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ABSTRACT 

The dissertation focuses on neural network (NN) control designs for nonlinear 

systems with application to micro/nano robotic. Critical problems in nano scale including 

thermal drift are also addressed. This dissertation is given in the form of several papers. 

To start with, a suite of novel controllers is developed in the first paper for the 

manipulation of microscale objects in a micro-electromechanical system (MEMS). The 

proposed robust and the adaptive neural network controllers overcome the unknown 

contact dynamics and ensure their performance in the presence of actuator constraints. 

Next, in the second paper, thermal drift, as the major source of uncertainty in 

nano scale, is discussed and compensated by using block based phase-correlation method. 

This consideration is needed to realize a truly automatic manipulation of nano objects. 

Subsequently, the third paper uses the drift compensator from the second paper to 

develop a NN-based adaptive force design for nanomanipulation to accommodate the 

unknown dynamics, while maintaining a constant force applied on the nano sample. 

In order to address the optimality in terms of a standard quadratic cost function, 

the fourth paper introduces a reinforcement learning-based controller for the nanoscale 

manipulation by considering the Bellman equation. This controller consists of an action 

network and a critic network. Both of the networks are trained in an online fashion with 

the updating algorithms derived from dynamic programming (DP). 

To make our scheme applicable to a more general class of affine systems with 

immeasurable states, an output feedback design with an extra NN observer is introduced 

in the final paper while relaxing the separation principle. By using the Lyapunov 

approach, the stability of the above mentioned controller designs are demonstrated. 
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INTRODUCTION 

Various control methodologies are designed for application environments ranging 

from outer space to deep sea. Besides these applications, there is a new emerging 

application area called Micro/Nanorobotics. This new application area is concerned with 

the design and fabrication of nanorobots or apparatus such as an Atomic Force 

Microscope (AFM) that are capable of manipulating objects at nanoscale. One of the key 

challenges in the application area is the automatic assembly of micro/nano-scale devices 

either by manipulation with macro/micro devices or by self-assembly on programmed 

templates or scaffolds. More recent applications in the nanoworld have become possible 

because of the developing trends in imaging, manipulation and fabrication technologies 

using the micro/nano mechatronics and MEMS/NEMS technologies. By the invention of 

Scanning Tunneling Microscope (STM) and Scanning Probe Microscope (SPM), 

topographic images with at omic resolution became possible. Further, by utilizing the 

cantilever from the scanning probe microscope, manipulation and fabrication in the nano 

scale was realized successfully in 1990, which opened the door for new applications. 

However, the micro/nano scale manipulation is still in its infancy. Therefore, issues that 

are commonly encountered at the nanoscale during manipulation of objects are addressed 

in this study. 

Micro or Nano-manipulation, which aims at manipulating objects with 

micrometer or nanometer size, is a precursor for nanomanufacturing. By accurately 

controlling atoms, molecules, or nano scale objects, numerous applications of 

nanotechnology can be cited in the area of molecular biology and genetics, solid-state 

physics, chemistry, material science, computer industry and medicine. By reducing the 
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object size from micro to nano meter, new sensors, tera-byte capacity memories, DNA 

computers, man-made materials, etc., would be possible within the near future. Today, 

manipulation of particles with the order of 10nm in diameter using AFM is being 

investigated by many researchers both at UMR and elsewhere. However, for future new 

nanotechnology products in industry, there are still many challenges to be solved.  

From macro to micro/nano world, any noise even though it may be small can 

become a major hurdle. Without suitable mechanism or process to compensate for the 

noise, automatic real-time controller designs will become impractical. As a consequence, 

when operated in ambient conditions without stringent environmental controls, 

nanomanipulation typically requires extensive user intervention to compensate for the 

spatial uncertainties associated with the microscope and its piezoelectric drive 

mechanism, such as hysteresis, creep, and thermal drift. Some of the uncertainties related 

to the piezo system usually are compensated by AFM or SPM vendor software. However, 

the thermal drift will increase with time which makes it harder for compensation. Mainly 

the AFM tip drifts along with time by thermal effects at a speed of about one atomic 

diameter per second, even when the voltage inputs for controlling the tip and stage 

position are held constant. In our study, a block-based phase correlation theme is 

implemented to estimate and compensate the drift during imaging and manipulation so 

that tasks are carried out as if drift does not exist. 

Automation is a prerequisite for modern manufacturing. To realize micro/nano 

technology at a reasonable cost, automatic assembly of MEMS/NEMS using advanced 

control techniques are highly desirable in the future. However, designing controllers for 

the manipulation and handling of micro/nano-scale objects poses a much greater 
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challenge, partly due to the immaturity of the micro/nano physics. Modeling of such 

micro/nano-scale forces during manipulation is a whole lot different than in a macro scale 

system. The dominant forces acting on a MEMS/NEMS system are mainly van der 

Waals, capillary and electrostatic forces, while the forces due to gravity are negligible. 

Typically, these forces vary much with environment and could not be precisely measured. 

Furthermore, there are a lot of uncertainties, for instance fabrication imperfections and 

complex device nonlinearities, which make the actuation and manipulation of such 

devices difficult. To accommodate these uncertainties and nonlinearities, robust and 

robust adaptive neural network (NN) controllers with the ability to learn online are 

designed for these applications. Mathematically, the stability analysis is demonstrated 

using standard Lyapunov method. 

In the literature, there are many approaches proposed for designing stable 

controllers for nonlinear systems. However, stability is only a bare requirement for the 

controller design. A further consideration is the optimality based on a specific cost 

function which is used to determine the performance of the system. In other words, a 

controller scheme should not only achieve the stability of the closed-loop system, but also 

to keep the cost function as small as possible. Of the available methods, dynamic 

programming (DP) has been extensively applied to generate optimal control action for 

nonlinear dynamic systems. One of the drawbacks of DP is the computation cost which 

increases with the dimension of the nonlinear system, referred to as the “curse of 

dimensionality”. Additionally, most of their implementations are done in an offline 

fashion or require the dynamics of the nonlinear systems to be known a priori. As an 

alternate approach, several appealing online learning neural controller designs were 
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introduced. They are also referred to as forward dynamic programming (FDP) or adaptive 

critic designs (ACD). In our study, we are considering NN-based online learning adaptive 

critic designs for both nanomanipulation tasks and more general nonlinear discrete 

systems with a standard quadratic-performance index as the cost function. Our scheme is 

also extended to output feedback counterpart to be applicable for systems with certain 

unavailable staes for measurement. The requirement of separation principle is also 

relaxed, which is normally employed for linear systems but unapplicable for nonlinear 

systems. 

In the dissertation, in Paper 1, modeling and corresponding robust controller 

designs for micromanipulation are introduced. Subsequently, drift compensation 

algorithm is developed for the task of nanomanipulation in Paper 2. With the 

compensator, the mechanism of nanomanipulation is described and NN-based adaptive 

force controller is designed in Paper 3. To increase the performance of the closed-loop 

system in terms of a standard quadratic cost function, an online reinforcement learning-

based control algorithm using neural network for nanomanipulation task is explained in 

Paper 4. The expansion of the reinforcement learning design for general affine nonlinear 

systems and its output feedback version are discussed in Paper 5. 
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PAPER 1 

A Suite of Robust Controllers for the Manipulation of Micro-

Scale Objects 
Qinmin Yang and S. Jagannathan 

Department of Electrical and Computer Engineering 

University of Missouri – Rolla,  

Rolla, Missouri, U.S.A 65409 

Email: qyy74@umr.edu, sarangap@umr.edu  

 

ABSTRACT 

A suite of novel robust controllers is introduced for the pick-up operation of 

micro-scale objects in a micro-electromechanical system (MEMS). In MEMS, adhesive, 

surface tension, friction and van der Waals forces are dominant. Moreover, these forces 

are typically unknown. The proposed robust controller overcomes the unknown contact 

dynamics and ensures its performance in the presence of actuator constraints by assuming 

that the upper bounds on these forces are known. On the other hand, for the robust 

adaptive critic-based neural network controller, the unknown forces are estimated online. 

It consists of an action NN for compensating the unknown system dynamics, and a critic 

NN to approximate certain strategic utility function and to tune the action NN weights. 

By using the Lyapunov approach, the uniformly ultimate boundedness (UUB) of the 

closed-loop manipulation error is shown for all the controllers for the pick-up task. To 

imitate the real practical system, a few of the system states are considered measurable 

and the measurement noise is also introduced. An output feedback version of the adaptive 

NN controller is proposed by taking advantage of the separation principle through a high 
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gain observer design. The problem of measurement noise is also overcome by 

constructing a reference system. Simulation results with various controllers are presented 

and compared to substantiate the theoretical conclusions. 

Keywords 

Micromanipulation, robust controller, adaptive neural network, reinforcement learning 

I. INTRODUCTION 

 Micro Electro-Mechanical System (MEMS) is a relatively new technology 

involving miniaturization of systems and components to create complex machines that 

are of micron size in nature. These are used in a variety of applications involving sensing, 

actuation and communication. The MEMS has revolutionized a major part of the sensor 

and actuator industry. Typical MEMS products include inkjet printer heads and 

accelerometers for airbags [1]. Although these products require little or no assembly, 

automatic assembly of hybrid MEMS devices are desirable. Much effort has been put 

forth for the micro-assembly, or micro-manipulation [1]-[2], [4]-[6], [11]-[14]. Among 

them, in [1] the pick up and release tasks with van der Waals force are analyzed whereas 

in [6] manipulation using SEM is introduced. Research effort in [4] proposed a 

manipulation system in open air and fulfilled manipulations with a gold coated 

piezoresistive silicon cantilever. 

Modeling of such micro-scale devices for actuation is much different than in 

macro scale system. At micro scale, surface forces are predominant while volumnic 

forces are negligible [1]. The dominant forces acting on a MEMS system are mainly van 

der Waals, capillary and electrostatic forces, while the forces due to gravity are 

negligible. Typically, these forces vary with environment and can not be precisely 
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measured. Furthermore, uncertainties, for instance fabrication imperfections and complex 

system nonlinearities, make the actuation and manipulation of such devices difficult. 

At the same time, modeling and simulation are critical and fundamental for 

designing proper handling techniques. Work on modeling adhesive forces and the 

utilization of the models in micromanipulation has been carried out by many researchers. 

Arai et al [5] studied the effects of attractive forces and handling strategies in 

micromanipulation, Rollot et al [28] studied various modes in micromanipulation by 

combining analytical micro force models and Newton-Euler dynamics whereas Sitti and 

Hashimoto [29] built the model for manipulation of nano particles, and Feddema et al 

[30] introduced a computational model of van der Waals forces and electrostatic forces 

for interactions between a micro sphere and a micro cube. 

Designing controllers for the manipulation and handling of micro-scale objects 

poses a much greater challenge in terms of accommodating the nonlinearities in the 

system. Hence, these forces have to be modeled in order to design a controller for the 

MEMS. To confront some of the issues of nonlinearities and uncertainties in such 

MEMS, a robust controller is designed. The robust controller requires the upper bound on 

the uncertainties and nonlinearities.  

Moreover, in practical control problems, the amplitude of the control signal is 

subject to prescribed actuator constraints due to saturation problem. Ignoring these 

constraints may lead to unsatisfactory performance or even instability of the closed-loop 

system. In adaptive control systems, the saturation constraint problem becomes 

particularly critical because of the parameter adaptation transients which may introduce 

large control signals [25]. However, the research activity devoted to the problem of 
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controlling a nonlinear system in the presence of saturation is still relatively limited [23], 

[24]. Thus, in this paper, actuator constraints have been incorporated into the robust 

controller design in contrast to other works [7] where no explicit magnitude constraints 

are treated.  

On the other hand, in the case of robust adaptive critic-based neural network (NN) 

controller, reinforcement learning (RLNN) feature [11] is utilized to approximate the 

uncertainties online. The RLNN structure consists of two NNs: an action NN for 

compensating the uncertain nonlinear system dynamics, and a critic NN for tuning the 

weights of the action NN. A novel utility function, which is viewed as the system 

performance index over time, was defined as the critic NN input. The critic signal 

approximates the long term performance measure and provides an additional corrective 

action based on current and past long-term system performance in contrast with the 

standard adaptive dynamic programming scheme [9], [16]-[18], where the critic signal 

alone is used to tune the action NN weights and in standard adaptive NN control 

literature where a short term performance is normally utilized [7]. The critic NN output 

along with the filtered tracking error is used to tune the action NN.  

Providing tracking error information to the action NN will make the proposed 

controller similar to the other adaptive controllers [7] and therefore it is avoided. 

Moreover, a Lyapunov approach is used to show the stability of the closed-loop system in 

contrast with the existing schemes in adaptive dynamic programming based critic NN 

control schemes [16]-[18]. The proposed NN structure has an advantage over supervised 

learning NN-based controllers, where desired system outputs are not required. In our 

scenario, the desired outputs are the probe location and the contact dynamics, which are 
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typically unknown. An offline learning phase is not required in this approach in contrast 

with adaptive dynamic programming-based critic control schemes [16]-[18]. 

Finally, in many practical problems, not all state variables are measurable due to 

technical or economic reasons [33]. For instance, in the micromanipulation system, a 

laser measuring instrument [32] or a scanning electron microscope (SEM) [13] is 

employed to obtain the position of the micro objects whereas the velocities are not 

measured. Nevertheless, the obtained information is usually contaminated with 

measurement noise. Therefore, an output feedback controller is designed by 

implementing a high-gain observer which is used to estimate the actual system states 

which includes velocities. The bounded measurement noise is integrated into a new 

reference system and overcome. Theoretical and simulation results indicate that the 

output feedback adaptive NN controller is able to perform the task successfully. 

Therefore in this paper, both a robust and adaptive critic-based NN controllers, 

and their output feedback version are proposed for pick up task in a micromanipulation 

system. These two controllers are contrasted based on their performance. The main 

contributions of this work can be summarized as: 1) A computation model for pick-up 

task is formulated considering the unknown micro adhesive forces including van der 

Waals, surface tension and electrostatic forces; 2) A robust controller is designed to 

accommodate the unknown interactive micro forces for the task of picking up the micro 

particles; 3) An adaptive critic-based NN scheme is introduced to achieve a better 

response – a cost function is utilized to evaluate the system performance. The NNs are 

updated in an online fashion without offline training phase and the persistent excitation 
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(PE) condition requirement is overcome; 4) To overcome the unmeasured states in the 

presence of measurement noise, a high-gain observer is added with the NN controller. 

A brief background on NNs and stability of nonlinear system are given in Section 

II. The interactive force analysis of the pick-up task and associated dynamic models are 

presented in Section III and Section IV, respectively. Next, the robust and adaptive NN 

controller designs are given in Section V. Finally, Section VI shows the simulation 

results to substantiate our theoretical conclusions. 

II. BACKGROUND 

A. NN Background 

A general function ( )( ) sf x C=  can be approximated using a neural network with 

at least two layers of appropriated weights given by  

( ) ( )T Tf x W V xσ ζ= +              (2.1) 

where W  and V  are constant-weight matrices of the NN (the first column of these 

matrices include the bias vectors so that tuning the weight matrices results in tuning the 

biases as well), x  is the input vector, ( )TV xσ  is the vector of hidden-layer activation 

functions, and ζ  is the error in approximation. If the input to the hidden-layer weight 

matrix V  is selected randomly and kept constant, and the vector of hidden-layer 

activation functions is selected as a basis function, whereas the output layer weights are 

only tuned provided sufficiently large number of nodes in the hidden layer is chosen, then 

a one-layer NN will result [10]. For simplicity, define the net output for a one-layer NN 

as 

( )Ty W xσ ζ= +                   (2.2) 
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For suitable approximation, ( )xσ  must form a basis to the function that is being 

approximated. Since it is already known that (2.2) can approximate any continuous 

function over a compact set and a set of target weights exist, then the control objective is 

to tune the actual weights such that they approach their targets. 

Neural network controller designs have relied upon the function approximation 

property (2.1) [15]. Thus, the performance of the controller mainly depends on the 

learning algorithm as suggested in [16]. Among various NN controller structures, 

adaptive critic designs [16] utilize reinforcement learning for NN weight tuning. These 

designs address the general problem of how to optimize a measure of utility or goal 

function in an unknown, noisy, and nonlinear system. 

In a typical adaptive critic NN architecture, the critic NN evaluates the system 

performance index and tunes the action generating NN, which in turn provides the control 

input signal to the plant to be controlled. There are too many papers dealing with control 

using adaptive critic NN architecture to be mentioned here. For details, readers can refer 

to [9], [16]-[18]. However, very few papers [16] present the closed-loop stability analysis 

with performance guarantee. This paper overcomes these limitations by using Lyapunov 

approach for control applications.  Next the following definition is required. 

B. Stability of Closed-loop Systems 

Considering a nonlinear system given by 

( , )
( )

x f x u
y h x
=
=

&
              (2.3) 

where x  is the state vector, u  is the input vector, and y  is the output vector [6]. For a 

control input u , the closed-loop system (2.3) is uniformly ultimately bounded (UUB), if 
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for all 0 0( )x t x= , there exist a 0ε >  and a constant 0( , )T T x ε=  such that ( )x t ε<  for 

all 0t t T≥ + . 

III. INTERACTION FORCES MODEL 

Manipulation and handling of micro-scale objects are required for the assembly 

and maintenance of micro machines and their parts. In this study, we consider the 

manipulation of micro-sized sphere shaped objects or microparticles 50 µm in diameter. 

When manipulating objects in the micro domain, the pickup should be understood using 

micro-physics [2], [3]. Modeling is necessary for picking up and placing micro-spheres 

laying on a planar substrate. In the manipulation process, the micro-sphere is to be picked 

up and to be placed at another location for assembly. As a brief description, the probe, 

which is treated as the end-effector and manipulator, is lowered to make contact with the 

micro-sphere. Once contact has been established, the micro-object has to be picked up by 

retracting the probe as a result of adhesive forces [4]. Next, the probe will be moved with 

the micro objects to a desired target position. After that, the object will be placed on the 

substrate by creating a repulsive force. 

However, the process of placing the micro-object is also an intricate process and 

different from that of pick-up. Generally, by selecting proper system parameters, the 

spheres can be picked up by the probe due to the attractive force between them [1]. On 

the other hand, the job of releasing spheres need totally different techniques. Various 

placing methods have been introduced in [1], [13], [14] and [31]. For instance in [31] 

electrostatic interaction is utilized. In this paper, we will concentrate our work on the 

pick-up task of micro-spheres. 
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For the purpose of designing a controller for the object-handling task, we shall 

restrict ourselves with the intricacies of the physics during pick up process as shown in 

Fig. 1. The adhesion forces are dominant in the system. Actually, adhesive forces are 

considered to play an important role in the manipulation process. These are given by: 

• Van der Waals forces, 

• Surface tension (or capillary) and 

• Electrostatic (or coulomb) forces. 

 
Fig 1. Object Handling Task 

A. Van der Waals Force 

Van der Waals force acts between atoms resulting from interaction between 

electrons in the outermost bands rotating around the nucleus of the atoms. An overview 

of it is given in [19]. Van der Waals forces are present in every environmental condition. 

Depending on the object geometry, material type, the van der Waals force can be 

calculated based on the interaction energy between atoms or molecules. For ideal 

geometries, the van der Waals forces are given by 

2 2 2,  ,  and  
6 6 6

w w w
bp bVdW VdW VdWbs b bb b

bp bs bb
bp bs bb

A R A R A RF F F
D D D

= = =          (3.1) 

respectively, for ball-probe, ball-substrate and for ball-ball interaction. Here bR  is the 

sphere radius, w
ijA  is the Hamaker constant of “i-water-j” interface, and ijD  is the 
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separation distance. Furthermore, van der Waals forces are greatly influenced by the 

surface roughness [2]. It has been shown that increasing the surface roughness decreases 

the van der Waals forces [4]. Thus, taking the surface roughness into consideration as 

shown in Fig. 2, the van der Waals force is expressed as [6] 

2

2vdwb vdw
zF F

z b
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
             (3.2) 

where z is the distance, b is the height of the surface irregularities, and vdwF  is the van der 

Waals forces between the plane plate and the sphere. 

 
Fig 2. Rough Plate and Plane Sphere 

B. Surface Tension Force 

In ambient operational environment, water layer is present on the surface of the 

sphere and the substrate. A liquid bridge occurs between them at close contact as shown 

in Fig. 3. 

 
Fig 3. Capillary Force Parameters during a Sphere and Flat Surface Contact 
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In [20], the macroscopic theory of capillarity is proven to be applicable for 

curvature radius in the order of molecular size. Assuming that (i) r << p << Rp, (ii) the 

surfaces are coated with a film of constant thickness e, (iii) the contact angle is 0, which 

should be the true in our case, and (iv) the surface attraction through the liquid phase is 

negligible, the capillary force can be written as [21] 

24 (1 )
2

cap
p

h eF R
r

πγ −
= −               (3.3) 

where γ  is the liquid (water) surface energy, e  is the thickness of the water layer, and r  

is the radius of curvature of the meniscus as shown in Fig. 3. Moreover, the volume of 

liquid condensed in the bridge and the film thickness distribution can also influence the 

capillary force, but it can be ignored in our case [21]. The capillary forces for probe-ball 

and ball-substrate can be calculated from (3.3). It is important to notice that by baking the 

sample before manipulation process can reduce the capillary forces greatly [21]. 

C. Electrostatic Force 

For the electrostatic force, Coulomb forces are considered only. Using the point 

charge assumption, the electrostatic force between an uncharged metal wall and a 

charged sphere is given by  

2
2 21

0
1

3
2

elecF d Eεε π
ε
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
            (3.4) 

where 0ε  and 1ε  are the dielectric constants of free-space and the material, respectively. 

The parameter d , is the diameter obtained as 1 2 1 2( )d d d d d= + , where, 1d  and 2d  are 

the diameters of the two micro-spheres under consideration. The parameter E , is the 

voltage between the probe and the substrate. It has also been shown that the electrostatic 

forces can be minimized by applying an external voltage. 
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IV. DYNAMIC MODEL 

A dynamic model of the micro-scale object handling system is formulated 

considering all the forces mentioned above [4], [7]. The objects considered in this work 

include micro-spheres of diameter 50 to 200 mμ  (radius bR  varies from 25 mμ  to 

100 mμ ). In particular, we will also assume a rectangular block shaped probe. 

When the system is shown as Fig. 4, the dynamic model for the object handling 

task can be written as [4] 

sin( / 2 ) cos cos cosVdW cap elec
p p ext bp bp bp pm Y F F F F m gπ θ θ θ θ= − − − − −&&       (4.1) 

1 ( )cosVdW cap elec VdW cap elec
b bp bp bp bs bs bs bm D F F F F F F m gθ= + + − − − −&&        (4.2) 

1 2( )cosp b bY D R R D θ= + + +            (4.3) 

where pY&&  is the instantaneous acceleration of the probe, extF  is the external force applied 

on the probe, θ  is the angle of inclination of the probe with the vertical axis, VdW
ijF  is the 

van der Waals forces, cap
ijF  is the capillary forces and elec

ijF  is the electrostatic forces for 

the ball-probe (bp) and the ball-substrate (bs) interfaces presented in (3.1) through (3.4), 

respectively. Here pm  is the mass of the probe, and bm  denotes the mass of the micro 

sphere. There are two constraints for this model [22] 

 
Fig 4. Intersurface Distances Notation 
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• A condition imposed by the substrate reaction (when ball contacts the substrate 

at 1 0 0.4D D nm= = ):  

1 10.4 0D nm D= ⇒ ≥&&              (4.4) 

• A detachment constraint expressed by: 

2ext b ball water substrateF R Wπ − −>             (4.5) 

where ball water substrateW − −  is the surface work of adhesion.  

Practically, the manipulation time has to be small. Further, the applied force has 

to be appropriate to prevent ball or substrate deformation. The object and the substrate 

are sometimes fragile and will be damaged under improper applied force due to controller 

design.  

From (4.1) through (4.3), we can find that the dynamic model for the 

manipulation and handling of micro-scale objects are quite nonlinear and unknown. For 

instance, the water surface energy, thickness of the water layer, Hamaker constant, 

electric charge density, diameter of the object, height of immersion and many others are 

typically unknown. Under these circumstances, one has to apply advanced control 

schemes in order to manipulate such micro-scale objects. The control scheme must 

guarantee object manipulation in the event of such unknown uncertainties without 

damaging samples. 

V. CONTROLLER DESIGN 

The suite of controller designs proposed in this paper is based on the filtered 

tracking error formulation [7]. In this paper, by using the filtered tracking error system 

formulation, the robust and robust adaptive neural network controllers are given in detail. 

For the purpose of controller design, θ  is considered to be zero, which is a valid 
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approach to pick up micro particles [4], [26]. Similar analysis could be performed for 

different values of θ  as well. 

A. Filtered Tracking Error Dynamics Formulation 

As stated above, placing the objects on a substrate requires other intricate 

processes and will not be discussed in this paper. The pick-up of the sphere can be 

viewed with increased 1D  while making 2 0D D=  (atomic contact distance) when the 

probe is retracting. For detailed illustration, initially the sphere is resting on the surface of 

the substrate and the probe is parked exactly above the sphere. After the force is applied 

on the probe, it will move downwards and make contact with the sphere. Due to the 

presence of adhesive forces between the probe and sphere, the micro object will be 

picked up when the probe is retracted. To accomplish this task, a fundamental condition 

to be fulfilled [1] will be 

bp bs gF F F> +                          (5.1) 

which means that the adhesive force between the ball and probe bpF  should be greater 

than the force of surface attraction bsF  plus the gravitational force gF . This condition is 

critical for material selection. 

Hence, for pick-up micro object, the control objective is suitably chosen as 

mentioned above. Differentiating (4.3) to get 

1 2pY D D= +& & &               (5.2) 

and 

1 2pY D D= +&& && &&               (5.3) 

or 
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2 1pD Y D= −&& && &&               (5.4) 

Let the error between the desired and the target position be defined as  

2 0e D D= −               (5.5) 

Then, when the error becomes zero 2 0D D= . If 1D  keeps increasing, this implies that the 

probe has picked up the micro-sphere. Differentiating (5.5) to get 

2e D= &&                (5.6) 

and further 

2 1pe D Y D= = −&& && &&&&              (5.7) 

Let r  be the filtered tracking error which is defined as, 

r e e= + Λ&               (5.8) 

where RΛ∈  is a positive design parameter. Further, differentiating (5.8) yields 

r e e= + Λ& && &               (5.9) 

Substituting for e&& and e&  from (5.6) and (5.7) results in 

1 2 1 2 1 2( ( ) ( ))p pr Y D D F Y F D D v= − + Λ = − + Λ +&& && & &&        (5.10) 

where 

1
1( ) ( )VdW cap elec

p bp bp bp p
p

F Y F F F m g
m

= − − − −         (5.11) 

and 

( )2 1
1 1( ) ( )VdW cap elec VdW cap elec

bp bp bp bs bs bs b
b b

F D F F F F F F m g
m m

= + + − + + +      (5.12)  

and v  is the control input given by 

1
ext

p

v F
m

=             (5.13) 
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Thus the tracking error dynamics can be rewritten as 

2( )r F X D v= + Λ +&&            (5.14) 

where 1 2 1( ) ( ) ( )pF X F Y F D= −  is an unknown nonlinear function and 

2
2,

T

pX Y D R⎡ ⎤= ∈⎣ ⎦ . 

B. Robust Controller Design 

Robust controllers have been widely implemented in dynamic systems with 

unknown or slowly-varying uncertain parameters. In our system, a typical robust 

saturation controller can be selected as  

( ) 2 1
ˆ

vF X D k r vτ = − − Λ − −&           (5.15) 

where vk R∈  is the feedback gain and the auxiliary feedback signal 1v  is chosen later 

with ˆ ( )F X  is an estimate for ( )F X  that is not updated online. 

Assumption 1:  Let ( )MF X  is a known scalar function that bounds the uncertainties 

ˆ( ) ( ) ( )F X F X F X= −%  so that 

( ) ( )MF X F X≤%
           (5.16) 

The intent is that ( )MF X  is a simplified function that can be computed using the 

bounding properties of the forces that act upon the micro sphere. The assumption is 

standard in robust control literature such as sliding mode and others [7], [33]. Observing 

the micro-forces in Section III, it can be seen that the forces are upper bounded. 

Regardless of the saturation constraint, let v τ=  and apply (5.15) in (5.14) to get 

( ) 1
ˆ( ) ( )vr k r F X F X v= − + − +&          (5.17) 

or 
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( ) 1vr k r F X v= − + +%&            (5.18) 

where ˆ ( )F X  is an accurate estimate of  ( )F X  and in the presence of no auxiliary signal, 

then ( ) 0F X →%  and (5.18) becomes 

vr k r= −&             (5.19) 

If vk  is properly selected as a positive constant, then from (5.19) and (5.9), one 

can readily see that 0e →  with t →∞ . Thus, 2 0D D=  and the sphere is said to be 

manipulated (pick-up task). 

However, MEMS and other typical actuators have magnitude constraints and, as a 

result, the closed-loop stability analysis is more involved since the magnitude constraints 

of the actuator are treated as saturation nonlinearity. Assuming maxv  is the upper limit for 

the actuator, in order to incorporate the magnitude constraints with the controller, now 

select the control input as  

max

max max

( ),    ( )
sgn( ( )),   ( )

t if t v
v

v t if t v
τ τ

τ τ
≤⎧

= ⎨ >⎩
        (5.20) 

where v  is the actual control input and τ  is the desired applied force, which is selected 

to be equal to (5.15). Hence, we define u v τΔ = −  or v uτ= + Δ . Using (5.20) in (5.14) 

now results in 1( )vr k r F X v u= − + + + Δ%&  where uΔ  can be regarded as a disturbance. In 

order to combat the disturbance, define eΔ&  as  

ve k e uΔ Δ= − + Δ&            (5.21) 

Now define the error as 

ue r eΔ= −             (5.22) 

Differentiating (5.22) and substituting (5.21) in (5.22) to get 
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1( ) ( ) ( )u v ue t k e t F X v= − + +%&           (5.23) 

Select the auxiliary input in (5.15) as [7] 

max u

1 max u

max

( ) ,   ( )

( ) ,   ( ) ,

0,                  ( )

M
u

u

M
u

F Xe if t v e
e

F Xv e if t v e

if t v

τ β

τ β
β

τ

⎧
− ≤ ≥⎪
⎪
⎪⎪= − ≤ <⎨
⎪
⎪

>⎪
⎪⎩

        (5.24) 

In computing the robust control term 1v , β  is chosen as a small design parameter. 

Theorem 1: Consider the system given in (4.1) - (4.3), and take the Assumption 1. Then 

using the robust controller (5.20), the error, ue , r  and e  is eventually bounded to the 

neighborhood of β . 

Proof: We will take the case when max( )t vτ ≤ . Select the Lyapunov function candidate  

2
u

1  e
2

L =             (5.25) 

Differentiate the above equation and substituting error dynamics (5.23) to get 

2 2
1 1( )   ( )v u u u v u u M uL k e e F X e v k e e F X e v= − + + ≤ − + +& %       (5.26) 

There are now two cases to consider –  and u ue eβ β≥ < .  

Case 1:  ue β≥ . In this case, according to the definition of the robust control 

term (5.24), one has 

2 2 2
u u  L ( ) ( ) /v u M u M u vk e e F X e F X e k e≤ − + − ≤ −&        (5.27) 

Therefore, L&  is negative in terms of ue . Hence L  is decreasing in this region and ue  

decreases towards β . 
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Case 2: ue β< . In this case, according to the definition of the robust control term 

(5.24), one has 

2 2 2
u  L ( ) ( ) / ( )(1 / )v u M u M v u u M uk e e F X e F X k e e F X eβ β≤ − + − ≤ − + −&     (5.28) 

The last term is generally positive in this region, so nothing can be said about whether L  

is increasing or decreasing. In general L  may be increasing in this region so that ue  

increases towards β .  Given the boundedness of ue  and using (5.22), one can conclude 

r  is bounded. Using (5.8), e  is bounded.  

Similarly the proof can be shown when max( )t vτ > . 

C. Adaptive Neural Network Controller Design 

In the above section, a robust controller with input magnitude constraints is 

presented wherein the unknown dynamics of the manipulation system is overcome by 

assuming a bounded known function. In this subsection, an adaptive neural network (NN) 

[11] is utilized where the unknown manipulation dynamics are approximated online. 

First, an action NN is employed to approximate this unknown system dynamics. 

According to [12], a single layer NN can be used to approximate any nonlinear 

continuous function over the compact set when the input layer weights are selected at 

random and held constant whereas the output layer weights are only tuned provided 

sufficiently large number of nodes in the hidden-layer is chosen. Therefore, a single layer 

NN is employed here whose output is defined as ( )1 1ˆ T Tw v Xϕ , where 1
1ˆ nw R∈  and 

12
1

nv R ×∈  are the output and input layer weights, 1n  is the number of the hidden layer 
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nodes, ( )ϕ ⋅  is the activation function vector, and 2
2,

T

pX Y D R⎡ ⎤= ∈⎣ ⎦  is the action neural 

network input.  For simplicity, the action NN output is expressed as 

( ) ( )1
ˆ ˆ TF X w Xϕ=            (5.29) 

Thus, the adaptive neural network control input can be selected as 

( ) 2
ˆ

vv F X D k r= − − Λ −&           (5.30) 

where vk R∈  is the feedback gain selected to be positive constant. 

Applying (5.30) in (5.14) to get 

( ) ( )( )ˆ
vr k r F X F X= − + −&           (5.31) 

or 

( )vr k r F X= − + %&            (5.32) 

where ˆ( ) ( ) ( )F X F X F X= −%  is the function approximation error. When the neural 

network is properly trained and ˆ ( )F X  is an accurate estimate of ( )F X , then ( ) 0F X →%  

and (5.32) becomes 

 vr k r= −&                                                (5.33) 

If vk  is properly selected as a positive constant, then from (5.33) and (5.8) one 

can see that 0e →  with t →∞ . Thus, 2 0D D=  and the sphere is said to be manipulated 

(pick-up task) with 1D  keeps increasing. 

The unknown function ( )F X  can be approximated by the action NN as 

( ) ( ) ( ) ( ) ( )1 1 1
T T TF X w v X X w X Xϕ ε ϕ ε= + = +               (5.34) 
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where 1
1

nw R∈  is the target output layer weight, and ( )Xε  is the NN approximation 

error. Define the weight estimation error 1
1

nw R∈%  by 

1 1 1ˆw w w= −%                                              (5.35)  

Thus (5.31) becomes 

( ) ( )1
T

vr k r w X Xϕ ε= − + +& %                                   (5.36) 

At the same time, a critic NN is implemented to evaluate the system performance 

index and tunes the action generating NN. The input to the critic NN is chosen as [11] 

( ) ( )2

0

t
z t r dτ τ= ∫                                        (5.37) 

A choice of the critic NN signal is given by 

( )( ) ( )( )2 2 2ˆ ˆ( ) T T TR t w v z t w z tσ σ= =                            (5.38) 

where 2
2ˆ nw R∈  and 2

2
nv R∈  are the output and input layer weights, 2n  is the number of 

the hidden layer nodes, ( )σ ⋅  is the hidden layer activation function vector, and ( )z t R∈  

is the input to the neural network. The critic NN input defines the long term system 

performance over time. The critic signal, ( )R t , provides an additional corrective action 

based on current and past performance. This information along with filtered tracking 

error is used to tune the action NN. The critic signal can also be viewed as a look-ahead 

factor, which is determined based on past performance. The proposed reinforcement 

learning-based NN controller structure is depicted in Fig. 5. An inner action generating 

NN loop eliminates the nonlinear dynamics of the system, while the adaptive NN critic 

design is modular so that existing industrial controller can be easily updated to obtain the 

proposed one by simply adding the inner NNs. This modular design avoids the need for 

the redesign of the industrial control systems [15]. 
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Fig 5. NN Controller Architecture 

The next step is to determine the weight updates so that the performance of the 

closed-loop tracking error dynamics is guaranteed. 

Assumption 2: The desired trajectory 0D  is bounded so that 0 BD D<  with BD  a known 

scalar bound. In fact, 0D  becomes the inter-atomic distance. 

Assumption 3: The NN approximation error ( )Xε  is bounded above by ( ) NXε ε<  

over the compact set. 

Assumption 4: Both the ideal weights and the activation functions for all NNs are 

bounded by known positive values so that 

1 1maxw w≤ , 2 2maxw w≤                                           (5.39) 

( ) maxσ σ⋅ ≤ , ( ) maxϕ ϕ⋅ ≤                                          (5.40) 

Theorem 2: Consider the system given in (4.1) through (4.3), and take the Assumptions 

2 through 4. Let the action NN weights tuning algorithm be given by 

( ) ( ) ( )( )1 1 1ˆ ˆ Tw X r w X k R tϕ ϕ= − +&                                    (5.41) 
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where 1k  is a design parameter and ( )R t  is the critic signal, which is given by the critic 

NN in (5.38). The critic NN weights be tuned by 

( ) ( )( )2ˆ ( )w z t r R tσ= − +&                                            (5.42) 

with the control signal selected by (5.30). Then the filtered tracking error r  and the NN 

weights estimates, 1ŵ  and 2ŵ , are UUB provided 

 (1) 1/ 2vk >             (5.43) 

 (2) 10 1k< <             (5.44) 

Proof: Since 1 1ˆw w= − &&% , the updating rules (5.41) can be rewritten as 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )( )
( ) ( )

1 1 1

1 1 1 2 1 2

1 1 2 1 1 2

ˆ T

T T T

w X r w X k R t

X r e w X k w z t k w z t

X r e k e k

ϕ ϕ

ϕ ϕ σ σ

ϕ η η

= − + −

= − − + + −

= − − + + −

&%

%         (5.45) 

where 

( ) ( )( ) ( ) ( )( )1 1 2 2 1 1 2 2,  ,  , T T T Te w X e w z t w X w z tϕ σ η ϕ η σ= = = =% %           (5.46) 

Similarly, (5.42) can be rewritten as 

( )( ) ( )2 2 2w z t r eσ η= − +&%                                  (5.47) 

The Lyapunov function candidate is defined as  

( )2
1 1 2 2

1
2

T TV r w w w w= + +% % % %                                  (5.48) 

Differentiating (5.48) to get 

1 1 2 2
T TV rr w w w w= + +& && & % % % %                                    (5.49) 

Substitution of (5.36), (5.45) and (5.47) into (5.49) 
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1 1 1 1 2 1 1 2

2 2 2

2 2 2 2
2 2 2 2

2 2 2
1 1 1 2 1 1 1 2

( ( ) ( )) ( )( )

( ( ))( )
1( ( ) ( )) ( )
2

1( ( ) ( ))
2

T T
v

T

v

V r k r w X X w X r e k e k

w z t r e

k r r X r e e e

e k e e e k

ϕ ε ϕ η η

σ η

ε η

η η

= − + + + − − + + −

+ − +

≤ − + + + + − +

+ − + + + −

& % %

%

                    (5.50) 

Simplify (5.50) to get 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1 1 1 2 1 2 2 2

1 1 12 1 2 1
2 2 2vV k r r X k e e k k e eε η η η≤ − − + − − + − − − +&         (5.51)  

Complete the square to get 

( )2 2
1 1 2

1 1
1

2
22

1 2
1

1 ( ) 1(2 1) (2 )
2 (2 1) 2 (2 )

1 (1 )
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k e D
k

η ηε

η

−⎛ ⎞ ⎛ ⎞
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     (5.52) 

where 

( )
( )2 2 2 22 2 2

1max max 2 max max2 2 2 max max
max

1 1
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2 2 1 2 1

N

v

w w wD D
k k k

ϕ σε σ⎛ ⎞+
≤ = + +⎜ ⎟

⎜ ⎟− − −⎝ ⎠
       (5.53) 

This further implies that the 0V <&  as long as (5.43) and (5.44) hold and 

( )
max2

2 1 2 1
N

V v

Dr
k k
ε

> +
− −

                               (5.54) 

or 

1max max 1 2 max max max
1

1 1

2
(2 ) 2

w k w De
k k

ϕ σ+
> +

− −
                        (5.55) 

or 

( )
2 max max max

2
1 1

2
1 1

w De
k k
σ

> +
− −

                               (5.56) 
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According to a standard Lyapunov extension theorem [7], this demonstrates that 

the filtered tracking error and the error in weight estimates are UUB. The boundedness of 

1e  and 2e implies that 1w%  and 2w%  are bounded, and this further implies that the 

weight estimates 1ŵ  and 2ŵ  are bounded. 

D. Adaptive NN Controller with High-Gain Observer 

In the above subsections, the robust and the adaptive NN controllers are proposed 

based on state feedback. However, in practical applications, Yp and D1 are usually 

observed by a laser measuring system [32] or a scanning electron microscope (SEM) 

[13], which has measurement noise making the measurements inaccurate. In this regard, 

we extend our adaptive NN controller to an output feedback version by implementing a 

high-gain observer. Similar extensions can be done for the robust controller. 

Consider the system dynamics stated in (4.1) through (4.3), the separation 

principle can be applied to separate the state feedback controller scheme with the high 

gain observer design [33]. 

By assuming that the outputs are y1 and y2 corresponding to Yp and D1, 

respectively, but with measurement noise, a high-gain observer is designated as 

1 2 1 1 1
2

2 1 1 1

1 1

3 4 2 2 3
2

4 2 2 3

2 1 2

(2 / )( )

/ / (1/ )( )

(2 / )( )

( ) / (1/ )( )

VdW
bp b p

p

VdW VdW
bp bs b

x x y x

x F m v m y x
y Y
x x y x

x F F m y x
y D

ε

ε

ρ

ε

ε

ρ

= + −

= − + + −

= +

= + −

= − + −

= +

&

&

&

&

             (5.57) 

where x1 and x2 are the estimates of Yp and its velocity, while x3 and x4 are the estimates 

of D1 and its velocity with 1 2,  ε ε  are small design constants. Here, we introduce 1ρ  and 
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2ρ  as the measurement noise. Further, the terms of /VdW
bp bF m−  and ( ) /VdW VdW

bp bs bF F m−  in 

the second and fifth equations are the nominal model of the observer, which is a 

simplified version of the model discussed in the above section considering the fact that 

van der Waals forces are the dominant adhesive forces [1] and p bm m . 

Assumption 5: The measurement noise and their derivatives up to the second order are 

bounded [34] by i iNρ ρ≤ , i iNρ ρ′≤& , i iNρ ρ′′≤&&  for i = 1, 2. 

Assumption 6: The derivatives of function 1( )pF Y  and 2 1( )F D  over the compact set are 

bounded by 1 1MF F ′≤&  and 2 2MF F ′≤& . 

Assumption 6 is a mild assumption from micro-scale physics implying that there 

will be no change in the force by infinite magnitude. 

By applying separation principle, an output feedback adaptive NN controller is 

obtained by replacing the states Yp and D1 by their estimate x1 and x3 provided by the 

high-gain observer in (5.57), respectively. In other words, the control input now is 

selected as 

2
ˆ ˆ ˆ ˆ( ) vv F X D k r= − − Λ −&                                     (5.58) 

where 2
1 2

ˆ ˆ,
T

X x D R⎡ ⎤= ∈⎣ ⎦ , 2 1 3
ˆ 2 bD x x R= − − , 2 2 4D̂ x x= −&  and 2 2 0

ˆ ˆˆ ( )r D D D= + Λ −& . 

The updating laws for NNs are also changed to 

( ) ( ) ( )( )1 1 1
ˆ ˆ ˆˆ ˆ ˆ Tw X r w X k R tϕ ϕ= − +&                                 (5.59) 

( ) ( )( )2
ˆˆ ˆˆ( )w z t r R tσ= − +&                                       (5.60) 

where ( )2
ˆ ˆ ˆ( ) ( )TR t w z tσ=  and 2

0
ˆˆ( ) ( )

t
z t r dτ τ= ∫ . 
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Hence, we have following theorem. 

Theorem 3: Consider the system given in (4.1) through (4.3) and the output feedback 

controller (5.58) with updating law (5.59) – (5.60). Let Assumptions 5 and 6 hold. 

Consider the original state feedback controller (5.30) and the updating law (5.41) and 

(5.42), the filtered tracking error and the NN weights estimates are UUB. Then, there 

exists 1 2,  M Mε ε , such that, for every 1 1 2 20 ,  0M Mε ε ε ε< < < < , the filtered tracking error 

and the NN weights estimates of the closed-loop system with the output feedback 

controller (5.58) is UUB. 

Proof: The proof is divided into two steps. First step is to take care of the measurement 

noise. And the second step is to prove the UUB of the closed-loop system. 

In the first step, consider the observer for D1. Let 1 1pz Y ρ= + , 2 1pz Y ρ= +& & . The 

original system (4.2) and the output can be rewritten as 

1 2

2 1 1 1 1

1 1

( )
z z
z F z v
y z

ρ ρ
=
= − + +
=

&

&&&                                       (5.61) 

Further, by using Mean Value Theorem, one can rewrite (5.61) as 

1 2

2 1 1 1 1 1 1

1 1

( ) ( )

z z

z F z v F
y z

ζ ρ ρ

=

= + − +
=

&

& &&&                                     (5.62) 

where 1 1[0  ]ζ ρ∈  or 1 1[   0]ζ ρ∈ . Thus 1 1 1 1( )F ζ ρ ρ− +& &&  can be considered as a 

disturbance, which appears to be bounded from Assumptions 5 and 6. In other words, a 

new reference system without measurement noise can be constructed. Same analysis 

applies for D1. Such a high-gain observer design based system is thoroughly discussed in 
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[33]. Moreover, one can readily assert that the adaptive NN controller based on state 

feedback can be translated to system (5.62) with UUB stability. 

Thereafter, the second step is similar to the proof in [33] and thus omitted in this 

paper. As a result, the tracking error in terms of 1 2,z z  and the NN weights estimates are 

UUB. Due to boundedness of the measurement noise, one can conclude that the filtered 

tracking error and the NN weights estimates of the original closed-loop system are UUB. 

VI. SIMULATION RESULTS 

To substantiate our methods, simulation results are shown in this section. The 

purpose of the controller is to provide a control force for the probe to pick up the micro 

object. Initially, it is assumed that the object is in contact with the substrate before it is 

picked up by the probe. The controller provides the force to cause the actual capture and 

to retain the micro-sphere at the tip of the probe. Once the capture occurs, and the 

external force to be applied through the probe is determined and maintained to keep the 

micro-sphere attached to the probe. 

The dynamics of the system are expressed as (4.1) through (4.3), with 

51.0 10pm kg−×=  the mass of the probe, 71.0 10bm kg−= ×  the mass of the micro sphere, and 

50bR mμ=  is the radius of the micro sphere. Initially, the probe is assumed to park right 

above the object at a height of 100 mμ , which means the approaching angle 0θ = o . That 

is also the typical way to approach micro objects for capturing [4], [26]. The surface 

roughness is assumed to be 101.0 10 m−×  [27]. The humidity is arbitrarily set to 50% [28]. 

To testify the controller designs, model uncertainties and environmental noise are added 

in the system (4.1) and (4.2) as Gaussian form with zero mean and 2 9 21.0 10 Nσ −= × . 
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For comparison, a traditional PD controller is first designed based on the filtered 

tracking error with the control input selected as 2 vv D k r= −Λ −& , where 35, 10vk −= Λ = . 

Fig. 6 shows the trajectories of the probe and micro object, while Fig. 7 shows the control 

input. In Fig. 6, the trajectories of D1 and D2-D0 are depicted. The goal of the controller is 

drive the probe to adhere the particle, which means that D1 should increase while 

maintaining D2-D0 to be zero at the same time. Although the PD controller is easy for 

implementation and capable of picking up the micro sphere, it was found that the applied 

force appears to be highly oscillatory as depicted in Fig. 7. These oscillations might 

damage the fragile sample or even the probe. 

Meanwhile, Fig. 8 displays the trajectories, while Fig. 9 depicts the applied force 

on the probe by using a robust controller. The controller parameters are also chosen as 

35, 10vk −= Λ =  in (5.15). In estimating ( )F X , we set 

1 2

1 1 1ˆ ( ) ( ) ( )
6 6

w
VdW VdW bs b

bs bp
b b

A RF X F F
m m D D

= − = − , since usually van der Waals force is the 

dominant adhesive force [1] and p bm m . Further, ˆ( ) ( ) /10MF X F X=  and 0.1 mβ μ=  

in (5.24). The results show that the robust controller could avoid the large scale force 

oscillation before grabbing the object successfully. However, due to the model 

uncertainties and other unknown parameters, the controller output still demonstrates a 

small fluctuation. 

Fig. 10 shows the distances and Fig. 11 shows the control input resulting from 

using a reinforcement learning-based controller with 3
15, 10 , 0.8vk k−= Λ = = . In both the 

action and critic NNs, hyperbolic tangent sigmoid transfer function is used. The hidden 

layer of the action NN consists of 10 nodes, while the critic NN consists of 5 nodes. 



 

 

34

Simulation results show that the NN controller can approximate the unknown system 

dynamics and avoids the oscillation phenomenon. Furthermore, because of the learning 

ability of NN, the influence of the unknown uncertainties is greatly reduced. 

For quantifying the comparison results, we utilize a cost function to measure the 

performance of each controller, which is widely used for comparing control designs [17]-

[18]. In this paper, we define a standard quadratic cost function as following 

0
0 2 0 2 0( , ) ( ( ) ) ( ( ) ) ( ) ( )ft T T

f t
J t t D t D Q D t D v t Rv t dt= − − +∫         (6.1) 

where R and Q are positive definite matrices (they are scalar in our case). 0t  is the initial 

time while ft  is the final time of the simulation. One can see that (6.1) represents the 

amount of effort the controller yields and a measure of the system response. In our work, 

the parameters are set as 4 6
010 , 10 ,  0 ,  3.2fQ R t ms t ms= = = = , respectively. As a result, 

the performance index for each controller is shown in Table 1. 

Table 1 Performance Comparison 

Controller type 0( , )fJ t t  

PD controller 539.45 
Robust controller 231.63 

NN controller 168.75 
 

Mainly due to the additional robust auxiliary input, the robust controller design is 

able to produce a more stable control signal, while achieving a much better outcome than 

the PD design in terms of the cost. From the table, we can find the PD controller requires 

more than double effort as its robust coordinate. Moreover, since a critic NN is 

introduced to evaluate the system performance, the adaptive NN controller succeeds in 

obtaining the best cost function. 
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Moreover, to testify the feasibility of our output feedback adaptive NN controller, 

the simulation is carried on with parameters 1 2 0.01ε ε= =  in (5.57). The measurement 

noise is also added in the simulation as dual-tone form [34] 

6
1,2 (sin( ) 0.5sin(3.33 )) 10t t mρ −= + ×  for both D1 and Yp. The system response and the 

actual applied force are plotted in Figs. 12 and 13, where one can find that although there 

exists a big variation of control input at the beginning due to the measurement noise and 

the converging of the observer, the control input becomes steady soon indicating that the 

observer approximates the actual states as well. 

Meanwhile, it can be seen that capture occurs around 310−  s for the robust and the 

robust NN controllers, which can be observed by the stabilizing of the applied force and 

trajectory of D2-D0. By contrast, it takes longer to capture the micro-sphere by using the 

PD controller. 

 
Fig 6. Displacement Using a Conventional PD Controller 
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Fig 7. Applied External Force Using a Conventional PD Controller 

 
Fig 8. Displacement Using Robust Controller 

 
Fig 9. Applied External Force Using Robust Controller 
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Fig 10. Displacement Using an Adaptive Critic NN Controller 

 
Fig 11. Applied External Force with an Adaptive Critic NN Controller 
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Fig 12. Displacement Using an Output Feedback Adaptive Critic NN Controller 
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Fig 13. Applied External Force Using Output Feedback Adaptive Critic NN Controller 

VII. CONCLUSIONS 

In this paper, a suite of robust manipulation controllers was presented for pick-up 

task of a micro sphere. Closed-loop stability is demonstrated using a robust controller by 

assuming that the upper bound on the unknown dynamics of the contact forces is known. 

Then, a reinforcement learning-based adaptive NN controller was presented for the task 

of picking up a micro-sphere from a substrate wherein the need to know an upper bound 

on the unknown dynamics is relaxed. The controllers have been proved to have 

guaranteed stability and the task of manipulation was possible even when the 

nonlinearities and uncertainties are not modeled for. Simulation results indicate that the 

robust controller and the NN controller outperform a conventional PD controller in terms 

of the response time and applied force during the object manipulation. Furthermore, the 

NN controller has advantage over the robust controller with regard to tolerating model 

uncertainties and noise. The comparison is strengthened by using a standard quadratic 

cost function. To overcome the lack of feedback of certain states and the presence of 

measurement noise, an output feedback adaptive critic-based NN controller with high-

gain observer is proposed and verified in a simulation environment. 
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In the future, experiments need be carried out to substantiate our theoretical 

conclusions. A better model should be built based on the experiment data and how to 

obtain a satisfactory estimate of ( )F X  for the robust controller is also a part of future 

work. 
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ABSTRACT 

Nanomanipulation and nanofabrication with an Atomic Force Microscope (AFM) 

or other Scanning Probe Microscope (SPM) is a precursor for nanomanufacturing. It is 

still a challenging task to accomplish nanomainpulation automatically. In ambient 

conditions without stringent environmental controls, the task of nanomanipulation 

requires extensive human intervention to compensate for the spatial uncertainties of the 

SPM. Among these uncertainties, thermal drift, which affects spatial resolution, is 

especially hard to solve because it tends to increase with time and cannot be compensated 

simultaneously by feedback from the instrument.  

In this paper, a novel automatic compensation scheme is introduced to measure 

and estimate drift one-step ahead. The scheme can be subsequently utilized to 

compensate for the thermal drift so that a real-time controller for nanomanipulation can 

be designed as if drift did not exist. Experimental results show that the proposed 
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compensation scheme can predict drift with a small error, and therefore can be embedded 

in the controller for manipulation tasks. 

Keywords 

Nanomanipulation, Scanning Probe Microscope, thermal drift, phase-correlation method, 

neural network 

I. INTRODUCTION 

Nanomanipulation, which aims at manipulating nanometer size objects with 

nanometer precision, has become possible since 1990 [1] after the invention of scanning 

tunneling microscopes (STM), atomic force microscopes (AFM) and other types of 

scanning probe microscope (SPMs). By accurately controlling atoms, molecules, or nano 

scale objects, numerous applications of nanotechnology can be cited in the area of 

molecular biology and genetics, solid-state physics, chemistry, material science, 

computer industry and medicine. By reducing the object size from micro meter to nano 

meter, new sensors, tera-byte capacity memories, DNA computers, man-made materials, 

etc., would be possible within the near future [2]. 

Today, manipulation of particles with the order of 10nm in diameter using Atomic 

Force Microscopes (AFMs) is being investigated by many researchers [3], [10]-[13], 

[17]. Preliminary controller designs for nanomanipulation systems were introduced in 

[14] and [15]. Besides using AFM or other SPM as imaging tools, they are also employed 

as teleoperated manipulators at the nano scale. However, for future new nanotechnology 

products, there are still many challenges to be addressed.  From macro to nano world, any 

nonlinearity such as thermal noise even if it is small will cause major hurdles during 

manipulation with the microscope. Without treating these uncertainties, real-time 
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controller designs will be impractical. Therefore at present, nanomanipulation requires 

extensive user intervention to compensate for the spatial uncertainties associated with the 

microscope and its piezoelectric drive mechanism, such as hysteresis, creep, and thermal 

drift [3], [16]-[17] when operated in ambient conditions without stringent environmental 

controls. 

Among the uncertainties that AFM encounters, hysteresis can be reduced by 

scanning in the same direction always, while creep effects almost vanish by waiting a few 

minutes after a large scanning motion [3]. Alternatively, in [16] a comprehensive study is 

presented on techniques that are being developed to compensate them. Usually, these 

solutions are normally embedded into AFM software for compensation although they 

slow down the manipulation tasks.  

Nevertheless, unlike other uncertainties, the effect of drift will increase with time 

and it cannot be compensated automatically by the instrument. In other words, due to 

temperature change in the ambient environment, the AFM tip drifts with time at a speed 

of about one atomic diameter per second, even when the voltage inputs for controlling the 

tip position are held constant. Although drift can be greatly reduced by placing the 

microscope in a temperature-controlled and ultrahigh vacuum (UHV) environment, this 

will be expensive and difficult, and therefore limits its applications in industry. At the 

same time, other uncertainties such as calibration error and instrument noise will be 

introduced during the manipulation processes and their effects are similar to that of the 

thermal drift which renders gross manipulation inaccuracies. As a result, it will typically 

take hours for an experienced operator to construct a pattern with several nano particles 

using AFM. To efficiently and successfully accomplish such tasks or even more complex 
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ones, automated manipulation is desirable. For an automated nanomanipulation, drift 

compensation is the first step. 

Several researchers have addressed the problem of drift and proposed solutions in 

[3] through [8] and [17]. However, most of them [4]-[8] are assuming that the drift being 

held at a constant value. Additionally, [4]-[8] are computing the drift by considering the 

entire image data although during manipulation part of topography of the sample is going 

to be changed.. To overcome this problem, in this paper, a block-based phase correlation 

method is employed to divide the entire image into blocks, using which drift for each 

block is estimated individually. Thereafter, the drift value of the entire image is computed 

based on the drift calculation for each block.  

Further, to make this method suitable for future real-time controller design, both a 

neural network (NN) and signal reconstruction technique are also necessary and proposed 

here. As a matter of fact, given diverse working conditions during manipulation, an 

artificial neural network (NN) is utilized for predicting drift at the next sampling interval 

for relaxing the need for drift models. Using signal reconstruction techniques, drift can be 

expressed as a continuous function of time for any real-time controller design. 

The paper is organized as follows. In Section II, the problem of drift is introduced 

whereas Section III presents the detailed compensation methodology for the drift 

problem. The system implementation and experimental results are included in Section IV 

before conclusions. 

II. PROBLEM STATEMENT 

Mainly due to thermal expansion and contraction of the microscope components 

and the sample in ambient conditions, drift usually appears in successive AFM scans 
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even when all of the scanning parameters are not altered. In the x-y plane (or the 

horizontal plane), drift can be observed as a translation between different images, as 

shown in Fig. 1. The drift velocities on the x-y plane are reported to vary from 0.01~0.1 

nm/s [3]. However during our experiments, the problem due to drift appears to be worse 

at times. As observed from Fig. 1, the graphite sample is drifting to the left at a speed of 

around 0.5nm/s. So the drift between any two images taken at 256 sec interval can be as 

much as 128nm, which is larger than the diameter of the nano particles themselves which 

are normally manipulated. Meanwhile, from the height data of the sample, it can be 

observed that drift along the z direction is approximately 0.005nm/s during our 

experiments. 

 
Fig 1. Image Sequences of a Graphite Sample Taken at 256 Sec Intervals by AFM 

Showing Drift on the x, y Plane due to Ambient Conditions. The Scanned Area is 512 by 

512nm2. 

 

T=512 T=768

T=0 sec T=256 
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Unfortunately, measuring drift in the z direction precisely will be difficult or 

impossible because the topographic data provided by an SPM are essentially relative 

height information in terms of discrete points on the sample surface. Fortunately, 

considering the vertical drift is comparatively small and has little impact on the controller 

[3], there is no need to estimate its exact value. Thus, it is normally sufficient for a drift 

compensation scheme to estimate and compensate the drift along the x and y directions 

and under the reduced influence of the noise from the z axis, so that automated 

nanomanipulation can be performed as if drift does not exist. 

Past experiments show that the drift along x and y directions can be observed as a 

translational movement and not rotation [3], [17]. Furthermore, there is negligible 

correlation between the two directions [3]. Hence, ideally, the height data between the 

two consecutive collections along with the drift can be written as 

1( , ) ( , )k k k k kh x y h x x y y z+ = + Δ + Δ + Δ                        (1) 

where ,  k kx yΔ Δ  and kzΔ  denote drift in the x, y and z axes, respectively, between time 

instants k  and 1k + . Here, we assume that the drift along z direction for the overall 

imaging area of the sample is constant, which appears to be a reasonable assumption. 

Although several methods [4] - [8] to compensate for the drift in the horizontal 

plane have been proposed, these techniques fail to provide accurate compensation when 

the drift velocity changes, as illustrated by the experimental results in Fig. 1. A novel 

Kalman filter based estimator [3] and compensator is introduced. However, the user still 

has to select a tracking window and the appropriate model parameters for every 

experiment, which will be very difficult for automation. Moreover, the techniques in [3]-

[8] are based on comparing successive images of an unmodified sample or unmodified 
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part of the sample. Unfortunately, the topography in the scanning region is usually 

changed during manipulation or fabrication processes. For instance, as shown in Fig. 2, 

there are two particles being pushed by the operator, and it is not too difficult to notice 

that there drift exists between the two images. Under this condition, the methods reported 

in [4]-[8] render inaccurate results. The tracking window technique can solve this 

problem but it is not a true automatic approach. 

 

Fig 2. Image Sequences of Gold Particles on Mica Substrate with Nano Manipulation 

under AFM. Note: There Are Two Particles at the Right Top Corner Moved by the 

Operator. Drift also Presents Towards Upside.  

 

In this paper, drift will be measured and processed using block-based phase 

correlation method in a totally automatic manner, and without human intervention and 

even when some areas of the sample have been altered due to manipulation. 

III. COMPENSATION METHODOLOGY 

The block diagram of the proposed compensation methodology is depicted in Fig. 

3. The entire system will operate in a recursive fashion with a constant sampling interval, 

where images of the sample are secured by the microscope. Our drift compensator is 

updated even when the manipulation is carried out elsewhere on the sample during the 

inter-imaging period, which is the case discussed in [4]-[8].  
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The entire manipulation scheme will be executed by the following procedure. 

Once the microscope acquires a most up-to-date image data, the block-based phase 

correlation algorithm starts and computes a measurement of current drift value. As soon 

as this computation is done, it delivers the measurement to the neural network (NN) 

predictor. The NN predictor estimates the drift for the next imaging instant, which in turn 

is employed by the signal reconstruction block to form a continuous variation of drift as a 

function of time between current imaging instant and the next one. With the drift 

information expressed as a continuous function of time, the task of nanomanipulation can 

be accomplished automatically by the controller as the drift estimate can be explicitly 

utilized during nanomanipulation. 

 

Fig 3. Block Diagram of the Overall Proposed Drift Compensation System 

 

As stated above, there is no correlation between drift along x and y axes [3]. 

Therefore, for simplicity, only the drift in the x direction is discussed in the following 

subsections and drift in the y-direction can be obtained similarly and therefore omitted. 

 



 

 

52

A. Gradient Imaging 

In principle, AFM operates by measuring attractive or repulsive forces between 

the tip and the sample surface. As a raster-scan drags the tip over the sample, some sort 

of detection apparatus (e.g. laser) tracks the forces by monitoring the vertical deflection 

of the AFM cantilever, which indicates the height of the sample locally. Thus, the images 

provided by AFM are essentially the height data of the sample locally. 

It is important to note that drift in the z direction depends upon the measurement 

errors from the x and y directions. Although it is comparatively small and has little impact 

on nanomanipulation, it could still influence the accuracy of our drift algorithm. 

Therefore, to minimize this error, gradient information will be used for measuring drift, 

which is defined as 

( , ) ( , ) ( 1, )k k kg x y h x y h x y= − −                                 (2) 

From (2), one can find that a new image is formed by using the gradient information and 

by just taking the height difference between each pixel and the corresponding horizontal 

neighboring pixel in the original image. This is also called horizontal gradient image. 

Vertical gradient image can be defined similarly and it is also applicable for our 

approach. In this paper, only the horizontal gradient is discussed. 

Considering the drift factor and substituting (1) into (2) yields 

1 1 1( , ) ( , ) ( 1, )
( , ) ( ( 1, ) )
( , )

k k k

k k k k k k k k

k k k

g x y h x y h x y
h x x y y z h x x y y z
g x x y y

+ + += − −
= + Δ + Δ + Δ − + Δ − + Δ + Δ
= + Δ + Δ

          (3) 

where the effect of z-axis drift is eliminated. Moreover, as observed in our experiments, 

results using gradient-based images will yield accurate results than using the original 

height data due to the presence of drift along z axis. Once the microscope finishes the 
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sample imaging and the gradient calculation, the gradient data is forwarded to the phase 

correlation module. 

B. Block-based Phase Correlation Method 

The drift measurement problem is similar to the motion estimation (ME) and 

compensation (MC) issue in the area of signal processing. Among various techniques, 

phase correlation technique measures the motion directly from the image, so that it can 

give a more accurate and robust estimate of the motion vector and a motion field with 

much lower entropy [9]. Additionally, phase correlation method is computationally very 

efficient, which will allow more time for manipulation operations between imaging 

instants. In particular this method shows a better performance on translational and large-

scale motion and these are the characteristics that are normally observed in AFM drift. 

On the other hand, as we argued in the former section, existing methods [3]-[7] 

will produce inaccurate results in the presence of topography changes of the sample 

surface resulting from the manipulation or they need human intervention to mark them 

manually [8]. In our algorithm, to distinguish the drift from other user-defined operations 

and further eliminate the drift automatically, the image is divided into blocks, and the 

drift calculation is performed for each block separately. As a matter of fact, block-based 

motion estimation and compensation schemes are quite popular in practice due to their 

robust performance and they do not require object identification. Moreover, they allow 

some objects in the image to be moved while not influencing the motion estimation of 

other blocks. This feature makes it easier to estimate the drift of the overall image even 

when some parts of the sample surface have been altered by operators, which is usually 

the case in the nanomanipulation environments. 
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The schematic diagram of our block-based phase correlation method and the 

parameters used in our experiments are depicted in Fig. 4. Other settings may also be 

possible for different experimental conditions.  

 

Fig 4. Schematic Diagram of Block-based Phase Correlation Method 

 

In the proposed scheme, assuming a new gradient frame with 512 by 512 pixels is 

received from AFM, it is first divided into 64 by 64 pixel blocks. By using a 

straightforward calculation, there will be 64 blocks from a 512 by 512 image. The 

objective of the first step is to estimate the drift value for each block by comparing the 

new image with the previous one. For more accurately estimating the cross correlation of 

corresponding block pairs in respective image frames, we extend the blocks to 128 by 

128 pixel in size, centered around the formerly defined 64 by 64 pixel blocks for 

calculation. It can be readily found that, with bigger blocks, the overlapping area between 

the block pair is larger. Therefore, their correlation can still be kept to be high even with 

a large amount of drift.  
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Subsequently, a two-dimensional raised cosine weighting window is applied to 

each 128 by 128 extended block to enforce more weight on our formerly defined 64 by 

64 region. The two-dimensional raised cosine window is defined as follows 

( , )

1 2 ( 1/ 2) 2 ( 1/ 2)           1 cos 1 cos ,  for x, y = 1,2, ..., M
4

x yw x y w w

x y
M M

π π

= ⋅

+ +⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= − ⋅ −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

      (4) 

where M is the size of the image, which is equal to 128 for our system. The raised cosine 

function is also illustrated in Fig. 5, which clearly demonstrates that the pixels in the 

center are given higher emphasis. 

 

Fig 5. Two-dimensional Raised Cosine Window Dunction 

 

Thereafter, the phase correlation method measures the movement between two 

blocks directly from their phase values. The basic principle is briefly discussed next. 

Assume that there exists a translational shift exists between frames k  and 1k + . 

In this paper, the same relationship stands for consecutive gradient images, which can be 

rewritten from (3) as 

1( ,  )  ( ,  )k kg x y g x x y y+ = + Δ + Δ                                   (5) 

Taking 2-D Fourier transform of (5) yields 



 

 

56

1( ,  ) ( ,  ) exp[ 2 ( )]k x y k x y x yG f f G f f j xf yfπ+ = ⋅ Δ + Δ                    (6) 

Therefore, displacement in the spatial-domain is reflected as a phase change in the 

frequency spectrum domain. Further, the cross-correlation between any two frames can 

be written as 

*
, 1 1( , ) ( , ) ( , )k k k kc x y g x y g x y+ += ⋅ − −                                 (7) 

whose Fourier transform is given by 

*
, 1 1( ,  ) ( ,  ) ( ,  )k k x y k x y k x yC f f G f f G f f+ += ⋅                             (8) 

After normalizing the cross-power spectrum by its magnitude and eliminating the 

luminance variation influence during our phase analysis, we obtain its phase as 

*
1

, 1 *
1

( , ) ( , )
[ ( , )]

( , ) ( , )
k x y k x y

k k x y
k x y k x y

G f f G f f
C f f

G f f G f f
+

+
+

Φ =                           (9) 

By substituting (6) into (9), we have 

, 1[ ( , )] exp[ 2 ( )]k k x y x yC f f j x f y fπ+Φ = − Δ ⋅ + Δ ⋅                (10) 

whose 2-D inverse Fourier transform is given by 

, 1( ,  ) ( ,  )k kc x y x x y yδ+ = − Δ − Δ                              (11) 

where δ  is an impulse function on the x-y plane. As a result, the displacement in the 

spatial-domain corresponds to an impulse in the correlation domain. Therefore, by 

finding the location of the impulse in (11), we are able to obtain an estimate of the 

displacement, which is represented by a motion vector. In our system, the phase 

correlation for each block pair in consecutive frames is calculated using 128 by 128 fast 

Fourier transform (FFT). 
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In practice, since the motion between any two blocks can not be both pure 

translational and noise free, usually we have a phase correlation map similar to what is 

depicted in Fig. 6. Although there is an obvious peak appearing, there are other peaks 

also and some with noise. 

 

Fig 6. Map of a Typical Phase Correlation Function between Two Blocks 

 

In other words, in ideal situations where there is only a spatial shift between 

images due to drift, it should be reflected as a single spike after the application of phase 

correlation technique. Therefore, the highest peak in the phase correlation map usually 

corresponds to the actual drift value. Even if the images are contaminated with noise, the 

highest peak still provides the best estimate of drift between two frames. However, for 

our 128 by 128 pixel extended blocks, due to nontranslational movement and other 

unexpected noise, several peaks with height closer to one another might be appearing in 

the correlation map. In this case, several candidates will be selected first instead of just 

choosing the highest peak. Thereafter, the peak that best represents the displacement 

vector for the object block has to be found by examining the peaks using image 

correlation in terms of the mean squared error (MSE) criterion. The candidate possessing 
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the highest image correlation is then identified, and its corresponding drift displacement 

is accepted as the motion vector for the object block. Note that a maximum drift of +/- 64 

pixels is assumed in order to ensure that there exists an overlapping area with enough size 

between corresponding block pair. In case the drift exceeds the assumption, one may 

increase the block size to 128 by 128 to solve this problem. 

Finally, after the motion vectors for all blocks are computed, we could obtain a 

motion vector as a field map shown in Fig. 7, which is the result of applying our 

algorithm on the experiment data shown in Fig. 2. Ideally, if translational drift is the only 

reason for the motion vectors within the image sequence, a satisfactory drift measurement 

of the whole frame can be produced by simply calculating the mean of all motion vectors. 

However, as we have stated before, to fulfill nanomanipulation, some particles or some 

parts of the sample surface are designed to be altered. Additionally, image data are 

usually corrupted by noise and other uncertainties at the nano scale. As a result, some of 

the blocks will have considerably different motion vector values from others as shown in 

Fig. 7(a). Thus, a specific noise cancellation mechanism is required to pick the 

“contaminated” blocks out and restrain them from being involved into the final 

calculation. 

By assuming that only a limited area of the sample is altered during a short 

interval, a simple but effective approach to remove this noise is to first compute the mean 

of all motion vectors, pick some blocks which are farthest from the mean, and set their 

values invalid. By this way, a more accurate drift measurement can be obtained by 

computing the mean of motion vectors of the left blocks. 
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In practice, a constant threshold value of ε  is used in our scheme for noise 

cancellation. In particular, after getting the mean, all the blocks whose distance to this 

mean value larger than ε  are not considered in the final calculation of the drift 

measurement for the overall image. Usually, the choosing of ε  depends on how large 

area of the sample is being manipulated, which should be known a priori. 

 

Fig 7. (a) The Motion Vector Field Corresponding to Fig. 2 before Noise Cancellation. 

(b) The Motion Vector Field after Noise Cancellation 

 

C. Time Series Prediction with Neural Networks 

After obtaining the drift measurement at the current time instant k , the drift 

behavior in the next time step 1k +  must be estimated for compensation purpose. In [3], 

(b)

(a)
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Kalman filter based estimator is introduced for this purpose. Although Kalman filter can 

provide the best estimation based on maximum likelihood optimization, the model and 

parameters used in the filter have to be identified beforehand, where a general model and 

parameter settings are still impossible under multifarious sample materials and varying 

ambient conditions. 

As an alternative, in this paper, a two-layer neural network (NN) is employed for 

predicting drift in the subsequent time instant, as shown in Fig. 8. The matrices V  and 

W  are the hidden layer and output layer weights. Moreover, as noticed from Fig. 8, the 

number of nodes in input, hidden and output layer is 1N + , 2N  and 1, respectively, 

where N  denotes the history data utilized in the calculations. It is well known that NN 

have excellent approximation capability for any nonlinear temporal mapping. Assuming 

that the environmental conditions will not change much in a short time period, NN can 

learn the statistical nature of the drift from historical data and other information. In our 

system, not only the previous drift measurements are forwarded to the NN predictor, but 

also the temperature fluctuations are measured and taken as an additional input to the 

NN. The weights of the NN are updated in a supervised training mode along with drift 

measurement feedback from the phase correlation algorithm. 

2φ

3φ

2Nφ

1φ

⎧
⎪⎪
⎨
⎪
⎪⎩

 

Fig 8. Architecture of the Two-layer NN Predictor 
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D. Signal Reconstruction Using Sinc Function 

For a real-time controller design, it is necessary to obtain a drift description as a 

continuous function of time from the discrete measured points. Considering that the 

power spectra of the time series for drift exhibits a bandwidth of the order of 0.001 Hz 

[3], it is possible to get proper reconstruction results using sinc function, as long as the 

sampling interval between images are small enough. In our applications, the samples are 

imaged every 256 sec or the sampling frequency is about 0.004 Hz. Therefore, it is 

reasonable to use sinc function to reconstruct the drift signal without much loss of 

information. 

Therefore, it follows that 

1

1
0

( )( ) sinc ,  for ( , )
k

i
i k k

i

t td t d t t t
t

π+

+
=

−⎛ ⎞= ⋅ ∈∑ ⎜ ⎟Δ⎝ ⎠
              (12) 

where ( )d t  is the continuous drift function at time between current sampling instant to 

next one, id  is the drift measurement (  0,  1 ... i k= ) or prediction ( 1i k= + ) on sampling 

time it , and tΔ  is the sampling interval. 

IV. IMPLEMENTATION AND EXPERIMENT RESULTS 

To verify our proposed work, the drift compensator is implemented on a 

multimode scanning probe microscope (SPM) with NanoScope IIIa controller (Veeco 

Instruments) at UMR’s Materials Research Center. The laboratory has air conditioning 

but the ambient temperature is not tightly controlled.  Additionally, no humidity control 

is also provided in the laboratory. The AFM is forced to operate in tapping mode. 

In our experiments, the imaging frequency is set at 0.004 Hz, which implies that 

each recursive loop of our system takes about 256 sec. Meanwhile, the samples are 
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imaged at a scan rate of 4 Hz. At each scanning, a 512 by 512 pixel height image 

representing 1µm2 area is obtained. This means it takes the AFM about 128 seconds to 

finish one imaging routine. Thus, almost half of the loop time can be used for algorithm 

computation, manipulation, fabrication and other tasks on the sample. Typically, the 

computing time of our algorithm is about 15 seconds on a Pentium M 1.86 GHz computer 

with 1.00 GB RAM. This means that most of the time can be allocated for manipulation 

and or fabrication operations. 

For the NN-based drift predictor, a fixed time window of past eight drift 

measurement values were fed into the input layer of the NN, ( 8N = ). Laboratory 

temperature information is also collected by a thermal sensor attaching to the head of the 

microscope and fed as an additional NN input. The two-layer NN consists of 2 50N =  

neurons in the hidden layer. The initial weights of all layers are selected at random 

between [0, 1]. The activation functions of the first layer are selected as hyperbolic 

tangent sigmoid functions and that of the second layer are taken as pure linear functions. 

Initially, the first 20 sets of drift measurement data will be used for offline training by 

using Levenberg-Marquardt backpropagation algorithm. After that, along with 

accumulating new measurement data from the phase correlation algorithm block, online 

learning is utilized using the training set with the most recent 50 data points. 

First, we applied our system on the same sample depicted in Fig. 1. In this 

experiment, no manipulation work is executed on the sample surface. With the 

compensator, the AFM is able to focus on the same location along the x direction as 

shown in Fig. 9. 
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The second experiment is taken with a sample of Au on mica substrate for the 

duration of 8 hours in order to test the feasibility of the NN predictor and signal 

reconstruction block. Fig. 10 displays the errors between the measured and predicted drift 

values along the x direction, which average at 1.62 nm with a peak of 6.88 nm. In Fig. 11, 

we can see the continuous function of drift after the signal reconstruction process. 

In the end, to evaluate the effectiveness of our algorithm under the influence of 

manipulation, which is one of the major contributions of our paper, the compensator is 

implemented for an automatic manipulation task. Fig. 12 depicts the results of 

manipulating gold particles with 30 nm of diameter on a mica substrate. One of the 

particles is manipulated to form a line with the other two. The measurement and 

compensation are finished before starting manipulation routines. 

 

Fig 9. Image Sequences of a Graphite Sample by AFM Tapping Mode Taken at 256 Sec 

Intervals with Drift Compensation. The Scanned Area is 512×512nm2. Note: for the 

Purpose of Comparison, Only Compensation of Drift on x Axis is Shown.  

T=0 sec T=256 sec

T=768 secT=512 sec
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Fig 10. Measured Drift Value from Phase Correlation Algorithm and Predicted Value 

from NN 

 

Fig 11. Continuous Drift Function after Signal Reconstruction Compared with the 

Discrete Drift Measurement 
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Fig 12. Manipulation of 30nm Gold Particles Using the Block-based Phase Correlation 

Compensator 

V. CONCLUSIONS AND FUTURE WORK 

To realize full automated nanomanipulation and nanofabrication, effects of 

nonlinearity and spatial uncertainties of AFMs have to be compensated in order to 

minimize user intervention. This paper describes a novel compensation system for drift, 

which is a major cause of spatial uncertainty. The compensating scheme can be 

subsequently used in designing a real-time controller for nanomanipulation. Experimental 

results show that the proposed scheme is able to predict drift which can be successfully 

utilized for compensation during nanomanipulation.  

As part of future work, similar to the drift compensation, more efficient tools 

must be developed for other uncertainties, such as creep, hysteresis and so on. Trying 

a

b
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other prediction methodologies to lower the tracking errors is also our future work. 

Moreover, since the microscope undergoes drift as well when capturing images, 

fundamentally speaking, any images obtained from AFM are drift “contaminated”. To 

eliminate the drift error within an image, possible solutions in the future include: 1) 

Updating the current image by using the force feedback from the microscope during 

manipulation; 2) Scanning a smaller local area instead of the whole image for calculating 

drift; 3) Using multiple tips and conduct manipulation and drift compensation 

simultaneously in a parallel way. 
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ABSTRACT 

Automating the task of nanomanipulation is extremely important since it is 

tedious for humans. This paper proposes an atomic force microscope (AFM) based force 

controller to push nano particles on the substrates. A block phase correlation-based 

algorithm is embedded into the controller for the compensation of the thermal drift which 

is considered as the main external uncertainty during nanomanipulation. Then, the 

interactive forces and dynamics between the tip and the particle, particle and the substrate 

including the roughness effect of the substrate are modelled and analysed. Further, a 

neural network (NN) is employed to approximate the unknown nanoparticle and substrate 

contact dynamics. Using the NN-based adaptive force controller the task of pushing nano 

particles is demonstrated. Finally, using the Lyapunov-based stability analysis, the 

uniform ultimate boundedness (UUB) of the closed-loop tracking error, NN weight 

estimates and force errors are shown. 

Keywords 

Nanomanipulation, Atomic Force Microscope, neural network, drift compensation 
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I. INTRODUCTION 

Nanomanipulation, which aims at manipulating and handling nanometer size 

objects and structures with nanometer precision, has become a recent topic of research 

[9]. Nanomanipulation is also a first and critical step for achieving any complex 

functional nano devices. Applications of the nanotechnology can be found in several 

fields like biotechnologies (ADN and protein study) and data storage or material science 

(nanotube or surface film characterization). 

However, for manufacturing nanotechnology products, the challenges in 

nanomanipulation and handling of particles in nano scale require cross-disciplinary 

approaches. Typically, assemblies of small nano structures built by nanomanipulation 

today consist of ten to twenty particles, and may take an experienced user a whole day to 

construct using Atomic Force Microscope (AFM) as the manipulator. To efficiently 

accomplish such tasks or even more complex ones, the manipulation process should be 

more automated and it requires less human intervention.  

When in ambient conditions, i.e., at room temperature and humidity, in air or in 

liquid, and without stringent environmental controls, nanomanipulation encounters 

multiple external disturbances. Among these uncertainties, the thermal drift is the most 

important one, which can be observed as a horizontal translation during the manipulation 

process. Research presented in [14] provides a satisfactory real-time drift compensation 

algorithm, based on which, some controllers can be designed without considering the 

influence of the thermal drift. 

The research on nanomanipulation is still immature because the physical and 

chemical phenomenon at this scale has not been well understood. A significant amount of 
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work on modeling interactive forces during manipulation was introduced in [1], [15-16]. 

Nevertheless, in these works, the substrate was assumed to be ideally flat and the 

roughness effects were ignored. The surface roughness of the substrate can be one of the 

major hurdles during the manipulation task. In this paper, a novel mathematical model of 

the nonlinear particle-substrate contact dynamics incorporating the roughness effects is 

introduced. 

Additionally, some of the experimental samples used in the nanomanipulation can 

be fragile. Improper applied force could damage these nano objects or even the AFM tip. 

Thus, designing controllers for the manipulation and handling of nano scale objects poses 

a much greater challenge in terms of accommodating the nonlinearities and uncertainties 

in the system. In this paper, a NN based controller is proposed where the unknown part of 

the system dynamics is approximated by using a one-layer NN with an additional force 

control loop guaranteeing the applied force to be close to a desired value.  The controller 

also compensates the effect of thermal drift as presented next. 

This paper is organized as following: the thermal drift compensation algorithm is 

firstly presented in Section II. The system interaction forces model and the dynamic 

model are given in Section III and Section IV, respectively. Next, the NN controller is 

designed in Section V. Section VI describes how the drift compensator is embedded into 

the controller. Finally, Section VII shows the simulation results to substantiate our 

theoretical conclusions. 

II. THERMAL DRIFT COMPENSATION 

Due to thermal changes in ambient conditions, drift usually appears in successive 

AFM scans of a sample even when the scanning parameters are not altered. In the x-y 
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plane, drift can be observed as a translation between different images, which depends on 

thermal changes and other unclear factors. From the height data of the sample, it can be 

observed that drift is present even in the z direction. The drift velocities on the x-y plane 

are reported to vary from 0.01~0.1 nm/s [17]. So the drift between two images taken at 

256 sec interval can be as much as 25.6 nm, which is larger than the diameter of the 

particles that are normally manipulated. In our experiments, drift in the z-direction is 

about 0.005nm/s [14], which is considered negligible in our pushing task. Due to thermal 

drift, the nanomanipulation task can fail unless it is properly compensated. 

Our first goal is to develop a drift compensation scheme to estimate and 

compensate for the drift in the x and y directions under the influence of the noise from the 

z axis so that nanomanipulation can be performed as if drift does not exist. Fortunately, 

experiments show that the drift in x and y directions can be seen as a translational 

movement, not rotation. In addition, there is negligible correlation between the two. The 

block diagram of the proposed compensation system is depicted in Fig. 1. For simplicity, 

only the drift in the x direction is shown [14]. 
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Fig 1. Block Diagram of the Proposed Drift Compensator 

 

Due to the working principles of AFM, the topographic data of the sample cannot 

be collected during the pushing procedure. So that the solution is stated as follows: 1) the 

sample is scanned at a constant frequency; 2) at each iteration, after obtaining the 
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scanning data, the drift ( )cx t  and ( )cy t  is estimated and predicted; 3) during the 

subsequent time interval before the next scanning time, the pushing task can be 

performed by compensating drift.  

In the proposed scheme, drift is measured by using a block phase correlation-

based algorithm at each sampling time. Based on current and previous data, drift for the 

subsequent sampling time instant can be predicted by using a neural network. Further, 

signal reconstruction technique is applied to obtain the drift in continuous time. For more 

details, refer to [14]. With the compensator, controller can be designed as if the drift does 

not exist. 

III. INTERACTION FORCES 

In our work, the nano particles on the substrate will be manipulated by the AFM 

tip. The AFM tip apex is assumed to be a spherical ball with radius tR  = 30 nm, and the 

particle radius is denoted as pR . β  is the pushing angle, which is the angle between the 

pushing direction and the horizontal plane. Interactive forces among the AFM tip, 

particle, and substrate after the tip contacts the particle can be seen in Fig. 2. psA  is the 

adhesion forces between particle and substrate. psF  and tpF  denote the particle-substrate 

and tip-particle attractive/repulsive interaction force, while psf  and tpf  correspond to the 

frictional forces for the particle-substrate and tip-particle, respectively. Elastic 

deformation of the particle is possible and here only the elastic deformation between the 

particle and the substrate is considered. The indentation is denoted as d .  
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Fig 2. The Interacting Forces between AFM Tip, Nanoparticle and Substrate 

 
Gravitational forces are relatively very small in the nano scale and, therefore, are 

neglected. The main components of the adhesion forces are van der Waals, capillary, and 

electrostatic forces [1]. Therefore, the adhesion force between particle and substrate is 

given by vdw cap es
ps ps ps psA A A A= + + . The analysis of these contact forces and frictional forces 

is very important for modelling the nano manipulation process. 

A. Van der Waals Forces 

Van der Waals force is force acting between atoms, which is caused by a 

momentary dipole moment between atoms resulting from interaction between electrons in 

the outermost bands rotating around the nucleus. An overview is given in [2].  Depending 

on the object geometry and the material type, van der Waals force between atoms or 

molecules is proportional to the inverse of the sixth power of distance between the 

molecules [3]. The van der Waals force between the particle and substrate can be 

expressed as 

3

2 2

2
3 ( 2 )

pvdw
ps

p

HR
A

h h R
=

+
                   (3.1) 

where H  is Hamaker constant, and h  is the particle-substrate distance. 



 

 

75

Since we are interested on the nano manipulation task carried out in an ambient 

environment, there will be always a liquid layer on the surface of the sample. Therefore 

( )( )tip liquid particle liquidH H H H H= − −  [4]. After taking the surface roughness into 

consideration, van der Waals force becomes [5] 

23

2 2

2
3 ( 2 ) 2

pvdw
ps

p

HR hA
h h R h b

⎛ ⎞
= ⎜ ⎟+ +⎝ ⎠

           (3.2) 

where b  is the peak to peak height of the surface irregularity. 

B. Capillary Forces 

As stated above, in ambient operation environment, due to the presence of the 

water layer on the surfaces of particle and substrate, a liquid bridge is created between 

them at close contact as shown in Fig. 3.  
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Fig 3. Capillary Force Parameters during a Sphere and Flat Surface Contact 

 

In early work [6], molecular dynamic simulations have shown that the 

macroscopic theory of capillarity should hold down to radius of curvature of the order of 

some molecular size. By assuming that (i) r << p << Rp, (ii) the surfaces are coated with a 

film of constant thickness e, (iii) the contact angle is zero, which should be the true in our 

case, and (iv) the surfaces attraction through the liquid phase is negligible, the capillary 

force can be written as [7] 
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24 (1 )
2

cap
ps p

h eA R
r

πγ −
= −             (3.3) 

where γ  is the liquid (water) surface energy, e  is the thickness of the water layer, and r  

is the radius of curvature of the meniscus as shown in Fig. 3. Moreover, the volume of 

liquid condensed in the bridge and the film thickness distribution can also influence the 

capillary force, but as stated in [7], these variations can be ignored in our case. 

C. Electrostatic Forces 

In the case of non-conducting particles, there are charges trapped around the 

perimeter of the particles, and during pushing or contact, triboelectrification process 

introduces local charges. For general cases, a model for the electrostatic forces is 

desirable. However, by grounding a (semi) conducting substrate such as Si, Au, or 

HOPG, the electrostatic forces can be greatly reduced [1]. Moreover, the nonconducting 

particles can be coated with Au, and all the substrate and particles can be grounded. It 

was reported that the electrostatic forces es
psA  is less than one percent of the capillary 

force and therefore could become ignored [8]. 

D. Frictional Forces 

During pushing, the friction on the particle-substrate and the particle-tip plays an 

important role. Similar to the case of macro domain, when the particle is sliding smoothly 

on the substrate, the frictional force at the micro/nano scale can be given as 

ps ps psf Fμ=               (3.4) 

where psμ  is the particle–substrate sliding friction coefficient. Also, frictional force exists 

between the tip and particle that needs to be taken into account. 
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IV. DYNAMIC MODEL 

When manipulating objects in the nano domain, the micro-physics of the problem 

must be taken into account [7-8]. Modeling is necessary for pushing nano-spheres laying 

on a planar substrate. A dynamic model of the pushing system is formulated considering 

all of the forces mentioned above. The objects considered in this work include nano-

particles of diameter 30 to 500 nm, which is required to be pushed from point A to B, as 

shown in Fig. 4. The angle between y axis and the pushing direction is denoted as γ. 

 

Fig 4. Coordinate Frames of the 2-D AFM Image Graphics Display during the Particle 

Pushing 

 

A. Elastic Deformation of the Particle 

Since the contact area between the particle and AFM tip is very small, only the 

vertical deformation between the particle and substrate will be considered [1]. In the 

contact area, only the elastic deformation is to be modeled. In the nano scale, the elastic 

deformation of the surface caused by the adhesive forces is large compared to their 

effective range of action. Therefore, the JKR (Johnson-Kendall-Roberts) model analysis 

will be valid [10].  The indentation of the particle is given as 
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2

( 3 6 (3 ) ) /
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p

a R F R w R wF R w K

d a R wa K

π π π

π

= ⋅ + + +

= −
                (4.1) 

where a  is the contact radius and d  is the indentation [11]. 

B. Interacting Force Analysis 

The interacting forces occurring between the tip, particle, and substrate are shown 

in Fig. 2. The deflection forces applied on the cantilever along the x, y, and z axes are 

denoted as , ,c c c
x y zF F F . Since the tip is very small compared to the diameter of the 

particle, the AFM cantilever can be seen as a point object at the apex of the tip. A point 

mass model of the interaction forces during pushing is derived in [1] where , ,x y zk k k  and 

, ,x y zb b b  represents the elastic and damping coefficients of the cantilever along the x, y, 

and z axes, respectively. The term ( )24c z rm k fπ=  is the cantilever effective mass, 

while rf  is the cantilever resonant frequency. Let us assume initially that the surface of 

the substrate is smooth in order to arrive at the dynamics. Later this assumption is 

relaxed. 

The particle will be acted upon static friction and kinetic friction during the 

pushing operation [1]. At the beginning, the tip is approaching the particle under the stage 

movement. After the tip contacts the particle, due to the static friction force between the 

particle and the substrate, the particle and tip will be together and follow the stage motion 

until the applied cantilever load exceeds the static friction. In this phase, assuming the 

stage is moving slowly, the following equations can be derived 
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                  (4.2) 

After the particle is detached from the substrate, assume the particle is pushed in a 

constant speed, V, and is purely sliding. If the speed is very slow, we can obtain 

equilibrium equations as 

sin cos

cos sin

( )

tp ps tp ps

tp tp ps

ps ps ps

tp p ps p

F A f F

F f f

f F
f R f R d

β β

β β

μ

+ + =

= +

=

⋅ = ⋅ −

           (4.3) 

and further 

cos
cos (1 / sin )
(1 / )sin 1

cos

ps
ps

p ps

p
tp ps ps

A
F

d R
d R

F F

β
β β μ

β
μ

β

=
− − +

− +
=

              (4.4) 

For building cantilever dynamics, denoting the deflections of the probe along the 

x, y and z axes as xζ , yζ  and zζ . In AFM-based manipulation systems, only zζ  can be 

measured, which satisfies 

c c c
z z z y yz z zF k F k F kζ = + ≈                (4.5) 

cos sinc
z tp tpF f Fφ φ= +             (4.6) 

where φ β α= − , and α  is the cantilever tilt angle from the base guaranteeing the point 

contact of the particle with the substrate. Equation (4.5) shows that zζ  can be seen as a 

direct measure of the force c
zF . 
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Additionally, for positioning in atomic domain, piezoelectric actuators are utilized 

in AFM systems. By denoting the sample position along x, y, and z directions as 

, ,s s sx y z , respectively, the dynamics of the stage along each axis are given by [1] 

2

2

2

1 1 cos

1 1 sin

1 1

s s s x x x ps
x x x

s s s y y y ps
y y y

s s s z ps ps
z z z

x x x F f
w w Q

y y y F f
w w Q

z z z F A
w w Q

τ τ γ

τ τ γ

τ

+ + = − = −

+ + = − = −

+ + = − +

&& &

&& &

&& &

                          (4.7) 

where w  is the resonant frequency, Q  is the amplification factor and τ  is the stage 

driving forces. 

C. Substrate Roughness 

During pushing, the surface cannot be smooth, especially at the nano scale. 

Further, the movement of the base in the z-direction and alignment errors will make the 

above assumption unreasonable. 

Hence, the displacement of the particle on vertical direction can be seen as a 

disturbance on the pushing angle β  which is given by 

1

1

cossin

sin ( )

set s sub z

p

set s sub
s

p

h z z d
R

h z z d z
R

ζ αβ

β

−

−

− − + +
=

− − +
≈ =

                                 (4.8) 

where seth  is the predetermined parking height of the tip, and subz  is the sample surface 

height displacement, or the roughness of the surface, which is reasonably assumed to be 

bounded. Therefore, the system dynamics can be expressed as 
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                   (4.9) 

Two pushing strategies are introduced in [1]. Because the pushing operation can 

be affected greatly by the substrate surface topographic changes, in our work, we will 

design a controller for the constant contact force control algorithm. That is, on the basis 

of the system dynamics in (4.8), the controller will be designed such that it will change 

the horizontal position ( ,  )s sx y  of the stage from A to B, while keeping ( , )c c
z z s subF F z z=  

at a desired value. This will ensure that the tip contacts the particle with almost the same 

height away from the substrate during the pushing, so that the chance for the tip to lose 

contact with the particle is minimized. This requirement also guarantees that a proper 

force will be applied on the sample without damaging it. 

V. CONTROLLER DESIGN 

Our goal is to design a control input that guarantees a desired stage motion and 

applied force on the cantilever. In this section, let us first assume that the drift does not 

exist. As can be seen from (4.5), c
zF  lateral force has a direct effect on zζ , so that the 

control goal can be translated as keeping a desired constant zζ  during pushing. Hence, 

the system state is defined as [ ]Ts s ss x y z= . Given a desired trajectory 

[ ]Td d d ds x y z=  for the stage, the filtered tracking error can be defined as 

r e e= + Δ&               (5.1) 
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where ×Δ∈ 3 3R  is a designed diagonal matrix selected through pole placement with 

positive entries. de s s= − ∈ 3R , de s s= −& & &  represent the trajectory error and the velocity 

error, respectively. ,  d dx y  can be readily derived from Fig. 4. Moreover, since we can 

obtain the topographic information of the substrate by using the image mode of AFM, 

and the resolution of AFM could reach as low as 1nm, a good estimation of subz  can be 

done in advance. Based on the estimate value of ˆsubz , the desired trajectory of the stage 

on z-axis can be defined such that ˆ 0sub dz z+ = , which is necessary for the cantilever to 

maintain contact with the particle. This selection will ensure that when the filtered 

tracking error converges to zero, the trajectory error ( )e t  eventually converges to zero, 

too. It can be also easily found that when the controller guarantees that the filtered 

tracking error ( )r t  is bounded, ( )e t  is also bounded. 

In the presence of bounded disturbances (e.g. the estimation error of the surface 

height ˆe sub subz z z= − ) and modeling uncertainties, the system dynamics can be expressed 

from (4.9) in matrix form as 

2 1 1 ( )s Q s f s d τ− − −Ω +Ω + + =&& &                    (5.2) 

where the matrices in this equation are defined as 

0 0
0 0
0 0

x

y

z

w
w

w

⎡ ⎤
⎢ ⎥Ω = ⎢ ⎥
⎢ ⎥⎣ ⎦

              (5.3a) 

0 0
0 0
0 0

x

y

z

Q
Q Q

Q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

             (5.3b) 



 

 

83

cos ( )
( ) sin ( )

( )

s ps s

s ps s

s ps s ps

x f z
f s y f z

z F z A

γ
γ

⎡ ⎤+
⎢ ⎥= +⎢ ⎥
⎢ ⎥+ −⎣ ⎦

                   (5.3c) 

T

x y zτ τ τ τ⎡ ⎤= ⎣ ⎦  is the control input vector and d  stands for the disturbance vector. It 

can be reasonably assumed that d  is bounded by Nd d≤ . Thus, differentiating (5.1) 

yields 

dr s s e= − + Δ& && && &               (5.4) 

Substituting (5.2) into (5.4) yields the filtered tracking error system 

2 1 2 2

2 2 2

( )

( ) ( )
dr Q s f s d s e

f s d g s

τ

τ

−= Ω −Ω −Ω −Ω − + Δ

= Ω −Ω −Ω −

& & && &
            (5.5) 

where 1( ) dg s Q s s e−= Ω + − Δ& && & . 

Given a smooth trajectory and when the parameter matrices Ω  and Q  are 

accurately known, the control input can be selected as 

2( ) ( ) v f ef s g s K r Kτ ζ−= +Ω − +            (5.6) 

with ( )f s  known accurately and vK ×∈ 3 3R  is the diagonal gain matrix. The outer loop 

f eK ζ  is a proportional loop with fK ∈ 3R  being the gain matrix for the force controller 

loop and e z dζ ζ ζ= −  represents the deflection error between the actual to a desired 

value in deflection. In the absence of disturbances and model uncertainties, applying (5.6) 

in (5.5) could yield an asymptotically stable filtered tracking error system. However, the 

dynamic model for the manipulation of a nanoparticle is quite nonlinear and unknown. 

For example, Hamaker constant, the thickness of the water layer, the surface roughness 
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and so on are typically unknown. In other words, ( )f s  in (5.6) is not known beforehand. 

Consequently, a novel learning controller scheme is necessary for this task. 

In this paper, a one-layer neural network (NN) is implemented to approximate the 

unknown system dynamics, or ( )f s . Further, by using Lyapunov-based stability 

analysis, appropriate NN weight updating scheme can be derived to guarantee the 

stability of the closed-loop system. 

Select the control input as 

2ˆ ( ) ( ) v f ef s g s K r Kτ ζ−= + Ω − +              (5.7) 

the closed-loop filtered tracking error dynamics (5.6) become 

2 ˆ ( ) ( )

( )
v f e

v f e

r f s f s K r K d

f s K r K d

ζ

ζ

−Ω = − − + −

= − − + −

&

%
           (5.8) 

where ˆ ( )f s ∈ 3R  is the approximated value of ( )f s ∈ 3R , and ˆ( ) ( ) ( )f s f s f s= − ∈% 3R  

is the approximation error. From (5.8), it is clear that the closed-loop filtered tracking 

error system is driven by the functional approximation error. The stability of the system 

should be shown in the presence of this error. 

According to [12], a single layer NN can be used to approximate any nonlinear 

continuous function over the compact set when the input layer weights are selected at 

random and held constant whereas the output layer weights are only tuned provided 

sufficiently large number of nodes in the hidden-layer is chosen. Therefore, a single-layer 

NN is used here. Assume that there exist target weights 3W ×∈ nR  such that the nonlinear 

dynamics can be written as 

( ) ( )T Tf s W V sφ ε= +              (5.9) 
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where nV ×∈ 3R  is the input layer weight which will not be tuned, n  is the number of the 

hidden layer nodes, and ( )φ ⋅  is the activation function vector. Let the approximation error 

ε ∈ 3R  satisfies Nε ε≤  with the bound Nε  known. For simplicity, the output of the NN 

is expressed as ( ) ( )Tf s W sφ ε= + , and the NN output is defined by 

ˆ ˆ( ) ( )Tf s W sφ=                 (5.10) 

where 3Ŵ ×∈ nR  is a matrix of actual weights. Then the next step is to determine the 

weight updates so that the performance of the closed-loop filtered tracking error 

dynamics of the manipulation system is guaranteed. 

Let W  be a matrix of unknown target weights required for the approximation and 

assume they are bounded by known values such that 

maxW W≤                                 (5.11) 

The error in weights during estimation is defined as 

ˆW W W= −%                          (5.12) 

Therefore, the control input is selected as 

2ˆ ( ) ( )T
v f eW s g s K r Kτ φ ζ−= + Ω − +          (5.13) 

Substituting (5.9), (5.10), (5.13) into (5.8) yields 

2 ˆ ( ) ( )

( )

T T
v f e

T
v f e

r W s W s K r K

W s d K r K

φ φ ε ζ

φ ε ζ

−Ω = − − − +

= − − − − +

&

%
          (5.14) 

The structure of the proposed NN controller is depicted as Fig. 5. An inner action-

generating NN loop eliminates the nonlinear dynamics of the manipulation process and 

contact dynamics. The outer PD tracking loop designed via Lyapunov analysis guarantees 

the stability of the closed-loop system in tracking a desired trajectory for pushing the 
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nano particle. The proportional force controller loop ensures that the cantilever will apply 

a desired force on the particle and will not lose contact with it. The embedded drift 

compensation scheme will ensure as if drift does not exist. 

The next step will be to determine an appropriate weight updating algorithm for 

the NN so that the closed-loop stability of the grasping controller can be demonstrated. 
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Fig 5. NN Controller Architecture 

 

Theorem: Assume that the desired trajectory for the stage, the unknown disturbances, 

and the approximation errors are bounded, respectively, by the known constants 

, ,N N Ns d ε . Select the NN weight tuning update as 

ˆ ( ) TW F s rφ= −&            (5.15) 

where n nF ×∈R  is a diagonal constant learning rate matrix with positive entries. Then the 

tracking error ( )r t  and the weight estimation errors W%  are UUB.  Further, the force error 

is also UUB. 
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Proof: First, not taking into consideration the force control loop, the closed-loop system 

is expressed as 

2 ( )T
vr W s d K rφ ε−Ω = − − − −%&                    (5.16) 

Select the Lyapunov function candidate V ∈R  as 

{ }2 11 1
2 2

TV r r tr WF W− −= Ω + % %                                     (5.17) 

and we evaluate the first derivative of V  along the system trajectories to get 

{ }2 1TV r r tr WF W− −= Ω + && % %&                                (5.18) 

Substituting (5.12), (5.15), and (5.16) into (5.18) yields 

{ }1

2
min

( ( ) ) ( )

( )

( )

T T T
v

T T
v

v N N

V r W s d K r tr WF F s r

r K r r d

K r d r

φ ε φ

ε

ε

−= − − − − +

= − − +

≤ − + +

& % %

       (5.19) 

with minvK  the minimum singular value of vK . Since Nε  is constant, 0V ≤&  as long as 

min( )N N vr d Kε> +                            (5.20) 

In other words, V&  is negative outside a compact set. According to a standard 

Lyapunov theorem [13], it can be concluded that the tracking error ( )r t  and the NN 

weights estimates error W%  are UUB. Furthermore, the tracking error bound can be made 

as small as desired by increasing the smallest eigenvalue minvK . 

To show the bound on the force tracking error or the deflection tracking error eζ , 

we use an approach that can be compared to Barbalat’s extension [13]. Thus, note first 

that in part of the proof we have shown that all quantities on the right-hand side of (5.16) 
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are bounded. Therefore, from the invertibility of Ω , it follows that r&  is bounded. Hence, 

the tracking error dynamics are expressed as 

2 ( )T
v f er W s K r Kφ ε ζ−Ω = − − − +%&           (5.21) 

or 

2 ( )

( , , , , )

T
f e vK r W s K r

B r r s W

ζ φ ε

ε

−= Ω + + +

≡

%&

%&
          (5.22) 

where all quantities at the right-hand side are bounded. Therefore, we obtain 

1 ( , , , , )e fK B r r s Wζ ε−= %&            (5.23)  

which shows that the force tracking error eζ  is bounded. Moreover, it can be found that 

the force tracking error bound can be made as small as desired by increasing the force 

tracking error gain fK . 

VI. DRIFT COMPENSATION 

The previous section describes the surface roughness effects and dynamic model 

development for pushing operation. In order to accommodate the effects of drift, the 

system dynamics will be given by 

2 1 1 ( )r r rs Q s f s d τ− − −Ω +Ω + + =&& &            (6.1) 

where r cs s s= +  is the real position of the particle on the stage coordinates, and 

[ ]Tc c c cs x y z=  is the drift value at the current time instant. The amount of drift in the 

x-y plane, ,  c cx y , can be estimated satisfactorily by using our drift compensator scheme 

from [14], while cz  is negligible. Fortunately, ( )rf s  is just the function of rz , thus the 

compensator results can be easily combined into the controller by adjusting the desired 

system trajectories as [ ]Td d c d c ds x x y y z= + + . In other words, the relative position 
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of the particle with respect to the stage can be obtained and thus be controlled to track the 

desired trajectory. 

VII. SIMULATION RESULTS 

In this section, the NN controller is simulated and the control objective is to guide 

the stage movement to follow a desired trajectory with desired force applied on the 

cantilever. 

As shown in Fig. 4, the task is to push the particle from point A to B with a 

constant speed. Thus, the desired trajectory of the stage along x and y axes will be ramps 

with slope as the desired speed. In our simulation, 30pR nm= , 30γ = o , and the desired 

speed 1000 /v nm s= . Moreover, the desired reflection 12.77z nmζ = , which is selected 

by experiments [1]. To test the robust of our method under the roughness effects, the 

substrate surface is set as a sinusoid function with the amplitude of 1nm. 

First, assume that the drift does not exist. Simulation results are shown in Figs 6 

through 8 by using PD and NN controllers for comparison purposes. The dashed lines are 

denoted as the desired trajectories and the solid ones are actual system outputs. 

Simulation results depicted in Fig. 8 demonstrate that the NN controller can approximate 

the unknown system dynamics and the tracking errors converge in less than 0.4seconds 

even with the presence of the roughness effect. Further, because of the outer force control 

loop, the force applied on the cantilever also converges to the desired value quickly and is 

not disturbed much by the surface roughness effects of the sample. By contrast, although 

the traditional PD controller can obtain a satisfactory performance without surface 

roughness, it fails to achieve acceptable results as shown in Fig. 7 due to the unexpected 

surface roughness effect. In all these results, it is assumed that drift does not exist. 



 

 

90

To demonstrate the importance of the proposed drift, the NN controller 

performance is depicted in Fig. 9 without the drift compensation. Here drift is assumed to 

be constant at 0.1nm/s. From the result, the performance of the NN controller is greatly 

deteriorated. The position of the particle is moving away. If this continues with time, the 

tip will lose contact with the particle unless a suitable compensation is added. 

 

Fig 6. Performance of the PD Controller without Surface Roughness Effects 

 

Fig 7. Performance of the PD Controller in the Presence of Surface Roughness Effects of 

the Substrate 
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Fig 8. Performance of the Proposed NN Controller with Surface Roughness Effects 

 

Fig 9. Performance of the Proposed NN Controller without Drift Compensator 

 

VIII. CONCLUSIONS 

The task of manipulating nano objects is complex and requires a sophisticated 

controller to compensate for the nonlinear cantilever and contact dynamics. In this paper, 

a novel controller scheme was presented for guiding the stage so that the position of the 

nano particle follows a predefined trajectory. The controller includes an embedded drift 

compensator, a NN to approximate the unknown dynamics, and an additional force 

feedback loop. The tuning of the NN weights was performed online and the controller 

offers guaranteed tracking performance under the influence of the surface roughness 
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effect. The pushing task was accomplished when the tip makes contact with the object 

and the stage is driven to a desired position when a suitable force is applied. The 

simulation result demonstrates that the proposed controller was able to perform the 

pushing task successfully in terms of tracking and force errors. 
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ABSTRACT 

Nanomanipulation implies manipulating objects in nanometer size with 

nanometer precision. Typically, it takes operators several hours to perform a simple task 

which is the major hurdle for manufacturing these devices. Automating the task of 

nanomanipulation is the prerequisite for the manufacturing of nano devices in the future. 

To accomplish the task automatically and quickly, the proposed novel scheme consists of 

a block-based phase correlation scheme to mitigate thermal drift, and a novel 

reinforcement learning neural network (NN)-based controller, referred to adaptive critic 

controller for nanomanipulation. In the online NN reinforcement learning controller 

design, one NN is designated as the critic NN, which approximates the long-term cost 

function. Meanwhile, an action NN is employed to derive an optimal control signal to 

track a desired system trajectory for the stage while minimizing the cost function. Online 

updating weight tuning schemes for these two NNs are also derived. Furthermore, by 

using the standard Lyapunov approach, the uniformly ultimate boundedness (UUB) of the 
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tracking error and weight estimates is shown. The proposed scheme is evaluated and 

verified in the simulation environment. 

Keywords 

Nanomanipulation, neural networks, drift compensation, phase correlation method, 

adaptive critic design, online learning, Lyapunov method 

I. INTRODUCTION 

Nanomanipulation (Sitti, 2001) aims at manipulating and handling nanometer size 

objects and structures with nanometer precision. It is also a first and critical step for 

achieving any complex functional nano devices. In the past decade, applications of 

nanoscale research can be found in several fields such as biotechnologies (Lu, 2004), data 

storage (Requicha, 1999) and prototyping devices (Fukuda and Arai, 2000). However, 

typically, assembly of small nano structures built by nanomanipulation today consist of 

ten to twenty particles, and may take an experienced user an entire day to construct using 

Scanning Probe Microscope (SPM) as the manipulator under tightly controlled 

conditions. To efficiently accomplish such tasks or even more complex ones, the 

manipulation process should be automated in order to minimize human intervention. 

First of all, it is highly desirable to manipulate the nano objects in ambient 

conditions, which will lower the cost and complexity greatly for industrial 

manufacturing. However, in ambient conditions, nanomanipulation encounters multiple 

external disturbances, which are nonlinear and can result in major problems. Among 

these uncertainties, thermal drift is the most important one. Research presented in (Yang, 

Jagannathan, & Bohannan, 2005) provides a satisfactory real-time drift compensation 
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algorithm, based on which, controllers can be designed without considering the influence 

of the thermal drift. 

On the other hand, a number of methods have been introduced for the optimal 

control of nonlinear systems in the literature aiming at obtaining the best performance of 

the system. Of the available methods, dynamic programming (DP) has been extensively 

applied to generate optimal or suboptimal control for nonlinear dynamic systems 

(Bellman & Dreyfus, 1962; Rekasius, 1964; Leake & Liu, 1967; Kirk, 1970; Werbos, 

1977]. However, one of the major drawbacks for conventional DP is the computation cost 

with the increasing dimension of the nonlinear system, which is referred to as the “curse 

of dimensionality” (Kirk, 1970). Therefore, adaptive DP schemes (Luus, 2000; Murray, 

Cox, Lendaris, & Saeks, 2002) have been developed recently. Nevertheless, most of them 

are implemented either in an offline fashion using iterative schemes or require the 

dynamics of the nonlinear systems to be known a priori. Unfortunately, these 

requirements are often not practical for real-world applications, since the exact model of 

the nonlinear is usually not available. Additionally, stability of the closed-loop system 

using adaptive dynamic programming is not discussed. 

Reinforcement learning was originated from the research on animal behavior and 

its interactions with the environment. Differing from the traditional supervised learning in 

neural network (NN), there is no desired behavior or training examples employed within 

reinforcement learning schemes. The learner is not told which action to take, but instead 

must discover the action that yields the best reward for a given condition by interacting 

with the environment. Nevertheless, it is common to apply reinforcement learning for 

optimal controller design, since the cost function or the performance index can be directly 
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seen as a form of reinforcement signal. Of the available reinforcement learning schemes, 

the temporal difference (TD) learning method (Barto, Sutton, & Anderson, 1983; Sutton, 

1988; Watkins & Dayan, 1992; Sutton & Barto, 1998) has found many applications in the 

engineering area. The advantage of reinforcement learning in general is that the 

knowledge of the system dynamics is not required even though an iterative approach is 

typically utilized. To obtain a satisfactory reinforcement signal for each action and 

system state pair, the approach must visit each system state and apply action often 

enough (Boone, 1997), which in turn requires the system to be time-invariant, or 

stationary in the case of stochastic system. 

To overcome the iterative offline methodology for real-time applications, several 

appealing online neural controller design methods were introduced in (Si, Barto, Powell, 

& Wunsch, 2004; Prokhorov & Wunsch 1997; Miller, Sutton, & Werbos, 1990; Werbos, 

1977; Werbos, 1987). They are also referred to as forward dynamic programming (FDP) 

or adaptive critic designs (ACD). The central theme of this approach is that the optimal 

control law and cost function are approximated by parametric structures, such as neural 

networks (NNs), polynomials or splines (Tsitsiklis & Van Roy, 1997), which are trained 

over time along with the feedback information. In other words, in ACD methods, instead 

of finding the exact minimum, a parametric structure is employed to approximate the 

Bellman equation defined as  

( )
{ }( ( )) min ( ( 1)) ( ( ), ( 1))

u k
J x k J x k U x k x k= + + +  

where ( )x k  is the state and ( )u k  is the control at time step k. The strategic utility 

function or cost function ( ( ))J x k  represents the minimum cost or performance measure 

associated with going from k to final step N, ( ( ), ( 1))U x k x k +  is the utility function 
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denoting the cost incurred in going from k to k+1 step using control ( )u k , and ( 1)J k +  

is the minimum cost or performance measure associated in going from state k+1 to the 

final step N. In the ACD literature, NNs are widely used for approximation.  

In (Si & Wang, 2001), a new NN learning algorithm based on gradient descent 

rule is introduced. However, no proof of the convergence or stability of the system was 

given. By contrast, Lyapunov analysis was derived in (He & Jagannathan 2005) and 

(Kim & Lewis 2000). However, the approach presented in (Kim & Lewis 2000) is 

specifically designed for robotic systems whose dynamics are introduced in continuous-

time. On the other hand, (Si & Wang 2001) and (He & Jagannathan 2005) only employ a 

simplified binary reward or cost function which is a simplified variant of the standard 

Bellman equation. To the best of our knowledge, there is no published work presenting 

the convergence of the closed-loop system with standard Bellman equation. 

In this paper, we are considering NNs as the parametric structure to approximate 

optimal control law and cost function for nonlinear discrete systems with quadratic-

performance index as the cost function. The entire system consists of two NNs: an action 

NN to derive the optimal (or near optimal) control signal to track not only the desired 

system output but also to minimize the long-term cost function; an adaptive critic NN to 

approximate the long-term cost function ( ( ))J x k  and to tune the action NN weights. 

Before practically applying the control design on nanomanipulation system, a 

satisfactory model is required to verify these methods using simulation. A significant 

amount of work on modeling interactive forces with surface roughness effect during 

manipulation was introduced in (Yang & Jagannathan, 2006; Sitti & Hashimoto, 2000). 

Based on that model, real-time controllers can be designed to automate the 
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nanomanipulation process. However, due to extremely complex and dynamic 

environmental conditions during nanomanipulation tasks, it will be extremely hard to 

implement any iteration based optimal controllers. As a matter of fact, for every single 

manipulation attempt, the environmental conditions or the system dynamics are different 

from another trial making the supervised learning not an option. Consequently, in this 

paper, the online learning controller design is proposed on nanomanipulation system and 

simulation results show its effectiveness. 

The paper is organized as follows. In Section II, we first introduce the background 

of adaptive critic designs and assumptions of the system. Principles of nanomanipulation 

system are also included in Section 2. In Section 3, drift compensator algorithm is briefly 

introduced. Section 4 presents the detailed controller design methodology with learning 

algorithm for the action and critic NNs. Theoretic results are proposed in Section 5 and 

simulation results on Atomic Force Microscope (AFM) based nanomanipulation system 

are demonstrated in Section 6. 

II. BACKGROUND 

A. Optimal Control 

In this paper, we consider the following stabilizable nonlinear affine system, 

given in the form 

( )
( )( ) ( )( ) ( ) ( )

01 ( ( ), ( ))x k f x k u k

f x k g x k u k d k

+ =

= + +
                          (1) 

with the state 1 2( ) [ ( ), ( ), , ( )]T n
nx k x k x k x k R= ⋅ ⋅⋅ ∈  at time instant k. ( ( )) nf x k R∈  is a 

unknown nonlinear function vector, and ( ( )) n ng x k R ×∈  is a matrix of unknown nonlinear 

functions, ( ) nu k R∈  is the control input vector and ( ) nd k R∈  is the unknown but 
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bounded disturbance vector, whose bound is assumed to be a known constant, 

( ) md k d≤ . Here  stands for the Frobenius norm (Lewis, 1999), which will be used 

through out this paper. It is also assumed that the state vector ( )x k  is available at the kth 

step. 

Assumption 1: Let the diagonal matrix ( ( )) n ng x k R ×∈  be a positive definite matrix for 

each ( ) nx k R∈ , with ming R+∈  and maxg R+∈  represent the minimum and maximum 

eigenvalues of the matrix ( ( ))g x k , respectively, such that min max0 g g< ≤ . 

Further, the long-term cost function is defined as 

0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑
                    (2) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, and u  is a control policy. ( )r k  is the 

immediate cost function or Lagrangian and (0 1)γ γ≤ ≤  is the discount factor for the 

infinite-horizon problem. As observed from (2), the long-term cost function is the 

discounted sum of the immediate cost, which is defined as 

( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

T

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

= +

= − − +
            (3) 

where R and Q are positive definite matrices. In this paper, we are using a widely used 

standard quadratic cost function defined based on the control effort and the tracking error 

( )e k , which will be defined later in contrast with (Si & Wang, 2001; He & Jagannathan, 

2005). The immediate cost function ( )r k  can be viewed as the cost associated with the 

current step. 
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The basic idea in adaptive critic or reinforcement learning design is to 

approximate the long-term cost function ( )J k  (or its derivative, or both), and generate 

the control signal minimizing the cost. By using learning, the online approximator will 

converge to the optimal cost function and the controller will converge to the optimal 

controller correspondingly. As a matter of fact, for a state feedback optimal control law, 

which can be expressed as *( ) *( ( ))u k u x k= , the optimal long-term cost function can be 

written alternatively as * ( ) *( ( ), * ( ( ))) * ( ( ))J k J x k u x k J x k= = , which is just a function 

of the current state (Bertsekas, 2000). Next, one can state the following assumption. 

Assumption 2: The optimal cost function *( )J k  is finite and bounded over the compact 

set nS R⊂  by mJ . 

This assumption is mild and therefore acceptable. By taking the system as 

stabilizable, the optimal controller is able to achieve a finite cost function, which is the 

lowest, compared with all other control laws.  

B. Nanomanipulation 

Nowadays, assemblies of small nano structures built by nanomanipulation are 

typically realized by using an Atomic Force Microscope (AFM) as the manipulator, 

which is a special type of SPM. Initially used as the imaging tool, now the AFM tip is 

utilized as robotic hand to precisely position nano objects and assemble them. However, 

due to the lack of understanding of nano physics and chemistry, intelligent automatic 

manipulation yet precise strategies have not been developed for specific applications 

(Sitti, & Hashimoto, 2000). Thus, the purpose of this paper is to introduce a pushing 

mechanism for nano particles in the order of 10 nm. 
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The simplified geometrical relationship between AFM tip, nano sphere and 

substrate (stage) is shown in Fig. 1. Briefly, the objective of nanomanipulation is to drive 

the AFM tip to mechanically push nano particles along a desired track. An alternative 

way is to drive the stage instead of the tip to accomplish the pushing task. In our 

experiments, the latter approach is selected. 

ß

d
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Fps
Ftp

ftp

fps

Fz
c

y

z

 

Fig 1. Geometry and the Interacting Forces between AFM Tip, Nano Particle and Stage 

during Pushing Process 

 

Before designing any control scheme, the model analysis is undertaken involving 

the adhesion forces between AFM tip, substrate and nano particle to be pushed. In the 

nano world, gravitational forces are relatively very small and, therefore, are neglected. 

The main components of the adhesion forces are van der Waals, capillary, and 

electrostatic forces (Sitti & Hashimoto, 2000). 

After taking all those adhesion forces and friction forces into consideration along 

with the surface roughness effect, a satisfactory model is built in (Yang & Jagannathan, 

2006), which will be also adopted in this paper. Since we are driving the stage instead of 

the tip to accomplish the task, the equation governing the system is (Hicks & Atherton, 

1997) 
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2
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1 1 cos ( , )

1 1 sin ( , )

1 1 ( , )
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x x x
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z z z

x x x f z z
w w Q

y y y f z z
w w Q

z z z F z z A
w w Q

θ τ

θ τ

τ

+ + + =

+ + + =

+ + + = +

&& &

&& &

&& &

                        (4) 

where ( ,  ,  )s s sx y z  is the position of the stage on x, y, and z axis, respectively. 

( ,  ,  )x y zw w w  is the resonant frequency and ( ,  ,  )x y zQ Q Q  is the amplification factor for 

the stage. ( ,  ,  )x y zτ τ τ  is the stage driving force which is seen as the control input signal. 

The term θ  is the angle between y axis and the pushing direction, and subz  is the 

substrate surface height displacement, or the roughness of the surface, which is simulated 

to be a sinusoid function in this paper for simplification. Now psf  is the friction force and 

psF  is the attractive/repulsive interaction force between the particle and substrate, which 

is a complex function of the pushing environment. For more details, please refer to (Yang 

& Jagannathan, 2006) and (Sitti & Hashimoto, 2000). Equation (4) indicates that the 

manipulation system can be viewed as an affine nonlinear system of second order.  

To fulfill Assumption 1, we define the tracking error of nanomanipulation system 

as 

s d

s s d

s d

x x
e y y

z z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                  (5) 

where ( ,  ,  )d d dx y z  is the desired movement of the stage. Based on that, filtered tracking 

error can be defined as s ss e e= + Λ& , with Λ  a positive definite design parameter matrix. 
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Common usage is to select Λ  diagonal with large positive entries. Therefore, the system 

dynamics can be rewritten in term of the filtered tracking error as follows 

2 2

2 2

cos

sin

s s

s d s d

s d s d

s d s d

x
s x s d d x ps

x

y
s y s d d y ps

y

z

z

s e e
x x x x
y y y y
z z z z

w x w x x x w f
Q

w
y w y y y w f

Q

w
Q

θ

θ

= + Λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + Λ − Λ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎛ ⎞
Λ − − − − Λ −⎜ ⎟
⎝ ⎠
⎛ ⎞

= Λ − − − − Λ −⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞
Λ −⎜ ⎟
⎝ ⎠

& && &

&& && & &

&& && & &

&& && & &
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2

2

2

2 2

0 0
0 0
0 0
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( )

x x

y y

z z

s z s d d z ps ps

s

w
w

w

z w z z z w F A

f s w

τ
τ
τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎡ ⎤⎢ ⎥
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⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎢ ⎥
− − − Λ − −⎢ ⎥

⎣ ⎦
= + ⋅

&& &

         (6) 

As long as the controller guarantees that the filtered tracking error s  is bounded, the 

tracking error se  is bounded. In order to apply our nonlinear discrete-time controller, the 

system dynamics (6) need to be discretized by using the standard zero-order-hold 

techniques to obtain an affine nonlinear discrete-time system (Borgers & Sarin, 1997) 

which is given by 

( )( 1) ( ( ), ( 1),...) ( )ss k T F s k s k w s kτ+ = − + ⋅ +                         (7) 

where T is the sampling time and Fs is the corresponding nonlinear function of sf  in 

discrete form. By rearranging (7), one can get an affine nonlinear discrete-time system 

(1), with the filtered tracking error as the new system state. 

III. DRIFT COMPENSATION IMPLEMENTATION 

Due to thermal changes and the dynamic environment, under ambient conditions, 

thermal drift, usually appears in successive SPM scans of a sample even when the 

scanning parameters are not altered. In the x-y plane, drift can be observed as a 
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translation between different images, which depends on thermal changes and other 

unclear factors. From the height information of the sample, drift can be noticed even in 

the z direction. The drift velocities on the x-y plane are reported to vary from 0.01~0.1 

nm/s (Mokaberi & Requicha, 2004). So the drift between two images taken at 256 sec 

interval can be as much as 25.6 nm, which is comparable to the diameter of the particles 

that are normally manipulated. In our experiments, drift in the z-direction is about 

0.005nm/s (Yang, & Jagannathan, 2005), which is considered negligible. As a result, due 

to unexpected thermal drift, the nano-manipulation task can fail unless it is compensated. 

Our first goal is to develop a drift compensation scheme to estimate and in turn 

compensate the drift along the x and y directions so that nanomanipulation can be 

performed as if drift does not exist. Fortunately, experiments show that the drift in x and y 

directions can be seen as a translational movement, not rotation (Mokaberi & Requicha, 

2004). In addition, there is negligible correlation between the two directions. Therefore, 

the compensator can be designed for x and y directions separately. The block diagram of 

the proposed compensation system is depicted in Fig. 2. For simplicity, only the drift in 

the x direction is shown (Yang & Jagannathan, 2005). Due to the working principles of 

AFM, the sample topographic information is not available during the pushing procedure. 

So the overall solution is stated as follows: 1) the sample is scanned at a constant 

frequency; 2) at each iteration, after obtaining the scanning data, the drift value, ( )cx t  

and ( )cy t , is estimated and predicted; 3) during the subsequent time interval before the 

next scanning, the pushing task can be performed by using a control scheme that 

compensates the drift. 
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Fig 2.  Block Diagram of the Whole Pushing Mechanism with Drift Compensator 

 

In the proposed scheme, the drift is measured by using a block phase correlation 

algorithm at each sampling time. Based on current and previous data, drift for the 

subsequent sampling instant can be predicted. Further, signal reconstruction technique is 

applied to obtain a drift function in continuous time, which is directly applicable to 

controller design. For more details, refer to (Yang and Jagannathan, 2005). Consequently, 

the controller can be designed as if the drift does not exist. 

Define the states as [ ]T
s s s s s ss x y z x y z= & & & . In order to accommodate the 

effects of drift, the system states will change to r cs s s= +  where rs  is the actual position 

of the particle on the stage coordinates, and [ ]T
c c c c c c cs x y z x y z= & & &  is the drift 

value at the current time instant. The amount of drift in the x-y plane, ,  c cx y , can be 

estimated satisfactorily by using our drift compensator scheme from (Yang and 

Jagannathan, 2005), while cz  is negligible. Therefore, the compensator development can 

be easily combined into the controller by adjusting the desired system trajectories as 

[ ]T
d d c d c d d c d c ds x x y y z x x y y z= + + + +& & & & & . In other words, the relative position 

of the particle with respect to the stage can be calculated and thus be controlled to track 
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the desired trajectory. Next, we will propose our intelligent control algorithms regardless 

of the drift. 

IV. ONLINE REINFORCEMENT LEARNING CONTROLLER DESIGN 

For the purpose of this paper, our objective is to design an online reinforcement 

learning NN controller for the system such that, 1) all the signals in the closed-loop 

system remain UUB; 2) the state ( )x k  follows a desired trajectory ( ) n
dx k R∈ ; and 3) the 

long-term cost function (2) is minimized so that a near optimal control input can be 

generated. Here, the “online” means the learning of the controller takes place “in real-

time” by interacting with the plant, instead of in an offline manner. 

The block diagram of the proposed controller is shown in Fig. 3, where the action 

NN is designed to provide an optimal/near-optimal control signal to the plant while the 

critic NN approximates the long-term cost function. The learning of the two NNs is 

performed online without any offline learning phase. The learning algorithms are 

provided later. 

( )Ĵ k

1z− ( )ˆ 1J k −

 

Fig 3. Online Neural Dynamic Programming Based Controller Structure 

 

In our controller architecture, we consider the action and the critic NN having two 

layers, as shown in Fig. 4. The output of the NN can be given by ( )T TY W V Xφ= , where 
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V  and W  are the hidden layer and output layer weights, respectively. The number of 

nodes in input, hidden and output layer is denoted as 1N , 2N  and 3N , respectively. 

 

Fig 4. Two Layer Neural Network Structure 

 

One of the interesting features of NN is that they have the property to act as 

universal function approximators. In other words, a general function 3( ) ( )Nf x C S∈  can 

be written as 

( ) ( ) ( )T Tf x W V x xφ ε= +                                       (8) 

with ( )xε  a NN functional reconstruction error vector. In our design, V  is selected 

initially at random and held fixed during entire learning process. It is demonstrated in 

(Igelnik and Pao 1995) that if the hidden layer weights, V , are chosen initially at random 

and kept constant and if  2N  is sufficiently large, the NN approximation error ( )xε  can 

be made arbitrarily small since the activation function vector forms a basis. 

Furthermore, in this paper, a novel tuning algorithm is proposed to make the NN 

weights robust so that the Persistency of Excitation (PE) condition is not needed, which 

will be discussed in the later subsection. Next we present the controller design. Before we 

proceed, the following mild assumption is needed. 
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Assumption 3: The desired trajectory of the system states, ( )dx k , is a smooth bounded 

function of time k over the compact subset of nR . For our nanomanipulation system, the 

desired value is zero, which means we want the filtered tracking error to be zero. 

A. The Action NN Design 

Considering the general system (1), the tracking error at instant k is defined as 

( ) ( ) ( )de k x k x k= −                                                                      (9) 

Then future value of the tracking error using system dynamics from (1) can be rewritten 

as 

( 1) ( ( )) ( ( )) ( ) ( ) ( 1)de k f x k g x k u k d k x k+ = + + − +                 (10) 

To eliminate the tracking error, a desired control signal is given by 

1
1( ) ( ( ))( ( ( ) ( 1) ( ))d du k g x k f x k x k l e k−= − + + +                  (11) 

where 1
n nl R ×∈  is a design matrix selected such that the tracking error, ( )e k , is 

converging to zero. 

Since both ( ( ))f x k  and ( ( ))g x k  are unknown smooth nonlinear functions, the 

desired feedback control ( )du k  cannot be implemented directly. Instead, in this paper, an 

action NN is employed to generate the control signal. From (11) and considering 

Assumptions 1 and 2, the desired control signal can be approximated as 

( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
d a a a a a a au k w v s k s k w s k s kφ ε φ ε= + = +          (12) 

where 2( ) ( ), ( )
TT T ns k x k e k R⎡ ⎤= ∈⎣ ⎦  is the action NN input vector. As stated above, the 

action NN consists of two layers, and an n
aw R ×∈  and 2 an n

av R ×∈  denote the desired 

weights of the output and hidden layer, respectively, with ( ( ))a s kε  is the action NN 
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approximation error, and an  is the number of the neurons in the hidden layer. Since av  is 

fixed, for simplicity purpose, the hidden layer activation function vector 2( ( )) nT
a av s k Rφ ∈  

is denoted as ( ( ))a s kφ . 

Considering the fact that the desired weights of the action NN are unknown, the 

actual NN weights have to be trained online and its actual output at time k can be 

expressed as 

ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
a a a a au k w k v s k w k s kφ φ= =                         (13) 

where ˆ ( ) an n
aw k R ×∈  is the actual weight matrix of the output layer at instant k. 

Using the action NN output as the control signal, and substituting (12) and (13) 

into (10) yields 

 
( )
( )

1

1

1

( 1) ( ( )) ( ( )) ( ) ( ) ( 1)
( ) ( ( )) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( ) ( )

d

d

T
a a a

a a

e k f x k g x k v k d k x k
l e k g x k v k v k d k

l e k g x k w k s k s k d k

l e k g x k k d k

φ ε

ζ

+ = + + − +

= + − +

= + − +

= + +

%
        (14) 

where 

ˆ( ) ( )a a aw k w k w= −%                                          (15) 

( ) ( ) ( ( ))T
a a ak w k s kζ φ= %                                    (16) 

( ) ( ( )) ( ( )) ( )a ad k g x k s k d kε= − +                        (17) 

Thus, the closed-loop tracking error dynamics is expressed as 

1( 1) ( ) ( ( )) ( ) ( )a ae k l e k g x k k d kζ+ = + +                  (18) 

Next the critic NN design follows. 
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B. The Critic NN Design 

As stated above, a near optimal controller should be able to stabilize the closed-

loop system by minimizing the cost function. In this paper, a critic NN is employed to 

approximate the long-term cost function ( )J k . Since the actual ( )J k  is unavailable for 

us at the kth time instant in an online learning framework, the critic NN is tuned online in 

order to converge to the actual ( )J k . 

First, the prediction error generated by the critic or the Bellman error (Si and 

Wang, 2001) is defined as  

ˆ ˆ( ) ( ) [ ( 1) ( )]ce k J k J k r kγ= − − −                        (19) 

where the subscript “c” stands for the “critic” and  

ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
c c c c cJ k w k v x k w k x kφ φ= =                 (20) 

where ˆ( )J k R∈  is the critic NN output which is an approximation of ( )J k . In our 

design, the critic NN is also a two-layer NN, while 1ˆ ( ) cn
cw k R ×∈  and cn n

cv R ×∈  represent 

its actual weight matrix of the output and hidden layer, respectively. The term cn  denotes 

the number of the neurons in the hidden layer. As we claimed above, the cost function is 

function of the states for given control laws. Thus, similar to HDP, only the system states 

( ) nx k R∈  are selected as the critic NN input in this paper. The activation function vector 

of the hidden layer ( ( )) cnT
c cv x k Rφ ∈  is denoted as ( ( ))c x kφ  for simplicity. Provided that 

enough number of the neurons in the hidden layer, the optimal long-term cost function 

*( )J k  can be approximated by the critic NN with arbitrarily small approximation error 

( ( ))c x kε , 

*( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
c c c c c c cJ k w v x k x k w x k x kφ ε φ ε= + = +          (21) 
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Similarly, the critic NN weight estimation error can be defined as 

ˆ( ) ( )c c cw k w k w= −%                                          (22) 

while the approximation error is given by 

( ) ( ) ( ( ))T
c c ck w k x kζ φ= %                                     (23) 

Thus, we   

ˆ ˆ( ) ( ) ( 1) ( )
( ) *( ) ( 1) *( 1) ( ) ( ) ( 1)

c

c c c c

e k J k J k r k
k J k k J k r k k k

γ
γζ γ ζ ε ε

= − − +
= + − − − − + − + −

               (24) 

Next we discuss the weight tuning algorithms for both of critic and action NNs. 

C. Weight Updating for the Critic NN 

Following the discussion from the last section, the objective function to be 

minimized by the critic NN can be defined as a quadratic function of the Bellman error as 

( ) ( ) ( ) ( )21 1
2 2

T
c c c cE k e k e k e k= =                          (25) 

Using a standard gradient-based adaptation method, the weight updating algorithm for the 

critic NN is given by 

( ) ( ) ( )ˆ ˆ ˆ1c c cw k w k w k+ = + Δ                              (26) 

where 

( ) ( )
( )

ˆ
ˆ

c
c c

c

E k
w k

w k
α

⎡ ⎤∂
Δ = −⎢ ⎥∂⎣ ⎦

                                 (27) 

with c Rα +∈  is the adaptation gain, which is a positive constant. 

Combining (19), (20), (25) with (27), the critic NN weight updating rule can be 

obtained by using the chain rule as 
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( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )( ) ( )

ˆ
ˆ ˆˆ ˆ

c c c
c c c c c c

c c c

E k E k e k J k
w k x k e k

w k e k w kJ k
α α α γφ

∂ ∂ ∂ ∂
Δ = − = − = −

∂ ∂ ∂∂
       (28) 

Thus, the critic NN weight updating algorithm is obtained as 

ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ) ( 1))c c c cw k w k x k J k r k J kα γφ γ+ = − + − −          (29) 

D. Weight Updating for the Action NN 

The basis for adapting the action NN is to track the desired trajectory and to lower 

the cost function. Therefore, the error for the action NN can be formed by using the 

functional estimation error ( )a kζ , and the error between the nominal desired long-term 

cost function ( )dJ k R∈  and the critic signal ˆ( )J k . Now we define the cost function 

vector as 1ˆ ˆ ˆ( ) ( ) ( ) ... ( )
T nJ k J k J k J k R ×⎡ ⎤= ∈⎣ ⎦ . Let 

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )

( )( ) ( ) ( )( )( ) ( )

1

1

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +
           (30) 

where ( )a kζ  is defined in (16). Given Assumption 1, we define ( ( )) n ng x k R ×∈  as the 

principle square root of the diagonal positive definite matrix ( ( ))g x k , i.e., 

( ( )) ( ( )) ( ( ))g x k g x k g x k× = , and ( )( ( )) ( ( ))
T

g x k g x k=  (He and Jagannathan, 

2005). The desired long-term cost function ( )dJ k  is nominally defined and is considered 

to be zero (“0”), which means as low as possible. 

Hence, the weights of the action NN ˆ ( )aw k  are tuned to minimize the error  

( ) ( ) ( )1
2

T
a a aE k e k e k=                                       (31) 
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Combining (14), (16), (18), (30), (31) and using the chain rule yields 

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )1

ˆ
ˆ ˆ

( ( )) ( ( )) ( ) ( )

( ( )) ( 1) ( ) ( ) ( )

a a a a
a a a

a a a c

T
a a a

T
a a a

E k E k e k k
w k

w k e k k w k

s k g x k k J k

s k e k l e k d k J k

ζ
α α

ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

         (32) 

where a Rα +∈  is the positive adaptation gain of the action NN. However, ( )ad k  is 

typically unavailable for us, so as in the ideal case, we assume ( )d k  and the mean value 

of ( ( ))a s kε  over the compact subset of 2nR  to be zero and obtain the weight updating 

algorithm for the action NN as 

( ) ( ) ( )( ) ( ) ( ) ( )( )1ˆ ˆ1 1
T

a a a aw k w k s k e k l e k J kα φ+ = − + − +           (33) 

V. MAIN THEORETIC RESULT 

Assumption 4: Let aw  and cw  be the unknown output layer target weights for the action 

and critic NNs, respectively, and assume that they are upper bounded such that 

a amw w≤ , and c cmw w≤                                 (34) 

where amw R+∈  and cmw R+∈  represent the bounds on the unknown target weights. 

Fact 1: The activation functions for the action and critic NNs are bounded by known 

positive values, such that  

( ) ( ),  a am c cmk kφ φ φ φ≤ ≤                                      (35) 

where ,am cm Rφ φ +∈  is the upper bound for the activation functions. In this paper, a 

hyperbolic tangent sigmoid function is employed as the transfer function, which satisfies 

( ) ,  ( )a a c ck n k nφ φ≤ ≤ . 
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Assumption 5: The NN approximation errors ( ( ))a s kε  and ( ( ))c x kε  are bounded above 

over the compact set nS R⊂  by amε  and cmε . 

Assumption 5 is a mild assumption since it always holds for continuous functions 

(Lewis, Yesildirek, & Liu, 1996; Jagannathan, 2006). 

Fact 2: With the Assumption 1, 4, the term ( )ad k  in (17) is bounded over the compact 

set nS R⊂  by 

max( )a am am md k d g dε≤ = +                         (36) 

Combining Assumption 1, 3, and 4 and Facts 1, and 2, the main result of this paper is 

introduced in the following theorem. 

 

Theorem 1: Consider the system given by (1). Let the Assumptions 1 through 4 hold 

with the disturbance bound md  a known constant. Let the control input be provided by 

the action NN (13), with the critic NN (20). Further, let the weights of the action NN and 

the critic NN be tuned by (29) and (33), respectively. Then the tracking error ( )e k , and 

the NN weight estimates of the action and critic NNs, ˆ ( )aw k  and ˆ ( )cw k  are UUB, with 

the bounds specifically given by (A.9) through (A.11) in Appendix A, provided the 

controller design parameters are selected as 

(a) 2 2
min max0 ( )a a k g gα φ< <                                   (37) 

(b) 20 ( ( )) 1c c x kα φ< <                                                          (38) 

(c) max0 3 3l< <                                                                      (39) 

(d) 1 2γ >                                                                          (40) 
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where aα  and cα  are NN adaptation gains, and α  is employed to define the strategic 

utility function. 

Proof: See Appendix A. 

VI. SIMULATION RESULTS 

To demonstrate the feasibility of the theoretic results, the on-line learning 

controller design is implemented on a nanomanipulation system by simulation. In the 

implementation, the system dynamics are discretized as an affine nonlinear discrete-time 

system with standard zero-order-hold discretization techniques explained in (Lewis, 

1992). The parameters used in this simulation are set as follows:  

Table 1 Parameters Used in Simulation for Nanomanipulation 

Parameter xw  yw  zw  

Value 1570 rad/s 1570 rad/s 117.6 rad/s 

Parameter , ,x y zQ Q Q  θ  R  

Value 20 30o
 0.1 

Parameter F  γ  Λ  

Value 0.1 0.5 100 

Parameter aα  cα  1l  

Value 1×10-8 1×10-8 0.1 

Parameter an  cn  md  

Value 20 20 1.0×10-10 

 

The simulation is run with time step of 1×10-5 s. The radius of the pushed nano 

particle is 15nm. The objective or the desired trajectory is to realize the movement of the 

particle along the sample surface with a constant speed, which is set to be v = 1000 nm/s. 
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The direction of desired trajectory is at an angle of 30˚ with respect to y axis and 60˚ with 

respect to x axis. A proper force on the nano particle will indicate that the particle is 

being pushed by the tip, which could be observed by the stability of the stage on z axis. In 

this paper, the surface roughness is modeled by a 2-dimensional sinusoid function with 

form as sin(0.1* 0.1* )sub sub subz x y= +  (unit: nm), where ( , )sub subx y  is the position on 

substrate coordinates.  

Our online learning controller is first applied on the system, with the results 

shown as in Fig. 5. The reason why s subz z−  is shown in Fig. 5 instead of sz  is to 

eliminate the effect of surface roughness and make it more convenient to verify the 

stability of the stage along z axis. 

0 0.002 0.004 0.006 0.008 0.01
-5

0

5

xs
 (

nm
)

0 0.002 0.004 0.006 0.008 0.01
-5

0

5

10

ys
 (

nm
)

0 0.002 0.004 0.006 0.008 0.01
-0.4

-0.2

0

zs
 -

 z
su

b 
(n

m
)

t (s)  

Fig 5. Simulation Results of the Online Learning Controller on Nanomanipulation 

System. Solid line: Trajectories of the Actual Movement of the Stage; Dashed Line: 

Desired Movement of the Stage. Note: There is no Desired Trajectory in the z Axis. 
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To compare the performance, the system is also simulated with a traditional NN 

controller, which is the discretized version of the one constructed in (Yang, & 

Jagannathan, 2006). The results are shown at Fig. 6. From the results, we can find that the 

online learning controller is better at stabilizing the stage along the z axis by exerting a 

more stable force on the particle. Meanwhile, the cost of the online learning controller is 

calculated to be 377.75, which is much better than that of the traditional NN controller 

(468.02). Although the critic design adds more complexity to the system implementation, 

it is able to generate better performance in terms of cost and force along the z-direction. 
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Fig 6. Simulation Results of Traditional NN Controller on Nanomanipulation System. 

Solid Line: Trajectories of the Actual Movement of the Stage; Dashed Line: Desired 

Movement of the Stage. 

 

Furthermore, to demonstrate the importance of the proposed drift compensator, 

our real-time controller design is applied on the manipulation system without the drift 
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compensation. Here assuming the drift is only 5 nm, the system response is depicted in 

Fig. 7. From the result, one can find that a very small drift will deteriorate the 

performance of the closed-loop system. If this continues with time, the system will 

approach instability unless a compensation mechanism is adopted. 
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Fig 7. Simulation Results of the Online Learning Controller on Nanomanipulation 

System without Drift Compensation. Solid Line: Trajectories of the Actual Movement of 

the Stage; Dashed Line: Desired Movement of the Stage. 

 

VII. CONCLUSIONS 

A novel reinforcement learning-based online neural controller is designed for 

affine nonlinear systems to deliver a desired performance under bounded disturbance. 

The proposed NN controller optimizes the long-term cost function by introducing a critic 

NN. Unlike the many applications where the controller is trained offline, the control input 

is updated in an online fashion. Online learning control designs are especially useful for 

such complex systems whose dynamics are varying along with time and whose exact 
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models are unreachable. To guarantee that a control system must be stable all of the time, 

the UUB of the closed-loop tracking errors and NN weight estimates is verified by using 

Lyapunov analysis in the presence of bounded disturbances and approximation errors. 

Nanomanipulation system is a promising application and demands that the task is made 

automatic. However, its “fragile” dynamics do not allow the implementation of iterative 

based control design. The feasibility of our advanced control method is also strengthened 

through the simulation results. 
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Appendix 

Proof of Theorem 1: Define the Lyapunov candidate as 
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where i Rγ +∈ , 1,2,3,4i =  are design parameters. Hence, the first difference of the 

Lyapunov function is given by 
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At the same time, 
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where maxQ  and maxR  are the maximum eigenvalue of matrix Q  and R , respectively, and 

( )2 2
4 4 ( ) ( 1)c cL k kγ ζ ζΔ = − −                             (A.6) 

Combining (A.1) - (A.6) yields 
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For the standard Lyapunov analysis, equation (A.7) and (A.8) implies that 0LΔ ≤  

as long as the conditions (37) – (40) are satisfied and following holds 
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According to the standard Lyapunov extension theorem (Jagannathan, 2006), the 

analysis above demonstrates that the tracking error ( )e k  and the weights of the 

estimation errors are UUB. Further, the boundedness of ( )a kζ  and ( )c kζ  implies that 

the weight estimations ˆ ( )aw k  and ˆ ( )cw k  are also bounded. 
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ABSTRACT 

In this paper, both state and output feedback reinforcement learning online 

approximator-based near optimal controller is proposed for general multi-input and multi-

output affine unknown nonlinear discrete-time systems in the presence of bounded 

disturbances. Each of the controller designs contains two entities, an action network that 

is designed to produce optimal signal and a critic network that evaluates the performance 

of the action network. The critic is an optimal or near optimal estimator of the cost-to-go 

function that is tuned online using recursive equations derived from dynamic 

programming (DP). The critic is termed adaptive as it adapts itself to output the optimal 

cost-to-go function and the action network is adapted simultaneously based on the 

information provided by the critic to derive the control signal in order to track a desired 

system trajectory while minimizing the cost function. Here neural networks (NN) are 

used both for the action and critic whereas any online approximators such as radial basis 

functions (RBF), splines, fuzzy logic etc can be utilized. For the output feedback 

controller, an additional NN is designated as the observer to estimate the system states 
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and separation principle is not required. The parameters of the online approximators or 

NN weight tuning rules for these two controller schemes are also derived while ensuring 

uniformly-ultimately-boundedness (UUB) of the closed-loop system using Lyapunov. 

Furthermore, the effectiveness of the two controllers is tested on a pendulum balancing 

system and a two-link robotic arm system in simulation. 

Keywords 

Online approximators, neural network, reinforcement learning, on-line learning, dynamic 

programming, Lyapunov method 

I. INTRODUCTION 

In the literature, there are many ways for designing stable controllers for 

nonlinear systems. However, stability is only a bare requirement for the controller design. 

A further consideration is the optimality based on a predefined cost function, which is 

used to determine the performance of the system. In other words, a controller scheme 

should not only achieve the stability of the closed-loop system, but also keep the cost as 

small as possible. A number of methods have been introduced for the optimal control of 

nonlinear systems. 

Of the available methods, dynamic programming (DP) has been extensively 

applied to generate optimal control for nonlinear dynamic systems [1]-[4], [22] by 

utilizing Bellman’s Principle of Optimality – “no matter how an intermediate point is 

reached in an optimal trajectory, the rest of the trajectory (from the intermediate point to 

the end) must be optimal.” It can provide the truly optimal solutions for nonlinear 

dynamic systems, but one of its drawbacks is the computation cost with the increasing 

dimension of the nonlinear plant, which is referred to as the “curse of dimensionality” 
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[4]. Therefore, to confront this issue, adaptive DP methods (e.g., see [8], [29]) have been 

developed recently. However, most of them are implemented either by an offline using 

iterative schemes or require the dynamics of the plants to be known a priori. 

Unfortunately, these requirements are often not practical for real-world systems, since the 

exact dynamics of the plant is usually not available. 

On the other hand, reinforcement learning is originated from animal behavior 

research and its interactions with the environment. It is based on the common sense 

reasoning that if an action is followed by a satisfactory outcome (reinforcement signal), 

then the tendency to repeat that action is strengthened, i.e., reinforced. Differing from the 

traditional supervised neural network (NN) learning, there is no desired behavior or 

training examples employed with reinforcement learning schemes. Nevertheless, it is 

common to apply reinforcement learning for optimal controller design, since the cost 

function can be directly seen as a form of reinforcement signal. Of the available 

reinforcement learning schemes, the temporal difference (TD) learning method [9]-[12] 

has found many applications in engineering since it does not require the knowledge of the 

system dynamics even though an iterative approach is typically utilized. However, to 

obtain a satisfactory reinforcement signal for each action, the approach must visit each 

system state by applying each action often enough [13], which requires that the system be 

time-invariant, or stationary in the case of stochastic system. 

To overcome the iterative offline methodology for real-time applications, several 

appealing online approximators-based controller designs methods were introduced in 

[17], [19]-[22]. They are also referred to as forward dynamic programming (FDP) or 

adaptive critic designs (ACD). The central theme of this approach is that the optimal 
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control law and cost function are approximated by online parametric structures, such as 

neural networks (NNs), which are trained over time along with the information that is fed 

back from the system response. Depending upon whether the NNs approximate the cost 

function or its derivative, or both, the ACDs are classified as: 1) heuristic dynamic 

programming (HDP); 2) dual heuristic dynamic programming (DHP); and 3) globalized 

dual heuristic dynamic programming (DHP). It is important to note that when the action 

is introduced as an additional input to the critic, then the ACD will be referred as action 

dependent (AD) version of the ACD. 

It is important to note that, instead of finding the exact minimum, ACDs try to 

approximate the Bellman equation ( )
( )

( ) ( ){ }( ) min ( 1) ( ), ( 1)
u k

J x k J x k U x k x k= + + + , 

where ( )x k  is the state and ( )u k  is the control at time step k, the strategic utility function 

( )( )J x k  represents the minimum cost or performance measure associated with going 

from k to final step N, ( )( ), ( 1)U x k x k +  is the utility function denoting the cost incurred 

in going from k to k+1 using control ( )u k , and ( 1)J k +  is the minimum cost or 

performance measure associated in going from state k+1 to the final step N.  The NNs are 

widely used for approximation in the ACD literature. 

Numerous papers have appeared on ACDs using NN but stability is rarely 

studied. The ones where some sort of stability is discussed are briefly introduced next. A 

new NN learning algorithm based on gradient descent rule is introduced in [6] and the 

approach is evaluated on a single cart-pole balancing system and a pendulum and a triple-

link inverted pendulum. However, no proof of the convergence or stability of the system 

was given. By contrast, Lyapunov analysis was derived in [14] and [15] using a variant of 
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Bellman equation. The approach presented in [15] is specific to robotic systems whose 

dynamics are introduced in continuous-time. On the other hand, [6] and [14] employ 

simplified binary reward or cost function which is a variant of the standard Bellman 

equation. By contrast, in this paper, a novel reinforcement learning-based controller is 

introduced for multi-input multi-output affine nonlinear discrete-time systems first by 

assuming state feedback using NN. However, the approach is generic enough that any 

online approximator based scheme such as RBFs, splines, CMAC can be utilized. 

Meanwhile, an output feedback controller scheme is usually necessary when 

certain states of the plant are unavailable for measurement. It is important to note that, the 

separation principle, which is normally employed for linear systems, does not hold for 

nonlinear systems [28]. Therefore, for nonlinear systems, a state observer that estimates 

the true states online, in general, does not guarantee the stability of the entire closed-loop 

system when it is used in conjunction with a stabilizing controller. Further, design of an 

observer and a controller combination becomes more challenging if optimality has to be 

ensured. Therefore, an output feedback controller with reinforcement learning design is 

also proposed. 

In this paper, we are considering online approximator-based methodology using 

NNs for the control of nonlinear discrete systems with quadratic-performance index as 

the cost function. The state feedback scheme consists of two online approximators; in this 

case two NNs: an action NN for the action network to derive the optimal (or near 

optimal) control signal to track not only the desired system output but also to minimize 

the long-term cost function; a critic NN for the critic network to approximate the long-

term cost function ( )( )J x k  and to tune the action NN weights. For the output feedback 
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controller, an additional NN is employed as the observer to estimate the unavailable 

system states. 

Since the control signal is not used in the critic NN as an additional input, the 

proposed approach could be seen as an online approximator-based HDP or neural HDP 

approach. Besides addressing the problem of optimization, contributions of this paper 

include: 1) the demonstration of the uniformly ultimately boundedness (UUB) of the 

overall system even in the presence of approximation errors and bounded unknown 

disturbances unlike in the existing adaptive critic works where the convergence is shown 

under ideal circumstances; 2) the online approximator parameters or NN weights are 

tuned online instead of offline training that is commonly employed in ACD; and 3) the 

linear-in-parameters (LIP) assumption is overcome along with the persistent excitation 

(PE) condition requirement. Finally, the proposed approach uses the standard Bellman 

equation and not a variant of the Bellman equation [14]. 

The paper is organized as follows. In Section II, the background of ACDs and 

assumptions of the system are introduced. Section III presents the detailed state feedback 

controller design methodology with learning algorithm for the action and critic NNs. 

Output feedback control scheme is proposed in Section IV and simulation results on two-

link robotic arm and pendulum are demonstrated in Section V. 

II. BACKGROUND 

A. Adaptive Critic Design 

In this paper, we consider the following stabilizable nonlinear affine system, 

given in the form as   
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1 2

1

( 1) ( )

( 1) ( ( )) ( ( )) ( ) ( )
( ) ( )

n

x k x k

x k f x k g x k u k d k
y k x k

+ =

+ = + +
=

M
             (1) 

with the state [ ]1 2( ) ( ), ( ), , ( ) T nm
nx k x k x k x k R= ⋅⋅⋅ ∈  at time instant k and each 

( ) ,  1, ,m
ix k R i n∈ = L . The terms ( ( )) mf x k R∈  is a unknown nonlinear vector field, 

( ( )) m mg x k R ×∈  is a diagonal matrix of unknown nonlinear vector fields, ( ) mu k R∈  is the 

control input vector, ( ) my k R∈  is the output vector and ( ) md k R∈  is the unknown but 

bounded disturbance vector field, whose bound is assumed to be a known constant, 

( ) md k d≤ . Here  stands for the Frobenius norm [5], which will be used through out 

this paper. First, the state vector ( )x k  is assumed available at the kth step for the state 

feedback controller. 

Assumption 1: Let the matrix ( ( )) m mg x k R ×∈  be a positive definite diagonal matrix for 

each ( ) nmx k R∈ , with ming R +∈  and maxg R+∈  represent the minimum and maximum 

eigenvalues of the matrix ( ( ))g x k , respectively, such that min max0 g g< ≤ . 

For the purpose of this paper, our objective is to design an online reinforcement 

learning NN controller for the system (1) such that 1) all the signals in the closed-loop 

system remain uniformly ultimately bounded in the presence of bounded disturbances 

and approximation errors; 2) the state ( )x k  follows a desired trajectory 

[ ]1 2( ) ( ), ( ), , ( ) T nm
d d d ndx k x k x k x k R= ⋅ ⋅⋅ ∈ , or equivalently speaking, the output ( )y k  

follows a desired trajectory ( ) m
dy k R∈ ; and 3) the long-term cost function (2) is 

minimized so that a near optimal control input can be generated. Here, the “online” 
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means the controller learning occurs “in real-time” through constant interaction with the 

plant, instead of an offline manner. 

Assumption 2: The desired trajectory of the system states, 

[ ]1 2( ) ( ), ( ), , ( ) T
d d d ndx k x k x k x k= ⋅ ⋅⋅ , satisfies ( 1)( 1) ( )id i dx k x k++ = , 1, , 1i n= −L , and 

( )dy k  is a known smooth bounded function over the compact subset of mR . 

Note that, from assumption 2, one can derive that ( ) ( 1)id dx k y k i= + − , 

1, ,i n= L . 

Meanwhile, to introduce the issue of optimality into our design, the long-term cost 

function is defined as 

0

0

( ) ( ( ), ) ( )

[ ( ( )) ( ) ( )]

i

i t

i T

i t

J k J x k u r k i

q x k i u k i Ru k i

γ

γ

∞

=

∞

=

= = +

= + + + +

∑

∑
                (2) 

where ( )J k  stands for ( ( ), )J x k u  for simplicity, and u  is a control policy, R is a positive 

definite matrix and ( ( ))q x k  is a positive definite function of the states, while 

 (0 1)γ γ≤ ≤ >  is the discount factor for the infinite-horizon problem. As observed from 

(2), the long-term cost is defined in terms of the discounted sum of the immediate cost or 

Lagrangian ( )r k , which is given by 

1 1 1 1

( ) ( ( )) ( ) ( )
( ( ) ( )) ( ( ) ( )) ( ) ( )

( ( ) ( )) ( ( ) ( )) ( ) ( )

T

T T
d d

T T
d d

r k q x k u k Ru k
x k x k Q x k x k u k Ru k

y k y k Q y k y k u k Ru k

= +

= − − +

= − − +

           (3) 

where Q is a positive definite matrix. In this paper, we are using a widely used standard 

quadratic cost function defined based on the output tracking error ( ) ( ) ( )de k y k y k= − , 
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which will be contrasted with [6] and [14]. The immediate cost function ( )r k  can be 

viewed as a system performance index for the current step. 

The basic idea in adaptive critic or reinforcement learning design is to 

approximate the long-term cost function J (or its derivative, or both), and generate the 

control signal minimizing the cost. By using learning, the online approximator will 

converge to the near optimal cost and the controller will converge to the near optimal 

controller correspondingly. In fact, for an optimal control law, which can be expressed as 

*( ) * ( ( ))u k u x k= , the optimal long-term cost function can be written alternatively as 

*( ) *( ( ), *( ( ))) *( ( ))J k J x k u x k J x k= = , which is just a function of the current state 

[16]. Next, one can state the following assumption. 

Assumption 3: The optimal cost function *( )J k  is finite and bounded over the compact 

set nS R⊂  by mJ . 

B. Two Layer NN 

In our controller architecture, we consider the NNs having two layers, as shown in 

Fig. 1. The output of the NN can be given by ( )T TY W V Xφ= , where V  and W  are the 

hidden layer and output layer weights, respectively. The number of hidden layer nodes is 

denoted as 
2N . A general function 3( ) ( )Nf x C S∈  can be written as [18] 

( ) ( ) ( )T Tf x W V x xφ ε= +                           (4) 

with ( )xε  a NN functional reconstruction error vector. In our design, V  is selected 

initially at random and held. It is demonstrated in [18] that if the hidden layer weights, 

V , are chosen initially at random and held while 2N  is sufficiently large, the NN 

approximation error ( )xε  can be made arbitrarily small since the activation function 
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vector forms a basis vector. Additionally, one can relax this assumption of bounded 

approximation error by using a robust signal through an auxiliary control input, which is 

relegated as part of a future publication. Since NN are utilized here as an illustration of 

the online approximator, the rest of the paper uses NNs for the online approximator. 

2φ

3φ

2Nφ

1φ

 

Fig 1. Two Layer Neural Network Structure 

III. STATE FEEDBACK ONLINE REINFORCEMENT LEARNING 

CONTROLLER DESIGN 

The block diagram of the proposed controller is shown in Fig. 2 where the action 

NN is providing a near optimal control signal to the plant while the critic NN 

approximates the long-term cost function. The learning of the two NNs is performed 

online without any offline learning phase. 

plantAction NN

Critic NN

control 
signal 
u(k)

x(k)( )Ĵ k

x(k)

e(k)

1z− ( )ˆ 1J k −

 

Fig 2. Online Neural Dynamic Programming Based Controller Structure 
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Furthermore, persistence of excitation (PE) condition is necessary in adaptive 

control literature which is also required to guarantee boundedness of the NN weight 

estimates. Unfortunately, it may be difficult to verify the PE condition of the output 

function ( )TV xφ  of the NN hidden layer. In this paper, a novel tuning algorithm is 

proposed to make the NN weights robust so that PE is not needed. 

A. The Action Network Design 

The tracking error at instant k is defined as 

( ) ( ) ( ) ( ) ( 1),  1,...,i i id i de k x k x k x k y k i i n= − = − + − =                                           (5) 

Then future value of the tracking error using system dynamics from (1) can be rewritten 

as 

( 1) ( ( )) ( ( )) ( ) ( ) ( )n de k f x k g x k u k d k y k n+ = + + − +                (6) 

The desired control signal can be given by 

1
1( ) ( ( ))( ( ( ) ( ) ( ))d du k g x k f x k y k n l e k−= − + + +                  (7) 

where 1
m ml R ×∈  is a design matrix selected such that the tracking error, ( )ne k , converges 

to zero. 

Since both of ( ( ))f x k  and ( ( ))g x k  are unknown smooth nonlinear functions, the 

desired feedback control ( )du k  cannot be implemented directly. Instead, an action NN is 

employed to generate the control signal. From (7) and considering Assumption 2, the 

desired control signal can be approximated as 

( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
d a a a a a a au k w v s k s k w s k s kφ ε φ ε= + = +            (8) 

where ( 2)( ) ( ), ( ), ( )
TT T T n m

d ds k x k y k y k n R +⎡ ⎤= + ∈⎣ ⎦  is the action NN input vector. The 

action NN consists of two layers, and an m
aw R ×∈  and ( 2) an m n

av R + ×∈  denote the desired 
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weights of the output and hidden layer, respectively, with ( ( ))a s kε  is the action NN 

approximation error, and an  is the number of the neurons in the hidden layer. Since av  is 

fixed, for simplicity purpose, the hidden layer activation function vector 2( ( )) nT
a av s k Rφ ∈  

is denoted as ( ( ))a s kφ . 

Considering the fact that the desired weights of the action NN are unknown, the 

actual NN weights have to be trained online and its actual output can be expressed as 

ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
a a a a au k w k v s k w k s kφ φ= =                  (9) 

where ˆ ( ) an m
aw k R ×∈  is the actual weight matrix of the output layer at instant k. 

Using the action NN output as the control signal, and substituting (8) and (9) into 

(6) yields 

( )1

1

1

( 1) ( ( )) ( ( )) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( )

( ) ( ( ))( ( ) ( ( )) ( ( ))) ( )
( ) ( ( )) ( ) ( )

n d

n d

T
n a a a

n a a

e k f x k g x k u k d k y k n
l e k g x k u k u k d k

l e k g x k w k s k s k d k
l e k g x k k d k

φ ε
ζ

+ = + + − +

= + − +

= + − +
= + +

%
          (10) 

where 

ˆ( ) ( )a a aw k w k w= −%                                     (11) 

( ) ( ) ( ( ))T
a a ak w k s kζ φ= %                                        (12) 

( ) ( ( )) ( ( )) ( )a ad k g x k s k d kε= − +             (13) 

Thus, the closed-loop tracking error dynamics is expressed as 

1( 1) ( ) ( ( )) ( ) ( )n n a ae k l e k g x k k d kζ+ = + +                (14) 

At the meantime, we can notice that ( ) ( ) ( ) ( ),  1,...,i i id ne k x k x k e k n i i n= − = − + = . Next 

the critic NN design is introduced. 
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B. The Critic Network Design 

As stated above, a near optimal controller should be able to stabilize the closed-

loop system by minimizing the cost function. In this paper, a critic NN is employed to 

approximate the target long-term cost function ( )J k . Since ( )J k  is unavailable at the kth 

time instant in an online learning framework, the critic NN is tuned online in order to 

ensure that its output converges close to ( )J k . 

First, the prediction error for the critic or the Bellman error [6] is defined as  

ˆ ˆ( ) ( ) ( 1) ( )ce k J k J k r kγ= − − +                             (15) 

where the subscript “c” stands for the “critic” and  

ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
c c c c cJ k w k v x k w k x kφ φ= =            (16) 

where ˆ( )J k R∈  is the critic NN output which is an approximation of ( )J k . In our 

design, the critic NN is also a two-layer NN, while 1ˆ ( ) cn
cw k R ×∈  and cnm n

cv R ×∈  

represent its actual weight matrix of the output and hidden layer, respectively. The term 

cn  denotes the number of the neurons in the hidden layer. Similar to HDP, the system 

states ( ) nx k R∈  are selected as the critic network input. The activation function vector of 

the hidden layer ( ( )) cnT
c cv x k Rφ ∈  is denoted as ( ( ))c x kφ  for simplicity. Provided that 

enough number of the neurons in the hidden layer, the optimal long-term cost function 

*( )J k  can be approximated by the critic network with arbitrarily small approximation 

error ( )c kε  as 

*( ) ( ( )) ( ( )) ( ( )) ( ( ))T T T
c c c c c c cJ k w v x k x k w x k x kφ ε φ ε= + = +          (17) 
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Similarly, the critic network NN weight estimation error can be defined as 

ˆ( ) ( )c c cw k w k w= −%                              (18) 

where the approximation error is given by 

( ) ( ) ( ( ))T
c c ck w k x kζ φ= %                                        (19) 

Thus, we have   

ˆ ˆ( ) ( ) ( 1) ( )
( ) *( ) ( 1) *( 1) ( ) ( ) ( 1)

c

c c c c

e k J k J k r k
k J k k J k r k k k

γ
γζ γ ζ ε ε

= − − +
= + − − − − + − + −

         

Next we discuss the weight tuning algorithms for critic and action NNs. 

C. Weight Updating for the Critic Network 

Following the discussion from the last section, the objective function to be 

minimized by the critic network is defined as a quadratic function of tracking errors as 

21 1( ) ( ) ( ) ( )
2 2

T
c c c cE k e k e k e k= =                (20) 

Using a standard gradient-based adaptation method, the weight updating algorithm for the 

critic network is given by 

ˆ ˆ ˆ( 1) ( ) ( )c c cw k w k w k+ = + Δ                           (21) 

where 

( )ˆ ( )
ˆ ( )

c
c c

c

E kw k
w k

α
⎡ ⎤∂

Δ = −⎢ ⎥∂⎣ ⎦
                                 (22) 

with c Rα ∈  is the adaptation gain. 

Combining (15), (16), (20) with (22), the critic NN weight updating rule can be 

obtained by using the chain rule as 

ˆ( ) ( ) ( ) ( )ˆ ( ) ( ( )) ( )ˆˆ ˆ( ) ( ) ( )( )
c c c

c c c c c c
c c c

E k E k e k J kw k x k e k
w k e k w kJ k

α α α γφ∂ ∂ ∂ ∂
Δ = − = − = −

∂ ∂ ∂∂
       (23) 
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Thus, the critic NN weight updating algorithm is obtained as 

ˆ ˆˆ ˆ( 1) ( ) ( ( ))( ( ) ( ) ( 1))c c c cw k w k x k J k r k J kα γφ γ+ = − + − −          (24) 

D. Weight Updating for the Action Network 

The basis for adapting the action NN is to track the desired trajectory and to lower 

the cost function. Therefore, the error for the action NN can be formed by using the 

functional estimation error ( )a kζ , and the error between the nominal desired long-term 

cost function ( )dJ k R∈  and the critic signal ˆ( )J k . Now we define the cost function 

vector as 1ˆ ˆ ˆ( ) ( ) ( ) ... ( )
T mJ k J k J k J k R ×⎡ ⎤= ∈⎣ ⎦ . Let 

( )
( )

1

1

( ) ( ( )) ( ) ( ( )) ( ( ) ( ))

( ( )) ( ) ( ( )) ( )

a a d

a

e k g x k k g x k J k J k

g x k k g x k J k

ζ

ζ

−

−

= + −

= +
         (25) 

where ( )a kζ  is defined in (12). Given Assumption 1, we define ( ( )) m mg x k R ×∈  as the 

principle square root of the diagonal positive definite matrix ( ( ))g x k , i.e., 

( ( )) ( ( )) ( ( ))g x k g x k g x k× = , and ( )( ( )) ( ( ))
T

g x k g x k=  [14]. The desired long-

term cost function ( )dJ k  is nominally defined and is considered to be zero (“0”), which 

means as low as possible. 

Hence, the weights of the action NN ˆ ( )aw k  are tuned to minimize the error  

1( ) ( ) ( )
2

T
a a aE k e k e k=                          (26) 

By combining (10), (12), (14), (25), (26) and utilizing the chain rule, one can 

obtain 



 

 

144

( )
( )1

( ) ( ) ( ) ( )ˆ ( )
ˆ ˆ( ) ( ) ( ) ( )

( ( )) ( ( )) ( ) ( )

( ( )) ( 1) ( ) ( ) ( )

a a a a
a a a

a a a c

T
a a a

T
a a n n a

E k E k e k kw k
w k e k k w k

s k g x k k J k

s k e k l e k d k J k

ζα α
ζ

α φ ζ

α φ

∂ ∂ ∂ ∂
Δ = − = −

∂ ∂ ∂ ∂

= − +

= − + − − +

         (27) 

where a Rα +∈  is the adaptation gain of the action NN. However, ( )ad k  is typically 

unavailable, so as in the ideal case, we take it as zero and obtain the weight updating 

algorithm for the action NN as 

( )1ˆ ˆ( 1) ( ) ( ( )) ( 1) ( ) ( )
T

a a a a n nw k w k s k e k l e k J kα φ+ = − + − +          (28) 

E. Theoretic Result 

Assumption 4: Let aw  and cw  be the unknown output layer target weights for the action 

and critic NNs, respectively, and assume that they are upper bounded such that 

a amw w≤ , and c cmw w≤                           (29) 

where amw R+∈  and cmw R+∈  represent the bounds on the unknown target weights. 

Fact 1: The activation functions for the action and critic NNs are bounded by known 

positive values, such that  

( ) ,  ( )a am c cmk kφ φ φ φ≤ ≤                         (30) 

where ,am cm Rφ φ +∈  is the upper bound for the activation functions. 

Assumption 5: The NN approximation errors ( ( ))a s kε  and ( ( ))c x kε  are bounded above 

over the compact set mS R⊂  by amε  and cmε  [11]. 

Fact 2: With the Assumption 1 and 4, the term ( )ad k  in (13) is bounded over the 

compact set mS R⊂  by 

max( )a am am md k d g dε≤ = +                  (31) 
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Combining Assumption 1, 3, and 4 and Facts 1, and 2, following theorem is introduced. 

Theorem 1: Consider the system given by (1) with all system states measurable. Let the 

Assumptions 1 through 5 hold with the disturbance bound md  a known constant. Let the 

control input be provided by the action NN (9), with the critic NN (16). Further, let the 

weights of the action NN and the critic NN be tuned by (23) and (27), respectively. Then 

the tracking error ( )e k , and the NN weight estimates of the action and critic NNs, ˆ ( )aw k  

and ˆ ( )cw k  are uniformly-ultimately-bounded (UUB), provided that the controller design 

parameters satisfy 

2 2
min max0 ( )a a k g gα φ< <                   (32) 

( ) 220 1c c kα γ φ< <                       (33) 

1max0 3 3l< <                                                  (34) 

1 2γ >                                     (35) 

where aα  and cα  are NN adaptation gains, γ  is employed to define the strategic utility 

function and 1maxl R+∈  is the largest eigenvalue of square matrix 1l . 

Proof: See Appendix A. 

Remark 1: The proposed scheme results in a well-defined controller since a single NN is 

utilized to approximate two nonlinear functions.  

Remark 2: The action and critic NN weights can be initialized at zero or random. This 

means that there is no explicit off-line learning phase needed. 

Remark 3: It is important to note that persistency of excitation condition is not utilized 

and certainty equivalence principle is not employed, in contrast to standard work in 

discrete-time adaptive control [7]. In the latter, a parameter identifier is first designed and 
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the parameter estimation errors are shown to converge to small values by using a 

Lyapunov function. Then in the tracking proof, it is assumed that the parameter estimates 

are exact by invoking a CE assumption, and another Lyapunov function is selected that 

weights only the tracking error terms to demonstrate the closed-loop stability and 

tracking performance. By contrast in our proof, the Lyapunov function shown in the 

appendix weighs the tracking errors, ( )e k , the weight estimation errors of  all the NNs 

for the controller, ( )W k% . The proof is exceedingly complex due to the presence of several 

different variables. However, it obviates the need for the CE assumption and it allows 

weight-tuning algorithms to be derived during the proof, not selected a priori in an ad 

hoc manner. 

Remark 4: In this work, two-layer NNs are utilized as online approximators for action 

and critic network signals whereas any other online approximators such as CMAC, 

splines, fuzzy logic, and so on can be utilized instead.  Lyapunov proof of the controller 

convergence still holds. 

IV. OUTPUT FEEDBACK ONLINE REINFORCEMENT LEARNING 

CONTROLLER DESIGN 

In the state feedback design, all states are assumed to be available for the 

controller. However, in this section, the output feedback version of our online 

reinforcement learning scheme is introduced when certain states of the plant are 

unavailable. 

A. Observer Structure 

Consider system (1), assuming that only the output vector ( ) my k R∈  is available 

at the kth step. Therefore, to estimate other system states, a NN observer is first proposed. 
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For the system described by (1), we use the following NN-based state observer to 

estimate the actual state ( )x k  as 

( )( )

1 2ˆ ˆ( ) ( 1)

ˆ ˆ ˆˆ ˆ( ) ( 1) ( ( 1)) ( 1) 1T T T
n o o o o o

x k x k

x k w k v z k w k z kφ φ

= −

= − − = − −

M          (36) 

where ( )ˆ ,  1, ,m
ix k R i n∈ = L  is the estimated value of ( ) m

ix k R∈ , and 

( 1)
1̂ ˆˆ( 1) ( 1), , ( 1), ( 1)

TT T T n m
nz k x k x k u k R +⎡ ⎤− = − − − ∈⎣ ⎦K  is the input vector to the NN 

observer at the kth instant, ˆ ( 1) on m
ow k R ×− ∈  and ( 1) on m n

ov R + ×∈  denote the output and 

hidden layer weights of the NN observer, and on  is the number of the hidden layer 

neurons. For simplicity purpose, the hidden layer activation function vector 

ˆ( ( 1)) onT
o ov z k Rφ − ∈  is written as ( )( )ˆ 1o z kφ − . 

Define the state estimation error as 

ˆ( ) ( ) ( ),  1,...,i i ix k x k x k i n= − =%                             (37) 

where ( ) ,  1,...,m
ix k R i n∈ =%  is the state estimation error. As a matter of fact, by 

comparing (1) and (36), one can find that the observer NN approximates the nonlinear 

function given by ( ( 1)) ( ( 1)) ( 1)f x k g x k u k− + − − . Thus, ideally this nonlinear function 

can be expressed as 

( ( 1)) ( ( 1)) ( 1) ( ( 1)) ( ( 1))

( ( 1)) ( ( 1))

T T
o o o o
T
o o o

f x k g x k u k w v z k z k

w z k z k

φ ε

φ ε

− + − − = − + −

= − + −
                  (38) 

where on m
ow R ×∈  is the target observer NN weight matrix, ( ( 1))o z kε −  is the NN 

approximation error, and the NN input is given by 
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( 1)
1( 1) ( 1), , ( 1), ( 1)

TT T T n m
nz k x k x k u k R +⎡ ⎤− = − − − ∈⎣ ⎦K . Again, for convenience, the 

hidden layer activation function vector ( ( 1)) onT
o ov z k Rφ − ∈  is written as ( ( 1))o z kφ − . 

Combining (36), (37) and (38), one obtains 

( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )

ˆ( ) ( ) ( )
ˆ ( ) ( 1) ( 1) ( 1) ( 1)

ˆ ˆ ˆ( 1) ( 1) ( 1) ( 1)

( 1) 1

ˆ( 1) ( 1) ( 1) ( 1) ( 1)
( 1) ( 1)

n n n

n

T T T
o o o o o o

o

T T
o o o o o

o o

x k x k x k
x k f x k g x k u k d k

w k w z k w z k z k

z k d k

w k z k w z k z k d k
k d k

φ φ φ

ε

φ φ ε
ξ

= −

= − − + − − − −

= − − − + − − −

− − − −

= − − + − − − − −

= − + −

%

% %

            (39) 

where 

ˆ( 1) ( 1)o o ow k w k w− = − −%                         (40) 

ˆ( 1) ( 1) ( ( 1))T
o o ok w k z kξ φ− = − −%                             (41) 

ˆ( ( 1)) ( ( 1)) ( ( 1))o o oz k z k z kφ φ φ− = − − −%            (42) 

( 1) ( ( 1)) ( ( 1)) ( 1)T
o o o od k w z k z k d kφ ε− = − − − + −%           (43) 

Therefore, the dynamics of the estimation error is obtained using (37) and (39) as 

1 2( ) ( 1)

( ) ( 1) ( 1)n o o

x k x k

x k k d kξ

= −

= − + −

% %

M

%

                            (44) 

B. Action and Critic Network Design 

Since some of the actual system states are unavailable for the action and critic 

NNs, their input and updating rules have to be changed accordingly. The basic idea is to 

substitute the unavailable system states with the corresponding estimated values from the 

observer NN. Consequently, the action NN input is taken as 
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( 2)ˆ ˆ( ) ( ), ( ), ( )
TT T T n m

d ds k x k y k y k n R +⎡ ⎤= + ∈⎣ ⎦ , while the input to the critic NN is replaced by 

ˆ( )x k . Thus, in our output feedback design, the control input to the plant is provided as 

ˆ ˆ ˆ ˆ( ) ( ) ( ( )) ( ) ( ( ))T T T
a a a a au k w k v s k w k s kφ φ= =            (45) 

The long term cost function is approximated by 

( ) ( ) ( )( ) ( ) ( )( )ˆ ˆ ˆ ˆ ˆT T T
c c c c cJ k w k v x k w k x kφ φ= =           (46) 

Meanwhile, the training algorithms governing action and critic NNs are updated 

as 

( ) ( ) ( )( ) ( ) ( ) ( )( )1ˆ ˆ ˆ ˆ ˆ1 1
T

a a a a n nw k w k s k e k l e k J kα φ+ = − + − +         (47) 

( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆˆ ˆ ˆ1 1c c c cw k w k x k J k r k J kα γφ γ+ = − + − −          (48) 

where ˆ ˆ( ) ( ) ( )n n nde k x k x k= − . 

Thus, (10) has to be rewritten as 

( )1

1

1

( 1) ( ( )) ( ( )) ( ) ( ) ( )
( ) ( ( )) ( ) ( ) ( )

ˆ ˆ( ) ( ( ))( ( ) ( ( )) ( ( ))) ( )
ˆ ˆ( ) ( ( )) ( ) ( )

n d

n d

T
n a a a

n a a

e k f x k g x k u k d k y k n
l e k g x k u k u k d k

l e k g x k w k s k s k d k

l e k g x k k d k

φ ε

ζ

+ = + + − +

= + − +

= + − +

= + +

%
        (49) 

where   

( )( )ˆ ˆ( ) ( )T
a a ak w k s kζ φ= %                   (50) 

( )( ) ( )( )ˆ ˆ( ) ( )a ad k g x k s k d kε= − +                    (51) 

C. Weight Updating for the Observer NN 

The observer NN weight update is driven by the state estimation error 

1 1ˆ( ) ( ) ( )x k x k y k= −% , i.e., 
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( ) ( ) ( )( ) ( ) ( )( ) ( )( )2 1ˆ ˆ ˆˆ ˆ1
TT

o o o o o ow k w k z k w k z k l x kα φ φ+ = − + %         (52) 

where 2
m ml R ×∈  is a design matrix, and o Rα +∈  is the adaptation gain for the NN 

observer.  

D. Theoretic Result 

Theorem 2: Consider the system given by (1) with only the output available. Let the 

Assumptions 1 through 5 hold (Assumption 4 and 5 also hold for the observer NN) with 

the disturbance bound md  a known constant. Let system states be estimated by observer 

NN (36), the control input be provided by the action NN (45), with the critic NN (46) 

tuning the action NN weights. Further, let the observer, action and critic NN weights be 

tuned by (52), (47) and (48), respectively. Then the tracking error ( )e k , and the observer, 

action and critic NN weights, ˆ ( )ow k , ˆ ( )aw k  and ˆ ( )cw k  are uniformly ultimately 

bounded, with the bounds specifically given by (A.26) through (A.30) provided (32)-(34) 

and following additional conditions 

( ) 2
0 1o o kα φ< <                                 (53) 

3 3γ >                                   (54) 

Proof: See Appendix B. 

Remark 1: The proposed output feedback controller scheme results in a well-defined 

controller since a single NN is utilized to approximate two nonlinear functions.  

Remark 2: The observer, action and critic NN weights can be initialized at zero or 

random. This means that there is no explicit off-line learning phase needed. 

Remark 3: It is important to note that persistency of excitation condition is not utilized 

and certainty equivalence principle is not employed, in contrast to standard work in 
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discrete-time adaptive control [7]. In the latter, a parameter identifier is first designed and 

the parameter estimation errors are shown to converge to small values by using a 

Lyapunov function. Then in the tracking proof, it is assumed that the parameter estimates 

are exact by invoking a CE assumption, and another Lyapunov function is selected that 

weights only the tracking error terms to demonstrate the closed-loop stability and 

tracking performance. By contrast in our proof, the Lyapunov function shown in the 

appendix weighs the tracking errors, ( )e k , the weight estimation errors of all the NNs, 

( )W k%  including the observer. The proof is exceedingly complex due to the presence of 

several different variables. However, it obviates the need for the CE assumption and it 

allows weight-tuning algorithms to be derived during the proof, not selected a priori in 

an ad hoc manner.   

Remark 4: In this work, two-layer NNs are utilized as online approximators for observer, 

action and critic network signals whereas any other online approximators such as CMAC, 

splines, fuzzy logic, and so on can be utilized instead. Lyapunov proof of the controller 

convergence still holds. 

Remark 5: Since separation principle does not hold for nonlinear systems, the proposed 

output feedback controller relaxes this strong assumption since Lyapunov proof includes 

observer estimation error and weight estimation error terms along with the action and 

critic network terms. 

V. SIMULATION RESULTS 

To demonstrate the feasibility of the theoretic results, the on-line learning 

controller design is implemented on a pendulum balancing system and a two-link robotic 

arm system by simulation. 
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A. Pendulum Balancing System 

First, our approach is examined on a pendulum swing up and balancing task. The 

example under investigation is identical to that in [6] and [25]. The continuous-time 

dynamics of the pendulum can be written as follows, 

2

3 ( lgsin )
4

d F m
dt ml
d
dt

ω θ

θ ω

= +

=
                       (55) 

where 1/ 3m =  and 3/ 2l =  are the mass and length of the pendulum, respectively. The 

original system states include the angle θ  and angular velocity ω . In the 

implementation, the system dynamics are discretized with standard zero-order-hold 

technique presented in [27]. The time step is taken to be 0.05. 

The task requires that the controller swings up the bar and balances it at the 

vertical position. Initially, the pendulum starts at θ π= , which means the bar is released 

loosely straight down. Further, a bounded uniformly distributed noise on [-0.02, 0.02] is 

introduced with bound 0.02md = . The other design and simulation parameters are set as 

following 

Table 1 Summary of Parameters Used in Simulation of Pendulum 

Parameter R  Q  γ  1l  2l  oα  

Value 0.1 0.1 0.5 0.1 0.5 0.8 

Parameter cα  aα  on  an  cn  md  

Value 0.01 0.1 5 10 10 0.02 
 

In our study 100 consecutive trials for both state feedback and output feedback 

designs are attempted and the task is successfully accomplished for every trial. Fig. 3 
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shows the simulation results of state feedback controller for one of the trials and Fig. 4 

shows that of output feedback controller in terms of θ  and ω . Also these symbols 

should be expressed in the plots. 
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Fig 3. Simulation Results of the State Feedback Online Learning Controller on Pendulum 

Balancing System 
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Fig 4. Simulation Results of the Output Feedback Online Learning Controller on 

Pendulum Balancing System 
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B. 2-link Planar Robot Arm System 

In the second implementation, the 2-link planar robot arm system shown in Fig. 5 

and discussed in [5] [24] is considered. 

 

Fig 5. Geometry of a Two-link Planar Robot Arm 

 

The continuous-time manipulator dynamics is as follows [5] 
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+ +⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

&& & & &

&& &
        (56) 

where 2
1 2 1( )m m aα = + , 2

2 2m aβ = , 2 1 2m a aη = , 1 1e g a= . 

g    9.8 2/m s , the acceleration of gravity; 

1m , 2m   point mass of the links at distal end; 

1a , 2a   length of the links; 

1q , 2q   rotational angle of the joints; 

1τ , 2τ   torque applied on the joints. 
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In most of the controller designs, joint angles 1q  and 2q  are the states while 1τ  

and 2τ  are the control input. After using the same technique as that of the pendulum 

example for discretization, the system dynamics in discrete-time can be written in an 

affine form as (1). 

The simulation parameters used in this simulation are tabulated as below:  

Table 2 Summary of Parameters Used in Simulation of 2-link Robot Arm 

Parameter 1m  2m  1a  2a  R  Q  γ  md  

Value 0.8 2.3 1 1 2 1 0.5 0.1 

Parameter 1l  2l  on  an  cn  oα  cα  aα  

Value 0.1 0.5 5 10 10 0.01 1×10-4 1×10-5 
 

In the simulation, the time step is set as 1 ms. To be more realistic, the system is 

also added with a bounded random disturbance (give more details). The initial states of 

the system are set at 1 2(0) (0) 10q q= = o . Our goal is to manipulate the robot arm back to 

zero with the lowest cost and simulation will be stopped when the rotational angles 

converge to zero. 

A typical system response using state feedback online learning controller is 

shown in Fig. 6, while Fig. 7 depicts the system response with output feedback version. 

From the simulation results, we can find that both the designs are capable of 

accomplishing the control targets. 
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Fig 6. Simulation Results of the State Feedback Online Learning Controller on 2-link 

Planar Robot Arm. Solid Line: Trajectories of the Rotational Angles; Dashed Line: 

Desired Final Values of the Angles. 
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VI. CONCLUSIONS 

A novel reinforcement learning-based online neural controller is designed for 

affine nonlinear systems to deliver a desired performance under bounded disturbance. 
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Depending on the availability of system states, both state feedback and output feedback 

version are introduced in this paper. The proposed NN controller optimizes the long-term 

cost function by introducing a critic NN. Unlike the many applications where the 

controller is trained offline, the control input is updated in an online fashion. To 

guarantee that a control system must be stable all of the time, the boundedness of the 

closed-loop tracking errors and NN weight estimates is verified by using Lyapunov 

analysis in the presence of bounded disturbances and approximation errors. The observer 

estimates unavailable system states in the output feedback design. Persistency of 

excitation condition, certainty equivalence and separation principles are not required.  

The feasibility of the two methods is also strengthened through the controller 

implementations on pendulum and 2-link robotic arm. 
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Appendix A: Proof of Theorem 1 

Proof: Consider the following Lyapunov candidate 
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    (A.1) 

where i Rγ +∈ , 1,2,3,4i =  are design parameters. Hence, the first difference of the 

Lyapunov function is given by 
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At the same time, 
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where maxQ  and maxR  are the maximum eigenvalue of matrix Q  and R , respectively. 

( )2 2
4 4 ( ) ( 1)s c cL k kγ ζ ζΔ = − −           (A.6) 

Combining (A.1) - (A.6) yields 
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For the standard Lyapunov analysis, equation (A.7) and (A.8) implies that 

0sLΔ ≤  as long as the conditions (32) – (35) are satisfied and following holds 
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According to the standard Lyapunov extension theorem [5], [26], the analysis 

above demonstrates that the tracking error ( )ne k  and the weights of the estimation 

errors are UUB. Considering ( ) ( ) ( ) ( ),  1,...,i i id ne k x k x k e k n i i n= − = − + = , one can 

readily conclude that ( ),  1,..., 1ie k i n= −  is also UUB. Further, the boundedness of 

( )a kζ  and ( )c kζ  implies that the weight estimations ˆ ( )aw k  and ˆ ( )cw k  are also 

bounded. 

Appendix B: Proof of Theorem 2 

Proof: The proof of Theorem is similar to that of theorem 1. Since an additional observer 

NN is introduced to estimate the immeasurable states, we consider following Lyapunov 

function  
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where i Rη +∈ , 1,...,11i =  are design parameters. Hence, the first difference of the 

Lyapunov function is the summation of the difference for each term. 

From (39), we have 
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(49) yields 
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where 2maxl R∈  is the maximum eigenvalue of matrix 2l . Similar to (A.4), we obtain 
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where ( ) ( )1
ˆˆ( ) ( 1) ( )n n ak x k l x k Q k d kβ = + − + +% %  and 7 7 7' "η η η=  such that 
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Similar to (A.5) 
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Furthermore, 

2 2

9 9 9
ˆ ˆ( ) ( 1)o a aL k kη ζ η ζΔ = − −         (A.21) 

2 2
10 10 10( ) ( 1)o c cL k kη ζ η ζΔ = − −         (A.22) 

2 2
11 11 1 11 1( ) ( 1)oL e k e kη ηΔ = − −         (A.23) 

Combining (A.13) – (A.23) yields, 
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where 

2
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5 6 max 7
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Referring to the standard Lyapunov analysis [5], [26], equation (A.24) and (A.25) implies 

that 0oLΔ ≤  as long as the conditions (32) – (34) and (53) – (54) are satisfied and 

following holds 

1 2
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%                         (A.26) 

or 
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                   (A.27) 

or 
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6 2 7
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M
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≥
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or 

2
8 7 10

( ) M
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Dkζ
η γ η η

≤
′− −

                       (A.30) 

According to the standard Lyapunov extension theorem [5], [26], the analysis 

above demonstrates that the tracking error ( )e k  and the weights of the estimation errors 

are UUB. Further, the boundedness of ( )o kζ , ˆ ( )a kζ  and ( )c kζ  implies that the 

weight estimations ˆ ( )ow k , ˆ ( )aw k  and ˆ ( )cw k  are also bounded. 
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