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ABSTRACT 
 

Randomness in physical systems is usually ultimately attributed to external noise. 

Dynamic systems are driven not only by our own control inputs, but also disturbances 

which cannot be modeled deterministically. A linear system model is justifiable for a 

number of reasons, often such a model is adequate for the purpose at hand, and when 

non-linearities do exist, the typical engineering approach is to linearize about some 

nominal point or trajectory to achieve a perturbation or error model. However, in order 

for the resulting model to fit data generated by the real world, these disturbances need to 

be modeled stochastically.  

The traditional approach to power system stability studies is based on a 

deterministic transient energy function. However, such a deterministic analysis does not 

provide a realistic evaluation of system transient performance where the intermittency 

and variability of energy production associated with any renewable technology needs to 

be reflected and accurately modeled in system stability and performance assessments. 

In the papers that make up this dissertation, the random variations of system 

components is modeled by a Gaussian stationary process (white noise) with constant 

spectral density and the effect on the stability of the power system is examined. The 

stochastic perturbation of power loads has a significant effect on the transient stability of 

the power system. The load behavior is found in the random effect of system parameter 

arising from cumulative impacts of a number of independent events. The random load 

characteristic is considered to develop a structure-preserved power system transient 

stability using stochastic energy functions. The stochastic power system stability was 

analyzed both through the stochastic Lyapunov function and numerically using the Euler-

Maruyama method.  
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𝛿𝑖   Rotor angle 
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1. INTRODUCTION 

 

The power industry is going through a radical change with growing interests in 

obtaining energy from sustainable renewable energy resources such as wind, solar and 

plugged-in-hybrid electric vehicles. The way in which power is delivered to customers 

from central power plants through transmission and distribution networks, has been 

changing because of the deregulation of the power system and the integration of 

distributed generation. 

 With advancements in these technologies over the past decade, it is expected that 

a large amount of electric energy supply requirements be met by these non-conventional 

energy sources. Rising gas prices, carbon constraints, fuel economy standards, and the 

desire for energy independence are also driving the development of Plug-in Hybrid 

Electric Vehicles (PHEV) which are expected to achieve the equivalent of 100 miles per 

gallon of gasoline. If they achieve significant market potential, they will have a huge 

impact on the electric industry, increasing load by an amount which could put the grid at 

risk. The challenges faced by today’s power system are severe. It is designed for 

moderate load increase due to long time investments in electricity generation, lines and 

cables but faces in the future a large new load with different patterns. Wind resource 

integration may have a significant impact on power system stability. Although 

deterministic stability studies are often used in generation interconnection studies, these 

deterministic studies lack the capability of considering the stochastic characteristics of 

wind and photovoltaic resources.  

This dissertation consists of three papers; Paper 1 (Proceedings of the North 

America Power Symposium 2009) deals with an introduction and overview of the 

stability of system by using the potential energy generated at and around the equilibrium 

points. Preliminary results in the formulation of the Lyapunov function that allows the 

transient stability to be assessed by using the total energy at fault clearing were 

developed. Paper 2 (accepted for publication in the European Transactions on Electrical 

Power), develops an approach to analyze the impact of stochasticity on the transient 

stability of a power system. The stochastic power system stability was analyzed using 

both the stochastic Lyapunov function and numerically using the Euler-Maruyama 



 

 

method. Paper 3 (submitted to the IEEE Transactions on Power Systems) builds upon the 

previous results of network-reduced power system models. This paper develops a 

structure-preserved power system transient stability using stochastic energy functions.  In 

the context of system modeling, the network reduction power system models preclude 

consideration of load behaviors (i.e. voltage and frequency variations) at load buses. In 

addition, in the context of the physical explanation of results, reduction of the 

transmission network leads to loss of network topology and hence limits the study of 

transient energy shifts among different components of the entire power network.  

The primary contributions of this dissertation are 

 The formulation of a stochastic Lyapunov function that tests the stability of 

the power when uncertainties are present (Paper 1). 

 A framework for constructing a stochastic transient energy function was 

developed for the classical power system (Paper 2) 

 The formulation of a stochastic energy function that is used to determine the 

stochastic transient stability of the power system with random load. It also 

shows statistical analysis of results that can form the basis of risk assessment 

analysis of the power system in the presence of perturbation and uncertainties 

inherent in the integration of renewable and distributed energy sources (Paper 

2). 

 A structure preserving model was used to analyze the impact of random load 

and generation variations on the transient stability of a power system for a 

more realistic representation of power system components and load behavior 

(Paper 3). 
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I. AN ANALYSIS OF THE IMPACT OF PLUG-IN 

HYBRID ELECTRIC VEHICLES ON POWER 

SYSTEM STABILITY 

Theresa Odun-Ayo, Student Member, IEEE, M. L. Crow, Fellow, IEEE 

 

ABSTRACT 
 

Rising gas prices, carbon constraints, fuel economy standards, and the desire for 

energy independence are driving the development of PHEVs which are expected to 

achieve the equivalent of 100 miles per gallon of gasoline. If they achieve significant 

market potential, they will have a huge impact on the electric industry, increasing 

load by an amount which could put the grid at risk. The challenges faced by today‘s 

power system are severe. It is designed for moderate load increase due to long time 

investments in electricity generation, lines and cables but faces in the future a large 

new load with different patterns. This paper investigates the stability of system by 

using the potential energy generated at and around the equilibrium points and an 

analysis of the stability of the power system using stochastic Lyapunov-like energy 

functions.  

 

I. INTRODUCTION 

Greater use of electricity as an energy source for transportation could substantially 

reduce oil consumption. Electric motors are inherently more efficient than internal 

combustion engines; they do not consume energy while vehicles are stationary and they 

provide the opportunity to recover energy from braking [1] [2] [3]. Current hybrid 

electric vehicle technology demonstrates some of the potential of this approach. The 
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introduction and wide spread use of plug-in hybrid technologies (PHEVs) with an all-

electric range sufficient to meet average daily travel needs could reduce per-vehicle 

petroleum consumption by 50 percent, meaning half of the energy would come from 

electricity. Out of this ambience the promise for more efficient individual transportation 

is partly represented by PHEVs, mitigating vehicle technology to an increased 

electrification. However, the mitigation process intuitively entails several impacts for the 

transportation as well as for the power sector which need to be investigated and resolved. 

PHEVs are being developed around the world, with much work aiming to optimize 

engine and battery for efficient operation, both during discharge and when grid electricity 

is available for recharging. However, the general expectation has been that the grid will 

not be greatly affected by the use of PHEVs because the recharging will occur during off-

peak hours, or the number of vehicles will grow slowly enough so that capacity planning 

will respond adequately. This expectation does not consider that drivers will control the 

timing of recharging, and their inclination will be to plug in when convenient, rather than 

when utilities would prefer. 

II. CHALLENGES WITH PHEV INTEGRATION 

PHEVs are a major potential load and energy storage on the grid. They are like 

regular hybrid vehicles but with larger batteries and the ability to recharge from an 

electric connection to the grid. It is important to understand the ramifications of adding 

load from PHEVs onto the grid. Depending on when and where the vehicles are plugged 

in, they could cause local or regional constraints on the grid [4]. They could require the 

addition of new electric capacity and increase the utilization of existing capacity. Usage 

patterns of local distribution grids will change, and some lines or substations may become 

overloaded sooner than expected. Furthermore, the type of generation used to meet the 

demand for recharging PHEVs will depend on the region of the country and the timing of 

recharging. References [3][5][6] look at the concept of vehicle-to-grid power when an 

electric-drive motor powered by batteries, a fuel cell, or a hybrid drivetrain generates or 

store electricity when parked and with appropriate connections can feed power to the 

grid. As PHEVs move toward commercialization, utilities, research institutions, and other 

organizations are attempting to analyze the possible impact that these new, high-power 
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loads could have on the electric grid in the future. PHEV technology also has the 

potential to provide peak load power during high demand periods, if a utility's electric 

distribution system provides vehicle-to-grid (V2G) capability through smart grid 

technologies. The concept has the potential of improving the sustainability and resilience 

of the transportation and electric power infrastructures. It will enable the grid to utilize 

PHEV batteries for storing excess renewable energy and then releasing this energy to grid 

customers when needed. Crucial changes for the transportation sector include behavioral 

pattern changes of the population as well as changes to the existing parking 

infrastructure, which are captured by transportation frameworks. Potential dangerous 

impacts which are intuitive to utilities are line congestion, transformer overloads and 

other not foreseen problems at the different grid levels, but mainly in distribution grids. 

Distribution grids will encounter the new load as a heavy impact even if it is small in the 

beginning, whereas the transmission and medium voltage grid will just see a slight load 

increase easily manageable when not occurring at peak times and in large quantities. 

III. IMPACT OF PHEV INTEGRATION ON SYSTEM ENERGY BALANCE 

As cars and light trucks begin a transition to electric propulsion, there is potential for 

a synergistic connection between such vehicles and the electric power grid [1] [3]. By 

itself, each vehicle will be small in its contribution to the power system, but in aggregate 

a large number of vehicles will represent significant storage or generating capacity. There 

is however the potential for these vehicles to have an effect on the voltage stability and 

control of the distribution system.                                             

Small-signal stability analysis helps in predicting the system’s response to persistent 

random fluctuations in load demands [7] [8]. The question of stability is whether for a 

given disturbance, the trajectories of pre-disturbance operating quantities of the system 

during the disturbance remain in the domain of attraction of the post–disturbance 

equilibrium when the disturbance is removed. This concept is one of transient stability. 

Transient instability in a power system is caused by severe disturbance which creates 

substantial imbalance between the input power supplied to the synchronous generators 

and their electrical outputs. Some of the severely disturbed generators will ‘swing’ far 

enough from their equilibrium positions losing synchronism in the process. Such a severe 
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disturbance may be due to a sudden and large change in load, generation, or network 

configuration. The transient energy function contains both kinetic and potential terms. 

The system kinetic energy, associated with the relative motion of machine rotors, is 

formally independent of the network. The system potential energy, associated with the 

potential energy of the post-fault system, whose stability is to be analyzed [9] [10]. 

Energy function based methods of determining transient stability are a special case of the 

more general Lyapunov methods of stability analysis. While a formal analysis using the 

Lyapunov’s second method is possible, a more “physical” energy based analogy is quite 

helpful in understanding the mechanism of instability/stability. The fundamental goal of 

the energy approach is to calculate the transient energy that the post fault system is 

capable of absorbing and then finding the clearing time at which the faulted trajectory 

will introduce equal to or slightly less than the critical transient energy into the post-fault 

system [11]. The energy function of the post-fault system is given in (1). 

𝑉𝑇𝑂𝑇 =
1
2
�𝑀𝑖

𝑛

𝑖=1

𝜔𝐼
2 −�𝑃𝑖(𝜃𝑖 − 𝜃𝑖𝑠)

𝑛

𝑖=1

−� � �𝐶𝑖𝑗�𝑐𝑜𝑠𝜃𝑖𝑗 − 𝑐𝑜𝑠𝜃𝑖𝑗𝑠 ��
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

 

−∫ 𝐷𝑖𝑗𝑐𝑜𝑠
𝜃𝑖+𝜃𝑗
𝜃𝑖
𝑠+𝜃𝑗

𝑠 𝜃𝑖𝑗𝑑�𝜃𝑖 + 𝜃𝑗��. ]               (1) 

where    

𝑃𝑖 = 𝑃𝑚𝑖 − 𝐸𝑖2𝐺𝑖𝑖 

𝐸𝑖𝐸𝑗𝐵𝑖𝑗 =  𝐶𝑖𝑗 

𝐸𝑖𝐸𝑗𝐺𝑖𝑗 =  𝐷𝑖𝑗 

𝜃𝑖𝑗 = 𝜃𝑖 − 𝜃𝑗 

and 

𝜃𝑖𝑠is the post-fault stable equilibrium point 

𝑀𝑖 = Inertia constant of the ith machine 

𝑃𝑖  = corrected mechanical power 

𝑃𝑚𝑖 = mechanical input power to the ith machine 

𝐸𝑖  = magnitude of the voltage behind the transient reactance of the ith machine 
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𝑉𝐾𝐸 =
1
2
�𝑀𝑖

𝑛

𝑖=1

𝜔𝐼
2 

 

is the kinetic energy tending to move the system away from synchronism, and 

 

𝑉𝑃𝐸 = −�𝑃𝑖(𝜃𝑖 − 𝜃𝑖𝑠) −
𝑛

𝑖=1

� � �𝐶𝑖𝑗�𝑐𝑜𝑠𝜃𝑖𝑗 − 𝑐𝑜𝑠𝜃𝑖𝑗𝑠 ��
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

− � 𝐷𝑖𝑗𝑐𝑜𝑠

𝜃𝑖+𝜃𝑗

𝜃𝑖
𝑠+𝜃𝑗

𝑠

𝜃𝑖𝑗𝑑�𝜃𝑖 + 𝜃𝑗��. ] 

 

is the potential energy of the system, where 

𝑉𝑇𝑂𝑇is the sum of the kinetic and potential energy of the system. 

𝐶𝑖𝑗 and 𝐷𝑖𝑗 are the post-fault parameters and 𝜃𝑖  and 𝜔𝑖are dynamic states. 

𝐵𝑖𝑗 and 𝐺𝑖𝑗are the transfer susceptance and conductance in the reduced bus 

admittance matrix, respectively. 

When a disturbance occurs in a power system the transient energy injected into the 

system during the disturbance increases and causes the machine to diverge from the rest 

of the system [12] [13][14]. When the disturbance is removed, and as machine continues 

to diverge from the rest of the system, its kinetic energy is being converted into potential 

energy. This motion will continue until the initial kinetic energy is totally converted into 

potential energy. When this takes place, the machine will converge towards the rest of the 

system. Figure 1 shows that even small changes in load can have a dramatic impact on 

stability. 
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Fig. 1. Impact of load changes on stability. 

 

The potential energy function can be viewed as an energy bowl in the state space of 

angles. The projection of the stable equilibrium point on the space of angles is located in 

the bottom of this bowl and corresponds to a minimum of potential energy on the surface. 

As shown in Figure 2, at the edge of the bowl, there are points of local maximum and 

saddle points. At these points, the gradient of the potential energy function is zero and, as 

a consequence, they correspond to unstable equilibrium points of the system.  

 

 

Fig. 2. Potential energy function as an energy bowl in the state space of angles. 

Angle 1 Angle 2 

System 
potential 
energy 
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IV. STOCHASTIC LYAPUNOV STABILITY FOR PHEVS 

    The subject of stochastic dynamics and control deals with response analysis and 

control design for dynamical systems with random uncertainties. Small magnitude 

disturbances in load are the result of aggregate behavior of many thousands of individual 

customer devices switching independently and can be expected to lead to a wide band 

disturbance term. Given that these stochastic load variations are the phenomena of 

interest, the question of how to model their effect becomes closely linked with the 

underlying load representation.  The modeling of the stochastic component of the 

electrical network load has in some papers used different representations of the load 

distribution and correlation [15]. Reference [16] showed that most uncertainties of active 

and reactive daily peak loads in the system can be modeled by normal distributions. It 

also mentions the use of three probability density functions: normal, log-normal and beta 

distribution to model the load variations. Reference [17] introduces a systematic approach 

to the construction of stochastic models of electric power systems for small disturbance 

stability analysis. Even though a deterministic structure might be asymptotically stable, a 

small random force could cause its trajectories to reach an energy, beyond which it would 

collapse or enter a critical zone. The stability of the dynamic structure and the expected 

lifetime before it enters the critical zone is of interest. Stability and reliability of PHEV 

can be modeled stochastically. This method computes circuit loading and bus voltage 

probability distribution from a given load probability distribution. The output of the 

stochastic load flow is utilized to compute the conditional probability of system stability 

according to predefined criteria. It has been shown [18] that if the input to the system is 

represented by white noise, then in the absence of damping the dynamic system become 

unstable. In the presence of damping there is a critical noise-to-damping ratio below 

which the system is stable and above which the system becomes unstable. The random 

variations of system components can be modeled by a Gaussian stationary process (white 

noise) with constant spectral density. In this paper, the effect on stability of introducing 

some random perturbation into the system was examined. This was incorporated in 

equation (1) by replacing the 𝑃𝑖 by 𝑃𝑖  + α𝑃0, where α is the white noise applied to the 

system. Figure 3 shows the changes in stability boundary of the potential energy of a 

three machine system. 
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Fig. 3. Power system stability regions using stochastic Lyapunov functions.  
 

V. FORMULATION OF THE LYAPUNOV FUNCTION 

If there exists a continuously differentiable positive definite function v with a negative 

semi definite (or identically zero) derivative �̇� , then the equilibrium 𝑥 = 0 of �̇� is stable. 

Point 𝒙� is the equilibrium point of the dynamic system described by a set of non-linear 

equations �̇� = 𝐹(𝑥) if 𝐹(𝑥�) = 0. Lyapunov’s stability theorem states that this 

equilibrium point is stable if there is a Lyapunov function such that: (i) 𝑉(𝑥)  is positive 

definite with a minimum value at 𝑥�, and (ii) the time derivative �̇� = 𝑑𝑉
𝑑𝑡�  along the 

system trajectory 𝑥(𝑡) is semi-definite, i.e. �̇� ≤ 0. If �̇� < 0 then the equilibrium point is 

asymptotically stable. The time derivative �̇� along the system trajectory 𝑥(𝑡)can be 

calculated as: 

1 2

1 2

n

n

dxdx dxdV V V VV
dt x dt x dt x dt

∂ ∂ ∂
= = + + +

∂ ∂ ∂


    (2) 

 

If �̇� is negative then the function 𝑉(𝑥) decreases with time and tends towards its 

minimum value, the system equilibrium point 𝑥�. The more negative the value of �̇� the 

faster the system returns to the equilibrium point 𝑥�. Consider a system of mass spring 

system with smooth functions 𝑓(∙),𝑔(∙) continuously differentiable and satisfying the 

following conditions 

𝜎𝑓(𝜎) ≥ 0  ∀ 𝜎 ∈ [−𝜎0,𝜎0]    (3) 
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and 

𝜎𝑔(𝜎) ≥ 0  ∀ 𝜎 ∈ [−𝜎0,𝜎0]    (4) 

and equality is achieved when 𝜎 =0. The candidate for the Lyapunov function is 

�̇�(𝑥) = 𝑥2

2
+ ∫ 𝑔(𝜎)𝑑𝑥1

0 𝜎    (5) 

For a single machine infinite bus, where 

𝜔� = 𝜔 − 𝜔𝑠 

𝛿̅ = 𝛿 − 𝛿0 

the system model is given by 

𝛿̅̇ = 𝜔�      (6) 

( )0sinp k Dω δ δ ω= − − −     (7) 

where 𝜔 = rotor speed, 𝛿 is the angle of the voltage behind transient reactance, indicative 

of generator rotor position, 𝑝 is the mechanical power and 𝐷 is the damping coefficient. 

The transient energy function is given by 

 

𝑉(𝛿,𝜔) = 1
2
𝜔�2 + ∫ 𝑔(𝜎)𝑑𝛿

0 𝜎   (8) 

𝑉(𝛿,𝜔) = 1
2
𝑚(𝜔 − 𝜔𝑠)2 − 𝑝(𝛿 − 𝛿0) −  𝑘�cos𝛿̅ − cos 𝛿0�  (9) 

where 𝑘 = 𝐶𝑖𝑗 = 𝐸𝑉
𝑋

 

The transient stability can be directly assessed by comparing the critical energy 

𝑉(𝛿𝑢, 0)to the total energy at fault clearing 𝑉(𝛿,𝜔𝑐) i.e. 

𝑉(𝛿𝑐,𝜔𝑐) < 𝑉(𝛿𝑢, 0)               Stable 

𝑉(𝛿𝑐,𝜔𝑐) = 𝑉(𝛿𝑢, 0)   Critically Stable  

𝑉(𝛿𝑐,𝜔𝑐) > 𝑉(𝛿𝑢, 0)            Unstable 

and the stability margin can be calculated by  

∆𝑉 =  𝑉(𝛿𝑢, 0) −  𝑉(𝛿𝑐,𝜔𝑐) 

Let us consider the nonlinear Ito stochastic system:  

𝑑𝑥(𝑡) = 𝑓�𝑥(𝑡)�𝑑𝑡 + 𝜎�𝑥(𝑡)�𝑑𝑤(𝑡)   (10) 

where 𝑥(𝑡) ∈ ℝ𝑛 is the state vector, 𝑓:ℝ𝑛 → ℝ𝑛 is a continuous mapping;  𝜎�𝑥(𝑡)� ∈ ℝ𝑛

x ℝ𝑑 , the diffusion coefficients of 𝑥(𝑡); and 𝑤(𝑡) ∈ ℝ𝑑 , the standard Wiener process. 

Assuming that the origin is an isolated equilibrium point and let 
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𝑓(𝑥) = �𝑓1(𝑥),𝑓2(𝑥), … 𝑓𝑛(𝑥)�
𝑇
, 

𝑎(𝑥) = 𝜎(𝑥) ∙ 𝜎(𝑥)𝑇 = �
𝑎11(𝑥) ⋯ 𝑎1𝑛(𝑥)
⋮ ⋱ ⋮

𝑎𝑛1(𝑥) ⋯ 𝑎𝑛𝑛(𝑥)
� 

Furthermore, the infinitesimal operator ℒ is expressed as  

ℒ𝑉(𝑥) = 𝑉𝑥(𝑥)𝑓(𝑥) + 1
2

tr𝑉𝑥𝑥(𝑥).𝑎(𝑥)   (11) 

If  ℒ𝑉(𝑥) is negative definite in the neighborhood of 𝑥 = 0, then the equilibrium 𝑥 ≡ 0 

of the stochastic equation (10) is asymptotically stable in probability [19]. For the 

classical model, represented by (6) and (7), we get  

 

ℒ𝑉(𝑥) = 1
2
𝜎2 �𝑚 + 𝐸𝑉

𝑋
cos 𝛿� − 𝐷𝜔�2                                  (12) 

 

For 𝜎 = 0 (deterministic), equation (12) defaults back to the classical system stability. 

Obviously for large D or small 𝜎 this is satisfied and asymptotically stable. For small 

damping, or large noise, then the stability is indeterminate. 

VI. FUTURE WORK 

When there is a sufficient amount of data to form a sample space, uncertainties 

can be modeled as random variables or stochastic processes by means of statistical 

inference. Lyapunov’s method is very useful for designing non-linear stochastic 

dynamical systems. The impact of PHEVs on power system stability can be further 

examined by taking an in depth look at the existence of a stochastic Lyapunov function 

which guarantees that the origins of a system are stable in probability. We also need to 

correlate the stability of the system with the amount of noise (magnitude of 𝜎) and the 

noise probability function. 
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II. An Analysis of Power System Transient

Stability Using Stochastic Energy Functions
T. Odun-Ayo and M. L. Crow

Electrical & Computer Engineering Department, Missouri University of Science & Technology,

Rolla, MO 65409-0810, USA.

ABSTRACT: This paper develops an approach to analyze the impact of stochasticity

on the transient stability of a power system. The stochastic power system stability was

analyzed both through the stochastic Lyapunov function and numerically using the Euler-

Maruyama method. It was shown that increasing either (or both) the variance and the

magnitude of the applied noise can have a destabilizing effect on the power system.

This could potentially cause difficulties as more randomness is introduced into the power

system through renewable energy sources and plug-in-hybrid vehicles.

I. INTRODUCTION

Small magnitude disturbances in load are the result of the aggregate behavior of many

thousands of individual customer devices switching independently and can be expected

to lead to a wide band disturbance. Plug-in-hybrid vehicles (PHEV) are a potential

significant source of disturbance on the grid. PHEVs are like regular hybrid vehicles

but with larger batteries and the ability to recharge from an electric connection to the

grid. Furthermore renewable energy resources such as wind turbines or solar power can

introduce additional uncertainty into the power system. The tandem effect of renewable

resources and PHEVs may create uncertainties of such significant magnitude they may

impact the operation of the power system. For example, the stochastic combination of

wind generation and PHEVs in power system power flow analysis was recently considered

in [1].

At the heart of the stochastic power system is the random perturbations of the load.

The modeling of the stochastic component of the electrical network load has been studied
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in several papers using different representations of the load distribution and correlation.

References [2][3] showed that most uncertainties of active and reactive daily peak loads

in the system can be modeled by normal distributions. In [4] a systematic approach to

the construction of stochastic models of electric power systems is introduced for small

disturbance stability analysis. In [4], it was shown that even though a deterministic power

system might be stable, small random perturbations may cause the state trajectories to

reach a critical point such that exceeding this point may cause the system to collapse or

enter an undesirable operating state.

In addition to power flow studies, there has been renewed interest in stochastic power

system stability analysis due to the projected increase in wind generation and PHEV

penetration. The study and analysis of stochastic power system dynamic security is not

a new topic; it has been studied for several decades [5]-[7], but has received renewed

interest in recent years [8]-[10].

Transient stability assessment has at its core the necessity of a time-domain analysis:

either through direct methods (such as Lyapunov-based energy functions) or through

time-domain simulation [12]-[14]. Previous transient stability stochastic studies addressed

uncertainty in the system model through a combination of deterministic simulation

techniques with stochastic analyses [5]-[10]. Only [9] specifically addresses the impact

of uncertainty in the time domain and proposes the probabilistic collocation method to

develop a polynomial model to predict the outcome of interest. Both analytic and Monte

Carlo simulation approaches have been discussed for the probabilistic assessment of

transient stability. In fact, the basic idea for a Monte Carlo approach to transient stability

assessment using transient energy functions was first proposed in [7], but the appropriate

stochastic tools did not exist at that time to frame the stochastic energy function nor to

numerically solve the stochastic differential equations.

In light of the renewed interest in stochastic power system stability analysis, we propose

to extend the approach first presented in [7] specifically utilizing recent theoretical

developments in

• stochastic transient energy functions, and the

• numerical simulation of the stochastic transient stability equations
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II. LYAPUNOV TECHNIQUES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Consider the nonlinear stochastic system

dx = f(x, t)dt+ g(x, t)Σ(t)dW (t) x(0) = x0 ∈ R
n (1)

whose solution can be written in the sense of Ito:

x(t) = x0 +

∫ t

0

f(x, s)ds+

∫ t

0

g(x, s)Σ(s)dW (s) (2)

where x(t) ∈ R
n is the state; W (t) is an m-dimensional standard Wiener process defined

on the complete probability space (Ω,F , P ); the functions (f, g) are locally bounded

and locally Lipschitz continuous in x ∈ R
n with f(0, t) = 0, g(0, t) = 0 for all t ≥ 0;

and the matrix Σ(t) is nonnegative-definite for each t ≥ 0. The above conditions ensure

uniqueness and local existence of strong solutions to equation (1) [15] [16].

The determination of stochastic system stability is not as straightforward as with

deterministic systems. Consider for example the scalar stochastic process xt given by

the first order Ito stochastic differential equation

dxt = rxtdt+ αxtdWt (3)

in which the randomness is multiplicative. The explicit solution to this equation is

xt = x0 exp

((
r − 1

2
α2

)
t+ αWt

)
(4)

The qualitative behavior of the process as t → ∞ is

1) If r − α2/2 > 0, then x → ∞ with probability 1.0

2) If r − α2/2 < 0, then x → 0 with probability 1.0

3) If r − α2/2 = 0, then x fluctuates between arbitrarily large and arbitrarily small

values with probability 1.0

Note that the stability response is not governed by the deterministic boundary r = 0,

but rather that sufficiently large magnitudes of randomness may actually improve the

stability of the system. Fig. 1 shows the solutions to equation (3) for r = 1 and values

of α = 1,
√
2, 2 for the same dWt in each run.

As with many nonlinear deterministic systems, Lyapunov functions may provide

guidance regarding the stability of stochastic differential equation (SDE) systems. An

SDE system is said to satisfy a Stochastic Lyapunov Condition at the origin if there
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Fig. 1. Examples of different randomness levels in equation (3)

exists a Lyapunov function V (x) defined in a neighborhood D of the origin in R
n such

that

LV (x) ≤ 0 (5)

for any x ∈ D\{0}. Then the equilibrium solution x(t) ≡ 0 of the stochastic differential

equation (1) is stable in probability. Moreover, if D = R
n and the Lyapunov function V (x)

is proper, then the equilibrium solution x(t) ≡ 0 is asymptotically stable in probability

provided

LV (x) < 0 (6)

for any x ∈ D\{0} [17]. The differential generator L is given by

LV (x, t) =
∂V

∂x
f(x, t) +

1

2
Tr

{
Σ(t)T g(x, t)T

∂2V

∂x2
g(x, t)Σ(t)

}
(7)

To illustrate the application of the differential generator, consider the one-machine-

infinite-bus system shown in Fig. 2 and described by the following equations:

δ̇ = ω (8)

Mω̇ = −Dω − P0 sin δ + Pm − PL (9)

If the deterministic load PL is replaced with a stochastic load P̃L that has an expected

value of E
[
P̃L

]
= P 0

L with a stochastically varying component of magnitude α, then

equation (9) can be written as a stochastic differential equation:

Mdω = −Dωdt− P0 sin δdt+ Pmdt− P 0
Ldt− αdWt (10)
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Fig. 2. Single-machine-infinite-bus system with stochastic load

Since the candidate Lyapunov function must satisfy the positive (semi-) definite criteria,

a deterministic Lyapunov function is typically used. Therefore, a suitable Lyapunov

function for this system is [18]

V (δ, ω) =
1

2
Mω2 − (Pm − P 0

L

)
δ − P0 cos δ (11)

Note that the Lyapunov function is deterministic and not stochastic. From equation (6),

this system will be stable in probability if

LV (δ, ω) =
1

2
α2M −Dω ≤ 0 (12)

Obviously for large D or small α this condition is satisfied. For small damping or large

load stochasticity, the stability of this system is indeterminant for this candidate Lyapunov

function.

III. REVIEW OF TRANSIENT ENERGY FUNCTIONS FOR POWER SYSTEM

TRANSIENT STABILITY

The concept of transient stability is based on whether for a given disturbance, the

trajectories of the system states during the disturbance remain in the domain of attraction

of the post-disturbance equilibrium when the disturbance is removed. Transient instability

in a power system is caused by a severe disturbance which creates a substantial imbalance

between the input power supplied to the synchronous generators and their electrical

outputs. Some of the severely disturbed generators may “swing” far enough from their

equilibrium positions to lose synchronism. Such a severe disturbance may be due to

a sudden and large change in load, generation, or network configuration. Since large

disturbances may lead to nonlinear behavior, Lyapunov functions are well-suited to

determine power system transient stability. Since true Lyapunov functions do not exist
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for lossy power systems, transient energy functions are frequently used to assess the

dynamic behavior of the system [18].

The transient energy function contains both kinetic and potential terms. The system

kinetic energy is associated with the relative motion of machine rotors. The potential

energy is associated with the state of the post-fault system [19][20]. Energy function-

based methods of determining transient stability are a special case of the more general

Lyapunov methods of stability analysis. While a formal analysis using the Lyapunov’s

second method is possible, a more “physical” energy based analogy is quite helpful in

understanding the mechanism of instability/stability. The fundamental goal of the energy

approach is to calculate the transient energy that the post fault system is capable of

absorbing and then finding the critical clearing time at which the energy of the faulted

trajectory will be equal to or slightly less than the critical transient energy of the post-

fault system. This approach is sometimes referred to as the “potential energy boundary

surface” or PEBS method of transient stability.

For an electric power system modeled classically as

δ̇i = ωi − ωs (13)

Miω̇i = PMi
−Ei

n∑
j=1

EjYij cos (δi − δj − φij) i = 1, . . . , n

where

δi rotor angle

ωi angular frequency

Mi inertia constant

PMi
mechanical output

Ei constant voltage behind transient reactance

Yij∠φij (i, j)-th entry of the reduced admittance matrix

n number of generators in the system

ωs synchronous speed in radians

The transient energy function of the post-fault system is given by:

VTOT =
1

2

n∑
i=1

Miω̃
2
i −

n∑
i=1

Pi (θi − θsi )
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−
n−1∑
i=1

n∑
j=i+1

EiEj

[
Bij

(
cos θij − cos θsij

)− ∫ θi+θj

θsi+θsj

Gij cos θijd (θi + θj)

]
(14)

where

Gij = Yij cosφij

Bij = Yij sinφij

Pi = PMi
− E2

i Gii

θij = θi − θj

and θi and ω̃i are the transformed generator states in the center of inertia reference frame:

θi = δi − δ0

ω̃i = ωi − ω0

δ0 =
1

MT

n∑
i=1

Miδi

ω0 =
1

MT

n∑
i=1

Miωi

MT =
n∑

i=1

Mi

and θsi is the post-fault stable equilibrium point.

The closest unstable equilibrium point (UEP) and controlling UEP method are two

common methods used to assess the system’s stability [18]. The controlling UEP method

consists of numerically integrating the system state and calculating the kinetic, potential,

and total energy of the fault-on system until the point at which the potential energy

reaches its maximum value. This maximum potential energy is at (or near) the UEP. The

critical clearing time (CCT) of the system is then calculated by finding the time at which

the total energy is equal to the maximum potential energy as shown in Fig. 3.

IV. A STOCHASTIC TRANSIENT ENERGY FUNCTION

Similar to the approach proposed in [4], the load and generation disturbances are modeled

stochastically with varying magnitudes depending on bus location in the system. In this

paper, we consider only the impact of Gaussian variation (normal distribution), but other
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Fig. 3. VTOT and VPE

distributions can be incorporated. For example, wind generation is often modeled as a

Weibull distribution [21], whereas PHEV distributions have been suggested to be Poisson

distribution [1]. The load power is assumed to vary stochastically with an expected value

of the base case loading. In the power system model of equation (14), the system loads

are modeled as constant impedances. If both active and reactive powers at a bus are

assumed to vary with the same level of randomness, then the load variation manifests

itself in the diagonal elements of the reduced admittance matrix as

Y (i, i) = Yii (1 + αidWt,i)∠φii

Note that only the magnitude varies; the power factor (and subsequently φii) is considered

to remain constant. The stochastic power system (SPS) equations become:

dθi = ω̃idt (15)

Midω̃i =

(
PMi

− Mi

MT
PCOI −Ei

n∑
j=1

Ej [Bij sin θij +Gij cos θij ]

)
dt

−E2
i GiiαidWt,i (16)

i = 1, . . . , n

and

PCOIdt=

(
n∑

i=1

(
PMi

− E2
i Gii

)− 2
n−1∑
i=1

n∑
j=1

EiEjGij cos θij

)
dt−

n∑
i=1

E2
i GiiαidWt,i (17)

If the power system of equations (13)-(14) is lossless, then the energy function (14) is

22



a true Lyapunov function and [14]:

V̇TOT =
∂VTOT

∂x
f(x) = 0 (18)

and the Lyapunov stochastic stability is therefore determined by

LV (x, t) =
1

2
Tr

{
Σ(t)Tg(x, t)T

∂2VTOT

∂x2
g(x, t)Σ(t)

}
(19)

Applying the differential generator L to equations (14)-(16) yields:

LV (θ, ω̃) =
1

2

n∑
i=1

(
E2

i Giiαi

)2( 1

Mi

− 1

MT

)
(20)

which in the absense of a damping term is always greater than zero for noise magnitude

αi 	= 0, therefore the stochastic stability of this system is analytically indeterminant and

must be determined numerically.

V. NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

The determination of the power system energy requires the numerical solution of the SDE

system in equations (15)-(16). The numerical solution of SDEs is conceptually different

from the numerical solution of deterministic ordinary differential equations. At the core of

the numerical solution of SDEs is the representation of the standard Wiener process over

the simulation interval [0, Tmax]. The random variable W (t) satisfies the three following

conditions [22]:

1) W (0) = 0 (with probability 1)

2) For 0 ≤ s < t ≤ Tmax, the random variable given by the increment W (t)−W (s) is

normally distributed with mean zero and variance t−s; equivalently, W (t)−W (s) ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed random variable with

zero mean and unit variance.

3) For 0 ≤ s < t < u < v ≤ Tmax, the increments W (t)−W (s) and W (v) −W (u)

are independent.

A standard Wiener process W (t) can be numerically approximated in distribution on

any finite time interval by a scaled random walk. A stepwise continuous random walk

HN(t) can be constructed by taking independent, equally probable steps of length ±√
Δt

at the end of each subinterval.
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For the ordinary differential equation

ẋ = f(x, t), x(0) = x0 ∈ R
n

the well-known Euler’s method can be applied to numerically approximate the solution

over [0, T ][23]:

xj = xj−1 +Δtf (xj−1, tj−1) , j = 1, . . . , L (21)

where LΔt = T and L is a positive integer.

For the stochastic differential equation

dx = f(x, t)dt+ g(x, t)Σ(t)dW (t) x(0) = x0 ∈ R
n

a corresponding numerical integration method is the Euler-Maruyama (EM) method [22]:

xj = xj−1 +Δtf (xj−1, tj−1) +

g (xj−1, tj−1)Σ(tj−1) (W (τj)−W (τj−1)) (22)

j = 1, . . . , L

where W (τj),W (τj−1) are points on the Brownian path. The set of points {tj} on which

the discretized Brownian path is based must contain the points {τj} at which the EM

solution is computed. If the EM is applied using a stepsize Δt = Rδt, then

(W (τj)−W (τj−1)) = W (jRδt)−W ((j − 1)Rδt) (23)

=

jR∑
k=jR−R+1

dWk (24)

VI. ILLUSTRATIVE EXAMPLE

The Euler-Maruyama numerical integration method is applied to the stochastic power

system equations of (15) and (16). The test system is the IEEE 3-machine, 9-bus (also

known as the WSCC) system shown in Fig. 4. A three-phase fault is applied to bus

8 and then cleared at 0.15 seconds. The deterministic response of the system generator

frequencies is shown in Fig. 5. One possible stochastic response for a given α is shown in

Fig. 6. The loads are varied stochastically with a variance σ2 = h where h is the interval

between samples (i.e. the time step). The magnitude of the variation is α = 0.0025.
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Fig. 4. 3-machine, 9-bus test system
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Fig. 5. Deterministic deviation of generator speed to a short circuit
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Fig. 6. Stochastic deviation of generator speed to a short circuit

To put this level of variation in context, the diagonal admittances (each Y (i, i)) are

shown in Fig. 7. This indicates that for this choice of α, the variance in the magnitude

of Y (i, i) ≤ 0.5%.

At this level of variance, the differences in the generator frequency can vary over a

wide range. Ten consecutive simulations with the same α but different random walk sets
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yields the set of responses for generator 1 shown in Fig. 8. From these responses, it is

obvious that the stability of the power system may be affected by injecting stochasticity

into the loads.
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Fig. 7. Stochastic diagonal admittance variance
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Fig. 8. Generator 1 deviation of generator speed (10 runs)

VII. STOCHASTIC POWER SYSTEM TRANSIENT STABILITY USING ENERGY

FUNCTIONS

In the presence of stochasticity, both the kinetic and potential energy will exhibit

random behavior. For example, consider Fig. 9 which shows a two-dimensional (top)

view of the potential energy contours of the three-dimensional energy “bowl” of a three-

machine system for five different runs. Looking closely at the elliptical energy contours,

it can be seen that for the set of highest energy (outermost) contours enclosing the stable

equilibrium point (SEP), one of the contours is open and approaches the next higher
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Fig. 9. Illustration of change in PEBS boundary (5 runs)

energy levels which do not enclose the SEP. These open contours indicate a saddle node

point, such that if system state approaches this energy level the state may leave the energy

well and the SEP cannot be attained post-fault. Thus, it can be seen that the inclusion of

random load perturbations can affect the height of the energy well and possibly lead to

instability.

The energy function approach for determination of transient stability will be applied to

the system of stochastic differential equations and a Monte Carlo approach will be used

to assess the critical clearing time of the stochastic system. The critical clearing time of

a single run of a SPS will be governed by the magnitude and variance of the applied load

perturbation. A single run will produce a critical clearing time that is distributed within

a range of critical clearing times as shown in Fig. 10. This range of times will form a

probability density function (PDF). Due to the nonlinearities inherent in power system

dynamics, it will be shown that the PDF of the critical clearing time will not have the

same characteristics as the load (i.e. the CCTs will not have a Gaussian distribution).

The deterministic critical clearing time for a short-circuit fault on bus 8 is 0.233 seconds.

Fig. 11 shows a histogram of the critical clearing times obtained from 1000 runs of the

SPS for this fault. For a large sample population, the histogram of critical clearing times

predicts the shape of the probability density function. Of significant note is that that the

median value of the histogram is the same as the deterministic critical clearing time.

This implies that half of the CCTs are greater than 0.233 seconds and half are smaller.

Note however that even though the expected value is the same as the deterministic CCT,
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Fig. 11. Histogram of tcrit (1000 runs; α = 0.0025, σ2 = h)

the variance is not symmetric about the median even though the load perturbations were

Gaussian distributed.

One way to interpret these results is that if the protection for this system was designed

to act at 0.205 seconds, then according to the histogram, the system would be stable for

997 of the 1000 runs. This could be generalized in a statement that the system would

be stable with a probability of 99.7%. These results could further be used in a risk

assessment analysis.

Fig. 11 showed the results for a single level of perturbation magnitude α and variance.

The next step in this analysis is to determine what impact different values of these

parameters have on the stability. The Lyapunov analysis discussed earlier only accounted

for the magnitude of the perturbation and not the variance. Fig. 12 shows the histogram

of the same fault and the same magnitude of perturbation, but the perturbation is modeled
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Fig. 12. Histogram of tcrit (1000 runs; α = 0.0025, σ2 = h/2)

with a much smaller variance (in this case, σ2 = h/2). As might be expected, since the

range of the perturbation is much smaller, so too is the range of the resulting CCTs.

In this case, the median value is the same as the deterministic CCT and the values are

tightly clustered around 0.233 seconds.

Alternately, Fig. 13 and Fig. 14 show the CCTs for the same fault except with an

increase in variance and magnitude, respectively. In both these cases, the median value of

the CCT histogram is smaller than the deterministic, and thus (in probability) the system is

less stable. Fig. 15 illustrates the impact of magnitude and variance on the value of critical

clearing time. Not surprisingly, an increase in variance and magnitude both decrease the

expected value of the CCT. The shape of the energy well and the shape of the potential

energy boundary surface used in tranisent energy functions both change as the loads in the

system change. The UEPs, potential energy, kinetic energy, and trajectory of the system

state are all randomly varying. That is why it is important to draw conclusions from

the expected value of the Monte Carlo simulations as opposed to considering individual

trajectories and CCTs. It is more informative to consider the expected value and the

probability of stability (or instability) than a single random occurrence.

The inclusion of non-Gaussian variation also affects the CCT distribution. Most of the

theoretical developments and the available numerical methods have been developed for

zero-mean Gaussian perturbations. However, as mentioned previously, not all perturba-

tions to the power system take the form of a Gaussian distribution. For example, wind

variability is frequently modeled as having a Weibull probability distribution function as
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0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25
0

50

100

150

200

250

300

values of t
crit

nu
m

be
r 

of
 o

cc
ur

re
nc

es

Fig. 14. Histogram of tcrit (1000 runs; α = 0.005, σ2 = h,E [tcrit] = 0.227)
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shown in Fig. 16. [21], and PEV distributions have been suggested to have a Poisson

distribution [1]. On the other hand, no classical probability distribution function can be

satisfactorily fitted to solar radiation [24]. As already seen for the classical model case,

even if a Gaussian noise function is used, the resulting distribution function for the critical

clearing times is significantly non-Gaussian. It is difficult to even predict how other noise
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Fig. 17. Histogram of tcrit with Weibull distribution (1000 runs; E [tcrit] = 0.230)

functions may impact the stability of the system, but we have explored the possibility

of the impact of Weibull distribution. Although it is difficult to perform a one-to-one

comparison with Gaussian noise, we have endeavored to construct a Weibull distribution

with a mean centered at the initial loading and with a maximum variation equivalent to

twice the standard deviation of the Gaussian. The Weibull distribution is given by

f(x) =

⎧⎨
⎩

k
λ

((
x
λ

)k−1
e−(

x
λ)

k)
x ≥ 0

0 x < 0
(25)

where λ > 0 is the scale factor and k > 0 is the shape factor. In wind applications, k

can range from 1 to 2.5, with regions with low wind having smaller k factors. In our

example, we chose k = 1.5. Fig. 17 shows the CCT distribution when the load has a

Weibull distribution as might occur if a small wind turbine were attached at a bus. While

it is difficult to directly compare this distribution with one resulting from a Gaussian

31



distribution, it can be noted that the general trend is the same as with Fig. 14. The only

difference is that the expected value is slighter larger for the Weibull than the Gaussian.

This is to be expected since the Weibull distribution has only one “tail.” This asymmetry

will cause the CCTs to trend slightly to one side (in this case towards stability since the

Weibull distribution was used to model a generator contribution rather than a load).

VIII. DISCUSSION

Probably the first question that arises when considering the results of this example is

why does the CCT probability density function take on a shape different than the shape

of the noise perturbation? This can be easily understood by looking at the nature of the

energy function. Consider again the SMIB stochastic power system of equations (8)-(9).

During the fault, no power may flow to the system. The fault-on stochastic equations are

(neglecting damping):

dθ = ωdt (26)

Mdω =
(
Pm − P 0

L

)− αdWt (27)

thus, during the fault:

ω(t) =
1

M

(
Pm − P 0

L

)
t− α

M

∫ t

0

dWs (28)

and the kinetic energy of the fault-on system is

VKE =
1

2
Mω(t)2 (29)

=
M

2

[(
(PM − P 0

L)

M
t

)2

−2
α

M

∫ t

0

dWs +
α2

M2

(∫ t

0

dWs

)2
]

(30)

The first term is the deterministic value of the kinetic energy, denoted V̄KE. The second

term contains the integral: ∫ t

0

dWs

which is the Brownian motion (or random walk) term and has an expected value of zero.

It is as likely to be positive as it is to be negative. The third term however contains the

square of this random walk and the expected value is therefore always positive, regardless
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of whether or not the point along the Brownian motion path is positive or negative. The

result of this is that

E [VKE] ≥ V̄KE (31)

This is illustrated in Fig. 18. Therefore the expected value of the kinetic energy will most

probably be to the left of the deterministic value V̄KE.
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Fig. 18. Expected and deterministic values of VKE (5 runs)

Furthermore, the angle δ is the integral of ω and therefore the large variations found

in ω are smoothed. Since the potential energy is a function of angle only, there is not as

wide a variance in the expected value of potential energy. This is why the values of tcrit

stray much further to the left in the time domain, than to the right leading to the shifted

probability distribution function.

IX. CONCLUSIONS AND FUTURE WORK

This paper develops an approach to analyze the impact of random load and generation

variations on the transient stability of a power system. The well-known energy function

method for power system transient stability is used as a basis to explore the stochastic

power system stability through a stochastic Lyapunov stability analysis. Further, the

method was extended numerically using the Euler-Maruyama method. It was shown that

increasing either (or both) the variance and the magnitude of the applied variation can

have a destabilizing effect on the power system. This could potentially cause difficulties as

more randomness is introduced into the power system through renewable energy sources

and plug-in-hybrid vehicles.
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Further work will include an extension to the structure-preserving model so that the

loads may be explicitly model rather than as constant impedances. Other considerations

may include exploring the impact of non-Gaussian distributions on critical clearing times.

An additional area of study would include modeling the stochastic behavior of generation

scheduling.
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III. Structure-Preserved Power System

Transient Stability Using Stochastic Energy

Functions
Theresa Odun-Ayo, Student Member, IEEE, and M. L. Crow, Fellow, IEEE

ABSTRACT: With the increasing penetration of renewable energy systems such as

plug-in hybrid electric vehicles, wind and solar power into the power grid, the stochastic

disturbances resulting from changes in operational scenarios, uncertainties in schedules,

new demands and other mitigating factors become crucial in power system stability

studies. This paper presents a new method for analyzing stochastic transient stability using

the structure-preserving transient energy function. A method to integrate the transient

energy function and recloser probability distribution functions is presented to provide a

quantitative measure of probability of stability. The impact of geographical distribution

and signal to noise ratio on stability is also presented.

I. INTRODUCTION

Electrical power system loads are functions of a myriad of active and reactive power

demands that depend on a variety of factors including time, weather, geography, and

economics. The result of the aggregate behavior of many thousands of individual customer

devices switching independently are power system loads that are stochastic in nature. The

variability of the electrical network loading has received increased attention in recent years

due to the expansion of renewable resources and the likelihood of wide-spread adoption

of plug-in electric vehicles (PEVs) [1]. Renewable energy resources such as wind turbines

or solar power can introduce uncertainty into the power system as a result of atmospheric

variations causing excursions in active power generation. Furthermore, plug-in electric

vehicles are a potential significant source of disturbance on the grid due to their battery

charge and discharge characteristics. The tandem effect of renewable resources and PEVs
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may create uncertainties of such significant magnitude they impact the operation of the

power system.

The study and analysis of stochastic power system dynamics is not a new topic; it

has been studied for several decades [2]-[5], but has received renewed interest in recent

years as the amount of uncertainty in the system has increased [6]-[9]. The inclusion

of stochasticity in power systems may lead to very different stability results from a

deterministic approach. For example, even though a deterministic power system might be

stable, small random perturbations may cause the state trajectories to reach a critical point

such that exceeding this point may cause the system to collapse or enter an undesirable

operating state [10]. As power system loads and generation become increasingly non-

deterministic, it is essential that analytical methods be developed to analyze the behavior

of the stochastic system to better understand the inherent risks and provide sufficient

protection against failures.

Power system transient stability is typically assessed either through direct methods

(such as Lyapunov-based energy functions), or through time-domain simulation [11]-

[15]. The inclusion of randomness into transient stability analysis most often requires

the use of Monte Carlo methods to ascertain the behavior of the system over multiple

trials. The basic idea for a Monte Carlo approach to transient stability assessment using

transient energy functions was first proposed in [4], but the appropriate stochastic tools

did not exist at that time to frame the stochastic energy function nor to numerically solve

the stochastic differential equations.

Since the stochastic behavior of the power system is typically manifested through the

variance of the loads, the choices of power system model and the particular transient

stability assessment method are crucial. In many Lyapunov-based transient stability

studies, the system energy function is developed for the “classical model” in which

the load impedance is absorbed into an equivalent reduced network as viewed from the

generator buses. In such a scheme the structure of the original network is lost. Although

the classical model is frequently used in transient stability direct methods, this model

is known to have several shortcomings: (i) it precludes the consideration of reactive

power demand and voltage variation at the load buses; and (ii) the reduction of the

impedance network leads to a loss of system topology and hence precludes the study
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of how the transient energy varies among different components of the network [12]-

[15]. An alternative approach is to adopt the structure preserving model in which the

active and reactive demand at each load bus is explicitly represented. The use of a

structure preserving model of the system, first proposed by Bergen and Hill [16] aims at

overcoming some of the shortcomings of the classical model thereby allowing accurate

modeling of loads. The structure preserved model maintains the original network and

uses the unreduced admittance matrix resulting in a model that can be regarded as having

structural integrity [17].

Since the time of [4], there has been considerable progress made in the development of

the appropriate tools necessary to address stochastic transient stability. There have been

numerous recent advances in the application of Lyapunov stability methods to stochastic

differential equation systems [19]-[21]. Furthermore, the past decade has seen significant

advances in the development of numerical integration methods to simulate stochastic

(ordinary) differential equations [22]. In this paper, these advances in stochastic Lyapunov

stability methods and the numerical solution of systems of stochastic differential equations

will be merged to present a novel approach to developing a quantitative measure of

probability of stability that is suitable for power system risk assessment.

II. STRUCTURE PRESERVED STOCHASTIC TRANSIENT ENERGY FUNCTIONS

The concept of transient stability is based on whether, for a given disturbance, the

trajectories of the system states during the disturbance remain in the domain of attraction

of the post-disturbance equilibrium when the disturbance is removed. Transient instability

in a power system is caused by a severe disturbance which creates a substantial imbalance

between the input power supplied to the synchronous generators and their electrical

outputs. Some of the severely disturbed generators may “swing” far enough from their

equilibrium positions to lose synchronism. Such a severe disturbance may be due to

a sudden and large change in load, generation, or network configuration. Since large

disturbances may lead to nonlinear behavior, Lyapunov functions are well-suited to

determine power system transient stability. Since true Lyapunov functions do not exist for

lossy power systems, so-called “transient energy functions” are frequently used to assess

the dynamic behavior of the system [25]. From a modeling point of view the structure
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preserved model allows a more realistic representation of power system components

including load behaviors and generator dynamic models.

To better understand the how the structure preserved transient energy function will be

developed and analyzed, a brief review of Lyapunov functions for stochastic differential

equations is first presented.

Consider the nonlinear stochastic system

dx = f(x, t)dt+ g(x, t)Σ(t)dW (t) x(0) = x0 ∈ R
n (1)

whose solution can be written in the sense of Ito:

x(t) = x0 +

∫ t

0

f(x, s)ds+

∫ t

0

g(x, s)Σ(s)dW (s) (2)

where x(t) ∈ R
n is the state; W (t) is an m-dimensional standard Wiener process defined

on the complete probability space (Ω,F , P ); the functions (f, g) are locally bounded and

locally Lipschitz continuous in x ∈ R
n with f(0, t) = 0, g(0, t) = 0 for all t ≥ 0; and the

matrix Σ(t) is nonnegative-definite for each t ≥ 0. These conditions ensure uniqueness

and local existence of strong solutions to (1) [19][26].

As with many nonlinear deterministic systems, Lyapunov functions can provide

guidance regarding the stability of stochastic differential equation (SDE) systems. An

SDE system is said to satisfy a Stochastic Lyapunov Condition at the origin if there

exists a proper Lyapunov function V (x) defined in a neighborhood D of the origin in

R
n such that

LV (x) ≤ 0 (3)

for any x ∈ D\{0} where the differential generator L is given by

LV (x, t) =
∂V

∂x
f(x, t) +

1

2
Tr

{
Σ(t)T g(x, t)T

∂2V

∂x2
g(x, t)Σ(t)

}
(4)

If equation (3) is satisfied, then the equilibrium solution x(t) ≡ 0 of the stochastic

differential equation (1) is considered to be stable in probability [27].
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To accurately include the effects of the loads in the system, the so called structure-

preserved, center-of-intertia model of the power system is used, such that [18]:

θ̇i = ω̃i (5)

Mi
˙̃ωi = PMi

−
n∑

j=1

Bi,jViVj sin (θi − θj)− Mi

MT
PCOI (6)

i = 1, . . . , m

0 = Pdi +
n∑

j=1

BijViVj sin(θi − θj) (7)

0 = Qdi +

n∑
j=1

BijViVj cos(θi − θj) (8)

i = m+ 1, . . . , n

where

θi = δi − δ0

ω̃i = ωi − ω0

and

δ0 =
1

MT

m∑
i=1

Miδi; ω0 =
1

MT

m∑
i=1

Miωi; MT =
m∑
i=1

Mi

PCOI =

m∑
i=1

(
PMi

−
n∑

j=1

BijViVj sin(θi − θj)

)
(9)

where
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δi generator rotor angle

θi COI bus angle

ωi generator angular frequency

ω̃i COI angular frequency

Mi inertia constant

PMi
mechanical output

Vi bus voltage

Bij (i, j)-th entry of the reduced lossless admittance matrix

m number of generators in the system

n number of total buses in the system

ωs synchronous speed in radians

and Pdi and Qdi are the load demands at each bus i in the system.

The corresponding energy function is [18]:

V (ω̃gi, θ, V ) =
1

2

m∑
i=1

Miω̃
2
gi −

m∑
i=1

PMi
(θi − θsi ) +

n+m∑
i=1

Pdi (θi − θsi )

−1

2

n+m∑
i=1

Bii

(
V 2
i − (V s

i )
2)+ n+m∑

i=1

Qs
di

a (V s
i )

a (V
a
i − (V s

i )
a)

−
n+m−1∑

i=1

n+m∑
j=i+1

Bij

(
ViVj cos(θi − θj)− V s

i V
s
j cos(θsi − θsj )

)
(10)

where a is usually 2 and the superscript ‘s’ indicates the stable equilibrium point. In the

structure preserved power system, the loads Pdi and Qdi can be augmented to include

the impact of uncertain and stochastic variations:

Pdi = P 0
di
(1 + αPiWi(t)) (11)

Qdi = Q0
di
(1 + αQiWi(t)) (12)

where P 0
di, Q

0
di are the mean values of the active and reactive load at bus i respectively

and αPi, αQi are the magnitudes of the active and reactive noise. Note that the variance

in the noise (i.e. standard deviation) is not explicitly represented but is inherent in the

construction of the Weiner process Wi(t).
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Similar to the approach proposed in [10], the load and generation disturbances are

modeled stochastically with varying magnitudes depending on bus location in the system.

In this paper, we consider only the impact of Gaussian variation (normal distribution), but

other distributions can be incorporated. For example, wind generation is often modeled

as a Weibull distribution [23], whereas PHEV distributions have been suggested to be

Poisson distribution [24]. The load power is assumed to vary stochastically with an

expected value of the base case loading. The loads are each bus are subjected to random

perturbations with Gaussian (white) variation (dW (t) from equation (1)) as shown in

Fig. 1(a). The resulting load variation takes the form of a Wiener process, also known

as Brownian motion or a random walk, as shown in Fig. 1(b).
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Fig. 1. Load Gaussian noise (a) and resulting Brownian motion (b)

III. METHODOLOGY

The closest unstable equilibrium point (UEP) and controlling UEP method are two

common direct methods used to assess the system’s stability [25]. The controlling UEP

method consists of numerically integrating the system state and calculating the kinetic,

potential, and total energy of the fault-on system until the point at which the potential

energy reaches its maximum value. The critical clearing time (CCT) of the system is

then calculated by finding the time at which the total energy is equal to the maximum

potential energy as shown in Fig. 2.

The energy function approach for determination of transient stability is applied to the

system of stochastic differential-algebraic equations and a Monte Carlo approach has
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Fig. 2. The total energy VTOT versus the potential energy VPE.

been used to construct the probability distribution of the critical clearing time of the

stochastic system. Ten consecutive simulations with the same Gaussian noise magnitude

and variance but different noise sets yields the set of energies VTOT and VPE shown in

Fig. 3.
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Fig. 3. Illustration of change in tcrit over the range of 10 runs – upper plots show the
total energy VTOT , lower plots show potential energy VPE.

These responses demonstrate that the stability of the power system may be significantly

affected by injecting stochasticity into the loads. Fig. 4 shows a histogram of the critical

clearing times obtained from 1000 transient stability runs. This histogram was generated

by calculating the critical clearing time of 1000 runs of the energy function method. This
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Fig. 4. Histogram of tcrit (1000 runs)

set of critical clearing times ranges from the least stable case of tcrit = 0.2025 seconds

to the most stable case of tcrit = 0.2385 seconds with a mean value of tcrit = 0.233

seconds. Note that the mean CCT value 0.233 seconds is also the same CCT obtained

from a single deterministic run of the energy method. Note that if another 1000 runs

were performed with different noise sets, this histogram would most likely look slightly

different, but would have the same general distribution and should yield the same mean

value.

For a large sample population, the histogram of critical clearing times predicts the shape

of the probability density function. Of significant note is that for a standard deviation

and variance of 1.0, the median value of the histogram is the same as the deterministic

critical clearing time. This implies that half of the CCTs are greater than 0.233 seconds

and half are smaller. Note, however, that even though the expected value is the same as

the deterministic CCT, the variance is not symmetric about the median even though the

load perturbations are Gaussian distributed.

One way to interpret these results is to combine the critical clearing time distribution

with a recloser distribution. The probability of maintaining stability PS is then given by

PS =

∫ τr=∞

τr=0

∫ τd=τr

τd=0

fCCT (τr) fR (τd) dτrdτd (13)

where fR is the probability distribution of the recloser and fCCT is the probability

distribution function of the critical clearing times [28].
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For example, consider a recloser probability distribution function shown in Fig. 5. The

recloser action is a Guassian distribution with an actuation mean time of 0.225 seconds

and a one cycle standard deviation. The probability distribution of the critical clearing

times cannot be represented by a closed form distribution, but the PS can be estimated

by:

PS ≈
N∑

kd=1

kd∑
kr=1

f̂CCT (kr) f̂R (kd) (14)

where f̂CCT and f̂R are the discretized distribution functions and N is the total number of

samples. Applying this to the histogram of critical clearing times in Fig. 4, the probability

of stability as a function of mean recloser time (with a one cycle standard deviation) is

shown in Fig. 6.

(a) Probability Distribution Function (b) Cumulative Distribution Function
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As the mean recloser time decreases, the probability that the system will be stable

increases to 1.0 (100%) regardless of the standard deviation of the recloser action. This
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implies that the more quickly the fault is cleared, the more likely the system is to be

stable. However, as the standard deviation increases from 1
2

cycle to 2 cycles, the slope of

the probability curve decreases. This is intuitive since as the standard deviation increases,

the spread of recloser action from the mean increases, allowing greater variation. As the

standard deviation approaches zero, the slope approaches infinity at μ = 0.233 seconds

and 50% probability. Recall that the deterministic critical clearing time is 0.233s and is

also the expected mean of the histogram of critical clearing times in Fig. 4. Therefore,

as the standard deviation approaches 0, the probability distribution curve of the recloser

action approaches a Dirac delta and will sample only a single point at the mean (which

is 0.233 seconds). The process for determining the probability of stability is summarized

in Fig. 7.

IV. NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS

The determination of the power system energy requires the numerical solution of the

SDE system. The numerical solution of SDEs is conceptually different from the numerical

solution of deterministic ordinary differential equations. At the core of the numerical

solution of SDEs is the representation of the standard Wiener process over the simulation

interval [0, Tmax]. The random variable W (t) satisfies the three following conditions [22]:

1) W (0) = 0 (with probability 1)

2) For 0 ≤ s < t ≤ Tmax, the random variable given by the increment W (t)−W (s) is

normally distributed with mean zero and variance t−s; equivalently, W (t)−W (s) ∼
√
t− sN(0, 1), where N(0, 1) denotes a normally distributed random variable with

zero mean and unit variance.

3) For 0 ≤ s < t < u < v ≤ Tmax, the increments W (t)−W (s) and W (v) −W (u)

are independent.

A standard Wiener process W (t) can be numerically approximated in distribution on

any finite time interval by a scaled random walk. A stepwise continuous random walk

HN(t) can be constructed by taking independent, equally probable steps of length ±√
Δt

at the end of each subinterval.
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Fig. 7. Process for determining the stability of the system

For the ordinary differential equation

ẋ = f(x, t), x(0) = x0 ∈ R
n

the well-known Euler’s method can be applied to numerically approximate the solution

over [0, T ][30]:

xj = xj−1 +Δtf (xj−1, tj−1) , j = 1, . . . , L (15)

where LΔt = T and L is a positive integer.
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For the stochastic differential equation

dx = f(x, t)dt+ g(x, t)Σ(t)dW (t) x(0) = x0 ∈ R
n

a corresponding numerical integration method is the Euler-Maruyama (EM) method [22]:

xj = xj−1 +Δtf (xj−1, tj−1) +

g (xj−1, tj−1)Σ(tj−1) (W (τj)−W (τj−1)) (16)

j = 1, . . . , L

where W (τj),W (τj−1) are points on the Brownian path. The set of points {tj} on which

the discretized Brownian path is based must contain the points {τj} at which the EM

solution is computed. If the EM is applied using a stepsize Δt = Rδt, then

(W (τj)−W (τj−1)) = W (jRδt)−W ((j − 1)Rδt) (17)

=

jR∑
k=jR−R+1

dWk (18)

V. APPLICATION

To illustrate the application of the structure preserved stochastic energy function, the

method is applied to the small power system shown in Fig. 8. This system was introduced

in [29] for the study of structure preserving power systems.
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Fig. 8. 4-machine, 6-bus test system
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As a benchmark, the deterministic system is subjected to a fault on bus 3 which is

cleared at 0.46 seconds. The resulting generator angular frequencies and bus voltages are

shown in Fig. 9 and Fig. 10, resepctively.
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Fig. 9. Deterministic test system generator frequencies

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (seconds)

bu
s 

vo
lta

ge
s 

(p
u)

Fig. 10. Deterministic test system voltages

To illustrate the effect of the varying loads, ten different sets of noise with the same

magnitude of variation and standard deviation are applied to the loads. The resulting noisy

generator 4 frequency and bus 6 voltage are shown in Fig. 11 and Fig. 12, respectively.

The mean, or expected, value of each set of responses is shown in bold. Note that the

expected responses for both frequency and voltage are nearly identical to the deterministic
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responses. The generator frequency is much smoother than the voltage because of the

impact of the integration of the noise. Generator frequency (ω) is a state variable whereas

voltage is an algebraic variable and changes in load are observed instantaneously.
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Fig. 11. Test system generator 4 frequency (10 runs)
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For the test system, the deterministic critical clearing time is determined to be 0.74

seconds. To further elucidate the impact of noise on the critical clearing times, the critical

clearing times resulting from 100 runs are plotted as a function of the inverse signal to

noise ratio (i.e. SNR−1) at a single bus (bus 5) in Fig. 13. As the level of noise in the signal

decreases, the critical clearing times approach the deterministic CCT of 0.74 seconds. As
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the noise level increases, the spectrum of CCTs increase in both the larger and smaller

directions, but with a greater spread towards smaller CCTs. This is an indication that as

the noise level increases, the system is more likely to become unstable.
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Fig. 13. Critical clearing times as a function of SNR−1 (100 runs)

To illustrate the impact of noise at different geographic locations, equal amounts of

(expected) noise are added to the different load buses and the critical clearing times are

plotted. Fig. 14 shows the impact of noise added at different locations on the critical

clearing time. From the figure, it can be observed that the stability of the system is most

sensitive to random load variations at bus 2 (for a fault on bus 3) and least sensitive to

noise levels at bus 6. It is theorized that this sensitivity is due to the proximity of the

buses to the fault bus. The closer the fault is to a bus, the more sensitive the critical

clearing time is to random changes in load. If information regarding penetration of wind

turbines, solar panels, or other randomly varying component is available, this information

can be used to scale the noise magnitudes to provide a histogram of CCTs as a function

of geographical differences.

VI. CONCLUSIONS AND FUTURE WORK

This paper develops an approach to analyze the impact of random load and generation

variations on the transient stability of a structure preserved power system. The well-known

energy function method for power system transient stability is used as a basis to explore

the stochastic power system stability through a stochastic Lyapunov stability analysis.
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Further, the method was extended numerically using the Euler-Maruyama method. It was

shown that increasing the magnitude of the applied variation or changing the geographic

location can have a destabilizing effect on the power system. This could potentially cause

difficulties as more randomness is introduced into the power system through renewable

energy sources and plug-in-hybrid vehicles.

Further work may include exploring the impact of non-Gaussian distributions on

critical clearing times. An additional area of study would include modeling the stochastic

behavior of generation scheduling.

REFERENCES          

[1] J. G. Vlachogiannis, “Probabilistic constrained load flow considering integration of

wind power generation and electric vehicles,” IEEE Trans. on Power Systems, vol. 24,

no. 4, Nov. 2009.

[2] R. Billinton and P. R. S. Kuruganty, “Probabilistic assessment of transient stability

in a practical multimachine system,” IEEE Trans. on Power Apparatus and Systems,

vol. 100, no. 7, July 1981.

53



[3] F. F. Wu and Y-K Tsai, “Probabilistic dynamic security assessment of power systems:

Part I - basic model,” IEEE Trans. on Circuits and Systems, vol. 30, no. 3, March

1983.

[4] K. J. Timko, A. Bose, P. M. Anderson, “Monte Carlo simulation of power system

stability,” IEEE Trans. on Power Apparatus and Systems, vol. 102, no. 10, Oct. 1983.

[5] M. B. Do Coutto Filho, A. M. Leite Da Silva, V. L. Arienti, S. M. P. Ribeiro,

“Probabilistic load modeling for power system expansion planning,” IEE Third

International Conference of Probabilistic Methods Applied to Electric Power Systems,

1991.

[6] H. Mohammed and C. O. Nwankpa, “Stochastic analysis and simulation of grid-

connected wind energy conversion system,” IEEE Trans. on Energy Conversion, vol

15, no. 1, March 2000.

[7] M. Meldorf, T. That, J. Kilter, Stochasticity of the Electrical Network Load, Estonian

Academy Publishers, 2007.

[8] S. O. Faried, R. Billinton, and S. Aboreschaid, “Probabilistic evaluation of transient

stability of a wind farm,” IEEE Trans. on Energy Conversion, vol. 24, no. 3, Sept.

2009.

[9] J. R. Hockenberry and B. C. Lesieutre, “Evaluation of uncertainty in dynamic

simulations of power system models: The Probabilistic collocation method,” IEEE

Trans. on Power Systems, vol. 19, no. 3, August 2004.

[10] C. O. Nwankpa, S. M. Shahidehpour, Z. Schuss, “A Stochastic approach to small

disturbance stability analysis,” IEEE Transactions on Power Systems, vol. 7, no. 4,

November 1992.

[11] M. Pavella and P. G. Murthy, Transient Stability of Power Systems: Theory and

Practice. Chichester: Wiley, 1994.

[12] A. K. Behara, M. A. Pai, and P.W. Sauer, “Analytical approaches to determine

critical clearing time in multi-machine power system,” IEEE Conference of Decision

and Control, December 1985.

[13] A. N. Michel, A. A. Foaud, and V.Vital, “Power System Transient Stability using

Individual Machine Energy Functions,” IEEE Transactions on Circuits and Systems,vol

CAS-30, no 5, May 1983.

54



[14] M. K. Khedkar, G. M. Dhole, and V. G. Neve, “Transient stability analysis by

Transient Energy Function Method: Closest and Controlling Unstable Equilibrium

Point Approach,” IE (I) Journal, vol 85, September 2004.

[15] L. F. C. Alberto, F. H. J. R. Silva, N. G. Bretas, “Direct methods for transient

stability analysis in power systems: State of the art and future perspectives,” IEEE

Porto Power Tech Conference, September 2001.

[16] A. R. Bergen, D. J. Hill, “A structure preserving model for power system stability

analysis,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-100, No. 1,

January 1981.

[17] N. A. Tsolas, A. Arapostathis, P. P. Varaiya, “A structure preserving function for

power system transient stability analysis,” IEEE Transactions on Circuits and Systems,

vol. CAS-32, No. 10, October 1985.

[18] M. A. Pai, Energy Function Analysis for Power System Stability, Kluwer Academic

Publishers, 1989.

[19] P. Florchinger, “Lyapunov-like techniques for stochastic stability,” SIAM J. Control

Optim., vol. 33, pp. 1151-1169, 1995.

[20] D. V. Dimarogonas and K. J. Kyriakopoulos, “Lyapunov-like Stability of Switched

Stochastic Systems,” Proceeding of the 2004 American Control Conference, Boston,

Massachusetts, 2004

[21] W. Zhang, H. Zhang, and B-S Chen, “Generalized Lyapunov Equation Approach

to State-Dependent Stochastic Stabilization/Detectability Criterion,” IEEE Trans. on

Automatic Control, vol 53, no. 7, August 2008.

[22] D. J. Higham, “An algorithmic introduction to numerical solution of stochastic

differential equations,” SIAM Review, vol. 43, no. 3, 2001.

[23] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook,

Chichester: Wiley, 2001.

[24] J. G. Vlachogiannis, “Probabilistic constrained load flow considering integration of

wind power generation and electric vehicles,” IEEE Trans. on Power Systems, vol. 24,

no. 4, Nov. 2009.

55



[25] H-D Chiang, C-C Chu, and G. Cauley, “Direct stability analysis of electric power

systems using energy functions: Theory, applications, and perspective,” Proceedings

of the IEEE, vol. 83, no. 11, Nov. 1995.

[26] B. Oksendal, Stochastic Differential Equations, Berlin: Springer, 2007.

[27] H. Deng, M. Krstic, and R. J. Williams, “Stabilization of stochastic nonlinear

systems driven by noise of unknown covariance,” IEEE Trans. on Automatic Control,

vol. 46, no. 8, Aug. 2001.

[28] S. O. Faried, R. Billinton, S. Aboreshaid, “Probabilistic evaluation of transient sta-

bility of a power system incorporating wind farms,” IET Renewable Power Generation,

vol. 4, no. 4, pp. 299307, 2010.

[29] N. Narasimhamurthi, M. T. Musavi, “A generalized energy function for transient

stability analysis of power systems,” IEEE Transactions on Circuits and Systems, vol.

CAS-31, No. 7, July 1984.

[30] M. L. Crow, Computational Methods for Electric Power Systems, CRC Press, 2009.

56



 

 

SECTION 

 

 

2.  CONCLUSIONS 

 

Faced with the growing complexity of the future power grid and the stochastic 

disturbances caused by renewable energy sources such as PHEVS, wind and solar power, 

this dissertation deals with the issue of the stability of the power system and has 

presented contributions in the tools developed and analysis carried out to examine the 

stability of the power system when stochastic loads and generations are present. This will 

play an important role in the planning and operation of electric power systems. A new 

model for the study of stochastic power system stability using stochastic Lyapunov 

function was also developed. 

The primary contributions of this research are the development of a stochastic 

energy function for power system transient stability analysis.  The stochastic energy 

function was first developed for a classical model, reduced admittance matrix system and 

then extended to a classical model, structured preserved system.  The proposed 

methodology produced a probability distribution function of critical clearing times for a 

given fault within a power system.  The probability distribution function was determined 

through a Monte Carlo simulation approach.  The critical clearing time probability 

distribution function was then shown to be used to determine the interdependent 

probability of stability of a system by combining the critical clearing time with the 

probability distribution function of a recloser.  This approach can be further generalized 

to other power system components as well.  The effect of using a non-Gaussian 

distribution was explored.  Lastly, the effect of noise and geographic distribution of the 

randomly varying loads was illustrated. 

Future work may include the stochastic effects of generator modeling and the 

particular random distribution of other types of loads such as photovoltaics. 
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