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The standard of care following endodontic treatment when a tooth lacks 

structure and vitality is to place a post and core build-up. The criteria used in restoring 

endodontically treated teeth have long been influenced by the feel, experience, and 

empiricism of the practitioner. The considerations before initiating endodontic 

treatment include an assessment of the ability to restore the tooth to form and 

function. If restoration is the decision, then the practitioner has a choice of post and 

core designs to retain an overlying crown. Extraction is the alternative. 

The use of posts in nonvital teeth dates back more than three centuries.1 The 

concept of posts or dowels was originally designed as a means of retention of the 

coronal restoration if inadequate tooth structure remained.2 Posts were viewed as a 

method to reinforce nonvital teeth.3 Several reports hypothesize that the rigidity of the 

post should be as close as possible to that of the root to distribute occlusal forces 

evenly along the length of the root.4, 5 Various post and core designs and materials 

have been developed. These include cast post and cores, metal prefabricated posts 

with a core build-up of composite resin, and fiber posts with a core build-up of 

composite resin. High noble alloys, base metal alloys, zircon and quartz fiber, carbon 

fiber, and glass fiber composites have been used as posts. 

Post stiffness is important from a mechanical point of view. As the stiffness of 

a post increases, so does the risk of tooth fracture.6 Even so, stiffer than vital or 

nonvital natural teeth, cast metals are very useful and long-lasting as the standard of 

care in treatment. 
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Fiber posts with a more natural color than metallic posts have been developed 

with an elastic modulus very similar to that of dentin. The similarity in elastic 

modulus to dentin may explain a reported lack of significant root fractures seen in 

natural teeth with the use of fiber posts.7 Although the use of fiber posts is promising, 

their long-term success has not been evaluated. 

Thus, the purpose of this study was to evaluate the fracture resistance of three 

post and core systems in endodontically treated teeth by loading to failure.  Another 

purpose is to evaluate the marginal gap opening on teeth after cyclic loading.  
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HISTORY 

Root canal treatment dates back to the 18th century, when F. Hoffman used hot 

wires for pulp cauterization.8, 9 In 1869, G.V. Black10 introduced the idea of anchoring 

a crown to the root of a nonvital tooth via retentive principles.  G.V. Black advocated 

filling the root canal with gold foil and anchoring a threaded gold bolt on top of the 

filling, which retained a denture tooth. In 1870, T.W. Richmond11 introduced a cast 

post-crown technique for endodontically treated teeth that was to be used for years, 

and other techniques were developed later, such as the Davis crown.12 During that 

period, root canal treatment was generally limited to teeth with single roots. 

In 1920, Billing and Rosenow13 introduced the focal infection theory, which 

led to the belief that nonvital teeth were etiologic agents of common oral diseases, 

resulting in a rapid decline in endodontic procedures. It took dentistry around 30 years 

to overcome this bias, and since that time, many refinements have occurred in clinical 

post systems. 

 
DENTAL PULP ANATOMY 

The idea of “killing the pulp” is to eliminate pain proprioception in the pulp 

chamber and root canals. Innervation is mainly from the sensory afferents of the 

trigeminal nerve (fifth cranial nerve) and sympathetic branches from the superior 

cervical ganglion, which lies opposite the second and third cervical vertebrae. Each 

bundle contains both myelinated and unmyelinated axons. The majority of fibers are 

Aδ fibers, which are fast-conducting and range in diameter from 1 µm to 6 µm.14, 15 
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ENDODONTICALLY TREATED TEETH 

Endodontically treated teeth have usually lost a considerable amount of tooth 

structure due to caries, endodontic treatment, and placement of previous restorations. 

The root portion of a nonvital tooth is sometimes the only remaining foundation for a 

crown. The loss of a large portion of tooth structure makes retention of restorations 

problematic, and it increases the likelihood of fracture. The factors that affect the 

choice of post and core type depend on the type of tooth and amount of remaining 

coronal structure; the latter is the most important indicator for prognosis.16 

Conventional root canal filling with or without a post and core adds little or no 

strength to the restored tooth.17 Nonvital endodontically treated teeth showed more 

resistance to fracture than 1-mm ferruled teeth restored with a cast post and core 

system, a Composipost post and composite resin core system, or a stainless steel post 

and composite resin core system.18 

Nonvital endodontically treated teeth lose their elasticity to a degree directly 

related to the reduction in the amount of dentin and are therefore more susceptible to 

horizontal and vertical root fractures; the latter is the most common type of root 

fracture in nonvital teeth.19 Rosen and Frederick et al. 20, 21 demonstrated that nonvital 

teeth lose their elasticity due to decreased central blood supply and desiccation. 

Nonvital teeth also lose their elasticity as a result of root canal flaring, which is 

necessary for gutta-percha condensation. Helfer, Melnick and Schilder22 found that 

there was no qualitative change in bound water when they compared vital to nonvital 

teeth. It was demonstrated that there was 9-percent less moisture in calcified tissues of 

nonvital teeth compared with vital ones. This process is irreversible even in a 

saturated atmosphere at body temperature.  Laboratory testing has revealed similar 

fracture resistance in untreated and endodontically treated teeth.23 
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Although vital dentin is 3.5-percent harder than nonvital dentin, its hardness 

did not prove to be significantly different. This observation led Sedgley and 

associates24 to the conclusion that endodontically treated teeth do not lose significant 

hardness following endodontic treatment. Huang et al.25 came to the conclusion that 

dehydration in vital and nonvital teeth increases the stiffness of dentin. Vital teeth are 

stronger than teeth restored with pin-retained amalgam core build-up, dowel post with 

glass ionomer-amalgam alloy combination, and cast core build-up.26 Unprepared 

nonvital teeth with resin composite access cavity have demonstrated higher fracture 

resistance to static loading than root-canal treated teeth with cast post and core, 

Zirconia post, or resin-ceramic interpenetrating phase composite post with Procera 

crowns.27 

 
ENDODONTIC TREATMENT OR 
EXTRACTION AND IMPLANT PLACEMENT 
 

Implants have been alternative solutions to missing teeth since 2,500 years ago 

when the Etruscans carved teeth from bones of oxen.28 Osseointegrated endosseous 

dental implants are compared with ankylosed teeth because of similarities in bone 

fusion and rigidity under healthy conditions.29 Although implants have been used for 

a long time with success rates up to 100 percent in the anterior region of the 

mandible,30-33 not every patient is a candidate for implant placement. There are 

absolute contraindications to implant placement, such as a recent myocardial 

infarction or cerebrovascular accident, prosthetic valvular replacement, active cancer 

therapy, psychiatric disorders, and intravenous bisphosphonate treatment.34 

 
FERRULE LENGTH 

An adequate ferrule is necessary for a successful post-retained restoration. A 

ferrule is a band formed by the walls and margins of the crown that encircles the 
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circumference of the residual tooth.35 A ferrule effect is a collar of 360º surrounding 

parallel walls of dentin and extending 1.5 mm to 2.0 mm coronal to the finish line of 

the preparation.36 A 2.0-mm ferrule preparation was found to be much more resistant 

to fracture than a nonferruled preparation if debonding did not occur first.37 The mode 

of failure for a 2.0-mm ferrule preparation was mainly fracture, whereas a nonferruled 

preparation failed through debonding.38 A 2.0-mm ferrule length made teeth more 

resistant to fracture compared with 1.0-mm to 1.5-mm ferrule length, regardless of the 

dowel system used.39 Several studies40-44 support the concept of having 2.0-mm 

ferrule preparations in nonvital teeth and provided the benefits over lower ferrule 

length values. A nonuniform 2.0-mm ferrule makes a tooth more prone to fracture 

than a uniform 2.0-mm ferrule. A nonuniform 2.0-mm ferrule is more resistant to 

fracture than a tooth without a ferrule.45 Ferrule length has a greater influence on the 

fracture resistance of a root restored with a post than the post length itself after cyclic 

loading.46 

 
FERRULE WIDTH 

According to Tjan and Whang,47 a preparation with 1.0 mm of remaining 

buccal dentin wall is apparently more prone to fracture on horizontal impact than 

those with 2.0 mm or 3.0 mm of buccal dentin wall. A similar study in 1990 

concluded that a 2.0-mm buccal dentin wall increased the resistance to root fracture.48 

A contra bevel is an external bevel arising from the occlusal surface or edge of a tooth 

preparation and placed at an angle that opposes or contrasts the angle of the surface it 

arises from.49 Contra bevels were also found to be effective in augmenting root 

strength.47 

 
 
 



9 
 

ROOT LENGTH 

Root length plays a significant role in the long-term success of nonvital 

teeth.23 The need of a long root may interfere with the placement of a 1.5-mm to 2.0-

mm ferrule.39-44 Crown lengthening or orthodontic extrusion of a tooth might be 

necessary to gain access to more tooth structure for better retention of the coronal 

restoration. Crown lengthening necessitates raising a buccal and lingual 

mucoperiosteal flap, and removal of crestal bone. To prevent unpredictable 

inflammation and bone loss, crown margins should be placed 2 mm to 3 mm 

supracrestal to the alveolar bone in order to preserve the biological width.50 To 

preserve the biological width and a 1.5 mm to 2 mm ferrule, crestal bone must be 

removed to allow 4.5 mm to 5 mm of supracrestal tooth structure. Heithersay51 first 

proposed the use of orthodontic methods to extrude roots with horizontal fractures in 

the gingival third. Later, Ingber52, 53 introduced the technique of orthodontic extrusion 

as a means of treating fractured or carious teeth. To extrude a root, a modified post is 

cemented into the root canal to enable attachment of the orthodontic elastics. The 

circumference of the extruded root face is narrower due to the taper of the root; 

therefore, the emergence profile of the crown is compromised. Sufficient extrusion of 

the root is required to provide an adequate ferrule of at least 1.5 mm to 2.0 mm, which 

results in a shorter root within the alveolus and a lower crown-to-root ratio. 

 
CEMENT AND LUTING AGENTS 

Cement is a binding element or agent used as a substance to make objects 

adhere to each other (e.g.: Panavia 21 by Kuraray Dental), whereas a luting agent is a 

material used to attach an indirect restoration to prepared teeth,49 e.g. zinc phosphate.  
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Panavia 21 has a bond strength to dentin in root canals ranging from 16 MPa 

at the cervical area to 21 MPa apically.54 This variation has been attributed to the 

dentinal tubule density, which decreases from cervical to apical dentin.55 Bond 

strength is related to the area of bonded solid dentin rather than tubule density.56  

Zinc phosphate is one of the oldest luting agents and has been used in dentistry 

for over a century. In 1879, Dr. Peirce57 mixed for his colleagues a hard, nearly white 

material composed of oxide of zinc and glacial phosphoric acid. Since this early 

descriptive use of zinc phosphate cement, only minor changes have been made by 

manufacturers in its basic composition. Crowns cemented using zinc phosphate with 

margins placed in dentin did not demonstrate any significant microleakage difference 

than those cemented in enamel.58 Zinc phosphate does not chemically bond to tooth 

structure.59, 60 

It was demonstrated that Panavia resin cement gives additional resistance to 

fracture compared with the brittle conventional zinc phosphate luting agent.61 Resin 

bonding of posts significantly lowers microleakage as compared with posts luted with 

conventional zinc phosphate.62 Zinc phosphate demonstrated more retention for 

tapered posts than zinc polycarboxylate or epoxy cements.63 Panavia 21 and zinc 

phosphate demonstrate no statistical differences in post retention.64 According to 

Schmage et al.65 zinc phosphate cement used in post cementation exhibited tensile 

bond strength as good as resin composite cements like Compolute Aplicap, Flexi-

Flow cem, Panavia 21 EX, Tenet and Twinlook cement. 

The minimal cement film thickness was obtained by using glass ionomer 

cements according to Wang et al.66 and White and Kipnis67; however, in other studies, 

lower marginal discrepancies were found with resin cements.68, 69 
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POSTS 

The main purpose of a post is to retain a core in a nonvital tooth that has lost 

extensive coronal tooth structure.70, 71 Several authors have shown that an endodontic 

post of low stiffness leads to more even stress distribution.6, 18, 72 Turner73 reported 

that failures in post- and core-restored teeth were mainly caused by post loosening, 

followed by apical abscesses and carious lesions with few root or post fractures. 

Prefabricated posts are preferably used in a cleaned and prepared root canal 

because of ease of manipulation, and rapid setting time of the composite resin core, 

which enables immediate tooth preparation and reduces total cost.74, 75 Several in vivo 

and in vitro studies reported that prefabricated posts can offer a better prognosis than 

cast post and cores for endodontically treated teeth.76-78 

Alves et al.79 concluded that immediate restoration of the tooth with a 

prefabricated post and composite resin core was preferable to placing a temporary 

post-crown before a final cast post and core. It was shown by Terata80 that both 

eugenol-containing and eugenol-free temporary cements decreased the tensile bond 

strength of resin-luting cements to bovine teeth. On the other hand, Mannocci and 

coworkers81 demonstrated no effect of using temporary filling materials with zinc 

oxide and eugenol on carbon fiber posts with composite resin core restorations.  

Cast post and core technique requires a procedure that is more time-

consuming and less cost effective; however, the main advantage of using a cast post 

and core technique is the ability to conform to any canal space, to provide a good fit, 

and to replace lost tooth structure.82, 83 

Komada et al.84 demonstrated that nonvital teeth restored with cast post and 

cores in normal bone level (2 mm below the cementoenamel junction) had 

significantly higher fracture resistance than glass fiber posts with composite resin 
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cores. When nonvital teeth were restored with cast post and cores in resorbed bone (5 

mm below the cementoenamel junction), there was no significant difference in 

fracture resistance between cast post and core restorations versus glass fiber posts 

with composite resin core build-up. It was found that increasing the post width does 

not increase post retention significantly.63, 85 Longer posts demonstrated more 

retention than shorter ones.63 It was also found that short posts transmit greater lateral 

forces to the remaining root structure compared with longer posts.86 

Fiber posts have an elastic modulus (E = 20 GPa) similar to that of dentin (18 

GPa) when compared with cast and prefabricated metallic posts (E = 200 GPa). Thus, 

stresses along the remaining tooth structure are distributed instead of concentrated,7, 

87-92 which would explain the lack of significant root fractures.7 FiberFill (Pentron, 

Wallingford, CT) (Glass fiber obturator- post with gutta percha tip) demonstrated 

significantly higher fracture resistance values compared with conventional cast post 

and core, FiberKor (glass fiber post), and metal prefabricated posts.93 Prefabricated 

metal posts and cast post and cores have been used for a long time and are still being 

used as the standard treatment. It is found they increase the risks of root fractures.6 

Although fiber posts are found to be affected by moisture, modulus or elasticity and 

flexural strength levels exceeded the strength necessary to avoid fracture of the post 

during function.6 

In a survey made in the late 1980s, it was estimated that around 25 percent of 

all prosthetically restored teeth are nonvital and endodontically treated before 

prosthetic restoration.94 Questionnaire surveys of dentists in the US, Sweden, 

Germany, and Switzerland have shown disagreements about prosthetic treatment of 

endodontically treated teeth. Surveys included but were not limited to current 
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philosophies in treating nonvital teeth, ferrule effects, post types and cements used.95-

97 

 
PINS 

Watson98 showed that using a pin or pins for crown retention has a splinting 

effect. He concluded that the addition of one or more pins nearest the occlusal forces 

improves stress distribution and results in less destructive shearing forces exerted on 

the root. Several years later  Newberg et al.99 also supported Watson’s theory. Moll et 

al.100 showed that pin placement according to Nealon’s technique 101, 102 with 

composite resin core was at least four times stronger than cast post and cast core.  

 
RESILON 

Resilon (Resilon Research, North Branford, CT) is a root canal obturation 

material made of synthetic polymer-based soft resin as an alternative to gutta-percha. 

Resilon requires a sealer such as methacrylate resin to complete obturation of a root 

canal system. 

Calcium hydroxide has been advocated as an intracanal medicament when 

endodontic treatment cannot be accomplished in one visit. It was found that using 17-

percent of EDTA (Ethylenediamine tetraacetic acid) to remove the remnants of 

calcium hydroxide did not affect the Resilon seal in the obturated root canal 

system.103 

Despite the findings of Williams et al.,104 Resilon has been shown to be 

significant in regard to sealing properties and reductions in periapical inflammation. 

According to Shipper et al.,105 Resilon with a methacrylate resin sealer (Epiphany; 

Pentron Clinical Technologies, Wallingford, CT) demonstrated a reduction in 

microleakage up to six times compared with gutta-percha with AH-26 sealer. Another 
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study by Shipper et al.106 showed that teeth obturated with Resilon demonstrated 

significantly less apical periodontitis than teeth obturated with gutta-percha. Dye 

penetration tests in obturated nonvital teeth showed the least apical microleakage 

when obturated with Resilon compared with gutta-percha.107-109 According to Teixeira 

et al.,110 single-rooted teeth obturated with Resilon showed significantly more 

resistance to fracture than teeth obturated with gutta-percha, which has been attributed 

to the monoblock concept.  

Tay et al.111 found no significant difference in microleakage between Resilon 

and gutta-percha; the gaps in the Resilon/Epiphany group were between Epiphany and 

dentin walls, whereas in the other group, the gap was between gutta-percha and AH-

26 sealer. Biggs et al.112 also found no significant difference between teeth restored 

with gutta-percha with either Roth or AH plus sealers and Resilon with Epiphany 

sealer. Such an observation challenges  the monoblock concept described by Teixeira 

et al.110  

Immediate post space preparation after obturation with Resilon was shown to 

have better apical seal than with gutta-percha/AH-Plus. Also in that study, it was 

shown that a delayed post space preparation (7 days) provided better apical seal using 

Resilon obturated root canals compared with using gutta-percha/AH-Plus.113 

 
APICAL MICROLEAKAGE 

Microleakage is the passage of bacteria, fluids, molecules or ions between a 

cavity wall and the restorative material applied to it.114 Endodontically treated teeth 

need to be assessed carefully for the following to prevent microleakage inside the root 

canal treated tooth: good apical seal, no sensitivity to pressure, no exudates, no fistula, 

no apical sensitivity and no active inflammation.19 A proper apical seal of 4 mm to 5 

mm of gutta-percha is the minimum amount that should remain.115-119 Frogel120 
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evaluated various prefabricated post and core systems with a fluid filtration 

microleakage test and found that none of the post systems tested were capable of 

consistently achieving a fluid-tight seal.  

 
CORONAL MICROLEAKAGE – CROWN MARGIN 

A margin is defined as the outer edge of a crown, inlay, onlay, or other 

restoration.49 Coronal marginal leakage at the interface of endodontically treated teeth 

with their artificial crowns may result in recurrent caries and failure of both the 

restoration and the root canal treatment.121 According to a survey made by Bronson et 

al.,122 prosthodontists found crown margin openings up to 62 µm to be acceptable 

clinically before final cementation. 

There are several methods for evaluating crown margins after cementation:  

1) Tactile examination using an explorer. 

2) Bitewing and periapical radiographs. 

3) Examination of marginal fit using impression materials.123 

Assif et al.124 demonstrated that an explorer has an average 50-µm tip. An 

impression material film thickness could be as low as 6 µm to 30 µm allowing it to 

capture more details of open margins. Radiographic images are helpful in detecting 

subgingival overhangs of crowns that cannot be detected in impression-making unless 

gingival retraction is performed. Impression-making was more accurate in detecting 

open margins than tactile examination using an explorer or radiographs, although each 

proved to be useful. There are several studies that agree on having a proper fit of 

crown margins to prevent periodontal disease and subsequent failure of the 

restoration.123, 125-133 Crown margins are affected by the compositional stability of the 

cast gold used whether as-received or recast. Although the difference in accuracy of 
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the margin of a crown was statistically significant between the two types of gold 

previously mentioned, the findings were not clinically significant.134 

The incomplete fit of full cast crown restorations has been a problem for 

dentists, which has led many researchers to study this problem.135-139 Many 

researchers have agreed that the use of a die spacer during fabrication of a full cast 

crown improves the fit at cementation.135, 138 Die spacers allow increased space 

between the tooth surface and the internal surface of the casting. This reduces stress 

areas created during cementation, and thereby resulting in a better fit and retention of 

the final restoration.135, 137, 138, 140, 141 It was believed in the past that frictional fit 

between the coping and the tooth surface increased retention,142 which makes a good 

fit difficult when a die spacer is being used.143-146 Die spacers should be applied in 

layers according to the manufacturers’ instructions on the entire preparation on the die 

down to 0.5 mm short of the preparation margin.147 

Grajower and Lewinstein148 indicated that an optimum fit of the casting can be 

obtained only if relief space allows for cement film thickness, roughness of the tooth, 

and casting surfaces. They recommended a 50-µm spacer to compensate for the 

cement film and surface roughness of the casting, which is around 30 µm, and for the 

wax pattern distortion, which is about 20 µm. 

Bronson et al.122 found in his study that the clinically acceptable margins of a 

cemented crown do not exceed 130 µm. Marginal adaptation was found to be 

adversely affected by cyclic loading, which was correlated to the method of 

application of the core material.149, 150  

 
ESTHETICS 

Esthetics has always been a challenge in dentistry. One way to overcome this 

challenge in endodontically treated anterior teeth is to make prefabricated esthetic 
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posts151-153 such as ceramic posts (Celay), polyester posts reinforced with zirconium 

fibers (Snowlight), zirconia post (Cosmopost) and fiber posts, which could be either 

glass or carbon fiber (FRC Postec Plus, PeerlessPost, Aestheti-Post, Light-Post). The 

dental society’s concern escalated to claim the benefits of “metal-free dentistry.”154-156 

This claim is not true since dental ceramics contain metals157 such as zinc, zirconium 

or aluminum. There is no evidence to support the belief that metal-free dentistry is 

beneficial.158 

 
CYCLIC LOADING AND LOADING TO FAILURE 

Cyclic loading is the repeated loading of a specimen to a specific number of 

cycles. Loading to failure is the single continuous loading of a specimen with a 

gradually increasing unidirectional force until the specimen fails. In a study by 

Stegaroiu et al.,159 cyclic loading did not affect the retention of cast post and core 

restorations; however, when prefabricated posts were used in conjunction with a 

composite core, retention was significantly reduced after cyclic loading. Another 

study by Hu et al.160 showed the significance of a ferrule in a post preparation. This 

study concluded that cast post and cores were more resistant to static loading than the 

other groups in the study (composite resin post and core, and carbon-fiber-reinforced 

post with composite resin core). However, fiber-reinforced posts showed a longer 

fatigue life than the rest of the groups. They were able to conclude from that study 

that nonrestorable root fractures were seen in both the cast post and core and the fiber-

reinforced post groups. The composite resin post and core group demonstrated 

restorable root fractures in both types of loading, which would make it the most 

desirable restoration for structurally compromised roots.  
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PURPOSE OF THIS INVESTIGATION 

This investigation was undertaken to gain more information on composite 

resin core behavior combined with glass fiber posts and Panavia 21 for crown 

cementation (under cyclic loading). It is hypothesized that a glass fiber post combined 

with a composite resin core and Panavia 21 for crown cementation would resist 

marginal gap opening as good as or better than the other groups. This hypothesis is 

based on the similarity of the elastic modulus of glass fiber posts to natural tooth 

dentin7, 87-92 combined with the adhesive effect of Panavia 21 to tooth structure, 

silanated composite resin, and tin plated silver palladium alloy. Although it is known 

that composite resin has a much lower elastic modulus than cast alloys161 that would 

tend to deform at lower cyclic stresses, the bonding system used in this glass fiber 

group tested with Panavia 21 should eliminate marginal gap opening at the lingual 

surface of bucally loaded, prepared teeth. 

Another hypothesis being tested is that cast post and cores would demonstrate 

higher load-to-failure values than the other groups tested. It is believed that the 

strength of the casted silver palladium alloy with a good adaption of the post to the 

canal space would render higher values of fracture resistance than the other groups. 

Although this type of testing has been done before, 93 various parameters such as 

ferrule length, root length, and cement used are different from other studies. 
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SPECIMEN GROUPS 

Three groups were tested: 

1) Group CP: Conventional cast post and core (Elektra,162 Type IV Silver 

Palladium White C&B Alloy; Williams Ivoclar Vivadent, Amherst, 

NY) in conventionally prepared root canals of teeth. 

2) Group FR: PeerlessPost (Glass fiber; SybronEndo, Orange, CA). 

3) Group MR: Prefabricated metal posts (Titanium alloy, Parapost XH; 

Coltene Whaledent, Cuyahoga Falls, OH). 

The fatigue method utilized and the statistical analyses here were derived from 

those described by Thongthammachat et al.93 

 
SPECIMEN FABRICATION 

Sixty extracted human canines collected under an IUPUI/Clarian IRB 

approved protocol were evaluated with a fiber optic light (DEMI LED light curing 

system; Kerr Corporation, Orange, CA) to demonstrate the absence of cracks or 

fractures, and by x-ray (x-ray machine cone facing proximal surface) to evaluate the 

approximate size of the pulp chamber and canal to rule out calcified and immaturely 

wide canals (more than 3 mm) at 15 mm from the apex, and to verify that all root 

canals were straight beyond 5 mm from the apex. They were distributed into three 

groups of 20 teeth each; 10 teeth of each group were fatigue loaded, and the other 10 

were continuously loaded to failure. 

The coronal portions of all 60 teeth were removed using a diamond saw 

mounted on a thin sectioning machine (Gillings-Hamco; Hamco Machines, Inc., 

Rochester, NY) under water spray to produce a flat surface, perpendicular to the long 
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axis of each tooth at a speed of 2.59 mm/min. All teeth were reevaluated again for any 

cracks using the same method described previously with a fiber optic light. The 

remaining root length was 14.8 ± 0.5 mm. 

 
ROOT CANAL TREATMENT AND OBTURATION 

The canal system of each tooth was prepared and obturated using a single-

cone technique as follows. An access preparation was made and the content of the 

canal was removed with a barbed broach. The root length was determined by inserting 

a #10 file into the canal until the file could be seen emerging from the apical foramen. 

The working length was established by subtracting 1 mm from the root length. Canal 

preparations for the full working length began with the #10 file, and proceeded 

sequentially through a #40 file. Profile series 29 0.04 taper files (Dentsply, York, PA) 

were used to the full working length in an Endo ITR – Intelligent Torque Reduction 

(AEU-20; Dentsply Tulsa Dental, Co., Tulsa, OK) handpiece at ratio 1:8, torq 2 and 

350 rpm to achieve the required 0.04 mm taper after wicking the sides of the canal 

with RC Prep microdose (Premier Dental Products, Morristown, PA) to help lubricate 

the canal and remove calcifications to permit more efficient instrumentation. 

Alternating rinses of 2.5-percent NaOCl (sodium hypochlorite) and liquid 17 percent 

EDTA (ethylene diamine tetraacetic acid) were used for irrigation between file sizes 

followed by drying with absorbent paper points (Henry Schein, Melville, NY). The 

final irrigation used was EDTA followed by a rinse of sterile water so as not to affect 

the bonding process of the resin root canal filling material RealSeal (SybronEndo, 

Orange, CA). 

 A single-cone technique was employed to obturate the root canal of all teeth 

using RealSeal. A #40 0.04 mm taper main cone was trial fit and verified to be 1 mm 

from the anatomical apex. The root canal was conditioned using RealSeal primer 
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dispensed in a mixing well using the manufacturer’s supplied applicator brush and 

paper points (Henry Schein, Melville, NY) to length. Paper points were used to wick 

the primer to the apex and the excess primer was removed using dry paper points. 

RealSeal sealer was dispensed onto a mixing pad and then applied along the entire 

length of the canal. When obturation was complete, the RealSeal obturation material 

was light cured in the chamber for 80 seconds, which created an immediate coronal 

seal. The RealSeal sealer had set in the remainder of the canal for approximately 45 

minutes to create a monoblock. 

 
POST SPACE PREPARATION 

Post space preparation for all teeth was initiated after 7 days from 

obturation113 by the use of a universal starter drill included in the PeerlessPost Intro-

kit (SybronEndo, Orange, CA) at a speed of 5000 rpm to a depth creating a 9-mm post 

space. The canals were rinsed with Peridex (chlorhexidine gluconate 0.12-percent oral 

rinse; Omni Preventive Care, 3M ESPE, West Palm Beach, FL) and dried with paper 

points (Henry Schein, Melville, NY). 

 
GROUP CP POST PREPARATION 

For group CP, post space preparation was established using Profile O.S. 

Orifice Opener (Dentsply, York, PA) size 20 through size 60 to the full 9-mm post 

space length. The size of the post space was 0.9 mm and 1.4 mm at the apical end and 

the orifice opening, respectively. An anti-rotational box was created on the lingual 

surface. Duralay (Reliance Dental Manufacturing, Worth, IL) patterns for casting 

were prepared according to the manufacturer’s instructions, supported by 

prefabricated plastic posts of 23 mm in length after thinning the apical end for a 

complete fit in the canal post space. The tooth length from root apex to incisal edge 
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will be 21.5 mm. Posts and cores were invested in Beauty-Cast (Whip Mix Corp., 

Louisville, KY) without a ring liner. The distilled water added to the investment 

powder was 17 ml (2 ml more than the recommended value by the manufacturer to 

allow a more precise passive fit in the prepared root canal). After casting, each post 

was trial fit to verify that it would seat passively. All cast post and cores were 

cemented using zinc phosphate cement (Mizzy Inc., Cherry Hill, NJ). 

 
GROUP FR POST PREPARATION 

For group FR, PeerlessPost™ (SybronEndo; Orange, CA) size # 3 post with a 

0.04 taper was used. The post space was prepared using the drill supplied in the starter 

kit for post preparation. The glass fiber post was shortened 1 mm from the coronal 

end and 1 mm from the apical end and then rechamfered to the original shape. The 

apical size of the post space was 0.9 mm and the orifice opening was 1.4 mm in 

diameter. An anti-rotational box was created on the lingual surface. The posts were 

cemented using ParaCem Universal DC (Coltene Whaledent, Cuyahoga Falls, OH) 

according to the manufacturer’s instructions. 

 
GROUP MR POST PREPARATION 

For group MR, ParaPost XH (Coltene/Whaledent, Cuyahoga Falls, OH) size # 

3 was used with the drill supplied with it in the starter kit for post preparation. The 

post space preparation was 9 mm in length with parallel sides according to the 

manufacturer’s instructions. The apical end and orifice opening of the post space were 

0.9 mm in diameter. An anti-rotational box was created on the lingual surface. All 

titanium posts were shortened by 2 mm from the apical end and then rechamfered to 

the original shape. All titanium posts were cemented using zinc phosphate cement 

(Mizzy Inc., Cherry Hill, NJ). 
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POST CEMENTATION 

For groups CP and MR, the canals were coated with zinc phosphate cement 

(Mizzy Inc., Cherry Hill, NJ) by using a size # 2 Lentulo spiral (Dentsply Canada, 

Woodbridge, ON). The posts were coated with the same cement and inserted in the 

prepared canal, allowed to rebound to release hydraulic pressure and then gently 

reseated. This procedure was repeated until the post seated passively without rebound. 

A static load was applied using a 1 Kg force until the cement set completely for a 

minimum of 10 min.163 For group FR, the posts were cemented using ParaCem 

Universal DC (Coltene Whaledent; Cuyahoga Falls, OH) by coating the post with 

cement after using ParaBond Non-Rinse Conditioner and ParaBond Adhesive A and 

B according to the manufacturer’s instructions. 

 
GROUP MR AND FR CORE PREPARATION 

Groups MR and FR cores were fabricated using CoreRestore 2 (Kerr Corp., 

Orange, CA). The dentin was etched with a 37-percent phosphoric acid gel for 15 

seconds, rinsed for 15 seconds and blot dried. Optibond Solo Plus (Kerr Corp., 

Orange, CA) was applied with a micro brush for 15 seconds with a light brushing 

motion and air-thinned for 3 seconds to achieve a visibly uniform layer.164 The 

adhesive was light-cured for 20 seconds. The core was built up by adding no more 

than 2 mm2 bulk increments of composite resin and curing for 40 seconds each using 

a DEMI LED light curing system (Kerr Corp., Orange, CA) and prepared to the form 

needed, so that the tooth length from root apex to incisal edge was 21.5 ± 0.5 mm and 

the form would be ready to receive a metal coping. After 14 days stored under 

distilled water replaced at least once a week, all CoreRestore 2 (Kerr Corp., Orange, 

CA) core build-ups were prepared to compensate for the composite resin core 
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expansion.165, 166 The lingual thickness of the core material on top of the post had a 

minimum of 1.5 mm with a lingual surface 45º to the long axis of the tooth. 

All teeth were prepared for full coverage crown restorations by creating a 2-

mm ferrule. A 1-mm shoulder167 was made on the facial surface extending to the 

proximal line angles with the lingual surface having a 0.5-mm chamfer finish line. 

 
IMPRESSION AND DIE FABRICATION 

After all groups were fitted with their posts and cores, dies were made of each 

tooth using PVS impression material. Examix NDS injection-light body (GC America 

Inc., Alsip, IL) was injected directly on the tooth and Examix monophase injected in 

an impression tray coated with a universal VPS adhesive (GC America, Inc., Alsip, 

IL). The impression material was allowed to set for 10 minutes and then poured in 

Type IV stone (Silky-Rock violet; Whip Mix Corp., Louisville, KY). All dies were 

trimmed and prepared after applying one coat of die hardener (Harvest Dental 

Products, Brea, CA) on the entire preparation and two coats of die spacer (Harvest 

Dental Products, Brea, CA) on the entire preparation 0.5 mm to 1 mm from the 

margins. 

 
WAX PATTERN FABRICATION 

Each crown was waxed to a height of 22.5 mm using Yeti Dental Thowax 

Sculpting Wax (YETI Dentalprodukte GmbH, Engen, Germany). The crowns were 

prepared with an occlusal convergence of 6 º to 10 º with a flat area from 5 mm to 6 

mm incisal to the lingual margin at 45 º to the long axis of the tooth. For fatigue 

loading, a gauge 14 wax loop (made by twisting around the shank of a long shank 

bur) was incorporated on the facial aspect of the coping wax pattern 3 mm to 4 mm 

away from the crown facial margin. 
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INVESTING AND CASTING 

Wax patterns were sprued and then invested in NovoCast (Whip Mix Corp., 

Louisville, KY) according to the manufacturer’s instructions. All coping castings 

were made using the same alloy used for group CP post and cores. 

 
COPING CEMENTATION 

The copings for group FR were cemented with Panavia 21 (Kuraray America, 

Inc., New York, NY) after tin plating the intaglio of all copings using MicroTin 

(Danville Materials, San Ramon, CA) for 2 sec to 6 sec (according to the 

manufacturer’s instructions) and silanating the composite resin cores using Clearfil 

Ceramic Primer (Kuraray America, Inc. New York, NY) according to the 

manufacturer’s instructions after activating the surface with K-Etchant gel (Kuraray 

America, Inc. New York, NY) for 5 seconds. The other two groups (CP and MR) 

were cemented using zinc phosphate (Mizzy Inc., Cherry Hill, NJ) without tin plating 

the copings. All cementation procedures were kept under a constant 1 kg load after 

complete seating until complete cement setting occurred. 

 
SPECIMEN PREPARATION FOR TESTING 

 Each root was coated with a thin-layer of Examix NDS injection-light body 

(GC America Inc., Alsip, IL) to simulate the PDL.168 The teeth were attached to a 

surveyor (Dentsply Ceramco, York, PA) to align the long axis, and then invested in 

autopolymerizing resin (Orthodontic Resin, Dentsply Caulk, Milford, DE) at a level 

of 2 mm to 3 mm below the margin of the preparation to simulate the biologic width. 

All teeth were stored in 100-percent relative humidity (RH) at 37ºC for 24 

hours before being tested. 
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LOAD TO FAILURE 

For each group, 10 specimens were loaded 6 mm coronal to the crown margins 

with a continuous compressive force at a 45-º angle72, 93 to the long axis of the tooth 

and a crosshead speed of 2 mm/min93 until failure using a MTS Sintech Renew 

Universal Testing machine (Eden Prairie, MN) with TestWorks software. After 

testing, all specimens were examined to record the location and nature of failure. 

 
FATIGUE LOADING 

For each group, the other 10 specimens were placed into a jig and screwed to 

the stationary member of a testing machine. The specimens were then loaded at 135 º 

169-171 to the long axis of the tooth by means of pulling from the reverse side through a 

ring intermittently with a 120 N force at a frequency of 2 cycles per second81, 93 for 

100,000171-174 cycles, using an MTS Bionix 858 Test System machine (Eden Prairie, 

MN). One hundred thousand cycles is equivalent to 144 days with a correlation 

coefficient between the in vitro and the in vivo depths of 0.94.175, 176 Although 

reported incisive force values vary, this force is 80 percent of maximum average 

biting force as reported by Garner and Kotwal.177 

 
MARGINAL GAP MEASUREMENT 

Marginal gaps between the cast crown and the tooth margin were measured 

mid-facial and mid-lingual on all cyclic loaded teeth. After all crowns were cemented, 

marginal gap measurements were recorded just before and after cyclic loading for 

those teeth that did not fail by cutting grooves on the teeth mid-facially and lingually 

for measurement repeatability (Figure 10). The marginal gap was measured in 

microns using a Quadrachek II (Mentronics, Bedford, NH) connected to a Nikon 

Measurescope UM-2 (Nikon, Melville, NY) with optical magnification of X10 (ocular 
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lens) by X40 (objective lens) for the cyclic loaded group before and after loading 

from the same marking groove. Cyclic loaded teeth did not undergo loading to failure 

after marginal gap measurements. 

 
STATISTICAL METHOD 

The fracture resistance (maximum load-to-failure), moment of inertia at 

cervical area, moment of inertia at fracture site, marginal gap pre-loading, and change 

in marginal gap after loading were compared among the three post types using a one-

way analysis of variance (ANOVA). Pair-wise comparisons among the three groups 

were performed using Fisher's Protected Least Significant Differences method to 

control the overall significance level at 5 percent. The averages of the facial and 

lingual marginal gaps were used in the analyses. 

 
SAMPLE SIZE JUSTIFICATION 

 Based on the study by Tan et al.,45 the within-group standard deviation of the 

load-to-failure measurements was estimated to be 134 N. With a sample size of 10 

specimens per group tested for loading to failure, the study had 80-percent power to 

detect a difference of 180 N between any two groups, assuming two-sided tests 

performed at a 5-percent significance level for each test. The study was able to detect 

a 1.3 standard deviation difference between groups for the change in marginal gap 

size. 

 
HYPOTHESES 

There were two hypotheses for this study. The first was that the FR group 

would have less marginal gap opening on the lingual than the other groups. The 

second was that the CP group would have a higher load at failure than the other 

groups.   
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LOADING TO FAILURE (Table III) 

Group MR had the highest (1432 N) mean followed by group CP (1409 N) 

and group FR (1214 N). Group FR had the highest (520 N) standard deviation 

followed by group MR (415 N) and group CP (377 N). The standard error was highest 

in group FR (164 µm) followed by group MR (131 µm) and group CP (119 µm). 

Group CP had the highest (2162 N) maximum load-to-failure at the maximum 

value followed by group MR (1976 N) and group FR (1878 N). Group CP had the 

highest (899 N) minimum load-to-failure value followed by group MR (702 N) and 

group FR (455 N).  

The three post types did not have significantly different maximum load-to-

failure (p = 0.49). 

 
MOMENT OF INERTIA AT CERVICAL AREA (Table IV) 

Group MR demonstrated the highest (2015 mm4) mean followed by group FR 

(1903 mm4) and group CP (1803 mm4). Group FR had the highest (699 mm4) 

standard deviation followed by group MR (661 mm4) and group CP (450 mm4). 

Group FR had the highest (221 mm4) standard error followed by group MR (209 

mm4) and group CP (142 mm4). 

Group MR had the highest (3407 mm4) maximum moment of inertia at the 

cervical area followed by group FR (2868 mm4) and group CP (2481 mm4). Group 

CP had the highest (1022 mm4) minimum moment of inertia at the cervical area 

followed by group MR (970 mm4) and group FR (840 mm4). 

The three post types did not have significantly different moments of inertia at 

cervical area (p = 0.75). 
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MOMENT OF INERTIA AT FRACTURE SITE (Table IV) 

Group MR demonstrated the highest (431 mm4) mean followed by group FR 

(271 mm4) and group CP (209 mm4). Group MR had the highest (298 mm4) standard 

deviation followed by group FR (209 mm4) and group CP (192 mm4). Group MR had 

the highest (94 mm4) standard error followed by group FR (66 mm4) and group CP 

(61 mm4). 

Group MR had the highest (953 mm4) maximum moment of inertia at the 

fracture site followed by group FR (630 mm4) and group CP (549 mm4). Group MR 

had the highest (73 mm4) minimum moment of inertia at the cervical area followed by 

group CP (23 mm4) and group FR (15 mm4). 

The three post types did not have significantly different moments of inertia at 

fracture site (p = 0.12). 

 
FAITGUE LOADING FAILURES 

Several fractures occurred in the groups tested here. Some occurred before 

testing (two split roots in Group CP) and 6 catastrophic root fractures occurred (three 

in group CP and MR each). 

 
FATIGUE LOADING – FACIAL MARGINAL 
GAP BEFORE TESTING (Table V) 

Group MR had the largest (30.4 µm) facial marginal gap mean followed by 

group FR (26.5 µm) and group CP (13.7 µm). Group MR had the highest (25.5 µm) 

facial marginal gap standard deviation followed by group FR (21.3 µm) and group CP 

(12 µm). The standard error was highest in group MR (9.7 µm) followed by group FR 

(6.7 µm) and group CP (4.9 µm). 
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The largest maximum marginal gap seen was in Group FR (82 µm) followed 

by group MR (77 µm) and group CP (37 µm). The largest minimum marginal gap 

seen was in group FR (9 µm) followed by group CP (5 µm) and group MR (4 µm). 

Groups CP had a significantly smaller pre-loading marginal gap than groups 

FR (p = 0.0265) and MR (p = 0.0273), while both groups FR and MR did not have a 

significantly different pre-loading marginal gap (p = 0.86). 

 
FATIGUE LOADING – FACIAL MARGINAL 
GAP AFTER TESTING (Table V) 

Group MR had the largest (40.1 µm) facial marginal gap mean followed by 

group CP (30 µm) and group FR (23 µm). Group MR had the highest (38.7 µm) facial 

marginal gap standard deviation followed by group FR (22.2 µm) and group CP (10.1 

µm). The standard error was highest in group MR (14.6 µm) followed by group FR 

(7.0 µm) and group CP (4.1 µm). 

The largest maximum marginal gap seen was in Group MR (121 µm) followed 

by group FR (83 µm) and group CP (36 µm). The largest minimum marginal gap seen 

was in group CP (10 µm) followed by group FR (6 µm) and group MR (5 µm).  

 
FATIGUE LOADING – FACIAL MARGINAL GAP CHANGE (Table V) 

Group CP had the highest (16.3 µm) facial marginal gap mean followed by 

group MR (9.7 µm) and group FR (-3.5 µm). Group MR had the highest (16.2 µm) 

standard deviation followed by group CP (16.1 µm) and group FR (6.8 µm). The 

standard error was highest in group CP (6.6 µm) followed by group MR (6.1 µm) and 

group FR (2.2 µm). 

Group MR had the highest (44 µm) maximum facial marginal gap change 

followed by group CP (31 µm) and group FR (8 µm). Group MR had the highest (-18 
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µm) minimum facial marginal gap change followed by group CP (-5 µm) and group 

FR (-1 µm).  

The changes in facial marginal gap was insignificant for group MR (p = 

0.1636), group FR (p = 0.1399) and group CP (p = 0.0555).  

 
FATIGUE LOADING – LINGUAL 
MARGINAL GAP BEFORE TESTING (Table VI) 

Group FR had the largest lingual marginal gap mean (49.7 µm) followed by 

group MR (49.1 µm) and group CP (15 µm). Group MR had the highest (35.4 µm) 

facial marginal gap standard deviation followed by group FR (22.9 µm) and group CP 

(8.8 µm). The standard error was highest in group MR (13.4 µm) followed by group 

FR (7.2 µm) and group CP (3.6 µm). 

The largest maximum marginal gap seen was in group MR (119 µm) followed 

by group FR (93 µm) and group CP (28 µm). The largest minimum marginal gap seen 

was in group FR (24 µm) followed by group MR (15 µm) and group CP (6 µm). 

 
FATIGUE LOADING – LINGUAL 
MARGINAL GAP AFTER TESTING (Table VI) 

Group MR had the largest (150.4 µm) lingual marginal gap mean followed by 

group FR (64.2 µm) and group CP (56.3 µm). Group MR had the highest (91.8 µm) 

lingual marginal gap standard deviation followed by group CP (42.6 µm) and group 

FR (33.2 µm). The standard error was highest in group MR (34.7 µm) followed by 

group CP (17.4 µm) and group FR (10.5 µm). 

The largest maximum marginal gap seen was in group MR (352 µm) followed 

by group FR (127 µm) and group CP (122 µm). The largest minimum marginal gap 

seen was in group MR (91 µm) followed by group FR (25 µm) and group CP (15 

µm).  
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FATIGUE LOADING – LINGUAL 
MARGINAL GAP CHANGE (Table VI) 

Group MR had the highest (101.3 µm) lingual marginal gap mean followed by 

group CP (41.3 µm) and group FR (14.5 µm). Group MR had the highest (89.9 µm) 

standard deviation followed by group CP (35.6 µm) and group FR (13.7 µm). The 

standard error was highest in group MR (34 µm) followed by group CP (14.5 µm) and 

group FR (4.3 µm). 

Group MR had the highest (290 µm) maximum lingual marginal gap change 

followed by group CP (101 µm) and group FR (45 µm). Group MR had the highest 

(33 µm) minimum lingual marginal gap change followed by group CP (9 µm) and 

group FR (1 µm).  

The changes in lingual marginal gap were significant for all groups MR (p = 

0.0246), group CP (p = 0.0362) and group FR (p = 0.0086).  

 
FATIGUE LOADING – FACIAL 
AND LINGUAL AVERAGE MARGINAL 
GAP BEFORE TESTING (Table VII) 

Group MR had the largest (39.8 µm) average marginal gap mean followed by 

group FR (38.1 µm) and group CP (14.3 µm). Group MR had the highest (28.3 µm) 

average marginal gap standard deviation followed by group FR (16.4 µm) and group 

CP (5.9 µm). The standard error was highest in group MR (10.7 µm) followed by 

group FR (5.2 µm) and group CP (2.4 µm). 

The largest maximum marginal gap seen was in group MR (98 µm) followed 

by group FR (62.5 µm) and group CP (21.5 µm). The largest minimum marginal gap 

seen was in group FR (21 µm) followed by group MR (12.5 µm) and group CP (6.5 

µm).  
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FATIGUE LOADING – FACIAL 
AND LINGUAL AVERAGE MARGINAL 
GAP AFTER TESTING (Table VII) 

Group MR had the largest (95.3 µm) average marginal gap mean followed by 

group FR (43.6 µm) and group CP (43.2 µm). Group MR had the highest (45 µm) 

average marginal gap standard deviation followed by group CP (24.6 µm) and group 

FR (19.6 µm). The standard error was highest in group MR (17 µm) followed by 

group CP (10.1 µm) and group FR (6.2 µm). 

The largest maximum marginal gap seen was in group MR (178.5 µm) 

followed by group FR (80 µm) and group CP (79 µm). The largest minimum marginal 

gap seen was in group MR (55 µm) followed by group FR (20.5 µm) and group CP 

(15.5 µm).  

 
FATIGUE LOADING – FACIAL 
AND LINGUAL AVERAGE MARGINAL 
GAP CHANGE (Table VII) 

Group MR had the highest (55.5 µm) average marginal gap mean followed by 

group CP (28.8 µm) and group FR (-5.5 µm). Group MR had the highest (43.1 µm) 

standard deviation followed by group CP (24.4 µm) and group FR (8.5 µm). The 

standard error was highest in group MR (16.3 µm) followed by group CP 9.9 µm) and 

group FR (2.7 µm). 

Group MR had the highest (145.5 µm) maximum average marginal gap 

change followed by group CP (65 µm) and group FR (22.5 µm). Group MR had the 

highest (23 µm) minimum facial marginal gap change followed by group FR (-5 µm) 

and group CP (2 µm).  

Group FR had significantly less change in marginal gap than group MR (p = 

0.0013). Groups CP and MR did not have significantly different change in marginal 
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gap (p = 0.09). Groups CP and FR did not have significantly different change in 

marginal gap (p = 0.11). 
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TABLE I 

 

 

Post systems tested 

 

Group Type of Post Manufacturer Composition 

CP Cast post and 

core 

Elektra 

Williams Ivoclar Vivadent 

Amherst, NY 

Pd 25.0 % 

Ag 58.3 % 

Cu 14.7 % 

In 2.0 % 

Ru <1.0 % 

Re <1.0 % 

Li <1.0 % 

 
FR Glass fiber PeerlessPost 

SybronEndo, Orange, CA 

Unidirectional and 

stretched quartz 

fiber 

Epoxy resin 

 

MR Prefabricated 

metal 

Parapost XH 

Coltene Whaledent 

Cuyahoga Falls, OH 

Ti alloy 
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TABLE II 
 

 

Type of post systems, number of specimens, and type of testing 

 

Group Post system No. of specimens Type of testing 

CP 

 

 

Cast post and core 10* Fatigue loading 

10 Loading to failure 

FR 

 

  

Glass fiber 10 Fatigue loading 

10 Loading to failure 

MR Prefabricated metal 10** Fatigue loading 

10 Loading to failure 

    

  

* 5 samples were only tested 

** 7 samples were only tested 
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TABLE III 

 

 

Maximum load-to-failure (Newtons) 

 

 Group N Mean SD SE Min Max 

Failure Load 

 

CP 10 1409 377 119 899 2162 

Failure Load 

 

FR 10 1214 520 164 455 1878 

Failure Load MR 10 1432 415 131 702 1976 
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TABLE IV 

 

 

Moment of inertia (mm4) 

 

Group N Mean SD SE Min Max 

At Cervical Area CP 10 1803 450 142 1022 2481 

 

FR 10 1903 699 221 840 2868 

 

MR 10 2015 661 209 970 3407 

 

At Fracture Site CP 10 209 192 61 23 549 

FR 10 271 209 66 15 630 

 

MR 10 431 298 94 73 953 
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TABLE V 

 

 

Facial marginal gap (µm)* 

 

Group N Mean SD SE Min Max p-value 

Pre CP 6 13.7 12.0 4.9 5 37 

FR 10 26.5 21.3 6.7 9 82 

 

MR 7 30.4 25.5 9.7 4 77 

 Post CP 6 30.0 10.1 4.1 10 36 

 

 

FR 10 23.0 22.2 7.0 6 83 

 MR 7 40.1 38.7 14.6 5 121 

Change CP 6 16.3 16.1 6.6 -5 31 0.0555 

FR 10 -3.5 6.8 2.2 -18 8 0.1399 

MR 7 9.7 16.2 6.1 -1 44 0.1636 

 

* Statistical results are obtained from Appendix I, II and III. 
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TABLE VI 

 

 

Lingual marginal gap (µm)* 

 

Group N Mean SD SE Min Max p-value 

Pre CP 6 15.0 8.8 3.6 6 28 

FR 10 49.7 22.9 7.2 24 93 

 

MR 7 49.1 35.4 13.4 15 119 

 Post CP 6 56.3 42.6 17.4 15 122 

 

 

FR 10 64.2 33.2 10.5 25 127 

 MR 7 150.4 91.8 34.7 91 352 

Change CP 6 41.3 35.6 14.5 9 101 0.0362 

FR 10 14.5 13.7 4.3 1 45 0.0086 

MR 7 101.3 89.9 34.0 33 290 0.0246 

 

* Statistical results are obtained from Appendix I, II and III. 
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TABLE VII 

 

 

Average marginal gap ― facial and lingual (µm)* 

 

Group N Mean SD SE Min Max p-value 

Pre CP 6 14.3 5.9 2.4 6.5 21.5 

FR 10 38.1 16.4 5.2 21 62.5 

 

MR 7 39.8 28.3 10.7 12.5 98 

 Post CP 6 43.2 24.6 10.1 15.5 79 

 

 

FR 10 43.6 19.6 6.2 20.5 80 

 MR 7 95.3 45.0 17.0 55 178.5 

Change CP 6 28.8 24.4 9.9 2 65 0.0339 

FR 10 5.5 8.5 2.7 -5 22.5 0.0711 

MR 7 55.5 43.1 16.3 23 145.5 0.0144 

 

* Statistical results are obtained from Appendix I, II and III. 
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FIGURE 1. Load-to-failure group CP. 1) Coping; 2) Cast post and core – Elektra;  
3) CPVC tube; 4) Orthoresin; 5) PVS lining; 6) Resilon. 
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FIGURE 2. Fatigue-loading CP group. 
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FIGURE 3. Load-to-failure FR group. 1) Coping; 2) Corerestore 2; 3) Glass fiber - 
PeerlessPost 4) CPVC tube; 5) Orthoresin; 6) PVS lining; 7) Resilon. 
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FIGURE 4. Fatigue-loading FR group. 
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FIGURE 5. Load-to-failure MR group. 1) Coping; 2) Corerestore 2; 3) Titanium – 
Parapost XH post; 4) CPVC tube; 5) Orthoresin; 6) PVS lining;  
7) Resilon. 
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FIGURE 6. Fatigue-loading MR group. 
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FIGURE 7. Load-to-failure sample. 1) PVS lining to simulate PDL; 2) CPVC tube; 3) 
Orthoresin. 
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FIGURE 8. Fatigue-loading sample. 1) PVS lining to simulate PDL. 2) Orthoresin; 3) 
CPVC tube; 4) Spiderwire. 
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FIGURE 9. Fatigue-loading sample after testing; arrow indicates reverse pull at 135° 
to long axis of tooth. 

 

 

 

  

Marginal gap opening 
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FIGURE 10. Facial view of fatigue-loading sample. 1) Facial margin; 2) Ring on 
facial surface; 3) Under microscope, marking groove can be seen and 
measured using a measurescope connected to a microscope before and 
after cyclic loading. 

 

 

 

 

 

  

3 

  1 

2 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 11. Template for teeth reduction and coping wax-up. 

 

 

 

  



56 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 12. Composite core build-up using template. 

  



57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13. MTS Bionix 858 Test System machine with load-to-failure setup. 

 

 

 

  



58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 14. Tooth sample undergoing load-to-failure testing. 
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FIGURE 15. MTS Bionix 858 Test System machine with fatigue-loading setup. 
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FIGURE 16. Software showing fatigue-loading forces and displacement. 
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FIGURE 17. Specimen #29 demonstrated a marginal gap >200 µm before remaking 
of the coping. 
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FIGURE 18. Load-to-failure sample from group CP showing apical fracture. Black 
arrow indicates fracture line and white arrow indicates force direction. 
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FIGURE 19. Load-to-failure sample from group FR showing junction of middle and 
apical thirds fracture. Black arrow indicates fracture line and white 
arrow indicates force direction. 
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FIGURE 20. Load-to-failure sample from group MR showing middle third fracture. 
Black arrow indicates fracture line and white arrow indicates force 
direction. 
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DISCUSSION 
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 One of the objectives of restorative dentistry is to conserve and restore natural 

teeth to function. The restoration of severely damaged or decayed teeth that lack 

adequate dentinal support at the coronal portion is difficult, even if they have been 

successfully treated with root canal therapy. 

Longevity and survival rate of teeth restored with a post, core and crown after 

successful endodontic therapy varies significantly. According to a retrospective study 

by Wegner,178 teeth that were used in fixed partial dentures have a significantly 

improved survival rate (92 percent) compared with teeth used as abutments for 

removable partial dentures (51 percent). Teeth survival factors for removable partial 

dentures include the tooth type, core material, and diameter of the post; however, 

tooth survival factors for a fixed partial denture only included the core material type. 

 
CAST POST AND CORES 

All fractures observed in this group were catastrophic. The most common 

fracture site seen in group CP was the apical third followed by the junction of the 

middle and apical thirds with one failure at the junction of the cervical and middle 

thirds. The highest fracture loads recorded in this group occurred in teeth that 

demonstrated failure in the apical third. This finding is consistent with the three-

dimensional stress analysis by Loney et al.179 He was able to demonstrate the greatest 

stress concentrations at the lingual apex of the post.  

Custom cast posts and cores have a more intimate fit in the canal than do 

prefabricated tapered posts, which lead to a different type of stress distribution. This 

finding is similar to that found by Yaman et al.,180 who also demonstrated that cast 
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post and cores yielded the best stress distribution, which was attributed to the superior 

custom fit of a cast post and core. 

Although group CP demonstrated the highest load-to-failure values, three of 

the fatigue-loaded group failed before or during testing. This decreased fracture 

resistance of roots restored with cast post and cores was shown clinically by Ferrari et 

al.90 when 9 percent of the cast post and core group showed root fractures. Sorensen 

et al.86 also showed that tapered cast post and cores demonstrated higher failure rates 

than teeth treated without intracoronal reinforcement. Another study by Sorensen181 

shows that custom-tapered cast posts have a wedging effect that results in 

nonrestorable root fractures. Grieznis et al.182 and Mattison183 were able to 

demonstrate that cast post and cores significantly reduce the fracture resistance of 

teeth and an increased cast post diameter leads to a reduction in fracture resistance. 

Passivity of a cast post is very critical in reducing internal stresses. Del 

Castillo et al.184 was able to demonstrate that a post diameter was decreased when the 

casting temperature of the metal ring was reduced to 1112º F using a phosphate 

bonded investment and without using a cellulose ring liner. This finding was 

significantly different than those in the other three groups he tested. The first one 

used a ring liner at 1499° F; the second one had no ring liner at 1499° F and the third 

one used a ring liner at 1112° F. Post expansion occurred in all three groups tested. 

Group CP demonstrated the highest load-to-failure values (both maximum and 

minimum) of all groups tested in this study. Dilmener et al.185 demonstrated similar 

results in his study – although none of the post and cores were restored with copings – 

when he compared a cast post and core group with a titanium post/composite resin 

core group, zirconium dioxide post/composite-resin core group and zirconium dioxide 
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post/ceramic core group. This can be attributed to the superior fit of custom-made 

cast posts and cores. 

 
GLASS FIBER POSTS 

All fractures observed in this group were catastrophic. Glass fiber posts 

demonstrated no fractures in the cyclic loading group, which can be attributed to the 

glass fiber posts’ similar elastic modulus to dentin.7 The clinical longevity of teeth 

restored with fiber posts up to three years was shown by Fredriksson et al.7 Another 

study by Jung et al.186 demonstrated similar results over a period of at least 5 years 

and showed no difference between the reliability of cast post and cores to direct post 

and composite resin core technique. 

On the other hand, Segerstrom187 demonstrated the lack of reliability of fiber 

posts in function after a mean time of 6.7 years. In this study, lower load-to-failure 

results were obtained for group FR (both maximum and minimum). 

Forberger et al.188 demonstrated similar load-to-failure results to this study. He 

was able to demonstrate slightly lower load-to-failure means in the glass fiber group 

tested as opposed to the other zirconia and gold posts used in the same study. He was 

also able to demonstrate a higher standard deviation for the glass fiber group than the 

other groups tested. 

In group FR, most teeth fractured at the junction of the middle and apical 

thirds, followed by the middle third, and two failed at the apical third. Teeth 

demonstrating the highest load-to-failure fractured at the junction of the middle and 

apical thirds in this group. 
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TITANIUM POSTS 

All fractures observed in this group were also catastrophic. According to a 

study made by Toparli,189 titanium posts combined with Ni-Cr crowns demonstrated 

the lowest radial and axial stresses. The maximum stress values occur on the metal-

cement interface. 

In group MR, most teeth fractured in the middle third, two fractured at the 

apical third, and only one fractured at the junction of the middle and apical thirds. 

Teeth showing the highest load-to-failure fractured in the middle third of the root. 

Seventy percent of the fractures in the load-to-failure MR group passed through the 

post and involved the middle third of the root (6 mm coronal to the apical end). 

Cohen190 had similar findings in his study. He showed that ParaPosts 

cemented using zinc phosphate had asymmetric and uneven stresses concentrated 

apically when vertical or oblique forces were applied.  

 
FERRULE 

All failures in this study were catastrophic in the load-to-failure and cyclic 

loading groups, and these were attributed to the 2.0-mm ferrule used in all groups. 

Similar results were obtained by Ng et al.38 Root fractures were the predominant 

mode of failure for the 2.0-mm ferrule preparations, whereas in nonferruled 

preparations, debonding failures were predominant. 

Akkayan39 concluded from his study that the 2.0-mm ferrule length specimens 

tested, regardless of the type of dowel used, showed significantly higher loads to 

failure than specimens with either 1.0 mm or 1.5 mm ferrules. 
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BUCCOLINGUAL DIMENSION 

The reduction in the moment of inertia calculated at the cervical margins of 

the teeth tested in this study correlated consistently to a reduced load-to-failure. 

However, an increase in that inertia did not always relate to an increase in load-to-

failure. 

This finding is supported by Freeman et al.171 who used two post groups also 

used in this study, which are the MR and CP groups. He concluded from his study 

that teeth with similar buccolingual dimensions of the coronal surface had no 

significant correlation with the number of fatigue cycles to preliminary failure. 

 
CYCLIC LOADING 

Groups CP and MR showed three failed teeth during testing; however, group 

FR demonstrated no failures. These findings are consistent with the results obtained 

by Freeman et al.,171 who experienced in his study two failures in two groups each 

identical to groups CP and MR used here; however, the third group (#2-Flexi-Post; 

Essential Dental Systems, Hackensack, NJ) did not experience any failures. 

Isidor et al.72 also concluded that there was a significantly lower failure rate of 

fiber type posts than of prefabricated parallel-sided/tapered posts or individually cast 

posts.191 

 
MARGINAL GAP 

In this study, all marginal gaps have demonstrated changes on both the facial 

and lingual surfaces. This is consistent with the findings by Freeman et al.,171 

although his method involved dye penetration. Freeman noticed that leakage 

consistently occurred at the cement tooth interface. He found no significant difference 

in the extent of leakage between the three post systems tested. The most common 
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types of leakage seen were either at the restoration/cement or tooth/cement interface 

not extending beyond the edge of the post space or down the post space, but short of 

the apical extent of the post. 

 The change in marginal gap was not significant on the facial surface of all 

groups tested. This can be attributed to the axis of rotation/tipping of the crowns on 

the facial margin. There was a significant change on the lingual surface of all groups 

tested, and this could be because the lingual surface is the farthest from the axis of 

rotation (on the facial margin) of the copings. 

Group FR demonstrated the least amount of change (45 µm) on the lingual 

surface compared with groups CP (101 µm) and MR (152 µm to 290 µm). That could 

most likely be attributed to the cement used and the technique rather than the type of 

post used (glass fiber, titanium alloy or silver-palladium alloy) since both titanium 

alloy and silver-palladium alloy posts have a higher modulus of elasticity. According 

to Barkmeier,192 tin platting, high nobel alloys before bonding with Panavia 21 

cement yielded equivalent bond strengths to base metal alloys. 

A study by Osman et al.193 demonstrated the polymerization shrinkage of 

luting agents used for crown and bridge cementation. The least affected cement at its 

final polymerization was zinc phosphate followed by Panavia 21, Variolink, All Bond 

C&B, and Superbond. Osman was able to obtain consistent and reproducible results 

throughout his study and concluded that large variations were present in the final 

shrinkage values among the materials tested. 

According to Schmage et al.,65 post retention was tested with various cement 

types such as zinc phosphate, Panavia 21 EX, Twinlook and other resin composite 

cements. He concluded from his study that zinc phosphate cement exhibited similar 

tensile bond strength to resin composite cements. These findings are also supported 
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by Bergeron et al.,64 who found that there was no statistical difference in retention of 

posts cemented with either zinc phosphate or Panavia 21, regardless of the endodontic 

sealer used. 

One of the specimens in group MR demonstrated a larger than usual marginal 

gap opening of 290 µm on the lingual surface after cyclic loading. This was attributed 

to the composite resin core separating from the tooth structure – less than 50 µm – 

that was noticed after the first coping was removed. The reason why the first coping 

was replaced was because of a 200-µm marginal gap opening after cementation. The 

first coping did not seat all the way during cementation, which was blamed on the 

mixing and working time used. This finding can be correlated to the conclusion 

obtained by Fakiha et al.163 She was able to demonstrate the decreased setting time – 

although working time increased – with zinc phosphate using the frozen glass slab 

technique with rapid mixing. She concluded from her study that rapid setting can 

result in incomplete seating of the coping. 

Another study demonstrated the sensitivity of mixing zinc phosphate cement 

on its compressive strength. Li et al.194 showed the alternate pro and con bidirectional 

rotation method (106.11+/- 4.82 MPa) to be superior to the pulling and pushing with 

folding method (77.57 +/- 6.26 MPa) or the unidirectional rotation method (54.41 +/- 

5.08 MPa) in compressive strength values. 

 
FUTURE STUDIES 

Longer periods of fatigue loading should be tested for more reliability. 

Thermocycling teeth would give a better simulation to a natural environment because 

the oral cavity is constantly subject to hot and cold temperatures. Panavia 21 with tin 

plating of precious/semi precious alloys should be investigated with the cast post and 
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core technique, because it demonstrated reduced marginal gap opening at the tooth-

coping interface of the teeth tested in group FR. 
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SUMMARY AND CONCLUSIONS 
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There was no significant difference among groups CP, FR and MR in the load-

to-failure test. Group CP demonstrated the highest load-to-failure values; however, 

the highest load-to-failure mean was group MR. All fractures observed in this study 

were catastrophic. Group FR demonstrated better stress distribution and caused no 

early fractures in the fatigue-loading group. 

All groups demonstrated significant marginal gap changes on the lingual 

surface after fatigue loading; however, group FR demonstrated <45-µm marginal gap 

opening. In group FR, the reduced marginal gap opening was attributed to the use of 

Panavia 21 with the proper surface treatments to bond to the tooth structure, resin 

composite, and the metal coping. 
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APPENDIX I 

 

 

Group CP individual fatigue loading marginal gap data (microns) 

 

Tooth # Facial gap 

before test 

Facial gap 

after test 

Lingual gap 

before test 

Lingual gap 

after test 

Cycles 

completed 

01 N/A N/A N/A N/A 0***  

02 5 36 18 72 100,000 

03 5 N/A 6 N/A 0** 

07 7 36 21 122 100,000 

08 N/A N/A N/A N/A 0***  

12 13 10 10 21 100,000 

14 14 36 28 82 100,000 

30 6 30 7 26 65,400* 

32 37 32 6 15 100,000 

38 14 N/A 4 N/A 0**  

 

 

* Fractured during testing 

** Failed to test due to root curvature 

*** Root split before crown cementation 
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APPENDIX II 

 

 

Group FR individual fatigue loading marginal gap data (microns) 

 

Tooth # Facial gap 

before test 

Facial gap 

after test 

Lingual gap 

before test 

Lingual gap 

after test 

Cycles 

completed 

15 35 17 53 61 100,000 

17 15 15 35 56 100,000 

19 11 6 37 45 100,000 

20 18 16 24 25 100,000 

22 20 15 33 34 100,000 

23 82 83 43 45 100,000 

24 24 18 63 78 100,000 

25 33 33 82 127 100,000 

26 9 17 34 57 100,000 

27 18 10 93 114 100,000 
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APPENDIX III 

 

 

Group MR individual fatigue loading marginal gap data (microns) 

 

Tooth # Facial gap 

before test 

Facial gap 

after test 

Lingual gap 

before test 

Lingual gap 

after test 

Cycles 

completed 

29 4 5 62 352 100,000 

31 11 11 38 99 100,000 

33 41 40 44 98 100,000 

34 4 8 51 66 16,500* 

35 42 48 51 91 100,000 

36 77 121 119 152 100,000 

37 28 30 15 120 100,000 

39 70 N/A 53 N/A 45,120* 

41 10 26 15 141 100,000 

42 71 N/A 10 N/A 0* 

 

 

 

 

 

* Fractured during testing 

  



95 
 

APPENDIX IV 

 

 

Individual load-to-failure strength data of the post systems (Newtons) 

 

Tooth # Group CP Tooth # Group FR Tooth # Group MR 

43 A 1623 54 A 455 68 M 1958 

44 A 1862 55 JMA 1090 69 A 702 

45 JMA 1123 57 JMA 681 71 M 1211 

46 JMA 1240 58 JMA 1720 72 A 1569 

47 A 1186 59 M 1633 74 M 975 

48 A 1460 61 M 1160 75 M 1769 

49 JMC 1283 62 M 801 77 M 1377 

51 A 2162 63 JMA 1878 78 JMA 1234 

52 JMA 1251 64 JMA 1843 79 M 1976 

53 JMA 899 67 A 877 81 M 1553 

 

Fracture site: 

C: Cervical third 

JMC: Junction of middle and cervical thirds 

M: Middle third 

JMA: Junction of middle and apical thirds 

A: Apical third 
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APPENDIX V 

 

 

Group CP moment of inertia at cervical area ( I ) and fracture site ( I’ ) 

 

Tooth # I I’  

43 1642 73 

44 1673 81 

45 2373 520 

46 1396 173 

47 1783 147 

48 1539 30 

49 1022 549 

51 2150 23 

52 2481 179 

53 1975 312 
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APPENDIX VI 

 

 

Group FR moment of inertia at cervical area ( I ) and fracture site ( I’ ) 

 

Tooth # I I’  

54 840 15 

55 1595 27 

57 2868 310 

58 2591 129 

59 1828 447 

61 1917 520 

62 996 178 

63 2416 302 

64 2564 630 

67 1418 148 
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APPENDIX VII 

 

 

Group MR moment of inertia at cervical area ( I ) and fracture site ( I’ ) 

 

Tooth # I I’  

68 1923 544 

69 1963 179 

71 1287 410 

72 1986 73 

74 970 117 

75 3407 953 

77 2560 582 

78 2219 208 

79 1932 821 

81 1898 425 
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EVALUATION OF FRACTURE RESISTANCE OF THREE POST AND CORE 

SYSTEMS IN ENDODONTICALLY TREATED TEETH UNDER 

LOADING TO FAILURE; AND MARGINAL GAP 

MEASUREMENT BEFORE AND AFTER 

CYCLIC LOADING 

 

 

by 

 

Amir N. Saad 

 

Indiana University School of Dentistry 
Indianapolis, IN 

 

 

The purpose of this study was to evaluate the fracture resistance of three post 

and core systems in endodontically treated teeth by loading to failure, and to measure 

marginal gaps before and after cyclic loading.  

Sixty extracted canines were assigned to three groups. The groups tested were: 

1) Single cast post and core (Group CP). 

2) Prefabricated metal post and composite resin core (Group MR).  

3) Glass fiber post and composite resin core (Group FR). 
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All teeth were obturated and prepared to receive a post and core with a coping. 

Thirty teeth (10 from each group) were loaded to failure, and the other 30 teeth were 

fatigue-loaded. The marginal gaps on the facial and lingual surface of the fatigue-

loaded group were measured before and after cyclic loading. 

There were two hypotheses for this study. The first was that the FR group 

would have less marginal gap opening on the lingual surface than the other groups. 

The second was that the CP group would have a higher load at failure than the other 

groups.  

Group CP was found to have a significantly smaller pre-loading marginal gap 

than group FR (p = 0.0265) and group MR (p = 0.0273), while groups FR and MR did 

not have a significantly different pre-loading marginal gaps (p = 0.86). Group FR had 

significantly less change in marginal gap than group MR (p = 0.0013). Groups CP and 

MR did not have significantly different changes in marginal gap (p = 0.09). Groups 

CP and FR did not have significantly different changes in marginal gap (p = 0.11). 

The three post types did not have significantly different maximum loads to failure (p 

= 0.49), moments of inertia at cervical area (p = 0.75), or moments of inertia at 

fracture site (p=0.12).  

There was no significant difference between groups CP, FR, and MR in the 

load-to-failure test. Group CP demonstrated the highest load-to-failure values; 

however, the highest load-to-failure mean was for group MR. All fractures observed 

in this study were catastrophic. Group FR demonstrated better stress distribution and 

caused no early fractures in the fatigue-loading group. 

All groups demonstrated significant marginal gap changes on the lingual 

surface after fatigue loading; however, group FR demonstrated <45 µm marginal gap 

opening. In group FR, the reduced marginal gap opening was attributed to the use of 
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Panavia 21 with the proper surface treatments to bond to the tooth structure, the resin 

composite, and the metal coping. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

CURRICULUM VITAE 

 

 

  



 
 

 

Amir N. Saad 

 

November 22, 1979 Born in Stonewall, Manitoba, Canada 

September 1998 – July 1999 Faculty of Science, Cairo University 

September 1999 – May 2002 BDS, Faculty of Oral and Dental 
Medicine, Cairo University, Cairo, Egypt 
 

November 2002 – April 2003 Internship in El Mounira Hospital 

April 2003 – November 2003 Internship in Cairo University, Faculty of 
Oral and Dental Medicine 
 

November, 2008 MSD Program, Prosthodontics 
Indiana University School of Dentistry 
Indianapolis, Indiana 

  

 


