastrophic failures in large networks. A single fault can be detected 

in all the subsystems that are significantly affected, and the origin of the fault is 

determined by the central fault isolation unit which only requires minimal information 

transmission.  

The fourth paper presents a new decentralized fault detection and accommodation 

scheme which is easy to implement on large-scale industrial systems where significant 

amount of communication between subsystems is not possible or desirable. In the case of 

incipient faults, the accommodation allows uninterrupted operation of the system in the 

presence of fault for a limited time, which safely decreases the system downtime. By 

comparing estimated time-to-failure and time-to-accommodation, the appropriate 

decision to continue or stop the operation of system can be made. Therefore, the system 

repair can be consciously postponed to a suitable time by allowing the system to work in 

the presence of a fault without any risk of damage to system components or processes. 

These are all possible without the need for interconnection between subsystems to be 

known, or the need for the overall measured or estimated state vectors to be transmitted 

to all subsystems. The only requirement of the proposed method is the need for accurate 

models of the subsystems consistent with other model-based schemes. 
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In the last paper, the fault diagnosis of distributed parameter systems is 

investigated. The importance of this work is emphasized by the large number of systems 

that are characterized as distributed parameter systems, like the ones that involve 

hydraulics, electromagnetics, chemical reactions, etc. The major challenge in dealing 

with such systems is that they have unlimited number of states but limited number of 

sensors. The detection observer is designed without any approximations made in the 

system dynamics, thus making the estimation more accurate, decreasing the number of 

missed of false alarms in fault detection, while improving the accuracy in fault estimation 

and failure prediction. Additional sensors are not required since the observer can provide 

information about the unavailable system states which are useful for further analysis of 

the system and the root cause of the fault. Upon detection, adaptive estimation of fault 

parameters provides a reliable way to identify the fault which in turn helps in finding the 

location for early maintenance before the fault leads to further damage. 

 

2.2. FUTURE WORK 

The requirement for all the system states to be measurable, needs to be relaxed by 

using output observers. This is mainly to make our design more suitable for practical 

implementation, since many system states might not be measurable. Even if all the 

system states are measurable, it is desirable to perform the fault diagnosis using only the 

existing sensors. The future work regarding the decentralized fault accommodation 

scheme is related to the class of systems under consideration, as the current scheme can 

only handle systems in the form of controllable canonical form. Consequently, novel 

schemes have to be developed to cover broad class of affine systems. 

Another part of the future work is the hardware implementation of the proposed 

decentralized fault diagnosis and prognosis scheme as well as the PDE-based fault 

diagnosis scheme. Although the effectiveness of these schemes was illustrated through 

the use of simulation examples, hardware implementation is a mandatory step for any 

industrial design and can determine possible problems or shortcomings of the scheme, 

thus helping us to improve it. 

The PDE-based diagnosis scheme for distributed parameter systems is a new area 

and has a lot of room for improvement. In this dissertation, a scheme was proposed only 
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for the class of systems which are modeled by linear parabolic PDEs. The fault diagnosis 

of systems based on other types of PDEs, like hyperbolic and elliptic PDEs, is still an 

open problem which is definitely worth investigating. Also the observer design and fault 

detection of systems with nonlinear PDEs is a part of the future work. Another important 

problem to be targeted is the fault accommodation of the distributed parameter systems 

based on the current detection scheme. 
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