
Scholars' Mine Scholars' Mine

Doctoral Dissertations Student Theses and Dissertations

Fall 2013

Inverter design and analysis using multiple reference frame theory Inverter design and analysis using multiple reference frame theory

Luke Dale Watson

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

 Part of the Electrical and Computer Engineering Commons

Department: Electrical and Computer Engineering Department: Electrical and Computer Engineering

Recommended Citation Recommended Citation
Watson, Luke Dale, "Inverter design and analysis using multiple reference frame theory" (2013). Doctoral
Dissertations. 1819.
https://scholarsmine.mst.edu/doctoral_dissertations/1819

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/1819?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F1819&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

INVERTER DESIGN AND ANALYSIS USING MULTIPLE REFERENCE FRAME

THEORY

by

LUKE DALE WATSON

A DISSERTATION

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

2013

Approved

Jonathan Kimball, Advisor

Mehdi Ferdowsi

Mariesa Crow

Jagannathan Sarangapani

Bruce McMillin

 2013

Luke Dale Watson

All Rights Reserved

iii

ABSTRACT

 Multiple reference frame theory allows for periodically time varying signals to be

represented as a set of dc signals. In other words, every periodic signal can be expanded

into a Fourier series representation. By modeling an inverter connected to a boost

maximum power point tracker (MPPT) in this manner, frequency transfer properties can

be preserved and harmonics throughout the system can be predicted. A state space model

taking into account the dc and fundamental grid frequency is presented and used to

optimize the controller gains of the system. Using information from the dq-axis values of

the measured grid current and voltage, the double frequency dc-link voltage component is

predicted. The double frequency component is removed from the controller input using

feedforward. As a result, there is a reduction in output harmonics in the grid current.

The same method is applied to the MPPT, where the double frequency component is

predicted and removed from the controller input. This allows for a MPPT with reduced

oscillations in the input power waveform. Next, a method is presented to generate a

large-signal model of a H-bridge inverter. A set of algorithms are presented, which take

a standard set of large-signal (user generated) dynamic equations and performs a Fourier

series expansion on the inputs and states of the equations. These algorithms work for an

arbitrary finite set of harmonics and preserve the frequency transfer properties between

harmonics. The solution to the generated equations is the steady state output of the

inverter. Lastly, a set of algorithms are presented which take a user generated netlist in

and automatically outputs a truncated harmonic transfer function (THTF).

iv

ACKNOWLEDGMENTS

 To complete this dissertation, I spent many sleepless nights hunched over my

desk surrounded by lab notebooks and wadded up scrap paper. Despite all of the

technical challenges that I dealt with, one of the sections I struggled with writing most

was this section. To my professors, my friends, and my family, I cannot find the words

to describe how truly grateful I am for all of your support.

 First, I would like to thank my advisor, Dr. Jonathan Kimball for providing me

the opportunity to pursue a PhD. He has been a great role model and will be someone I

strive to be like as I start my career. His experience in both academia and industry has

proven invaluable. I would not be where I am today if it was not for Dr. Kimball, and it

has been a pleasure working with him the past five years.

 I would also like to thank my committee members, Dr. Mehdi Ferdowsi, Dr.

Mariesa Crow, Dr. Jagannathan Sarangapani, and Dr. Bruce McMillin. All of you have

provided me with your valuable time and guidance while on my road to completing this

dissertation.

 I have had the opportunity of working with Dr. Stan Atcitty for two summers

while pursuing my PhD. Dr. Atcitty has provided me with many exciting opportunities

ranging from networking with leading experts in the field of energy storage to traveling

to the heart of Navajo Nation. He has taken many students under his wing during his

career and I consider myself lucky to have been one of them.

 Lastly, I would like to thank my parents, Dale and Deana Watson, for their love

and support both growing up and during my time as a student in Rolla. You guys rock.

A portion of my studies were supported on a fellowship from the Department of

Education. This work was supported in part by the National Science Foundation under

award ECCS-0900940.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... viii

LIST OF TABLES .. x

NOMENCLATURE .. xi

SECTION

1. INTRODUCTION .. 1

1.1. OVERVIEW OF POPULAR TOPOLOGIES .. 1

1.2. OVERVIEW OF DQ CONVERSION METHODS ... 3

1.3. MULTIPLE REFERENCE FRAME THEORY ... 5

1.4. HARMONIC BALANCE ... 6

1.5. HARMONIC TRANSFER FUNCTION .. 6

1.6. WORK SUMMARY ... 7

2. FEEDFORWARD DOUBLE FREQUENCY ELIMINATION IN TWO-STAGE

SINGLE-PHASE INVERTER ... 10

2.1. INTRODUCTION .. 10

2.2. INVERTER ANALYSIS .. 12

2.2.1. DQ-Axis Control .. 13

2.2.2. Inverter Model .. 15

2.2.3. Inverter Experimental Results without Feedforward 19

2.3. INVERTER DOUBLE FREQUENCY ELIMINATION 20

2.4. MPPT ANALYSIS ... 22

2.5. MPPT DOUBLE FREQUENCY ELIMINATION .. 25

2.5.1. MPPT 120 Hz Ripple Elimination ... 26

2.5.2. MPPT 120 Hz Ripple Elimination Experimental Results 27

2.6. CONCLUSIONS... 28

3. FOURIER SERIES ANALYSIS OF A SINGLE PHASE INVERTER 30

3.1. INTRODUCTION .. 30

3.2. FOURIER SERIES EXPANSION OF VARIABLES 33

vi

3.2.1. Generation of Standard State Equations ... 34

3.2.2. Algorithm Generation ... 36

3.2.2.1 Multiplication ..37

3.2.2.2 Inversion ...37

3.2.2.3 Delay 90° ..39

3.2.2.4 To DQ ...39

3.2.2.5 From DQ ...41

3.2.2.6 Differentiation ...41

3.3. STATE EQUATION GENERATION .. 42

3.3.1. System Equations ... 42

3.3.2. Note on iinv Calculation .. 43

3.4. SOLVING STATE EQUATIONS .. 44

3.5. SIMULATION AND EXPERIMENTAL RESULTS 45

3.6. CONCLUSIONS... 49

4. AUTOMATIC GENERATION OF TRUNCATED HARMONIC TRANSFER

FUNCTIONS.. 52

4.1. INTRODUCTION .. 52

4.2. LOW LEVEL CIRCUIT TF GENERATION .. 54

4.2.1. Netlist Generation ... 56

4.2.2. Circuit TF Generation .. 57

4.2.3. DQ TF Generation .. 63

4.3. HIGH LEVEL SYSTEM TF GENERATION .. 67

4.3.1. Input .. 68

4.3.2. Add ... 68

4.3.3. Gain .. 69

4.3.4. Integrate .. 69

4.3.5. 90° Delay .. 70

4.3.6. To DQ ... 72

4.3.7. From DQ ... 76

4.3.8. Circuit ... 78

4.3.9. Multiplication ... 80

4.3.10. Inversion ... 82

vii

4.4. GENERATING EQUATIONS FOR THE INVERTER................................... 84

4.5. RESULTS ... 88

4.6. CONCLUSIONS... 90

5. SUMMARY AND CONCLUSIONS ... 92

5.1. OVERVIEW ... 92

5.2. FUTURE WORK .. 94

APPENDICIES

A. MATLAB CODE FOR FOURIER SERIES ANALYSIS OF A SINGLE PHASE

INVERTER ...97

B. MATLAB CODE FOR AUTOMATIC GENERATION OF TRUNCATED

HARMONIC TRANSFER FUNCTIONS ..114

BIBLIOGRAPHY ... 136

VITA ... 145

viii

LIST OF ILLUSTRATIONS

Figure Page

1.1. All pass filter block diagram. .. 4

2.1. Inverter side of the two-stage converter.. 12

2.2. Phase diagram. .. 13

2.3. Inverter control diagram. .. 14

2.4. Experimental results for igrid ... 19

2.5. Experimental results for igrid ... 21

2.6. MPPT converter. ... 22

2.7. MPPT converter control. ... 22

2.8. Exp results for iL1, vpv, Ppv ... 25

2.9. Experimental results for iL1, vpv, Ppv .. 28

3.1. Process to predict a system's harmonic steady state solution. 34

3.2. Inverter diagram. ... 35

3.3. Inverter controller. .. 35

3.4. Experimental setup.. 47

3.5. vdc simulation and predicted steady state vdc. .. 48

3.6. igrid simulation and predicted steady state igrid. ... 48

3.7. FFT of simlated and experimental vdc and predicted vdc harmonic amplitudes. 49

3.8. FFT of simlated and experimental igrid and predicted igrid harmonic amplitudes. 49

4.1. General branch description. .. 56

4.2. Sample circuit. .. 57

4.3. Sample circuit netlist... 57

4.4. Sample node incidence matrix. ... 57

4.5. F and bv generation algorithm. ... 60

4.6. E and bi generation algorithm. .. 61

4.7. Generation of Gdq and bdqi .. 65

4.8. Generation of Hdq and bdqv ... 66

4.9. Inverter example circuit. ... 84

4.10. Inverter controller. .. 85

4.11. Averaged model inverter circuit ... 85

ix

4.12. Experimental setup.. 88

4.13. Commanded dc-link voltage to d-axis grid current TF ... 89

4.14. Experimental results for igrid ... 90

5.1. Battery circuit equivalent .. 94

x

LIST OF TABLES

Table Page

2.1. Inverter Linearization Points... 18

2.2. Inverter Gains.. 19

2.3. MPPT Gains .. 24

3.1. DQ multiplier for delay 90° .. 39

3.2. System parameters .. 45

3.3. System inputs .. 46

4.1. DQ multiplier for delay 90° .. 71

4.2. Inverter Gains.. 88

xi

NOMENCLATURE

Â Maps dependent currents to independent currents (dc case)

Aa Node incidence matrix

ˆ
dqA Maps dependent currents to independent currents (dq case)

()da  Dc component of a variable a

()da  D-axis component of a variable a at the ℓth harmonic

()qa  Q-axis component of a variable a at the ℓth harmonic

Asys A matrix for generating system transfer functions

Atf A matrix for generating low level transfer functions

b Number of branches in a netlist

bdqi Maps input current to dependent current (dq case)

bi Maps input current to dependent current (dc case)

Bsys B matrix for generating system level transfer functions

Btf B matrix for generating low level transfer functions

bdqv Maps input voltage to dependent voltage (dq case)

bv Maps input voltage to dependent voltage (dc case)

C Dc-link capacitance

ddc output duty ratio of the MPPT converter

dac 120 Hz perturbation added to ddc

d2dq dac in the 2dq axis

E Maps independent voltages to dependent currents (dc case)

Edq Maps independent voltages to dependent currents (dq case)

xii

F Maps independent currents to dependent voltages (dc case)

Fdq Maps independent currents to dependent voltages (dq case)

Gdq Maps dependent currents to dependent currents (dq case)

Hdq Maps dependent voltages to dependent voltages (dq case)

I Identity matrix

idqx Vector of dependent currents (dq case)

idqy Vector of independent currents (dq case)

igrid* commanded grid current

igrid grid current

igriddq igrid in the dq-axis

iin dc-link input current

iinv current entering the inverter from the dc-link

iinv2dq 120 Hz dq component of iinv

iinvdc dc component of iinv

iL1 L1 current

iLd d-axis current through L at 1ω (60 Hz grid current)

iL1dq iL1 in the dq-axis

iMPPT current into the dc-link from the MPPT converter

ipv PV panel current

ix Vector of dependent currents (dc case)

iy Vector of independent currents (dc case)

Kidc Dc-link voltage loop integral gain

Kidq Grid current loop integral gain

xiii

Kii inverter current loop integral gain

Kipv P&O voltage loop integral gain

Kpdc Dc-link voltage loop proportional gain

Kpdq Grid current loop proportional gain

Kpi inverter current loop proportional gain

Kppv P&O voltage loop proportional gain

L Filter inductance

M Number of states in the system

n Number of nodes at the circuit level

N Netlist

Ni Number of system inputs

Nmax Number of harmonics to be analyzed

NsysNode Number of nodes at the system level

Nω Number of harmonics to analyze

u Input vector (dc case)

u System input

udq Input vector (dq case)

vav average voltage on the inverter's grid side over a switching period

vavdq vav in the dq-axis

vdc dc-link voltage

*

dcv Commanded dc-link voltage

vdc2dq 120 Hz dq component of vdc

vdcac ac component of vdc

xiv

vdcdc dc component of vdc

vdqx Vector of dependent voltages (dq case)

vdqy Vector of independent voltages (dq case)

vgrid grid voltage

vgriddelaygrid voltage delayed 90°

vL1 MPPT converter inductor voltage

vpv PV panel voltage

vx Vector of dependent voltages (dc case)

vy Vector of independent voltages (dc case)

x System state

xdc dc component of a signal

xdk d-axis component at the kth harmonic of a signal

xqk q-axis component at the kth harmonic of a signal

1. INTRODUCTION

1.1. OVERVIEW OF POPULAR TOPOLOGIES

 There has recently been an increase in the amount of research in single phase

inverters. This is partially due to an increase in the study of microinverters.

Microinverters are single phase inverters typically connected to a maximum power point

tracker (MPPT). They are connected to one or a few photovoltaic (PV) panels, instead of

many series and parallel connected PV panels (such as in a standard inverter case). Since

more inverters are required using this scheme, it is vital that components be low cost

while keeping the reliability high and the amount of harmonics injected into the grid low

[1-9].

 Microinverters are advantageous in that each inverter covers a relatively small

area. This is beneficial in the case of partial shading. If even just one cell in a series

connected string is partially shaded, the total output power of the entire string is

disproportionately affected. Microinverters alleviate this problem by giving each PV

panel its own individual MPPT [10-15].

 Another advantage of microinverters is that they result in less resistance losses in

cables and connections. They are safer during installation and maintenance, since the

output of each module is a standard 60 Hz 120 V (in the US) output. As a result of the

output voltage of each PV module being a standard output, installation is also faster. A

potential downside of microinverters is that since they are installed on the back of the PV

panel, they are exposed to higher temperatures [16, 17]. Some of the more popular

microinverter topologies are discussed below.

2

 One topology introduced by Huang-Jen in [18] is to use an "inverse-buck current-

fed isolated dual-boost" converter as the MPPT. This requires more switches than a

standard buck or boost MPPT (two mosfets and three diodes required in the MPPT).

However, two film capacitors can be used in lieu of a large electrolytic capacitor, which

will increase the system's reliability.

 Another method which eliminates the need for a large dc-link capacitor is to use a

modified flyback converter [2, 4, 19, 20]. An extra power decoupling circuit is added to

the flyback MPPT, which reduces the size of capacitor required on the dc-link. This

topology offers an efficient low cost isolated solution to microinverters.

 Yeong-Chan took another approach in [21]. In this topology, a simple diode is

used on the PV panel connected to a grid-tied H-bridge inverter. The commanded dc-link

voltage is changed to modify the MPP of the converter. This is a simple solution with

minimal components, but requires a large electrolytic dc-link capacitor as a tradeoff.

 Work has been done on single phase boost dc-ac inverters. These converters can

generate an output voltage that is higher than the dc-link voltage. Only four mosfets are

required in this topology. This topology has potential as a single stage MPPT

microinverter. A big issue in using these converters as an MPPT is that the input power

waveform has a large sinusoidal component if a large electrolytic capacitor is not used on

the input [22-32].

 A novel topology introduced by Shimizu [6, 33, 34] is a half bridge topology with

a sting of PV panels in series. Because of the switch arrangement, each individual PV

panel can operate at its MPP, due to the generation control circuit (GCC). One downside

to this converter is that there is a high voltage dc-link connection between each module in

3

a string. Also, there must be enough PV panels in series to have a greater voltage on the

dc-link than the grid voltage. This is due to the inverter only being capable of bucking

the voltage from the dc-link to the ac side.

 A few MPPT topologies that are good candidates for microinverters were listed

above. All of the topologies discussed above can benefit from the analysis in the

following sections, even though only one topology was used an example. The topology

analyzed in this dissertation is a standard dc-dc boost converter connected to a standard

H-bridge inverter, similar to [35-43]. This topology has the advantage of being simple to

understand and is very common.

1.2. OVERVIEW OF DQ CONVERSION METHODS

 Each of the methods described in the following sections is highly dependent on

arithmetic in the dq-axis synchronous reference frame. The synchronous reference frame

is a method to analyze ac signals using dc techniques. In generating a dq signal from a

single phase source, a false orthogonal signal must be generated. There are multiple

ways to generate this signal.

 Ryan [44] uses an LC output filter on the H-bridge inverter. Since the current on

the output capacitor is 90° out of phase from the grid voltage, it can be scaled and used as

the orthogonal signal for the conversion to the dq-axis. This is similar to using

differentiation to generate the orthogonal signal [45], without the adverse effect of

magnifying measurement noise.

 Another method is to multiply the input signal by 2sin(ωt) and 2cos(ωt). The

effect of this can be seen by,

4

       

       

2cos sin sin 2 sin

2sin sin cos cos 2

grid

grid

t v t t

t v t t

     

     

     

     
, (1)

where vgridsin(ωt+φ) is the signal to be converted to a dq quantity. After multiplication, a

dc term plus a double frequency term remains. By placing this signal through a notch

filter tuned at the double frequency, only the desired dc d and q axis terms remain [46,

47].

 An all pass filter can also be used to generate the orthogonal signal [48, 49]. This

method works by creating a filter which has unity gain across its frequency spectrum and

a 90° phase delay at ω. The all pass filter method is illustrated as a block diagram in

Figure 1.1.

Figure 1.1. All pass filter block diagram.

 The simplest method utilized in [46, 50-52] is to simply place the measured signal

into a buffer and delay the output 1/(4fs) s. This method requires little computational

power compared to the all pass filter method and the notch filter method. It does have a

slower response than these methods, however, and is not recommended for systems

requiring a fast response [46].

 The delay method is used in this study, due to its popularity and ease of

implementation. Even though all of the examples in this dissertation utilize the delay

5

method for single phase dq conversion, all of the mentioned conversion methods can be

analyzed using the proposed methods.

1.3. MULTIPLE REFERENCE FRAME THEORY

 An extension of the simple dq arithmetic is multiple reference frame theory

(MRF). In MRF, in addition to a reference frame rotating at the fundamental grid

frequency ω, there are reference frames rotating at the harmonics of interest. MRF was

first introduced by Krause [53] to allow for dc circuit theory to be used to analyze a

symmetrical induction machine. It was later expanded to include a multitude of other

electric machines [54-56].

 MRF can estimate the amplitude of each harmonic on the output grid current in

three phase converters. One method to reduce the unwanted harmonics is to feed the

harmonic amplitudes into a proportional integral (PI) loop, which is commanded to

reduce each harmonic to zero. MRF proves to be an effective method of reducing output

harmonics in the grid current [57-59].

 The previous MRF publications were all three phase examples. Padmavathi [60]

uses MRF to reduce harmonics in a single phase system. The MRF used in Section 2 of

this dissertation varies from the previously mentioned studies, in that the predicted

harmonic amplitudes are not fed into a PI loop. Instead, they are used as feedforward

terms.

 MRF is one method to decompose a periodic signal into its harmonic amplitudes.

Another way of saying this is that the signal can be decomposed into its Fourier series

6

coefficients. Since MRF is where Fourier series concepts presented in this dissertation

originated from, the Fourier series subscripts remain d and q.

1.4. HARMONIC BALANCE

 Another concept utilized in each of the studies presented in this dissertation is

harmonic balance [61-63]. Harmonic balance takes a periodically time varying signal

and converts it to a time invariant signal. This is done by separating the signal into its

various harmonics,

1

j kt

dc dqk

k

y x x e 




     , (2)

then equating like harmonics,

1 1

1 1

2 2

2 2

dc dc

j t j t

dq dq

j t j t

dq dq

y x

y e x e

y e x e

 

 






 (3)

After this, the periodically time varying terms can be cancelled,

1 1

2 2

dc dc

dq dq

dq dq

y x

y x

y x






. (4)

1.5. HARMONIC TRANSFER FUNCTION

 Harmonic balance allows for linear time periodic systems (LTP) to be modeled as

linear time invariant (LTI). This concept can be applied to transfer functions. By

generating transfer functions which use the input's amplitude at a specific harmonic and

7

output the response as an amplitude at a specific harmonic, a harmonic transfer function

(HTF) is created. A HTF is an infinitely dimensional matrix of s-domain transfer

functions, which describes the input to output relationship of every harmonic of every

system input to every harmonic of every system output. The infinite matrix is a trade off

for the capability of modeling an LTP system as an LTI system [62-64].

 To simplify the generation of the HTF, a truncated harmonic transfer function

(THTF) is used in this dissertation. The THTF only generates transfer functions for dc

and an arbitrary number of harmonics. This makes model generation much simpler and

allows for algorithms to aid in their generation (presented in subsequent sections).

1.6. WORK SUMMARY

 In Section 2, introduces a feedforward method to eliminate the effects caused by

the double frequency ripple on the dc-link in a single-phase inverter. One issue is the

double frequency ripple passes through the dc-link voltage loop, and appears as a third

harmonic on the grid current. The third harmonic then reflects back to the dc-link as a

second and fourth harmonic term. This effect is a major source of output harmonics in

single phase inverters. The feedforward method allows the dc-link voltage loop to ignore

the double frequency component of the dc-link voltage.

 The double frequency dc-link ripple also travels through the MPPT and appears

on the PV power waveform. This causes the MPPT to track slightly below the potential

MPP of the PV panel. A feedforward term is added to the output of the MPPT algorithm

which offsets the ripple due to the double frequency dc-link voltage term.

8

 Section 3 proposes a set of algorithms which are capable of predicting the steady

state operating point of a system. First, the user must generate a set of large-signal

dynamic equations to describe the system. The algorithms then convert the equations to a

set of harmonic functions, which use exponentially modulated periodic (EMP) signals as

inputs and outputs.

 After the harmonic equations are generated, a solver is used to solve for the

steady state operating point of the system. The advantage of the proposed method is that

if the input harmonics to the system are known, the harmonic amplitudes at every point in

the system can be solved for directly. Normally, a simulation needs to be run until well

after the system reaches steady state, then a fast Fourier transform is performed on the

data. Using the proposed method, the steady state harmonics can be directly calculated,

allowing the user to change component values and controller gains and receive feedback

in a timely manner. Matlab code for Section 3 is found in Appendix A.

 Section 4 proposes a set of algorithms to generate a THTF for a system given a

user generated netlist. Generating a THTF by hand for even a small system is

impractical, due to the sheer number of equations required. The proposed method allows

for the THTF to be generated automatically, eliminating the time consuming and error

prone process of generating the THTF by hand.

 There are a few advantages of the THTF over standard TF's. First, frequency

transfer properties are maintained between the dc-link and the ac side of the inverter,

which allows for a highly accurate linear model. Next, because of how each point in the

system is represented as a d and q axis value, blocks such as "ToDQ" and ”FromDQ" can

9

be directly modeled. In the hand generated model in Section 2, the entire inverter had to

be modeled using dq, which neglected the effects of converting to and from dq. Matlab

code for Section 4 is found in Appendix B.

10

2. FEEDFORWARD DOUBLE FREQUENCY ELIMINATION IN TWO-STAGE

SINGLE-PHASE INVERTER

2.1. INTRODUCTION

 As residential PV installations increase, the need to improve both reliability and

power quality of grid tied MPPT converters increases as well. A popular topology for

grid tied residential PV applications is a two-stage system. This system utilizes a boost

type converter with an H-bridge inverter. With this topology, a double frequency

component is present in the dc-link voltage, due to the rectification from the grid to the

dc-link. This double frequency propagates through the inverter’s controls and appears on

the injected grid current as a third harmonic [57]. If this issue is to be mitigated, the

controller must be properly designed to attenuate the double frequency ripple in the dc-

link voltage control loop.

 In [65], Brekken presented a system where the DC-link voltage feedback loop is

responsible for rejecting the double frequency ripple. This requires a bandwidth of less

than 12 Hz, which slows the overall system. The low bandwidth can lead to a large

overshoot/undershoot in the dc-link capacitor voltage during perturbations to the system

[66].

 Another method involves subtracting a predicted dc-link double frequency ripple

from the measured dc-link voltage, inside the controller. In [67], Mamarelis estimates the

double frequency ripple using filtering. Steady state equations are then used to derive a

perturbation signal. This signal can be added to the duty ratio of the MPPT converter,

removing the double frequency component from the PV power waveforms, and thus

improving the PV’s power output. Because steady-state equations are used, this method

11

may be ineffective during system transients. The previous method also fails to address

the output power quality of the inverter with regard to the double frequency. Finally, if

this method were used in a weak grid setting (with a varying frequency), the filter may

not accurately extract the ripple in vdc.

 The method proposed in this paper utilizes a single-phase dq-axis controller. This

controller is similar to the controller described in [68]. The ac double frequency

component of vdc can be mathematically predicted using both the measured dq-axis

inverter current and the commanded dq-axis inverter output voltage. This process is

completed with small signal equations, which allows for the proposed method to work

even while not operating at steady state. Additionally, no phase delays are added to the

system due to filtering. By rejecting the ripple mathematically, as proposed in this study,

only the dc component from the dc-link voltage is seen by the controller. As a result, a

higher bandwidth voltage feedback loop can be utilized. This same dq-axis analysis is

then applied to the MPPT converter. Here, a perturbation duty ratio is added to the

output of the MPPT controller to compensate for the double frequency ripple on vdc. The

result is a PV output power waveform free of the double frequency ripple.

 A state-space inverter model is presented in Section 2.2. In this configuration, a

boost converter with MPPT capabilities is connected to a PV panel. The MPPT converter

is connected to the H-bridge inverter with a dc-link capacitor between the two. The

inverter is connected to the grid via an inductive filter. Experimental results were taken

to demonstrate the standard operation of an inverter.

 Section 2.3 introduces the feedforward method. This method eliminates the

effects of the double frequency ripple on the dc-link. Experimental results are presented

12

to illustrate the effectiveness of the proposed feedforward control. Section 2.4 introduces

a state-space model for the MPPT converter. The MPPT converter used is a boost

converter utilizing perturb and observe (P&O) [69, 70]. Experimental results are

presented using the given controller gains. Section 2.5 takes the feedforward concept

introduced in Section 2.3 and applies it to the MPPT converter. Experimental results are

presented to show the effectiveness of the proposed feedforward control. Results indicate

that the proposed feedforward method eliminates the effects of the double frequency

component of vdc in a two-stage grid tied MPPT converter.

2.2. INVERTER ANALYSIS

 The inverter used was a single phase H-bridge converter (see Figure 2.1). The

control objective of the inverter was to maintain the dc-link voltage at 60 V. Both phase

and frequency of the grid were tracked with a phase locked loop (PLL). The PLL

generates two sets of sine and cosine signals: one set operates at the grid's frequency, and

the other operates at the grid's double frequency.

Figure 2.1. Inverter side of the two-stage converter.

13

2.2.1. DQ-Axis Control. The inverter was controlled with a single phase dq

axis controller. The control objective of the inverter was to maintain a constant dc-link

voltage while outputting a 60 Hz sinusoidal grid current. The output current was

converted into a dq-axis synchronous reference frame using the signal delay method [46,

71, 72]. In this method, the signal to be converted is delayed one-quarter of a cycle to

create a second signal orthogonal to the original signal. The conversion to the dq axis

frame,

cos() sin()

sin() cos()

d

q delay

x xt t

x xt t

 

 

    
        

, (5)

is used to convert a signal x to the rotating reference frame. The notation used in this

paper is illustrated in Figure 2.2.

Figure 2.2. Phase diagram.

 A block diagram for the inverter's control is presented in Figure 2.3. An outer

voltage feedback loop utilizes a proportional-integral (PI) controller to regulate the dc-

14

link voltage. The inner current feedback loop regulates the inverter's output current with

a PI controller. Cross-coupling elimination between the d and q axis currents was used

on the inner current loop.

Figure 2.3. Inverter control diagram.

 In the inverter controller, the commanded q-axis grid current, *

gridqi , is set to zero

to null the reactive power. *

gridqi can later be modified with an additional control loop, to

provide voltage support in a weak grid setting. In the dq reference frame, when either an

inductor or a capacitor is present, a cross coupling exists between the d and q axes. The

ωL2 blocks provide decoupling between the d and q axis circuits, due to the inverter's

output inductor. Decoupling these circuits simplifies the controller's design.

 As a result of the rectifying action of the inverter, a double frequency ripple is

present on vdc, which is seen by the controller. This double frequency ripple increases in

amplitude as the dc-link capacitance decreases. Higher gains on the vdc control loop

allow the inverter to respond quickly to changes on both vgrid and vdc. These higher gains

15

also result in less attenuation on the double frequency ripple in vdc. As a result, additional

harmonics are injected into igrid.

2.2.2. Inverter Model. A linear model was derived using equations in the

synchronous reference frame to determine the best controller gains for use in this

inverter. Assuming ideal switches in the H-bridge inverter, iinv can be determined by

using instantaneous power:

av grid

inv

dc

v i
i

v
 (6)

The 120 Hz component in (6) must be predicted. One method to extract the 120 Hz

component in iinv is to convert (6) to the synchronous reference frame. By rewriting vav

and igrid into their dq components,

    cos sind qx x t x t  
,
 (7)

(6) becomes

       1 1 1 1 1 1cos 2 sin 2

2

L d avd L q avq L d avd L q avq L d avq L q avd

inv

dc

i v i v t i v i v t i v i v
i

v

     


.

 (8)

Both the sine and the cosine components of (8) are at twice the frequency of vgrid.

Multiple reference frames are used in the controller: a reference frame operating at the

frequency of vgrid and a reference frame operating at twice the frequency of vgrid [53, 54,

56-58].

16

 The inverter current (8) can be separated into three terms:

 a dc current:

2

gridd avd gridq avq

invdc

dc

i v i v
i

v


 (9)

 a d-axis current at twice grid frequency:

2

2

gridd avd gridq avq

inv d

dc

i v i v
i

v


 (10)

 a q-axis current at twice grid frequency:

2

2

gridd avq gridq avd

inv q

dc

i v i v
i

v


 (11)

 The effect of iinv2dq is negligible on the system's stability. Only the dc component

of iinv will be considered for the plant model used to optimize controller gains. An

equation for vdcdc can be derived after (9) is linearized,

1

2

Ld avd Lq avq

dcdc Ld avd Lq avq avd Ld avq Lq dcdc

dc dc

I V I V
v I v I v V i V i v

V V

  
      

  
. (12)

The filter inductor dq currents can be derived from Figure 2.1,

 2 2 2

2 2

1 1
L d avd gridd L qi v v L i

L L
   (13)

 2 2 2

2 2

1 1
L q avq gridq L di v v L i

L L
   , (14)

and both vavd and vavq can be derived from Figure 2.3,

17

  *

1 2 2avd pi pdc dcdc dc Ld gridqv K K v v x i x L i      
 

 (15)

3 2avq pi Lq griddv K i x L i    . (16)

The x-ed out ωL2 terms in (13-16) are removed by the cross coupling elimination in the

controller. These terms are not included in the remainder of the controller design.

The integral control states can also be derived from Figure 2.3,

  *

1 idc dcdc dcx K v v  (17)

   *

2 1 2ii pdc dcdc dc L dx K K v v x i    (18)

 3 2ii L qx K i  . (19)

Rewriting (12-19) in state-space form, x Ax Bu  yields

2

2

2 2

2 2 22

2 2

2 2

2 2 2

0 0

0

0 0

2 2 2 2

1
0 0

1
0 0

0 0 0 0

0 0 0

0 0 0

pdc pi Ld Ld avd Lq avq avd pi L d

dc dc dc

pdc pi pi

idc

pdc ii ii

pi L q avq pi L d pi L qL d

dc dc dc dc

pi

pi

ii

ii

K K I I V I V V K I

CV CV CV

K K K

L L
A

K

K K K

K I V K I K II

CV CV CV CV

K

L L

K

L L

K

K

   



 





 



   



 














, (20)

18

2

2

1

2

3

dcdc

L d

L q

v

i

i
x

x

x

x

 
 
 
 

  
 
 
 
 

,

2

2 2

2

0 0
2

1
0

1
0 0

0 0

0 0

0 0 0

pi pdc L d

dc

pi pdc

idc

ii pdc

K K I

CV

K K

L L

B

L

K

K K

 
 
 
  
 
 
  
 
 
 
 

 
 
 

,

*

dc

gridd

gridq

v

u v

v

 
 

  
 
 

. (21)

The plant model in (20) and (21) describes a single phase H-bridge dq controlled inverter.

PI control and an inductor output filter are utilized in the inverter. The values used in this

study are listed in Table 2.1.

Table 2.1. Inverter Linearization Points.

 This model can be used to optimize the controller gains Kpdc, Kidc, Kpi, and Kii.

Three sets of controller gains were chosen to demonstrate the effectiveness of the

proposed method at various operating points and are listen in Table 2.2. These gains

were chosen by setting a maximum integral gain, then finding the corresponding

proportional gains which yield robust negative real eigenvalues.

Variable Description Value

IL2d L2 d-axis steady state current 4 A

IL2q L2 q-axis steady state current 0 A

Vdc Dc-link steady state voltage 60 V

Vavd Steady state d-axis inverter output

voltage

30 V

Vavq Steady state q-axis inverter output

voltage

-0.1 V

19

Table 2.2. Inverter Gains.

2.2.3. Inverter Experimental Results without Feedforward. To verify the

proposed method, the single phase inverter was built and tested. The parameters in Table

2.1 were used in the experimental setup and the cases in Table 2.2 were used in the tests.

Experimental results without the proposed feedforward are illustrated in Figure 2.4, for

each test case. Increasing controller gains increases distortion. The THD of the three

cases is 5.23%, 12.8%, and 22.2%.

Figure 2.4. Experimental results for igrid. Top: igrid case #1. Middle: igrid case #2.

Bottom: igrid case #3.

 Case

#1

Case

#2

Case

#3
Kpdc 0.3488 0.7189 1.001

Kidc 10 50 100

Kpi 2.509 4.407 5.398

Kii 10 50 100

20

2.3. INVERTER DOUBLE FREQUENCY ELIMINATION

 Few options are available to mitigate the effect of the double frequency ripple on

vdc. One option involves choosing smaller controller gains so that the double frequency

term has enough attenuation. This option, however, will lead to a slower system response

and a less robust controller. Another method is to include a bandstop filter into the vdc

control loop. This method may work for a strong grid case, when minimal fluctuations

are present in the grid frequency. In a weak grid setting, however, there may be

significant changes in the grid frequency. The proposed method uses information from

the dq-axis controller to add a feedforward term to the sensed dc-link voltage. The 120

Hz ripple normally seen by the controller is thus removed.

 The 120 Hz ripple current from the inverter (which causes the 120 Hz ripple in

the dc-link voltage) was solved for in (10) and (11). Using these equations, the voltage

ripple can be estimated. The dc-link voltage ripple, due to iinv, can be found in the

synchronous reference frame using

2 2

2
2 2

inv q dc q

dc d

i vd
v

C dt 
  

 (22)

and

2 2
2

2 2

inv d dc d
dc q

i d v
v

C dt 
 

.
 (23)

By substituting (10) and (11) into (22) and (23), the 120 Hz voltage ripple in vdc (due to

the inverter) is found with

 cos(2) sin(2)
8 8

gridd avq gridq avd gridd avd gridq avq

dcac

dc dc

i v i v i v i v
v t t

Cv Cv
 

 

  
  . (24)

21

This equation assumes small changes in both vdc2q and vdc2d and neglects the derivative

term in (22) and (23). The feedforward term is vdcac. This term can be subtracted from

the measured vdc inside the controller. This feedforward method eliminates the 120 Hz

ripple normally seen by the controller, without the need of small controller gains or a

filter.

 The proposed feedforward method was carried out experimentally. Experimental

results using feedforward elimination are illustrated in Figure 2.5. The results using

feedforward in Figure 2.5 suggest a significant improvement over the results without

feedforward in Figure 2.4. The feedforward elimination reduced the impact of increased

controller gains on the harmonic content of igrid. The THD for the three cases is now

4.83%, 5.97%, and 7.69%.

Figure 2.5. Experimental results for igrid. Top: igrid Case #1. Middle: igrid Case #2.

Bottom: igrid Case #3.

22

2.4. MPPT ANALYSIS

 A boost converter connects the solar panel to the dc-link capacitor. The control

objective of the boost converter is to perform MPPT on a solar panel. The boost

converter diagram is illustrated in Figure 2.6. A resistor (Rin) was placed in series with

vin to approximate the behavior of a solar panel near its MPP. Rin was used for modeling

purposes only. It was not present in the experimental circuit.

Figure 2.6. MPPT converter.

 The control diagram for the MPPT converter is illustrated in Figure 2.7. P&O

was the MPPT algorithm used. This algorithm was chosen because of its ease of

implementation and its common use [69, 70].

Figure 2.7. MPPT converter control.

 System equations can be derived from Figure 2.6 and Figure 2.7:

23

   1

1

1

1L in dc pv

L

d i R d v v
i

L

   
 (25)

  11 L

dc

d i
v

C


 (26)

  *

4 1ipv in in L pvx K v R i v   (27)

  *

1 4ppv in in L pvd K v R i v x    (28)

These system equations can be linearized and put in the form x Ax Bu  ,

2 3 3 2

1 1 1

1 1 1

1 1

2 1 1

1 2
0

0 0

ppv L in ppv in dc ppv in L L ppv in dc

L ppv in L

ipv in

K I R K R V K R I I K R V

L L L

I K R I
A

C C

K R

      
 
 
  

  
 
 
 
  

 (29)

1 1

1 1

1

1 1 *

4

1
0

1
, ,

0

ppv L in ppv dc ppv L in ppv dc

L in

L ppv L ppv

dc pv

inv
ipv ipv

K I R K V K I R K V

L L
i v

I K I K
x v B u v

C C C
x i

K K

   
 
    
           
        
 
 

. (30)

 The plant model in (29) and (30) describes a boost converter that controls its input

voltage (vpv) via a PI loop. This model can be used to optimize the controller gains Kppv

and Kipv. The values used in this study are IL1=5 A and Vdc=60 V.

 Using this model, the controller gains can be chosen. Just as in Section 2.2, three

sets of controller gains are chosen. These are chosen by setting a maximum integral gain,

then setting the proportional gain to a value which results in robust negative real

24

eigenvalues. The gains used are listed in Table 2.3. Smaller integral gains were used in

this section, due to the eigenvalues' high natural frequencies, compared to Section 2.2.

Table 2.3. MPPT Gains.

 The cases listed in Table 2.3 were used to test. Figure 2.8 illustrates the

experimental results. In Case 1, a large 120 Hz ripple is present. In Case 2, the ripple is

reduced somewhat, and in Case 3 the ripple is further reduced. This demonstrates that an

increase in Kipvmax will reduce the 120 Hz ripple effect. Since results were taken using a

PV panel in the field, the MPPT operated at slightly different points for each

measurement. This explains the small offset in Figure 2.8 iL1, Case 1.

 Case #1 Case #2 Case #3

Kppv 0.003782 0.004736 0.006117

Kipv 10 25 40.91

25

Figure 2.8. Exp results for iL1, vpv, Ppv. Left: Case #1. Middle: Case #2. Right: Case

#3.

2.5. MPPT DOUBLE FREQUENCY ELIMINATION

 There are a few options to mitigate the effect of the double frequency ripple on

the PV panel. One is to choose larger controller gains, so that the double frequency term

has enough attenuation. For most cases, this is an acceptable answer. If a very small dc-

link capacitor is used, there may be a large enough 120 Hz ripple to still affect the PV

panel performance. This is one scenario where the feedforward method introduced in

Section 2.3 can be applied to the MPPT. The proposed method from Section 2.3's goal

was to remove the 120 Hz ripple as seen by the controller, which results in a smaller 3rd

harmonic term on igrid. The proposed method in this section's goal is to remove the 120

Hz voltage and current ripple seen at the PV panel's terminals. The proposed method

uses information from the dq-axis controller to add a feedforward term to the output duty

ratio of the MPPT controller. This will eliminate the 120 Hz ripple at the PV panel.

26

2.5.1. MPPT 120 Hz Ripple Elimination. One solution to eliminate this

power ripple is to add a perturbation signal (dac) to the MPPT generated duty ratio (ddc,

see Figure 2.7). Ideally, this perturbation signal will offset the 120 Hz dc-link ripple and

result in a dc input power, with no 120 Hz component. The MPPT algorithm can then

track the desired power level, without also compensating for the 120 Hz component of vdc

that propagates through the boost converter and into the PV panel. From Figure 2.6,

average model equations can be derived (assuming CCM operation):

 1 (1)L pv dcv v d v   (31)

 1

1

1
pv Li v dt

L
  (32)

It has already been established in (22) and (23) that vdc can be partitioned into a dc

component and an ac component. Assuming ddc can also be split into a dc component

and an ac component at twice the grid frequency:

 2

2

j t

dqd D d e   (33)

ipv can also be partitioned into a dc component:

1

1
(1)pvdc pv dc dcdci v d v dt

L
     (34)

and an ac component at twice the grid frequency:

  2 2 2 2 4

2 2 2 2 2 2

1

1j t j t j t j t j t

pv dq dcdc dq dc dq dc dc dq dq dc dqi e v d e v e d v e d v e dt
L

        (35)

Differentiating both sides, and setting ipv2dq and 2pv dqi to 0, (35) becomes

 2

2 2 2 2 20 j t

dcdc dq dc dq dc dc dq dq dc dqv d v d v d v e     . (36)

Solving for d2dq yields

27

    2 2

2 2

2

1 1
dc dq dc dq

dq dc dcj t

dcdc dc dq dc

v v
d d d

v v e v
   


 (37)

 2
2 (1)dc d

d dc

dc

v
d d

v
  (38)

 2

2 (1)
dc q

q dc

dc

v
d d

v
  , (39)

where ddc is the output of the MPPT algorithm.

 From (38) and (39), the duty ratio, d, passed to the boost converter is,

 22 (1)cos(2) (1)sin(2)
dc qdc d

dc dc dc

dc dc

vv
d d d t d t

v v
      . (40)

Equation (40) shows the feedforward equation proposed for a boost MPPT converter.

2.5.2. MPPT 120 Hz Ripple Elimination Experimental Results. Figure 2.9

illustrates the experimental results utilizing the proposed feedforward method. These

results illustrate the effectiveness of the proposed feedforward method. The proposed

feedforward elimination greatly reduced the 120 Hz voltage and current ripple seen at the

PV panel.

28

Figure 2.9. Experimental results for iL1, vpv, Ppv. Left: Case #1. Middle: Case #2.

Right: Case #3.

2.6. CONCLUSIONS

 The proposed feedforward method eliminates the second harmonic seen by the

inverter controller while measuring vdc. If this second harmonic is not accounted for, a

significant 3rd harmonic on igrid, is produced (see Figure 2.4). The proposed feedforward

method is effective in removing the 3rd harmonic on igrid (see Figure 2.5). Case 1 THD

was reduced from 5.23% to 4.83%. Case 2 THD was reduced from 12.8% to 5.97%.

Case 3 THD was reduced from 22.2% to 7.69%.

 This same feedforward concept was applied to the MPPT converter. Oscillations

will occur on the PV panel terminals if the 120 Hz dc-link voltage ripple remains

unchecked (see Figure 2.8). The proposed feedforward method removes this double

frequency ripple (see Figure 2.9). Thus, a designer does not need to worry about double

frequency oscillations in a two-stage single phase grid tied inverter setup.

29

 The double frequency elimination from (40) can be used with other MPPT

algorithms; it is not limited to the P&O MPPT algorithm used in this paper. For example,

hill-climbing is similar to P&O. The difference is that hill-climbing perturbs the duty

ratio, as opposed to perturbing the commanded voltage. The effects of the feedforward

control proposed would be greater with the hill climbing algorithm. This is due to the

lack of an extra voltage control loop to help attenuate the 120 Hz ripple. The method

proposed in this study is a feedforward technique that can simply be added to any MPPT

algorithm’s output.

 The feedforward method presented is not limited to PV applications. It can also

be applied to single phase electrochemical energy storage applications (e.g.,

uninterruptible power supplies) to remove the low frequency component seen at the

battery terminals. This would allow for an increase in lifetime and efficiency of

electrochemical energy storage applications [66]. Similarly, the method could be used

for fuel cell based systems.

30

3. FOURIER SERIES ANALYSIS OF A SINGLE PHASE INVERTER

3.1. INTRODUCTION

 The interactions between the dc-link and ac side of a single phase H-bridge

inverter are nonlinear. This is due to the fundamental of the grid voltage generating a dc

voltage plus a second harmonic voltage on the dc-link. This second harmonic in turn

results in a third harmonic on the grid current, which in turn generates more harmonics.

An excitation at a specific frequency on the ac side will result in minimal output on the

dc-link at the excitation frequency, but significant output at the excitation frequency

harmonics (this also applies to applying an excitation to the dc-link and observing the

grid side). Due to this nonlinearity, predicting these harmonics is challenging. In this

study, a method of generating a large-signal time-invariant model of a single phase H-

bridge inverter is presented. The model is capable of accurately predicting the harmonics

of the steady state output.

 Modeling of harmonics in an inverter is challenging, due to the frequency transfer

properties described above. By taking the Fourier series expansion of each input and

state, the model can be converted to a periodically time varying system. Using the

concept of harmonic balance [62-64], the periodically time varying terms are eliminated

by equating like harmonics. This leaves behind a time invariant system. The challenge is

in deriving the time invariant system.

 Many techniques exist for analyzing circuits in the frequency domain. Harmonic

transfer functions (HTF) were first presented by Wereley [62, 63]. HTF's take a linear

periodically time varying system (LPTV) and convert it to a linear time invariant (LTI)

system of Fourier coefficients. The periodically varying portion of each signal is

31

eliminated by utilizing harmonic balance. Computing the HTF is nontrivial, due to the

HTF being infinite dimensional.

 Another method which utilizes Fourier coefficients for system modeling is

generalized state space averaging (GSSA) [73]. This method was designed to allow for

the modeling of power electronic converters, while taking into account a finite number of

harmonics generated by switching. For fast switching PWM circuits with low ripple, the

GSSA would result in a standard state-space averaged model.

 State space averaging requires that the switching frequency is much higher than

the system's resonant frequencies. GSSA allows for the switching frequency to be near a

resonant frequency [74]. GSSA is also commonly used in low frequency converters,

where the fundamental frequency of a state is the converter's switching frequency [75,

76].

 Modeling the effects of pulsewidth modulation (PWM) is challenging, due to the

nonlinear properties of PWM [77]. Many papers have been recently published on finding

the Fourier coefficients of a power converter's PWM waveform [78-80]. Work has also

been done on finding the Fourier coefficients of an N-phase rectifier by Sandberg [64]

and of a hysteresis controlled inverter by Albanna [81]. For this study, a high switching

frequency is assumed, and the effects of PWM are neglected.

 In all of the methods described above, there is a challenge in generating the

harmonic equations. A popular method is to use describing functions (DF) and extended

describing functions (EDF) [82]. The limitation with DF's and EDF's is that only the

fundamental harmonic of each state is used, which only allows for minimal modeling of

the frequency transfer properties. In this study, a set of algorithms are presented, which

32

generate a set of harmonic equations, given a standard large-signal model. The frequency

transfer properties for the first Nmax harmonics (an arbitrary finite set determined by the

designer) are preserved using the presented algorithms.

 These algorithms allow for multiple harmonics of the fundamental grid frequency

for each input and state. This allows for exponentially modulated periodic (EMP) [62]

inputs to the system. EMP signals are common in grid tied systems, where the grid input

voltage is a fundamental frequency (60 Hz in the US) plus some odd harmonics.

Frequency transfer properties between each harmonic are also preserved in the presented

algorithms.

 The goal of this study is to present a large-signal model of a single-phase H-

bridge inverter. This model will be used to generate the steady state harmonic output of

the converter. Comparison of the predicted steady state grid current and dc-link voltage

between the mathematical model, simulation, and experimental results are presented.

Since the interactions between harmonics are preserved, the predicted periodic steady

state output of the presented mathematical model is highly accurate.

 Section 3.2 presents the single phase inverter used in this study and also presents

a standard set of state equations. Algorithms are presented to computationally generate

the Fourier series representation of each operation required for the inverter used in this

study. Section 3.3 demonstrates how the algorithms and state equations from Section 3.2

can be used to generate a Fourier series expanded large-signal model. In Section 3.4, an

iterative method is proposed to solve for the steady-state operating point of the expanded

large-signal model. Section 3.5 contains the numeric results of the expanded large-signal

model and compares them with a Simulink simulation.

33

3.2. FOURIER SERIES EXPANSION OF VARIABLES

 Every periodic signal can be represented by

1

cos() sin()dc dk qk

k

u u u kt u kt  




     . (41)

This the real form of a Fourier series expansion. Each state, input, and output can be

separated into a dc portion (udc), a sum of d-axis portions (udcos(ωkt)), and a sum of q-

axis portions (-uqsin(ωkt)). This requires 2(Nmax+1)M equations, where Nmax is the

number of harmonics to be analyzed and M is the number of states in the system. The

truncated real form Fourier series is used in this study for each variable.

 Using non-harmonic analysis, interactions between the different input and output

frequencies are lost. In other words, an input with a specific frequency can only generate

an output at that frequency with possibly a different phase and magnitude [62]. In a

single phase inverter, however, it is well known that a 60 Hz grid voltage will yield a grid

current that contains 60 Hz and odd harmonics. One challenge in generating harmonic

functions is in determining the various frequency interactions.

 The process to generate a time invariant large-signal model is illustrated in Figure

3.1. First, the user must derive the system's state equations. This is demonstrated in

Section 3.2.1. Next, these equations are programmed into a computer. This is

demonstrated in Section 3.3.1. Using the algorithms presented in Section 3.2.2, the

computer generates the harmonic state equations. This step of generating the harmonic

state equations only needs to be performed once.

 To predict the steady state harmonic output of the system, the user must give the

computer the magnitude and phase of each harmonic for each input. For each input, udc,

udkω, and uqkω from (41) must be programmed into the computer. After receiving the

34

input and loading the saved harmonic state equations, the computer generates the

predicted harmonic steady-state operating point of the system.

Figure 3.1. Process to predict a system's harmonic steady state solution.

3.2.1. Generation of Standard State Equations. One advantage of the

harmonic equation generation proposed in this study is that once the standard state

equations are generated by the user, the harmonic state equations can be generated

computationally. The single phase H-bridge inverter to be modeled is illustrated in

Figure 3.2. A similar circuit is analyzed by Gaviria [83], where a generalized state space

model is generated for a full-bridge single-phase inverter. Gaviria models only the

fundamental harmonic of each state, where this study models multiple harmonics of each

state.

35

Figure 3.2. Inverter diagram.

 The inverter is controlled using the single phase dq axis controller illustrated in

Figure 3.3. The control objective of the inverter is to maintain a constant dc-link voltage

while outputting a 60 Hz sinusoidal grid current. A PI loop is used to control the dc-link

voltage, where Kpdc and Kidc are the proportional and integral controller gains. D-axis and

q-axis currents are controlled using PI loops, where Kpdq and Kidq are the proportional and

integral controller gains. Cross coupling elimination between the d and q-axis currents is

utilized (ωL blocks).

Figure 3.3. Inverter controller.

36

 Equations can be generated using Figure 3.2 and Figure 3.3. An average model is

assumed, where vav is equal to the commanded vav from the controller. The current going

into the H-bridge from the dc-link is

 av L
inv

dc

v i
i

v
 . (42)

Here are the system equations:

  *

1 3avd pdq pdc dc dc Ld Lqv x K x K v v i Li        (43)

 2avq pdq Lq Ldv x K i Li   (44)

Utilizing Figure 3.2, Figure 3.3, (42), (43), and (44), the system's state equations can be

determined:

  
1

dc in invv i i
C

  (45)

  
1

L av gridi v v
L

  (46)

  *

1 3idq pdc dc dc Ldx K x K v v i      (47)

 2 idq Lqx K i  (48)

  *

3 idc dc dcx K v v  (49)

3.2.2. Algorithm Generation. Notice the "90° delay", "To DQ" and "From

DQ" blocks from Figure 3.3 do not appear in the state equations. Equations representing

these blocks require the use of harmonic functions, since these blocks result in phase and

frequency transfer. The effects of these blocks on the state equations are computationally

determined and are transparent to the user. Algorithms for these computational

37

calculations are presented in the following sections; multiplication, inversion, delay 90°,

"To DQ", "From DQ", and differentiation are shown.

3.2.2.1 Multiplication. Finding the Fourier series terms at the ℓth harmonic has

been previously found [73, 74]. It is shown here because of the different notation used in

this study. When multiplying two signals (a and b) represented as a Fourier series,

     

   

max

max

1

1

cos sin

cos sin

k N

dc dk qk

k

k N

dc dk qk

k

ab a a kt a kt

b b kt b kt

 

 

 

 









 
      

 

 
    

 





, (50)

the d-axis amplitude and q-axis amplitude need to be found, at each frequency. The dc

amplitude is

max

1

()
2 2

k N
qk qkdk dk

dc dc dc

k

a ba b
ab a b

  





 
   

 
 . (51)

The d-axis ℓth harmonic amplitude is

 

max

() ()

1

() () () ()

1

1

2

1

2

k

d dc dc d d k dk q k qkd
k

k N

dk d k qk q k d k dk q k qk

k

ab a b a b a b a b

a b a b a b a b

     

       



 





   

 

      

    





 (52)

and the q-axis ℓth harmonic amplitude is

 

max

() ()

1

() () () ()

1

1

2

1

2

k

q dc dc q qk d k dk q kq
k

k N

dk q k qk d k d k qk q k dk

k

ab a b a b a b a b

a b a b a b a b

     

       



 





   

 

      

     





. (53)

3.2.2.2 Inversion. Inversion is not as straightforward as multiplication. Assume

the signal a is to be inverted and the solution is represented by b. If a is a periodic signal,

then it can be represented as a sum of sinusoids. Assuming adc>>|aac|, then b can be

approximated by a finite sum of sinusoids:

38

   

   

max

max

1

1

1

cos sin

cos sin

N

dc dk qk

k

N

dc dk qk

k

a a kt a kt

b b kt b kt

 

 

 

 







   

   





. (54)

Multiplying both sides by a yields

   

   

max

max

1

1

1 cos sin

cos sin

N

dc dk qk

k

N

dc dk qk

k

a a kt a kt

b b kt b kt

 

 

 

 





 
      

 

 
    

 





, (55)

which was examined in the previous section. The dc component of the product in (55)

must be equal to 1. All d-axis and q-axis harmonic components must be equal to 0. This

gives a set of (2Nmax+1) equations with (2Nmax+1) unknowns.

 To solve for b programmatically, a coefficient matrix (Acoeff) is be generated. In

the coefficient matrix, each component of b is an unknown. Using (51), (52), and (53),

the coefficients of b can be determined in terms of a for each harmonic. Placing the

augmented Aaug matrix,

1 1

1

1 0

1

0

dc d q

d

q

b b b

dc

 





  

 
 

 
  

 
  

augA
, (56)

in reduced row echelon form will result in the last column containing the desired terms

for b. The Matlab
®
 code for generating the harmonic inverse is in the Appendix.

39

3.2.2.3 Delay 90°. The delay block does not dealy magnitude of the signal, rather

it causes a 90° phase shift by swapping and negating various d-axis and q-axis terms. If

the harmonic being analyzed is odd, then the d-axis and q-axis values are swapped. If the

harmonic being analyzed is even, then the d-axis and q-axis values are not swapped. To

determine the sign of each element, each d-axis and q-axis value is multiplied by its

corresponding value in Table 3.1. For values greater than the 4th harmonic, the values

loop back around (i.e. the 5th harmonic uses 1st harmonic values, the 6th harmonic uses

2nd harmonic values, etc.).

Table 3.1. DQ multiplier for delay 90°.

3.2.2.4 To DQ. The To DQ block is a single phase DQ conversion, utilizing a

90° delay. The conversion used is

cos() sin()

sin() cos()

d

q delay

y xt t

y xt t

 

 

    
        

. (57)

The dc amplitude at the d-axis and q-axis output is

   11

2 2

delayqd
d dc

xx
y

  (58)

 Harmonic

Harmonic 1st 2nd 3rd 4th

d-axis: -1 -1 1 1

q-axis: 1 -1 -1 1

40

and

   1 1

2 2

delayd q

q dc

x x
y

 
  . (59)

The d-axis and q-axis amplitude of yd at the ℓth harmonic is

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

d delayq

dc

d d
d delayq d delayq

x x
x

y
x x x x

 


   

 

   


  

 
   


 (60)

and

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

delayd q

delaydc

d q
delayd q delayd q

x x
x

y
x x x x

 


   

 

   


   

 
   


. (61)

The d-axis and q-axis amplitude of yq at the ℓth harmonic is

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

delayd q

delaydc

q d
delayd q delayd q

x x
x

y
x x x x

 


   

 

   


  

 
   


 (62)

and

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

d delayq

dc

q q
d q d delayq

x x
x

y
x x x x

 


   

 

   


  

 
   


. (63)

 The DQ sections can be confusing, due to equations for d-axis and q-axis values

being broken up into a Fourier series representation. Recall that every variable in this

study is represented as a Fourier series, even the d-axis and q-axis variables in Figure 3.3.

This enables modeling controller concepts (like delay, to DQ, and from DQ) that cannot

be conventionally modeled.

41

3.2.2.5 From DQ. Conversion from DQ is simple:

    cos sind qy x t x t   . (64)

The dc component of y is

11

()()

2 2

q qd d
dc

xx
y

  (65)

The d-axis and q-axis amplitude of y at the ℓth harmonic is

(1) (1)

(1) (1) (1) (1)

() ()
() if 1

2 2

() () () ()
otherwise

2 2 2 2

d d q q

d dc

d

d d q q d d q q

x x
x

y
x x x x

 

   

 

   


  

 
   


 (66)

and

(1) (1)

(1) (1) (1) (1)

() ()
() if 1

2 2

() () () ()
otherwise

2 2 2 2

d q q d

q dc

q

d q q d d q q d

x x
x

y
x x x x

 

   

 

   


   

 
   


. (67)

3.2.2.6 Differentiation. Differentiation results in a cross coupling between the d

and q axis terms. This has been solved in previous work [73, 74], however, it is re-

derived here for completeness. The chain rule is used to differentiate a periodic time

variant signal,

 ()j t j t j t

dq dq dq

d
x e x e j x e

dt

    . (68)

In generating state equations, by utilizing harmonic balance, the periodically time varying

portion of each term is eliminated. Splitting xdq into its d and q axis terms yields the real

form of the solution,

 

 

1 1

1 1

, , ,...

, , ,...

d dc d q q

q dc d q d

x f x x x x

x f x x x x

   

   





 

 
, (69)

42

where the f(xdc,xd1ω,xq1ω,...) term represents the user generated state equation and the

ℓωxqℓω and ℓωxdℓω terms represent the cross coupling terms resulting from

differentiation. In Section 3.3.1, these cross coupling terms are represented by the

XCoupling() function.

3.3. STATE EQUATION GENERATION

 Utilizing the derived state equations and algorithms from Section 3.2, a set of

harmonic functions can be derived. The presented algorithms can be implemented in a

symbolic solver tool such as found in Matlab
®
, Mathematica

®
, Maple

®
, and Mathcad

®
.

This study utilizes the Mupad
®
 solver found in Matlab

®
 R2008b.

3.3.1. System Equations. Implementing (2-9) in a symbolic math solver is

shown below. The system equations are:

  Delay
LDelay L

i i (70)

  , ,ToDQ   Ld Lq L LDelayi i i i (71)

  pdq pdcK K L       
*

avd 1 3 dc dc Ld Lqv x x v v i i (72)

 pdqK L  avq 2 Lq Ldv x i i (73)

  ,FromDQav avd avqv v v (74)

     , ,Mult Mult Inverseinv av L dci v i v (75)

These system equations are used in the state equations:

    
1

XCoupling
C

  
dc in inv dc

v i i v (76)

    
1

XCoupling
L

  
L av grid L

i v v i (77)

43

    idq pdcK K XCoupling      
*

1 3 dc dc Ld 1x x v v i x (78)

  idqK XCoupling  
2 Lq 2

x i x (79)

    idcK XCoupling  *

3 dc dc 3x v v x (80)

 All bold typeface variables in (70-80) represent vectors of length (2Nmax+1) of

Fourier series expanded terms. In this study Nmax=6 harmonics are used with M=5 states.

A total of 70 equations are generated from the original 5 state equations. Once the

symbolic math solver completes generating (76-80), the symbolic state equations can be

stored. Next, numeric values can be plugged into the stored equations to solve for the

steady state operating point of the system.

3.3.2. Note on iinv Calculation. The computational complexity of the harmonic

inverse operation increases dramatically with Nmax. This is due to symbolically placing

Aaug in reduced row echelon form. A numeric implementation, such as rref() in Matlab
®
,

is O(n
3
), and here a symbolic implementation is needed. Any shortcuts to lessen the load

on the inverse calculation greatly reduce the total computation time.

 One shortcut is to add numeric zeros into vdc in (75). It can be seen by

observation that the odd harmonic terms in vdc are near zero. By replacing the 1st, 3rd,

and 5th harmonic d and q axis values of vdc with zeros, the computational complexity of

the inverse is reduced. This does not significantly affect the steady state accuracy of the

system, since these terms are near zero.

 Another shortcut is to truncate the output of the inverse calculation. It can be seen

that the even harmonics beyond the 4th harmonic are also very close to zero. By

truncating the results and only finding the inverse results for the dc term and the first 4

44

harmonics, the calculation time can be drastically reduced. Since the 5th and 6th

harmonic terms are small, the steady state accuracy of the system is minimally impacted.

3.4. SOLVING STATE EQUATIONS

 The resulting equations from Section 3.3 are nonlinear time invariant equations.

To solve for the steady state operating point,
dc

v , Li ,
1

x ,
2

x , and
3

x are set to 0. In this

study, the Matlab
®
 function solve() is utilized to solve the set of nonlinear equations.

Solving for all 70 unknowns at the same time is computationally expensive. An iterative

process is presented in this section to reduce the computation time.

 In the first step, the solver will neglect all harmonics past the 1
st
 harmonic. All

states corresponding to the 2nd through 6th harmonic are set to a numeric value of zero.

The solver will only be solving for the dc and 1st harmonic in this step. This gives the

solver a much more manageable 15 unknowns to solve for.

 After solving for the dc and first harmonic terms, the first and second harmonic

terms are solved for. In this iteration, the dc solution from the first step is used for the dc

terms instead of zero. The third harmonic and higher terms remain at zero for this step.

This process of incrementing the harmonics being solved for and using the solution from

the previous iteration repeats until the fifth and sixth harmonic is solved for.

 After the fifth and sixth harmonic is solved for, the process starts over; the dc

term and first harmonic are solved for, while substituting the solutions from the previous

iterations for the second through sixth harmonics, then the first harmonic and second

harmonic are solved for, and so on. This entire process of iterating up to the sixth

harmonic then returning to the dc terms can be continuously repeated, to obtain a more

45

accurate solution. The results in this study show that only two iterations are necessary to

yield an accurate solution.

3.5. SIMULATION AND EXPERIMENTAL RESULTS

 An average value simulation of Figure 3.2 and Figure 3.3 was generated using

Matlab
®
/Simulink

®
. Parameters used in the system are shown in Table 3.2. Inputs to the

system are shown in Table 3.3.

Table 3.2. System parameters.

 The system inputs were derived by taking the FFT of the no-load grid voltage.

The real and imaginary parts of the FFT were used to find the grid voltage magnitude and

phase. The resulting magnitude and phase was converted to the form in (41). The phase

was then shifted so that  
1

0grid q
v


 .

Variable Description Value

L Filter Inductance 8.2 mH

C dc-link Capacitance 110 μF

ω Inverter Fundamental Frequency 2π60

Kidq Integral Current Loop Gain 50

Kpdq Proportional Current Loop Gain 2.174

Kidc Integral dc-link Voltage Loop Gain 1

Kpdc Proportional dc-link Voltage Loop Gain 0.1

46

Table 3.3. System inputs.

 The experimental setup is illustrated in Figure 3.4. In the experimental setup, the

1 A constant input was generated using a 100 V DC source in series with a BK Precision

8500 programmable dc electronic load. The electronic load was set to regulate a constant

1 A. The controls from Figure 3.3 were implemented using a TI TMS320F28335 DSP

and programmed using Code Composer Studio.

Harmonic
gridv ini *

dcv

dc 0.0000 1 60

d1ω 29.5000 0 0

q1ω 0.0000 0 0

d2ω 0.0000 0 0

q2ω 0.0000 0 0

d3ω 0.0169 0 0

q3ω -0.1885 0 0

d4ω -0.0025 0 0

q4ω -0.0153 0 0

d5ω 0.1077 0 0

q5ω 0.3133 0 0

d6ω -0.0013 0 0

q6ω -0.0400 0 0

47

Figure 3.4. Experimental setup.

 The simulated dc-link voltage is compared to the predicted steady-state dc-link

voltage in Figure 3.5. The simulated grid current is compared to the predicted steady-

state grid current in Figure 3.6. An FFT was taken of the simulated dc-link voltage (at

steady-state) and experimental dc-link voltage. These results are compared with the

predicted steady-state dc-link voltage harmonic amplitudes in Figure 3.7. Lastly, an FFT

was taken of the simulated grid current (at steady-state) and experimental grid current.

These results were compared with the predicted steady-state grid current harmonic

amplitudes in Figure 3.8.

 In Figure 3.7 and Figure 3.8, values were predicted for dc, 60 hz, 120 Hz, 180 Hz,

240 Hz, 300 Hz, and 360 Hz. Some of these predicted values are missing from these

figures. This is due to the predicted values being far below the noise floor for the

simulation and experimental results.

48

Figure 3.5. vdc simulation and predicted steady state vdc.

Figure 3.6. igrid simulation and predicted steady state igrid.

49

Figure 3.7. FFT of simlated and experimental vdc and predicted vdc harmonic amplitudes.

Figure 3.8. FFT of simlated and experimental igrid and predicted igrid harmonic

amplitudes.

3.6. CONCLUSIONS

 This study proposed a new method to generate an accurate time invariant large-

signal model of a single phase inverter. Algorithms were presented, which allowed the

user to take their standard large-signal model, and have its variables computationally

expanded to their Fourier series representation. This allowed for the preservation of

frequency transfer properties in the inverter. Because of presented algorithms like To DQ

50

and From DQ, inverters with dq-axis controllers can be easily modeled using the

proposed method.

 With the proposed algorithms, an accurate large-signal model was generated. A

Simulink simulation was utilized to verify the predicted results. The simulation results

from Figure 3.5 and Figure 3.6 shows vdc and iL approaching the predicted values, as they

reach steady state. These simulation results verify that the algorithms in this paper are

correct.

 Figure 3.7 and Figure 3.8 take the FFT of the simulated and experimental results

and compare them with the predicted harmonic steady state output. Those results are

once again very accurate. At frequencies near the noise floor of the FFT, there are minor

discrepancies, however this is to be expected. At the frequencies of interest, the results

are accurate.

 Future work for this study is to use the generated results as a linearization point

for the system. A harmonic state space representation of the system can then be

generated. Since all frequency transfer properties between the first Nmax harmonics are

preserved, this will allow for more accurate linear models. Advanced stability methods

could then be applied to the linear model.

 The same type of analysis presented here could be utilized in three phase

inverters. Since inputs to the proposed model are EMP's, there could be an advantage in

environments with a high THD in the grid voltage. Another area which could gain some

insight from the proposed methods is in unbalanced three phase inverters. In a balanced

three phase system, there is a constant power draw from the dc-link. In an unbalanced

51

three phase system, harmonics appear in the power draw from the dc-link. Using the

methods proposed in this study, the effects of those harmonics on the grid current could

be studied.

52

4. AUTOMATIC GENERATION OF TRUNCATED HARMONIC TRANSFER

FUNCTIONS

4.1. INTRODUCTION

 Generating a harmonic transfer function (HTF) to represent a system is a

nontrivial process. This is due to the HTF being infinite-dimensional. Even if the

infinite dimensional HTF is reduced to a truncated harmonic transfer function (THTF), a

time consuming and error prone process is still required to derive the THTF. In

generating the THTF, a transfer function going from every combination of inputs and

outputs and each of those input's and output's harmonics must be generated. The solution

presented in this study is a computational algorithm which automatically generates the

THTF of a system.

 HTF's were first introduced by Wereley for the application of modeling helicopter

rotor blades [62, 63]. HTF's are an infinitely dimensional set of transfer functions which

map a set of exponentially modulated periodic (EMP) inputs to a set of EMP outputs.

What this means is that the inputs and outputs of the system are a set of Fourier series

coefficients. A system which contains periodically time varying elements is converted to

a system which is time invariant. The conversion to a time invariant system is done by

equating like harmonics, then cancelling out the periodically time varying terms. This is

known as harmonic balance. In this study, to reduce the complexity of the system the

higher order harmonics of the HTF's are truncated. This concept was explored

thoroughly by Sandberg in [64].

 One type of system which benefits from the use of HTFs is inverters. On the dc

side of the inverter, the fundamental grid frequency is rectified to a dc plus double grid

53

frequency component. The double frequency component then becomes a third harmonic

component on the ac side of the inverter. The third harmonic reflects back to the dc side

of the inverter, and so on and so forth [57, 84]. HTFs allow for these interfrequency

interactions to be modeled.

 There are many ways that the THTF can be calculated, with each method

providing its own challenges. One method is to use system identification methods to

calculate the THTF. Louarroudi proposed a nonparametric estimation procedure to

identify a system's THTF [85]. Generalized averaging (GA) is used by Qin in [86] to

generate a model of a DAB converter. GA is similar to the THTF in that periodically

time varying signals are converted to time invariant signals. A popular option to model

time varying signals as time invariant signals is to use describing functions (DF). In [87],

DFs are used to generate transfer functions which preserves the switching frequency

harmonic. From [87], it is apparent that adding even one frequency to be analyzed can

greatly complicate transfer function generation.

 The easiest way to generate the THTF is to have a computational algorithm

automatically generate the THTF. Wasynczuk formulated the building blocks for this

study with the automatic state model generator (ASMG) [88]. The AMSG is capable of

generating a state space model of a system consisting of resistors, inductors, capacitors,

voltage sources, and current sources. Johnson later utilized the ASMG for the modeling

of microgrids [89]. Henry expanded upon the AMSG to allow for the generation of state

models for switch capacitor converters [90]. This study builds upon the AMSG to

generate a THTF for a single phase dq-axis current controlled inverter.

54

 In this study, the generation of the THTF is divided into two sections: the

generation of low level circuit transfer functions and the generation of the high level

THTF. Section 4.2 describes the low level circuit transfer function generation.

Components modeled at the low level are: resistors, inductors, capacitors, voltage

sources, and current sources. The notation of the user generated netlist which describes

the circuits within the system is explained. The user generated netlist is converted into a

set of dc transfer functions, as well as a set of transfer functions in the dq rotating

reference frame.

 Section 4.3 describes the high level THTF generation. Components modeled at

the high level are: inputs, adds, gains, integrations, 90° delays, conversions to dq,

conversions from dq, circuits, multiplications, and inversions. Next, the notation of the

user generated system level netlist is explained. Finally, the user generated netlist is

converted into a THTF.

 Section 4.4 provides an example user generated netlist which describes a single-

phase grid-tied H-bridge inverter. Section 4.5 highlights a generated transfer function

which shows how the 120 Hz dc-link ripple on the inverter will affect the output grid

current. This is verified using experimental results.

4.2. LOW LEVEL CIRCUIT TF GENERATION

 Every periodic signal can be represented by

1

cos() sin()dc dk qk

k

x x x kt x kt 




     . (81)

This is essentially a Fourier series representation of a signal. Each state can be separated

into a dc portion (xdc), a sum of d-axis portions (xdkcos(ωkt)), and a sum q-axis portions

55

(−xqksin(ωkt)). Doing this requires 4(Nω+1)M equations, where Nω is the number of

harmonics to be analyzed and M is the number of branches in the circuit.

 In generating low level circuit transfer functions is a two step process: First, the

dc transfer functions must be generated. Second, the direct-quadrature (DQ) transfer

functions must be generated.

 For generating the dc circuit TFs, equations must be derived in the form of

 tf tf x A x B u . (82)

Solving for x yields

 1()tf tf

 x I A B u . (83)

The software must generate Atf and Btf from a user generated netlist. Equation (82) can

be further broken down into

(1,1) (1, 1) (1, 1) (1, 1) (1, 1)

(1,1) (1, 1) (1, 1) (1, 1) (1, 1)

(1,1) (1, 1) (1, 1) (1, 1) (1, 1)

(1,1) (

ˆ
y n n n n b n n n n b n

x b n b n n b n b n b n n b n b n

x n n n n b n n n n b n

y b n b n

          

               

          

  

 
 
  
 
 
 

i 0 A 0 0

i 0 0 0 E

v F 0 0 0

v 0

(1,1)

(1,1)

(1,1)

(1,1)1, 1) (1, 1) (1, 1) (1, 1)

(1,) (1,)

(1,) (1,)

(1,) (1,)

(1,) (1,)

ˆ

y n

x b n

x n

y b nn b n b n b n n b n b n

n ni n nv

i b n ni b n nv

n ni v n nv

b n ni b n nv



 



             

 

   

 

   

   
   
    
   
   
    





T

i

i

v

v0 A 0

0 0

b 0

0 b

0 0

(,1)

(,1)

ni

nv


 

  
    

 


u

u

, (84)

where the values in ()'s give the dimension of each matrix, n is the number of nodes, b is

the number of branches, nv is the number of voltage sources, and ni is the number of

current sources. Further explanation will be given for each component of (84) in the

following sections.

56

4.2.1. Netlist Generation. To generate Â , first the user must input a netlist

describing a circuit. Each row of the netlist describes a branch. A branch for this system

is illustrated in Figure 4.1.

Figure 4.1. General branch description.

 In this paper, at the circuit level, each branch consists of only one component, a

resistor, an inductor, a capacitor, a voltage source, or a current source. Each row of the

netlist contains the branch type (R, L, C, V, or I), the node that the positive terminal of

the branch is connected to (n1 in Figure 4.1), the node that the negative terminal of the

branch is connected to (n2 in Figure 4.1), the branch value, and the branch's name. A

simple circuit is shown in Figure 4.2. This circuit contains 3 nodes and 4 branches. The

netlist for this circuit is shown in Figure 4.3.

 The value for the voltage sources and current sources in the netlist is used to

specify the order that the inputs appear in the transfer functions matrix in (83). Before

processing the netlist, voltage sources must be placed at the top of the netlist and current

sources must be placed at the bottom of the netlist. This will be discussed further in

Section 4.2. The netlist in Figure 4.3 happens to have the voltage source at the top and

current source at the bottom. If the user does not input the voltage source and current

source branches in the correct position, the software must rearrange the branches to a

correct order, before processing.

57

Figure 4.2. Sample circuit.

Figure 4.3. Sample circuit netlist.

4.2.2. Circuit TF Generation. From Figure 4.3, the node incidence matrix, Aa

can be generated. Each column in Aa corresponds with a branch in N. Each row in Aa

corresponds with a node in N. If branch i's positive (negative) terminal is on node j, then

Aa(i,j) = 1 (Aa(i,j) = -1). All other entries in Aa are 0. From Figure 4.3, Aa is generated

and shown in Figure 4.4.

Figure 4.4. Sample node incidence matrix.

58

Placing Aa in reduced row echelon form yields aA , in the form of:

 1, 1 1, 1

1, 1 1, 1

1 0 1 1
ˆ

0 1 1 1

0 0 0 0

n n n b n

a

n b n

    

  

 
   

     
    

 

I A
A

0 0
. (85)

Columns in (85) may need to be swapped to get the correct form. If this is the case, the

corresponding branches (rows) in N must also be swapped. The aA matrix in (85) gives

the Â and ˆ T
A components of Atf.

 Â gives n-1 linearly independent KCL equations. Let iy be currents

corresponding to the first n-1 branches in the netlist, N and let ix be the currents

corresponding to the last b-n+1 branches in the netlist N. From this and (85),

 ˆ
y x i Ai (86)

is derived, which relates the dependent currents (iy) to the independent currents (ix). By

taking the transpose of Â , a set of b-n+1 linearly independent KVL equations is given in

the form of

 ˆ T

y xv A v , (87)

which relates the dependent voltages (vy) to the independent voltages (vx). From (86) and

(87), b linearly independent equations are given. There must be 2b linearly independent

equations, since the current and voltage must be derived for each branch. The remaining

b equations are derived using branch constitutive equations, which are defined in E, F, bi,

and bv from (84).

 Equations for the independent variables (ix and vx) can be derived

programmatically. The algorithm used to define F and bv, which maps the dependent

59

currents to the independent voltages, is shown in Figure 4.5. First, F, bv, and i are

initialized. The first n-1 branches (rows) of netlist N are parsed through by algorithm's

loop. F is populated by setting its diagonal entries to the corresponding branch's

impedance. If the ith branch is a resistor, the ith diagonal entry of F is set to the branch's

resistive value. If the ith branch is an inductor, the ith diagonal entry of F is set to the

branch's impedance (sL). If the ith branch is a capacitor, the ith diagonal entry of F is set

to the branch's impedance (1 sC). If the ith branch is a voltage source, then the ith row

and the column corresponding with the voltage source of bv is set to 1. If the netlist N

follows the convention of ordering all voltage source branches first and all current source

branches last, then there will be no current sources in the first n-1 branches and the error

case will not be encountered. The exception to this rule is if the user has violated KCL,

by placing multiple current sources in series.

60

Figure 4.5. F and bv generation algorithm.

 The algorithm used to define E and bi, which maps the dependent voltages to the

independent currents, is shown in Figure 4.6. First, E, bi, and i are initialized. The last b-

n+1 branches (rows) of netlist N are parsed through by algorithm's loop. E is populated

by setting its diagonal entries to the corresponding branch's admittance. If the ith branch

is a resistor, the ith diagonal entry of E is set to the inverse of the branch's resistive value.

If the ith branch is an inductor, the ith diagonal entry of E is set to the branch's

admittance (1 sL). If the ith branch is a capacitor, the ith diagonal entry of E is set to the

branch's admittance (sC). If the ith branch is a current source, then the ith row and the

61

column corresponding with the voltage source of bi is set to -1. If the netlist N follows

the convention of ordering all voltage source branches first and all current source

branches last, then there will be no current sources in the last b-n+1 branches and the

error case will not be encountered. The exception to this rule is if the user has violated

KVL, by placing multiple voltage sources in parallel.

Figure 4.6. E and bi generation algorithm.

62

 All variables in (84) are now defined. Transfer functions for the basic case can be

solved for using (83). These transfer functions are in the form

1 1 1 1 1 1

(1) (2) () (1) (2) ()

2 2 2 2 2 2

(1) (2) () (1) (2) ()

(1) (2) () (1) (2) ()

1 1 1 1 1

(1) (2) () (1) (

in in in ni in in in nv

in in in ni in in in nv

b b b b b b

in in in ni in in in nv

in in in ni in in

i i i i i i

i i i v v v

i i i i i i

i i i v v v

i i i i i i

i i i v v v

v v v v v

i i i v v


x

u 1

2) ()

2 2 2 2 2 2

(1) (2) () (1) (2) ()

2

(1) (2) () (1) (2) ()

in nv

in in in ni in in in nv

b b b b b

in in in ni in in in nv

v

v

v v v v v v

i i i v v v

v v v v v v

i i i v v v

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. (88)

 The numerator in each entry represents either the current though a branch or the

voltage across the branch. The branch number is specified by the numerator's subscript

(with b representing the number of branches in the circuit). The denominator in each

entry represents an input current or voltage. The input source number is specified by the

subscript in parenthesis (with ni representing the number of current sources in the circuit

and nv representing the number of voltage sources in the circuit).

 In this section, standard dc transfer functions were derived for the voltage and

current of each branch. In the next section, transfer functions are derived at the circuit

level, for the periodically time varying terms of the Fourier series expanded terms. This

allows for a periodically time varying system to be accurately analyzed as a time

invariant system.

63

4.2.3. DQ TF Generation. Section 4.2.2 discussed generating a set of standard

dc transfer functions for a system. This section discusses generating circuit level transfer

functions using a DQ rotating reference frame. This is equivalent to finding the Fourier

series coefficients of each variable. Each DQ equation describes the input to output

relationship of a signal at a specific frequency. The concept of is the same as generating

equations which use Fourier series coefficients as their inputs and outputs.

 For each harmonic to be analyzed, a new set of equations in the form of (82) is

generated. In generating DQ equations, (82) is represented as (89). Equation (89) is very

similar to (84). The main difference lies in the size of the DQ equations. There are twice

as many DQ equations as there are dc equations (for a specific frequency). This is due to

each DQ equation being represented by both the amplitude of a cosine signal (d-axis) at a

specific frequency and the amplitude of a negative sine signal (q-axis) at a specific

frequency.

(2(1),1)

(2(1),1)

(2(1),1)

(2(1),1)

(2(1),2(1)) (2(1),2(1)) (2(1),2(1)) (2(1),2(1))

(2(1),2(1)) (2(1),2(1)) (2(1),2(

ˆ

dqy n

dqx b n

dqx n

dqy b n

n n dq n b n n n n b n

b n n dq b n b n b n n



 



 

         

         

 
 
  
 
 
 



i

i

v

v

0 A 0 0

0 G 0 1)) (2(1),2(1))

(2(1),2(1)) (2(1),2(1)) (2(1),2(1)) (2(1),2(1))

(2(1),2(1)) (2(1),2(1)) (2(1),2(1)) (2(1),2(1))

(2(

ˆ

dq b n b n

dq n n n b n dq n n n b n

b n n b n b n dq b n n b n b n

dqy n

   

         

             

 
 
 
 
 
  

T

E

F 0 H 0

0 0 A 0

i 1),1) (2(1),2) (2(1),2)

(2(1),1) (2(1),2) (2(1),2) (2

(2 1),1) (2(1),2) (2(1),2)

(2(1),1) (2(1),2) (2(1),2)

n ni n nv

dqx b n dqi b n ni b n nv dq n

dqx n n ni dqv n nv

dqy b n b n ni b n nv

  

     

  

     

   
   
   
   
   
   

0 0

i b 0 u

v 0 b

v 0 0

,1)

(2 ,1)

i

dq nv

 
 
 u

(89)

64

 To generate dq equations, each submatrix from (89) must be defined. The ˆ
dq

A ,

dqE , and dqF matrices are easily generated using Â , E, and F respectively from (84).

Multiplying each individual entry in Â , E, and F by a 2x2 identity matrix will generate

the ˆ
dq

A , dqE , and dqF matrices. For example, if

1 0 2 0

1 2 0 1 0 2
, then .

3 4 3 0 4 0

0 3 0 4

 
 

        
 
 

dq
E E (90)

This can be done because the variable and input vectors are in the form:

1 1

1 1

2 2

2 2

, .

d d

q q

d d

d d

x u

x u

x u

x u

   
   
   

    
   
   
      

x u (91)

 Another difference is that (89) adds the Gdq and Hdq matrices. These matrices

represent a cross coupling between the d-axis and q-axis equations, which occurs at

energy storage elements in the circuits (this cross coupling is why many DQ controlled

inverters have a L decoupling term, just before generating the commanded output

voltage). Cross coupling terms must also be added to the existing Edq and Fdq matrices.

Gdq contains exclusively cross coupling terms for the independent branch currents. Hdq

contains exclusively cross coupling terms for the independent branch voltages. Addition

of the cross coupling terms to (89) are shown in Figure 4.7 and Figure 4.8.

65

Figure 4.7. Generation of Gdq and bdqi. Addition of cross coupling terms to Edq.

66

Figure 4.8. Generation of Hdq and bdqv. Addition of cross coupling terms to Fdq.

 The ω term in Figure 4.7 and Figure 4.8 is the frequency being analyzed. For

example, if a user wants to analyze their system at dc, 60 Hz, 120 Hz, and 180 Hz. There

will be one equation in the form of (84). There will also be three equations in the form of

(89); One of these equations will have ω=2π60, one will have ω=2π120, and one will

have ω=2π180. Since the individual circuits are linear, there is no transfer between the

dc, 60 Hz, 120 Hz, and 180 Hz circuits. The transfer properties will come into play when

processing the system level netlist.

67

4.3. HIGH LEVEL SYSTEM TF GENERATION

 Section 4.2 described the generation of circuits containing simple blocks

consisting of resistors, inductors, capacitors, voltage sources, and current sources. How

control systems and these circuits interact with one another is described by the high level

system netlist. The high level netlist defines the inputs to each circuit voltage and current

source. The control system is also defined in the high level system netlist.

 At the circuit level, multiple sets of equations are generated, one for the dc case,

and one for each harmonic to be analyzed. At the system level however, only one set of

equations in the form of (82) are generated. This set of equations will contain the dc

equations, as well as all of the dq equations. Asys and Bsys are the variables used to define

the system of equations at the system level. Asys is a    2 1 2 1sysNode sysNodeN N N N   

matrix, where NsysNode is the number of nodes at the system level. Bsys is a

   2 1 2 1sysNode iN N N N    matrix, where Ni is the number of inputs to the system.

 After solving for Asys and Bsys, system level transfer functions are solved for using

(83). xsys is a vector of length  2 1sysNodeN N  . Each   1 2 1 1k N   entry is the

dc value of the kth system node. Each   1 2 1 2k N h   and

  1 2 1 2 1k N h    entry is the d-axis and q-axis value respectively of the kth

system node at the hth harmonic.

 The high level netlist differs from the low level system netlist in that a "through

variable", such as current is not utilized. Each column in the system level netlist differs

from the circuit netlist introduced in Figure 4.3. The columns for the system level netlist

are: type, input node(s), output node, and value. Linear element types used in the high

level system netlist are: input, add, constant, gain, integrate, 90° delay, to dq, from dq,

68

and circuit. Nonlinear element types used in the high level system netlist are: multiply

and divide. Each of these elements is described in the following sections.

4.3.1. Input. An input row in the system level netlist is in the form

  IN 0 out numN U , (92)

where Nout is the node that the input connects to and Unum specifies the order that the

input will appear in usys. The "0" column is a "don't care" column. An input row only

affects the Bsys matrix. The dc portion of Bsys for an input is:

       1 2 1 1, 1 2 1 1 1out numN N U N       sysB . (93)

The d-axis portion of Bsys for an input is:

           1 2 1 2 1 2, 1 2 1 2 1 2 1out numN N U N           sysB . (94)

The q-axis portion of Bsys for an input is:

           1 2 1 2 1 3, 1 2 1 2 1 3 1out numN N U N           sysB , (95)

where ℓ specifies the harmonic number of each input.

4.3.2. Add. An ADD row in the system level netlist is in the form

  ,1 ,2 1 2ADD in in outN N N Sgn Sgn     . (96)

Nin,1 and Nin,2 specifies the two input nodes to be added. Nout specifies the output node of

the ADD block. Sgn1 and Sgn2 are either +1 or -1. These entries specify if its respective

input node is added or subtracted.

 ADD affects the Asys matrix. The dc portion of Asys for an ADD block is:

       

       

,1 1

,2 2

1 2 1 1, 1 2 1 1

1 2 1 1, 1 2 1 1

out in

out in

N N N N Sgn

N N N N Sgn

 

 

      

      

sys

sys

A

A
 (97)

The d-axis portion of Asys for an ADD block is:

69

           

           

,1 1

,2 2

1 2 1 2 1 2, 1 2 1 2 1 2

1 2 1 2 1 2, 1 2 1 2 1 2

out in

out in

N N N N Sgn

N N N N Sgn

 

 

          

          

sys

sys

A

A
. (98)

The q-axis portion of Asys for an ADD block is:

           

           

,1 1

,2 2

1 2 1 2 1 3, 1 2 1 2 1 3

1 2 1 2 1 3, 1 2 1 2 1 3

out in

out in

N N N N Sgn

N N N N Sgn

 

 

          

          

sys

sys

A

A
, (99)

where ℓ specifies the harmonic number.

4.3.3. Gain. A GAIN row in the system level netlist is in the form

  GAIN in outN N G , (100)

where Nin specifies the input node, Nout specifies the output node, and G specifies the gain

value. The dc portion of Asys for a GAIN block is:

       1 2 1 1, 1 2 1 1out inN N N N G       sysA . (101)

The d-axis portion of Asys for a GAIN block is:

           1 2 1 2 1 2, 1 2 1 2 1 2out inN N N N G           sysA . (102)

The q-axis portion of Asys for a GAIN block is:

           1 2 1 2 1 3, 1 2 1 2 1 3out inN N N N G           sysA , (103)

where ℓ specifies the harmonic number.

4.3.4. Integrate. An INT row is in the form

  INT 0in outN N , (104)

where Nin specifies the input node and Nout specifies the output node. Once again, the "0"

column specifies a "don't care" column. The dc portion of Asys for an INT block is:

         
1

1 2 1 1, 1 2 1 1out inN N N N
s

       
sys

A . (105)

The d-axis input to d-axis output portion of Asys for a GAIN block is:

70

             
1

1 2 1 2 1 2, 1 2 1 2 1 2out inN N N N
s

           
sys

A . (106)

The d-axis input to q-axis output portion of Asys for a GAIN block is:

            1 2 1 2 1 3, 1 2 1 2 1 2out inN N N N

s

 



          



sys
A

 (107)

The q-axis input to d-axis output portion of Asys for a GAIN block is:

            1 2 1 2 1 2, 1 2 1 2 1 3out inN N N N

s

 



          
sys

A

 (108)

The q-axis input to q-axis output portion of Asys for a GAIN block is:

             
1

1 2 1 2 1 3, 1 2 1 2 1 3out inN N N N
s

           
sys

A , (109)

where ℓ specifies the harmonic number.

4.3.5. 90° Delay. The delay block does not dealy magnitude of the signal, rather

it causes a 90° phase shift by swapping and negating various d-axis and q-axis terms. If

the harmonic being analyzed is odd, then the d-axis and q-axis values are swapped. If the

harmonic being analyzed is even, then the d-axis and q-axis values are not swapped. To

determine the sign of each element, each d-axis and q-axis value is multiplied by its

corresponding value in Table 4.1. For values greater than the 4th harmonic, the values

loop back around (i.e. the 5th harmonic uses 1st harmonic values, the 6th harmonic uses

2nd harmonic values, etc.). DC values are not affected by this modeling technique.

 A DELAY row is in the form:

  DELAY 0in outN N , (110)

71

where Nin is the input node to the DELAY block and Nout is the output node from the

DELAY block. The "0" column represents a "don't care" case.

The dc portion of Asys for a DELAY block is:

       1 2 1 1, 1 2 1 1 1out inN N N N       sysA (111)

The d-axis portion of Asys for a DELAY block is:

     

     

     

     

1 2 1 2 1 2,
LUT(1,) if is even

1 2 1 2 1 2

1 2 1 2 1 2,
LUT(1,) if is odd

1 2 1 2 1 3

out

in

out

in

N N

N N

N N

N N









      
         


     

        

sys

sys

A

A

 (112)

The q-axis portion of Asys for a DELAY block is:

     

     

     

     

1 2 1 2 1 3,
LUT(2,) if is even

1 2 1 2 1 3

1 2 1 2 1 3,
LUT(2,) if is odd

1 2 1 2 1 2

out

in

out

in

N N

N N

N N

N N









      
         


     

        

sys

sys

A

A

 (113)

where LUT is defined by Table 4.1 and ℓ specifies the harmonic number.

Table 4.1. DQ multiplier for delay 90°.

 Harmonic

Harmonic 1st 2nd 3rd 4th

d-axis: -1 -1 1 1

q-axis: 1 -1 -1 1

72

4.3.6. To DQ. The TODQ block is a single phase DQ conversion, utilizing a 90°

delay. The conversion used is

cos() sin()

sin() cos()

d

q delay

y xt t

y xt t

 

 

    
        

. (114)

The dc amplitude at the d-axis and q-axis output is

   11

2 2

delayqd
d dc

xx
y

  (115)

and

   1 1

2 2

delayd q

q dc

x x
y

 
  . (116)

The d-axis and q-axis amplitude of yd at the ℓth harmonic is

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

d delayq

dc

d d
d delayq d delayq

x x
x

y
x x x x

 


   

 

   


  

 
   


 (117)

and

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

delayd q

delaydc

d q
delayd q delayd q

x x
x

y
x x x x

 


   

 

   


   

 
   


. (118)

The d-axis and q-axis amplitude of yq at the ℓth harmonic is

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

delayd q

delaydc

q d
delayd q delayd q

x x
x

y
x x x x

 


   

 

   


  

 
   


 (119)

and

73

  

(1) (1)

(1) (1) (1) (1)

if 1
2 2

otherwise
2 2 2 2

d delayq

dc

q q
d q d delayq

x x
x

y
x x x x

 


   

 

   


  

 
   


. (120)

 The DQ sections can be confusing, due to equations for d-axis and q-axis values

being broken up into a Fourier series representation. Recall that every variable in this

study is represented as a Fourier series, even the d-axis and q-axis current values inside

the controller. This enables modeling controller concepts (like delay, to DQ, and from

DQ) that cannot be conventionally modeled.

 After generating a set of equations from the algorithms in (115)-(120), the

Jacobian of these set of equations is found. Since TODQ is a linear operation, it is not

necessary to use the Jacobian, but it is still a valid method to populate Asys. For this

study, TodqJacob is the Jacobian matrix of the TODQ operation described above.

 A TODQ row is in the form:

 , , ,TODQ 0in in delay out d out qN N N N        
. (121)

Nin is the input signal to be converted to the dq reference frame. Nin,delay is the Nin signal

delayed 90°. Nout,d and Nout,q are the d-axis output and q-axis output respectively. The

"0" column is a "don't care" column.

 The dc term of the d-axis output of Asys, due to Nin is:

  

       

 

, 1 2 1 1,

1 2 1 1: 1 2 1 1 2

1,1: 2 1

out d

in in

N N

N N N N N

N



  



   
 

        



sysA

TodqJacob

 (122)

The dc term of the d-axis output of Asys, due to Nin,delay is:

74

  

  

  

 

,

,

,

1 2 1 1,

1 2 1 1: 1,2 2 : 4 2

1 2 1 1 2

out d

in delay

in delay

N N

N N N N

N N N



  

 

   
 
      
 
     

sysA TodqJacob (123)

The dc term of the q-axis output of Asys, due to Nin is:

  

   

   

 

, 1 2 1 1,

1 2 1 1: 2 2,1: 2 1

1 2 1 1 2

out q

in

in

N N

N N N N

N N N



  

 

   
 

      
 
    
 

sysA TodqJacob (124)

The dc term of the q-axis output of Asys, due to Nin,delay is:

   

   

   

 

,

,

,

1 2 1 1,

1 2 1 1:

1 2 1 1 2

2 2,2 2 : 4 2

out q

in delay

in delay

N N

N N

N N N

N N N





 

  

   
 
    
 
    
 

  

sysA

TodqJacob

 (125)

The d-axis term of the d-axis output of Asys, due to Nin is:

    

   

   

 

, 1 2 1 2 1 2,

1 2 1 1: 2 ,1: 2 1

1 2 1 1 2

out d

in

in

N N

N N N

N N N



 

 

     
 

     
 
    
 

sysA TodqJacob (126)

The d-axis term of the d-axis output of Asys, due to Nin,delay is:

     

   

   

 

,

,

,

1 2 1 2 1 2,

1 2 1 1:

1 2 1 1 2

2 ,2 2 : 4 2

out d

in delay

in delay

N N

N N

N N N

N N





 

 

     
 
    
 
    
 

 

sysA

TodqJacob

 (127)

The q-axis term of the d-axis output of Asys, due to Nin is:

75

     

   

   

 

, 1 2 1 2 1 3,

1 2 1 1: 2 1,1: 2 1

1 2 1 1 2

out d

in

in

N N

N N N

N N N



 

 

     
 

      
 
    
 

sysA TodqJacob (128)

The q-axis term of the d-axis output of Asys, due to Nin,delay is:

     

   

   

 

,

,

,

1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 1,2 2 : 4 2

out d

in delay

in delay

N N

N N

N N N

N N





 

 

     
 
    
 
    
 

  

sysA

TodqJacob

 (129)

The d-axis term of the q-axis output of Asys, due to Nin is:

     

   

   

 

, 1 2 1 2 1 2,

1 2 1 1:

1 2 1 1 2

2 1 2 ,1: 2 1

out q

in

in

N N

N N

N N N

N N





 

 

     
 

    
 
    
 

  

sysA

TodqJacob

 (130)

The d-axis term of the q-axis output of Asys, due to Nin,delay is:

     

   

   

 

,

,

,

1 2 1 2 1 2,

1 2 1 1:

1 2 1 1 2

2 1 2 ,2 2 : 4 2

out q

in delay

in delay

N N

N N

N N N

N N N





 

  

     
 
    
 
    
 

   

sysA

TodqJacob

 (131)

The q-axis term of the q-axis output of Asys, due to Nin is:

     

   

   

 

, 1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 2 2,1: 2 1

out q

in

in

N N

N N

N N N

N N





 

 

     
 

    
 
    
 

  

sysA

TodqJacob

 (132)

The q-axis term of the q-axis output of Asys, due to Nin,delay is:

76

     

   

   

 

,

,

,

1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 2 2,2 2 : 4 2

out q

in delay

in delay

N N

N N

N N N

N N N





 

  

     
 
    
 
    
 

   

sysA

TodqJacob

 (133)

where ℓ specifies the harmonic number. The ":" operator is used to specify a range of

values in a matrix. In the TODQ case, the first half of columns in TodqJacob

correspond to the Nin node input and the second half of columns in TodqJacob

correspond to the Nin,delay node input.

4.3.7. From DQ. Conversion from DQ is simple:

    cos sind qy x t x t   . (134)

The dc component of y is

11

()()

2 2

q qd d
dc

xx
y

  (135)

The d-axis and q-axis amplitude of y at the ℓth harmonic is

(1) (1)

(1) (1) (1) (1)

() ()
() if 1

2 2

() () () ()
otherwise

2 2 2 2

d d q q

d dc

d

d d q q d d q q

x x
x

y
x x x x

 

   

 

   


  

 
   


 (136)

and

(1) (1)

(1) (1) (1) (1)

() ()
() if 1

2 2

() () () ()
otherwise

2 2 2 2

d q q d

q dc

q

d q q d d q q d

x x
x

y
x x x x

 

   

 

   


   

 
   


. (137)

 After generating a set of equations from the algorithms in (135)-(137), the

Jacobian of these set of equations is found. Since FROMDQ is a linear operation, it is

77

not necessary to use the Jacobian, but it is still a valid method to populate Asys. For this

study, FromdqJacob is the Jacobian matrix of the FROMDQ operation described above.

 A FROMDQ row is in the form:

, ,FROMDQ 0in d in q outN N N    

, (138)

where Nin,d is the d-axis input, Nin,q is the q-axis input, and Nout is the output.

The dc term of Asys, due to Nin,d is:

   

  

  

 ,

,

1 2 1 1,

1 2 1 1: 1,1: 2 1

1 2 1 1 2

out

in d

in d

N N

N N N

N N N



 

 

   
 
     
 
     

sys
A FromdqJacob (139)

The dc term of Asys, due to Nin,q is:

   

  

  

 ,

,

1 2 1 1,

1 2 1 1: 1,2 2 : 4 2

1 2 1 1 2

out

in q

in q

N N

N N N N

N N N



  

 

   
 
      
 
     

sysA FromdqJacob (140)

The d-axis term of Asys, due to Nin,d is:

     

   

   

 ,

,

1 2 1 2 1 2,

1 2 1 1: 2 ,1: 2 1

1 2 1 1 2

out

in d

in d

N N

N N N

N N N



 

 

     
 
     
 
     

sys
A FromdqJacob (141)

The d-axis term of Asys, due to Nin,q is:

     

  

  

 

,

,

1 2 1 2 1 2,

1 2 1 1:

1 2 1 1 2

2 ,2 2 : 4 2

out

in q

in q

N N

N N

N N N

N N





 

 

     
 
    
 
    
 

 

sysA

FromdqJacob

 (142)

The q-axis term of Asys, due to Nin,d is:

78

     

   

   

 

,

,

1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 1,1: 2 1

out

in d

in d

N N

N N

N N N

N





 



     
 
    
 
     

 

sysA

FromdqJacob

 (143)

The q-axis term of Asys, due to Nin,q is:

     

  

  

 

,

,

1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 1,2 2 : 4 2

out

in q

in q

N N

N N

N N N

N N





 

 

     
 
    
 
    
 

  

sysA

FromdqJacob

 (144)

where ℓ specifies the harmonic number. In the FROMDQ case, the first half of columns

in FromdqJacob correspond to the Nin,d node input and the second half of columns in

FromdqJacob correspond to the Nin,q node input.

4.3.8. Circuit. A CKT row is in the form

 ,1 ,2 ,1 ,2CKT in in out outN N N N CktNum         . (145)

Nin,k specifies the system level node connected to the kth input of the circuit. Nout,k

specifies the system level node connected to the kth branch's current in the circuit

specified by CktNum (if k b). If k b , then Nout,k specifies the system level node

connected to the (k-b)th branch's voltage in the circuit specified by CktNum. The dc and

dq circuit level TF's generated from Section 4.2 are placed in variables Tdc and Tdq

respectively.

 The dc portion of Asys for a CKT block is:

         1 2 1 1, 1 2 1 1 ,out in dc out inN N N N T N N       sysA , (146)

79

for each Nin and Nout specified in the CKT row of the netlist. Like the INT block, the

CKT block also contains cross coupling terms between the d and q-axis components.

The d-axis input to d-axis output component of the CKT block is:

     

     

   

   

1 2 1 2 1 2,

1 2 1 2 1 2

2 1 2 1 1,

2 1 2 1 1

out

in

out

dq

in

N N

N N

N N
T

N N









     
       

    
      

sysA

. (147)

The d-axis input to q-axis output component of the CKT block is:

     

     

   

   

1 2 1 2 1 3,

1 2 1 2 1 2

2 1 2 1 2,

2 1 2 1 1

out

in

out

dq

in

N N

N N

N N
T

N N









     
       

    
      

sysA

. (148)

The q-axis input to d-axis output component of the CKT block is:

     

     

   

   

1 2 1 2 1 2,

1 2 1 2 1 3

2 1 2 1 1,

2 1 2 1 2

out

in

out

dq

in

N N

N N

N N
T

N N









     
       

    
      

sysA

. (149)

The q-axis input to q-axis output component of the CKT block is:

     

     

   

   

1 2 1 2 1 3,

1 2 1 2 1 3

2 1 2 1 2,

2 1 2 1 2

out

in

out

dq

in

N N

N N

N N
T

N N









     
       

    
      

sysA

. (150)

 The dq-axis components occur for each Nin and Nout listed in that CKT block's

netlist, as well as every harmonic, ℓ.

80

4.3.9. Multiplication. Finding the Fourier series terms at the ℓth harmonic has

been previously found [73, 74]. It is shown here because of the different notation used in

this study. When multiplying two signals (a and b) represented as a Fourier series,

     

   

max

max

1

1

cos sin

cos sin

k N

dc dk qk

k

k N

dc dk qk

k

ab a a kt a kt

b b kt b kt

 

 

 

 









 
      

 

 
    

 





, (151)

the d-axis amplitude and q-axis amplitude need to be found, at each frequency. The dc

amplitude is

max

1

()
2 2

k N
qk qkdk dk

dc dc dc

k

a ba b
ab a b

  





 
   

 
 . (152)

The d-axis ℓth harmonic amplitude is

 

max

() ()

1

() () () ()

1

1

2

1

2

k

d dc dc d d k dk q k qkd
k

k N

dk d k qk q k d k dk q k qk

k

ab a b a b a b a b

a b a b a b a b

     

       



 





   

 

      

    





 (153)

and the q-axis ℓth harmonic amplitude is

 

max

() ()

1

() () () ()

1

1

2

1

2

k

q dc dc q qk d k dk q kq
k

k N

dk q k qk d k d k qk q k dk

k

ab a b a b a b a b

a b a b a b a b

     

       



 





   

 

      

     





. (154)

 After generating a set of equations from the algorithms in (50)-(53), the Jacobian

of these set of equations is found. Values used in the resulting Jacobian matrix are the

linearization points of the system. Linearization points must be known for each input

node connected to a nonlinear block (MULT and DIV in this study). For this study,

MultJacob is the Jacobian matrix of the multiplication operation described above.

81

 A MULT row is in the form:

,1 ,2MULT 0in in outN N N     , (155)

where Nin,k specifies the input nodes to the MULT block. Nout specifies the output node

of the MULT block. The dc component of Asys due to node Nin,1 is:

   

  

  

 ,1

,1

1 2 1 1,

1 2 1 1: 1,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

   
 
     
 
     

sys
A MultJacob (156)

The dc component of Asys due to node Nin,2 is:

   

   

   

 ,2

,2

1 2 1 1,

1 2 1 1: 1,2 2 : 4 2

1 2 1 1 2

out

in

in

N N

N N N N

N N N



  

 

   
 
      
 
     

sys
A MultJacob (157)

The d-axis component of Asys due to node Nin,1 is:

     

  

  

 ,1

,1

1 2 1 2 1 2,

1 2 1 1: 2 ,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

     
 
     
 
     

sys
A MultJacob (158)

The d-axis component of Asys due to node Nin,2 is:

     

   

   

 

,2

,2

1 2 1 2 1 2,

1 2 1 1:

1 2 1 1 2

2 ,2 2 : 4 2

out

in

in

N N

N N

N N N

N N





 

 

     
 
    
 
     

 

sysA

MultJacob

 (159)

The q-axis component of Asys due to node Nin,1 is:

     

  

  

 ,1

,1

1 2 1 2 1 3,

1 2 1 1: 2 1,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

     
 
      
 
     

sys
A MultJacob (160)

82

The q-axis component of Asys due to node Nin,2 is:

     

   

   

 

,2

,2

1 2 1 2 1 3,

1 2 1 1:

1 2 1 1 2

2 1,2 2 : 4 2

out

in

in

N N

N N

N N N

N N





 

 

     
 
    
 
     

  

sysA

MultJacob

 (161)

where ℓ specifies the harmonic number of each input. In the MULT case, the first half of

columns in MultJacob correspond to the Nin,1 node input and the second half of columns

in MultJacob correspond to the Nin,2 node input.

4.3.10. Inversion. Inversion is not as straightforward as multiplication. Assume

the signal a is to be inverted and the solution is represented by b. If a is a periodic signal,

then it can be represented as a sum of sinusoids. Assuming adc>>|aac|, then b can be

approximated by a finite sum of sinusoids:

   

   

max

max

1

1

1

cos sin

cos sin

N

dc dk qk

k

N

dc dk qk

k

a a kt a kt

b b kt b kt

 

 

 

 







   

   





. (162)

Multiplying both sides by a yields

   

   

max

max

1

1

1 cos sin

cos sin

N

dc dk qk

k

N

dc dk qk

k

a a kt a kt

b b kt b kt

 

 

 

 





 
      

 

 
    

 





, (163)

which was examined in the previous section. The dc component of the product in (55)

must be equal to 1. All d-axis and q-axis harmonic components must be equal to 0. This

gives a set of (2Nmax+1) equations with (2Nmax+1) unknowns.

83

 To solve for b programmatically, a coefficient matrix (Acoeff) is be generated. In

the coefficient matrix, each component of b is an unknown. Using (51), (52), and (53),

the coefficients of b can be determined in terms of a for each harmonic. Placing the

augmented Aaug matrix,

1 1

1

1 0

1

0

dc d q

d

q

b b b

dc

 





  

 
 

 
  

 
  

augA
, (164)

in reduced row echelon form will result in the last column containing the desired terms

for b.

 After generating a set of equations from the algorithms in (162)-(164), the

Jacobian of these set of equations is found. Values used in the resulting Jacobian matrix

are the linearization points of the system. For this study, InvJacob is the Jacobian matrix

of the inverse operation described above.

 An INV row is in the form:

  INV 0in outN N , (165)

where Nin specifies the input node to the INV block and Nout specifies the output node

from the INV block. The "0" column is a "don't case" case. The dc component of Asys

for an INV block is:

   

   

   

 

1 2 1 1,

1 2 1 1: 1,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

   
 

     
 

    

sys
A InvJacob (166)

The d-axis component of Asys for an INV block is:

84

     

   

   

 ,1

,1

1 2 1 2 1 2,

1 2 1 1: 2 ,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

     
 
     
 
     

sys
A InvJacob (167)

The q-axis component of Asys for an INV block is:

     

  

  

 ,1

,1

1 2 1 2 1 3,

1 2 1 1: 2 1,1: 2 1

1 2 1 1 2

out

in

in

N N

N N N

N N N



 

 

     
 
      
 
     

sys
A InvJacob (168)

where ℓ specifies the harmonic number of each input.

4.4. GENERATING EQUATIONS FOR THE INVERTER

 In this section, truncated harmonic transfer functions are generated for the single

phase grid tied H-bridge inverter illustrated in Figure 4.9. The control objective of the

inverter is to maintain a constant dc-link voltage and output a sinusoidal grid current.

Figure 4.10 illustrates the dq current controller used in the inverter. Node numbers are

indicated by the circled numbers. Proportional integral (PI) controllers are used to

regulate the dc-link voltage, the d-axis current and the q-axis current.

Figure 4.9. Inverter example circuit.

85

Figure 4.10. Inverter controller.

 To model this circuit using the proposed method, the circuit in Figure 4.9 must

first be split into two (average model) circuits, illustrated in Figure 4.11. This is required

because the circuit level vav is generated from controls at the system level.

Figure 4.11. Averaged model inverter circuit.

 The transfer functions describing the circuits in Figure 4.11 are generated by the

low level circuit netlist from Section 4.2. The overall system equations are generated

using the system level netlist, the controls illustrated in Figure 4.10, and the transfer

functions generated from the low level circuit netlist.

86

 The circuit level netlists are

I 1 2 1

1= CAP 1 2 680 - 6

I 2 1 2

CktNet e

 
 
 
  

 (169)

and

V 1 3 1

2= L 1 2 8.4 - 3 .

V 2 3 2

CktNet e

 
 
 
  

 (170)

The system level netlist is generated from Figure 4.10:

87

   

   

   
   
   

   

IN 0 5 1

CKT 2 1 0 29 0 0 0 0 2

IN 0 1 3

DELAY 29 28 0

TODQ 29 28 3 4 0

GAIN 4 6 -3.1667

GAIN 3 7 3.1667

GAIN 4 27 -1

GAIN 27 8 2.509

GAIN 27 9 10

INT 9 10 0

ADD 8 10 11 1 1

ADD 11 7 13 1 1

CKT 5 14 0 0 0 0 16 0 1

IN 0 15 2

ADD 15 16 17 -1 1

GAIN 17 18 0.3488

GAIN 17 19 10

INT 19 20 0

ADD

SysNet 

   
   

   
   
 
 
 

18 20 21 1 1

ADD 21 3 22 1 -1

GAIN 22 23 2.509

GAIN 22 24 10

INT 24 25 0

ADD 23 25 26 1 1

ADD 26 6 12 1 1

FROMDQ 12 13 2 0

MULT 2 29 30 0

MULT 30 31 14 0

INV 16 31 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




 

.




 (171)

 Using the algorithms presented in Sections 4.2 and 4.3, the netlists from (169),

(170), and (171) can be used to populate Asys and Bsys. The TF's from each input to each

system node can then be solved for using (83).

88

4.5. RESULTS

 The generated transfer functions provide multiple uses for analysis. This section

will demonstrate the TF's ability to predict the effect of the 120 Hz dc-link ripple on the

grid current. To do this, the generated Ld dcdci v TF is analyzed for three cases, shown in

Table 4.2. These results are compared against and experimental setup.

 The experimental setup is illustrated in Figure 4.12. In this study, C=680 uF and

L=8.4 mH. A 1.33 A constant input was generated using a 100 V DC source in series

with a BK Precision 8500 programmable dc electronic load. The electronic load was set

to regulate a constant 1.33 A. The control system from Figure 4.10 was implemented

using a TI TMS320F28335 DSP and programmed using Code Composer Studio.

Table 4.2. Inverter Gains.

Figure 4.12. Experimental setup.

 Case

#1

Case

#2

Case

#3
Kpdc 0.3488 0.7189 1.001

Kidc 10 50 100

Kpi 2.509 4.407 5.398

Kii 10 50 100

89

 The automatically generated Ld dcdci v TFs for the three cases are illustrated in

Figure 4.13. The measured igrid current from the experimental setup is illustrated in

Figure 4.14 for each case.

Figure 4.13. Commanded dc-link voltage to d-axis grid current TF.

90

Figure 4.14. Experimental results for igrid. Top: igrid Case #1 Middle: igrid Case #2

Bottom: igrid Case #3.

4.6. CONCLUSIONS

 This study proposed a new method to automatically generate transfer functions

for a single phase inverter. Algorithms were presented, which converted user generated

netlists representing low level circuits into TFs. These low level circuits consisted of

inductors, capacitors, resistors, voltage sources. Next, more algorithms were presented,

which converted a user generated netlist representing the overall system into TFs. The

overall system netlist consisted of the following blocks: input, add, constant, gain,

integrate, 90° delay, to dq, from dq, circuit, multiply, and divide.

 Using these algorithms, a set of TFs were derived. Section 4.5 illustrated the

Ld dcdci v transfer function for the three cases in Table 4.2. Case 1 uses low controller

gains, case 2 uses medium controller gains, and case 3 uses high controller gains. The

results illustrated in Figure 4.13 predict that for increasing controller gains, iLd will have

91

less attenuation from the dc-link voltage at 120 Hz. This means that the dc-link ripple

will have a stronger effect on case 3 than it does on case 1.

 The results illustrated in Figure 4.14 clearly demonstrate what the generated TFs

predicted. Increasing controller gains increases distortion on iLd, due to the dc-link

voltage ripple. The THD of the three cases is 5.23%, 12.8%, and 22.2%, respectively.

 While the proposed method was able to successfully predict the effects of the 120

Hz dc-link ripple on the system, it does suffer from some inaccuracies. This is due to

inaccuracies introduced from attempting to directly generate TFs for a large system. This

is apparent in the TFs Bode plot in Figure 4.13. At 120 Hz, there are clearly accuracy

issues with the generated transfer functions.

 A more accurate method would be to automatically generate the state space

representation of the system. This method would not suffer from the accuracy issues

described and would not require the use of a symbolic math solver. It would also open

the door to even more LTI analysis and design techniques.

92

5. SUMMARY AND CONCLUSIONS

5.1. OVERVIEW

 Section 2 presented a new feedforward method to mitigate the adverse effects of

the dc-link voltage double frequency ripple on the converter. A reference frame

operating at the double frequency was used to predict the double frequency voltage ripple

on the dc-link. By using this predicted value as a feedforward term, the effects of the

double frequency ripple were eliminated from the dc-link voltage loop. The same

methodology was applied to the MPPT, where a feedforward term was added to the duty

ratio generated by the MPPT, to eliminate the double frequency ripple seen at the input

power waveform. The simulated results were verified experimentally.

 Many methods exist to allow for small film capacitors to be used on the dc-link

on a microinverter. Most of these require extra components to existing designs. Since

the presented feedforward method allows the converter to withstand a large ripple on the

dc-link, reliable film capacitors can be used on the dc-link while requiring only software

changes to existing designs. This allows for old designs to be used in new inverters with

minimal changes.

 The system used in Section 2 used a simple boost converter as the MPPT and a H-

bridge as the inverter. The presented feedforward method is not restricted to a boost

converter; it could be easily modified and applied to other MPPT topologies. By

following the process laid out in Section 2.4, one could derive the feedforward term

required to remove the double frequency component from their MPPT.

 Section 3 presented a set of algorithms that can be used to predict the periodic

steady state operating point of a system. The user must generate a set of large-signal

93

dynamic equations for the system being analyzed. Using the presented functions, these

standard equations are converted to harmonic equations, which represent the amplitude of

a signal at the specified frequencies. With the presented solver, the nonlinear set of

equations are solved for. The resulting solution is the steady-state operating point of the

converter.

 Typically, finding the Fourier series coefficients of a systems output requires a

simulation to be made and run until well after the steady state operating point reached.

After running the simulation, the fast Fourier transform of a large amount of data must be

computed to find the Fourier coefficients of interest. The presented work gives the user

the ability to directly calculate the Fourier series coefficients of the steady state output.

 Section 4 presented another algorithm which takes a user generated netlist and

generates the system's THTF. Typically the frequency transfer properties are lost

between the dc-link and ac side of an inverter in linearized models. The automatically

generated THTF is a large set of linear transfer functions which preserves the frequency

transfer properties. This gives a designer a tool which can be used to design detailed

linear microinverter models.

 The preservation of the frequency transfer properties is especially important in

microinverters, where the dc-link capacitor is small. The small dc-link capacitor may

result in a large dc-link voltage ripple, such as discussed in Section 2. Using the

proposed method of generating a THTF, the transient effects of having a small dc-link

capacitor can be accurately predicted.

 Another advantage of the proposed THTF generator is that even systems with a

complex feedforward control (such as presented in Section 2) can easily be modeled.

94

The user simply needs to add the extra feedforward control to a netlist and the extra work

is done by the computer. The tedious work of generating transfer functions of a detailed

model by hand are no longer an issue with the proposed THTF generator.

5.2. FUTURE WORK

 The methods presented in this dissertation have proven themselves experimentally

for basic systems consisting of only a dc-link capacitor on the dc bus. In their current

state, each of the proposed methods is useful in analyzing and designing microinverters.

Another application in which these methods would prove useful is in grid-tied energy

storage. One of the original motivations behind much of this work was to provide better

analysis tools for grid-tied electrochemical energy storage applications. Modifying the

example netlist in Section 4 to analyze an energy storage application will take little effort.

The dc-link capacitor can simply be replaced with the circuit in Figure 5.1 [52].

Figure 5.1. Battery circuit equivalent.

 Modifying the equations in Section 3 to predict the periodic steady-state operating

point is a nontrivial process. This is due to the iinv calculation in (75). For (75) to be

valid for the proposed algorithm, all of its variables must be inputs or states. By

95

replacing the dc-link capacitor with the circuit in Figure 5.1, vdc is no longer a state.

Instead, vdc becomes,

 1 2dc inv s C C ocv i R v v V     . (172)

Placing vdc into (42) yields,

1 2

av L
inv

inv s C C oc

v i
i

i R v v V

   

. (173)

The quadratic equation is then required to solve for iinv,

 

2

1 2 1 2 4

2

oc C C C C oc s L

inv

s

V v v v v V R i
i

R

     
 . (174)

While all the variables in (174) are states, there is a square root operation involved. The

algorithms in Section 3 did not present an algorithm to perform a square root. Ideally, an

algorithm will be generated to perform the square root, which preserves the frequency

transfer properties. For a quick solution, the jacobian of the square root operation can be

found (a best guess will have to be made for the linearization point). This will provide a

linearized approximation of the square root. A downside of the linearized approximation

is that all of the frequency transfer properties of the square root will be lost.

 Once the method presented in Section 3 has been modified to include a square

root operation, it will be very useful in predicting harmonics that will appear in an energy

storage application. The effect of various harmonics on the performance of batteries is

not well studied. This dissertation presents tools which can be used to gain a better idea

of how the harmonic content seen at the battery terminals effects battery performance.

 Lastly, the algorithms in Section 4 produce a THTF for a given netlist of a

system. This proved useful, however can be inaccurate for large systems or for when a

96

large number of harmonics are analyzed. A truncated harmonic state space (THSS)

model would not only be more accurate, it would take much less time to generate and

would open the door to even more LTI design and analysis techniques.

97

APPENDIX A.

MATLAB CODE FOR FOURIER SERIES ANALYSIS OF A SINGLE PHASE

INVERTER

98

% HTFMultiply.m

% Luke Watson

% 4/22/13

% This code is used to find the symbolic harmonic result of multiplication

% Due to only computing to Nmax harmonics, there is error on the edge

% frequencies, due to componets of the Nmax frequency going past the

% Nmax frequency during certain operations and being deleted as a result.

% This can be fixed by setting Nmax to be higher than the desired result,

% at the cost of more computational resources.

% VERIFIED WORKING 4/23/13

function [HTFVarResult] = HTFMultiply(Nmax, iVarA, iVarB)

HTFVarResult = sym(zeros(2*Nmax+1, 1));

%---

%----------------------DC PORTION---

%---

HTFVarResult(1,1) = iVarA(1,1)*iVarB(1,1);

i = 1;

while (i <= Nmax)

 HTFVarResult(1,1) = HTFVarResult(1,1) + ...

 0.5*(iVarA(2*i,1)*iVarB(2*i,1) + ...

 iVarA(2*i+1,1)*iVarB(2*i+1,1));

 i = i + 1;

end

%---

%----------------DC INFLUENCE---

%---

l = 1;

while (l <= Nmax)

 % d-axis

 HTFVarResult(2*l) = iVarB(1,1)*iVarA(2*l) + ...

 iVarA(1,1)*iVarB(2*l);

 % q-axis

 HTFVarResult(2*l+1) = iVarB(1,1)*iVarA(2*l+1) + ...

 iVarA(1,1)*iVarB(2*l+1);

 l = l + 1;

end

%---

%----------------ADDITIVE PORTION---

%---

l = 1;

while (l <= Nmax)

 i = 1;

 while (i < l)

 % D-axis additive portion

 HTFVarResult(2*l,1) = HTFVarResult(2*l,1) + ...

 0.5*(iVarA(2*(l-i),1)*iVarB(2*i,1) - ...

 iVarA(2*(l-i)+1,1)*iVarB(2*i+1,1));

99

 % Q-axis additive portion

 HTFVarResult(2*l+1,1) = HTFVarResult(2*l+1,1) + ...

 0.5*(iVarA(2*i+1,1)*iVarB(2*(l-i),1) + ...

 iVarA(2*i,1)*iVarB(2*(l-i)+1,1));

 i = i + 1;

 end

 l = l + 1;

end

%---

%--------------------SUBTRACTIVE PORTION----------------------------------

%---

l = 1;

while (l <= Nmax)

 i = l + 1;

 while (i <= Nmax)

 % D-axis subtractive portion

 HTFVarResult(2*l,1) = HTFVarResult(2*l,1) + ...

 0.5*(iVarA(2*i,1)*iVarB(2*(i-l),1) + ...

 iVarA(2*i+1,1)*iVarB(2*(i-l)+1,1) + ...

 iVarA(2*(i-l),1)*iVarB(2*i,1) + ...

 iVarA(2*(i-l)+1,1)*iVarB(2*i+1,1));

 % Q-axis subtractive portion

 HTFVarResult(2*l+1,1) = HTFVarResult(2*l+1,1) + ...

 0.5*(-iVarA(2*i,1)*iVarB(2*(i-l)+1,1) + ...

 iVarA(2*i+1,1)*iVarB(2*(i-l),1) + ...

 iVarA(2*(i-l),1)*iVarB(2*i+1,1) - ...

 iVarA(2*(i-l)+1,1)*iVarB(2*i,1));

 i = i + 1;

 end

 l = l + 1;

end

100

% HTFInverse.m

% Luke Watson

% 4/22/13

% This code is used to find the symbolic harmonic result of inversion

% Due to only computing to Nmax harmonics, there is error on the edge

% frequencies, due to componets of the Nmax frequency going past the

% Nmax frequency during certain operations and being deleted as a result.

% This can be fixed by setting Nmax to be higher than the desired result,

% at the cost of more computational resources.

% VERIFIED WORKING 4/23/13...GENERATES VERY LARGE ANSWERS...NEED TO

% CREATE A FILE WHICH CAN APPROXIMATE THE SOLUTIONS...

function [HTFVarResult] = HTFInverse(Nmax, iVar)

% This matrix is an augmented matrix for the equations to do an inverse

% Rref is performed to solve for each value of HTFVarResult

B = sym(zeros(2*Nmax+1, 2*Nmax+2));

% Initialize coefficient matrix

B(1, 2*Nmax+2) = 1;

% Calculate dc componet

B(1, 1) = iVar(1,1);

i = 1;

while(i <= Nmax)

 % Find Bwd componet

 B(1, 2*i) = iVar(2*i,1)/2;

 % Find Bwq componet

 B(1, 2*i+1) = iVar(2*i+1,1)/2;

 i = i + 1;

end

% Calculate ac componet

l = 1;

while (l <= Nmax)

 % dc influence on Bwd componet

 B(2*l, 1) = B(2*l, 1) + iVar(2*l,1);

 B(2*l, 2*l) = B(2*l, 2*l) + iVar(1,1);

 % dc influence on Bwq componet

 B(2*l+1, 1) = B(2*l+1, 1) + iVar(2*l+1,1);

 B(2*l+1, 2*l+1) = B(2*l+1, 2*l+1) + iVar(1,1);

 % Addition influence on Bwd componet

 i = 1;

 while (i < l)

 B(2*l, 2*i) = B(2*l, 2*i) + iVar(2*(l-i),1)/2;

 B(2*l, 2*i+1) = B(2*l, 2*i+1) - iVar(2*(l-i)+1,1)/2;

 i = i + 1;

 end

101

 % Addition influence on Bwq componet

 i = 1;

 while (i < l)

 B(2*l+1, 2*i) = B(2*l+1, 2*i) + iVar(2*(l-i)+1,1)/2;

 B(2*l+1, 2*i+1) = B(2*l+1, 2*i+1) + iVar(2*(l-i),1)/2;

 i = i + 1;

 end

 % Subtraction influence on Bwd componet

 i = l + 1;

 while (i <= Nmax)

 B(2*l, 2*(i-l)) = B(2*l, 2*(i-l)) + iVar(2*i,1)/2;

 B(2*l, 2*(i-l)+1) = B(2*l, 2*(i-l)+1) + iVar(2*i+1,1)/2;

 B(2*l, 2*i) = B(2*l, 2*i) + iVar(2*(i-l),1)/2;

 B(2*l, 2*i+1) = B(2*l, 2*i+1) + iVar(2*(i-l)+1,1)/2;

 i = i + 1;

 end

 % Subtraction influence on Bwq componet

 i = l + 1;

 while (i <= Nmax)

 B(2*l+1, 2*(i-l)+1) = B(2*l+1, 2*(i-l)+1) - iVar(2*i,1)/2;

 B(2*l+1, 2*(i-l)) = B(2*l+1, 2*(i-l)) + iVar(2*i+1,1)/2;

 B(2*l+1, 2*i+1) = B(2*l+1, 2*i+1) + iVar(2*(i-l),1)/2;

 B(2*l+1, 2*i) = B(2*l+1, 2*i) - iVar(2*(i-l)+1,1)/2;

 i = i + 1;

 end

 l = l + 1;

end

% this solution simply uses rref to find the solution...slower for larger

% matrices

% tic

% RrefResult = rref(B);

% toc

%

% HTFVarResult = RrefResult(:, 2*Nmax+2);

% This code seems to be the best at finding the solution...this works by

% finding the cofactor matrix of the top row of B (not including the

% augmented last column of B). Since the transpose of the cofactor

% matrix of the top row results in the first column, this divided by

% the det(B(:, 1:2*Nmax+1)) effectively finds the inverse of B for the

% first column only.

HTFVarResult = sym(zeros(2*Nmax+1, 1));

DetB = det(B(:, 1:2*Nmax+1));

% 1st entry

HTFVarResult(1,1) = det(B(2:2*Nmax+1, 2:2*Nmax+1))/DetB;

% 2nd entry to 2nd to last entry

i = 2;

while (i < 2*Nmax+1)

 HTFVarResult(i, 1) = ((-1)^(i+1))*det([B(2:2*Nmax+1, 1:i-1), B(2:2*Nmax+1,

i+1:2*Nmax+1)])/DetB;

 i = i + 1;

end

% last entry

HTFVarResult(2*Nmax+1,1) = ((-1)^(i+1))*det(B(2:2*Nmax+1, 1:i-1))/DetB;

102

% HTFDelaySignal.m

% Luke Watson

% 4/17/13

% This code is used to find the symbolic harmonic result of a single phase

% dq conversion.

% Verified by checking coefficients in simulink model on 4/18/13.

function HTFDelay = HTFDelaySignal(Nmax, iVars)

SignLookup = [-1, 1; -1, -1; 1, -1; 1, 1];

HTFDelay = sym(zeros(2*Nmax+1, 1));

HTFDelay(1,1) = iVars(1,1);

i = 1;

while (i <= Nmax)

 % used to see which set of signs to use

 SignIdx = mod(i,4);

 if (SignIdx == 0)

 SignIdx = 4;

 end

 % check to see if i is even

 if (mod(i,2) == 0)

 HTFDelay(2*i,1) = SignLookup(SignIdx,1)*iVars(2*i,1);

 HTFDelay(2*i+1,1) = SignLookup(SignIdx,2)*iVars(2*i+1,1);

 % i is odd

 else

 HTFDelay(2*i+1,1) = SignLookup(SignIdx,1)*iVars(2*i,1);

 HTFDelay(2*i,1) = SignLookup(SignIdx,2)*iVars(2*i+1,1);

 end

 i = i + 1;

end

103

% HTFToSinglePhaseDQ.m

% Luke Watson

% 4/17/13

% This code is used to find the symbolic harmonic result of a single phase

% dq conversion.

% CODE VERIFIED WORKING 4/19/13

% Due to only computing to Nmax harmonics, there is error on the edge

% frequencies, due to componets of the Nmax frequency going past the

% Nmax frequency during certain operations and being deleted as a result.

% This can be fixed by setting Nmax to be higher than the desired result,

% at the cost of more computational resources.

function [HTFVarD, HTFVarQ] = HTFToSinglePhaseDQ(Nmax, iVars, iVarsDelay)

HTFVarD = sym(zeros(2*Nmax+1, 1));

HTFVarQ = sym(zeros(2*Nmax+1, 1));

%---

%----------------ADDITIVE PORTION---

%---

% HTFVarD d-axis componet (additive dc influence)

HTFVarD(2, 1) = iVars(1, 1);

% HTFVarD q-axis componet (additive dc influence)

HTFVarD(3, 1) = -iVarsDelay(1, 1);

% HTFVarQ d-axis componet (additive dc influence)

HTFVarQ(2, 1) = iVarsDelay(1, 1);

% HTFVarQ q-axis componet (additive dc influence)

HTFVarQ(3, 1) = iVars(1, 1);

l = 2;

while (l <= Nmax)

 % HTFVarD d-axis componet

 HTFVarD(2*l, 1) = iVars(2*(l-1), 1)/2 + iVarsDelay(2*(l-1)+1,1)/2;

 % HTFVarD q-axis componet

 HTFVarD(2*l+1, 1) = -iVarsDelay(2*(l-1), 1)/2 + iVars(2*(l-1)+1,1)/2;

 % HTFVarQ d-axis componet

 HTFVarQ(2*l, 1) = iVarsDelay(2*(l-1), 1)/2 - iVars(2*(l-1)+1,1)/2;

 % HTFVarQ q-axis componet

 HTFVarQ(2*l+1, 1) = iVars(2*(l-1), 1)/2 + iVarsDelay(2*(l-1)+1,1)/2;

 l = l + 1;

end

%---

%--------------------SUBTRACTIVE PORTION----------------------------------

%---

% d-axis dc componet (subtractive)

HTFVarD(1,1) = iVars(2,1)/2 - iVarsDelay(3,1)/2;

% q-axis dc componet (subtractive)

HTFVarQ(1,1) = iVarsDelay(2,1)/2 + iVars(3,1)/2;

l = 1;

104

while (l < Nmax)

 % HTFVarD d-axis componet

 HTFVarD(2*l, 1) = HTFVarD(2*l, 1) + iVars(2*(l+1),1)/2 - ...

 iVarsDelay(2*(l+1)+1, 1)/2;

 % HTFVarD q-axis componet

 HTFVarD(2*l+1, 1) = HTFVarD(2*l+1, 1) + iVarsDelay(2*(l+1),1)/2 + ...

 iVars(2*(l+1)+1, 1)/2;

 % HTFVarQ d-axis componet

 HTFVarQ(2*l, 1) = HTFVarQ(2*l, 1) + iVarsDelay(2*(l+1),1)/2 + ...

 iVars(2*(l+1)+1, 1)/2;

 % HTFVarQ q-axis componet

 HTFVarQ(2*l+1, 1) = HTFVarQ(2*l+1, 1) - iVars(2*(l+1),1)/2 + ...

 iVarsDelay(2*(l+1)+1, 1)/2;

 l = l + 1;

end

105

% HTFFromSinglePhaseDQ.m

% Luke Watson

% 4/17/13

% This code is used to find the symbolic harmonic result of a single phase

% dq conversion.

% CODE VERIFIED WORKING 4/19/13

% Due to only computing to Nmax harmonics, there is error on the edge

% frequencies, due to componets of the Nmax frequency going past the

% Nmax frequency during certain operations and being deleted as a result.

% This can be fixed by setting Nmax to be higher than the desired result,

% at the cost of more computational resources.

function [HTFVarsOut] = HTFFromSinglePhaseDQ(Nmax, iVarsD, iVarsQ)

HTFVarsOutCOS = sym(zeros(2*Nmax+1, 1));

HTFVarsOutSIN = sym(zeros(2*Nmax+1, 1));

%---

%----------------ADDITIVE PORTION---

%---

% COS term d-axis componet (additive dc influence)

HTFVarsOutCOS(2,1) = iVarsD(1,1);

% COS term q-axis componet (additive dc influence)

HTFVarsOutCOS(3,1) = 0;

% SIN term d-axis componet (additive dc influence)

HTFVarsOutSIN(2,1) = 0;

% SIN term q-axis componet (additive dc influence)!!!

HTFVarsOutSIN(3,1) = -iVarsQ(1,1);

l = 2;

while (l <= Nmax)

 % COS term d-axis componet

 HTFVarsOutCOS(2*l,1) = iVarsD(2*(l-1),1)/2;

 % COS term q-axis componet

 HTFVarsOutCOS(2*l+1,1) = iVarsD(2*(l-1)+1,1)/2;

 % SIN term d-axis componet

 HTFVarsOutSIN(2*l,1) = iVarsQ(2*(l-1)+1,1)/2;

 % SIN term q-axis componet

 HTFVarsOutSIN(2*l+1,1) = -iVarsQ(2*(l-1),1)/2;

 l = l + 1;

end

%---

%--------------------SUBTRACTIVE PORTION----------------------------------

%---

% COS term dc componet (subtractive)

HTFVarsOutCOS(1,1) = iVarsD(2, 1)/2;

% SIN term dc componet (subtractive)!

HTFVarsOutSIN(1,1) = -iVarsQ(3, 1)/2;

l = 1;

while (l < Nmax)

106

 % COS term d-axis componet

 HTFVarsOutCOS(2*l,1) = HTFVarsOutCOS(2*l,1) + iVarsD(2*(l+1),1)/2;

 % COS term q-axis componet

 HTFVarsOutCOS(2*l+1,1) = HTFVarsOutCOS(2*l+1,1) +...

 iVarsD(2*(l+1)+1,1)/2;

 % SIN term d-axis componet

 HTFVarsOutSIN(2*l,1) = HTFVarsOutSIN(2*l,1) - iVarsQ(2*(l+1)+1,1)/2;

 % SIN term q-axis componet

 HTFVarsOutSIN(2*l+1,1) = HTFVarsOutSIN(2*l+1,1) + iVarsQ(2*(l+1),1)/2;

 l = l + 1;

end

HTFVarsOut = HTFVarsOutCOS - HTFVarsOutSIN;

107

% HTFXCoupling.m

% Luke Watson

% 4/22/13

% This code is used to find the cross coupling terms in the dot equations.

function [HTFResult] = HTFXCoupling(Nmax, w, iVar)

HTFResult = sym(zeros(2*Nmax+1, 1));

i = 1;

while(i <= Nmax)

 HTFResult(2*i,1) = -i*w*iVar(2*i+1,1);

 HTFResult(2*i+1,1) = i*w*iVar(2*i);

 i = i + 1;

end

108

% HTFGenerateFunctions.m

% Luke Watson

% 4/17/13

%

% This file must be run first if implementing "Fourier Series Analysis of

% a Single Phase Inverter"

%

% This code is used to generate the dot equations for the single phase

% inverter in "Fourier Series Analysis of a Single Phase Inverter"

% Equations 70-80 in Luke's dissertation are implemented by running this

% file.

%

%

% Symbolic large-signal harmonic (harmonic meaning the inputs and output

% to each equation are fourier series coefficients) equations are generated

% and stored in VDC_DOT.m, IL_DOT.m, X1_DOT.m, X2_DOT.m, and X3_DOT.m.

clear all;

display('Starting mupad calculations');

% Number of harmonics to consider

% Need to make slight modifications to code if less than 4 harmonics

% are to be analyzed. It takes this code around 4 minutes to run

% on my laptop using 4 harmonics.

Nmax = 6;

% system scalars

syms w L C Kpdc Kidc Kpdq Kidq Rl Rc RL

% Initialize system state variables

VDC = HTFInitVariable(Nmax, 'VDCx');

IL = HTFInitVariable(Nmax, 'ILx');

X1 = HTFInitVariable(Nmax, 'X1x');

X2 = HTFInitVariable(Nmax, 'X2x');

X3 = HTFInitVariable(Nmax, 'X3x');

% Initialize system inputs

VGRID = HTFInitVariable(Nmax, 'VGRIDx');

VDCCOM = HTFInitVariable(Nmax, 'VDCCOMx');

IIN = HTFInitVariable(Nmax, 'IINx');

% Equations 70-74 in Luke Watson's dissertation

IL_DELAY = HTFDelaySignal(Nmax, IL);

[ILD ILQ] = HTFToSinglePhaseDQ(Nmax, IL, IL_DELAY);

VAVD = X1 + Kpdq*(X3 + (Kpdc)*(VDC - VDCCOM) - ILD) - w*ILQ*0.0084;

VAVQ = X2 + Kpdq*(-ILQ) + w*ILD*0.0084;

VAV = HTFFromSinglePhaseDQ(Nmax, VAVD, VAVQ);

% Odd harmonics of vdc are set to zero, since these

% terms will be near zero in the final solution

display('starting subs on vdc');

syms VDCx1d VDCx1q VDCx3d VDCx3q

VDC_SUBS = [VDCx1d, VDCx1q, VDCx3d, VDCx3q];

VDC_SUBS_NUMS = [0, 0, 0, 0];

% Equation 75

VDC_INV = subs(VDC, VDC_SUBS, VDC_SUBS_NUMS);

display('done with subs on vdc');

109

display('starting iinv inversion')

tic

% Still Equation 75

IINV = HTFMultiply(Nmax, HTFMultiply(Nmax, VAV, IL),...

 HTFInverseLimit(Nmax, 4, VDC_INV));

toc

display('done with iinv calculation')

display('starting dot equations')

tic;

% Equations 76-80

VDC_DOT = (1/C)*(-IINV+IIN) - HTFXCoupling(Nmax, w, VDC);

IL_DOT = (1/L)*(VAV-VGRID-RL*IL) - HTFXCoupling(Nmax, w, IL);

X1_DOT = Kidq*(X3 + (Kpdc)*(VDC - VDCCOM) - ILD) - ...

 HTFXCoupling(Nmax, w, X1);

X2_DOT = Kidq*(-ILQ) - HTFXCoupling(Nmax, w, X2);

X3_DOT = (Kidc)*(VDC - VDCCOM) - HTFXCoupling(Nmax, w, X3);

toc;

display('done with dot equations')

tic;

display('GENERATING DOT EQUATIONS');

matlabFunction(VDC_DOT, 'file', 'VDC_DOT.m');

matlabFunction(IL_DOT, 'file', 'IL_DOT.m');

matlabFunction(X1_DOT, 'file', 'X1_DOT.m');

matlabFunction(X2_DOT, 'file', 'X2_DOT.m');

matlabFunction(X3_DOT, 'file', 'X3_DOT.m');

display('done generating dot equations');

toc;

110

% SinglePhaseInverterFSOLVE.m

% Luke Watson

% 5/14/13

%

% This code generates the predicted steady state fourier coefficients for

% a system, using the dot equations generated from HTFGenerateFunctions.m

%

% The predicted steady state dc-link voltage is stored in VDC_SS_Result.

% The predicted steady state grid current is stored in IL_SS_Result

%

% VERIFIED WORKING 5/15/13

function [VDC_SS_Result, IL_SS_Result, X1_SS_Result, ...

 X2_SS_Result, X3_SS_Result] = ...

 SinglePhaseInverterFSOLVE(VGRID_INPUT, IIN_INPUT)

Nmax = 6;

NumStates = 5;

Result = zeros((2*Nmax+1)*NumStates, 1);

VDCENUM = 1;

ILENUM = 2;

X1ENUM = 3;

X2ENUM = 4;

X3ENUM = 5;

% Determine knowns and unknowns for each case. Each Unknowns{idx} and

% Knowns{idx} represents the indexing of Unknown and Known states during

% iterating.

Unknowns = cell(6,1);

Unknowns{1} = 1:3;

Unknowns{2} = 2:5;

Unknowns{3} = 4:7;

Unknowns{4} = 6:9;

Unknowns{5} = 8:11;

Unknowns{6} = 10:13;

Knowns = cell(6,1);

Knowns{1} = 4:13;

Knowns{2} = [1,6:13];

Knowns{3} = [1:3,8:13];

Knowns{4} = [1:5,10:13];

Knowns{5} = [1:7,12:13];

Knowns{6} = 1:9;

%--

% -------------Define Constants--------------

%--

L = 8.4e-3;

RL = 0;

C = 680e-6;

w = 2*pi*60;

% Case 1

Kidq = 10;

Kpdq = 2.509;

Kidc = 10;

Kpdc = 0.3488;

% Case 2

% Kidq = 50;

% Kpdq = 4.407;

111

% Kidc = 50;

% Kpdc = 0.7189;

% % Case 3

% Kidq = 100;

% Kpdq = 5.398;

% Kidc = 100;

% Kpdc = 1.001;

ConstCell = cell(1,8);

ConstCell{1,1} = L;

ConstCell{1,2} = C;

ConstCell{1,3} = RL;

ConstCell{1,4} = w;

ConstCell{1,5} = Kidq;

ConstCell{1,6} = Kpdq;

ConstCell{1,7} = Kidc;

ConstCell{1,8} = Kpdc;

%--

% ---------Define System Inputs--------------

%--

VGRID = zeros(2*Nmax+1,1);

VDCCOM = zeros(2*Nmax+1,1);

IIN = IIN_INPUT;

VGRID = VGRID_INPUT;

VDCCOM(1,1) = 60;

VGRIDCell = num2cell(VGRID');

VDCCOMCell = num2cell(VDCCOM');

IINCell = num2cell(IIN');

%--

% ---------Init State Variables--------------

%--

% a, b, c, d, e prefixes are used to keep

% the output of solution() in the correct order

VDC = HTFInitVariable(Nmax, 'aVDCx');

IL = HTFInitVariable(Nmax, 'bILx');

X1 = HTFInitVariable(Nmax, 'cX1x');

X2 = HTFInitVariable(Nmax, 'dX2x');

X3 = HTFInitVariable(Nmax, 'eX3x');

VDCIter = cell(2*Nmax+1,1);

ILIter = cell(2*Nmax+1,1);

X1Iter = cell(2*Nmax+1,1);

X2Iter = cell(2*Nmax+1,1);

X3Iter = cell(2*Nmax+1,1);

tic;

FullIterationNum = 2;

FullIterationCount = 0;

Case = 1;

GoUpFlag = 1;

exitFlag = 0;

while(~exitFlag)

%--

% ---------Start Iterations------------------

112

%--

for i = Knowns{Case}

 VDCIter{i} = Result((2*Nmax+1)*(VDCENUM-1)+i, 1);

 ILIter{i} = Result((2*Nmax+1)*(ILENUM-1)+i, 1);

 X1Iter{i} = Result((2*Nmax+1)*(X1ENUM-1)+i, 1);

 X2Iter{i} = Result((2*Nmax+1)*(X2ENUM-1)+i, 1);

 X3Iter{i} = Result((2*Nmax+1)*(X3ENUM-1)+i, 1);

end

for i = Unknowns{Case}

 VDCIter{i} = VDC(i, 1);

 ILIter{i} = IL(i,1);

 X1Iter{i} = X1(i,1);

 X2Iter{i} = X2(i,1);

 X3Iter{i} = X3(i,1);

end

% Generate dot equations

VDC_DOT_EQN = VDC_DOT(ConstCell{:},VGRIDCell{:},VDCCOMCell{:}, ...

 IINCell{:},VDCIter{:},ILIter{:},X1Iter{:},X2Iter{:},X3Iter{:});

IL_DOT_EQN = IL_DOT(ConstCell{:},VGRIDCell{:},VDCCOMCell{:}, ...

 IINCell{:},VDCIter{:},ILIter{:},X1Iter{:},X2Iter{:},X3Iter{:});

X1_DOT_EQN = X1_DOT(ConstCell{:},VGRIDCell{:},VDCCOMCell{:}, ...

 IINCell{:},VDCIter{:},ILIter{:},X1Iter{:},X2Iter{:},X3Iter{:});

X2_DOT_EQN = X2_DOT(ConstCell{:},VGRIDCell{:},VDCCOMCell{:}, ...

 IINCell{:},VDCIter{:},ILIter{:},X1Iter{:},X2Iter{:},X3Iter{:});

X3_DOT_EQN = X3_DOT(ConstCell{:},VGRIDCell{:},VDCCOMCell{:}, ...

 IINCell{:},VDCIter{:},ILIter{:},X1Iter{:},X2Iter{:},X3Iter{:});

% Reset equations being sent to solver

vdc_dot_cell = cell(1,length(Unknowns{Case}));

il_dot_cell = cell(1,length(Unknowns{Case}));

x1_dot_cell = cell(1,length(Unknowns{Case}));

x2_dot_cell = cell(1,length(Unknowns{Case}));

x3_dot_cell = cell(1,length(Unknowns{Case}));

% Reset unknown variables sent to solver

vdc_cell = cell(1,length(Unknowns{Case}));

il_cell = cell(1,length(Unknowns{Case}));

x1_cell = cell(1,length(Unknowns{Case}));

x2_cell = cell(1,length(Unknowns{Case}));

x3_cell = cell(1,length(Unknowns{Case}));

% Populate equations and variables sent to the solver

j = 1;

for i = Unknowns{Case}

 % populate equations

 vdc_dot_cell{j} = VDC_DOT_EQN(i);

 il_dot_cell{j} = IL_DOT_EQN(i);

 x1_dot_cell{j} = X1_DOT_EQN(i);

 x2_dot_cell{j} = X2_DOT_EQN(i);

 x3_dot_cell{j} = X3_DOT_EQN(i);

 % populate variables

 vdc_cell{j} = VDC(i);

 il_cell{j} = IL(i);

 x1_cell{j} = X1(i);

 x2_cell{j} = X2(i);

 x3_cell{j} = X3(i);

 j = j + 1;

113

end

% Solve dot equations

solution = solve(vdc_dot_cell{:}, il_dot_cell{:}, x1_dot_cell{:},...

 x2_dot_cell{:}, x3_dot_cell{:}, vdc_cell{:}, il_cell{:},...

 x1_cell{:}, x2_cell{:}, x3_cell{:});

solution_cell = struct2cell(solution);

Result = HTFConvertSoln(Nmax, NumStates, solution_cell, ...

 Unknowns{Case}, Result);

display('Done with case #:');

disp(Case);

% Incrementing the case numbers

% Use to increment Case until it reaches the maximum case value,

% then reset case to 1.

if ((Case < 6) && GoUpFlag)

 Case = Case + 1;

% Switch to decrementing case numbers

elseif (Case >= 6)

 Case = 1;

 FullIterationCount = FullIterationCount + 1;

 if (FullIterationCount >= FullIterationNum)

 exitFlag = 1;

 end

else

 assert(false, 'Error while updating Case #');

end

end

toc;

VDC_SS_Result = Result(1:13);

IL_SS_Result = Result(14:26);

X1_SS_Result = Result(27:39);

X2_SS_Result = Result(40:52);

X3_SS_Result = Result(53:65);

114

APPENDIX B.

MATLAB CODE FOR AUTOMATIC GENERATION OF TRUNCATED HARMONIC

TRANSFER FUNCTIONS

115

% THTFGenerator.m

% Luke Watson

% 8/16/13

% This file is used to generate the TF's for a single phase dq controlled

% inverter

clear all;

tic;

% Each column represents a node. The first column is the 1st node, 2nd

% column is the 2nd node...and so on. Each row corresponds to a harmonic.

% The first row is the dc term, 2nd row is the 1d term, 3rd row is the 1q

% term, fourth row is the 2d term, fifth row is the 2q term and so on...

%

%NodeLinearization = [];

newData1 = load('-mat', 'NodeLinearizationCase1.mat');

% Create new variables in the base workspace from those fields.

vars = fieldnames(newData1);

for i = 1:length(vars)

 assignin('base', vars{i}, newData1.(vars{i}));

end

% For cirucits with unrealizable transfer functions (ie. has current

% sources in series with inductors, voltage sources in parallel with

% capacitors, using the symbolic solver will still generate the TF.

% syms s

s = tf([1 0], [1]);

BaseFreq = 2*pi*60;

% harmonics to be analyzed

w = [BaseFreq 2*BaseFreq];

numHarmonics = length(w);

% Define types of branches at the circuit level

R = 1;

L = 2;

CAP = 3;

V = 4;

I = 5;

% Define types of branches at the system level

IN = 1;

TF = 2; % The TF portion of TF will contain the dc tf, as well as the

 % harmonic TF's

ADD = 3;

CNTRL = 4;% Control block should be different than the TF block

 % in that it comes with the negative feedback terminal

 % attached to the TF block, so that it will not return an

 % error. The pos terminal SHOULD NOT be required to be

 % connected to an input, for special cases, such as current

 % control in a boost converter.

MULT = 5; % MULT and DIV should automatically do linearization...

DIV = 6; % They should also automatically do all of the dq stuff...

 % but we'll see how long that takes

CKT = 7; % CKT - Circuit level block

 % EX: CKT [1 3 4; 10 23 1] [2 5; 20 30] 1

 % For the input and output CKT columns:

 % The first row corresponds to the port number of the

 % circuit, given in the identifier matrix. The

 % second row corresponds to the system node that the

116

 % above port is connected to.

 %

 % For the input (first entry after CKT), the first row

 % gives the input number that the system is connected

 % to. The second row gives the system node that

 % connects to the input.

 %

 % For the output, (second entry after CKT), the first

 % row gives the branch that the output is connected to.

 % There are twice as many columns as branches. The

 % first half of columns refer to currents across the

 % specified branch. The second half of columns refer

 % to voltage across the specified branch.

 % In other words, if something is referenced to the

 % branch number, it is referring to that branch's

 % current. If something is referenced to numBranches

 % plus the branch number, it is referencing that branch's

 % voltage. This is just a quirk of how the solver

 % matrices are set up.

 %

 % Where the last '1' indicates the number of the circuit

 % This is the number referenced when connecting to the

 % circuit.

CONST = 8;

INV = 9;

DELAY = 10;

GAIN = 11;

INT = 12;

TODQ = 13;

FROMDQ = 14;

% Circuit level netlist

CktNet1 = {I 1 2 1

 CAP 1 2 [500e-6 0]

 I 2 1 2};

CktNet2 = {V 1 3 1

 L 1 2 [8.4e-3 0]

 V 2 3 2};

CktNet = {CktNet1 CktNet2};

% CktId is used for labelling the circuit branches. The 2nd entry contains

% the branch that each label corresponds to. This ensures that system

% level nodes connect to the correct input and output port.

%

% When generating the system level equations, the column number of

% CktId# gives the potentially rearranged order of variables, while

% the number in the second row gives the desired branch to connect to.

% Between the column number and second number, the desired port

% can be connected to.

%

% Remember, the number in CktId1 is the original branch number of the

% label

CktId1 = {{'Iin', 1}, {'C', 2}, {'Iinv', 3}};

CktId2 = {{'Vav', 1}, {'L', 2}, {'Vgrid', 3}};

CktId = {CktId1 CktId2};

% The number in the 1st row in the output portion of CKT referrs to the

% number in CktId#

N = {IN 0 5 1

117

 CKT [1 2; 5 14] [1 2 3 4 5 6; 0 0 0 0 16 0] 1

 IN 0 1 3

 DELAY 29 28 0

 TODQ [29 28] [3 4] 0

 GAIN 4 6 -3.1667

 GAIN 3 7 3.1667

 GAIN 4 27 -1

 GAIN 27 8 2.509

 GAIN 27 9 10

 INT 9 10 0

 ADD [8 10] 11 [1 1]

 ADD [11 7] 13 [1 1]

 CKT [1 2; 2 1] [1 2 3 4 5 6; 0 29 0 0 0 0] 2

 IN 0 15 2

 ADD [15 16] 17 [-1 1]

 GAIN 17 18 0.3488

 GAIN 17 19 10

 INT 19 20 0

 ADD [18 20] 21 [1 1]

 ADD [21 3] 22 [1 -1]

 GAIN 22 23 2.509

 GAIN 22 24 10

 INT 24 25 0

 ADD [23 25] 26 [1 1]

 ADD [26 6] 12 [1 1]

 FROMDQ [12 13] 2 0

 MULT [2 29] 30 0

 MULT [30 31] 14 0

 INV 16 31 0};

 % Identifier vector, which the user uses to identify each

 % system node...WILL BE 31 ENTRIES FOR THE DQ INVERTER

Ni = {'Vgrid', 'Vav', 'ILD', 'ILQ', 'Iin', 'node6', 'node7', 'node8',...

 'node9', 'node10', 'node11', 'VavD', 'VavQ', 'IInv', 'VdcComm',...

 'Vdc', 'node17', 'node18', 'node19', 'node20', 'IgriddComm',...

 'node22', 'node23', 'node24', 'node25', 'node26', 'node27',...

 'iLDelayed', 'iL', 'Pav', 'VdcInverse'};

% Names of each input. Must coincide with the order specified

% in the netlist, N

InputNames = {'Iin', 'VdcComm', 'Vgrid'};

[b, c] = size(N);

% Find the number of nodes in the circuit, n

i = 1;

j = 0;

n = 0;

while (i <= b)

 if (N{i, 1} == CKT)

 j = max([N{i, 2}(2, :) N{i, 3}(2, :)]);

 else

 j = max([N{i, 2} N{i, 3}]);

 end

 if (j > n)

 n = j;

 end

 i = i + 1;

end

% Generate transfer functions for each circuit

i = 1;

while (i <= b)

118

 if (N{i, 1} == CKT)

 [TFs{N{i,4}} InitTFs{N{i,4}} CktIds{N{i,4}}] = ...

 InitialTFDQAutoGenerator(CktNet{N{i,4}}, CktId{N{i,4}}, w);

 end

 i = i + 1;

end

% Replace CKT blocks with TF and ADD blocks.

[N Ni] = StampCKT(N, CktIds, TFs, Ni, w);

[b, c] = size(N);

% Find the new number of nodes in the circuit, n, after the

% CKT blocks were replaced with ADD and TF blocks

i = 1;

j = 0;

n = 0;

while (i <= b)

 if (N{i, 1} == CKT)

 j = max([N{i, 2}(2, :) N{i, 3}(2, :)]);

 else

 j = max([N{i, 2} N{i, 3}]);

 end

 if (j > n)

 n = j;

 end

 i = i + 1;

end

 % Find the number of inputs to the system

 i = 1;

 NumInputs = 0;

 while(i <= b)

 if (N{i, 1} == IN)

 NumInputs = NumInputs + 1;

 end

 i = i + 1;

 end

% Initialize the A, B, and C matrices.

A = tf(zeros(n*(numHarmonics*2+1), n*(numHarmonics*2+1)));

B = zeros(n*(numHarmonics*2+1), NumInputs*(numHarmonics*2+1));

C = zeros(n*(numHarmonics*2+1), 1);

display('populating A and B matrices');

% Populate the A, B, and C matrices.

i = 1;

while (i <= b)

 i

 % The input node 2nd column is don't care entry. The 3rd column

 % is the system node that the input connects to. The 4th column

 % is the input number in the B matrix.

 if (N{i, 1} == IN)

 % dc input

 B((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 (N{i, 4}-1)*(2*numHarmonics+1)+1) = 1;

 m = 1;

 while (m <= numHarmonics)

 % d-axis input

 B((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 4}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = 1;

119

 % q-axis input

 B((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 4}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = 1;

 m = m + 1;

 end

 elseif (N{i, 1} == TF)

 % Ignore TF naming warnings for this section, since TF's will

 % be renamed after this section of code executes

 warning('off','Control:ltiobject:InputNameClash');

 warning('off','Control:ltiobject:OutputNameClash');

 % Remember, i specifies the current node being analyed (assuming

 % only dc terms)

 % If only dc terms are considered (w=[]), then the dc case would

 % be: A(N{i, 3}, N{i, 2}) = N{i, 4};

 % dc-case

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1) = N{i, 4}{1};

 % d and q-axis terms

 m = 1;

 while (m <= numHarmonics)

 % d-axis input to d-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) =...

 N{i, 4}{4*(m-1)+2};

 % d-axis input to q-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = ...

 N{i, 4}{4*(m-1)+3};

 % q-axis input to d-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) =...

 N{i, 4}{4*(m-1)+4};

 % q-axis input to q-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = ...

 N{i, 4}{4*(m-1)+5};

 m = m + 1;

 end

 % Re-enable TF naming warnings

 warning('on','Control:ltiobject:InputNameClash');

 warning('on','Control:ltiobject:OutputNameClash');

 % Remember for add, 1st entry is the input nodes, 2nd entry is the

 % output node, and the 3rd entry is 1 for an add and -1 for a

 % subtract.

 elseif (N{i, 1} == ADD)

 % There is no cross coupling between frequencies or dq axis terms

 % for an ADD operation.

 j = 1;

 while (j <= length(N{i, 4}))

 % dc add

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 (N{i, 2}(j)-1)*(2*numHarmonics+1)+1) = N{i, 4}(j);

 m = 1;

 while (m <= numHarmonics)

 % d-axis add

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 2}(j)-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) =...

 N{i, 4}(j);

120

 % q-axis add

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 2}(j)-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) =...

 N{i, 4}(j);

 m = m + 1;

 end

 j = j + 1;

 end

 elseif (N{i, 1} == CONST)

 % CONST NOT NECESSARY FOR TF GENERATION

 % C(N{i, 3}, 1) = N{i, 4};

 elseif (N{i, 1} == MULT)

 TempCell1 = Conv2Cell(NodeLinearization(:,N{i,2}(1)));

 TempCell2 = Conv2Cell(NodeLinearization(:,N{i,2}(2)));

 MultResult = mult(TempCell1{:}, TempCell2{:});

 BaseNum1 = (N{i, 2}(1)-1)*(2*numHarmonics+1)+1;

 BaseNum2 = (N{i, 2}(2)-1)*(2*numHarmonics+1)+1;

 % DC term

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 MultResult(1, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 MultResult(1, 2*numHarmonics+2:end);

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % d-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 MultResult(2*m, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 MultResult(2*m, 2*numHarmonics+2:end);

 % q-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 MultResult(2*m+1, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 MultResult(2*m+1, 2*numHarmonics+2:end);

 m = m + 1;

 end

 elseif (N{i, 1} == INV)

 TempCell1 = Conv2Cell(NodeLinearization(:,N{i,2}));

 DivResult = inverse(TempCell1{:});

 BaseNum1 = (N{i, 2}(1)-1)*(2*numHarmonics+1)+1;

 % DC term

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 DivResult(1, 1:2*numHarmonics+1);

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % d-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

121

 DivResult(2*m, 1:2*numHarmonics+1);

 % q-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 DivResult(2*m+1, 1:2*numHarmonics+1);

 m = m + 1;

 end

 elseif (N{i, 1} == DELAY)

 DelayResult = delay(NodeLinearization(:,N{i,2}));

 BaseNum1 = (N{i, 2}(1)-1)*(2*numHarmonics+1)+1;

 % DC term

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 DelayResult(1, 1:2*numHarmonics+1);

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % d-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 DelayResult(2*m, 1:2*numHarmonics+1);

 % q-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 DelayResult(2*m+1, 1:2*numHarmonics+1);

 m = m + 1;

 end

 % The todq function outputs the D-axis output in the first

 % (2*numHarmonics+1) rows and outputs the Q-axis output in the last

 % (2*numharmonics+1) rows.

 elseif (N{i, 1} == TODQ)

 ToDQResult = todq(NodeLinearization(:,N{i,2}(1)), ...

 NodeLinearization(:,N{i,2}(2)));

 BaseNum1 = (N{i, 2}(1)-1)*(2*numHarmonics+1)+1;

 BaseNum2 = (N{i, 2}(2)-1)*(2*numHarmonics+1)+1;

 % DC term of D-Axis output

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult(1, 1:2*numHarmonics+1);

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult(1, 2*numHarmonics+2:end);

 % DC term of Q-Axis output

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult((2*numHarmonics+2), 1:2*numHarmonics+1);

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult((2*numHarmonics+2), 2*numHarmonics+2:end);

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % D-axis term of D-Axis output

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult(2*m, 1:2*numHarmonics+1);

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult(2*m, 2*numHarmonics+2:end);

122

 % Q-axis term of D-Axis output

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult(2*m+1, 1:2*numHarmonics+1);

 A((N{i, 3}(1)-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult(2*m+1, 2*numHarmonics+2:end);

 % D-axis term of Q-Axis output

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult(2*numHarmonics+1+2*m, 1:2*numHarmonics+1);

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult(2*numHarmonics+1+2*m, 2*numHarmonics+2:end);

 % Q-axis term of Q-Axis output

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 ToDQResult(2*numHarmonics+1+2*m+1, 1:2*numHarmonics+1);

 A((N{i, 3}(2)-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 ToDQResult(2*numHarmonics+1+2*m+1, 2*numHarmonics+2:end);

 m = m + 1;

 end

 elseif (N{i, 1} == FROMDQ)

 FromDQResult = fromdq(NodeLinearization(:,N{i,2}(1)), ...

 NodeLinearization(:,N{i,2}(2)));

 BaseNum1 = (N{i, 2}(1)-1)*(2*numHarmonics+1)+1;

 BaseNum2 = (N{i, 2}(2)-1)*(2*numHarmonics+1)+1;

 % DC term

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 FromDQResult(1, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 FromDQResult(1, 2*numHarmonics+2:end);

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % d-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 FromDQResult(2*m, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 FromDQResult(2*m, 2*numHarmonics+2:end);

 % q-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1:BaseNum1+2*numHarmonics) = ...

 FromDQResult(2*m+1, 1:2*numHarmonics+1);

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum2:BaseNum2+2*numHarmonics) = ...

 FromDQResult(2*m+1, 2*numHarmonics+2:end);

 m = m + 1;

 end

 elseif (N{i, 1} == GAIN)

 BaseNum1 = (N{i, 2}-1)*(2*numHarmonics+1)+1;

 % DC term

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 BaseNum1) = N{i,4};

123

 % AC term

 m = 1;

 while (m <= numHarmonics)

 % d-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 BaseNum1+(2*(m-1))+1) = N{i,4};

 % q-axis

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 BaseNum1+(2*(m-1))+2) = N{i,4};

 m = m + 1;

 end

 elseif (N{i, 1} == INT)

 A((N{i, 3}-1)*(2*numHarmonics+1)+1, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1) = 1/s;

 % d and q-axis terms

 m = 1;

 while (m <= numHarmonics)

 % d-axis input to d-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = 1/s;

 % cross coupling to q-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = -w(m)/s;

 % cross coupling to d-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+1, ...

 (N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = w(m)/s;

 % q-axis input to q-axis output

 A((N{i, 3}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2, ...

 (N{i, 2}-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = 1/s;

 m = m + 1;

 end

 else

 % error

 end

 i = i + 1;

end

% Generate the final input to node transfer functions

display('calculating inverse');

tic;

Inverse = (eye(length(A)) - A)^-1;

toc;

display('finished calculating inverse');

TFs = Inverse*B;

% ConstTFs = Inverse*C;

 % !!!Modify to take into account the dq terms

 % Name the inputs of the transfer functions

 i = 1;

 while(i <= NumInputs)

 % dc-input

 TFs.InputName((i-1)*(2*numHarmonics+1)+1) = ...

 cellstr(strcat(InputNames(i), '-dc'));

 m = 1;

 while (m <= numHarmonics)

124

 % d-axis input

 TFs.InputName((i-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = ...

 cellstr(sprintf('%s%s%u', InputNames{i}, '-d', m));

 % q-axis input

 TFs.InputName((i-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = ...

 cellstr(sprintf('%s%s%u', InputNames{i}, '-q', m));

 m = m + 1;

 end

 i = i + 1;

 end

% Name the outputs of the transfer functions

% Also name the inputs/outputs of the constant transfer function.

i = 1;

 while(i <= n)

 % dc-input

 TFs.OutputName((i-1)*(2*numHarmonics+1)+1) = ...

 cellstr(strcat(Ni(i), '-dc'));

 m = 1;

 while (m <= numHarmonics)

 % d-axis input

 TFs.OutputName((i-1)*(2*numHarmonics+1)+1+(2*(m-1))+1) = ...

 cellstr(sprintf('%s%s%u', Ni{i}, '-d', m));

 % q-axis input

 TFs.OutputName((i-1)*(2*numHarmonics+1)+1+(2*(m-1))+2) = ...

 cellstr(sprintf('%s%s%u', Ni{i}, '-q', m));

 m = m + 1;

 end

 i = i + 1;

 end

 toc;

beep ;

pause(0.1);

beep ;

pause(0.1);

beep ;

pause(0.1);

beep ;

pause(0.1);

beep ;

pause(0.1);

beep ;

pause(0.1);

beep ;

pause(0.1);

% Each row corresponds to an output.

% Each column corresponds to an input.

GenerateSimulinkFromTFs(TFs(76:80,:), 'Vdc');

GenerateSimulinkFromTFs(TFs(141:145,:), 'iL');

% GenerateSimulinkFromTFs(TFs(53:65,:), 'FromDQ');

%bode(TFs(142,6)); %shows bode plot of VdcComm-dc to iL-d1 bode plot

%bode(TFs(143,6)); %shows bode plot of VdcComm-dc to iL-q1 bode plot

125

% DelayJacobian.m

% Luke Watson

% 8/6/13

% This code is used to find the jacobian of a delay operation

Nmax = 2;

% function HTFVars = HTFInitVariable(Nmax, VarName)

inA = HTFInitVariable(Nmax, 'inA');

display('Finding product');

tic;

Result = HTFDelaySignal(Nmax, inA);

toc;

display('Calculating jacobian');

tic;

Jacobian = jacobian(Result, inA);

toc;

display('Saving fromdq.m');

tic;

matlabFunction(Jacobian, 'file', 'delay.m', 'vars', inA);

toc;

126

% ToDQJacobian.m

% Luke Watson

% 8/6/13

% This code is used to generate the Jacobian of a ToDQ operation.

Nmax = 2;

% function HTFVars = HTFInitVariable(Nmax, VarName)

inA = HTFInitVariable(Nmax, 'inA');

inB = HTFInitVariable(Nmax, 'inB');

display('Finding product');

tic;

[ResultD ResultQ] = HTFToSinglePhaseDQ(Nmax, inA, inB);

toc;

display('Calculating jacobian');

tic;

Jacobian = jacobian([ResultD; ResultQ], [inA; inB]);

toc;

display('Saving todq.m');

tic;

matlabFunction(Jacobian, 'file', 'todq.m', 'vars', [inA; inB]);

toc;

127

% FromDQJacobian.m

% Luke Watson

% 8/6/13

% This code is used to find the Jacobian of a FromDQ operation

Nmax = 2;

% function HTFVars = HTFInitVariable(Nmax, VarName)

inA = HTFInitVariable(Nmax, 'inA');

inB = HTFInitVariable(Nmax, 'inB');

display('Finding product');

tic;

Result = HTFFromSinglePhaseDQ(Nmax, inA, inB);

toc;

display('Calculating jacobian');

tic;

Jacobian = jacobian(Result, [inA; inB]);

toc;

display('Saving fromdq.m');

tic;

matlabFunction(Jacobian, 'file', 'fromdq.m', 'vars', [inA; inB]);

toc;

128

% MultiplyJacobian.m

% Luke Watson

% 8/6/13

% This code is used to manipulate the A matrix of a system for a

% multiplication operation.

Nmax = 2;

% function HTFVars = HTFInitVariable(Nmax, VarName)

inA = HTFInitVariable(Nmax, 'inA');

inB = HTFInitVariable(Nmax, 'inB');

display('Finding product');

tic;

multResult = HTFMultiply(Nmax, inA, inB);

toc;

display('Calculating jacobian');

tic;

multJacobian = jacobian(multResult, [inA; inB]);

toc;

display('Saving mult.m');

tic;

matlabFunction(multJacobian, 'file', 'mult.m', 'vars', [inA; inB]);

toc;

129

% InverseJacobian.m

% Luke Watson

% 8/6/13

% This code is used to find the Jacobian of an inverse operation.

Nmax = 2;

% function HTFVars = HTFInitVariable(Nmax, VarName)

in = HTFInitVariable(Nmax, 'in');

inTemp = in;

% Set even harmonics to zero, to speed up calculations.

display('Finding inverse');

tic;

%invResult = HTFInverseLimit(Nmax, 4, in);

invResult = HTFInverse(Nmax, in);

toc;

display('Calculating jacobian');

tic;

invJacobian = jacobian(invResult, inTemp);

toc;

display('Saving inverse.m');

tic;

matlabFunction(invJacobian, 'file', 'inverse.m', 'vars', inTemp);

toc;

130

% StampCKT.m

% Luke Watson

% 6/20/12

% StampCKT replaces a circuit block with a 'stamp'. This 'stamp'

% consists of each circuit's transfer functions and add blocks,

% to sum up transfer function outputs, for the multiple input case.

%

%

function [oNet oSysIds] = StampCKT(iNet, iCktIds, iTFs, iSysIds, w)

% Define types of branches at the system level

IN = 1;

TF = 2;

ADD = 3;

CNTRL = 4;% Control block should be different than the TF block

 % in that it comes with the negative feedback terminal

 % attached to the TF block, so that it will not return an

 % error. The pos terminal SHOULD NOT be required to be

 % connected to an input, for special cases, such as current

 % control in a boost converter.

MULT = 5; % MULT and DIV should automatically do linearization...

DIV = 6; % They should also automatically do all of the dq stuff...

 % but we'll see how long that takes

CKT = 7; % CKT - Circuit level block

 % EX: CKT [1 3 4; 10 23 1] [2 5; 20 30] 1

 % For the input and output CKT columns:

 % The first row corresponds to the port number of the

 % circuit, given in the identifier matrix. The

 % second row corresponds to the node that the above

 % port is connected to.

 % Where the last '1' indicates the number of the circuit

CONST = 8;

INV = 9;

% Find the number of branches in the circuit, b

[b, l] = size(iNet);

numHarmonics = length(w);

oNet = iNet;

oSysIds = iSysIds;

% Find the number of nodes in the circuit, n

n = 0;

i = 1;

while (i <= b)

 j = max(max(oNet{i, 2}));

 if (j > n)

 n = j;

 end

 % If the current Net is a CKT, then only consider output nodes

 % being used.

 if (oNet{i, 1} == CKT)

 j = max(oNet{i,3}(2,:));

 else

 j = max(max(oNet{i, 3}));

 end

 if (j > n)

 n = j;

 end

 i = i + 1;

end

131

i = 1;

NewBranches = 0;

NewNodes = 0;

DummyInputIdx = 0;

% Check each branch in the netlist for a CKT branch

while (i <= b)

 % If the current branch is a Circuit branch

 if (oNet{i, 1} == CKT)

 % Go through TF outputs

 j = 1;

 while (j <= length(oNet{i, 3}))

 % Check to see if output is actually connected

 if (oNet{i, 3}(2, j) ~= 0)

 % Go through TF inputs

 k = 1;

 InputCount = 0;

 [DC, numInputs] = size(oNet{i, 2});

 while (k <= numInputs)

 % Ensure input is actually connected. If it

 % is not, ignore for now. Possibly throw error

 % or warning later. Currently, if input is not

 % connected, it will treat the input as a 0 input.

 if (oNet{i, 2}(2, k) ~= 0)

 InputCount = InputCount + 1;

 NewBranches = NewBranches + 1;

 NewNodes = NewNodes + 1;

 oNet{b+NewBranches, 1} = TF;

 oNet{b+NewBranches, 2} = oNet{i, 2}(2, k);

 oNet{b+NewBranches, 3} = n + NewNodes;

 % The input number specified should match up with

 % the input number specified in the netlist.

 %

 % SearchIDTFs() must be used to determine which

 % output index for iTFs[] should be used, since

 % the output number is specified by the index

 % number of the matching port, if the first port

 % is a match (current output), otherwise it is b

 % plus the matching index (voltage output).!!!

 inIdx = oNet{i, 2}(1, k);

 outIdx = SearchIDTFs(iCktIds{oNet{i, 4}}, ...

 oNet{i, 3}(1, j));

 % DC Transfer function

 oNet{b+NewBranches, 4}(1) = ...

 {iTFs{oNet{i, 4}}{1}(outIdx, inIdx)};

 % D-axis and q-axis tranfer functions.

 m = 1;

 while (m <= numHarmonics)

 % in-d to out-d

 oNet{b+NewBranches, 4}((m-1)*4+2) = ...

 {iTFs{oNet{i, 4}}{m+1}((outIdx-1)*2+1,...

 (inIdx-1)*2+1)};

 % in-d to out-q

 oNet{b+NewBranches, 4}((m-1)*4+3) = ...

 {iTFs{oNet{i, 4}}{m+1}((outIdx-1)*2+2,...

132

 (inIdx-1)*2+1)};

 % in-q to out-d

 oNet{b+NewBranches, 4}((m-1)*4+4) = ...

 {iTFs{oNet{i, 4}}{m+1}((outIdx-1)*2+1,...

 (inIdx-1)*2+2)};

 % in-d to out-q

 oNet{b+NewBranches, 4}((m-1)*4+5) = ...

 {iTFs{oNet{i, 4}}{m+1}((outIdx-1)*2+2,...

 (inIdx-1)*2+2)};

 m = m + 1;

 end

 % Also add a dummy entry to the system node

 % identifier matrix. This allows for all

 % of the outputs of the system level TFs

 % to be named.

 oSysIds(length(oSysIds)+1) =...

 cellstr(sprintf('Internal-%d',DummyInputIdx));

 DummyInputIdx = DummyInputIdx + 1;

 % Used to store the input node, for the

 % single input case.

 InputNode = oNet{i, 2}(2, k);

 end

 k = k + 1;

 end

 % Generate add block to sum up the transfer functions

 if (InputCount > 1)

 NewBranches = NewBranches + 1;

 oNet{b+NewBranches, 1} = ADD;

 oNet{b+NewBranches, 2} = (n+NewNodes):(-1): ...

 (n+NewNodes-InputCount+1);

 oNet{b+NewBranches, 3} = oNet{i, 3}(2, j);

 oNet{b+NewBranches, 4} = ones(1, InputCount);

 else

 % If there is only one input, there is no need for

 % an addition block, connect the output of the

 % TF directly to the output.

 oNet{b+NewBranches, 3} = oNet{i, 3}(2, j);

 oNet{b+NewBranches, 2} = InputNode;

 NewNodes = NewNodes - 1;

 DummyInputIdx = DummyInputIdx - 1;

 oSysIds(length(oSysIds)) = [];

 end

 end

 j = j + 1;

 end

 % Need to move all entries below the CKT up one, to erase the

 % circuit branch

 j = i+1;

 while (j <= b+NewBranches)

 oNet(j-1, :) = oNet(j, :);

 j = j + 1;

 end

133

 % Take into account erased branch in NewBranches

 NewBranches = NewBranches-1;

 oNet(j-1, :) = [];

 end

 i = i + 1;

end

134

% SearchIDTFs.m

% Luke Watson

% 6/20/12

% SearchIDTFs searches a circuit's transfer function identifier matrix for

% a matching port number (the port number is what is input by the user,

% to determine where a node connects to a circuit). This is used

% for finding where to connect

%

%

function oIdx = SearchIDTFs(iId, iPortNum)

CktBranches = length(iId);

oIdx = 0;

i = 1;

while (i <= CktBranches)

 % Check to see if port number corresponds to an output current

 if (iId{i}{2} == iPortNum)

 oIdx = i;

 % Check to see if port number corresponds to an output voltage

 elseif (iId{i}{2} + CktBranches == iPortNum)

 oIdx = i + CktBranches;

 end

 i = i + 1;

end

135

% Conv2Cell.m
% Converts a matrix to a cell matrix
function oCell = Conv2Cell(iMat)

[N L] = size(iMat);

oCell = cell(N, 1);

i = 1;
while(i<=N)

 oCell{i,1} = iMat(i,1);
 i = i + 1;
end

136

BIBLIOGRAPHY

[1] C. Trujillo Rodriguez, D. Velasco de la Fuente, G. Garcera, E. Figueres, and J. A.

Guacaneme Moreno, "Reconfigurable Control Scheme for a PV Microinverter

Working in Both Grid-Connected and Island Modes," Industrial Electronics,

IEEE Transactions on, vol. 60, pp. 1582-1595, 2013.

[2] H. Haibing, S. Harb, N. H. Kutkut, Z. J. Shen, and I. Batarseh, "A Single-Stage

Microinverter Without Using Eletrolytic Capacitors," Power Electronics, IEEE

Transactions on, vol. 28, pp. 2677-2687, 2013.

[3] D. Hamza, Q. Mei, and P. K. Jain, "Application and Stability Analysis of a Novel

Digital Active EMI Filter Used in a Grid-Tied PV Microinverter Module," Power

Electronics, IEEE Transactions on, vol. 28, pp. 2867-2874, 2013.

[4] T. Shimizu, K. Wada, and N. Nakamura, "Flyback-Type Single-Phase Utility

Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC

Photovoltaic Module System," Power Electronics, IEEE Transactions on, vol. 21,

pp. 1264-1272, 2006.

[5] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "Power inverter topologies for

photovoltaic modules-a review," in Proc. Industry Applications Conference,

2002. 37th IAS Annual Meeting. Conference Record of the, 2002, vol. 2, pp. 782-

788 vol.2, 10.1109/ias.2002.1042648.

[6] T. Shimizu, M. Hirakata, T. Kamezawa, and H. Watanabe, "Generation control

circuit for photovoltaic modules," Power Electronics, IEEE Transactions on, vol.

16, pp. 293-300, 2001.

[7] S. Yatsuki, K. Wada, T. Shimizu, H. Takagi, and M. Ito, "A novel AC

photovoltaic module system based on the impedance-admittance conversion

theory," in Proc. Power Electronics Specialists Conference, 2001. PESC. 2001

IEEE 32nd Annual, 2001, vol. 4, pp. 2191-2196 vol. 4,

10.1109/pesc.2001.954445.

[8] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, "A review of single-phase grid-

connected inverters for photovoltaic modules," Industry Applications, IEEE

Transactions on, vol. 41, pp. 1292-1306, 2005.

[9] C. Yaow-Ming, C. Chia-Hsi, and W. Hsu-Chin, "DC-link capacitor selections for

the single-phase grid-connected PV system," in Proc. Power Electronics and

Drive Systems, 2009. PEDS 2009. International Conference on, 2009, pp. 72-77,

10.1109/peds.2009.5385801.

137

[10] B. A. Yount, F. F. Xiao, Z. Jie, and J. W. Kimball, "Quantifying Insolation in

Multiple Shading Scenarios," in Proc. Green Technologies Conference (IEEE-

Green), 2011 IEEE, 2011, pp. 1-6, 10.1109/green.2011.5754882.

[11] S. M. MacAlpine, R. W. Erickson, and M. J. Brandemuehl, "Characterization of

Power Optimizer Potential to Increase Energy Capture in Photovoltaic Systems

Operating Under Nonuniform Conditions," Power Electronics, IEEE

Transactions on, vol. 28, pp. 2936-2945, 2013.

[12] C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, "Decrease in Photovoltaic

Power Output from Ripple: Simple General Calculation and the Effect of Partial

Shading," Power Electronics, IEEE Transactions on, vol. 28, pp. 740-747, 2013.

[13] I. Abdalla, J. Corda, and L. Zhang, "Multilevel DC-Link Inverter and Control

Algorithm to Overcome the PV Partial Shading," Power Electronics, IEEE

Transactions on, vol. 28, pp. 14-18, 2013.

[14] J. Young-Hyok, J. Doo-Yong, K. Jun-Gu, K. Jae-Hyung, L. Tae-Won, and W.

Chung-Yuen, "A Real Maximum Power Point Tracking Method for Mismatching

Compensation in PV Array Under Partially Shaded Conditions," Power

Electronics, IEEE Transactions on, vol. 26, pp. 1001-1009, 2011.

[15] P. S. Shenoy, K. A. Kim, B. B. Johnson, and P. T. Krein, "Differential Power

Processing for Increased Energy Production and Reliability of Photovoltaic

Systems," Power Electronics, IEEE Transactions on, vol. 28, pp. 2968-2979,

2013.

[16] H. Oldenkamp, I. J. De Jong, C. W. A. Baltus, S. A. M. Verhoeven, and S.

Elstgeest, "Reliability and accelerated life tests of the AC module mounted OKE4

inverter," in Proc. Photovoltaic Specialists Conference, 1996., Conference Record

of the Twenty Fifth IEEE, 1996, pp. 1339-1342, 10.1109/pvsc.1996.564381.

[17] L. E. De Graaf and T. C. J. Van der Weiden, "Characteristics and performance of

a PV-system consisting of 20 AC-modules," in Proc. Photovoltaic Energy

Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic

Specialists Conference - 1994, 1994 IEEE First World Conference on, 1994, vol.

1, pp. 921-924 vol.1, 10.1109/wcpec.1994.520112.

[18] C. Huang-Jen, L. Yu-Kang, Y. Chun-Yu, et al., "A Module-Integrated Isolated

Solar Microinverter," Industrial Electronics, IEEE Transactions on, vol. 60, pp.

781-788, 2013.

[19] S. B. Kjaer and F. Blaabjerg, "Design optimization of a single phase inverter for

photovoltaic applications," in Proc. Power Electronics Specialist Conference,

2003. PESC '03. 2003 IEEE 34th Annual, 2003, vol. 3, pp. 1183-1190 vol.3,

10.1109/pesc.2003.1216616.

138

[20] T. Shimizu, K. Wada, and N. Nakamura, "A flyback-type single phase utility

interactive inverter with low-frequency ripple current reduction on the DC input

for an AC photovoltaic module system," in Proc. Power Electronics Specialists

Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 2002, vol. 3, pp. 1483-1488

vol.3, 10.1109/psec.2002.1022385.

[21] K. Yeong-Chan, L. Tsorng-Juu, and C. Jiann-Fuh, "Novel maximum-power-

point-tracking controller for photovoltaic energy conversion system," Industrial

Electronics, IEEE Transactions on, vol. 48, pp. 594-601, 2001.

[22] R. O. Caceres and I. Barbi, "A boost DC-AC converter: analysis, design, and

experimentation," Power Electronics, IEEE Transactions on, vol. 14, pp. 134-

141, 1999.

[23] C. Albea, C. Canudas-de-Wit, and F. Gordillo, "Adaptive Control of the Boost

DC-AC Converter," in Proc. Control Applications, 2007. CCA 2007. IEEE

International Conference on, 2007, pp. 611-616, 10.1109/cca.2007.4389299.

[24] P. Sanchis, A. Ursaea, E. Gubia, and L. Marroyo, "Boost DC-AC inverter: a new

control strategy," Power Electronics, IEEE Transactions on, vol. 20, pp. 343-353,

2005.

[25] R. O. Caceres, W. M. Garcia, and O. E. Camacho, "A buck-boost DC-AC

converter: operation, analysis, and control," in Proc. Power Electronics Congress,

1998. CIEP 98. VI IEEE International, 1998, pp. 126-131,

10.1109/ciep.1998.750672.

[26] C. Albea and F. Gordillo, "Control of the boost DC-AC converter with RL load

by energy shaping," in Proc. Decision and Control, 2007 46th IEEE Conference

on, 2007, pp. 2417-2422, 10.1109/cdc.2007.4434621.

[27] S. Menaka and S. Muralidharan, "Design and performance analysis of novel boost

DC-AC converter," in Proc. Electronics Computer Technology (ICECT), 2011

3rd International Conference on, 2011, vol. 2, pp. 168-172,

10.1109/icectech.2011.5941678.

[28] M. Coppola, S. Daliento, P. Guerriero, D. Lauria, and E. Napoli, "On the design

and the control of a coupled-inductors boost dc-ac converter for an individual PV

panel," in Proc. Power Electronics, Electrical Drives, Automation and Motion

(SPEEDAM), 2012 International Symposium on, 2012, pp. 1154-1159,

10.1109/speedam.2012.6264548.

[29] E. Achille, T. Martire, C. Glaize, and C. Joubert, "Optimized DC-AC boost

converters for modular photovoltaic grid-connected generators," in Proc.

Industrial Electronics, 2004 IEEE International Symposium on, 2004, vol. 2, pp.

1005-1010 vol. 2, 10.1109/isie.2004.1571951.

139

[30] R. Caceres, R. Rojas, and O. Camacho, "Robust PID control of a buck-boost DC-

AC converter," in Proc. Telecommunications Energy Conference, 2000.

INTELEC. Twenty-second International, 2000, pp. 180-185,

10.1109/intlec.2000.884248.

[31] S. Yuvarajan and X. Shanguang, "Single-stage resonant boost AC-DC-AC

converter," in Proc. Applied Power Electronics Conference and Exposition, 2002.

APEC 2002. Seventeenth Annual IEEE, 2002, vol. 1, pp. 537-541 vol.1,

10.1109/apec.2002.989296.

[32] J. H. Ramirez and P. B. Sanchez, "A Soft Switching Boost DC-AC Converter:

Analysis, Design and Experimentation," in Proc. Telecommunications

Conference, 2005. INTELEC '05. Twenty-Seventh International, 2005, pp. 383-

383, 10.1109/intlec.2005.335125.

[33] O. Hashimoto, T. Shimizu, and G. Kimura, "A novel high performance utility

interactive photovoltaic inverter system," in Proc. Industry Applications

Conference, 2000. Conference Record of the 2000 IEEE, 2000, vol. 4, pp. 2255-

2260 vol.4, 10.1109/ias.2000.883139.

[34] T. Shimizu, O. Hashimoto, and G. Kimura, "A novel high-performance utility-

interactive photovoltaic inverter system," Power Electronics, IEEE Transactions

on, vol. 18, pp. 704-711, 2003.

[35] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, "A new control structure

for grid-connected LCL PV inverters with zero steady-state error and selective

harmonic compensation," in Proc. Applied Power Electronics Conference and

Exposition, 2004. APEC '04. Nineteenth Annual IEEE, 2004, vol. 1, pp. 580-586

Vol.1, 10.1109/apec.2004.1295865.

[36] L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, "A new method of on-

line grid impedance estimation for PV inverter," in Proc. Applied Power

Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual

IEEE, 2004, vol. 3, pp. 1527-1533 Vol.3, 10.1109/apec.2004.1296067.

[37] A. V. Timbus, R. Teodorescu, F. Blaabjerg, and U. Borup, "Online grid

measurement and ENS detection for PV inverter running on highly inductive

grid," Power Electronics Letters, IEEE, vol. 2, pp. 77-82, 2004.

[38] F. Renken, "The DC-link capacitor current in pulsed single-phase H-bridge

inverters," in Proc. Power Electronics and Applications, 2005 European

Conference on, 2005, pp. 10 pp.-P.10, 10.1109/epe.2005.219197.

[39] K. Jung-Min, N. Kwang-Hee, and K. Bong-Hwan, "Photovoltaic Power

Conditioning System With Line Connection," Industrial Electronics, IEEE

Transactions on, vol. 53, pp. 1048-1054, 2006.

140

[40] M. Armstrong, D. J. Atkinson, C. M. Johnson, and T. D. Abeyasekera, "Auto-

Calibrating DC Link Current Sensing Technique for Transformerless, Grid

Connected, H-Bridge Inverter Systems," Power Electronics, IEEE Transactions

on, vol. 21, pp. 1385-1393, 2006.

[41] L. Asiminoaei, R. Teodorescu, F. Blaabjerg, and U. Borup, "Implementation and

Test of an Online Embedded Grid Impedance Estimation Technique for PV

Inverters," Industrial Electronics, IEEE Transactions on, vol. 52, pp. 1136-1144,

2005.

[42] Y. Bo, L. Wuhua, Z. Yi, and H. Xiangning, "Design and Analysis of a Grid-

Connected Photovoltaic Power System," Power Electronics, IEEE Transactions

on, vol. 25, pp. 992-1000, 2010.

[43] G. Feng, L. Ding, L. Poh Chiang, T. Yi, and W. Peng, "Indirect dc-link voltage

control of two-stage single-phase PV inverter," in Proc. Energy Conversion

Congress and Exposition, 2009. ECCE 2009. IEEE, 2009, pp. 1166-1172,

10.1109/ecce.2009.5316399.

[44] M. J. Ryan and R. D. Lorenz, "A synchronous-frame controller for a single-phase

sine wave inverter," in Proc. Applied Power Electronics Conference and

Exposition, 1997. APEC '97 Conference Proceedings 1997., Twelfth Annual,

1997, vol. 2, pp. 813-819 vol.2, 10.1109/apec.1997.575739.

[45] A. Roshan, R. Burgos, A. C. Baisden, F. Wang, and D. Boroyevich, "A D-Q

Frame Controller for a Full-Bridge Single Phase Inverter Used in Small

Distributed Power Generation Systems," in Proc. Applied Power Electronics

Conference, APEC 2007 - Twenty Second Annual IEEE, 2007, pp. 641-647,

10.1109/apex.2007.357582.

[46] J. Salaet, S. Alepuz, A. Gilabert, and J. Bordonau, "Comparison between two

methods of DQ transformation for single phase converters control. Application to

a 3-level boost rectifier," in Proc. Power Electronics Specialists Conference,

2004. PESC 04. 2004 IEEE 35th Annual, 2004, vol. 1, pp. 214-220 Vol.1,

10.1109/pesc.2004.1355744.

[47] J. Salaet, S. Alepuz, A. Gilabert, J. Bordonau, and J. Peracaula, "D-Q modeling

and control of a single-phase three-level boost rectifier with power factor

correction and neutral-point voltage balancing," in Proc. Power Electronics

Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 2002, vol. 2, pp.

514-519 vol.2, 10.1109/psec.2002.1022505.

[48] K. Rae-Young, C. See-Young, and S. In-Young, "Instantaneous control of

average power for grid tie inverter using single phase D-Q rotating frame with all

pass filter," in Proc. Industrial Electronics Society, 2004. IECON 2004. 30th

Annual Conference of IEEE, 2004, vol. 1, pp. 274-279 Vol. 1,

10.1109/iecon.2004.1433322.

141

[49] M. T. Haque and T. Ise, "Implementation of single-phase pq theory," in Proc.

Power Conversion Conference, 2002. PCC-Osaka 2002. Proceedings of the,

2002, vol. 2, pp. 761-765 vol.2, 10.1109/pcc.2002.997615.

[50] R. Zhang, M. Cardinal, P. Szczesny, and M. Dame, "A grid simulator with control

of single-phase power converters in D-Q rotating frame," in Proc. Power

Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 2002,

vol. 3, pp. 1431-1436 vol.3, 10.1109/psec.2002.1022377.

[51] L. D. Watson and J. W. Kimball, "Frequency regulation of a microgrid using solar

power," in Proc. Applied Power Electronics Conference and Exposition (APEC),

2011 Twenty-Sixth Annual IEEE, 2011, pp. 321-326, 10.1109/apec.2011.5744615.

[52] L. D. Watson, J. W. Kimball, and S. Atcitty, "Linear single phase inverter model

for Battery Energy Storage System evaluation and controller design," in Proc.

Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-

Seventh Annual IEEE, 2012, pp. 1861-1867, 10.1109/apec.2012.6166075.

[53] P. C. Krause, "Method of Multiple Reference Frames Applied to the Analysis of

Symmetrical Induction Machinery," Power Apparatus and Systems, IEEE

Transactions on, vol. PAS-87, pp. 218-227, 1968.

[54] S. D. Sudhoff, "Multiple reference frame analysis of an unsymmetrical induction

machine," Energy Conversion, IEEE Transactions on, vol. 8, pp. 425-432, 1993.

[55] S. D. Sudhoff, "Multiple reference frame analysis of a multistack: variable-

reluctance stepper motor," Energy Conversion, IEEE Transactions on, vol. 8, pp.

418-424, 1993.

[56] P. L. Chapman, S. D. Sudhoff, and C. A. Whitcomb, "Multiple reference frame

analysis of non-sinusoidal brushless DC drives," Energy Conversion, IEEE

Transactions on, vol. 14, pp. 440-446, 1999.

[57] X. Peng, K. A. Corzine, and G. K. Venayagamoorthy, "Multiple Reference

Frame-Based Control of Three-Phase PWM Boost Rectifiers under Unbalanced

and Distorted Input Conditions," Power Electronics, IEEE Transactions on, vol.

23, pp. 2006-2017, 2008.

[58] P. L. Chapman and S. D. Sudhoff, "A multiple reference frame synchronous

estimator/regulator," Energy Conversion, IEEE Transactions on, vol. 15, pp. 197-

202, 2000.

[59] L. Sang-Joon and S. Seung-Ki, "A harmonic reference frame based current

controller for active filter," in Proc. Applied Power Electronics Conference and

Exposition, 2000. APEC 2000. Fifteenth Annual IEEE, 2000, vol. 2, pp. 1073-

1078 vol.2, 10.1109/apec.2000.822821.

142

[60] L. Padmavathi and P. A. Janakiraman, "Self-Tuned Feed-Forward Compensation

for Harmonic Reduction in Single-Phase Low-Voltage Inverters," Industrial

Electronics, IEEE Transactions on, vol. 58, pp. 4753-4762, 2011.

[61] O. J. Nastov and J. K. White, "Time-mapped harmonic balance," in Proc. Design

Automation Conference, 1999. Proceedings. 36th, 1999, pp. 641-646,

10.1109/dac.1999.782021.

[62] N. M. Wereley and S. R. Hall, "Frequency response of linear time periodic

systems," in Proc. Decision and Control, 1990., Proceedings of the 29th IEEE

Conference on, 1990, pp. 3650-3655 vol.6, 10.1109/cdc.1990.203516.

[63] N. M. Wereley, "Analysis and Control of Linear Periodically Time Varying

Systems," Massachusetts Institute of Technology, 1991.

[64] H. Sandberg, E. Mollerstedt, and Bernhardsson, "Frequency-domain analysis of

linear time-periodic systems," Automatic Control, IEEE Transactions on, vol. 50,

pp. 1971-1983, 2005.

[65] T. Brekken, N. Bhiwapurkar, M. Rathi, N. Mohan, C. Henze, and L. R.

Moumneh, "Utility-connected power converter for maximizing power transfer

from a photovoltaic source while drawing ripple-free current," in Proc. Power

Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, 2002,

vol. 3, pp. 1518-1522 vol.3, 10.1109/psec.2002.1022391.

[66] A. Ale Ahmad, A. Abrishamifar, and S. Samadi, "Low-frequency current ripple

reduction in front-end boost converter with single-phase inverter load," Power

Electronics, IET, vol. 5, pp. 1676-1683, 2012.

[67] E. Mamarelis, C. A. Ramos-Paja, G. Petrone, G. Spagnuolo, M. Vitelli, and R.

Giral, "FPGA-based controller for mitigation of the 100 Hz oscillation in grid

connected PV systems," in Proc. Industrial Technology (ICIT), 2010 IEEE

International Conference on, 2010, pp. 925-930, 10.1109/icit.2010.5472556.

[68] M. Monfared, M. Sanatkar, and S. Golestan, "Direct active and reactive power

control of single-phase grid-tie converters," Power Electronics, IET, vol. 5, pp.

1544-1550, 2012.

[69] L. Piegari and R. Rizzo, "Adaptive perturb and observe algorithm for photovoltaic

maximum power point tracking," Renewable Power Generation, IET, vol. 4, pp.

317-328, 2010.

[70] T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum

Power Point Tracking Techniques," Energy Conversion, IEEE Transactions on,

vol. 22, pp. 439-449, 2007.

143

[71] U. A. Miranda, M. Aredes, and L. G. B. Rolim, "A DQ Synchronous Reference

Frame Current Control for Single-Phase Converters," in Proc. Power Electronics

Specialists Conference, 2005. PESC '05. IEEE 36th, 2005, pp. 1377-1381.

[72] B. Crowhurst, E. F. El-Saadany, L. El Chaar, and L. A. Lamont, "Single-phase

grid-tie inverter control using DQ transform for active and reactive load power

compensation," in Proc. Power and Energy (PECon), 2010 IEEE International

Conference on, 2010, pp. 489-494, 10.1109/pecon.2010.5697632.

[73] S. R. Sanders, J. M. Noworolski, X. Z. Liu, and G. C. Verghese, "Generalized

averaging method for power conversion circuits," Power Electronics, IEEE

Transactions on, vol. 6, pp. 251-259, 1991.

[74] V. A. Caliskan, G. C. Verghese, and A. M. Stankovic, "Multifrequency averaging

of DC/DC converters," Power Electronics, IEEE Transactions on, vol. 14, pp.

124-133, 1999.

[75] Q. Hengsi and J. W. Kimball, "Generalized Average Modeling of Dual Active

Bridge DC–DC Converter," Power Electronics, IEEE Transactions on,

vol. 27, pp. 2078-2084, 2012.

[76] C. Zhiyu, H. Manli, N. Frohleke, and J. Bocker, "Modeling and Control Design

for a Very Low-Frequency High-Voltage Test System," Power Electronics, IEEE

Transactions on, vol. 25, pp. 1068-1077, 2010.

[77] H. Mouton and B. Putzeys, "Understanding the PWM Nonlinearity: Single-Sided

Modulation," Power Electronics, IEEE Transactions on, vol. 27, pp. 2116-2128,

2012.

[78] D. J. Kostic, Z. Z. Avramovic, and N. T. Ciric, "A New Approach to Theoretical

Analysis of Harmonic Content of PWM Waveforms of Single- and Multiple-

Frequency Modulators," Power Electronics, IEEE Transactions on, vol. 28, pp.

4557-4567, 2013.

[79] W. Bingsen and E. Sherif, "Spectral Analysis of Matrix Converters Based on 3-D

Fourier Integral," Power Electronics, IEEE Transactions on, vol. 28, pp. 19-25,

2013.

[80] F. Koeslag, H. D. Mouton, and J. Beukes, "Analytical Modeling of the Effect of

Nonlinear Switching Transition Curves on Harmonic Distortion in Class D Audio

Amplifiers," Power Electronics, IEEE Transactions on, vol. 28, pp. 380-389,

2013.

[81] A. Z. Albanna and C. J. Hatziadoniu, "Harmonic Modeling of Hysteresis Inverters

in Frequency Domain," Power Electronics, IEEE Transactions on, vol. 25, pp.

1110-1114, 2010.

144

[82] E. X. Yang, F. C. Lee, and M. M. Jovanovic, "Small-signal modeling of power

electronic circuits using extended describing function technique," presented at

Proc. Virginia Power Electronics Seminar, 1991.

[83] C. Gaviria, E. Fossas, Gri, x00F, and R. o, "Robust controller for a full-bridge

rectifier using the IDA approach and GSSA modeling," Circuits and Systems I:

Regular Papers, IEEE Transactions on, vol. 52, pp. 609-616, 2005.

[84] D. Basic, "Input Current Interharmonics of Variable-Speed Drives due to Motor

Current Imbalance," Power Delivery, IEEE Transactions on, vol. 25, pp. 2797-

2806, 2010.

[85] E. Louarroudi, R. Pintelon, J. Lataire, and G. Vandersteen, "Estimation of

nonparametric harmonic transfer functions for linear periodically time-varying

systems using periodic excitations," in Proc. Instrumentation and Measurement

Technology Conference (I2MTC), 2011 IEEE, 2011, pp. 1-6,

10.1109/imtc.2011.5944191.

[86] H. Qin and J. W. Kimball, "Closed-Loop Control of DC–DC Dual-

Active-Bridge Converters Driving Single-Phase Inverters," Power Electronics,

IEEE Transactions on, vol. 29, pp. 1006-1017, 2014.

[87] L. Yu-Cheng, C. Ching-Jan, C. Dan, and B. Wang, "A Ripple-Based Constant

On-Time Control With Virtual Inductor Current and Offset Cancellation for DC

Power Converters," Power Electronics, IEEE Transactions on, vol. 27, pp. 4301-

4310, 2012.

[88] O. Wasynczuk and S. D. Sudhoff, "Automated state model generation algorithm

for power circuits and systems," Power Systems, IEEE Transactions on, vol. 11,

pp. 1951-1956, 1996.

[89] B. B. Johnson, A. Davoudi, P. L. Chapman, and P. Sauer, "Microgrid dynamics

characterization using the automated state model generation algorithm," in Proc.

Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International

Symposium on, 2010, pp. 2758-2761, 10.1109/iscas.2010.5537011.

[90] J. M. Henry and J. W. Kimball, "Switched-Capacitor Converter State Model

Generator," Power Electronics, IEEE Transactions on, vol. 27, pp. 2415-2425,

2012.

145

VITA

 Luke Dale Watson was born in St. Joseph, Missouri and grew up in Savannah,

Missouri. He received his Bachelor's of Science degree in computer engineering from

Missouri S&T in 2008, and his Ph.D. in electrical engineering in from Missouri S&T in

2013.

 Luke has been a student member of IEEE since 2007. He was awarded the

Chancellor's Fellowship and GAANN Fellowship in 2009.

146

