
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Fall 2013 

Finite-horizon optimal control of linear and a class of nonlinear Finite-horizon optimal control of linear and a class of nonlinear 

systems systems 

Qiming Zhao 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Electrical and Computer Engineering Commons 

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering 

Recommended Citation Recommended Citation 
Zhao, Qiming, "Finite-horizon optimal control of linear and a class of nonlinear systems" (2013). Doctoral 
Dissertations. 1827. 
https://scholarsmine.mst.edu/doctoral_dissertations/1827 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1827?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1827&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 

 



 

 

 

 

FINITE-HORIZON OPTIMAL CONTROL OF LINEAR AND A CLASS OF  

 

NONLINEAR SYSTEMS 

 

 

by 

 

 

QIMING ZHAO 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

in 

ELECTRICAL ENGINEERING 

 

2013 

 

Approved by 

 

Jagannathan Sarangapani, Advisor 

Levent Acar 

Maciej Zawodniok 

Robert G. Landers 

Sriram Chellappan 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2013 

Qiming Zhao 

All Rights Reserved



iii 

 

PUBLICATION DISSERTATION OPTION 

This dissertation contains the following five articles: 

Paper I: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-Horizon Optimal 

Adaptive Control of Uncertain Linear Discrete-time Systems”, under review with 

Optimal Control Applications and Methods and “Fixed Final Time Optimal Adaptive 

Control of Linear Discrete-time Systems in Input-Output Form”, accepted by Journal of 

Artificial Intelligence and Soft Computing Research. (Invited paper). 

Paper II: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-Horizon Optimal 

Adaptive Control of Uncertain Quantized Linear Discrete-time System”, under review 

with International Journal on Adaptive Control and Signal Processing. 

Paper III: Qiming Zhao, Hao Xu and S. Jagannathan, “Neural Network-based 

Finite-Horizon Optimal Control of Uncertain Affine Nonlinear Discrete-time Systems”, 

minor revision and resubmitted to IEEE Transactions on Neural Networks and Learning 

Systems. 

Paper IV: Qiming Zhao, Hao Xu and S. Jagannathan, “Fixed Final-Time near 

Optimal Regulation of Nonlinear Discrete-time Systems in Affine Form using Output 

Feedback”, under review with Acta Automatica Sinica. 

Paper V: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-Horizon Near 

Optimal Control of Quantized Nonlinear Discrete-time Systems with Input Constraint 

using Neural Networks”, under review with IEEE Transactions on Neural Networks and 

Learning Systems. 

  

Research in part by NSF grant ECCS#1128281 and Intelligent Systems Center 



iv 

 

ABSTRACT 

Traditionally, optimal control of dynamical systems with known system dynamics 

is obtained in a backward-in-time and offline manner either by using Riccati or 

Hamilton-Jacobi-Bellman (HJB) equation. In contrast, in this dissertation, finite-horizon 

optimal regulation has been investigated for both linear and nonlinear systems in a 

forward-in-time manner when system dynamics are uncertain. Value and policy iterations 

are not used while the value function (or Q-function for linear systems) and control input 

are updated once a sampling interval consistent with standard adaptive control. 

First, the optimal adaptive control of linear discrete-time systems with unknown 

system dynamics is presented in Paper I by using Q-learning and Bellman equation while 

satisfying the terminal constraint. A novel update law that uses history information of the 

cost to go is derived. Paper II considers the design of the linear quadratic regulator in the 

presence of state and input quantization. Quantization errors are eliminated via a dynamic 

quantizer design and the parameter update law is redesigned from Paper I. 

Furthermore, an optimal adaptive state feedback controller is developed in Paper 

III for the general nonlinear discrete-time systems in affine form without the knowledge 

of system dynamics. In Paper IV, a NN-based observer is proposed to reconstruct the 

state vector and identify the dynamics so that the control scheme from Paper III is 

extended to output feedback. Finally, the optimal regulation of quantized nonlinear 

systems with input constraint is considered in Paper V by introducing a non-quadratic 

cost functional. Closed-loop stability is demonstrated for all the controller designs 

developed in this dissertation by using Lyapunov analysis while all the proposed schemes 

function in an online and forward-in-time manner so that they are practically viable.  
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1. INTRODUCTION 

Optimal control of discrete-time linear and nonlinear systems has been one of the 

key focus topics of the control area for past several decades [1][2]. In contrast to the 

infinite-horizon case, which has been intensively studied in the literature [7]-[16], the 

finite-horizon optimal control that enjoys great practical merits, has been still not well 

developed due to inherent challenges resulting from time-dependent nature and the 

terminal constraint, etc. For both infinite and finite horizon optimal control, system 

dynamics are needed. 

Two major differences between finite and infinite-horizon optimal control are 

briefly given here. First, for infinite-horizon case, the solution to the Hamilton-Jacobi-

Bellman (HJB) equation for nonlinear systems or the Riccati equation (RE) for the case 

of linear systems is time-invariant, whereas in the case of finite-horizon, the solution for 

either HJB equation or RE becomes essentially time-dependent. Second, a terminal state 

constraint, which needs to be tackled properly, is imposed for the finite-horizon. By 

contrast, the terminal constraint is not asserted for the infinite-horizon case. Therefore, 

solving finite-horizon optimal control presents a great challenge due to the time-

dependent nature and with additional requirement on satisfying the terminal constraint. 

Traditionally, in the finite-horizon optimal control of linear systems with 

quadratic performance index (PI), or referred to as linear quadratic regulator (LQR), the 

optimal control policy is obtained by solving the RE from the terminal value NS , where 

NS  is the weighting matrix for the terminal states. However, though this method 

theoretically yields an optimal control policy, it is not suitable for real-time 

implementation due to its backward-in-time and offline feature. Further, for a general 
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nonlinear affine system, finding optimal control policy is much more difficult even under 

infinite-horizon case, since the solution to the HJB equation normally does not have a 

closed-form solution [1][2]. Only approximate and iterative approach is normally 

utilized. 

Given the importance and challenges mentioned above for the finite-horizon 

optimal control problem, this topic has attracted many control researchers over the past 

decades who had made great strides to tackle this challenging but promising problem. In 

next subsection, we present an overview of the current methodologies as well as some 

discussion on their shortcomings. Subsequently, the organization and contributions of this 

dissertation are introduced. 

 

1.1 OVERVIEW OF THE OPTIMAL CONTROL METHODOLOGIES 

Theoretically, for infinite-horizon optimal control policy for an affine nonlinear 

system can be obtained by solving the HJB equation, which is essentially an algebraic 

equation. When considering the case of LQR, the HJB equation further reduces to the 

algebraic RE (ARE). However, for most cases, it is impossible to solve the HJB equation 

since it is generally a nonlinear partial differential (or difference) equation [1][2]. 

Therefore, offline scheme with an approximator, e.g., neural networks (NN), is utilized to 

find the approximated solution to the HJB equation [9][14], where the NN weights are 

trained a priori within an operating region before they are implemented in the controller. 

The effort in [9][14] provides some insight into solving the nonlinear optimal 

control problem, whereas offline training is not preferable for realistic implementation 

since it is not currently clear how much training is needed for a given system. In addition, 
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when the dynamics of the system are not known even partially, which is normally the 

case in a realistic scenario the optimal control policy cannot be obtained even for the 

linear systems. Hence, optimal control of dynamic systems by relaxing the requirement 

on the knowledge of system dynamics poses another challenging problem for the control 

researchers. 

To overcome the difficulties mentioned above, approximate dynamic 

programming (ADP) has been widely promoted in control community. Policy and/or 

value iteration serves as a key technique to solve the optimal control. Basically, the 

iteration-based scheme utilizes an initial stabilizing control input and updates not only the 

cost/value function, which becomes the solution to the HJB equation, but also the control 

policy “iteratively” until the estimated control converges to the optimal one all within a 

sampling interval. This approach enjoys great advantages over the conventional method 

since the control policy can be obtained in a forward-in-time manner. For LQR problems, 

Q-learning methodology is rather popular since the complete system dynamics can be 

relaxed by iteratively approximating an action-dependent Q-function [11][15][19], which 

in turn provides the Kalman gain.  

Even though iteration-based method has been proven to be an effective way of 

solving optimal control problem with many successful applications, however, either 

policy or value iteration, requires significant number of iterations within each time step to 

guarantee convergence. This poses a challenge in the control design since the number of 

iterations for convergence is not known beforehand. It has been shown in [12] that with 

an inadequate number of iterations, the system can become unstable. To circumvent this 

shortcoming, the authors in [7] proposed a novel “time-based” methodology for general 
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nonlinear discrete-time systems in affine form where the optimal control policy can be 

obtained based on the history information of the system, thus relaxing the need of 

performing policy/value iterations. The solution of the HJB equation is approximated by 

utilizing two NNs at each time step and thus the approach yields an online and forward-

in-time algorithm. In [8], the authors considered the optimal regulation of a linear system 

under network imperfections. The idea of Q-learning in the case of linear system is used 

to relax the system dynamics with an adaptive estimator effectively learning the Q-

function and thus relaxing the iterations or offline training phase. However, the 

algorithms presented in both [7][8] mainly deal with the infinite-horizon case. 

Regarding the finite-horizon optimal control, the terminal constraint as well as the 

time-varying nature of the solution to either RE or HJB equation needs to be properly 

taken care of. Other than the theoretical approach [1][2], the author in [3] tackled the 

problem by solving the generalized HJB (GHJB) equation, which does not depend upon 

the solution of the system, in a successive way. The terminal constraint is forced to 

satisfy at an iteration such that the boundary condition can be properly satisfied with the 

improved control policy. The coefficients of the value function approximator are solved 

by using Galerkin projections. This however requires extensive computation of a large 

number of integrals. Later in [4], the author extended the work in [3] by utilizing NN to 

reduce the computation burden. The NN with the structure of a time-varying weights and 

state-dependent activation function is used to handle the time-dependent nature of the 

finite-horizon value function approximation. The optimal control policy is obtained by 

backward integration of an ordinary differential equation (ODE) from the known terminal 

NN weights. Therefore, [3] and [4] still yields a backward-in-time solution. 
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On the other hand, the authors in [5] employed the iterative ADP technique to 

handle the finite-horizon optimal regulation. A greatest lower bound ( -bound) of all the 

performance indices is introduced and it is shown that the  -optimal control scheme can 

obtain the suboptimal solutions within a fixed finite number of control steps that make 

the policy iterations converge to the optimal value with an  -error. However, the 

terminal time is not specified in [5] and the terminal state is fixed at the origin. Later in 

[6], the authors considered the finite-horizon optimal control of nonlinear discrete-time 

systems with input constraint by using offline training scheme. The time-varying nature 

of finite-horizon is handled by utilizing a NN which incorporates constant weights and 

time-varying activation function. The idea proposed in [6] is essentially a standard direct 

heuristic dynamic programming (DHDP)-based scheme by using policy/value iterations. 

The terminal constraint is satisfied by introducing an augmented vector incorporating the 

terminal value of the co-state )N( . Hence, [5] and [6] tackled the finite-horizon optimal 

control problem is essentially iteration-based. 

Although the previous work [3][4][5][6] provided some good insights into solving 

the finite-horizon optimal control problem, the solutions, however, are either backward-

in-time or iterative, and are unsuitable for hardware implementation. Furthermore, all the 

aforementioned works require the knowledge of the system dynamics which is another 

bottleneck as mentioned before. Therefore, a control scheme, which can be implemented 

in an online and forward-in-time manner without needing the system dynamics, is still 

unresolved and yet to be developed. 
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1.2 ORGANIZATION OF THE DISSERTATION 

In this dissertation, a suite of novel finite-horizon time-based optimal regulation 

schemes for both linear and nonlinear systems are developed without needing the 

knowledge of system dynamics. The proposed method yields an online and forward-in-

time design scheme which is more preferable under practical situations. This dissertation 

is presented in the form of five chapters as outlined in Figure 1. The first two papers deal 

with the linear system, whereas nonlinear systems are considered in the last three papers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Outline of the dissertation 
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Paper 3: Qiming Zhao, Hao Xu and S. Jagannathan, “Neural 

Network-based Finite-Horizon Optimal Control of Uncertain 

Affine Nonlinear Discrete-time Systems”, minor revision and 

resubmitted to IEEE Transactions on Neural Networks and 

Learning Systems. 

Paper 4: Qiming Zhao, Hao Xu and S. Jagannathan, “Fixed 

Final-Time near Optimal Regulation of Nonlinear Discrete-

time Systems in Affine Form using Output Feedback”, under 

review with Acta Automatica Sinica. 

Paper 2: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-

Horizon Optimal Adaptive Control of Uncertain Quantized 

Linear Discrete-time System”, under review with International 

Journal on Adaptive Control and Signal Processing. 

Paper 5: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-

Horizon Near Optimal Control of Quantized Nonlinear 

Discrete-time Systems with Input Constraint using Neural 

Networks”. Under review with IEEE Transactions on Neural 

Networks and Learning Systems. 

Linear Systems 

Nonlinear Systems 

Paper 1: Qiming Zhao, Hao Xu and S. Jagannathan, “Finite-

Horizon Optimal Adaptive Control of Uncertain Linear 

Discrete-time Systems”, under review with Optimal Control 

Applications and Method and “Fixed Final Time Optimal 

Adaptive Control of Linear Discrete-time Systems in Input-

Output Form”, accepted by Journal of Artificial Intelligence 

and Soft Computing Research. (Invited paper). 
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In the first paper, the finite-horizon optimal adaptive control of linear discrete-

time systems with unknown system dynamics is presented by using ADP technique in a 

forward-in-time manner. An adaptive estimator (AE) is introduced with the idea of Q-

learning to relax the requirement of system dynamics. The time-varying nature of the 

solution to the Bellman equation is handled by utilizing a time-dependent basis function 

while the terminal constraint is incorporated as part of the update law of the AE in 

solving the optimal feedback control. The proposed optimal regulation scheme of the 

uncertain linear system requires an initial admissible control input and yields a forward-

in-time and online solution without using value and/or policy iterations. Furthermore, an 

adaptive observer is proposed so that the optimal adaptive control design depends only on 

the reconstructed states so as to realize an optimal output feedback control design. For the 

time invariant linear discrete-time systems, the closed-loop dynamics becomes non-

autonomous and involved, but verified by using standard Lyapunov and Geometric 

sequence theory. 

The second paper investigates the adaptive finite-horizon optimal regulation 

design for unknown linear discrete-time control systems under the quantization effect for 

both system states and control inputs. First, dynamic quantizer with time-varying step-

size is utilized to mitigate the quantization error wherein it is shown that the quantization 

error will decrease overtime thus overcoming the drawback of the traditional uniform 

quantizer. Next, to relax the knowledge of system dynamics and achieve optimality, the 

Q-learning methodology is adopted under Bellman’s principle. An adaptive online 

estimator, which learns the time-varying value function, is updated at each time step so 

that policy and/or value iteration are not performed. Furthermore, an additional error term 
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corresponding to the terminal constraint is defined and minimized along the system 

trajectory. Consequently, the optimality can be achieved while satisfying the terminal 

constraint in the presence of quantization errors. The proposed design scheme yields a 

forward-in-time online scheme, which enjoys great practical merits. Lyapunov analysis is 

used to show the boundedness of the closed-loop system. 

On the other hand, in the third paper, the finite-horizon optimal control design for 

nonlinear discrete-time systems in affine form is presented. In contrast with the 

traditional ADP methodology, which requires at least partial knowledge of the system 

dynamics, the complete system dynamics are relaxed by utilizing a novel NN-based 

identifier to learn the control coefficient matrix. The identifier is then used together with 

the actor-critic-based scheme to learn the time-varying solution, referred to as the value 

function, of the HJB equation in an online and forward-in-time manner. NNs with 

constant weights and time-varying activation functions are considered to handle the time-

varying nature of the value function. To properly satisfy the terminal constraint, an 

additional error term is incorporated in the novel update law such that the terminal 

constraint error is also minimized over time. Policy and/or value iterations are not needed 

and the NN weights are updated once a sampling instant. Stability of the closed-loop 

system is verified by standard Lyapunov theory under non-autonomous analysis. 

In the fourth paper, the idea is extended to the finite-horizon optimal control of 

affine nonlinear system using output feedback. An extended version of NN-based 

Luenberger observer is first proposed to reconstruct the system states as well as identify 

the dynamics of the system. The novel structure of the observer relaxes the need for a 

separate identifier to construct the control coefficient matrix. Next, reinforcement 
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learning methodology with actor-critic structure is utilized to approximate the time-

varying solution of the HJB equation by using a neural network. To properly satisfy the 

terminal constraint, a new error term is defined and incorporated in the NN update law so 

that the terminal constraint error is also minimized over time. The NNs with constant 

weights and time-dependent activation function is employed to approximate the time-

varying value function which subsequently is utilized to generate the finite horizon near 

optimal control policy due to NN reconstruction errors. The proposed scheme functions 

in a forward-in-time manner without offline training phase. Lyapunov analysis is used to 

investigate the stability of the overall closed-loop system. 

Finally, in the fifth paper, the finite-horizon optimal regulation scheme is further 

extended to nonlinear discrete-time systems with input constraints and quantization 

effect. First, by utilizing a non-quadratic cost functional, the effect of actor saturation is 

taken into consideration while guaranteeing the optimality. Next, the observer design 

from the fourth paper is used to handle the unavailability of the system states as well as 

the control coefficient matrix.  The actor-critic structure is employed to estimate both the 

time-dependent value function and the control signals by NNs with constant weights and 

time-varying activation functions. The terminal constraint, similar as previous papers, is 

properly satisfied by minimizing a newly defined error term as time evolves. Finally, 

quantization error is effectively mitigated by using the idea of dynamic quantizer design 

that is introduced in the second paper. As a result, the input constrained optimal 

regulation problem is tackled in a forward-in-time and online manner which enjoys great 

practical merits. 
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1.3 CONTRIBUTIONS OF THE DISSERTATION 

In the past literature, the finite-horizon optimal control is tackled by either 

backward-in-time solution [3][4] or through offline training [5][6]. The main objective of 

this dissertation is to develop an online finite-horizon time-based optimal regulation 

scheme which performs in a forward-in-time fashion. Hence the contributions of this 

dissertation can be summarized as follows. 

In the first paper, the main contributions include the development of finite-

horizon optimal adaptive control of uncertain linear discrete-time systems with state and 

output feedback via an observer provided the observer converges faster than the 

controller. The terminal constraint is incorporated in the controller design. Boundedness 

of the regulation and parameter estimation errors are demonstrated by using Lyapunov 

and geometric sequence analysis. The proposed controller functions forward-in-time with 

no offline training phase. In addition, the controller does not use value and policy 

iterations while the cost function and optimal control input are updated once a sampling 

interval consistent with the standard adaptive control. 

The contributions of second paper involve the design of the dynamic quantizer 

design coupled with the development of finite-horizon optimal adaptive control of 

uncertain linear discrete-time systems. First a new parameter is introduced in this paper to 

ensure that the quantizer does not saturate while the quantization error will decrease 

overtime due to the analysis of the quantization error bound. The terminal state constraint 

is incorporated and satisfied in the novel controller design scheme. Boundedness of the 

regulation, parameter estimation and quantization errors are demonstrated by using 
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Lyapunov stability analysis. If the time interval is stretched, the asymptotic stability of 

the closed-loop system is demonstrated. 

In the third paper, the major contributions include the development of an optimal 

adaptive NN control scheme in finite-horizon for nonlinear discrete-time systems. 

Normally under the ADP scheme, at least partial dynamics, i.e., the control coefficient 

matrix are needed to generate the optimal control policy [7][24]. Therefore, a novel NN-

based online identifier is first proposed to learn the control coefficient matrix such that 

the complete system dynamics are not needed. Actor-critic scheme is utilized to learn the 

time-varying solution of the HJB equation by two NNs with constant and time-varying 

activation function. Novel update law incorporating the terminal constraint error is 

developed based on generalized gradient-descent algorithm. Therefore, the proposed 

design scheme performs in a forward-in-time manner whereas iteration-based 

methodology is not needed. Lyapunov analysis verifies the stability of all the parameter 

estimation errors and the overall closed-loop system. 

The contributions of the fourth paper include novel design of finite-horizon 

optimal regulation of nonlinear discrete-time systems when the system states are not 

available. An extended Luenberger observer is proposed to estimate both the system 

states and the control coefficient matrix, which is subsequently used for the optimal 

controller design. The novel structure of the observer relaxes the need for a separate 

identifier thus simplifies the overall design. 

Finally, the fifth paper further extends our finite-horizon optimal regulatior to the 

quantized nonlinear systems with input constraint. Though input constrained optimal 

control is not a new topic [6][14], however, to the best knowledge of the authors, 
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developing an (near) optimal regulator for quantized control systems under finite-horizon 

scenario in a forward-in-time fashion without using iteration-based approach still remains 

unresolved. By adopting a newly defined non-quadratic cost functional [25], we are able 

to successfully utilize our developed ideas from [26], [27] and Paper IV to estimate the 

value function in a new form so that the optimality can be eventually achieved. 

Policy/value iteration are not needed due to our parameter tuning laws which are updated 

once a sampling interval. 
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PAPER 

I. FINITE-HORIZON OPTIMAL ADAPTIVE CONTROL OF UNCERTAIN 

LINEAR DISCRETE-TIME SYSTEMS 

Qiming Zhao, Hao Xu and S. Jagannathan 

Abstract — In this paper, the finite-horizon optimal adaptive control of linear discrete-

time systems with unknown system dynamics is presented in a forward-in-time manner by 

using adaptive dynamic programming (ADP). An adaptive estimator (AE) is introduced 

with the idea of Q-learning to relax the requirement of system dynamics. The time-

varying nature of the solution to the Bellman equation is handled by utilizing a time-

dependent basis function while the terminal constraint is incorporated as part of the 

update law of the AE in solving the optimal feedback control. The proposed optimal 

regulation scheme of the uncertain linear system requires an initial admissible control 

input and yields a forward-in-time and online solution without using value and/or policy 

iterations. Furthermore, an adaptive observer is proposed so that the optimal adaptive 

control design depends only on the reconstructed states so as to realize an optimal output 

feedback control design. For the time invariant linear discrete-time systems, the closed-

loop dynamics becomes non-autonomous and involved, but verified by using standard 

Lyapunov and Geometric sequence theory. Effectiveness of the proposed approach is 

verified by simulation results. 
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1. INTRODUCTION 

Optimal control of linear systems with quadratic performance index or linear 

quadratic regulator (LQR) design has been one of the key research problems in control 

theory. Traditional optimal control [1] addresses finite-horizon problem in an offline and 

backward-in-time manner by solving Riccati equation (RE) when the system dynamics 

are known. 

For optimal control of a linear system with infinite-horizon, the algebraic Riccati 

equation (ARE) is utilized to obtain its time invariant solution. In contrast, in finite-

horizon scenario, the solution is inherently time-varying [1], and can only be obtained by 

solving the RE in a backward-in-time manner from the terminal weighting matrix given 

the full information of the system dynamics. In the absence of system dynamics, RE 

cannot be solved. 

To address optimal regulation problem, model predictive control (MPC) has been 

widely investigated [2][3]. However, MPC are essentially open-loop control, and the 

prediction horizon needs to be carefully formulated. In the recent years, adaptive or 

neural network (NN) based optimal control has been intensely studied for both linear and 

nonlinear systems with uncertain dynamics in the case of infinite-horizon [4][5][6]. 

However, the finite-horizon optimal adaptive control of linear and nonlinear systems still 

remains an open problem for the control researchers when the system dynamics become 

uncertain. Moreover, solving the optimal control in a forward-in-time manner is quite 

challenging and involved. 

In the past literature, the author in [7] considered the finite-horizon problem for 

nonlinear systems via iterating backward from terminal time ft  and by solving the so-
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called generalized Hamilton-Jacobi-Bellman (HJB) equation via Galerkin method. In [8], 

the authors proposed a fixed final time optimal control laws using NN with time-varying 

weights and state-dependent activation function to solve backward-in-time the time-

varying HJB equation for affine nonlinear continuous-time systems. 

In [9], the authors considered the finite-horizon optimal control problem with 

input-constraints by using standard direct heuristic dynamic programming (DHDP)-based 

offline NN scheme with constant NN weight matrix and time-varying activation function. 

The terminal constraint is satisfied by introducing the augmented vector incorporating the 

terminal value of the co-state )N( . On the other hand, in [10], the authors considered 

the discrete-time finite-horizon optimal problem under adaptive dynamic programming 

(ADP) scheme by using value and policy iterations. Here, the terminal time is not 

specified and final state is fixed at the origin. 

The approaches in [7][8][9][10] provided a good insight into the finite-horizon 

optimal control problem while the solution is iterative, and either backward-in-time 

and/or offline. It is shown in [11] that iterative schemes require a significant number of 

iterations within a sampling interval for stability and are unsuitable for real-time control. 

However, a finite-horizon optimal scheme that can be implemented online and forward-

in-time without using policy and value iterations is yet to be developed. 

Motivated by the drawbacks aforementioned, in this work, the ADP technique via 

reinforcement learning (RL) is used to solve the finite-horizon optimal regulation of an 

uncertain linear discrete-time system in an online and forward-in-time manner without 

using value and/or policy iteration. The Bellman equation is utilized with an estimated Q-

function such that the requirement for the system dynamics is relaxed. 



17 

 

An additional error term corresponding to the terminal constraint is defined and 

minimized at each time step. Lyapunov theory is utilized to show the stability of our 

proposed scheme under non-autonomous dynamic system framework.  In the proposed 

scheme, the cost function and control input are updated once a sampling interval 

consistent with the standard adaptive control notion. In addition, in applications where 

the system states are unavailable for measurement, an adaptive observer is proposed such 

that the optimal state feedback controller design scheme can be extended to the output 

feedback case. 

Therefore, the main contributions of this paper include the development of finite-

horizon optimal adaptive control of uncertain linear discrete-time systems with state and 

output feedback via an observer. The terminal constraint is incorporated in the controller 

design. Boundedness of the regulation and parameter estimation errors are demonstrated 

by using Lyapunov and geometric sequence analysis. The proposed controller functions 

forward-in-time with no offline training phase. The controller does not use value and 

policy iterations while the cost function and optimal control input are updated once a 

sampling interval consistent with the standard adaptive control. 

The remainder of this paper is organized as follows. In Section 2, the finite-

horizon optimal control scheme for the uncertain linear discrete-time system along with 

the stability analysis is presented for the case of full state feedback. Section 2.3 extends 

the optimal control scheme to the uncertain linear discrete-time system by using output 

feedback. In Section 3, simulation results are shown to verify the feasibility of proposed 

method. Conclusions are provided in Section 4. 
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2. FINITE-HORIZON OPTIMAL CONTROL DESIGN UNDER Q-LEARNING 

SCHEME WITH STATE FEEDBACK 

In this section, finite-horizon optimal control scheme for linear systems with 

uncertain system dynamics is proposed for the state feedback case. A Q-function [14][15] 

is first defined and then estimated adaptively by using RL, which is in turn utilized to 

design the controller by relaxing the system dynamics. An additional error term 

corresponding to the terminal constraint is also defined and minimized over time. Finally, 

the stability of the closed-loop system is verified based on the Lyapunov stability theory. 

The case when the system states are not measurable will be considered in section 2.3. 

 

2.1 PROBLEM FORMULATION 

Consider the time-invariant linear discrete-time system described in state-space 

form given by 

 kkk BuAxx 1  (1) 

where 
n

k  xx  is the state vector and 
m

k  uu  is the system state vector and 

control input vector at time step k , respectively, while the system matrices 
nnA  and 

mnB  are assumed to be unknown. Moreover, it is assumed that the control input 

matrix B  satisfies MB
F
B , where 

F
  denotes the Frobenius norm. 

In this paper, the free final state optimal regulation problem is addressed [1]. The 

objective of the controller design is to determine a feedback control policy that minimizes 

the following time-varying value or cost function 
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where 
nn

i

P  is positive semi-definite matrix, 
mm

i

R  is positive definite matrix 

and assumed to be symmetric, respectively, whereas 
nnNS  is the positive semi-

definite symmetric penalty matrix for the terminal state Nx , with ]N,[k  being the time of 

interest while N  is considered being the final time instant. It should be noted that in 

finite-horizon scenario, the control inputs becomes essentially time-dependent, i.e.

),( kkk xu  . 

Remark 1: Equation (2) gives the general form of the cost function in quadratic 

form. In the finite-horizon case, NS  is known as the RE solution at the terminal step and 

NN

T

N xSx  is the terminal state constraint for the cost function. As N , the problem 

becomes infinite-horizon optimal control with 0N S  and the Riccati equation reduces 

to an algebraic Riccati equation (ARE). 

It is well-known that from optimal control theory [1], the finite-horizon optimal 

control 


ku , can be obtained by solving the RE which is given by 

 kkkkkkk PASBRBSBBSSAS  



 ])([ 1

T1

1

T

11

T
 (3) 

in a backward-in-time manner provided system matrices are known with time-varying 

Kalman gain matrix 


kK  given by 

 kkkkkkk xASBRBSBxKu  







1

T1

1

T )(  (4) 

Solving the RE equation when system matrices being unknown is a major 

challenge. In the next subsection, it will be shown that the finite-horizon optimal control 

for such linear discrete-time systems with uncertain dynamics can be tackled in a 

forward-in-time and online manner. In addition, value and/or policy iterations are not 
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needed and the system dynamics are not required for the controller design since a Q-

learning adaptive approach [15] is utilized. 

 

2.2 FINITE-HORIZON OPTIMAL CONTROL DESIGN 

In this subsection, a Q-function is estimated and subsequently utilized in 

obtaining the optimal control. 

2.2.1 Q-function Setup.  Before proceeding, it should be noted that for the 

finite-horizon case, the value-function, denoted as )N,( kV k x , becomes time-varying 

[1] and is a function of both system states and time-to-go function. Since the value 

function )N,( kV k x  is equal to the cost function kJ , according to [1], the value 

function can also be represented in the quadratic form of the system states for (1) as 

 kkkk kV xSxx
T)N,(   (5) 

where kS  is the solution sequence to the Riccati equation. 

According to the optimal control theory [1], define the Hamiltonian as 

 )N,()1N,(),,()N,,( 1 kVkVkrkH kkkkkk   xxuxux  (6) 

where kkkkkkkk kr uRuxPxux
TT),,(   is the time-varying cost-to-go function due to the 

time-dependency of the control inputs ku . 

The optimal control input, according to [1], is given by using 

0)N,,(  kkk kH uux , which yields (4). Instead of generating the optimal control 

input backward-in-time using (4), the value function is estimated and used to derive the 

control input in forward-in-time and an online manner without using value and policy 

iterations. 



21 

 

Define the time-varying optimal action dependent value function or Q-function, 

)N,,( kQ kk ux , as 
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The standard Bellman equation can be written as 
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Therefore, the time-varying matrix kG  can be expressed as 
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By using (9) and (4), the control gain matrix is expressed in terms of kG  as 

 
uxuu

GGK kkk

1)(   (10) 

From the above analysis, the time-varying Q-function )N,,( kQ kk ux  estimate 

includes the information of kG  matrix which can be obtained online. Subsequently, the 

control inputs can be obtained from (10) without using the knowledge of the system 

dynamics A  and B . 

Remark 2: The above derivations are based on Bellman’s principle of optimality 

under finite-horizon scenario. When the time span of interest goes to infinity, the solution 
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of RE becomes a constant rather than time-varying, i.e., SS 1k  when k , where 

S  is the constant solution matrix to the ARE [1]. 

Next, the process of estimating the time-varying Q function and the Kalman gain 

is introduced by using an adaptive approach. 

2.2.2 Model-free Online Tuning with Q-function Estimator.  To overcome 

the disadvantage of iteration-based scheme, in this subsection, the finite-horizon optimal 

control design is proposed by using the past information of the system states and control 

inputs. To properly satisfy the terminal constraint, an additional error term is introduced 

such that this error is also minimized. Before proceeding, the following assumption and 

lemma are introduced for the time-varying function approximation. 

Assumption 1 [21] (Linear-in-the-unknown-parameters): The slowly time-

varying Q-function )N,,( kQ kk ux  can be expressed as the linear in the unknown 

parameters (LIP). 

By using adaptive control theory [21] and assumption 1, )N,,( kQ kk ux  can be 

expressed in vector form in vector form as 

 kkkkkkk kQ zgzGzux
TT)N,,(   (11) 

where 
l

kkk  TTT ][ uxz , with nml  , ),,,,,,( 2

1

2

21

2

1 klklklkklkkk zzzzzzz  z  is 

the Kronecker product quadratic polynomial basis vector, and )(vec kk Gg   with )(vec   

a vector function that acts on ll   matrices and gives a Lll  2)1(  column vector. 

The output of )(vec kG  is constructed by stacking the columns of the squared matrix into 

a one-column vector with the off-diagonal elements summed as 
k

nm

k

mn GG  . 
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Lemma 1: Let )(kg  be a smooth and uniformly piecewise-continuous function in 

a compact set  . Then, for each 0 , there exist constant elements m ,....,1  

with Nm  as well as the elements )(),...,(1 kk m  of basis function, such that 

 ]N,0[,)()(
1




kkkg
m

i

ii   (12) 

Proof: Omitted due to the space limitation. 

Based on Assumption 1 and Lemma 1, the smooth and uniformly piecewise-

continuous function kg  can be represented as 

 )N(T kk  φθg  (13) 

where Lθ  is target parameter vector and LLk  )N(φ  is the time-varying basis 

function matrix, with entries as functions of time-to-go, i.e., 
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φ  with ))Ntanh(exp()N( 1 jL

ij kk  , 

for Lji ,2,1,  . This time-based function reflects the time-dependency nature of finite-

horizon. Further, based on universal approximation theory, )N( kφ  is piecewise-

continuous [12][13]. 

From [1], the standard Bellman equation is given in terms of the Q-function as 

 0),,()N,,()1N,,( 11  krkQkQ kkkkkk uxuxux  (14) 

However, (14) does not hold when the estimated value kĝ  is applied. To 

approximate the time-varying matrix kG , or alternatively kg , define 
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 )N(ˆˆ T kkk  φθg  (15) 

where kθ̂  is the estimated value of target parameter vector θ . 

Therefore, the approximation of the Q-function can be written as 

 kkkkkkkk kkQ Χθzφθzgux
TTT ˆ)N(ˆˆ)N,,(ˆ   (16) 

where 
L

kk k  zφΧ )N(  is a time-dependent regression function incorporating the 

terminal time N  while satisfying 0kΧ  when 0z k . 

Remark 3: For the infinite-horizon case, (15) does not have the time-varying 

term )N( kφ , since the desired value of vector g  is constant, or time-invariant [5]. By 

contrast, for the finite-horizon case, the desired value of kg  is considered to be slowly 

time-varying. Hence the basis function should be a function of time and can take the form 

of product of the time-dependent basis function and system state vector [16]. 

With the approximated value of time-varying Q-function, the estimated Bellman 

equation can be written as 

 ),,()N,,(ˆ)1N,,(ˆ
111 krkQkQe kkkkkkk uxuxux  

 (17) 

where 1ke  is the Bellman estimation error along the system trajectory. 

Using the delayed value for convenience, from (16) and (17), we have 
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where 11   kkk ΧΧΧ . 

Next, define an auxiliary error vector which incorporates the history of cost-to-go 

errors as 
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 1

T

1
ˆ

  kkkk ΩθΓΞ  (19) 

with )1(1

1 ],,,[ 

  j

jkkkk eee Ξ , ,),2,,(),1,,([ 22111   krkr kkkkk uxuxΓ

)1(1

11 )]1,,( 

  j

jkjk jkr ux  and )1(

1211 ],,,[ 

  jL

jkkkk ΧΧΧΩ   for 

10  kj . 

It can be seen from (19) that kΞ  includes a time history of previous 1j  

Bellman estimation errors recalculated using the most recent kθ̂ . 

The dynamics of the auxiliary vector are generated similar to (19) as 

 kkkk ΩθΓΞ
T

11
ˆ

   (20) 

In the finite-horizon optimal control problem, the terminal constraint of the cost 

function should also be taken in account. Define the estimated value function for the 

terminal stage as 

 N

T

N )0(ˆ)(ˆ zφθx kkQ   (21) 

In (21), it is important to note that the time-dependent basis function )N( kφ  is 

taken as )0(φ  since from the definition of φ , the time index is taken in the reverse order. 

Finally, define the error vector for the terminal constraint as 

 N

T

NN,N, )0(ˆˆ gφθggΞ  kkk  (22) 

with Ng  being bounded by MN gg . 

Remark 4: For finite-horizon case, the error term N,kΞ , which indicates the 

difference between the estimated value and true value for the terminal constraint, or 

“target”, (in our case, Ng ), is critical for the controller design. The terminal constraint is 
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satisfied by minimizing N,kΞ  along the system evolution. Another error term kΞ , which 

can be regarded as temporal difference (TD) error, is always needed for tuning the 

parameter for both finite-horizon and infinite-horizon case. For infinite-horizon case, see 

[5] and [6]. 

Now define the total error vector as 

 N,total, kkk ΞΞΞ   (23) 

To incorporate the terminal constraint, we further define 

 )0(φΩΠ  kk  (24) 

The update law for tuning kθ̂  is selected as 

    N

TT

total,

1T

1
ˆ gΓΞΠΠΠθ 



 kkkkkk   (25) 

where 10   is the tuning rate. It also can be seen from (25) that the update law is 

essentially the least-squares update. 

Expanding (25) with (23), (25) can be written as 

       T

N,

1T

N

TT1T

1
ˆ

kkkkkkkkkk ΞΠΠΠgΓΞΠΠΠθ


    (26) 

Recall from )0(φΩΠ  kk , and substituting )0(φΠΩ  kk  into (20) 

yields 

 

N,1

T

1

T

1

T

1

T

1

T

11

ˆˆ        

)0(ˆˆ        

))0((ˆˆ













kkkk

kkkk

kkkkkkk

gΠθΓ

φθΠθΓ

φΠθΓΩθΓΞ

 (27) 

To find the error dynamics, substituting (26) into (27), we have 

 
)0(ˆ        

)0(ˆˆ

T

1N,

T

1

T

11

φθΞΞ

φθΠθΓΞ









kkk

kkkkk


 (28) 
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From(28), it can be seen that the Bellman estimation error is coupled with the 

terminal constraint estimation error. Hence, the dynamics for total,kΞ  is given by 

 

N,

N,1

T

1N,

N,11total,1

             

)0(ˆ             

kk

kkkk

kkk

ΞΞ

ΞφθΞΞ

ΞΞΞ















 (29) 

Define the approximation error for kθ̂  as 

 kk θθθ ˆ~
  (30) 

Recall from (14) and the Bellman equation, we have the utility vector as 

 kk ΩθΓ
T  (31) 

Substituting (31) into (20) yields 

 

kk

kkkkkkk

Ωθ

ΩθΩθΩθΓΞ

T

1

T

1

TT

11

~
        

ˆˆ








 (32) 

Recalling that N,11total,1   kkk ΞΞΞ , we further have 

 N,1N,

T

1

~
  kkkkk ΞΞΞΩθ   (33) 

Note that )0(
~

)0()0(ˆˆ TTT

NN,N, φθφθφθggΞ kkkk  , and similarly

)0(
~T

1N,1 φθΞ   kk , then (33) becomes 

 )0(
~

)0(
~~~ T

1

T

1

TT

1 φθφθΩθΩθ   kkkkkk   (34) 

Therefore, we have 

 ))0((
~

))0((
~

1

TT

1 φΩθφΩθ   kkkk   (35) 

Recall from (24) that )0(φΩΠ  kk , (35) can be finally expressed as 

 1

TT

1

~~
  kkkk ΠθΠθ   (36) 
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Remark 5: It is observed, from the definition (16), that when the system states, 

which are the inputs to the time-varying Q-function estimator, have converged to zero, 

the Q-function approximation is no longer updated. It can be seen as a persistency of 

excitation (PE) requirement for the inputs to the Q-function estimator wherein the system 

states must be persistently exiting long enough for the estimator to learn the Q-function. 

The PE condition requirement is standard in adaptive control and can be satisfied by 

adding exploration noise [20] to the augmented system state vector. In this paper, 

exploration noise is added to satisfy the PE condition [5]. When the estimator effectively 

learns the Q-function, the PE can be removed thus the terminal state will not affected by 

the addition of the noise signal. 

Next, the estimation of the optimal feedback control input and the entire scheme 

is introduced. 

2.2.3 Estimation of the Optimal Feedback Control and Algorithm.  Before 

proceeding, the flowchart of proposed scheme is shown in Figure 1. We start our 

proposed algorithm with an initial admissible control which is defined next. After 

collecting both the Bellman error and terminal constraint error, the parameters for the 

adaptive estimator are updated once a sampling interval beginning with an initial time 

and until the terminal time instant in an online and forward-in-time fashion. Next, the 

following assumption and definition are needed. 

Assumption 2: The system ),( BA  is controllable and system states xx k  are 

measurable. 

Definition 1 [4]: Let u  denote the set of admissible control. A control function 

mn :u  is defined to be admissible if the following is true: 
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u  is continuous on u ; 

0)(
0


x
xu ; 

)(xu  stabilize the system (1) on x ; 

xxux  )0(,)),0((J . 

Since the design scheme is similar to policy iteration, we need to solve a fixed-

point equation rather than recursive equation. The initial admissible control guarantees 

the solution of the fixed-potion equation exists, thus the approximation process can be 

effectively done by our proposed scheme. 

Start Proposed 

Algorithm

Initialization

00 ,0)(ˆ uux V

Update the finite horizon Bellman Equation 

and terminal constraint error

Update the adaptive estimator parameters with auxiliary 

error vectors

      with

Update finite horizon control policy

kkkk xGGu
uxuu ˆ)ˆ(ˆ 1

1,...,2,1,1  Nkkk

Update the time interval

)()(ˆ
N

TT

totoal,

1T

1 gΓΞΠΠΠθ  

 kkkkkk 

)0(φΩΠ  kk

))N(ˆ(vec)ˆ(vecˆ T11 kkkk  
φθgG

k=N?

End

Yes

N

T

N, )0(ˆ gφθΞ  kk

1

T

1
ˆ

  kkkk ΩθΓΞ

 

Figure 1. Flowchart of the finite-horizon optimal control design 
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Recall from (10), the estimated optimal control input can be obtained as 

 kkkk xGGu
uxuu   ˆ)ˆ(ˆ 1

 (37) 

From (37), it can be seen that the Kalman gain can be calculated based on the 

information of kĜ  matrix, which is obtained by estimating the Q-function. This relaxes 

the requirement of the system dynamics while (25) relaxes the value and policy iterations. 

Here the Q-function (11) and control policy (37) are updated once a sampling interval. 

2.2.4 Stability Analysis.  In this subsection, it will be shown that both the 

estimation error kθ
~

 and the closed-loop system are uniformly ultimately bounded (UUB). 

Due to the nature of time-dependency, the system becomes essentially non-autonomous 

in contrast with [9] and [10]. First, the boundedness of estimation error kθ
~

 will be shown 

in Theorem 1. Before proceeding, the following definition is needed. 

Definition 2 [17]: An equilibrium point ex  is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set 
nx  so that for all xx 0 , there 

exists a bound B  and a time ),( 0xBT  such that Bek  xx  for all Tkk  0 . 

Theorem 1: Let the initial conditions for the Q-function estimator vectors 0ĝ  be 

bounded in the set g  which contains the ideal parameter vector kg . Given uu )(0 k  

an initial admissible control policy for the linear system (1). Let the assumptions stated in 

the paper hold including the controllability of the system (1) and system states vector 

xx k  being measurable. Let the update law for tuning kθ̂  be given by (25). Then, 

there exists a positive constant   satisfying  10   such that the stability of the Q-

function estimator is guaranteed at the terminal stage N . Furthermore, when the time of 
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interest goes to infinity, i.e., k , the parameter estimation error kθ
~

 will converge to 

zero asymptotically. 

Proof: See Appendix. 

Next, we will show the boundedness of the closed-loop system. Before 

establishing the theorem on system stability, the following lemma is needed. 

Lemma 2 [5]: (Bounds on the closed-loop dynamics with optimal control): Let 

the optimal control policy, uu k , be applied to the linear discrete-time system (1). 

Then, the closed-loop system dynamics kk BuAx   are bounded above with the bounds 

satisfying 

 
22

kkk xBuAx  
 (38) 

where 
2

1
0    is a constant. 

Proof: See [5]. 

Theorem 2 (Boundedness of the Closed-loop System): Let the linear discrete-time 

system (1) be controllable and the system states be measurable. Let the initial conditions 

for the Q-function estimator vectors 0ĝ  be bounded in the set g  which contains the 

ideal parameter vector kg . Let uu )(0 k  be an initial admissible controlpolicy for the 

system such that (38) holds with some  . Let the parameter vector of Q-function 

estimator be tuned and the control policy estimation be provided by (25) and (37), 

respectively. Then, there exists a constant   satisfying 10   such that the closed-

loop system is uniformly bounded at the terminal stage N . Further, when k , the 

bounds for both the states and estimation error will converge to zero asymptotically. 
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Moreover, due to (A.14), the estimated control input will converge to ideal optimal 

control (i.e.  kk uû ) while time goes to infinity (i.e. k ). 

Proof: See Appendix. 

 

2.3 FINITE-HORIZON OPTIMAL CONTROL WITH OUTPUT FEEDBACK 

In this section, the finite-horizon optimal adaptive control scheme for the linear 

discrete-time systems with uncertain dynamics is derived with an adaptive observer when 

the system states are not measurable. 

Consider the system 

 
kk

kkk

Cxy

BuAxx



1
 (39) 

where 
n

k  xx , 
m

k  uu  and 
p

k  yy  are the system states, control 

input and system output, respectively, while the system matrices 
nnA  and 

mnB  

are assumed to be unknown, and output matrix 
npC  is assumed to be known. 

Then, the cost function is given as 

 

 

 

 























1N
TT

NN

T

N

1N
TTT

NN

TT

N

1N
TT

NN

T

N

     

     

ki

iiiiii

ki

iiiiii

ki

iiiiiikJ

uRuxPxxSx

uRuCxHCxCxMCx

uRuyHyyMy

 (40) 

where CMCS N

T

N   and CHCP ii

T . 

Assumption 3: The system ),( BA  is controllable and ),( CA  is observable. 

Moreover, the system output vector yy k  is measurable. 
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Define an adaptive observer as 

 )ˆ(ˆˆˆˆˆ
1 kkkkkk xCyLuBxAx 

 (41) 

where 
n

k  xx ˆ
ˆ  is the reconstructed system states, Â , B̂  are estimated system 

dynamics and 
kL̂  is the observer gain. 

The observer error is given by 

 

)(
~~)(       

~

ˆ

]
~~~

[~)(ˆ~

T

111

kkk

k

k

k

kkkkkkk

zxLCA

y

u

x

LBAxLCAxxx



















 

 (42) 

where rn

kkkk

 ]
~~~

[
~T

LBA , pnmr  , 
kk AAA ˆ~

 , 
kk BBB ˆ~

 , 

kk LLL ˆ~
 , and r

kkkk 
TTTT ]~ˆ[)( yuxz . Note that in (42), since system (39) is 

observable, there always exists an observer gain pnL  such that LCA  is Hurwitz. 

Hence, the first term in (42) is always stable. We need to design for 
k

~
 such that the 

stability of second term in (42) can be ensured. 

Next, define an auxiliary observer error as 

 )(
~~

)(
~ T

1 kkkk zζYCLCAYC  



  (43) 

where 
pn C  is the pseudo inverse of C , 




  p

kkkk ]~~~[
~

11 yyyY  , 


 

  )(

11 ])()()([)( pmn

kkkk zzzzζ   and   is the observability index. 

The update law for the proposed adaptive observer is given as 

 
2

T

T

1
1

)()(1

~
)(ˆˆ

kk

kk
kk

zζzζ

Yzζ


 

    (44) 

where 0  is the tuning rate. 
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The parameter estimation error can be revealed to be 

 
2

T

T

1
1

)()(1

~
)(~~

kk

kk
kk

zζzζ

Yzζ


 

   (45) 

Next, the boundedness of the parameter estimation error for the adaptive observer 

is demonstrated, as shown in the following Lemma. 

Lemma 3 (Boundedness of the parameter estimation error for the adaptive 

observer): Let the linear discrete-time system (39) be controllable and observable while 

its output is measurable. Let the initial conditions for the Q-function estimator vectors 0ĝ  

be bounded in the set g  which contains the ideal parameter vector kg . Let the adaptive 

observer be given by (41) and the update law for the parameter estimation be provided as 

in (44). Then there exists a positive constant   satisfying 

1))(1)()(1(

)(
0

22

2




kk

k

zzζ

zζ


  such that given any positive 0 , there exists a 

finite N  such that )N,
~

(
~

kk   . Furthermore, when k , the adaptive observer is 

asymptotically stable. 

Proof: See Appendix. 

Our objective is still trying to approximate the matrix kG , or equivalently, kg . 

Based on the proposed adaptive observer design, the total error can be derived from 

Bellman equation as 
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OφθuxXθ

OgφθyLSLy

yLSuBxAxSx
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TT
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1

TT

kkkkk
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kkkkkkkkkk

kr 









 (46) 

where kX̂  is defined similarly as state feedback case but using the reconstructed system 

states kx̂ , O  is a row vector consisting of “1”s, i.e., ]1 , ,1 ,1[ O . 

Adding and subtracting ),,ˆ( kr kk ux , (46) further becomes 

 )ˆ()()]ˆ()([
~ TT

1,total kkkkkkk ggffe xxxxθσθ   (47) 

where OφXσ )0(
ˆ

 kk , ]) ,([kron)( kkkf uxx  , ]) ,ˆ([kron)ˆ( kkkf uxx  , with 

)(kron   denoting the Kronecker product quadratic polynomial, and 

kkkkkkkg uRuxPxx
TT)(  , kkkkkkkg uRuxPxx

TT ˆˆ)ˆ(  . 

Notice that since )( kf x  and )( kg x  are in quadratic form and hence satisfy 

Lipschitz condition, i.e., 
kfkk Lff xxx ~)ˆ()(   and 

kgkk Lgg xxx ~)ˆ()(  , where 

fL  and gL  are positive Lipchitz constants [18]. 

The update law for Q-function estimator is finally given as 

 
1

ˆˆ
T

1,total

1







kk

kk

kk

e

σσ

σ
θθ   (48) 

with 0  the tuning rate. Furthermore, the error dynamics for 
kθ̂  can be found to be 

 
1

~~
T

1,total

1







kk

kk

kk

e

σσ

σ
θθ   (49) 

Remark 6: For output feedback, the error term totale   is guaranteed to converge 

due to the convergence of 
kθ

~
, which is shown in the closed-loop proof given in the 
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appendix. Note that Lemma 3 guarantees the convergence of the observer error kx~  and 

hence the optimality is ensured by the update law for tuning 
kθ̂  together with the 

proposed adaptive observer design scheme. 

Next, the boundedness of the closed-loop system will be shown in next theorem. 

Theorem 3: (Boundedness of the Closed-loop System with adaptive observer): 

Let the linear discrete-time system (39) be controllable and observable while its output is 

measurable. Let the initial conditions for the Q-function estimator vectors 0ĝ  be bounded 

in the set g  which contains the ideal parameter vector kg . Let uu )(0 k  be an initial 

admissible control policy for the system (39). Let the parameter vector of the adaptive 

observer and Q-function estimator be tuned by (44) and (48), respectively. Then, there 

exists a constant   satisfying 
5

1
0    such that given any 0 , there exists a final 

time instant N  such that )N,( kk xx  , )N,~(~
kk xx  , )N,

~
(

~
kk θθ   and 

)N,
~

(
~

kk   . Furthermore, when k , the closed-loop system is asymptotically 

stable. Moreover, due to (A.21), the estimated control input will converge close to 

optimal control input within the final time instant N  and  kk uû  as k . 

Proof: See Appendix. 

 

3. SIMULATION RESULTS 

In this section, a practical example for the case of both state feedback output 

feedback are given to show the feasibility of our proposed finite-horizon optimal control 

design. 
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3.1 FINITE-HORIZON OPTIMAL CONTROL WITH STATE FEEDBACK  

First, the proposed Q-learning-based finite-horizon optimal control design for 

state feedback case is evaluated by a numerical example. The example is taken as a 

continuous-time F-16 aircraft plant with quadratic cost function given by [19]: 

 uxx











































2.20

0

0

2.2000

17555.007741.182225.0

00215.090506.001887.1

  (50) 

The system state vector is ][ eq x , where   is the angle of attack, q  is 

the pitch rate and e  is the elevator deflection angle. The control input is the elevator 

actuator voltage. 

Discretizing the system with a sampling interval of sec1.0sT , the discrete-time 

linear system is given by 

 kkk uxx









































0952.0

0008.0

0

9048.000

0159.09012.00741.0

0009.00816.09065.0

1  (51) 

The performance index is given as (2) with the weighting matrices kP , kR  and 

the terminal constraint matrix NS  are selected as identity matrices with appropriate 

dimension. The terminal constraint vector is hence given as 

T

N ]7524.1,2303.0  ,0176.1  ,0174.0  ,0128.0  ,8188.1  ,0022.0  ,002.0  ,2816.0  ,8272.1[ g . 

The initial system states and initial admissible control gain are chosen as 

T

0 ]5.0  ,1  ,1[ x  and ].21  ,.30  ,3.0[0 K , respectively.  

The designing parameter is selected as 001.0 . The time-dependent basis 

function )N( kφ  is chosen as a function of time-to-go with saturation. Note that for 
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finite time period, )N( kφ  is always bounded. Saturation for )N( kφ  is to ensure the 

magnitude of )N( kφ  is within a reasonable range such that the parameter estimation is 

computable. The initial values for kθ̂  are set to zeros. 

First, we examine the response of the system and the control input with our 

proposed finite-horizon optimal control design scheme. The augmented states are 

generated as 4TTT ]   ,[  kkk uxz  and hence 10kz . From Figure 2, it can be seen 

that both the system states and the control input finally converge close to zero, which 

verifies the feasibility of our proposed design scheme. 

Next, to verify the optimality and satisfying the terminal constraint, the error 

histories are plotted in Figure 3. From Figure 3, it clearly shows that the Bellman error 

eventually converges close to zero, which ensures the optimality of the system. It is more 

important to note that the history of terminal constraint error Ne  also converges close to 

zero, which illustrates the fact that the terminal constraint is also satisfied with our 

proposed controller design. 

 

Figure 2. System response and control inputs 
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Finally, for comparison purpose, the error of cost function between traditional 

backward-in-time RE-based method and our proposed algorithm are shown in Figure 3. It 

can be seen clearly from the figure that the difference between two costs converges close 

to zero. It should note that the error between two costs converges more quickly than the 

system response, which illustrates that the proposed algorithm indeed yields an (near) 

optimal control policy. 

 

Figure 3. Convergence of error terms and cost function error between traditional and proposed method 

 

3.2 FINITE-HORIZON OPTIMAL CONTROL WITH OUTPUT FEEDBACK 

Consider the same F-16 model with output [19]: 
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The weighting matrices kP , kR  and the terminal constraint matrix NS  are 

selected to be the same as the state feedback case, and hence the terminal constraint 
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vector Ng  is also the same as state feedback case. The initial system states and states 

estimate are selected to be ]1 ,1 ,1[  and zeros, respectively, and initial admissible control 

gain is chosen to be ]2.1,3.0,3.0[0 K . The designing parameter is selected as 

1.0  and 001.0 . The time-dependent basis function )N( kφ  is chosen similar as 

the state feedback case as a polynomial of time-to-go with saturation. The initial values 

for kθ̂  and k̂  are both randomly selected between ]1,0[ . Due to space constraints, 

simulation results for only observer convergence and total error results are included here. 

From Figure 4, it can be seen clearly that the observer error converges as time 

evolves, which illustrates that the estimated state becomes close to the true value in a 

short time indicating the feasibility of the proposed adaptive observer design scheme.  

 

Figure 4. Observer error 

It is more important to notice the evolution of the error term, which is shown in 

Figure 5. The convergence of the total error illustrates the fact that the optimality is 

guaranteed by the proposed scheme. 
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Figure 5. Convergence of the total error 

 

4. CONCLUSIONS  

In this paper, the finite-horizon optimal control of linear discrete-time systems 

with unknown system dynamics is addressed by using the ADP technique. The dynamics 

of the system are not required with an adaptive estimator generating the Q-function. An 

additional error is defined and incorporated in the update law so that the terminal 

constraint for the finite-horizon can be properly satisfied. An initial admissible control 

ensures the stability of the system while the adaptive estimator learns the value function 

and the kernel matrix kG . In addition, the proposed control design scheme is extended to 

output feedback case by novel adaptive observer design. All the parameters are tuned in 

an online and forward-in-time manner. Stability of the overall closed-loop system is 

demonstrated by Lyapunov analysis. Policy and value iterations are not needed. The 

proposed approach yields a forward-in-time and online control design scheme which 

offers many practical benefits. 
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APPENDIX 

Proof of Theorem 1: Consider the Lyapunov candidate function as 
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where }{tr   denotes the trace operator. 

Note that ),
~

( kL kθ  is a time-dependent Lyapunov candidate function due to the time-

varying nature of 1 kΠ . Also note that since 1 kΠ  is the state-dependent function and 

assumed to be piecewise continuous with a finite time span of interest, then 1 kΠ  is 

bounded by 
max

11

min

1   kkk ΠΠΠ  for 1N0  k , where 
min

1 kΠ  and 
max

1 kΠ  are the 

constant lower and upper bound of 1 kΠ  for each step k . It should be noted that finding 

the bounds for 1 kΠ  is due to the reason that the proof is essentially under non-

autonomous scheme [18]. Hence we have 
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Therefore, ),
~

( kL kθ  is positive definite and decrescent [18]. 

The first difference of ),
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( kL kθ  is given by 
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Recall from the dynamics of the paratermer estimation error (36), we have 
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Therefore, ),
~

( kL kθ  is negative definite while ),
~

( kL kθ  is positive definite. By 

Lyapunov second method [23], the parameter estimation error kθ
~

 remains bounded at the 

terminal stage N . Furthermore, kθ
~

 will converge to zero as k . 

 

Proof of Theorem 2: Consider the Lyapunov candidate function as 
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where ),
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( kL kθ  is defined in Theorem 1 and kkkL Λxxx
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 , where 

MB  is the upper bound for the unknown matrix B , I  is the identity matrix with 

appropriate dimension and )(min R  is the smallest eigenvalue of weighting matrix R . 

Next, we consider each term in (A.6) individually. 

The first difference of ),
~

( kL kθ  is given by Theorem 1 as 
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 (A.7) 

Next, we consider )( kL x . Define Λ , by using Cauchy-Schwartz inequality, the first 

difference of )( kL x  is given as 
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where ku~  is the difference between the optimal control input and the approximated 

control signal. Moreover, according to the control input design, kkkkk xKuuu
~

ˆ~  
, 

and then we have kKkkk θKKK
~ˆ~

  , with K  is a positive Lipschitz constant. 

Next, applying Lemma 2 yields 
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Combining (A.7) and (A.9), the first difference L is given by 
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where 
'

kΧ  is the gradient of kΧ . 

Therefore, L  is negative definite while L  is positive definite. By Lyapunov second 

method [17], the system states kx  and parameter estimation error kθ
~

 remain bounded at 

the terminal stage N . 

Furthermore, assume the system is initialized within a bound 0,xB , i.e. 0,0 xx B  and 

initial estimated Q-function error bounded as 0,QB . According to geometric theory [22], 

2

kx and 
2

1

T~
 kk Πθ  can be represented as 
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Using geometric sequence property, equation (A.11) can be further derived as 
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Therefore, the bounds for the system states and Q-function estimation error can be 

written as 
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Or 
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Note that since 
2

1
0   , 10   and 0,xB , 0,QB  are all bounded, then k)2(  , 

k








 

2

1 2
 and the bound kB ,x  and kQB ,  will be decrease as k  increases. Also note that 

as N , the system states kx  and estimated Q-function will converge to zeros as  

0, xB  and 0, QB . 

Next, recall to (A.13) and (A.8), while time goes to fixed final time sNT , we have the 

upper bound of 
 kk uû  as 
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 (A.14) 

where kQB ,  and kB ,x  are given in (A.13a) and (A.13b). 

Since when time goes to infinity (i.e. k ), all the bounds will converge to zeros (i.e. 

0, xB  and 0, QB ). Moreover, due to (A.14), estimated control input will tend to 
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ideal optimal control (i.e.  kk uû ) while time goes to infinity (i.e. k ). 

 

Proof of Lemma 3: Define the Lyapunov candidate function as 
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where Λ  and CC . Therefore, based on Lyapunov stability theory, the 

parameter estimation error will converge to zero as k . Furthermore, the design 

parameter  0l  satisfies 
C

l
32

1
0 0


 . 
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Proof of Theorem 3: Define the Lyapunov candidate function as 
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Note that kkkkkkkkk xKxKxKuuu ~~~~~   , then we have 

kKkkk θKKK
~ˆ~

 . Applying Cauchy-Schwartz inequality and recalling from 

Lemma 2, (A.18) becomes 
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where 
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are positive constants and 10  . 

Therefore, first difference of Lyapunov function L  is negative definite while Lypaunov 

function L  is positive definite. Moreover, using Lyapunov second method and geometric 

sequence theory, within finite horizon, the system states, parameter estimation error, state 

quantization error bound and control input quantization error bound will be uniformly 

ultimately bounded with ultimate bounds depending on initial condition 
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Furthermore, since 
2

1
0    and 10  , the bounds in (A.20) are monotonically 

decreasing as k  increases. Furthermore, when time goes infinity, i.e. N , all the 

bounds tend to zero and asymptotically stability of the closed-loop system is achieved. 
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Eventually, recall to (A.18) and (A.19), while time goes to fixed final time sNT , we have 

the upper bound for  kk uû  as 
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where 
k

B
,

~
θ

, kB ,x
 and kB ,~x  are given in (A.20). Since all the bounds will converge to 

zeros when N , the estimated control input will tend to optimal control (i.e. 

 kk uû ) due to (A.21). 
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II. FINITE-HORIZON ADAPTIVE OPTIMAL CONTROL OF UNCERTAIN 

QUANTIZED LINEAR DISCRETE-TIME SYSTEM 

Qiming Zhao, Hao Xu and S. Jagannathan 

Abstract — In this paper, the adaptive finite-horizon optimal regulation design for 

unknown linear quantized discrete-time control systems is introduced. First, to mitigate 

the quantization error from input and state quantization, dynamic quantizer with time-

varying step-size is utilized wherein it is shown that the quantization error will decrease 

overtime thus overcoming the drawback of the traditional uniform quantizer. Next, to 

relax the knowledge of system dynamics and achieve optimality, the Q-learning 

methodology is adopted under Bellman’s principle by using quantized state and input 

vector. Due to the time-dependency nature of finite-horizon, an adaptive online estimator, 

which learns the time-varying value function, is updated at each time step so that policy 

and/or value iteration are not needed. Further, an additional error term corresponding to 

the terminal constraint is defined and minimized along the system trajectory. The 

proposed design scheme yields a forward-in-time online scheme, which enjoys great 

practical merits. Lyapunov analysis is used to show the boundedness of the closed-loop 

system and when the time horizon is stretched to infinity, asymptotic stability of the 

closed-loop system is demonstrated. Simulation results are included to verify the 

theoretical claim. The net result is the design of the optimal adaptive controller for 

uncertain quantized linear discrete-time system in a forward-in-time manner. 
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1. INTRODUCTION 

In traditional feedback control systems, it is quite common to assume that the 

measured signals are transmitted to the controller and the control inputs are delivered 

back to the plant with arbitrarily high precision. However, in practice, the interface 

between the plant and the controller is often connected via analog to digital (A/D) and 

digital to analog (D/A) devices which quantize the signals. In addition, in the recent 

years, networked control system (NCS) is being considered as a next step for control 

where signals are quantized due to the presence of a communication network within the 

control loop. As a result, the quantized control system (QCS) has attracted a great deal of 

attention to the control researchers since quantization process always exists in the 

computer-based control systems. 

In the past literature, the study on the effect of quantization in feedback control 

systems is normally categorized based on whether or not the quantizer is static or 

dynamic. The static quantizer, for which the quantization region does not change with 

time, was first analyzed for unstable linear systems in [1] by means of quantized state 

feedback. Later in [2], it is pointed out that logarithmic quantizers are preferred.  

In the case of dynamic quantizer, for which the quantization region can be 

adjusted overtime based on the idea of scaling quantization levels, the authors in [3] 

addressed a hybrid quantized control methodology for feedback stabilization for both 

continuous and discrete time linear systems while demonstrating globally asymptotic 

stability. In [4], the author introduced a “zoom” parameter to extend the idea of changing 

the sensitivity of the quantizer to both linear and nonlinear systems. For these systems, 

however, stabilization of the closed-loop system in the presence of quantization is the 
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major issue that was addressed when the system dynamics are known whereas the 

quantization effects in the presence of uncertain system dynamics and optimal control 

designs for such systems are not yet considered.   

On the other hand, traditional optimal control theory [7] addresses both finite and 

infinite-horizon linear quadratic regulation (LQR) in an offline and backward-in-time 

manner provided the linear system dynamics are known beforehand. In the past couple of 

decades, significant effort has been in place to obtain optimal control in the absence of 

system dynamics in a forward-in-time manner by using adaptive dynamic programming 

(ADP) schemes [12][13][14]. Normally, to relax the system dynamics and attain 

optimality, the ADP schemes use policy and/or value iterations to solve either Riccati 

equation (RE) in the case of linear systems and Hamilton-Jacobi-Bellman (HJB) equation 

in the case of nonlinear systems to generate infinite-horizon based adaptive optimal 

control [8][11]. 

While iterative approach seems interesting, one has to use a significant number of 

iterations within a sampling interval for obtaining the solution to the RE or HJB.  To 

overcome significant number of iterations within each sampling interval in the iterative-

based schemes for convergence, in [10], a time-based ADP is introduced to generate 

infinite-horizon optimal control for a class of nonlinear affine discrete-time systems. 

Finite-horizon optimal control, in contrast, is quite difficult to solve since a terminal 

constraint has to be satisfied while the control is generally time-varying in contrast with 

the infinite-horizon scenario wherein the terminal constraint is ignored and the control 

input is time invariant. 
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For finite-horizon optimal regulation, the authors in [15][16] and [17] provided a 

good insight using either backward-in-time, or iterative and offline techniques. However, 

the adaptive optimal control over finite-horizon for uncertain linear systems in a forward-

in-time manner without using iterative or offline techniques still remains unresolved.  

Moreover, to be best knowledge of the authors, no known technique exists for the optimal 

adaptive control of uncertain quantized linear discrete-time systems. 

Motivated by the deficiencies aforementioned, in this paper, the ADP technique 

via reinforcement learning (RL) is used to solve the finite-horizon optimal regulation of 

uncertain linear quantized discrete-time control systems in an online and forward-in-time 

manner without performing value and/or policy iterations. 

First, to handle the quantization effect within the control loop, a dynamic 

quantizer with finite number of bits is proposed. The quantization error will be addressed 

through the adaptive optimal controller design. Subsequently, the Bellman equation, 

utilized for optimal adaptive control, is investigated with approximated action-dependent 

value function [14] by using quantized state and input vector such that the requirement 

for the system dynamics is not needed. Finally, a terminal constraint error is defined and 

incorporated in the novel update law such that this term will be minimized at each time 

step in order to solve the optimal control. Lyapunov approach is utilized to show the 

stability of our proposed scheme. The addition of state and input quantization makes the 

optimal control design and its analysis more involved whereas it is addressed in the 

paper. 

The main contributions of this paper include the novel dynamic quantizer design 

by using a new parameter coupled with the development of finite-horizon optimal 
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adaptive control of uncertain quantized linear discrete-time systems in a forward-in-time 

manner. The new parameter ensures that the quantizer does not saturate while the 

quantization error will decrease overtime instead of treating these quantization errors as 

disturbances. The terminal state constraint is incorporated in the novel controller design 

scheme. Boundedness of the regulation, parameter estimation and quantization errors are 

demonstrated by using Lyapunov stability analysis. The proposed controller functions 

forward-in-time and online. If the time interval is stretched, the asymptotic stability of the 

closed-loop system including the convergence of the quantization errors along with the 

state is demonstrated. 

The remainder of this paper is organized as follows. In Section 2, background is 

briefly introduced. In Section 3, the main algorithm developed for the finite-horizon 

optimal control for quantized control systems is presented. Stability analysis is provided 

in Section 4. In Section 5, simulation results are given to verify the feasibility of the 

proposed method. Conclusive remarks are provided in Section 6. 

 

2. BACKGROUND 

 

2.1 SYSTEM DESCRIPTION 

Consider the linear system described by 

 kkk BuAxx 1  (1) 

where n

k  xx  is the system state vector and assumed to be mearuable, 

m

k  uu  is the control input received at the actuator at time step k  when the 

quantizers are not present, while the system matrices 
nnA  and 

mnB  are 
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unavailable at the controller. Before proceeding further, the following assumptions are 

needed. 

Assumption 1 (Controllability): Original linear time-invariant (LTI) system (i.e.

),( BA ) is controllable. 

Assumption 2 (Boundedness of the input matrix): The control input matrix B  

satisfies MB
F
B , where 

F
  denotes the Frobenius norm. 

Now, in the presence of state and input quantizers, the general structure of the 

QCSs considered in this paper is shown in Figure 1. The state measurements are first 

quantized by a dynamic quantizer before being transmitted to the controller. Similarly, 

the control inputs are also quantized before the signals are sent to the actuator. 

Plant
Actuator Sensor

Controller

Quantizer
Quantizer

q
kkqk xKu 

kkk BuAxx 1

 

Figure 1. Block diagram of the QCSs 

Next a brief background on dynamic quantizer is introduced before introducing 

the controller design with the quantized state and control input. 

 

2.2 QUANTIZER REPRESENTATION 

Consider the uniform quantizer with finite number of bits shown in Figure 2. Let 

z  be the signal to be quantized and M  be the quantization range for the quantizer. If z  
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does not belong to the quantization range, the quantizer saturates. Let e  be the 

quantization error, then it is assumed that the following two conditions hold [4]: 

 
2M)(         thenM,     if 2.

2)(         thenM,     if 1.





zqz

zzqez
 (2) 

where   21)(  zzq  is a nonlinear mapping that represents a general uniform 

quantizer representation with the step-size  defined as 
R2M with R  being the 

number of bits of the quantizer. 
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Desired Output

Original value
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Figure 2. Ideal and realistic uniform quantizer 

In addition, theoretically, when the number of bits of the quantizer approaches 

infinity the quantization error will reduce to zero and hence infinite precision of the 

quantizer can be achieved. In the realistic scenario, however, both the quantization range 

and the number of bits cannot be arbitrarily large. To circumvent these drawbacks, a 

dynamic quantizer scheme is proposed in this paper in the form similar to [4] as 
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   zqz q   (3) 

where   is a scaling factor. 

The introduction of   has two purposes. It will be shown in the next section that 

with the proposed dynamic quantizer design, not only the saturation can be avoided but 

also the quantization error will be eventually eliminated in contrast with the traditional 

uniform quantizer wherein the quantization errors never vanish. 

Next the optimal control of uncertain linear discrete-time system is introduced in 

the presence of input and state quantization. 

 

2.3 PROBLEM FORMULATION 

Now under this closed-loop configuration, consider the time-invariant linear 

discrete-time system (1) in the state-space form under the influence of both state and 

input quantization described by 

 a

kkk BuAxx 1  (4) 

where n

k  xx  is the system state vector and ma

k  uu  is the control input 

vector received at the actuator at time step k . Therefore, due to the quantization, we have 

q

qk

a

k uu  , where 
q

qku  is the quantized control input. 

Remark 1: In this paper, the superscripts represent the quantized signals, denoted 

as 
q

kx and
q

qku . The subscript for the control inputs ku  represents the unquantized control 

inputs computed based on the quantized system states, denoted as qku . It should be noted 

that in the QCS, only the quantized system state vector, 
q

kx , instead of the true state 

vector kx , is available to the controller. In contrast, the controller has the information of 
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both qku  and 
q

qku , and hence qku  will be used in the problem formulation. On the other 

hand, the quantized control inputs,
q

qku , will be considered in the error analysis in section 

2 and the comprehensive closed-loop stability analysis in section 4. 

Separating the quantization error from the actual control inputs a

ku , the system 

dynamics (4) can be represented as 

 kqkkkqkkk ,,1 )( uu BeBuAxeuBAxx   (5) 

where k,ue  is the bounded quantization error for the control input as long as the control 

signals are within the quantization range. 

Remark 2: Note that from (5), the system dynamics can be viewed as the system 

with only state quantization plus an additional but bounded disturbance term caused by 

the control input quantization provided the quantizer for the control input does not 

saturate. The boundedness of quantization error can be ensured by the novel dynamic 

quantizer design proposed in the next section so that the control input signals do not 

saturate. 

The objective of the controller design is to determine a state feedback control 

policy that minimizes the following cost function 

 





1N

NN

T

N ),,(
ki

qiik irJ uxxSx  (6) 

where ]N,[k  is time interval of interest, ),,( kr qkk ux  is a positive definite utility function 

which penalizes the system states kx  and the control inputs qku  at each intermediate time 

k  in ]N,[k . In this paper, the utility function is taken the form

qkkqkkkkqkk kr uRuxQxux
TT),,(  , where the weighting matrices nn

k

Q  is positive 
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semi-definite, 
mm

k

R  is positive definite and symmetric, respectively while

nnNS  is a positive semi-definite symmetric penalty matrix for the terminal state Nx . 

 

3. ADP BASED FINITE-HORIZON OPTIMAL REGULATION DESIGN 

In this section, the finite-horizon optimal regulation problem for linear quantized 

control systems with uncertain system dynamics is addressed. Under ideal case when no 

saturation occurs, traditional uniform quantizer only yields a bounded response which is 

not preferable. The process of reducing the quantization error overtime poses a great 

obstacle for the optimal control design. Therefore, the dynamic quantizer design is first 

proposed to overcome this difficulty. 

Next, to relax the requirement on system dynamics, an action-dependent value-

function [13][14], which is defined and estimated adaptively by using the reinforcement 

learning scheme, will be in turn utilized to design the optimal adaptive controller. The 

Bellman equation error, which is essential to achieve optimality, is analyzed under 

quantization effect and parameter estimation. In addition, to satisfy the terminal 

constraint, an additional error term is defined and minimized as time evolves. Therefore, 

the objective of the controller design is to minimize both the errors so that the finite-

horizon optimal regulation problem is properly investigated. 

 

3.1 DYNAMIC QUANTIZER DESIGN 

To handle the saturation caused by limited quantization range for a realistic 

quantizer, new parameters k,x  and k,u  are introduced. The proposed dynamic 



62 

 

quantizers for the state and input are defined as 
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 (7) 

where k,x , k,u  are the time-varying scaling parameters to be defined later for the 

system state and control input quantizers, respectively. 

Normally, the dynamics of the quantization error cannot be established since it is 

mainly a round-off error. Instead, we will consider the quantization error bound as 

presented next, which will aid in the stability analysis. Given the dynamic quantizer in 

the form (7), the quantization error with respect to the system states and the control inputs 

are bounded, as long as no saturation occurs and the bound is given by 
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 (8) 

where ke ,Mx  and ke ,Mu  are the upper bounds for the state and input quantization error. 

Next, define the scaling parameter k,x  and k,u  as 

 M)(     ,M)( ,,

k

qkk

k

kk  ux ux   (9) 

where 10    and 10   . 

Recall from representation (7) that the signals to be quantized can be “scaled” 

back into the quantization range with the decaying rate of k  and k , and thus 

eliminating the saturation effect. 

The convergence of the quantization error for both system states and control 

inputs will be demonstrated together with the adaptive estimator design in section 3. 
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Remark 3: The scaling parameter k,x  and k,u  have the following properties: 

First, k,x  and k,u  are adjusted to eliminate saturation, which are more applicable in the 

realistic situations. Second, k,x  and k,u  are time-varying parameters and updated at 

each time interval which in turn results in a monotonic decrease in the quantization error 

bound. Finally, updating k,x  and k,u  only requires the signals to be quantized, which 

differs from [4] in which   is a constant and can only obtained by using the system 

dynamics. 

 

3.2 OPTIMAL REGULATION DESIGN 

In this subsection, an action-dependent value-function is first defined and then 

estimated adaptively. As a result, the estimated action-dependent value-function is 

utilized to obtain the optimal control and relax the requirement of the system dynamics. 

3.2.1 Action-Dependent Value-Function Setup.  Before proceeding, it is 

important to note that in the case of finite-horizon, the value function becomes time-

varying [7] and is a function of both system states and time-to-go, and it is denoted as 

)N,( kV k x . Since the value function is equal to the cost function kJ  [7], the value 

function )N,( kV k x  for LQR can also be expressed in the quadratic form of the system 

states as 

 kkkk kV xSxx
T)N,(   (10) 

with kS  being the solution sequence to the Riccati equation obtained backward-in-time 

from the terminal value NS  as 

 kkkkkk QASBRBSBBSSAS  



 ])([ 1

T1

1

T

11

T  (11) 
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Next, define the Hamiltonian for the QCS as 

 )N,()1N,(),,()N,,( 1 kVkVkrkH kkqkkqkk   xxuxux  (12) 

By using [7], the optimal control inputs are obtained via stationarity condition, 

i.e., 0)N,,(  qkqkk kH uux , which yields 

 
)(          

)()(

1,

T

,

T

,,

T

1TT1T









kkkkkkk

kkkkkkqk

xuux eSBBeSBReAeSB

BSBRxASBBSBRu
 (13) 

It can be seen clearly from (13) that the optimal control input calculated based on 

quantized system states enjoy the same optimal control gain, 

ASBBSBRK kkkk

T1T )(  , as that of the case when quantization is not taken into 

account, plus an additional term corresponding to the quantization errors that would 

vanish with the proposed design as shown later. Since the only available signal to the 

controller is the quantized measurement q

kx , then using the “certainty equivalence” 

principle, the control inputs applied to the system is calculated as 

 q

kkkkqk xASBBSBRu   T1T )(  (14) 

Remark 4: From (11), it is clear that the conventional approach of finding 

optimal solution is essentially an offline scheme given the system matrices A  and B  as 

needed in (14). To relax the system dynamics, under infinite-horizon case, policy 

iterations are utilized to estimate the value function and derive the control inputs in a 

forward-in-time manner [8]. However, inadequate number of iterations will lead to the 

instability of the system [19]. In this paper, the iterative approach is not utilized and the 

proposed online estimator parameters are updates once a sampling interval. 
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Next, we will show that the system dynamics are not required by applying ADP 

methodology. Since the Kalman gain in (14) is the same as standard Kalman gain without 

quantization, assume that there is no quantization effect in the system by considering the 

system (1). Recalling the time-varying nature of finite-horizon control, define a time-

varying optimal action dependent value function )N,,(AD kV kk ux  as 
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1AD ),,()N,,(  (15) 

The standard Bellman equation is given by 
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 (16) 

Therefore, define the time-varying matrix kG  as 
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kkk
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1
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1

T

1

T

1

T

 (17) 

Compared to (14), the control gain can be expressed in terms of kG  as 

 uxuu
GGK kkk

1)(   (18) 

From the above analysis, the time-varying action-dependent value function 

)N,,(AD kV kk ux  includes the information of kG  matrix which can be solved online. 

Therefore, the control inputs can be obtained from (17) instead of using system dynamics 

A  and B  as given in (14). 
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3.2.2 Model-free Online Tuning of Action-Dependent Value-Function with 

Quantized Signals.  In this subsection, finite-horizon optimal control design is proposed 

without using iteration-based scheme. Recalling the definition of the action-dependent 

value function )N,,(AD kV kk ux , the following assumption and lemma are introduced 

before proceeding further. 

Assumption 3 (Linear-in-the-unknown-parameters): The action-dependent value 

function )N,,(AD kV kk ux  is slowly varying and can be expressed as the linear in the 

unknown parameters (LIP). 

By adaptive control theory [23] and the definition of the action-dependent value 

function, using Assumption 1, the action-dependent value function )N,,(AD kV kk ux  

can be written in the vector form as 

 kkkkkkk kV zgzGzux
TT

AD )N,,(   (19) 

where lmn

kkk

 TTT ][ uxz  is the regression function, ,,,( 1

2

1 klkkk zzz z

),,, 2

1

2

2 klklklk zzzz   is the Kronecker product quadratic polynomial basis vector, and 

)(vec kk Gg  , with )(vec   a vector function that acts on a ll  matrix and gives a 

Lll  2)1(  column vector. The output of )(vec kG  is constructed by stacking the 

columns of the square matrix into a one column vector with the off-diagonal elements 

summed as k

nm

k

mn GG  . 

Lemma 1: Let )(kg  be a smooth and uniformly piecewise-continuous function in 

a compact set  . Then, for each 0 , there exist constant elements m ,....,1  

with Nm  as well as the elements )(),...,(1 kk m  of basis function, such that 
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 ]N,0[,)()(
1




kkkg
m

i

ii   (20) 

Proof: Omitted due to the space limitation. 

Based on Assumption 3 and Lemma 1, the smooth and uniformly piecewise-

continuous function, the smooth and uniformly piecewise-continuous function kg  can be 

represented as 

 )N(TT kk  φθg  (21) 

where 
Lθ  is target parameter vector and LLk  )N(φ  is the time-varying basis 

function matrix, with entries as functions of time-to-go, i.e., 
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φ  with ))Ntanh(exp()N( 1 jL

ij kk  , 

for Lji ,2,1,  . This time-based function reflects the time-dependency nature of finite-

horizon. Furthermore, based on universal approximation theory and given definition, 

)N( kφ  is piecewise-continuous. 

Therefore, the action-dependent value function can be written in terms of θ  as 

 kkk kkV zφθux )N()N,,( T

AD   (22) 

From [7], the standard Bellman equation can be written in terms of 

)N,,(AD kV kk ux  as 

 0),,()N,,()1N,,( AD11AD  krkVkV kkkkkk uxuxux  (23) 

Remark 5: In the infinite-horizon case, (21) does not have the time-varying term 

)N( kφ , since the desired value of vector g  is a constant, or time-invariant [9]. By 
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contrast, in the finite-horizon case, the desired value of kg  is considered to be slowly 

time-varying. Hence the basis function should be a function of time and can take the form 

of product of the time-dependent basis function and the system states [20]. 

To approximate the time-varying matrix kG , or alternatively kg , define 

 )N(ˆˆ TT kkk  φθg  (24) 

where kθ̂  is the estimation of the time-invariant part of the target parameter vector kg . 

Next, when taking both the quantization effect and the estimated value of kg , the 

Bellman equation (23) becomes 

 q

qkk
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kkBQe uRuxQxzGzzGz
TTT

11

T

1, )()(ˆ)(ˆ)(    (25) 

where 
lmnq

qk

q

k

q

k

 TTT ])()([ uxz  is the regression function with quantized 

information, kBQe ,  is the error in the Bellman equation, which can be regarded as 

temporal difference error (TDE). 

Furthermore, kBQe ,  can be represented as 

 

),(
~

),(         

])1N()N([
~

),(         

~
)(

~
)(),(         

])()(ˆ)(ˆ)[(           

])()()()[(),(

T

1

T

11

T

1

T

TT

11

T

1

T

TT

11

T

1

T

,

k

kk

e

q

kk

q

kk

q

k

q

kk

q

kk

q

kk

q

k

q

kk

q

k

q

kk

q

qk

q

qk

q

k

q

k

q

kk

q

k

q

kk

q

k

q

qk

q

qk

q

k

q

k

q

kk

q

k

q

kk

q

k

q

kkkBQ

zθzz

zφzφθzz

zGzzGzzz

RuuQxxzGzzGz

RuuQxxzGzzGzzz



























 (26) 

where  

q

kk

q

k

q

kk

q

kkkkkkkkkkkkk

q

kk 11

T

1

TTT

11

T

1

T )()[(),( zGzzGzuRuxQxzGzzGzzz

])()( TT q

qkk

q

qk

q

kk

q

k uRuxQx   and q

k

q

k

q

k kkk 1)1N()N(),(  zφzφz . 
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Since the action-dependent value-function and the utility are in quadratic form, by 

Lipchitz continuity, we have 
2

,M

2

,M

2

,M

,M
),( kk

k

kq

kk eLeL
e

e
L ux

u

x
zz  








 , where 

0L  is the Lipchitz constant. Therefore, we have 

 ),(
~T2

,M

2

,M, keLeLe q

kkkkkBQ zθux    (27) 

Recall that for the optimal control with finite-horizon, the terminal constraint of 

cost/value function should be taken into account properly. Therefore, define the estimated 

value function at the terminal stage as 

 N

T

NAD )0(ˆ)0,(ˆ zφθx kV   (28) 

In (28), note that the time-dependent basis function )N( kφ  is taken as )0(φ  at 

the terminal stage, since from definition, )(φ  is a function of time-to-go and the time 

index is taken in the reverse order. Next, define the terminal constraint error vector as 

 )0(
~

)0(ˆˆ TT

N,NN,N φθφθggge kkkk   (29) 

where Ng  is upper bounded by MN gg . 

Remark 6: For both infinite and finite-horizon cases, the TDE kBQe ,  is always 

required for tuning the parameter, see [9] and [10] for the infinite-horizon case without 

quantization. In finite-horizon case, the terminal error k,Ne , which indicates the 

difference between the estimated value and true value of the terminal constraint, or 

“target” (in our case, Ng ), is critical for the controller design. The terminal constraint is 

satisfied by minimizing k,Ne  along the system evolution. 
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Remark 7: The Bellman equation with and without quantization effects are not 

same. The former requires ],[ q

qk

q

k ux  whereas the latter uses ],[ kk ux . In order to design 

the optimal adaptive controller, the estimated Bellman equation with quantization effects 

need to eventually converge to the standard Bellman equation. 

Next, define the update law for the adaptive estimator as 
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  (30) 

Define the estimation error as kk θθθ ˆ~
 . Then we have 
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Hence, we have 
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Remark 8: It is observed from the definition (19) that the value function becomes 

zero when 0q

kz . Hence, when the quantized system states have converged to zero, the 

value function approximation is no longer updated. This can be viewed as a persistency 

of excitation (PE) requirement for the inputs to the value function estimator wherein the 

system states must be persistently exiting long enough for the estimator to learn the 

action-dependent value function. The PE condition can be satisfied by adding exploration 

noise [22] to the augmented state vector. In this paper, exploration noise is added to 

satisfy the PE condition while it is removed once the parameters converge. 

 

3.3 ESTIMATION OF THE OPTIMAL FEEDBACK CONTROL 

The optimal control can be obtained by minimizing the value function [7]. Recall 

from (18), the approximated optimal control can be obtained as 

 
q

kkk

q

kkqk xGGxKu
uxuu   ˆ)ˆ(ˆ 1

 (32) 

From (32), the optimal control gain can be calculated based on the information of 

kĜ  matrix, which is obtained by estimating the action-dependent value function. This 

relaxes the requirement of the system dynamics while the parameter estimate is updated 

by (30) once a sampling interval, which relaxes the value and policy iterations. 

The flowchart of proposed scheme is shown in Figure 3. We start our proposed 

algorithm with an initial admissible control which is defined next. The system states are 

quantized before transmitting to the controller. After collecting both the Bellman error 
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and terminal constraint error, the parameters for the adaptive estimator are updated once a 

sampling interval beginning with an initial time and until the terminal time instant in an 

online and forward-in-time fashion. After the update of the adaptive estimator, the control 

inputs are quantized by our proposed dynamic quantizer before transmitting back to the 

plant. 

Start Proposed Algorithm

Initialization

00 ,0)(ˆ uux V

Update the finite horizon Bellman Equation and terminal constraint error

Update the adaptive estimator parameters

Update finite horizon control policy
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Figure 3. Flowchart of the finite-horizon optimal regulation for QCS 
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4. STABILITY ANALYSIS 

In this section, convergence of quantization error, parameter estimation error and 

closed-loop stability will be analyzed. It will be shown that all the errors, i.e., k,xe , k,ue , 

kθ
~

 will converge to zero asymptotically. Before proceeding, the following definitions are 

needed. 

Definition 1 [21]: An equilibrium point ex  is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set 
n x  so that for all xx 0 , there 

exists a bound B  and a time ),( 0xBT  such that Bek  xx  for all Tkk  0 . 

Definition 2 [11]: Let u  denote the set of admissible control. A control function 

mn :u  is defined to be admissible if the following is true: 

u  is continuous on u ; 

0)(
0


x
xu ; 

)(xu  stabilize the system (1) on x ; 

xxux  )0(,)),0((J . 

Since the design scheme is similar to policy iteration, we need to solve a fixed-

point equation rather than recursive equation. The initial admissible control guarantees 

the solution of the fixed-potion equation exists, thus the approximation process can be 

effectively done by our proposed scheme. 

Now, we are ready to show our main mathematical claims. 

Theorem 1 (Convergence of the adaptive estimator error): Let the initial 

conditions for 0ĝ  be bounded in a set g  which contains the ideal parameter vector kg . 
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Let uu )(0 k  be an initial admissible control policy for the linear system (4). Let the 

assumptions stated in the paper hold including the controllability of the system (1) and 

system state vector xx k  being measurable. Let the update law for tuning kθ̂  be 

given by (30). Then, with a positive constant θ  satisfying 
4

1
0  θ , there exists a 

0  depending on the initial value 
0,

~
θ

B  and terminal stage N , such that for a fixed 

final time instant N , we have )N,
~

(
~

kk θθ  . Further the term )N,
~

( kθ  will converge to 

zero asymptotically as N . 

Proof: See Appendix. 

After establishing the convergence of the parameter estimation, we are ready to 

show the convergence of the quantization error for both system states and control inputs. 

Before proceeding, the following lemma is needed. 

Lemma 2 [9]: (Bounds on the closed-loop dynamics with optimal control) 

Consider the linear discrete-time system defined in (4), then with the optimal control 

policy 

ku  for (4) such that the closed-loop system dynamics  kk BuAx  can be written as 

 
22

kkk xBuAx    (33) 

where 
3

1
0    is a constant. 

Proof: See [9]. 

Lemma 3 (Convergence of the state quantization error): Consider the dynamic 

quantizer for the system states given in (7). Let the zoom parameter for state quantizer be 

updated by (9). Let the adaptive estimator be updated according to (30). Then, there 
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exists a 0  depending on the initial value 0,Mxe  and the terminal stage N , such that 

for a fixed final time instant N , we have )N,( ,, kk xx ee  . Furthermore, )N,( ,kxe  will 

converge to zero asymptotically as N . 

Proof: See Appendix. 

Lemma 4 (Convergence of the input quantization error): Consider the dynamic 

quantizer for the control inputs given in (7). Let the zoom parameter for the input 

quantizer be updated by (9). Let the adaptive estimator be updated according to (30). 

Then, there exists a 0  depending on the initial value 0,Mue  and the terminal stage N , 

such that for a fixed final time instant N , we have )N,( ,, kk uu ee  . Further the term 

)N,( ,kue  will converge to zero asymptotically as N . 

Proof: See Appendix. 

Theorem 2 (Boundedness of the closed-loop system): Let the linear discrete-time 

system (1) be controllable and system state be measurable. Let the initial conditions for 

0ĝ  be bounded in a set g  which contains the ideal parameter vector kg . Let 

uu )(0 k  be an initial admissible control policy for the system (1) such that (33) holds 

for some  . Let the scaling parameter k,x  and k,u  be updated by (9) with both input 

and state quantizers present. Further let the parameter vector of the action-dependent 

value function estimator be tuned based on (30). Then, with the positive constants θ ,   

and   satisfying 
4

1
0  θ , 10    and 10   , there exist some 0  depending 

on the initial value 0,M0,M0,
~0, ,,, uxθx eeBB  and the terminal stage N , such that for a fixed 
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final time instant N , we have )N,( kk xx  , )N,
~

(
~

kk θθ  , )N,( ,, kk xx ee   and 

)N,( ,, kk uu ee  . Furthermore, by using geometric theory, when N , )N,( kx , 

)N,
~

( kθ , )N,( ,kxe  and )N,( ,kue  will converge to zero, i.e., the system is 

asymptotically stable. Moreover, the estimated control input with quantization will 

converge to ideal optimal control (i.e.  k

q

qk uû ) while time goes to infinity (i.e. N ). 

Proof: See Appendix. 

Remark 9: The idea behind this paper can be extended to the NCS, since the 

signals need to be quantized before transmitting through the network. The network 

imperfections such as network-induced delays and packet dropouts can be incorporated 

into the system by establishing the augmented system [5] and the quantizer design in the 

NCS can be implemented by the same methodology introduced in this paper due to its 

advantages mentioned in section 3.1. In the NCS, however, due to the effect of packet 

dropouts, the scaling parameters k,x  and k,u  should be transmitted through a high 

reliable link so that the quantized signal can be accurately reconstructed on the other side 

of the network.  This issue warrants more discussion and will be done separately. 

 

5. SIMULATION RESULTS 

In this section, an example is given to illustrate the feasibility of our proposed 

dynamic quantizer scheme and the finite-horizon optimal control scheme. Consider the 

discrete-time system given as 

 kkk uxx 

















 


1

0

8.18.0

8.00
1  (34) 
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while the performance index is given as in  (6) with the weighting matrices Q , R  and 

the terminal constraint matrix NS  are selected as the identity matrix with appropriate 

dimension. The terminal constraint vector is hence given as 

T

N ]2  ,6.3  ,88.4  ,0002.0  ,6.1  ,88.2  ,64.1[ g . The initial system states and initial 

admissible control gain are chosen to be T

0 ].50  ,5.0[x  and ]1  ,5.0[0 K , 

respectively. 

For the dynamic quantizer design, the parameters are selected as 9.0  and 

9.0 . For the value function estimator, the designing parameter is chosen as 

001.0θ . The time-dependent basis function )N( kφ  is selected as a function of 

time-to-go with saturation. Note that for finite time period, )N( kφ  is always bounded. 

Saturation for )N( kφ  is to ensure the magnitude of )N( kφ  is within a reasonable 

range such that the parameter estimation is computable. The initial values for kθ̂  are 

randomly selected. The simulation results are given as below. 

First, the system response and control input are plotted in Figure 4 and Figure 5, 

respectively. It is clearly shown from the figures that both system states and control 

signal converges close to zero within a finite time span, which illustrates the stability of 

our proposed algorithm. 
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Figure 4. System response 

 

Figure 5. Control inputs 

Next, to show the feasibility of the quantizer design, the quantization errors with 

4-bit quantizer and 8-bit quantizer are plotted in Figure 6 and Figure 7, respectively, by 

using our proposed quantizer and the traditional static quantizer. From Figure 6, it can be 

seen that with a small number of bits, the traditional static quantizer cannot even 

guarantee the stability of the system due to the relatively large quantization errors, while 

the proposed dynamic quantizer can keep the system remain stable. This aspect will be 

advantageous in the NCS since a fewer number of bits for the quantizer indicates lower 

network traffic preventing congestion. 
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Figure 6. Quantization error with proposed dynamic quantizer with R=4 

 

Figure 7. Quantization error with rraditional static quantizer with R=4 

On the other hand, when the number of bits for the quantizer is increased to eight, 

it is clearly shown from Figure 8 that with the proposed dynamic quantizer, the 

quantization error shrinks over time, whereas in the case of traditional static quantizer as 

shown in Figure 9, the quantization error remains bounded as time evolves. This 

illustrates the fact that the effect of the quantization error can be properly handled by our 

proposed quantizer design. 
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Figure 8. Quantization error with proposed dynamic quantizer with R=8 

 

Figure 9. Quantization error with traditional static quantizer with R=8 

Next, to show the optimality of our proposed scheme, the error history is given in 

Figure 10. It can be seen from Figure 10 that the Bellman error converges to zero, which 

shows that the optimality is indeed achieved. More importantly, the terminal constraint 

error shown in Figure 10 also converges close to zero as time evolves, which illustrates 

that the terminal constraint is also properly satisfied with our finite-horizon optimal 

control design algorithm. It should be noted that the terminal constraint error does not 

converge exactly to zero due to the choice of the time-dependent regression function. A 
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more appropriate regression function would yield a better convergence of the terminal 

constraint error which will be considered as our future work. 

 

Figure 10. Error history 

Finally, for comparison purpose, the difference of the cost function between the 

backward-in-time RE-based approach and our proposed forward-in-time scheme is 

shown in Figure 11. The simulation result clearly shows that the difference of the cost 

also converges to zero much quicker than the system response validating the proposed 

scheme. 

 

Figure 11. Difference of the cost between proposed and traditional approach 
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6. CONCLUSIONS 

In this paper, the finite-horizon optimal control of linear discrete-time quantized 

control systems with unknown system dynamics is addressed. A novel dynamic quantizer 

is proposed to eliminate the saturation effect and quantization error. Dynamics of the 

system are not needed with an adaptive estimator generating the action-dependent value 

function )N,,(AD kV kk ux . An additional error is defined and incorporated in the update 

law so that the terminal constraint for the finite-horizon can be properly satisfied. An 

initial admissible control ensures the stability of the system while the adaptive estimator 

learns the value function and the kernel matrix kG . All the parameters are tuned in an 

online and forward-in-time manner. Policy and value iterations are not needed. Stability 

of the overall closed-loop system is demonstrated by Lyapunov analysis. 

 

7. REFERENCES 

[1] D. F. DELCHAMPS, Stabilizing a linear system with quantized state feedback, IEEE Trans. Automat. 

Control, 35 (1990), pp. 916–924. 

[2] N. ELIA AND S. K. MITTER, Stabilization of linear systems with limited information, IEEE Trans. 

Automat. Control, 46 (2001), pp. 1384–1400. 

[3] R. W. BROCKETT AND D. LIBERZON, Quantized feedback stabilization of linear systems, IEEE Trans. 

Automat. Control, 45 (2000), pp. 1279–1289. 

[4] D. LIBERZON, Hybrid feedback stabilization of systems with quantized signals, Automatica J. IFAC, 

39 (2003), pp. 1543–1554. 

[5] Q. ZHAO, H. XU AND S. JAGANNATHAN, Optimal adaptive controller scheme for uncertain 

quantized linear discrete-time system, in Proc. 51th IEEE Conf. Dec. Contr., Hawaii, 2012, pp. 

6132–6137. 

[6] Q. ZHAO, H. XU AND S. JAGANNATHAN, Adaptive dynamic programming-based-state quantized 

networked control system without value and/or policy iterations, in Proc. Int. Joint Conf. Neural 

Nets, Brisbane, 2012, pp. 1–7. 

[7] F. L. LEWIS AND V. L. SYRMOS, Optimal Control, 2nd edition. New York: Wiley, 1995. 



83 

 

[8] S. J. BRADTKE AND B. E. YDSTIE, Adaptive linear quadratic control using policy iteration, in Proc. 

Am Contr. Conf., Baltimore, 1994, pp. 3475–3479. 

[9] H. XU, S. JAGANNATHAN AND F. L. LEWIS, Stochastic optimal control of unknown networked 

control systems in the presence of random delays and packet losses, Automatica J. IFAC, 48 (2012), 

pp. 1017–1030. 

[10] T. DIERKS AND S. JAGANNATHAN, Online optimal control of affine nonlinear discrete-time systems 

with unknown internal dynamics by using time-based policy update, IEEE Trans. Neural Networks 

and Learning Systems, 23 (2012), pp. 1118–1129. 

[11] Z. CHEN AND S. JAGANNATHAN, Generalized Hamilton-Jacobi-Bellman formulation based neural 

network control of affine nonlinear discrete-time systems, IEEE Trans. Neural Netw, 7 (2008), pp. 

90–106. 

[12] J. SI, A. G. BARTO, W. B. POWELL AND D. WUNSCH, Handbook of Learning and Approximate 

Dynamic Programming. New York: Wiley, 2004. 

[13] P. J. WERBOS, A menu of designs for reinforcement learing over time, J. Neural Network Contr., 3 

(1983), pp. 835–846. 

[14] C. WATKINS, Learning from delayed rewards, Ph.D. dissertation, Cambridge University, England, 

1989. 

[15] R. BEARD, Improving the closed-loop performance of nonlinear systems, Ph.D. dissertation, Electr. 

Eng. Dept., Rensselaer Polytechnic Institute, USA, 1995. 

[16] A. HEYDARI AND S. N. BALAKRISHNAN, Finite-horizon control-constrained nonlinear optimal 

control using single network adaptive critics, IEEE Trans. Neural Networks and Learning Systems, 

24 (2013), pp. 145–157. 

[17] W. FEIYUE, J. NING, L. DERONG AND W. QINGLAI, Adaptive dynamic programming for finite-

horizon optimal control of discrete-time nonlinear systems with  -error bound, IEEE Trans. Neural 

Netw, 22 (2011), pp. 24–36. 

[18] Q. ZHAO, H. XU AND S. JAGANNATHAN, Finite-horizon optimal control design for uncertain 

linear discrete-time systems, in Proc. IEEE Symp. Approx. Dyn. Programm. Reinforcement Learn., 

Singapore, 2013. 

[19] H. XU AND S. JAGANNATHAN, Stochastic optimal controller design for uncertain nonlinear 

networked control system via neuro dynamic programming, IEEE Trans. Neural Netw. And 

Learning Syst, 24 (2013), pp. 471–484. 

[20] F. L. LEWIS, S. JAGANNATHAN, AND A. YESILDIREK, Neural Network Control of Robot 

Manipulators and Nonlinear Systems, New York: Taylor & Francis, 1999. 

[21] S. JAGANNATHAN, Neural Network Control of Nonlinear Discrete-Time Systems, Boca Raton, 

FL: CRC Press, 2006. 

[22] M. GREEN AND J. B. MOORE, Persistency of excitation in linear systems, Systems Control Lett., 7 

(1986), pp. 351–360. 

[23] K. S. NARENDRA AND A. M. ANNASWAMY, Stable Adaptive Systems, New Jersey: Prentice-Hall, 

1989. 

  



84 

 

APPENDIX 

Proof of Theorem 1: 

Consider the Lyapunov candidate function as 

 kkL θθθ

~~T  (A.1) 

The first difference of θL  is given, according to (31), by 
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Therefore, by Lyapunov stability theory, the estimation error kθ
~

 will converge to zero as 

k . 

 

Proof of Lemma 3: Recall from the quantizer design, for the state quantization, the 

quantization error is always bounded by ke ,Mx , as shown in (8). Therefore, instead of 

dealing with the quantization error directly, we focus on the analysis of quantization error 

bound. Recalling from (8), we have 
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Substituting the system dynamics (5) into (A.3) yields 
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 (A.4) 

with 

kK  the true Kalman gain satisfying MKk 
K , and kkk KKK ˆ~

 
 is the Kalman 

gain error. 

Applying Cauchy-Schwartz inequality and using Lemma 1, (A.4) can be further written 

as 
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 (A.5) 

Recall from (18) and the definition of the adaptive estimator, we have 

)()( 1

kkkk f gGGK
uxuu    and similarly )ˆ(ˆ)ˆ(ˆ 1

kkkk f gGGK
uxuu  

, then the Kalman 

gain error can be represented as 

 kfkfkfkkk LkLLff θθgggK
~

)N(
~~)ˆ()(

~
max   (A.6) 

where fL  is a positive Lipchitz constant, max  always exists since the time of interest is 

finite and hence )N( kφ  is always bounded. Hence, (A.5) becomes 
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Furthermore, since MKk 
K , we have 
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Therefore, (A.7) becomes 
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Hence, for the quantizer, there exists a finite number of bits fR  such that for all fRR  , 

we have 
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Therefore, (A.7) can be written as 
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Recall from Theorem 1, since 
4

1
0  θ , thus 10   , which further implies 
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k  . Hence, (A.9) becomes 
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Therefore, there exists a finite number fk  such that for all fkk  , 
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According to (A.11), within finite-horizon, the quantization error bound for system state 

is UUB with ultimate bound depending on initial quantization error bound 
2

0,Mxe  and 
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terminal time, sNT i.e., 

 N,,1,0          ,2

0,M

2

,M  kee k

k xx   (A.12) 

Further, the quantization error bound for the system states ke ,Mx  converges to zero 

asymptotically as k . Since quantization error never exceeds the bound, then the 

state quantization error also converge to zero as k . 

 

Proof of Lemma 4: Recall form (32), the control inputs is given as 
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where kkk KKK ˆ~
 

 is the Kalman gain error. 

Similar to the state quantization, we have the quantization error bound for the control 

input as 
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Define the Lyapunov candidate function as  
2

,MM,MM )( kk eeL uu  . 

The first difference of )( ,MM keL u  is given by 
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where   11,1min
2

1
0 222   . 

According to (A.15), within finite horizon, the quantization error bound for control input 

is UUB with ultimate bound depending on initial quantization error bound 
2

0,MMue  and 

terminal time sNT , i.e., 

 N,,1,0          ,)1( 2

0,MM

2

,MM  kee k

k uu   (A.16) 

Moreover, since first difference of Lyapunov function )( ,MM keL u is negative definite 

while Lypaunov function )( ,MM keL u is positive definite, we have 0,MM ke u
 as k . 

Since 
kkk eee ,MM,M, uuu  , 0, keu

 as k . 

 

Proof of Theorem 2: Consider the Lyapunov candidate function as 
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where kkkL xxx
T)(  , 2

,M

2
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~
( kkkk eeL xx θθ  , 

2

,M,M )( kk eeL xx  , 
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2
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22

M  BKBLB f  . 

Next, consider each term in (A.17) individually. Applying Cauchy-Schwartz inequality 

and recalling Lemma 1, we have 
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where M]  [  BA  and the history information satisfying 

M

TT

1

T

11 ]  [    qkkk ux . 

Next, recalling from Theorem 1, Lemma 2 and Lemma 3, the total difference of the 

Lyapunov candidate function is given by 
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where 
3

1
0   , 10 5   and 10  . 

Therefore, first difference of Lyapunov function L  is negative definite while Lypaunov 
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function L  is positive definite. Moreover, using standard Lyapunov theory and geometric 

sequence theory, within finite horizon, the system states, parameter estimation error, state 

quantization error bound and control input quantization error bound will be uniformly 

ultimately bounded with ultimate bounds depending on initial condition 

2
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 (A.18) 

Further, since 
3

1
0    and 10  , the bounds in (A.18) are monotonically 

decreasing as k  increases. When time goes infinity, i.e. N , all the bounds tend to 

zero and the asymptotic stability of the closed-loop system is achieved. 

 Eventually, while time goes to fixed final time sNT , we have the upper bound for 

 k

q

qk uû  as 
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 (A.19) 

where
kkkk

BBBB ,,,,
~ ,,,

ux eexθ
are given in (A.18). Since all the bounds will converge to 

zeros when N , the estimated control input will tend to optimal control (i.e.  k

q

qk uû ) 

due to (A.19). 



92 

 

III. NEURAL NETWORK-BASED FINITE-HORIZON OPTIMAL CONTROL OF 

UNCERTAIN AFFINE NONLINEAR DISCRETE-TIME SYSTEMS 

Qiming Zhao, Hao Xu and S. Jagannathan 

Abstract — In this work, the finite-horizon optimal control design for nonlinear discrete-

time systems in affine form is presented. In contrast with the traditional approximate 

dynamic programming (ADP) methodology, which requires at least partial knowledge of 

the system dynamics, in this paper, the complete system dynamics are relaxed by utilizing 

a novel neural network (NN)-based identifier to learn the control coefficient matrix. The 

identifier is then used together with the actor-critic-based scheme to learn the time-

varying solution, referred to as the value function, of the Hamilton-Jacobi-Bellman 

(HJB) equation in an online and forward-in-time manner. Due to the time-dependency of 

the solution, NNs with constant weights and time-varying activation functions are 

considered to handle the time-varying nature of the value function. To properly satisfy 

the terminal constraint, an additional error term is incorporated in the novel update law 

such that the terminal constraint error is also minimized over time. Policy and/or value 

iterations are not needed and the NN weights are updated once a sampling instant. The 

uniform ultimate boundedness (UUB) of the closed-loop system is verified by standard 

Lyapunov stability theory under non-autonomous analysis. Numerical examples are 

provided to illustrate the effectiveness of the proposed method. 
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1. INTRODUCTION 

Conventionally, for linear systems with quadratic cost, the optimal regulation 

problem (LQR) can be tackled by solving the well-known Riccati Equation (RE) [1] with 

full knowledge of system dynamics A and B . In addition, the solution is obtained offline 

and backward-in-time from the terminal constraint. In the case of infinite-horizon, the 

solution of the RE becomes a constant and the RE becomes the algebraic Riccati equation 

(ARE). However, the optimal control of nonlinear systems in affine form is more 

challenging since it requires the solution to the HJB equation. For infinite-horizon case, 

the HJB solution reduces to a time-invariant partial differential or difference equation. 

Therefore, in recent years, adaptive or NN-based optimal control over infinite-horizon 

has been studied for both linear and nonlinear systems, see [2][3][4]. However, the finite-

horizon optimal control problem still remains unresolved for the control researchers. 

First, for general affine nonlinear systems, the solution to the HJB equation is 

inherently time-varying [1] which complicates the analysis. Second, a terminal constraint 

is imposed on the cost function whereas this constraint is taken as zero in infinite-horizon 

case. The traditional ADP techniques [4][7][8] address the optimal control problem by 

solving the HJB equation iteratively. Though iteration-based solutions are mature, they 

are unsuitable for real-time implementation since inadequate number of iterations in a 

sampling interval can cause instability [2]. 

In the past literature, the author in [5] considered the finite-horizon optimal 

control of continuous-time nonlinear systems by iteratively solving the generalized HJB 

(GHJB) equation via Galerkin method from the terminal time. The authors in [6] 

proposed a fixed final-time optimal control for general affine nonlinear continuous-time 
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systems by using a NN with time-dependent weights and state-dependent activation 

function to solve the HJB equation through backward integration. 

On the other hand, in [7], the authors considered the finite-horizon optimal control 

of nonlinear discrete-time systems with input constraints by using off-line trained direct 

heuristic dynamic programming (DHDP)-based scheme utilizing a NN which 

incorporates constant weights and time-varying activation function. Similarly in [8], the 

authors considered the finite-horizon optimal control of discrete-time systems by using 

iteration-based ADP technique. However, in [8], the terminal time is not specified. 

The past literature [5][6][7][8] for solving the finite-horizon optimal control of 

nonlinear systems utilize either backward-in-time integration or iteration-based offline 

training, which requires significant number of iterations within each sampling interval to 

guarantee the system stability. On the other hand, other ADP schemes [17] normally 

relax the drift dynamics while the control coefficient matrix is still needed [3]. Therefore, 

a real-time finite horizon optimal control scheme, which can be implemented in an online 

and forward-in-time manner with completely unknown system dynamics and without 

using value and policy iterations, is yet to be developed. 

Therefore, in this paper, a novel approach is addressed to solve the finite-horizon 

optimal control of uncertain affine nonlinear discrete-time systems in an online and 

forward-in-time manner. First, the control coefficient matrix is generated by using a 

novel NN-based identifier which functions in an online manner. Next, an error term 

corresponding to the terminal constraint is defined and minimized overtime such that the 

terminal constraint can be properly satisfied. To handle the time-varying nature of the 

solution to the HJB equation or value function, NNs with constant weights and time-
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varying activation functions are utilized. In addition, in contrast with [7] and [8], the 

control policy is updated once every sampling instant and hence value/policy iterations 

are not performed. Finally, due to the time-dependency of the optimal control policy, the 

closed-loop system becomes essentially non-autonomous, and the stability of our 

proposed design scheme is demonstrated by Lyapunov stability analysis. 

The main contribution of the paper includes the development of an optimal 

adaptive NN control scheme in finite horizon for nonlinear discrete-time systems without 

using value and/or policy iterations. An online identifier to generate the system dynamics 

is introduced and tuning laws for all the NNs are also derived. Lypunov stability is given. 

The rest of the paper is organized as follows. In section 2, background and 

formulation of finite-horizon optimal control for affine nonlinear discrete-time systems 

are introduced. In section 3 the main control design scheme along with the stability 

analysis are addressed. In section 4, simulation results are given to verify the feasibility 

of our approach. Conclusive remarks are provided in Section 5. 

 

2. BACKGROUND AND PROBLEM FORMULATION 

In this paper, the finite-horizon optimal regulation for discrete-time affine 

nonlinear systems is investigated. The system is described as 

 kkkk gf uxxx )()(1   (1) 

where n

k  xx  are the system states, n

kf )(x  and mn

kg )(x  are smooth 

unknown nonlinear dynamics, and m

k  uu  is the control input vector. It is also 

assumed in this paper that M)(0 gg k  x  with Mg  being a positive constant. 
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Assumption 1: The nonlinear system given in (1) is controllable. Moreover, the 

system states xx k  are measurable. 

The objective of the optimal control design is to determine a state feedback 

control policy which minimizes the following time-varying value or cost function given 

by 

 





1N

N ),,()(),(
ik

kkk kLkV uxxx   (2) 

where ]N,[i  is the time span of interest, )( Nx  is the terminal constraint that penalizes 

the terminal state Nx , kkkkkk kkL uRuxQux
T),(),,(   is an in-general time-varying 

function of the state and control input at each intermediate time k  in ]N,[i , where 

),( kkxQ , 
mm

k

R  are positive semi-definite function and positive definite 

symmetric weighting matrix, respectively. It should be noted that in finite-horizon 

scenario, the control inputs can be time-varying, i.e., uxu  ),( kkk  . 

Setting Nk , the terminal constraint for the value function is given as 

 )()N,( NN xx V  (3) 

Remark 1: In general, the terminal penalty )( Nx  is a function of state at 

terminal stage N  and not necessarily to be in quadratic form. In the case of standard 

LQR, )( Nx  takes the quadratic form as NN

T

NN )( xQxx   and the optimal control 

policy can be obtained by solving the RE in a backward-in-time fashion from the terminal 

value NQ . It is also important to note that in the case of finite-horizon, the value function 

(2) becomes essentially time-dependent, in contrast with the infinite-horizon case where 

this problem is developed in a forward-in-time manner [2][3]. 
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By Bellman’s principle of optimality [1], the optimal cost from k  onwards is 

equal to 

  )1,(),,(min),( 1  

 kVkLkV kkkk
k

xuxx
u

 (4) 

The optimal control policy 

ku  that minimizes the value function ),( kV kx
  is 

obtained by using the stationarity condition 0),(  

kk kV ux  and revealed to be 

 
1

1T1 )1,(
)(

2

1














k

k

kk

kV
g

x

x
xRu  (5) 

From (5), it is clear that even the full system dynamics are available, the optimal 

control cannot be obtained for nonlinear discrete-time systems due to the dependency on 

future state 1kx . To avoid this drawback and relax the requirement for system dynamics, 

iteration-based schemes are normally utilized with NNs by performing offline-training 

[4]. However, iteration-based schemes are not preferred for hardware implementation 

since the number of iterations to ensure stability cannot be easily determined. Moreover, 

iterative approaches cannot be implemented when the system dynamics are completely 

unknown, since at least the control coefficient matrix )( kg x  is required to generate the 

control policy [3]. In contrast, in this work, a solution is found with completely unknown 

dynamics without utilizing iterative approach, as given in next section. 

 

3. NEURAL NETWORK-BASED FINITE-HORIZON OPTIMAL REGULATION 

WITH COMPLETELY UNKNOWN DYNAMICS 

In this section, the finite-horizon optimal regulation scheme for nonlinear 

discrete-time systems in affine form with completely unknown system dynamics is 
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addressed. First, to relax the requirement of system dynamics, a novel NN-based 

identifier is designed to learn the true system dynamics in an online manner. Next, the 

actor-critic methodology is proposed to approximate the time-varying value function with 

a “critic” network, while the control inputs are generated by the “actor” network, with 

both NNs having the structure of constant weights and time-varying activation function. 

In order to satisfy the terminal constraint, an additional error term is defined and 

incorporated in the novel NN updating law such that this error is also minimized 

overtime. The stability of the closed-loop system is demonstrated, under non-autonomous 

analysis, by Lyapunov theory to show that the parameter estimation remains bounded as 

the system evolves. 

 

3.1 NN-BASED IDENTIFIER DESIGN 

Due to the online learning capability, NNs are commonly used for estimation and 

control. According to the universal approximation property [19], the system dynamics (1) 

can be rewritten on a compact set   by using NN representation as 
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and n

kgfk   11 ][ uε  , with L  being the number of hidden neurons. In addition, 

the target NN weights are assumed to be upper bounded by MWW , where MW  is a 
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positive constant, while the NN activation function and reconstruction error are assumed 

to be bounded above as M)(  kx  and Mkε , with M  and M  positive 

constants. Note that to match the dimension, W  can be constructed by stacking zeros in 

fW  or gW , which does not change the universal approximation property of the NN. 

Therefore, system dynamics kx  can be identified by updating the target NN weight 

matrix W . 

Using NN identifier, the system states at k  can be estimated by 

 11

T )(ˆˆ
 kkkk uxWx   (7) 

Define the identification error as 

 11

T )(ˆˆ
 kkkkkkk uxWxxxe   (8) 

Then the identification error dynamics of (8) can be expressed as 

 kkkkkkk uxWxxxe )(ˆˆ T

11111    (9) 

Next, by incorporating the history information, define an augmented error vector 

as 

 11

Tˆ
 kkkkk UΘWXΞ  (10) 

where )1(

1 ][ 

  ln

lkkkk xxxX  , ])()()([ 1211   lkkkk xxxΘ    

)1)(1( mlL  , and )1()1)(1(
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It can be seen that (10) includes a time history of previous 1l  identification 

errors recalculated using the most recent weights kŴ . 
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Similar to (10), the dynamics for the augmented identification error vector 

becomes 

 kkkkk UΘWXΞ
T

111
ˆ

   (11) 

Next, the update law for the NN identifier weights kŴ  can be defined as 

 )()(ˆ TT

1

1TT

1 kkkkkkkkk ΞXUΘΘUUΘW  



  (12) 

where 10   is a design parameter. 

Substituting (12) into (11) yields 
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Remark 2: For the above identification scheme, kkUΘ  needs to be persistently 

exciting (PE) long enough for the NN identifier to learn the true system dynamics. PE 

condition is well-known in the adaptive control theory [21] and can be satisfied by adding 

probing noise [20]. 

Next, to find the NN weights estimation error dynamics, define kk WWW ˆ~
 . 

Recall from (6) and (7), the identification error dynamics can be expressed as 
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Using kk ee 1  from (13), we have 
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Or equivalently, 

 kkkkkkkk    111

TT

1 )(
~

)(
~

uxWuxW  (16) 

Next, the boundedness of the NN weights estimation error kW
~

 will be 

demonstrated in Theorem 1. The following definition is needed before proceeding. 

Definition [19]: An equilibrium point ex  is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set n x
 so that for all initial state 

xx 0 , there exists a bound B  and a time ),( 0xBT  such that Bek  xx  for all 

Tkk  0 . 

Theorem 1 (Boundedness of the NN identifier): Let the nonlinear system (1) be 

controllable while the system state xx k  be measurable. Let the initial NN identifier 

weights kŴ  be selected within a compact set ID  which contains the ideal weights W . 

Given the admissible control input uu 0 , let the proposed NN identifier be defined as 

in (7) and the update law for tuning the NN weights be given in (12). Under the 

assumption that kkUΘ  in Remark 2 satisfies persistency of excitation (PE) condition, 

then there exists a positive constant   satisfying 
2

1
0   such that the identification 

error ke  as well as the NN weights estimation error kW
~

 are UUB, with the bound given 

in (A.5) and (A.6). 

Proof: See Appendix. 

Remark 3: In the proof, the inequality 
222

m0 kkk UΘΘ   holds since 

kkUΘ  satisfies the PE condition [2] such that the NN identifier is able to learn the system 
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dynamics. It should be also noted that the control input is assumed to be bounded, which 

is consistent with the literature, for the identification scheme since the main purpose of 

this section is to show the effectiveness of our identifier design. This assumption will be 

relaxed in our final theorem, where the convergence of the overall closed-loop system is 

shown with our proposed control design. 

 

3.2 OPTIMAL NN CONTROLLER DESIGN 

In this subsection, the finite-horizon optimal regulation design is proposed. To 

handle the time-dependency of the value function, two NNs with the structure of constant 

weights and time-varying activation functions are utilized to approximate the time-

varying value function and the control input, respectively. An additional error term 

corresponding to the terminal constraint is also defined and minimized overtime such that 

the terminal constraint can be properly satisfied. Due to the time-dependency nature for 

finite-horizon, the closed-loop stability of the system will be shown by Lyapunov theory. 

By universal approximation property of NNs [19] and actor-critic methodology, 

the value function and control inputs can be represented by a “critic” NN and an “actor” 

NN, respectively, as 

 ),()N,(),( T kkkV kVkVVk xxWx    (17) 

and 

 ),()N,(),( T kkk kkk xxWxu uuu    (18) 

where VW  and uW  are the constant target NN weights, )N,( kkV x  and 

)N,( kk xu  are the time-varying activation functions incorporating the time-to-go, 

),( kkV x  and ),( kkxu  are the NN reconstruction errors for the critic and action 
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network, respectively. The target NN weights are assumed to be upper bounded by 

MVV WW  and MuuW W , respectively, where both MVW  and MuW  are positive 

constants [17]. The NN activation functions and the reconstruction errors are also 

assumed to be upper bounded by M)N,( VkV k  x , M)N,( uu x   kk , 

M),( VkV k  x  and M),( uu x  kk , with MV , Mu , MV  and Mu  all positive constants 

[19]. In addition, in this work, the gradient of the reconstruction error is also assumed to 

be upper bounded by '

M1, VkkV   x , with '

MV  a positive constant [3][14]. 

Remark 4: In this paper, we utilize two NNs (critic and actor) to approximate the 

value function as well as the control inputs. Unlike continuous-time system, where the 

control inputs can be obtained directly from the information of critic NN, the actor NN is 

needed in discrete-time system since the future value 1kx  is not available. Therefore, the 

actor NN is utilized to relax the need for 1kx . 

Similarly as (17), the terminal constraint of the value function can also be written 

in NN representation as 

 )N,()0,()N,( NN

T

N xxWx VVVV    (19) 

with )0,( NxV  and )N,( NxV  having the same meaning as )N,( kkV x  and 

),( kkV x  but corresponding to the terminal state. Note that the activation function is 

taking the form )0,( NxV  at terminal stage since from the definition, the time-varying 

activation function incorporates the time-to-go. 

Remark 5: The fundamental difference between this work and [7] is that our 

proposed algorithm yields a completely forward-in-time and online solution without 
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using both value and policy iteration and offline training, whereas the algorithm proposed 

in [7] was essentially an iteration-based DHDP scheme which is performed offline. 

3.2.1 Value Function Approximation.  The time-varying value function 

),( kV kx  can be approximated by the critic NN and written as 

 )N,(ˆ),(ˆ T

, kkV kVkVk  xWx   (20) 

where ),(ˆ kV kx  represents the estimated value function (2) and kV ,Ŵ  is estimation of the 

target NN weights VW . The basis function should satisfy 0)0( V  for 0x  to 

guarantee that 0)0(ˆ V  can be satisfied [1]. 

The terminal constraint can be represented by 

 )0,ˆ(ˆ)N,(ˆ
N

T

,N xWx VkVV   (21) 

where Nx̂  is an estimation of the terminal state. It should be noted that since the true 

value of Nx  is not known, Nx̂ can be considered to be a “guess” of Nx  and can be chosen 

randomly as long as Nx̂  lies within the stability region for a stabilizing control policy 

[4][7]. 

To ensure optimality, the Bellman equation should hold along the system 

trajectory. According to the principle of optimality, the true Bellman equation is given by 

 0),()1,(),,( 1   kVkVkr kkkk xxux  (22) 

However, (22) no longer holds when the NN approximation is considered. 

Therefore, with estimated values, the Bellman equation (22) becomes 
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  (23) 
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where B

ke  is the Bellman error along the system trajectory, and 

)N,()1N,()N,( 1 kkk kVkVkV   xxx  . 

Next, recall from (21), define an additional error term corresponding to the  

terminal constraint as 

 )0,ˆ(ˆ)( N

T

,N

N
xWx VkVke    (24) 

The objective of the optimal control design is thus to minimize the Bellman error 

B

ke  as well as the terminal constraint error N

ke  as the system evolves. Hence, define the 

total error as 

 NBtotal

kkk eee   (25) 

Based on gradient descent, the update law for critic NN can be defined as 

 
)N,()N,(1

)N,(ˆˆ

1

T

1

total

1

,1,
kk

ek

kk

kk

VkVkV





xx

x
WW




  (26) 

where )0,ˆ()N,()N,( N1 xxx VkVk kk   , while )N,(1 kk x  is bounded by 

M11m1 )N,(   kkx , and V  is a design parameter with its range given in 

Theorem 2. 

Remark 6: Two points needs to be clarified in the update law (26). First, the total 

error is minimized such that the optimality can be achieved as well as the terminal 

constraint can be also properly satisfied. Second, the activation function )N,(1 kk x  is 

also a combination of the activation function along the system trajectory and the 

activation function at the terminal stage. For the infinite-horizon case, the update law 

becomes a standard gradient descent algorithm with time-invariant activation function, 

and also the terms corresponding to the terminal constraint become all zero, i.e., 
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Btotal

kk ee   and )()(1 kVk xx   . 

Next, to find the error dynamics, define kVVkV ,,
ˆ~

WWW  . Recalling the Bellman 

equation (22) and the definition of the value function (17), we have 

 

0),()N,(),,(

),()N,(   

)1,()1N,(),,(

),()1,(),,(   

T

T

11

T

1













kkkr

kk

kkkr

kVkVkr

kVkVVkk

kVkVV

kVkVVkk

kkkk

xxWux

xxW

xxWux

xxux






 (27) 

where )0,(ˆ)( N

T

N

N
xWx VVkke   . 

Hence, we have 

 ),()N,(),,( T kkkr kVkVVkk xxWux    (28) 

Substituting (28) into (23) yields 

 

),()N,(
~

)N,(ˆ),()N,(

)N,(ˆ),,(

T

,

T

,

T

T

,

B

kk

kkk

kkre

kVkVkV

kVkVkVkVV

kVkVkkk

xxW

xWxxW

xWux













 (29) 

Next Recalling from (19), then the terminal constraint error N

ke  can be written as 

 

)0,()0,(~)0,ˆ(
~

     

)0,ˆ(ˆ)0,(         

)0,ˆ()0,ˆ()0,(     

)0,ˆ(ˆ)0,()0,(     

)0,ˆ(ˆ)(

NN

T

N

T

,

N

T

,N

N

T

N

T

N

T

N

T

,NN

T

N

T

,N

N

xxWxW

xWx

xWxWxW

xWxxW

xWx

VVVVkV

VkVV

VVVVVV

VkVVVV

VkVke





















 (30) 

where )0,ˆ()0,()0,(~
NNN xxx VVV   . 
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Hence, the total error (25) becomes 

 

),()0,(~)N,(
~

     

)0,()0,(~        

)0,ˆ(
~

),()N,(
~

     

N

T

1

T

,

NN

T

N

T

,

T

,

NBtotal

kk

kk

eee

kVVkkV

VVV

VkVkVkVkV

kkk

xxWxW

xxW

xWxxW















 (31) 

where )0,(),(),( Nxxx VkVk kk   . 

Finally, by substituting (31) into the update law (26), the error dynamics for kV ,

~
W  

is revealed to be 

 

)N,()N,(1

)),()0,(~)(N,(
             

)N,()N,(1

~
)N,()N,(~~

1

T

1

N

T

1

1

T

1

,

T

11

,1,

kk

kk

kk

kk

kk

kVVk
V

kk

kVkk

VkVkV











xx

xWxx

xx

Wxx
WW











 (32) 

Next, the boundedness of the estimation error for the critic NN weights is 

presented, as in the following theorem. 

Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1) 

be controllable while the system state xx k  be measurable. Let the initial critic NN 

weights kV ,Ŵ  are selected within a compact set V  which contains the ideal weights VW . 

Let uxu )(0 k  be an admissible control for the system (1). Let the update law for the 

critic NN be given as (26). Under the assumptions stated in this paper, there exists a 

positive constant 
)1(3

2
0

2

M1

2

m1







 V  such that the critic NN weights estimation error 

kV ,

~
W  is UUB with a computable bound VB  given in (A.12). 

Proof: See Appendix. 
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3.2.2 Approximation of Optimal Feedback Control Signal.  In this 

subsection, the optimal control policy is obtained such that the estimated value function 

(20) is minimized. The action NN approximation of (18) is defined as 

 )N,(ˆ),(ˆ T

, kk kkk  xWxu uu   (33) 

where k,
ˆ

uW  is the estimation of the target action NN weights. 

Next, define the actor error as the difference between the control policy applied to 

(1) and the control policy which minimizes the estimated value function (20), denoted as 

 ),(ˆ),(ˆ),(~
21 kkk kkk xuxuxu   (34) 

where )N,(ˆ),(ˆ T

,1 kk kkk  xWxu uu   and 

kVkVk

k

k
kk kg

kV
gk ,1

TT1

1

1T1

2
ˆ)1N,()(ˆ

2

1)1,(ˆ
)(ˆ

2

1
),(ˆ WxxR

x

x
xRxu 




 





  , 

where   denotes the gradient, )(ˆ
kg x  is the estimated control coefficient matrix from the 

NN-based identifier and )1,(ˆ
1  kV kx  is the approximated value function from the critic 

network. 

Hence, (34) becomes 

 kVkVkkkk kgkk ,1

TT1T

,
ˆ)1N,()(ˆ

2

1
)N,(ˆ),(~ WxxRxWxu uu  

   (35) 

The update law for tuning the action NN weights can be then defined as 

 
)N,()N,(1

),(~)N,(ˆˆ
T

T

,1,
kk

kk

kk

kk

kk





xx

xux
WW

uu

u

uuu



  (36) 

where 0u  is a design parameter. 

Recall that the control policy (18) minimizes the value function (17), then we 

have 
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 )1,()1N,()(

2

1
              

),()N,(),(

11

TT1

T







 kkg

kkk

kVVkVk

kkk

xWxxR

xxWxu uuu





 

Or equivalently, 

 

)1,()(
2

1
)1N,(      

)(
2

1
),()N,(0

1

T1

1

T

T1T













kgk

gkk

kVkVkV

kkk

xxRWx

xRxxW uuu





 (37) 

To find the error dynamics for the actor NN weights k,
ˆ

uW , define 

kk ,,
ˆ~

uuu WWW  . Subtracting  (37) from (35) yields 

 

),(ˆ)1N,(                    

)(ˆ
2

1
)1,()(

2

1
                    

)1N,()(
2

1
)N,(

~
),(~

,1

T

T1

1

TT1

1

TT1T

,

kk

gkg

kgkk

kkVkV

kkVk

VkVkkkk

xWx

xRxxR

WxxRxWxu

u

uu

























 (38) 

Next, for simplicity, rewrite )N,(, kkk  xuu  , )1N,( 11,   kkVkV x ,

)1N,( 11,   kkVkV x , )( kk g xg  , )(ˆˆ
kk g xg  , )(~~

kk g xg  and 

),(, kkk xuu   , then add and subtract VkVkg WxR
T

1,

T1 )(ˆ
2

1


   and arranging terms 

yields 

 kkVkVkVkVkkkk k ,,

T

1,

T1T

1,

T1

,

T

,
~~

ˆ
2

1~

2

1~
),(~

uuu WgRWgRWxu   





  (39) 

where kkk ggg ˆ~   and kkVkk ,

T

1,

T1

,
2

1~
uu gR   

 . Furthermore, it can be easily 

concluded that k,
~

u  satisfies M,
~~

uu  k , where M
~

u  is a positive constant. 
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Finally, the error dynamics for the actor NN weights are revealed to be 

 

T

,,

T

1,

T1

T

1,

T1

,

T

,

,

T

,

,

,

,

T

,

T

,

,1,

)~~
ˆ

2

1
   

~

2

1~
(

1

~

1

),(~
~~

kkVkVk

VkVkkk

kk
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k

kk
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kk
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uu

uu

u

uu

uu

u

uuu

WgR

WgRWW

xu
WW


































 (40) 

It should be noted that from the above analysis, the control matrix )( kg x  is not 

needed for updating the actor NN, in contrast with [3]. Instead, the approximated control 

matrix )(ˆ
kg x  from the NN identifier is utilized to find the control input, hence the partial 

knowledge of the system dynamics are relaxed. 

To complete this subsection, the flowchart of this scheme is shown in Figure 1. 

We first collect the information for the steps 1,,2,1  lk   with the initial admissible 

control, which is defined later, for the first time identifier NN weights update. Then the 

NNs for the, critic, actor and identifier are updated based on our proposed weights tuning 

laws at each sampling interval in an online and forward-in-time fashion. 

 

3.3 CONVERGENCE ANALYSIS 

In this subsection, it will be shown that the closed-loop system will remain 

bounded. Before proceeding, the following definition and lemma are needed. 

Definition [4]: Let u  denote the set of admissible control. A control function 

mn :u  is defined to be admissible if the following is true: 

u  is continuous on u ; 

0)(
0


x
xu ; 
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)(xu  stabilize the system (1) on x ; 

xxux  )0(,)),0((J . 

Since the design scheme is similar to policy iteration, we need to solve a fixed-

point equation rather than recursive equation. The initial admissible control guarantees 

the solution of the fixed-potion equation exists, thus the approximation process can be 

effectively done by our proposed scheme. 

Start Proposed 

Algorithm

Initialization

00 ,0)(ˆ uuxV 

)()(ˆ TT
1

1TT
1 kkkkkkkkk ΞXUΘΘUUΘW  




1N,...,2,1,1  kkk

Update the time interval
k=N?

End

Yes

Update the NN-based Identifier

Update the Value Function and the Critic Network Weights

)N,()N,(1

)N,(ˆˆ

)N,(ˆ),(ˆ

1
T
1

total
1
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ek

kkV
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kk
VkVkV
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xx
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Update the Control Input and the Action Network Weights
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u
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Figure 1. Flowchart of the finite-horizon optimal control design 
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Lemma 1 (Bounds on the optimal closed-loop dynamics): Consider the discrete-

time affine nonlinear system defined in (1), then there exists an optimal control policy 

ku  

for (1) such that the closed-loop system dynamics  kkk gf uxx )()(  can be written as 

 
22

)()( kkkk kgf xuxx
   (41) 

where 
2

1
0  k  is a constant. 

Theorem 3 (Convergence of finite-horizon optimal control signal) Let the 

nonlinear system (1) be controllable while the system state xx k  be measurable. Let 

the initial NN weights for the identifier, critic network and actor network kŴ , kV ,Ŵ  and 

k,
ˆ

uW  be selected within compact set ID , V  and AN  which contains the ideal weights 

W , VW  and uW . Let uxu )(0 k  be an initial stabilizing control policy for the system 

(1). Let the NN weights update law for the identifier, critic network and actor network be 

provided by (12), (26) and (36), respectively. Then, under the assumption stated in this 

paper, there exists positive constants  , V , u  satisfying 

 
2

1
0   (42) 

 
7

3
0  u  (43) 

 
)1(4

0
2

M1

2

m1







 V  (44) 

such that the system state kx , NN identification error ke , identifier weight estimation 

errors kW
~

, critic and actor network weights estimation errors kV ,

~
W  and k,

~
uW  are all UUB 
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at terminal stage N  with the bound xb , Ξb , eb , 
W
~b  and 

V

b
W
~  shown in (A.22) ~ (A.26). 

Moreover, the estimated control input is bounded closed to the optimal value such that

skk kk uxuxu  ),(ˆ),(  for a small positive constant su . 

Proof: See Appendix. 

 

4. SIMULATIONS 

In this section, the proposed algorithm is evaluated by two numerical examples. A 

linear system is first utilized followed by a practical two-link robot nonlinear system.  For 

the linear system, one can compare the RE-based solution with the proposed scheme. 

 

4.1 LINEAR CASE 

The proposed finite-horizon optimal control design scheme is first evaluated by a 

linear example. Consider the system 

 kkk uxx 


















5.0

1

6.00

18.0
1  (45) 

The weighting matrices for the performance index (2) are selected to be 

kkk k xxxQ
T5.0),(   and 1kR . For comparison purpose, the terminal constraint is 

selected to be 0)( N x . Non-zero terminal constraint is considered in nonlinear case. 

For the NN setup, for linear systems, the input to the identifier NN is chosen to be 

],[ kkk uxz  , the time-varying activation functions for both critic and action network are 

chosen as T

21

2

2

2

12211 ],,),exp(,),exp(,[)N,()N,(  xxxxxxxxkk kkV  xx u , 

which results 7 neurons, and N)(N k  is the normalized time-to-go. 
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The design parameters are chosen as 4.0 , 1.0V  and 01.0u . The 

initial admissible control gain is selected as .3]0  ,3.0[)0( K  and the initial system 

states are selected as T

0 ]5.0,5.0[ x . The critic and action NN weights are both 

initialized as zeros. Simulation results are shown as below. 

First, the system response is shown in Figure 2. It can be clearly seen from Figure 

2 that the system states converge close to the origin within finite time. This confirms that 

the system remains stable under our proposed design scheme. 

 

Figure 2. System response 

Next, to show the feasibility of the proposed optimal control design scheme, the 

Bellman error as well as the terminal constraint error is plotted in Figure 3. It is shown 

from this figure that the Bellman equation error converges close to zero, which illustrates 

the fact that our proposed controller design indeed achieves optimality. It is more 

important to note that the convergence of the terminal constraint error indicates that the 

terminal constraint is also properly satisfied. 
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Figure 3. Error history 

Next, the convergence of critic and actor NN weights is shown in Figure 4 and 

Figure 5, respectively. From the results, it can be clearly seen that both weights converge 

to constants and remain bounded, as desired. 

 

Figure 4. Convergence of critic NN weights 
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Figure 5. Convergence of actor NN weights 

Finally, to compare our proposed design with traditional Riccati equation-based 

design, the cost is depicted in Figure 6. It can be seen from the figure that the difference 

between the cost computed from traditional RE-based and our proposed approach 

converges more quickly than the system states, which illustrates the validity of our 

proposed method. 

 

Figure 6. Cost between two methods 
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4.2 NONLINEAR CASE 

Now, consider the two-link planar robot arm depicted in Figure 7. 

m2

m1

g

y

x

a2

a1

q1

q2

(x2,y2)

(x1,y1)

 

Figure 7. Two-link planar robot arm 

The continuous-time dynamics of the two-link robot arm is given by [22]: 
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 (46) 

where 2

121 )( amm  , 2

22am , 212 aam , 1age  . In the simulation, the 

parameters are chosen to be kg121  mm , m121  aa  and 2m10 sg  . Hence, 

2 , 1 , 1  and 101 e . 

Define the system states as T

2121

T

4321 ],,,[],,,[ qqqqxxxx x  and the control 

inputs as T

21

T

21 ],[],[  uuu . Then the system dynamics can be written in the affine 

form as uxxx )()( gf  , where 
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Discretizing the continuous-time system with a sufficient small sampling interval

sT , then the discrete-time version of the system can be written as 

kkkk gf uxxx )()(1  , where 
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In the simulation, we choose 001.0sT , and the value function is given in the 

form of (2), with kkk k xxxQ
T),(   an identity matrix with appropriate dimension and 



119 

 

IR 005.0 . The initial states and admissible control gain are selected to be 

T]0  ,0  ,6  ,3[)0( x  and ]20 ,20 ,0 ,20 ;0 ,50 0 ,50[)0( K , and the terminal 

constraint is given as 8)( N x . 

For the NN setup, the activation function for the identifier is constructed from the 

expansion of the even polynomial  
 








2

1

2

1

M n

i

ix




, where M  is the order of approximation 

and n  is the dimension of the system. In our case, 4n  and we choose 4M , which 

results in 45 neurons. For the critic and action network, the state-dependent part of the 

time-varying activation functions is also chosen to be the expansion of the even 

polynomial with 4M  and 2M , which results in 45 and 10 neurons, respectively, 

while the time-dependent part are selected as the polynomials of time-to-go with 

saturation, i.e., }N,,)1()N(,)N(,0{ kLkLk ii   , where N  is the terminal time 

and iL  is the number of neurons. In our case, 451 L  and 102 L . Note that saturation 

for the time-dependent part of the activation function is to ensure its magnitude is within 

a reasonable range such that the parameter estimation is computable. The tuning 

parameters are chosen as 3.0 , 01.0V  and 1.0u . All the initial NN weights 

are randomly selected between ]1 ,0[ . The simulation results are shown as below. 

First, the system response, control inputs and identification errors are given in 

Figure 8 and Figure 9, respectively. It can be seen clearly from these two figures that the 

system states, control inputs and identification errors converge close to the origin in finite 

time, which shows the stability of the system and effectiveness of the NN identifier 

design. 
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Figure 8. System response and control inputs 

 

Figure 9. Identification errors 

Next, to show the feasibility of our proposed optimal control design scheme, the 

error histories are plotted in Figure 10. Similar trends as the linear case are shown from 

Figure 10 that both Bellman equation error and terminal constraint error converge close 

to zero as system evolves, which illustrates that the proposed algorithm not only achieves 

optimality but also satisfies the terminal constraint. 
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Figure 10. Error histories 

Finally, due to the large number of neurons for the critic and actor NN, the norm 

of the NN weights is shown in Figure 11. It can be clearly seen from the figure that the 

actual NN weights converge to a constant, as desired. 

 

Figure 11. Convergence of critic and actor NN weights 

 

5. CONCLUSIONS 
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identifier generates suitable control coefficient matrix such that the control input can be 

computed. Next, the actor-critic structure is utilized to approximately find the optimal 

control policy. The time-varying nature for finite-horizon optimal control problem is 

handled by using NNs with constant weights and time-varying activation functions. An 

additional error term corresponding to the terminal constraint is minimized to guarantee 

that the terminal constraint can be properly satisfied. In addition, the proposed algorithm 

is implemented by utilizing a history of cost to go errors instead of traditional iteration-

based scheme. The proposed algorithm yields an online and forward-in-time design 

scheme which enjoys great practical advantages. The convergence of the parameter 

estimation and closed-loop system are demonstrated by using Lyapunov stability theory 

under non-autonomous analysis. Simulation results verify the theoretical claim. 
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APPENDIX 

Proof of Theorem 1: First observe that 
222

m0 kkk UΘΘ  , where m  is a positive 

constant. This is ensured by the PE condition. Define the Lyapunov candidate function as 
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Recall kk ee 1  and (16), (A.1) can be further written as 
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Using Cauchy-Schwartz inequality, (A.2) can be written as 
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where M

2

14   kk  due to the boundedness of the NN reconstruction error, with 
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M  a positive constant. 

Therefore, the first difference of )(ID kL  is less than zero outside of a compact set as long 

the following conditions hold  
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Proof of Theorem 2: Define the Lyapunov candidate function as 
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Notice that 1
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 and applying Cauchy-Schwartz inequality yields 
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Note that k1  is a time-dependent activation function and hence the Lyapunov candidate 

function becomes non-autonomous. Recall that the time span of interest is finite and k1  

is a smooth function, then k1  is bounded by M11m10   k . Then separating the 

term
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From (A.11), it can be seen that the non-autonomous Lyapunov candidate is upper 

bounded by a time-invariant function. Therefore, )
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( ,kVVL W  is less than zero outside of 

a compact set as long as the following condition holds: 
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Proof of Theorem 3: 

First, denote ),(ˆˆ kkk xuu  , )( kk f xf  , )( kk g xg  , )(ˆˆ
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simplicity. 

Define the Lyapunov candidate function as 
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Next, the terms in (A.13) will be considered individually. First, 
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By using Lemma 1, Cauchy-Schwartz inequality twice and recalling the bounds, (A.14) 

becomes 
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where kkk ,

T

,,

~
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Next, recalling (40) and using the bound, the first difference 
uL  can be represented as 
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Noticing that 1
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, then substituting (39) into (A.16) and using cyclic property 

of trace operator and applying norm with upper bounds, (A.16) becomes, after collecting 
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the terms, as 
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where 
1 RR . 

Next, observe that 
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Recall that similar as the critic NN, k,u  is a time-dependent activation function and 

bounded, due to the smoothness of k,u and finite time span, by M,m0 uuu   k . 

Then (A.17) becomes, after completing the squares w.r.t. k,uΞ , kV ,
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Finally, using Young’s inequality and recalling from the definition of 1  ~ 3 , we have 
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Next, consider 2
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Next, consider  
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Recalling the NN weights estimation error dynamics (16) and applying Cauchy- Swartz 

inequality, we have 
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Finally, combing all the above terms yields the first difference of the Lyapunov candidate 
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function as 
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Note that the range for u  and *k  will always guarantee 0xb  and 0Ξb . The range 

for   will guarantee 0eb  and 0~ 
W

b . The range for V  will guarantee 0~ 
V

b
W

 since

)1(3)1(40 2

M1

2
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m1   V , which will guarantee that the second term 

shown in (A.26) is positive. 

Eventually, the difference between the ideal optimal control and proposed near optimal 

control inputs is represented as 
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where Ξb  is given in (A.23). 
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IV. FIXED FINAL-TIME NEAR OPTIMAL REGULATION OF NONLINEAR 

DISCRETE-TIME SYSEMS IN AFFINE FORM USING OUTPUT FEEDBACK 

Qiming Zhao, Hao Xu and S. Jagannathan 

Abstract — In this paper, the output feedback based finite-horizon near optimal 

regulation of nonlinear affine discrete-time systems with unknown system dynamics is 

considered. First, a neural network (NN)-based Luenberger observer is proposed to 

reconstruct both the system states and the control coefficient matrix. In other words, the 

observer design relaxes the need for a separate identifier to construct the control 

coefficient matrix. Next, reinforcement learning methodology with actor-critic structure 

is utilized to approximate the time-varying solution, referred to as the value function, of 

the Hamilton-Jacobi-Bellman (HJB) equation by using a neural network (NN). To 

properly satisfy the terminal constraint, a new error term is defined and incorporated in 

the NN update law so that the terminal constraint error is also minimized over time. The 

NNs with constant weights and time-dependent activation function is employed to 

approximate the time-varying value function which subsequently is utilized to generate 

the finite horizon near optimal control policy due to NN reconstruction errors. The 

proposed scheme functions in a forward-in-time manner without offline training phase. 

Lyapunov analysis is used to investigate the stability of the overall closed-loop system. 

Simulation results are given to show the effectiveness and feasibility of the proposed 

method.  
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1. INTRODUCTION 

Optimal control has been one of the key topic areas in control for over half a 

century due to both theoretical merit and a gamut of practical applications. Traditionally, 

for infinite-horizon optimal regulation of linear systems with quadratic cost function 

(LQR), a constant solution to the algebraic Riccati equation (ARE) can be found given 

the system dynamics [1][2] which is subsequently utilized to obtain the optimal policy. 

For general nonlinear systems, the optimal solution can be obtained by solving the 

Hamilton-Jacobi-Bellman (HJB) equation, which however, is not an easy task since the 

HJB equation normally does not have an analytical solution. 

In the recent decades, with full state feedback, reinforcement learning 

methodology is widely used by many researchers to address the optimal control under the 

infinite-horizon scenario for both linear and nonlinear systems [5][6][7][8]. However, in 

many practical situations, the system state vector is difficult or expensive to measure. 

Several traditional nonlinear observers, such as high-gain or sliding mode observers, have 

been developed during the past few decades [3][4]. However, the above mentioned 

observer designs are applicable to systems which are expressed in a specific system 

structure such as Brunovisky-form, and require the system dynamics a priori.  

The optimal regulation of nonlinear systems can be addressed either for infinite or 

finite fixed time scenario. The finite-horizon optimal regulation still remains unresolved 

due to the following reasons. First, the solution to the optimal control of finite-horizon 

nonlinear system becomes essentially time-varying thus complicating the analysis, in 

contrast with the infinite-horizon case, where the solution is time-independent. In 

addition, the terminal constraint is explicitly imposed in the cost function, whereas in the 
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infinite-horizon case, the terminal constraint is normally ignored. Finally, addition of 

online approximators such as neural networks (NNs) to overcome the system dynamics 

and generating an approximate solution to the time dependent HJB equation in a forward-

in-time manner while satisfying the terminal constraint as well as proving closed-loop 

stability with the NNs are quite involved. 

The past literature [9][10][11][12] provided some insights into solving finite-

horizon optimal regulation of nonlinear system. The developed techniques functioned 

either backward-in-time [9][10] or require offline training [11][12] with iteration-based 

scheme. However, backward-in-time solution hinders the real time implementation, while 

inadequate number of iterations will lead to instability [6]. Further, the state vector is 

needed in all these techniques [9][10][11][12]. Therefore, a finite-horizon optimal 

regulation scheme, which can be implemented in an online and forward-in-time manner 

with completely unknown system dynamics and without using both state measurements 

and value and policy iterations, is yet to be developed. 

Motivated by the aforementioned deficiencies, in this paper, an extended 

Luenberger observer is first proposed to estimate the system states as well as the control 

coefficient matrix. The actor-critic architecture is utilized to generate the optimal control 

policy wherein the value function is approximated by using the critic NN and the optimal 

policy is generated by using the approximated value function and the control coefficient 

matrix.  

To handle the time-varying nature of the solution to the HJB equation or value 

function, NNs with constant weights and time-varying activation functions are utilized. In 

addition, in contrast with [11] and [12], the control policy is updated once every sampling 
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instant and hence value/policy iterations are not performed. An error term corresponding 

to the terminal constraint is defined and minimized overtime such that the terminal 

constraint can be properly satisfied. A novel update law for tuning the NN is developed 

such that the critic NN weights will be tuned not only by using Bellman error but also the 

terminal constraint errors. Finally, stability of our proposed design scheme is 

demonstrated by Lyapunov stability analysis. 

Therefore, the main contribution of the paper includes the development of a novel 

approach to solve the finite-horizon output feedback based near optimal control of 

uncertain nonlinear discrete-time systems in affine form in an online and forward-in-time 

manner without utilizing value and/or policy iterations. A novel online observer is 

introduced for generating the state vector and control coefficient matrix while an explicit 

need for an identifier is relaxed. Tuning laws for all the NNs are also derived. Lyapunov 

stability is also demonstrated. 

The rest of the paper is organized as follows. In Section 2, background and 

formulation of finite-horizon optimal control for affine nonlinear discrete-time systems 

are introduced. In Section 3 the main control design scheme along with the stability 

analysis is addressed. In Section 4, simulation results are given to verify the feasibility of 

our approach. Conclusive remarks are provided in Section 5. 

 

2. BACKGROUND AND PROBLEM FORMULATION 

Consider the following nonlinear system 

 
kk

kkkk gf

Cxy

uxxx



 )()(1
 (1) 



138 

 

where 
n

k  xx , 
m

k  uu  and 
p

k  yy  are the system states, control 

inputs and system outputs, respectively, 
n

kf )(x , 
mn

kg )(x  are smooth unknown 

nonlinear dynamics, and 
npC  is the known output matrix. It is assumed that the 

control coefficient matrix )( kg x  is bounded above such that M)(0 gg k  x , where 

Mg  is a positive constant. Before proceeding, the following assumption is needed. 

Assumption: The nonlinear system given in (1) is controllable and observable. 

Moreover, the system output yy k  is measurable. 

The objective of the optimal control design is to determine a feedback control 

policy that minimizes the following time-varying value or cost function given by 

 





1N

N ),,()(),(
ki

iik irkV uxxx   (2) 

where ]N,[k  is the time interval of interest, )( Nx  is the terminal constraint that 

penalizes the terminal state Nx , ),,( kr kk ux  is the cost-to-go function at each time step 

k  and  takes the quadratic form as kkkkkk kQ,kr uRuxux
T),(),(  , where ),( kQ kx  

is greater than or equal to zero and 
mm

k

R  is a positive definite symmetric weighting 

matrix, respectively. By setting Nk , the terminal constraint for the value function is 

given as 

 )()N,( NN xx V  (3) 

Remark 1: Generally, the terminal constraint )( Nx  is a function of state at 

terminal stage N  and not necessarily to be in quadratic form. In the case of standard 

LQR, )( Nx  takes the quadratic form as NN

T

NN )( xQxx   and the optimal control 
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policy can be obtained by solving the Riccati equation (RE) in a backward-in-time 

fashion from the terminal value NQ . 

It is also important to note that in the case of finite-horizon, the value function (2) 

becomes essentially time-varying, in contrast with the infinite-horizon case [6][7]. By 

Bellman’s principle of optimality [1][2], the optimal cost from k onwards is equal to 

  )1,(),,(min),( 1  

 kVkrkV kkkk
k

xuxx
u

 (4) 

The optimal control policy 


ku  that minimizes the value function ),( kV kx


 is 

obtained by using the stationarity condition 0),(  

kk kV ux  and revealed to be 

 
1

1T1 )1,(
)(

2

1













k

k
kk

kV
g

x

x
xRu  (5) 

From (5), it is clear that even when the full system state vector and dynamics are 

available, the optimal control cannot be obtained for the nonlinear discrete-time system 

due to the need for the future state vector 1kx . To avoid this drawback and relax the 

requirement for system dynamics, iteration-based schemes are normally utilized by using 

NNs with offline-training. 

However, iteration-based schemes are not preferred for hardware implementation 

since the number of iterations to ensure the stability cannot be easily determined [6]. 

Moreover, the iterative approaches cannot be implemented when the dynamics of the 

system are completely unknown, since at least the control coefficient matrix )( kg x  is 

required to generate the control policy [7]. Finally, optimal policy needs to be found even 

when the states are unavailable.  Therefore, in this work, a solution is found with 

unavailable system states and completely unknown system dynamics without utilizing the 

iterative approach, as given in the next section. 
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3. FINITE-HORIZON NEAR OPTIMAL REGULATOR DESIGN WITH OUTPUT 

FEEDBACK 

In this section, the output feedback-based finite-horizon near optimal regulation 

scheme for nonlinear discrete-time systems in affine form with completely unknown 

system dynamics is addressed. First, due to the unavailability of the system states and 

uncertain system dynamics, an extended version of Luenberger observer is proposed to 

reconstruct both the system states and control coefficient matrix in an online manner. 

Thus the proposed observer design relaxes the need for an explicit identifier. Next, the 

reinforcement learning methodology is utilized to approximate the time-varying value 

function with actor-critic structure, while both NNs are represented by constant weights 

and time-varying activation functions. In addition, an error term corresponding to the 

terminal constraint is defined and minimized overtime so that the terminal constraint can 

be properly satisfied. The stability of the closed-loop system is demonstrated, by 

Lyapunov theory to show that the parameter estimation remains bounded as the system 

evolves. 

 

3.1 NN-OBSERVER DESIGN 

The system dynamics (1) can be reformulated as 

 
kk

kkkkk gF

Cxy

uxxAxx



 )()(1
 (6) 

where A  is a Hurwitz matrix such that ),( CA  is observable and kkk fF Axxx  )()( . 

A NN has been proven to be an effective method in the estimation and control of 

nonlinear systems due to its online learning capability [16]. According to the universal 
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approximation property [19], the system states can be represented by using NN on a 

compact set   as 
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where nL

g

F 









W

W
W , 

)1(

)(

)(
)( mL

kg

kF

k











x0

0x
x




 , )1(

1
m

k

k











u
u  and 

n

kgkFkk  uεεε ][ , with L  being the number of hidden neurons. In addition, the 

target NN weights, activation function and reconstruction error are assumed to be upper 

bounded by MWW , M)(  kx  and Mkε , where MW , M  and M  are 

positive constants. Then, the system states kkkkk gF uxxAxx )()(1   can be 

identified by updating the target NN weight matrix W . 

Since the true system states are unavailable for the controller, we propose the 

following extended Luenberger observer described by 

 

kk

kkkkkkk

xCy

xCyLuxWxAx

ˆˆ

)ˆ()ˆ(ˆˆˆ T

1



 
 (8) 

where 1
ˆ

kW  is the estimated value of the target NN weights W , kx̂  is the reconstructed 

system state vector, kŷ  is the estimated output vector and 
pnL  is the observer gain 

selected by the designer, respectively. 
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Now express the state estimation error as 

 

Okkkkkc

kkkkkkkkc

kkkkkkkkkk

kkk

εuxWxA

εuxxWuxWxA

xCyLuxWxAεuxWAx

xxx













)ˆ(
~~

)ˆ,(~)ˆ(
~~

))ˆ()ˆ(ˆˆ()(

ˆ~    

T

TT

T

1

T

111






 (9) 

where LCAA c  is the closed-loop matrix, kk WWW ˆ~
  is the NN weights 

estimation error, )ˆ()()ˆ,(~
kkkk xxxx    and kkkkOk εuxxWε  )ˆ,(~T  are bounded 

terms due to the bounded values of ideal NN weights, activation functions and 

reconstruction errors. 

Remark 2: It should be noted that the proposed observer (8) has two essential 

purposes. First, the observer presented in (8) generates the reconstructed system states for 

the controller design. Second, the structure of the observer is novel in that it also 

generates the control coefficient matrix )( kg x , which will be viewed as a NN-based 

identifier. Thus, the NN-based observer (8) can be viewed both as a standard observer 

and an identifier whose estimate of the control coefficient matrix )( kg x , is utilized in the 

near optimal control design shown in the next section. 

Now select the tuning law for the NN weights as 

 
TT

1II1
~)ˆ(ˆ)1(ˆ lyuxWW   kkkkk   (10) 

where I , I  are the tuning parameters, 111
ˆ~

  kkk yyy  is the output error and 

pnl  is selected to match the dimension. 

Hence, the NN weight estimation error dynamics, by recalling from (9), are 

revealed to be 
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Next, the boundedness of the NN weights estimation error kW
~

 will be 

demonstrated in Theorem 1. Before proceeding, the following definition is required. 

Definition 1 [19]: An equilibrium point ex  is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set 
n x  so that for all initial state xx 0 , 

there exists a bound B  and a time ),( 0xBT  such that Bek  xx  for all Tkk  0 . 

Theorem 1 (Boundedness of the observer error): Let the nonlinear system (1) be 

controllable and observable while the system output, yy k , be measurable. Let the 

initial NN observer weights kŴ  are selected within compact set OB  which contains the 

ideal weights W . Given an initial admissible control input uu 0  and let the proposed 

observer be given as in (8) and the update law for tuning the NN weights be given by (10). 

Let the control signal be persistently exciting (PE). Then, there exist positive constants 

I  and I  satisfying 1
2

22
I 


  and 

1)ˆ(

)()1(2
0

2

minI

I






kk ux

lC




 , with min  denoting 

the minimum eigenvalue, such that the observer error kx~  and the NN weights estimation 

errors kW
~

 are all UUB, with the bounds given by (A.6) and (A.7). 

Proof: See Appendix. 
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3.2 REINFORCEMENT LEARNING BASED NEAR OPTIMAL 

CONTROLLER DESIGN 

In this subsection, we present the finite-horizon near optimal regulator which 

requires neither the system states nor the system dynamics. The reason we consider this 

design being near optimal rather than optimal is due to the observer NN reconstruction 

errors.  Based on the observer design proposed in Section 3.1, the feedback signal for the 

controller only requires the reconstructed state vector kx̂  generated by the observer and 

the control coefficient matrix. To overcome the drawback of dependency on the future 

value of system states (5) as stated in Section 2, reinforcement learning-based 

methodology with an actor-critic structure is adopted to approximate the value function 

and control inputs individually.  

The value function is obtained approximately by using the temporal difference 

error while the optimal control policy is generated by minimizing this value function. The 

time-varying nature of the value function and control inputs are handled by utilizing NNs 

with constant weights and time-varying activation functions. In addition, the terminal 

constraint in the cost function can be properly satisfied by defining and minimizing a new 

error term corresponding to the terminal constraint )( Nx  overtime. As a result, the 

proposed algorithm performs in an online and forward-in-time manner which enjoys 

great practical benefits. 

According to the universal approximation property of NNs [19] and actor-critic 

methodology, the value function and control inputs can be represented by a “critic” NN 

and an “actor” NN, respectively, as 

 ),(),(),( T kkkV kVkVVk xxWx    (12) 
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and 

 ),(),(),( T kkk kkk xxWxu uuu    (13) 

where VL

V W  and 
mL 

 u

uW  are the constant target NN weights, with VL  and uL  

the number of hidden neurons, VL

kV k ),(x and uxu

L

k k ),(  are the time-varying 

activation functions, ),( kkV x  and ),( kkxu  are the NN reconstruction errors for the 

critic and action network, respectively. Under standard assumption, the target NN 

weights are considered bounded above such that MVV WW  and MuuW W , 

respectively, where both MVW  and MuW  are positive constants [19].  

The NN activation functions and the reconstruction errors are also assumed to be 

bounded above such that M),( VkV k  x , M),( uu x  kk , M),( VkV k  x  and 

M),( uu x  kk , with MV , Mu , MV  and Mu  all positive constants [19]. In addition, in 

this work, the gradient of the reconstruction error is also assumed to be bounded above 

such as '

M1, VkkV   x , with 
'

MV  a positive constant [7][15]. The terminal constraint 

of the value function is defined, similar to (17), as 

 )N,()N,()N,( NN

T

N xxWx VVVV    (14) 

with )N,( NxV  and )N,( NxV  represent the activation and construction error 

corresponding to the terminal state Nx . 

Remark 3: The fundamental difference between this work and [11] is that our 

proposed scheme yields a completely forward-in-time and online solution without using 

value/policy iteration and offline training, whereas the scheme proposed in [11] is 
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essentially an iteration-based DHDP scheme and NN weights are trained offline. In 

addition, state availability is relaxed in this work. 

3.2.1 Value Function Approximation.  According to (17), the time-varying 

value function ),( kV kx  can be approximated by using a NN as 

 ),ˆ(ˆ),ˆ(ˆ T kkV kVVkk xWx   (15) 

where ),ˆ(ˆ kV kx  represents the approximated value function at time step k . VkŴ  and 

),ˆ( kkV x  are the estimated critic NN weights and “reconstructed” activation function 

with the estimated states vector kx̂  as the inputs. 

The value function at the terminal stage can be represented by 

 )N,ˆ(ˆ)N,(ˆ
N

T

,N xWx VkVV   (16) 

where Nx̂  is an estimation of the terminal state. It should be noted that since the true 

value of Nx  is not known, Nx̂ can be considered to be an “estimate” of Nx  and can be 

chosen randomly as long as Nx̂  lies within a region for a stabilizing control policy 

[8][11]. 

To ensure optimality, the Bellman equation should hold along the system 

trajectory. According to the principle of optimality, the true Bellman equation is given by 

 0),()1,()(),( 1

T  



 kVkVkQ kkkkk xxRuux  (17) 

However, (22) no longer holds when the reconstructed system state vector kx̂  and 

NN approximation are considered. Therefore, with estimated values, the Bellman 

equation (22) becomes 
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where ke ,BO  is the Bellman equation residual error along the system trajectory, and 

)1,ˆ(),ˆ(),ˆ( 1   kkk kVkVkV xxx  . 

Next, using (21), define an additional error term corresponding to the  terminal 

constraint as 

 )N,ˆ(ˆ)( N

T

,N,N xWx VkVke    (19) 

The objective of the optimal control design is thus to minimize the Bellman 

equation residual error ke ,BO  as well as the terminal constraint error ke ,N , so that the 

optimality can be achieved and the terminal constraint can be properly satisfied. Next, 

based on gradient descent approach, the update law for critic NN can be defined as 
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where V  is a design parameter. 

Now define VkVVk WWW ˆ~
 . The standard Bellman equation (22) can be 

expressed by NN representation as 

 ),(),()(),(0 TT kkkQ kVkVVkkk xxWRuux     (21) 

where )1,(),(),( 1   kkk kVkVkV xxx  and )1,(),(),( 1   kkk kVkVkV xxx  . 

Subtracting (23) from (21), ke ,BO  can be further derived as 
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where mL  is a positive Lipschitz constant for 
 kkkkkk kQkQ RuuxRuux

TT )(),(),ˆ(  

due to the quadratic form in both system states and control inputs. In addition,  

),ˆ(),(),ˆ,(~ kkk kVkVkkV xxxx    and ),(),ˆ,(~),( T kkk kVkkVVkVB xxxWx  

are all bounded terms due to the boundedness of ideal NN weights, activation functions 

and reconstruction errors. 

Recalling from (14), the terminal constraint error ke ,N  can be further expressed as 
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where )N,ˆ()N,()N,ˆ,(~
NNNN xxxx VVV    and )N,()N,ˆ,(~

NNN

T

N xxxW VVVV    

are bounded due to bounded ideal NN weights, activation function and reconstruction 

errors. 

Finally, the error dynamics for critic NN weights are revealed to be 
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Next, the boundedness of the critic NN weights will be demonstrated, as shown in 

the following theorem. Before proceeding, the following definition is needed. 

Definition 2 [8]: Let u  denote the set of admissible control. A control function 

mn :u  is defined to be admissible if the following is true: 

u  is continuous on 
u ; 

0)(
0


x
xu ; 

)(xu  stabilize the system (1) on x ; 

xxux  )0(,)),0((J . 

Since the design scheme is similar to policy iteration, we need to solve a fixed-

point equation rather than recursive equation. The initial admissible control guarantees 

the solution of the fixed-potion equation exists, thus the approximation process can be 

effectively done by our proposed scheme. 

Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1) 

be controllable and observable while the system output, yy k , be measurable. Let the 

initial critic NN weights VkŴ  are selected within compact set V  which contains the 

ideal weights VW . Let uu )0(  be an initial admissible control input for the system (1). 

Let the value function be approximated by a critic NN and the tuning law be given by 

(26). Then, under the assumptions stated in this paper, there exists a positive constant V  

satisfying 
6

1
0  V  such that the critic NN weights estimation error VkW

~
 is UUB with 

a computable bound 
V

b
W
~  given in (A.16). 

Proof: See Appendix. 
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3.2.2 Control Input Approximation.  In this subsection, the near optimal 

control policy is obtained such that the estimated value function (15) is minimized. 

Recalling (18), the estimation of the control inputs by using NN can be represented as 

 ),ˆ(ˆ),ˆ(ˆ T kk kkk xWxu uu   (25) 

where ),ˆ(ˆ kkxu  represents the approximated control input vector at time step k , kuŴ  and 

),ˆ( kkxu  are the estimated values of the actor NN weights and “reconstructed” 

activation function with the estimated state vector kx̂  as the input. 

Define the control input error as 

 ),ˆ(ˆ),ˆ(ˆ
1 kk kkk xuxueu   (26) 

where )1,ˆ(ˆ)ˆ(ˆ
2

1
),ˆ(ˆ

1

T1

1  

 kVgk kkk xxRxu  is the control policy that minimizes the 

approximated value function ),ˆ(ˆ kV kx ,  denotes the gradient of the estimated value 

function with respect to the system states, )ˆ(ˆ
kg x  is the approximated control coefficient 

matrix generated by the NN-based observer and )1,ˆ(ˆ
1  kV kx  is the approximated value 

function from the critic network. 

Therefore, the control error (26) becomes 
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 (27) 

The actor NN weights tuning law is then defined as 
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where 0u  is a design parameter. 
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To find the error dynamics for the actor NN weights, first observe that 
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Or equivalently, 
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Subtracting (30) from (27), we have 
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  (31) 

where ),ˆ(),(),ˆ,(~ kkk kkkk xxxx uuu    and   )1,()1,ˆ,(~
1

T

11

T kk kVkkV xxx 

)1,ˆ( 1

T   kkV x . 

For simplicity, denote ),ˆ,(~~ kkkk xxuu   , )1,ˆ(ˆ
1

TT

1   kkVVk x ,

)1,ˆ,(~~
11

TT

1   kkkVVk xx , )1,( 1

TT

1   kkVVk x and )1,( 11   kkVVk x , 

then (31) can be further derived as 
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where )ˆ(ˆ)ˆ()ˆ(~
kkk ggg xxx   and  
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  is bounded due to the 

bounded ideal NN weights, activation function and reconstruction errors. Then the error 

dynamics for the actor NN weights are revealed to be 
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 (33) 

Remark 4: The update law for tuning the actor NN weights is based on gradient 

descent approach and it is similar to [7] with the difference being the estimated state 

vector kx̂ is utilized as the input to the actor NN activation function instead of actual 

system state vector kx . In addition, total error comprising of Bellman error and terminal 

constraint error are utilized to tune the weights whereas in [7], the terminal constraint is 

ignored.  Further, the optimal control scheme in this work utilizes the identified control 

coefficient matrix )ˆ(ˆ
kg x , whereas in [7], the control coefficient matrix )( kg x  is 
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assumed to be known. Due to these differences, the stability analysis differs significantly 

from [7]. 

To complete this subsection, the flowchart of our proposed finite-horizon near 

optimal regulation scheme is shown in Figure 1. 
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Figure 1. Flowchart of the proposed finite-horizon near optimal regulator 

We initialize the system with an admissible control as well as proper parameter 

selection and NN weights initialization. Then, the NNs for observer, critic and actor are 
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updated based on our proposed weights tuning laws at each sampling interval beginning 

with an initial time and until the final fixed time instant in an online and forward-in-time 

fashion. 

 

3.3 STABILITY ANALYSIS 

In this subsection, the system stability will be investigated. It will be shown that 

the overall closed-loop system remain bounded under the proposed near optimal regulator 

design. 

Theorem 3 (Boundedness of the closed-loop system) Let the nonlinear system (1) 

be controllable and observable while the system output, yy k , be measurable. Let the 

initial NN weights for the observer, critic network and actor network kŴ , kV ,Ŵ  and k,
ˆ

uW

be selected within compact set OB , V  and AN  which contains the ideal weights W , 

VW  and uW . Let uu )0(  be an initial admissible control input for the system (1). Let 

the observer be given by (8) and the NN weights update law for the observer, critic 

network and action network be provided by (10), (26)  and (28), respectively. Then, 

under the assumptions stated in this paper, there exists positive constant I , V , u , such 

that the observer error kx~ , NN observer weight estimation errors 
kW

~
, critic and action 

network weights estimation errors VkW
~

 and kuW
~

 are all UUB, with the ultimate bounds 

given by (A.20) ~ (A.23). Moreover, the estimated control input is bounded closed to the 

optimal value such that okk kk uxuxu  ),ˆ(ˆ),(  for a small positive constant ou . 

Proof: See appendix. 

 



155 

 

4. SIMULATION RESULTS 

In this section, a practical example is considered to illustrate our proposed near 

optimal regulation design scheme. Consider the Van der Pol oscillator with the dynamics 

given as 

 

1

12

2

12

21

)1(

xy

uxxxx

xx











 (34) 

The Euler method is utilized to discretize the system with a step size of ms5h . 

The weighting matrices in (2) are selected as kkk kQ xxx
T1.0),(   and 1kR , 

while 









025.00

1.05.0
A . The terminal constraint is chosen as 1)( N x . For the NN 

setup, the inputs for the NN observer is selected as ],ˆ[ kkk uxz  . The time-varying 

activation functions for both the critic and actor network are chosen as 

 2

2

2

121

2

2

2

12211
ˆ,ˆ,ˆˆ,ˆ,ˆ),exp(ˆ,ˆ),exp(ˆ,ˆ[)N,ˆ()N,ˆ( xxxxxxxxxxkk kkV  xx u  

T

2121 ]ˆˆ,ˆˆ, xxxx , which results in 10 neurons, and N)(N k  is the normalized time-to-

go. 

The design parameters are chosen as 7.0I  , 01.0I  , 1.0V , and 

03.0u . The initial system states and the observer states are selected as T

0 ]1.0,1.0[x  

and T

0 ]0,0[ˆ x , respectively. The observer gain is chosen as T.1]0  ,3.0[L  and the 

matching matrix is selected as  T1  ,1l . The observer, critic and action NN weights are 

all initialized at random. Simulation results are shown as below. 
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First, the system response is shown in Figure 2 and Figure 3. From the figures, it 

is clear that both system states and control inputs clearly converge close enough to the 

origin within finite time period, which illustrates the stability of the proposed design 

scheme. 

 

Figure 2. System response 

 

Figure 3. Control signal 
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Next, the history of observer error is plotted in Figure 4. From the figure, the 

convergence of the observer error clearly shows the feasibility of the proposed observer 

design. 

 

Figure 4. Observer error 

Next, the error history in the design procedure is given in Figure 5 and Figure 6. 

From Figure 5, the Bellman equation error converges close to zero within approximately 

5 seconds, which illustrates the fact that the optimality is indeed achieved. More 

importantly, the evolution of the terminal constraint error is shown in Figure 6. 

Convergence of the terminal constraint error demonstrates that the terminal constraint is 

also satisfied by our proposed design scheme. 
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Figure 5. History of bellman equation error 

 

Figure 6. History of terminal constraint error 

Next, the convergence of critic and actor NN weights is shown in Figure 7 and 

Figure 8, respectively. It can be observed from the results that both the weights converge 

and remain bounded, as desired. 
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Figure 7. Convergence of critic NN weights 

 

Figure 8. Convergence of actor NN weights 

Finally, the comparison of the cost with a stabilizing control and our proposed 

near optimal control scheme is given in Figure 9. It can be seen clearly from the figure 

that both the cost converge to the terminal constraint 1)( N x , while our design renders 

a lower cost when compared with the non-optimal controller design. 
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Figure 9. Comparison of the cost 

 

5. CONCLUSIONS 

In this paper, the reinforcement learning-based fixed final time near optimal 

regulator design by using output feedback for nonlinear discrete-time system in affine 

form with completely unknown system dynamics is addressed. Compared to the 

traditional finite-horizon optimal regulation design, the proposed scheme not only relaxes 

the requirement on availability of the system states and control coefficient matrix, but 

also functions in an online and forward-in-time manner instead of performing offline 

training and value/policy iteration. 

The NN-based Luenberger observer relaxes the need for an additional identifier, 

while time-dependency nature of the finite-horizon is handled by a NN structure with 

constant weights and time-varying activation function. The terminal constraint is properly 

satisfied by minimizing an additional error term along the system trajectory. All NN 

weights are tuned online by using proposed update laws and Lyapunov stability theory 

demonstrated that the approximated control inputs converges close to its optimal value as 
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time evolves. The performance of the proposed finite time near optimal regulator is 

demonstrated via simulation. 
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APPENDIX 

Proof of Theorem 1: Consider the Lyapunov function candidate as 

 
,k,k LLkL

Wx ~~IO )(   (A.1) 
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~~T
~  , }
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 , with 

LLI  the 

identity matrix and 
22

min )ˆ(0 kk ux   is ensured to exist by the PE conditions, and 

}tr{  denotes the trace operator. 

The first difference of )(IO kL  is given by 
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Next, we consider each term in (A.2) individually. First, recall from the observer error 

dynamics (9), we have 
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where 
2

3 cA . 

Next, recall the NN weight estimation error dynamics (11), we have 
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Therefore, the first difference of the total Lyapunov candidate, by combining (A.3) and 

(A.4), is given as 
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where WM

2

OM 3   Okε . By standard Lyapunov stability theory, ,kLIO  is less than 

zero outside a compact set as long as the following conditions hold: 
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Note that in (A.6) the denominator is guaranteed to be positive, i.e., 
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, by properly selecting the designed parameters A , L  and l . 
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Proof of Theorem 2: First, for simplicity, denote ),ˆ(ˆ kkVVk x  , 

),( kkVBVBk x   and )N,ˆ(ˆ
NN xVV   . Consider the following Lyapunov candidate 
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Recall from (22) and (23), the first difference of )
~

( VkL W  can be further derived as 
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where 
VkVk

V
VV

VkVk

VBk
VVV











ˆˆ1
)21(

ˆˆ1
)31(

T

2

N

T

2

TM






 . 

Next, consider )~( kL x . Recall (A.3) and apply Cauchy-Schwartz inequality, the first 

difference of )~( kL x  is given by 
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Next, take )
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where 
2

IminI )ˆ()()1(2 kk uxlC   . 

Therefore, combining (A.11) and (A.12) yields 
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where 2
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Finally, combining (A.10) and (A.13) yields the first difference of total Lyapunov 

candidate as 

 

1

4
24

I

4442

2

min

2

2

min

2

min
2

2

min

2

min

~

~
))1(81(

~
)ˆ(4~

ˆ1

)31(
   

~

ˆ1

ˆ
)21(

~

ˆ1

ˆ

2

)61(

)
~

()~()
~

()(































kkkkkm
VV

VkVVVk
VV

kkVk

L

LLLkL
V

WWuxx

WW

WxW
W

(A.14) 

where 4TM1   V . By using standard Lyapunov stability analysis, L  is less than 

zero outside a compact set as long as the following conditions hold: 
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Proof of Theorem 3: Consider the following Lyapunov candidate as 
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Combine (A.5), (A.14) and (A.19) to obtain the first difference of the total Lyapunov 
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where M1OMCLM Tε  . 

By using standard Lyapunov stability analysis, L  is less than zero outside a compact set 

as long as the following conditions hold: 
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Eventually, the difference between the ideal optimal control and proposed near optimal 

control inputs is represented as 
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where l  is the Lipschitz constant of )(u , and 
uW

~b , x~b  are given in (A.23) and (A.20). 
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V. FINITE-HORIZON NEAR OPTIMAL CONTROL OF QUANTIZED 

NONLINEAR DISCRETE-TIME SYSTEMS WITH INPUT CONSTRAINT 

USING NEURAL NETWORKS 

Qiming Zhao, Hao Xu and S. Jagannathan 

Abstract — In this work, the output feedback based finite-horizon near optimal regulation 

of uncertain quantized affine nonlinear discrete-time systems with control constraint is 

considered. First, the effect of control constraint is handled by a nonquadratic cost 

functional. Next, a neural network (NN)-based Luenberger observer is proposed to 

reconstruct both the system states and the control coefficient matrix so that a separate 

identifier is not needed. Then, approximate dynamic programming methodology with 

actor-critic structure is utilized to approximate the time-varying solution of the 

Hamilton-Jacobi-Bellman (HJB) by using NNs with constant weights and time-dependent 

activation functions. A new error term is defined and incorporated in the NN update law 

so that the terminal constraint error is also minimized over time. Finally, a novel 

dynamic quantizer for the control inputs with adaptive step-size is designed to eliminate 

the quantization error overtime thus overcoming the drawback of the traditional uniform 

quantizer. The proposed scheme functions in a forward-in-time manner without offline 

training phase. Lyapunov analysis is used to investigate the stability of the overall 

closed-loop system. Simulation results are given to show the effectiveness and feasibility 

of the proposed method.  
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1. INTRODUCTION 

Actuator saturation is very common in practical control system applications due 

to physical limitations imposed on the controller and the plant. Control of systems with 

saturating actuators has been one of the focuses of many researchers for many years 

[1][2]. However, most of these approaches considered only stabilization whereas 

optimality is not considered. To address optimal control problem with input constraint, 

the author in [6] presented a general framework for the design of optimal control laws 

based on dynamic programing. It has been shown in [6] that the use of a non-quadratic 

functional can effectively tackle the input constraint while achieving optimality. 

On the other hand, under practical applications, the interface between the plant 

and the controller is often connected via analog to digital (A/D) and digital to analog 

(D/A) devices which quantize the signals. As a result, the design of control systems with 

quantization effect has attracted a great deal of attention to the control researchers since 

quantization process is unavoidable in the computer-based control systems. However, 

quantization error never vanishes when the signals are processed by a traditional uniform 

quantizer [7]. In addition, in many practical situations, the system state vector is difficult 

or expensive to measure. Several traditional nonlinear observers, such as high-gain or 

sliding mode observers, have been developed during the past few decades [12][11]. 

However, the above mentioned observer designs [12][11] are applicable to systems which 

are expressed in a specific system structure such as Brunovisky-form, and require the 

system dynamics a priori. 

On the other hand, the optimal regulation of nonlinear systems can be addressed 

either for infinite or finite fixed time scenario. The finite-horizon optimal regulation still 
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remains unresolved due to the following reasons. First, the solution to the optimal control 

of finite-horizon nonlinear system becomes essentially time-varying thus complicating 

the analysis, in contrast with the infinite-horizon case, where the solution is time-

independent. In addition, the terminal constraint is explicitly imposed in the cost 

function, whereas in the infinite-horizon case, the terminal constraint is normally ignored. 

The past literature [16][17][18][19] provided some insights into solving finite-

horizon optimal regulation of nonlinear system. However, the developed techniques 

functioned either backward-in-time [16][17] or require offline training [18][19] with 

iteration-based scheme which are not suitable for real-time implementation. Further, all 

the existing literature [16][17][18][19] considered only state feedback case without 

quantization effect. Therefore, the input-constraint finite-horizon optimal regulation 

scheme for nonlinear quantized systems, which can be implemented in an online and 

forward-in-time manner with completely unknown system dynamics and without using 

both state measurements and value and policy iterations, is yet to be developed. 

Motivated by the aforementioned deficiencies, in this paper, an extended 

Luenberger observer is first proposed to estimate the system states as well as the control 

coefficient matrix. The actor-critic architecture is then utilized to generate the near 

optimal control policy wherein the value function is approximated by using the critic NN 

and the optimal policy is generated by using the approximated value function and the 

control coefficient matrix provided an initial admissible control is chosen. Finally, a 

novel dynamic quantizer is proposed to mitigate the effect of quantization error for the 

control inputs. Due to the presence of observer errors, the control policy will be near 

optimal. 
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To handle the time-varying nature of the solution to the HJB equation or value 

function, NNs with constant weights and time-varying activation functions are utilized. In 

addition, in contrast with [18] and [19], the control policy is updated once every sampling 

instant and hence value/policy iterations are not performed. An error term corresponding 

to the terminal constraint is defined and minimized overtime such that the terminal 

constraint can be properly satisfied. A novel update law for tuning the NN is developed 

such that the critic NN weights will be tuned not only by using Bellman error but also the 

terminal constraint errors. Finally, stability of our proposed design scheme is 

demonstrated by using Lyapunov stability analysis. 

Therefore, the main contribution of the paper includes the development of a novel 

approach to solve the finite-horizon output feedback based near optimal control of 

uncertain quantized nonlinear discrete-time systems in affine form in an online and 

forward-in-time manner without utilizing value and/or policy iterations. A novel dynamic 

quantizer as well as an online observer is introduced for eliminating the quantization 

error and generating the state vector and control coefficient matrix so that an explicit 

need for an identifier is relaxed, Tuning laws for all the NNs are also derived. Lyapunov 

stability is also demonstrated. 

The remainder of this paper is organized as follows. In section 2, background and 

formulation of finite-horizon optimal control problem for nonlinear quantized systems are 

given. Section 3 presents the main algorithm developed for the finite-horizon problem. In 

Section 4, simulation results are shown to verify the feasibility of proposed method. 

Conclusions are provided in section 5. 
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2. PROBLEM FORMULATION 

In this paper, the finite-horizon optimal control of general affine quantized 

nonlinear discrete-time system is studied. Consider the system of the form 
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qkkkk gf

Cxy

uxxx



 )()(1
 (1) 

where 
n

k  xx  and 
p

k  yy  are the system states and outputs, respectively. 

m

kdqk q  uuu )(  is the quantized control input vector, where )(dq  is the 

dynamic quantizer defined later, m

k Uu , where :),,,({ 21

m

muuu  uU  

},,2,1, mibua iii   is the saturated control with ia  and ib  being  the constant 

bounds [5], nn

kf :)(x , mnn

kg :)(x  are unknown nonlinear dynamics and 

npC  is the known output matrix. In addition, the input matrix )( kg x  is considered 

to be bounded such that M)(0 gg k  x , where Mg  is a positive constant. The general 

structure of the quantized nonlinear discrete-time system considered in this paper is 

illustrated in Figure 1. 
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Figure 1. Block diagram of the quantized system with input saturation 
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It is important to note that digital communication network is usually used to 

connect sensor, controller and actuator in practical scenario [13]. Due to limited 

communication bandwidth, system states and control inputs should be quantized before 

transmission [23]. In our previous work [24], state quantization has been considered. 

Therefore, control input quantization is considered here. 

Assumption 1: The nonlinear system given in (1) is controllable and observable. 

Moreover, the system output, yy k , is measurable. 

The objective of the control design is to determine a feedback control policy that 

minimizes the following time-varying cost function 

 





1N

N ))(),(()(),(
ki

iik WikV uxQxx   (2) 

which is subjected to the system dynamics (1), ]N,[k  is the time interval of interest, 

)( Nx  is the terminal constraint that penalizes the terminal state xx N , ),( kkxQ  

is positive semi-definite function and )( kW u  is positive definite. It should be noted 

that in the finite-horizon scenario, the control inputs can be time-varying, i.e., 

uxu  ),( kkk  .  

Setting Nk , the terminal constraint for the value function is given as 

 )()N,( NN xx V  (3) 

For unconstrained control inputs, )( kW u  is generally taking the form 

kkkW Ruuu
T)(  , with 

mmR  a positive definite and symmetric weighting matrix. 

However, in this paper, to confront the actuator saturation, we employ a non-quadratic 

functional [6] as: 
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m φφ , and )(φ  is a bounded one-to-one function that 
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is a scalar, for m

k  uu , 
m vv  and m

wmwww  ][)( 1 v . 

Moreover, it is a monotonic odd function with its first derivative bounded by a 

constant U . An example is the hyperbolic tangent function )tanh()( φ . Note that 

)( kW u  is positive definite since )(1
uφ

  is monotonic odd and R  is positive definite. 

By Bellman’s principle of optimality [3][4], the optimal value function should 

satisfy the following HJB equation 
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The optimal control policy uu k  that minimizes the value function ),( kV kx


 

is revealed to be 
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It is clear from (8) that the optimal control policy cannot be obtained for the 

nonlinear discrete-time system even with available system state vector due to the 

dependency on the future state vector xx 1k . To avoid this drawback and relax the 

requirement for system dynamics, iteration-based schemes are normally utilized by using 

NNs with offline-training [15]. However, iteration-based schemes are not preferable for 

hardware implementation since the number of iterations to ensure the stability cannot be 

easily determined [13]. Moreover, the iterative approaches cannot be implemented when 

the dynamics of the system are completely unknown, since at least the control coefficient 

matrix )( kg x  is required to generate the control policy [14]. Therefore, in this work, a 

solution is found with unavailable system states and completely unknown system 

dynamics without utilizing the iterative approach and in the presence of quantization 

effect, as will be given in the next section. 

Finally, to take into account the quantization effect on the control inputs, consider 

the uniform quantizer with finite number of bits shown in Figure 2. Let z  be the signal to 

be quantized and M  be the quantization range for the quantizer. If z  does not belong to 

the quantization range, the quantizer saturates. Let e  be the quantization error, it is 

assumed that the following two conditions hold [10]: 

 
2M)(         thenM,     if 2.

2)(         thenM,     if 1.





zqz

zzqez
 (9) 

where   21)(  zzq  is a nonlinear mapping that represents a general uniform 

quantizer representation with the step-size   defined as R2M with R  being the 

number of bits of the quantizer. 
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Figure 2. Ideal and realistic quantizer 

In addition, theoretically, when the number of bits of the quantizer approaches 

infinity the quantization error will reduce to zero and hence infinite precision of the 

quantizer can be achieved. In the realistic scenario, however, both the quantization range 

and the number of bits cannot be arbitrarily large. To circumvent these drawbacks, a 

dynamic quantizer scheme is proposed in this paper in the form similar to [10] as 

   zqzqz dq  )(  (10) 

where   is a scaling factor. 

 

3. FINITE-HORIZON NEAR OPTIMAL REGULATOR DESIGN USING 

OUTPUT FEEDBACK WITH CONTROL CONSTRAINT 

In this section, the output feedback-based finite-horizon near optimal regulation 

scheme for uncertain quantized nonlinear discrete-time systems with input constraint is 

addressed. First, due to the unavailability of the system states and uncertain system 



181 

 

dynamics, an extended version of Luenberger observer is proposed to reconstruct both 

the system states and control coefficient matrix in an online manner.  

Thus the proposed observer design relaxes the need for an explicit identifier. 

Next, the approximate dynamic programming methodology is utilized to approximate the 

time-varying value function with actor-critic structure, while both NNs are represented by 

constant weights and time-varying activation functions. Furthermore, an error term 

corresponding to the terminal constraint is defined and minimized overtime so that the 

terminal constraint can be properly satisfied. Finally, a novel dynamic quantizer is 

proposed to reduce the quantization error overtime. The stability of the closed-loop 

system is demonstrated by Lyapunov theory to show that the parameter estimation 

remains bounded as the system evolves provided an initial admissible control input is 

chosen. 

 

3.1 OBSERVER DESIGN 

The system dynamics (1) can be reformulated as 

 

kk

qkkkkk gF

Cxy

uxxAxx



 )()(1

 (11) 

where A  is a Hurwitz matrix such that ),( CA  is observable and kkk fF Axxx  )()( . 

A NN has been proven to be an effective method in the estimation and control of 

nonlinear systems due to its online learning capability [21]. According to the universal 

approximation property [22], the system states can be represented by using NN on a 

compact set   as 
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u
u  and 

n

qkgkFkk  uεεε ][ , with L  being the number of hidden neurons. In addition, the 

target NN weights, activation function and reconstruction error are assumed to be upper 

bounded by MWW , M)(  kx  and Mkε , where MW , M  and M  are positive 

constants. Then, the system states qkkkkk gF uxxAxx )()(1   can be identified by 

updating the target NN weight matrix W . 

Since the true system states are unavailable for the controller, we propose the 

following extended Luenberger observer described by 
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 (13) 

where kŴ  is the estimated value of the target NN weights W , kx̂  is the reconstructed 

system state vector, kŷ  is the estimated output vector and 
pnL  is the observer gain 

selected by the designer, respectively. Then the state estimation error can be express as 

 

Okqkkkkc

kqkkkqkkkkc

kkqkkkkkqkkk

kkk

εuxWxA

εuxxWuxWxA

xCyLuxWxAεuxWAx

xxx













)ˆ(
~~

)ˆ,(~)ˆ(
~~

))ˆ()ˆ(ˆˆ()(

ˆ~    

T

TT

T

1

T

111






 (14) 



183 

 

where LCAA c  is the closed-loop matrix, kk WWW ˆ~
  is the NN weights 

estimation error, )ˆ()()ˆ,(~
kkkk xxxx    and kqkkkOk εuxxWε  )ˆ,(~T  are bounded 

terms due to the bounded values of ideal NN weights, activation functions and 

reconstruction errors. 

Remark 1: It should be noted that the proposed observer (13) has two essential 

purposes. First, the observer presented in (13) generates the reconstructed system states 

for the controller design. Second, the structure of the observer is novel in that it also 

generates the control coefficient matrix )( kg x , which will be viewed as a NN-based 

identifier. Thus, the NN-based observer (13) can be viewed both as a standard observer 

and an identifier whose estimate of the control coefficient matrix )( kg x , is utilized in the 

near optimal control design shown in the next section. 

Now select the tuning law for the NN weights as 

 
TT

1II1
~)ˆ(ˆ)1(ˆ lyuxWW   kqkkkk   (15) 

where I , I  are the tuning parameters, 111
ˆ~

  kkk yyy  is the output error and 

pnl  is selected to match the dimension. 

Hence, the NN weight estimation error dynamics, by recalling from (14), are 

revealed to be 
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Next, the boundedness of the NN weights estimation error kW
~

 will be 

demonstrated in Theorem 1. Before proceeding, the following definitions are required. 

Definition 1 [22]: An equilibrium point ex  is said to be uniformly ultimately 

bounded (UUB) if there exists a compact set 
n x  so that for all initial state xx 0 , 

there exists a bound B  and a time ),( 0xBT  such that Bek  xx  for all Tkk  0 . 

Definition 2 [15]: Let u  denote the set of admissible control. A control function 

mn :u  is defined to be admissible if the following is true: 

u  is continuous on u ; 

0)(
0


x
xu ; 

)(xu  stabilize the system (1) on x ; 

xxux  )0(,)),0((J . 

Since the design scheme is similar to policy iteration, we need to solve a fixed-

point equation rather than recursive equation. The initial admissible control guarantees 

the solution of the fixed-potion equation exists, thus the approximation process can be 

effectively done by our proposed scheme. 

Theorem 1 (Boundedness of the observer error): Let the nonlinear system (1) be 

controllable and observable while the system output, yy k , be measurable. Let the 

initial NN observer weights kŴ  be selected within compact set OB  which contains the 

ideal weights W . Given the admissible control input, uu )0(  and let the proposed 

observer be given as in (13) and the update law for tuning the NN weights be given by 

(15). Let the control signal be persistently exciting (PE). Then, there exist positive 
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constants I  and I  satisfying 1
2

22
I 


  and 

1)ˆ(

)()1(2
0

2

minI

I






qkk ux

lC




 , with min  

denoting the minimum eigenvalue, such that the observer error kx~  and the NN weights 

estimation errors kW
~

 are all UUB, with the bounds given by (A.6) and (A.7). 

Proof: See Appendix. 

 

3.2 ADP BASED NEAR OPTIAML REGULATOR DESIGN 

According to the universal approximation property of NNs [22] and actor-critic 

methodology, the value function and control inputs can be represented by a “critic” NN 

and an “actor” NN, respectively, as 

 ),(),(),( T kkkV kVkVVk xxWx    (17) 

and 

 ),(),(),( T kkk kkk xxWxu uuu    (18) 

where VL

V W  and mL 
 u

uW  are the constant target NN weights, with VL  and uL  

the number of hidden neurons, VL

kV k ),(x and uxu

L

k k ),(  are the time-varying 

activation functions, ),( kkV x  and ),( kkxu  are the NN reconstruction errors for the 

critic and action network, respectively. Under standard assumption, the target NN 

weights are considered bounded above such that MVV WW  and MuuW W , 

respectively, where both MVW  and MuW  are positive constants [22].  

The NN activation functions and the reconstruction errors are also assumed to be 

bounded above such that M),( VkV k  x , M),( uu x  kk , M),( VkV k  x  and 
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M),( uu x  kk , with MV , Mu , MV  and Mu  all positive constants [22].  In addition, in 

this work, the gradient of the reconstruction error is also assumed to be bounded above 

such as '

M1, VkkV   x , with 
'

MV  a positive constant [14]. The terminal constraint of 

the value function is defined, similar to (18), as 

 )N,()N,()N,( NN

T

N xxWx VVVV    (19) 

with )N,( NxV  and )N,( NxV  represent the activation and construction error 

corresponding to the terminal state Nx . 

3.2.1 Value Function Approximation.  According to (17), the time-varying 

value function ),( kV kx  can be approximated by using a NN as 

 ),ˆ(ˆ),ˆ(ˆ T kkV kVVkk xWx   (20) 

where ),ˆ(ˆ kV kx  represents the approximated value function at time step k . VkŴ  and 

),ˆ( kkV x  are the estimated critic NN weights and “reconstructed” activation function 

with the estimated states vector kx̂  as the inputs. 

The value function at the terminal stage can be represented by 

 )N,ˆ(ˆ)N,(ˆ
N

T

N xWx VVkV   (21) 

where Nx̂  is an estimation of the terminal state. It should be noted that since the true 

value of Nx  is not known, Nx̂  can be considered to be an “estimate” of Nx  and can be 

chosen randomly as long as Nx̂  lies within a region for a stabilizing control policy 

[15][18]. 

To ensure optimality, the Bellman equation should hold along the system 

trajectory. According to the principle of optimality, the true Bellman equation is given by 
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 0),()1,()(),( 1  



 kVkVWk kkkk xxuxQ  (22) 

However, (22) no longer holds when the reconstructed system state vector kx̂  and 

NN approximation are considered. Therefore, with estimated values, the Bellman 

equation (22) becomes 
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 (23) 

where 
ke ,B

 is the Bellman equation residual error along the system trajectory, and 

)1,ˆ(),ˆ(),ˆ( 1   kkk kVkVkV xxx  . 

Next, using (21), define an additional error term corresponding to the  terminal 

constraint as 

 )N,ˆ(ˆ)( N

T

N,N xWx VVkke    (24) 

The objective of the optimal control design is thus to minimize the Bellman 

equation residual error ke ,B  as well as the terminal constraint error ke ,N , so that the 

optimality can be achieved and the terminal constraint can be properly satisfied. Next, 

based on gradient descent approach, the update law for critic NN can be defined as 
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 (25) 

where V  is a design parameter, )1,ˆ(' 1  kkV x  is the gradient of )1,ˆ( 1  kkV x  and 

VL

l B  is a constant vector. 
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Now define VkVVk WWW ˆ~
 . The standard Bellman equation (22) can be 

expressed by NN representation as 

 ),(),()(),(0 T kkWk kVkVVkk xxWuxQ     (26) 

where )1,(),(),( 1   kkk kVkVkV xxx  and )1,(),(),( 1   kkk kVkVkV xxx  . 

Subtracting (23) from (26), ke ,B  can be further derived as 
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(27) 

where QL  is a positive Lipschitz constant for ),( kQ  due to the selected quadratic form 

in system states and 
V

L  is a positive Lipschitz constant for ),( kV  . In addition, 

),ˆ(),(),ˆ,(~ kkk kVkVkkV xxxx    and ),(),ˆ,(~),( T kkk kVkkVVkVB xxxWx    

are all bounded terms due to the boundedness of ideal NN weights, activation functions 

and reconstruction errors. 
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Recalling from (19), the terminal constraint error ke ,N  can be further expressed as 
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where )N,ˆ()N,()N,ˆ,(~
NNNN xxxx VVV    and )N,()N,ˆ,(~

NNN

T

N xxxW VVVV    

are bounded due to the bounded ideal NN weights, activation function and reconstruction 

errors. 

Finally, the error dynamics for critic NN weights are revealed to be 
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 (29) 

Next, the boundedness of the critic NN weights will be demonstrated, as shown in 

the following theorem. 

Theorem 2 (Boundedness of the critic NN weights): Let the nonlinear system (1) 

be controllable and observable while the system output, yy k , be measurable. Let the 

initial critic NN weights VkŴ  be selected within compact set V  which contains the ideal 

weights VW . Let uu )0(  be an initial admissible control input for the system (1). Let 

the value function be approximated by a critic NN and the tuning law be given by (25). 

Then, under the assumption stated in this paper, there exists a positive constant V  
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satisfying 610  V  such that the critic NN weights estimation error VkW
~

 is UUB with 

a computable bound 
V

b
W
~  given in (A.16). 

Proof: See Appendix. 

3.2.2 Control Input Approximation.  In this subsection, the near optimal 

control policy is obtained such that the estimated value function (20) is minimized. 

Recalling (18), the estimation of the control inputs by using NN can be represented as 

 ),ˆ(ˆ),ˆ( T kk kkk xWxu uu   (30) 

where ),ˆ( kkxu  represents the approximated control input vector at time step k , kuŴ  and 

),ˆ( kkxu  are the estimated values of the actor NN weights and “reconstructed” 

activation function with the estimated state vector kx̂  as the input. 

Define the control input error as 

 ),ˆ(),ˆ( 1 kk kkk xuxueu   (31) 

where 
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1   is the control policy that 

minimizes the approximated value function ),ˆ(ˆ kV kx ,  denotes the gradient of the 

estimated value function with respect to the system states, )ˆ(ˆ
kg x  is the approximated 

control coefficient matrix generated by the NN-based observer and )1,ˆ(ˆ
1  kV kx  is the 

approximated value function from the critic network. 

Therefore, the control error (31) becomes 
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The actor NN weights tuning law is then defined as 
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where 0u  is a design parameter. 

To find the error dynamics for the actor NN weights, first observe that 
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Or equivalently, 
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Subtracting (35) from (32), we have 
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where kk uuu WWW ˆ~
 , L  is the positive Lipschitz constant for the saturation function 

)( , ),ˆ(),(),ˆ,(~
, kkk kkkkk xxxx uuu   , 
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, kkkk xxu  and ),( kkxεu  are all 

bounded due to the boundedness of NN activation function and reconstruction error.  

Then the error dynamics for the actor NN weights are revealed to be 
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Remark 2: The update law for tuning the actor NN weights is based on gradient 

descent approach and it is similar to [14] with the difference being the estimated state 

vector kx̂  is utilized as the input to the actor NN activation function instead of actual 

system state vector kx . In addition, total error comprising of Bellman error and terminal 

constraint error are utilized to tune the weights whereas in [14], the terminal constraint is 

ignored.  Further, the optimal control scheme in this work utilizes the identified control 

coefficient matrix )ˆ(ˆ
kg x , whereas in [14], the control coefficient matrix )( kg x  is 

assumed to be known. Due to these differences, the stability analysis differs significantly 

from [14]. 
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3.3 DYNAMIC QUANTIZER DESIGN 

To handle the saturation caused by limited quantization range for a realistic 

quantizer, a new parameter k  is introduced. The proposed dynamic quantizers for the 

control input is defined as 

 )()( kkkkdqk qq  uuu   (38) 

where k  is a time-varying scaling  parameter to be defined later for the control input 

quantizers, respectively. Normally, the dynamics of the quantization error cannot be 

established since it is mainly a round-off error. Instead, we will consider the quantization 

error bound as presented next, which will aid in the stability analysis. Given the dynamic 

quantizer in the form (38), the quantization error for the control inputs is bounded, as 

long as no saturation occurs and the bound is given by 

 kkkkqkk e ,M
2

1
  uueu  (39) 

where ke ,M  is the upper bound for the control input quantization error. 

Next, define the scaling parameter k  as 

 M)( k

kk  u  (40) 

where 10   . Recall from representation (38) that the signals to be quantized can be 

“scaled” back into the quantization range with the decaying rate of 
k , and thus 

eliminating the saturation effect. 

Remark 3: The scaling parameter k  have the following properties: First, k  are 

adjusted to eliminate saturation, which are more applicable in the realistic situations. 

Second, k  are time-varying parameters and updated at each time interval. Finally, 
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updating k only requires the signals to be quantized, which differs from [10] in which   

is a constant and can only obtained by using the system dynamics. 

To complete this subsection, the flowchart of our proposed finite-horizon near 

optimal regulation scheme is shown in Figure 3. 

  

Figure 3. Flowchart of the proposed finite-horizon near optimal regulator 
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our proposed weights tuning laws at each sampling interval beginning with an initial time 

and until the final fixed time instant in an online and forward-in-time fashion. 

 

3.4 STABILITY ANALYSIS 

In this subsection, the system stability will be investigated. It will be shown that 

the overall closed-loop system remain bounded under the proposed near optimal regulator 

design. Before proceeding, the following lemma is needed. 

Lemma: (Bounds on the optimal closed-loop dynamics) Consider the discrete-

time nonlinear system (1), then there exists an optimal control policy 

ku  such that 

closed-loop system dynamics  kkk gf uxx )()(  can be written as 

 
22

)()( kkkk gf xuxx    (41) 

where 10    is a constant. 

Theorem 3 (Boundedness of the closed-loop system) Let the nonlinear system (1) 

be controllable and observable while the system output, yy k , be measurable. Let the 

initial NN weights for the observer, critic network and actor network kŴ , VkŴ  and kuŴ

be selected within compact set OB , V  and AN  which contains the ideal weights W , 

VW  and uW . Let uu )0(  be an initial admissible control input for the system (1). Let 

the observer be given by (13) and the NN weights update law for the observer, critic 

network and action network be provided by (15), (25) and (33), respectively. Then, there 

exists positive constant 1
2

22
I 


 , 610  V  and 10  u , such that the 

system state kx , observer error kx~ , NN observer weight estimation errors kW
~

, critic and 
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action network weights estimation errors VkW
~

 and kuW
~

 are all UUB, with the ultimate 

bounds given by (A.20) ~ (A.24). Moreover, the estimated control input is bounded 

closed to the optimal value such that 
okk kxkx uuu  ),ˆ(ˆ),( for a small positive 

constant ou . 

Proof: See appendix. 

 

4. SIMULATION RESULTS 

In this section, a practical example is considered to illustrate our proposed near 

optimal regulation design scheme. Consider the two-link planar robot arm [15]: 
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The system is discretized with sampling time of ms5h  and the control 

constraint is set to be 5.1U , i.e., 5.15.1 1  u  and 5.15.1 2  u . Define the 

performance index 
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where ),( kkxQ , for simplicity, is selected as standard quadratic form of the system states 

as kkk k xQxxQ
T),(   with 41.0 IQ   and weighting matrix R  is selected as 

2001.0 IR  , where I  denotes the identity matrix with appropriate dimension. The 

Hurwitz matrix A  is selected as a 44  block diagonal matrix whose blocks iiA  are 

chosen to be 









9.00

1.09.0
iiA . The terminal constraint is chosen as 3)( N x . For the 

NN setup, the inputs for the NN observer are selected as ],ˆ[ kkk uxz  . The time-varying 

activation functions for the critic and actor network are chosen as sigmoid function with 

input to be ]ˆ,,ˆ,ˆ,ˆ,,ˆˆ,,ˆˆ,,ˆ,ˆ[ 2

4

2

141

2

432141 xxxxxxxxxx    and ]ˆ,,ˆ,ˆ,ˆ[ 4141  xxxx  , 

which result in 24 and 8 neurons, respectively, and N)(N k  is the normalized time-

to-go. 

The design parameters are chosen as 7.0I  , 01.0I  , 1.0V , 03.0u  

and 9.0 . The initial system states and the observer states are selected as 

T

0 ]0,0,6,3[ x  and T

0 ]0,0,0,0[ˆ x , respectively. The initial admissible control input 

is chosen as ]1   ;2.0[)0( u . The observer gain is chosen as T.1,0.7,1]0  ,3.0[L  and 

the matching matrices lB  and l  are selected as column vectors with all ones. All the NN 

weights are initialized at random. 

First, the system response and control input are shown in Figure 4 and Figure 5, 

respectively. Both system states and control clearly converge close enough to the origin 

within finite time period, which illustrates the stability of the proposed design scheme. 
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Figure 4. System response 

 

Figure 5. Control inputs 

Next, the quantization errors for the control inputs with proposed dynamic 

quantizer and traditional uniform quantizer are shown in Figure 6 and Figrue 7, 

respectively. Comparing with Figure 6 and 7, it is clear that the quantization errors are 

decreasing overtime instead of keep bounded as for traditional uniform quantizer, which 

illustrates the effectiveness of the proposed dynamic quantizer design. 
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Figure 6. Quantization error with dynamic quantizer 

 

Figure 7. Quantization error with static quantizer 

Next, the error history in the design procedure is given in Figure 8 and Figure 9, 

respectively. From the figure, it can be seen that Bellman equation error eventually 

converges close to zero, which illustrates the fact that the optimality is indeed achieved. 

More importantly, the convergence of the terminal constraint error demonstrates that the 

terminal constraint is also satisfied by our proposed design scheme. 
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Figure 8. History of bellman equation error 

 

Figure 9. History of terminal constraint error 

Finally, the convergence of critic and actor NN weights is shown in Figure 10. It 

can be observed from the results that the novel NN structure with our proposed tuning 

law guarantees that the NN weights converge to constants and remain bounded, as 

desired. This illustrates the feasibility of NN approximation for time-varying functions. 
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Figure 10. Convergence of critic/actor NN weights 

 

5. CONCLUSIONS 

In this paper, the NN-based fixed final time near optimal regulator design by 

using output feedback for quantized nonlinear discrete-time system in affine form with 

completely unknown system dynamics is addressed. Compared to the traditional finite-

horizon optimal regulation design, the proposed scheme not only relaxes the requirement 

on availability of the system states and control coefficient matrix, but also takes input-

constraint and quantization effect into account as well as functions in an online and 

forward-in-time manner instead of offline training and using value/policy iterations. An 

initial admissible control input is needed. 

The input-constraint is handled by using a non-quadratic cost functional so that 

the optimality can be achieved. The dynamic quantizer effectively mitigates the 

quantization error for the control inputs while the NN-based Luenberger observer relaxes 

the need for an additional identifier. Time-dependency nature of the finite-horizon is 

handled by a NN structure with constant weights and time-varying activation function. 
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The terminal constraint is properly satisfied by minimizing an additional error term along 

the system trajectory. All NN weights are tuned online by using proposed update laws 

and Lyapunov stability theory demonstrated that the approximated control inputs 

converges close to its optimal value as time evolves. The performance of the proposed 

finite time near optimal regulator is demonstrated via simulation. 
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APPENDIX 

Proof of Theorem 1: Consider the following Lyapunov candidate 

 
,k,k LLkL

Wx ~~IO )(   (A.1) 

where kk,kL xxx

~~T
~  , }

~~
{tr T

~ kk,k
L WΛW

W
  and IΛ

I

2

min )1(2




 , with LLI  the 

identity matrix and 
222

min

2

min )ˆ()ˆ(0 qkkk uxx    is ensured to exist by the 

PE conditions, and }tr{  denotes the trace operator. 

The first difference of )(IO kL  is given by 

 
,k,k LLkL

Wx ~~IO )(   (A.2) 

Next, we consider each term in (A.2) individually. First, recall from the observer error 

dynamics (14), we have 
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 (A.3) 

where 
2

3 cA . 

Next, recall the NN weight estimation error dynamics (16), we have 
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where Λ  and 
222

2

I

2

M

2

IWM )ˆ(66 OkqkkW εlCux  . 

Therefore, the first difference of the total Lyapunov candidate, by combining (A.3) and 

(A.4), is given as 
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where WM

2

OM 3   Okε . By standard Lyapunov stability theory [22], ,kLIO  is less 

than zero outside a compact set as long as the following conditions hold: 
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Note that in (A.6) the denominator is guaranteed to be positive, i.e., 

)1(41

1
0

2

min
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lC

, by properly selecting the designed parameters A , L  and l . 

 

Proof of Theorem 2: First, for simplicity, denote ),ˆ(ˆ kkVVk x  , 

)1,ˆ(''ˆ
11   kkVVk x , ),( kkVBVBk x   and )N,ˆ(ˆ

NN xVV   . Consider the 

following Lyapunov candidate 
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Recall from (27) and (28), the first difference of )
~

( VkL W  can be further derived as 
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Next, consider )~( kL x . Recall (A.3) and apply Cauchy-Schwartz inequality, the first 

difference of )~( kL x  is given by 
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where 
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Therefore, combining (A.11) and (A.12) yields 
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where 
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Finally, combining (A.10) and (A.13) yields the first difference of total Lyapunov 

candidate as 
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where 4TM1   V . By using standard Lyapunov stability analysis [22], L  is less 

than zero outside a compact set as long as the following conditions hold: 
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Proof of Theorem 3: Consider the following Lyapunov candidate as 
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where )(IO kL  and )(~ kL
VW

 are defined in (A.1) and (A.8), respectively, kkL uW
W
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~
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and 
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,M)( ke ekL
u u  is the upper bound for the quantization error defined later. Moreover, 
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the first term is defined as kkL xx )( with
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Next, consider )(kL
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The control input is given as 
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Then the quantization error bound is given by 
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The first difference of )(kL
ue  is given as 
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Recalling from (A.19), we further have 
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Combine (A.5), (A.14), (A.19) and (A.21) to obtain the first difference of the total 

Lyapunov candidate as 
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where  MMMM1OMCLM uu  WgεT . 

By using standard Lyapunov stability analysis [22], L  is less than zero outside a 

compact set as long as the following conditions hold: 
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Eventually, recall to (A.21), the difference between the ideal optimal control and 

proposed near optimal control inputs is represented as 
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where l  is the Lipschitz constant of )(u , and 
uW

~b , x~b are given in (A.26) and (A.23), 

respectively. 
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SECTION 

2. CONLUSIONS AND FUTURE WORK 

In this dissertation, finite-horizon optimal regulation problem is considered for 

linear and a class of nonlinear discrete-time systems. Time-dependency aspect of the 

optimal solution and terminal constraint are two major concerns in finite-horizon optimal 

control which are handled by using novel parameter update laws with time dependent 

basis functions. Linear in the unknown parameter adaptive control and neural network 

(NN) based schemes are considered to deal with linear and nonlinear systems, 

respectively. A Q-learning methodology is utilized for the case of linear systems and NN 

identifier/observer is proposed for nonlinear systems so that the requirements on 

dynamics of the system and the system states are relaxed. The five papers included in this 

dissertation address (near) optimal regulation of both linear and nonlinear systems. 

 

2.1 CONCLUSIONS 

The first paper addresses the finite-horizon optimal control of linear discrete-time 

systems with completely unknown system dynamics by using approximate dynamic 

programming technique. The requirement on the dynamics of the system is relaxed with 

an adaptive estimator generating the Q-function. An online adaptive estimator learns 

time-varying optimal control gain provided by the tuned Q-function by using history 

information thus relaxing the need for policy and/or value iterations. An additional error 

is defined and incorporated in the update law so that the terminal constraint for the finite-

horizon can be properly satisfied. An initial admissible control ensures the stability of the 

system. In addition, the proposed control design scheme is extended to output feedback 
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case by novel adaptive observer design. All the parameters are tuned in an online and 

forward-in-time manner. Stability of the overall closed-loop system is demonstrated by 

Lyapunov analysis. The proposed approach yields a forward-in-time and online control 

design scheme which offers many practical benefits. 

The second paper investigated the adaptive finite-horizon optimal regulation 

design for unknown linear discrete-time control systems under the quantization effects 

for both system states and control inputs. By introducing a new scaling parameter and 

analyzing the quantization error bound, the proposed dynamic quantizer design 

effectively eliminated the saturation effect as well as the quantization error. The system 

dynamics are not needed with an adaptive estimator generating the action-dependent 

value function, and a novel update law different from the first paper was considered to 

tune the value function estimator which then was used to calculate the Kalman gain 

needed for the optimal control policy. By minimizing the Bellman and terminal constraint 

errors simultaneously once a sampling interval, the update law functions in a forward-in-

time fashion without performing iterations while satisfying the terminal constraint. 

Lyapunov theory demonstrated the effectiveness of the proposed scheme. 

In the third paper, we considered the finite-horizon optimal control problem of 

affine nonlinear discrete-time systems. With a novel NN-based identifier, the complete 

system dynamics were relaxed in contrast with the literature where the control coefficient 

matrix was needed. An initial admissible control policy guarantees that the system is 

stable, while actor-critic structure is utilized to approximately find the optimal control 

input. The time-dependency nature for finite-horizon optimal control problem is handled 

by using novel NN structure with constant weights and time-varying activation functions, 
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while an additional error term corresponding to the terminal constraint is minimized to 

guarantee that the terminal constraint can be properly satisfied. In addition, the proposed 

algorithm is implemented by utilizing a history of cost to go errors instead of traditional 

iteration-based scheme. As a consequence, the proposed design scheme performs in an 

online and forward-in-time fashion which is highly suitable for real-time implementation. 

The convergence of the parameter estimation and closed-loop system are demonstrated 

by using Lyapunov stability theory under non-autonomous analysis. 

In the fourth paper, the idea from Paper III is extended to the output feedback 

case. The novel structure of the proposed observer relaxes the need for a separate 

identifier thus simplifies the overall design. Time-dependency nature of the finite-horizon 

is handled by a NN structure with constant weights and time-varying activation function. 

The terminal constraint is properly satisfied by minimizing an additional error term along 

the system trajectory. All NN weights are tuned online by using proposed update laws 

and Lyapunov stability theory demonstrated that the approximated control inputs 

converges close to its optimal value as time evolves. Compared to the traditional finite-

horizon optimal regulation design, the proposed scheme not only relaxes the requirement 

on availability of the system states and control coefficient matrix, but also functions in an 

online and forward-in-time manner instead of performing offline training and 

value/policy iteration. 

Finally, the fifth paper presents the finite-horizon near optimal regulation of 

general discrete-time nonlinear systems in affine form in the presence of quantization and 

input constraints. A non-quadratic cost functional incorporates the effect of actuator 

saturation while still guaranteeing the optimality of the system. The quantization error for 
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the control inputs is effectively mitigated by the design of a dynamic quantizer from the 

Paper II, while an extended NN-based Luenberger observer from Paper IV relaxes the 

need for an additional identifier thus simplifying the overall design. The actor-critic 

structure ensures that the newly defined time-varying value function and control inputs 

by using NN with constant weights and time-dependent activation functions indeed 

generate optimal control. Terminal constraint is properly satisfied by minimizing an error 

term corresponding to the terminal constraint along the system trajectory. Lyapunov 

stability theory demonstrated that the approximated control input converges close to its 

optimal value as time evolves. 

 

2.2 FUTURE WORK 

As part of the future work, our proposed finite-horizon optimal control scheme 

can be possibly improved by more carefully considering about the fundamental concepts 

of finite-horizon optimal control and approximation theory. The work presented in this 

dissertation is still a starting point for finite-horizon optimal control problem. Further 

research such as how the convergence rate is affected by the terminal time can be a 

promising direction. In addition, there’s no general rule for picking the most suitable 

activation function for NN approximation, especially when the function to be 

approximated becomes time-varying. More detailed investigation in properly selecting 

the activation function can be more difficult however worth of our effort in the future. 

Finally, a more general nonlinear system description, i.e., nonlinear systems in non-affine 

form, can also be another potential topic to further extend our work. 
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