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INTRODUCTION 
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Resin-based composite is a popular dental filling material for repairing anterior 

and posterior teeth.  Typically, dental composites consist of a methacrylate-based resin 

matrix and glass or ceramic fillers that are dispersed throughout the matrix. The resin 

matrix sets through free radical polymerization initiated by light. The most commonly 

used base monomer is Bis-GMA (bisphenol glycidyl methacrylate).
4
 It was first 

introduced by Bowen more than 40 years ago. Bis-GMA is considered to be a highly 

viscous monomer. Its viscosity makes the resin composite more difficult to handle and 

negatively affects the degree of conversion. To overcome the deficiencies of Bis-GMA, a 

low viscosity monomer such as TEGDMA (triethylene glycol dimethacrylate) is added to 

thin the resin matrix. Bis-GMA/TEGDMA systems enhance the handling characteristics 

of the resin and improve double bond conversion.
5
 

Fillers play a major role in determining the mechanical properties of composites. 

The addition of filler reduces the resin content of the resin composite and thereby 

decreases polymerization shrinkage, in addition to improving wear characteristics. The 

majority of research on dental composites during the last decade focused on improving 

the filler system. Decreasing filler particle size and modifying particle morphology have 

improved the mechanical properties and esthetics of dental resin.
4, 6

 

However, secondary caries and restoration fracture continue to be the main 

challenges facing dental clinicians and researchers.
7
 It has been reported that the majority 

of the dental clinician’s time is spent replacing restorations that failed due to secondary 

caries.
8
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Since the caries-preventive effects of fluoride were first demonstrated, researchers 

have been trying to develop restorative materials that contain and release fluoride.
9, 10

 

Though fluoride release from resin-based composite is typically low, glass ionomers, and 

resin-modified glass ionomers and compomers release significant amounts of fluoride 

ions.
11

  However, these materials have limited clinical application due to their inferior 

mechanical properties. Researchers have sought to improve the performance of fluoride- 

releasing restorative materials by adding resin to glass ionomer.
12

 

Recently, a new type of resin composite was developed that releases calcium (Ca) 

and phosphate (PO4), the ions that form hydroxyapatite [Ca10(PO4)6(OH)2]. These new 

composites have the ability to increase the mineral content in caries lesions. However, 

Ca-PO4 composites have inadequate strength to restore occlusal surfaces of posterior 

teeth. Several studies suggest they should only be used as lining materials.
13, 14

   

 

HYPOTHESIS 

A new composite resin with tricalcium phosphate fillers can be formulated to 

achieve the minimal mechanical requirements to serve as a restorative material and as a 

pit and fissure sealant.  
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CALCIUM-PHOSPHATE RESIN COMPOSITE  

Researchers have been trying to develop a biologically active restorative material 

that may stimulate remineralization of tooth structure through the release of calcium and 

phosphate. These materials contained amorphous calcium phosphate (ACP) as a bioactive 

filler embedded in a polymer network.
15-17

 Several studies demonstrated the capability of 

ACP-based materials in providing Ca and PO4 ions needed to remineralize damaged 

enamel crystal structure. 
18, 19

 It was suggested by Skrtic and colleagues that ACP may 

promote the deposition of apatitic tooth mineral when used as filler in photo-

polymerizable methacrylate matrices.
14

 Such properties make the ACP-based restorative 

materials particularly useful in patients who are highly susceptible to dental caries as a 

result of radiation therapy or medications that cause dry mouth.
20

  

However, poor crack resistance under masticatory load was defined as a problem 

with this type of dental composite. ACP has deficiencies when used as a filler. It is more 

hydrophilic and biodegradable when compared with silanized glass-reinforcing 

composites.
15

 The inferior mechanical properties of ACP and water sorption 

characteristics have been reported in many studies. W.F. Regnault et al. tested the effect 

of adding ACP to resin on mechanical strength.
21

 They compared the biaxial flexural 

strength (BFS) of unfilled polymer with that of ACP-filled polymers. The BFS of the 

unfilled polymer was found to be 68.8 ± 15.5 MPa. On the other hand, the BFS of the 

ACP-filled polymer was significantly less than that of the unfilled polymer having a 

value of 43.6 ± 2.7 MPa. He concluded that adding a mass fraction of 40 percent of ACP 
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into a polymer reduced their BFS by about 29 percent. He attributed the lower 

mechanical strength of ACP-filled polymers to the weak filler/matrix interface due to 

calcium and phosphate efflux that led to spacial changes. Conversion of ACP to apatite 

may have had a negative effect on the BFS of the ACP-filled polymers. Regnault et al. 

also tested the effect of adding ACP fillers to polymers on water sorption (WS) behavior. 

It was found that the polymer alone absorbed a maximum mass fraction of 0.85 ± 0.30 

percent. ACP-filled polymers absorbed a maximum mass fraction of 1.29 ± 0.15 percent. 

The difference in WS values was statistically significant. The hydrophilic nature of ACP 

significantly affected the amount of water absorbed in ACP-filled polymers. The poor 

filler/matrix interface in this composite played a critical role in governing the water 

diffusion and hydration of the ACP particles.
21

 ACP resins were found to be 

mechanically unstable due to the aggregation of ACP particles that compromised the 

interfacial interaction with the dental resins.
16

 

  Research suggested several methods to improve the ACP filler/polymer matrix 

interfacial properties. This could be achieved by controlling the particle-size distribution 

and ACP-filler surface properties, and by fine-tuning the resin. Mechanical milling of 

ACP particles has led to improvements in the flexural strength. This improvement is 

attributed to a more homogenous distribution of the finer ACP particles within the 

composite. Milled ACP composites also showed less water sorption due to the decrease 

in the number of voids and defects throughout the prepared samples. O’Donnell et al. 

studied the effect of ACP-filler particle size on the mechanical properties of these 

composites.
15

 They investigated the behavior of milled ACP-filled composites in 

comparison with unmilled ACP-filled composites. The BFS of the unmilled ACP 
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composites had a mean value of 48 MPa, while the BFS of the milled ACP composites 

had a mean value of 70 MPa. These results demonstrate the better performance of the 

milled ACP composites in terms of BFS. The author attributed this to better distribution 

of the filler in the matrix when milled. Improved dispersion of the filler minimized the 

spaces between the particles allowing a better fit into the resin matrix. The milled ACP 

composites had fewer voids, which improved the mechanical properties. O’Donnell also 

compared the WS of milled ACP composites with that of unmilled ACP composites. 

Composites with milled ACP fillers absorbed a maximum mass fraction of 1.55 ± 0.49-

percent water. Composites with unmilled ACP absorbed 2.28 ± 0.60-percent water, 

which is almost 50-percent more WS than that of composites containing milled ACP.
15

  

In another attempt to improve the mechanical properties of ACP-filled resins, Skrtic and 

Antonucci investigated how several resin compositions affected the physical and 

chemical properties of ACP-based composites. The average BFS values of wet composite 

samples were 51 ± 8 MPa. BFS values were not affected by the change in the type of 

resin used. It was found that formulations that contained hexamethylene dimethacrylate 

(HmDMA) as a monomer performed better in terms of water sorption. It was also 

observed that formulations with 2-hydroxyethyl methacrylate (HEMA) and ethoxylated 

bisphenol A dimethacrylate (EBPADMA) released more Ca and PO4 than other 

formulations. The author attributed this to the hydrophilic nature of HEMA, which may 

allow better access of the filler to water. The explanation for the improved ion release 

when using EBPADMA matrices is that this polymer has lower cross-linking density, 

which allows the formation of an open network enhancing the diffusion of ions. 
18, 22
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Lately, researchers have been investigating the use of tricalcium phosphate (TCP) 

as a filler for these resin-based calcium phosphate cements. Nakagawa et al. investigated 

the effects of adding α – TCP and β – TCP to the basic mechanical properties of apatite 

cement.
23

 They found that α – TCP was superior to β – TCP in terms of mechanical 

strength. Improved mechanical properties of α – TCP resulted from the larger apatite 

crystal formation. Their study concluded that apatite cement containing α – TCP as a 

filler showed 30-percent higher mechanical strength than α – TCP-free apatite cement.
23

  

Pure beta tri-calcium phosphate (B-TCP) has been used for replacing bone in oral surgery 

with success.
24

 It was found that this material can be detected in the transitional phase of 

hydroxyapatite conversion. B-TCP was found to be capable of promoting periodontal 

regeneration in human intraosseous periodontal defects.
25

 Several studies investigated the 

effect of B-TCP on human cells, and it was found to be biocompatible with human 

bone.
26-28

 Other studies explored the potential of TCP in reversing the early stages of 

non-cavitated enamel lesions. Karlinsey et al. performed an in vitro study to explore the 

potential of B-TCP modified with fumaric acid (FA) in remineralizing non-cavitated 

lesions. TCP-FA material performed better than native and milled B-TCP and was found 

to be superior in remineralizing subsurface enamel lesions.
29

 Notably, this type of TCP is 

crystalline in nature, suggesting a stronger form of a calcium-phosphate releasing 

material.  

 

PIT AND FISSURE SEALANTS 

A decline in dental caries prevalence has been noticed in the past few decades.
30

  

Despite this decline, some individuals and populations continue to develop dental caries. 
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In fact, an increase in the prevalence of dental caries has been reported in some 

countries.
31

 Researchers generally agree the most common sites for developing caries are 

within pits and fissures. In the US, it was found that 56 percent of caries lesions in the 

permanent teeth of children between the ages of 5 years and 17 years occur on occlusal 

surfaces.
32

 
30

  

Many products and systems on the market claim to prevent dental decay, but few 

have been shown to be effective. Pit and fissure sealants (PFS) have been successful and 

their use is routine in dental practice.
33

 Research demonstrates that the application of PFS 

has reduced dental caries occurrence in occlusal surfaces by 60 percent.
34

  The PFS 

prevent dental decay by preventing the adherence of food and bacteria in deep fissures.
35

 

In 1967 Buonocore and his co-worker published their first paper on the successful 

use of PFS. However, the major breakthrough in PFS research was not until Bowen used 

the new cross-linking dimethacrylate monomer (BIS-GMA), a substance still considered 

one of the main constituents of most dental sealants and resin composites.
36

 

Resin sealants are primarily composed of a mixture of mono- and di-functional 

monomers.
33

 They are characterized by a low filler content when compared with resin 

composite used for restorative purposes.
37

 Throughout the years, researchers have 

experimented with different types of materials to seal the pits and fissures of teeth. The 

most widely accepted are resin- and glass-ionomer-based sealants. Many studies have 

tried to improve the preventive capacity of sealants by adding new components to the 

resin matrix. Fluoride has been added to many sealants now available. It makes sense that 

adding fluoride would increase the protective effect of PFS, but data in the literature 

show no significant difference in caries prevention between conventional PFS and those 
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containing fluoride.
38

 Other studies tried incorporating ACP in dental sealants and 

showed promising results in promoting remineralization of artificial lesions.
39

  

 

COMPRESSIVE STRENGTH 

Compressive strength is a meaningful mechanical property to evaluate brittle 

materials that are weak in tension, such as resin-matrix composite; compressive strength 

is the force required to crush a material when a compressive force is applied axially.  

Clinically, dental restorations are subjected to compressive forces, especially in 

the region of the posterior teeth, making the compressive strength and flexural modulus 

properties of importance to the dental clinician and material researchers.  

A typical compressive strength value for a resin composite is 225 MPa.
40

  Lee et 

al. studied the compressive strength values of experimental polymeric calcium phosphate 

cement and found it to be 0.26 MPa to 117.58 MPa.  

Studies showed that the behavior of the resin-matrix composite is influenced by 

many factors, mainly the composition and the microstructure of the material. The 

morphology of the filler particles, their distribution in the matrix, and the presence of pre-

existing flaws will influence the mechanical properties of a material.
41, 42

 

 

DEGREE OF CONVERSION 

Degree of conversion describes the extent of transformation from double to single 

bonds during free-radical polymerization of a methacrylate-based resin. It is desirable to 

have higher degrees of conversion, because any residual unreacted monomer could leach 

into the oral cavity and give rise to biocompatibility concerns.
43, 44

  Also, there is a strong 

correlation between the degree of conversion and the physical properties of a material; 
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the higher the degree of conversion, the stronger the material. The degree of conversion 

varies according to material composition and curing conditions and is usually 80-percent 

in the bulk of the material.
40

 

Bis-GMA monomer is a basic component of the majority of current resin-based 

composites. It achieves high double-bond conversion when photo-cured. Researchers 

have been investigating other resin systems that reach degrees of conversion comparable 

to Bis-GMA monomer. Skritic and his colleagues experimented with resin systems 

having ethoxylated bisphenol A dimethacrylate (EBADMA) as their basic monomer and 

ACP as their filler. They found that the degree of conversion was somewhat reduced and 

affected by size of the ACP fillers. Resin formulations that contained milled ACP 

performed better in terms of the degree of vinyl conversion. The effect can be attributed 

to the more homogenous resin/matrix interface that improved the translucency and 

subsequently the photo-polymerization.
45

 

 

DEPTH OF CURE 

Research on dental resin shows that many mechanical properties such as hardness, 

creep, compressive strength, and flexural modulus are directly influenced by the extent of 

polymerization. Also, studies have shown that resin restorations that are not sufficiently 

cured can adversely affect the dental pulp and the oral mucosa due to reduced 

biocompatibility.
46

 

Many factors influence the depth of cure of resin composites. The material 

composition, shade, filler particle size, and light related factors, such as light intensity, 

spectral distribution, and exposure time are of prime importance.
47, 48

  The depth of cure 
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for polymer-based restorative materials, determined in accordance with ISO 4049, should 

not be less than 1.5 mm.  

 

HARDNESS 

Hardness is commonly described as a material’s resistance to deformation that is 

caused by a localized indentation or a scratch. Hardness tests are simple and relatively 

inexpensive when compared with other tests that evaluate the mechanical properties of 

materials. Hardness tests are used more frequently than any other mechanical test to 

evaluate materials, because samples can be used more than once; the test does not destroy 

the samples. The test is also very useful in estimating other material properties such as 

tensile strength and rigidity.
40, 49, 50

 Many studies have demonstrated the correlation 

between hardness and the degree of conversion in dental resin. Consequently, hardness 

has been used as an indirect measure of the degree of conversion.
51-55

 

There are several methods to examine the hardness of a restorative material. The 

Knoop hardness test is most commonly used to evaluate dental resin composites. This 

technique utilizes a pyramid-shaped diamond indenter pushed with a predetermined force 

into the specimen. The resulting indentation is then examined under a microscope and 

measured. This measurement is transformed into a Knoop hardness number.
40

 

Typical Knoop hardness for resin composite ranges from 22 to 80 and is lower 

than enamel, which has a Knoop hardness of 343.  The Knoop hardness of composites is 

affected by the type and size of filler dispersed in the resin matrix. Increasing the size of 

fillers tends to give higher Knoop hardness values.
40
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VISCOSITY 

Viscosity can be described as a material’s resistance to flow. It is another physical 

property that should be considered when investigating new formulas of resin composites.  

Viscosity is of importance to the dental clinician, because it affects the handling 

characteristics of restorative materials. It is also related to the success of resin composite 

restorations.
56

  It has been demonstrated in studies that restorations fabricated with low-

viscosity resins have a lower incidence of gaps in the marginal area. Low-viscosity 

composites are better adapted to walls of cavity preparations when compared with resin 

composites of regular viscosity.
57

 

 

RATIONALE OF THE STUDY 

The objective of this project is to investigate the effect of varying the 

concentrations of TCP-FA fillers on the mechanical properties of an experimental light-

cured resin-matrix composite, and to evaluate the potential use of this resin composite as 

a restorative material or as a pit and fissure sealant. The specific aims are: 

1. To determine the effect of various filler levels on the compressive strength. 

2. To examine the effect of various filler levels on the degree of conversion. 

3. To investigate the effect of various filler levels on the depth of cure. 

4. To investigate the effect of various filler levels on the hardness. 

5. To determine the effect of various filler levels on the viscosity. 
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EXPERIMENTAL TRICALCIUM PHOSPHATE-BASED RESIN 

The monomer mixture used for this study was composed of 34.3 percent by mass 

of ethoxylated bisphenol A dimethacrylate (EBPADMA), which is a low-viscosity base 

monomer, 34.2 percent by mass hexamethylene dimethacrylate (HmDMA), a 

hydrophobic diluent monomer, and 30.5 percent by mass of 2-hydroxyethyl methacrylate 

(HEMA), a very hydrophilic component. The decision to use these resins was in 

accordance with the findings of Skrtic et al., who found that calcium and phosphate ion 

release was higher from ACP-filled composites with HEMA/EBPADMA-containing 

polymers.
18

 

The resin was made photo-reactive by the incorporation of 0.20 percent by mass 

camphorquinone (CQ, Sigma-Aldrich) and 0.80 percent by mass ethyl-4-N, N-

dimethalaminobenzoate (4EDMAB) as a photo-initiator and photo-co-initiator, 

respectively. The CQ was added in a dark room to prevent light from initiating the 

reaction.  

Tricalcium phosphate fillers were provided by Indiana Nanotech. The fillers were 

surface-treated with fumaric acid (FA). The fillers had an average particle size of 4 um. 

The monomers were mixed using hand spatulation. Monomers were placed on magnetic 

stir bars on a magnetic stir plate. After several minutes of rapid mixing, the filler was 

added in small amounts to ensure incorporation into the monomer mixture. After all 

fillers were added, the monomer and filler mixtures were left on the magnetic stir plate 

overnight to ensure homogenization. After that, the initiator and co-initiator were added 
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in the same manner. Afterwards, the homogenized pastes were kept under vacuum 

overnight for elimination of the air entrapped during mixing. The fillers were added to 

the resin matrix by continuous mixing under vacuum to avoid air-bubble entrapment. 

Resin composites were prepared at four different filler levels by weight percent. The TCP 

fillers prepared with 30 percent, 40 percent, 50 percent, and 60 percent by weight were 

mixed with resins of 70 percent, 60 percent, 50 percent, and 40 percent by weight 

respectively, using hand spatulation. The four filler level groups were labeled A, B, C and 

D respectively. All four concentration levels of the resin composites were tested to 

explore the effect of different filler levels on the compressive strength and modulus, 

degree of conversion, depth of cure, hardness, and viscosity. 

 

COMPRESSIVE STRENGTH AND MODULUS 

All specimens were molded and cured thoroughly in cylindrical glass tubes with 

an internal diameter of approximately 2.4 mm and were cut into approximately 5-mm 

cylinders with a diamond saw. Specimens were pushed out from the glass tubes, then 

stored in distilled water at 37ºC for 24 hours. Prior to testing, the specimens’ diameter 

and length were recorded using a digital micrometer. Three measurements for the 

diameter and length from various areas of the samples were taken, and the mean of these 

measurements was recorded. 

Compression testing was carried out on a universal testing machine (Sintech 

Renew 1121, Instron Engineering Corp., and Canton, MA) with a cross-head speed of 

1mm/min. The compression force was applied axially on the flat end of the cylindrical 

samples. Five samples from each filler level were tested.  
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Compressive strength was then calculated using:  =  F/A  

Where:  = compressive strength; 

F = instantaneous load applied perpendicular to the specimen cross-

section; 

A = the original cross-sectional area before any load is applied. 

Strain was calculated using: = hi-h /h  = h/h  

Where:  = strain;   

h  The original height before any load is applied; 

hi = The instantaneous length; 

hi-h  is denoted as h and is the change in height. 

Compression modulus was then calculated using: E = / ;  

Where E = the compression modulus. 

 

DEGREE OF CONVERSION MEASUREMENT 

The degree of conversion was determined with infrared (IR) spectroscopic 

technique. Specimens 0.15-mm thick and 6 mm in diameter were used. Resin was placed 

between two Mylar strips with a glass slab beneath and on the top to avoid air 

entrapment, and then a stainless jig with a 7-mm opening was placed above the assembly. 

The curing was done through the opening for 20 seconds. 

The specimens were placed in a standard FTIR (Fourier transform infrared 

spectroscopy) sample holder with a 5-mm diameter opening. The IR spectra were 

acquired in absorbance mode from wave numbers of 1500 to 1700. The area under the 

peak 1608 was assigned to the aromatic C=C coming from EBPADMA and was used as 
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the internal standard. The area under the peak 1638 was assigned to the vinyl C=C and 

will be used to evaluate the degree of conversion. DC was obtained directly from the 

decrease in the 1638 peak intensity using the following equation: 

Degree of conversion: 

1608)under  1638/areaunder  (area Uncured

1608)under  1638/areaunder  (area Cured
1

CC of # Total

CC of # Remaining
1

CC of # Total

CC of # Remaining - CC of # Total

CC of # Total

CC converted of #

     

Five measurements were taken for each filler level. 

 

DEPTH OF CURE 

A scraping technique was used to evaluate the depth of cure according to the ISO 

standards for dental resin 4049.
58

  Three specimens were made for each group by 

condensing the respective resin into a Teflon mold, and each measured 4 mm in diameter 

and 6 mm in depth. 

Above the Teflon mold, a 1-mm metal spacer was placed in order to hold the tip 

of the light-curing unit 1 mm from the surface of the resin. The specimens were light 

cured with an LED curing unit (DEMI, Kerr) with an average power density output of 

1463 mW/cm
2 

for 40 seconds. A radiometer was used to check the output consistency 

between specimens. 

Following light curing, the specimens were removed from the mold, the soft 

uncured resin composite was scraped using a plastic spatula. The height of each specimen 
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was measured using a digital micrometer in three different areas and the average of the 

three measurements was recorded. The value was divided by two in order to obtain the 

ISO 4049 depth of cure. Five measurements were made for each filler level. 

 

KNOOP MICROHARDNESS 

A brass mold 4 mm in diameter and 1-mm thick was used to fabricate five 

specimens from each group. The mold was placed on a Mylar strip over a glass slab. 

Then, the mold was filled with the material. A second Mylar strip was placed over the 

uncured resin.  A glass slide was placed on top of the second Mylar strip to squeeze out 

the excess and to provide a smooth surface. The glass slide was removed before 

irradiation of the material. Then, each specimen was cured for 40 seconds from the top 

and bottom using an LED curing unit (DEMI, Kerr) with an average power density 

output of 1463 mW/cm
2
.  After the curing cycle, the specimens were removed from the 

mold and were stored in distilled water for 24 h at 37ºC.  Knoop microhardness numbers 

were obtained by a microhardness tester (M-400, Leco Co., St. Joseph, MI). A Knoop 

diamond tip was used to make three indentations on the top surface of each specimen. 

The indentations were made using a 50-gf load and a dwell time of 15 seconds. The same 

specimens were stored again in distilled water for 7 days at 37ºC. The same procedure 

was repeated to measure the Knoop hardness after 7 days. 

 

VISCOSITY 

The viscosities of the experimental resin were determined using a viscometer 

(DV-II
+ 

Viscometer, Brookfield; Middleboro, MA). Each resin sample was held in place 

and subjected to shear with a small-diameter spindle (CPE-52) used for higher-viscosity 
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samples. Three samples from the experimental resin with 30-percent and 40-percent filler 

levels were tested. A shear rate of 1.2 l/s to 100 1/s was used to determine the viscosity 

values. 

 

STATISTICAL METHODS 

The effects of different concentration levels of the tricalcium phosphate filler (30 

percent, 40 percent, 50 percent, and 60 percent by weight) on compressive stress, 

compressive modulus, degree of conversion, depth of cure, Knoop microhardness, and 

viscosity were assessed using a one-way analysis of variance (ANOVA) with the level of 

filler as the main variable. A 5-percent significance level was used for all tests.  
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COMPRESSIVE STRENGTH AND MODULUS 

Mean compressive strength and standard deviations are shown in Table II and 

Figure 10. Group A showed significantly higher compressive strength values than Group 

C and Group D.  

  Mean compressive modulus values and standard deviations for all filler levels are 

summarized in Table III and Figure 11.  Group C revealed significantly higher modulus 

than all other groups. 

 

DEGREE OF CONVERSION 

Conversion values obtained from FTIR are shown in Table IV and Figure 12. 

Group D revealed significantly higher DC than all other groups.  Group A showed the 

lowest DC value, but it was not statistically different from Group B and Group C. 

 

DEPTH OF CURE 

Depths of cure measurements are shown in Table V and Figure 13. Group A 

samples had a significantly greater depth of cure than samples from all other groups. 

Group D had the shallowest depth of cure but was not significantly different from Group 

C. 

 

HARDNESS 

Mean Knoop hardness values and standard deviations after 24 hours storage in 

distilled water are presented in Table VI and Figure 14.  Group A had the highest KHN 
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and it was statistically different from Group C and Group D.  Moreover, Group D 

resulted in significantly the lowest KHN.  

Mean KHN and standard deviations after 7 days storage in distilled water are 

summarized in Table VII and Figure 14.  Group A showed the highest KHN and it was 

significantly different from the other groups. Group D resulted in the lowest KHN but 

was not statistically different from Group C.  The difference between before- and after- 

storage hardness was statistically significant for all groups except for Group A. 

 

VISCOSITY 

Mean viscosity and standard deviations for Group A and Group B are shown in 

Table VIII and Table IX, respectively. Viscosity was plotted against shear rate in Figure 

15.  At a shear rate of 40, Group B showed viscosity values that are statistically higher 

than Group A. Viscosity was investigated for Group A and Group B only, because the 

other groups were too viscous to be tested. At a shear rate of 40, Groups A and B reached 

a Newtonian viscosity of 114 mPa and 413 mPa respectively.   
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TABLE I 

Formulation of composite resin matrix 

Component Chemical Compound Abbreviation Percent 

Monomer Ethoxylated bisphenol A dimethacrylate EBPADMA 34.3% 

Hexamethylene dimethacrylate HmDMA 34.2% 

2-hydroxyethyl methacrylate HEMA 30.5% 

photo-initiator Camphorquinone CQ 0.2% 

photo-co-initiator Ethyl-4-N,N-dimethylaminobenzoate 4EDMAB 0.8% 
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TABLE II 

Mean compressive strength and standard deviation (SD) 

 

Group TCP-FA N 

Min 

(MPa) 

Max 

(MPa) Mean (SD) 

 

A 30% 5 120.88 172.53 143.01 (20.16) 

 

B 40% 5 109.18 155.56 131.35 (19.35) 

 

C 50% 6 78.85 146.11 99.61 (24.68) 

 

D 60% 5 29.99 66.58 52.81 (13.69) 
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TABLE III 

Mean compressive modulus and standard deviation (SD) 

 

Group TCP-FA N 

Min 

(MPa) 

Max 

(MPa)\ Mean (SD) 

 

A 30% 5 755.61 945.62 824.99 (80.82) 

 

B 40% 5 763.97 974.72 823.15 (88.30) 

 

C 50% 6 936.20 1597.35 1157.15 (227.32) 

 

D 60% 5 524.01 817.84 681.34 (138.20) 
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TABLE IV 

Mean degree of conversion and standard deviation (SD) 

Group TCP-FA N Min Max Mean (SD) 

 

A 30% 9 0.417 0.485 0.452 (0.024) 

 

B 40% 9 0.430 0.542 0.474 (0.037) 

 

C 50% 9 0.420 0.533 0.489 (0.045) 

 

D 60% 9 0.495 0.590 0.533 (0.030) 

 

 



29 

 

TABLE V 

Mean depth of cure and standard deviation (SD) 

 

Group TCP-FA N 

Min  

(mm) 

Max 

(mm) Mean (SD) 

 

A 30% 9 0.53 0.915 0.7 (0.1) 

 

B 40% 9 0.495 0.6 0.6 (0.0) 

 

C 50% 9 0.405 0.49 0.4 (0.0) 

 

D 60% 9 0.28 0.56 0.4(0.1) 
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TABLE VI 

       Mean Knoop hardness number after 

                   24 hours and standard deviation (SD) 

 
Group TCP-FA N Min Max Mean (SD) 

 

A 30% 5 6 9.8 8.35 (1.18) 

 

B 40% 5 6.5 9.5 8.11 (0.86) 

 

C 50% 5 4.7 7.4 6.37 (0.80) 

 

D 60% 5 3.6 7.7 5.25 (1.11) 
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TABLE VII 

Mean Knoop hardness number after 

7 days and standard deviation (SD) 

 
Group TCP-FA N Min Max Mean (SD) 

 

A 30% 5 5.6 10.8 7.81 (1.17) 

 

B 40% 5 5.9 8.6 6.98 (0.86) 

 

C 50% 5 3.8 5.2 4.37 (0.34) 

 

D 60% 5 2.9 4.4 3.65 (0.44) 

  

 

  



32 

 

TABLE VIII 

Group A mean viscosity and standard deviation (SD) 

N Shear rate (1/s) 

Min 

(mPa.s) 

Max 

(mPa.s) Mean (SD) 

3 100 104 128 115 (10) 

3 60 131 155 141 (10) 

3 40 153 178 168 (11) 

3 24 212 271 246 (25) 

3 20 294 308 302 (6) 

3 12 501 562 524 (27) 

3 10 603 714 643 (51) 

3 8 716 786 744 (30) 

3 6 915 1048 985 (55) 

3 5 1001 1213 1083 (93) 

3 4 1237 1381 1293 (63) 

3 3 1445 1711 1546 (118) 

3 2 1627 2902 2074 (586) 

3 1.2 2697 5533 3673 (1316) 
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TABLE IX 

Group B mean viscosity and standard deviation (SD) 

N Shear rate (1/s) 

Min 

(mPa.s) 

Max 

(mPa.s) Mean (SD) 

3 40 405 419 414 (8) 

3 24 524 536 532 (7) 

3 20 591 606 598 (8) 

3 12 801 820 808 (10) 

3 10 897 919 906 (12) 

3 8 1039 1063 1053 (13) 

3 6 1252 1280 1271 (16) 

3 5 1421 1455 1442 (19) 

3 4 1655 1697 1683 (24) 

3 3 2040 2089 2067 (25) 

3 2 2706 2809 2750 (53) 

3 1.2 3906 4092 4009 (95) 
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FIGURE 1. Ethoxylated bisphenol A dimethacrylate (EBPADMA). 

 

 

 

 

 

 

FIGURE 2. Hexamethylene dimethacrylate (HmDMA). 
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FIGURE 3. 2-hydroxyethyl methacrylate (HEMA). 

 

 

 

 

 

 

FIGURE 4. Camphorquinone (CQ).  
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FIGURE 5. Ethyl-4-N,N-dimethylaminobenzoate (4EDMAB). 
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FIGURE 6.  Universal testing machine (Sintech Renew 1121, Instron Engineering 

Corp., Canton, MA).  

  



38 

 

 

 

FIGURE 7. Fourier transform infrared spectroscopy (FTIR). 
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FIGURE 8. Microhardness tester (M-400, Leco Co., St. Joseph, MI).  
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FIGURE 9. Viscometer (DV-II 
+ 

Viscometer, Brookfield, Middleboro, MA).  
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FIGURE 10.  Mean compressive strength and standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

140

160

180

A B C D

C
o

m
p

re
ss

iv
e 

S
tr

en
g

th
 (

M
P

a
)

Compressive Strength



42 

 

                                                    

 

 

FIGURE 11.  Mean compressive modulus and standard deviation. 
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FIGURE 12. Mean degree of conversion and standard deviation. 
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FIGURE 13. Mean depth of cure and standard deviation. 
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FIGURE 14.  Mean Knoop hardness number and standard deviation. 
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FIGURE 15.  Mean viscosity (in millipascal seconds) and standard deviation. 
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DISCUSSION 
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The majority of light-activated dental resin composites on the market consist of a 

resin-matrix phase reinforced with glass. Recently presenting an alternative, researchers 

developed a bioactive resin composite capable of remineralizing demineralized tooth 

structure. This new composite’s remineralizing property is derived from the amorphous 

calcium phosphate (ACP) dispersed into the resin matrix. Several studies have confirmed 

that ACP is a precursor to apatite formation. However, the substitution of ACP for glass 

fillers has some adverse effects on the mechanical strength. Several studies investigated 

various methods and technologies in an attempt to improve the strength of ACP-filled 

resin. Some focused on the function of matrix composition on the mechanical properties 

of ACP-filled dental resin.
16, 45, 59

 Other investigators incorporated different calcium- 

releasing fillers such as tricalcium phosphate (TCP) that could produce stronger 

composites.  

In this study, the mechanical properties of a TCP-FA resin composite were 

assessed. The resin-matrix system utilized had the same monomer combination as a 

previously investigated ACP-filled resin formulated by Skrtic and colleagues. The resin 

system incorporated EBPADMA as the base monomer. HmDMA was substituted for 

TEGDMA. Furthermore, HEMA was added as a co-monomer with a potential for 

adhesion.
18
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COMPRESSIVE STRENGTH AND MODULUS 

Compressive strength is of major importance because many masticatory forces are 

compressive in nature.
60

 In the current study, the compressive strength values are 

presented in Table II and were lower than those of commercial flowable resin 

composites. A typical value for a flowable resin composite ranges between 210 MPa and 

300 MPa.
40

  An increase in the compressive modulus was observed when the TCP-FA 

filler weight percent was increased. However, the compressive strength did not improve 

with the addition of more filler to the matrix, even though the compressive modulus 

continued to increase.  This decrease in compressive strength with increased filler loading 

was contrary to expectations. With conventional resin composite systems, increased filler 

content is usually responsible for improved mechanical properties. The reduction in 

compressive strength of TCP-FA composites can be attributed to the poor bonding at the 

filler/matrix interface.  In addition, TCP-FA particles had a tendency to agglomerate, 

affecting the particle size distribution into the resin matrix and consequently the strength. 

It is therefore necessary to investigate the particle-size distribution and find better ways 

to facilitate the distribution of the particles. Previous research with EBPADMA-based 

matrices that had ACP fillers recommended fine tuning of ACP fillers in an attempt to 

improve particle distribution. The monomer combination used may have also contributed 

to the inferior strength.    

 

DEGREE OF CONVERSION 

The degree of conversion (DC) is related to several physical and biological 

properties of monomer-based dental materials.  In resin systems with low DC values,  
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monomers have the potential to leach into the oral cavity to jeopardize biocompatibility.
45

 

Polymerization shrinkage is also directly related to DC. Any increase in monomer 

conversion increases shrinkage values. Therefore, it is important to evaluate DC when 

polymerization contraction stresses of different resin systems are to be investigated and 

compared.
61

   

In this study, FTIR was used to obtain DC values. This technique has many 

advantages. One is its ability to detect minor differences with a minimum number of 

samples. From Table IV, it can be seen that all test resin groups have low DC values 

when compared with Bis-GMA/TEGDMA resin systems that usually yield DC values of 

approximately 75 percent.
18

 Also, the DC of Group D was significantly higher than all 

other test groups. The resin monomer combination used in the present study was 

previously tested by Skrtic et. al with the type of filler representing the only difference 

between the two studies. He obtained DC values that exceeded those typically obtained 

with Bis-GMA/TEGDMA copolymers. The average DC values in Skrtic’s study were 

between 74 percent and 91 percent. One possible explanation for the low DC in the 

present study could be that the TCP-FA conversion to apatite has a negative effect on 

DC. 

 

DEPTH OF CURE 

In this study, depth of cure was tested according to ISO 4049. None of the 

experimental groups met the 1.5 mm ISO curing depth requirements for light-cured resin-

based restorative materials (Table V).  
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When a resin composite is irradiated by a blue curing light, the light is scattered 

by the filler particles. As light travels through the resin matrix, its intensity is attenuated, 

thereby reducing the curing effectiveness. The shade of a resin composite has been 

proven to affect the number of photons arriving to the surface of the resin. Darker shades 

tend to absorb the lowest number of photons.
62

 For this reason, the initial shade of the 

resin composite has a significant role in determining the curing behavior.
62

 The TCP-FA 

fillers may have contributed to the darker shade of the composite. This is a possible 

explanation for the low depth of cure values. Another possible explanation is the 

agglomeration of the filler particles that could have impaired light transmission into the 

matrix and resulted in shallow curing depths.  

 

MICROHARDNESS 

Resin composite becomes hard after light curing and polymerization. Hardness 

tests have been used as an indirect way to evaluate the quality of polymerization. The 

hardness is primarily determined by the type and amount of filler and monomers 

incorporated in the resin.
62, 63

 

In the present study, KHN was determined for each specimen before and after 

storage in distilled water.  Before water storage, group A showed the highest KHN, 

which was significantly different from the other groups. The KHN of Group D was 

significantly lower than the KHN for all other groups. After water storage, Group A still 

showed the highest KHN, and Group D, the lowest.  

Water is known to penetrate the polymer network and thereby cause dissolution of 

unreacted monomers and polymer chains. Polymers with low cross-linking density 
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should exhibit low KHN.  EBPADMA-based polymers are known to have lower cross-

linking compared with Bis-GMA-based polymers. As a result, EBPADMA monomers 

tend to form open network structures that facilitate water diffusion. Additionally, HEMA, 

one of the components of the resin composite used in this study, is known to be 

hydrophilic.
18

 Its hydrophilicity allowed more water absorption and contributed to the 

low KHN values.  

 

VISCOSITY 

Resin composites exhibit complex rheological properties. They have the potential 

to behave like solids or liquids depending on the shear applied. Dental resins typically 

demonstrate a shear-thinning behavior (i.e. the viscosity decreases as the shear rate 

increases). It is very important for the dental practitioner to understand the rheological 

properties of resin when restoring teeth, because such knowledge helps to facilitate more 

appropriate handling.
56

 

Several studies investigated the rheological properties of commercially available 

resins. These studies found that flow characteristics of dental resins of the same type can 

vary greatly.
56

 

Bis-GMA monomer is the major constituent of many composite resins. Cured 

Bis-GMA has good mechanical properties. However, the main drawback is of Bis-GMA 

is its high viscosity. Diluting Bis-GMA with low viscosity monomers such as TEGDMA 

leads to major deficiencies, such as an increase in polymerization shrinkage.
64

 

In the present study, increasing the filler content significantly increased the 

viscosity. The degree of conversion of composite resin is highly influenced by its initial 
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viscosity. The high-viscosity values obtained in this study could probably explain the low 

conversion readings. High-viscosity monomers have limited flexibility that limits 

conversion.    
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SUMMARY AND CONCLUSION 
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The objective of this study was to investigate the possible use of a tricalcium 

phosphate- (TCP)-filled composite resin as a tooth restorative material. Four groups of 

experimental light-cured resin composite were made by varying only the TCP filler level 

(30 percent, 40 percent, 50 percent, and 60 percent by weight). Compressive strength, 

modulus, degree of conversion, depth of cure, hardness, and viscosity were investigated. 

From the data collected, the results can be summarized in the following: 

1. Resin composites with 30-percent TCP filler showed the highest compressive 

strength and hardness values. Also, this group showed the lowest degree of 

conversion. 

2. Resin composites with 60-percent TCP filler showed the highest degree of 

conversion. However, this group showed the lowest compressive strength, 

depth of cure, and hardness. 

3. Resin composites with 50-percent filler showed the highest compressive 

modulus. 

4. Resin composites with 40-percent filler showed higher viscosity values than 

resin composites with 30-percent filler. 

In conclusion, increasing the filler level significantly reduced the compressive 

strength, hardness, and depth of cure, but increased the degree of conversion. Also, resin 

composites with the least filler level (30 percent) had the highest compressive strength, 

depth of cure, and hardness. From these results, it can be concluded that the experimental 

TCP-filled resin used in this study cannot be used as restorative material due to its poor 
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mechanical properties. Further investigation is recommended to determine the effect of 

adding TCP to resin with different monomers. Also, including silica in the resin 

formulation could improve the mechanical performance. Additional mechanical milling 

of the filler and the addition of surfactant could result in a more homogenous composite. 

In turn, fewer voids could be incorporated in the composite and account for a subsequent 

improvement in its strength.  
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Several studies have found that resin-based amorphous calcium phosphate (ACP) 

composites can function well for applications that do not require high mechanical 

demand. Milled tricalcium phosphate (TCP), a new calcium-phosphate-releasing 

material, is crystalline in nature, suggesting it to be strong. In the present study, we 

investigated the use of a TCP-filled composite resin as a possible tooth restorative-

material. An experimental TCP-based composite was prepared using monomer with a 

mixture of 34.3 percent by mass of EBPADMA, 34.2 percent by mass of HmDMA, and 

30.5 percent by mass of HEMA. TCP fillers were added to the monomer mixture at 

different levels (30 percent, 40 percent, 50 percent, and 60 percent by weight). A 
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universal testing machine (Sintech Renew 1121; Instron Engineering Corp., Canton, MA) 

was used to measure the compressive strength and modulus. FTIR was used to measure 

the degree of conversion. The depth of cure was determined according to the ISO 

standards for dental resin 4049 using the scrapping technique. Knoop hardness numbers 

were obtained by a microhardness tester (M-400; Leco Co., St. Joseph, MI). The 

viscosities of the experimental resin were determined in a viscometer (DV-II+ 

Viscometer; Brookfield, Middleboro, MA). The data were analyzed using a one-way 

analysis of variance (ANOVA).  A 5-percent significance level was used for all the tests.  

Resin composites with 30-percent TCP filler showed the highest compressive 

strength and hardness values. Also, this group showed the lowest degree of conversion. 

Resin composites with 60-percent TCP filler showed the highest degree of conversion. 

However, this group showed the lowest compressive strength, depth of cure, and 

hardness. Resin composites with 50-percent filler showed the highest compressive 

modulus. Resin composites with 40-percent filler showed higher viscosity values than 

resin composites with 30-percent filler. 

In conclusion, increasing the filler level significantly reduced the compressive 

strength, hardness, and depth of cure, but increased the degree of conversion. Also, resin 

composites with the lowest filler level (30 percent) had the highest compressive strength, 

depth of cure, and hardness. From these results, it can be concluded that the experimental 

TCP-filled resin used in this study cannot be used as restorative material. 
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