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ABSTRACT 

Nouf Khider Al-Shibani 

THE RESPONSES OF HUMAN NEUTROPHILS TO TOBACCO SMOKE 

COMPONENTS 

 

 Tobacco smoking is considered a major modifiable risk factor for 

periodontal disease. Tobacco contains about 6700 compounds and almost 4000 

compounds of these have been identified in tobacco smoke. Nicotine is the 

addictive ingredient in tobacco and has been shown to affect multiple cellular 

processes. Cigarette smoke condensate (CSC) is the particulate matter of 

smoke. It is believed to be a powerful inducer of inflammatory responses.  

Neutrophils are the first line of host defense and are critical cells in the 

maintenance of periodontal health through their role in the control of bacteria, but 

they can also contribute to the progression of periodontal disease by the 

production and release of reactive oxygen species (ROS). Virulence factors from 

periodontal pathogens, such as Porphyromonas gingivalis (P. gingivalis), 

stimulate the respiratory burst of neutrophils. In this dissertation, three studies 

aimed at understanding the  oxidative activity of neutrophils when stimulated with 

either nicotine, cigarette smoke condensate (CSC) or four other components of 

tobacco smoke (2-naphthylamine, hydroquinone, acrolein, and acetaldehyde) 

with or without P. gingivalis supernatant. The release of matrix 

metalloproteinase-9 (MMP-9) was also examined.  
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ROS production increased significantly when the neutrophils were 

stimulated with nicotine. P. gingivalis induced the maximum ROS production 

when compared to all the other components examined. The combination of 

nicotine and P. gingivalis did not have an additive effect on ROS production. 

Nicotine significantly increased the MMP-9 release from the neutrophils. On the 

contrary, CSC inhibited ROS production at all the concentrations examined. The 

combination of CSC and P. gingivalis resulted in the inhibition of ROS 

production. MMP-9 release was also increased from the CSC-treated 

neutrophils. The four other tobacco smoke components examined affected ROS 

production and MMP-9 release differently.  

These projects demonstrated that CSC inhibited the ROS production from 

neutrophils, which can be attributed to several components in tobacco smoke 

that may include acrolein and hydroquinone. More research is needed to 

determine the mechanisms of inhibition and if other tobacco components are 

involved in ROS inhibition.  

 

 

L. Jack Windsor, Ph.D., Chair
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CHAPTER ONE 

Introduction 

 

Periodontal disease is an inflammatory process of bacterial origin that 

affects the periodontal tissues and can result in the destruction of the supporting 

tissues of the teeth (Alpiste Illueca, Buitrago Vera et al. 2006). This destruction is 

the consequence of interactions between the oral microflora and host defense 

mechanisms (Alpiste Illueca, Buitrago Vera et al. 2006). These oral microflora or 

microorganisms are reported to cause tissue destruction in one of two ways: (i) 

directly, through the production of harmful substances that can cause tissue 

necrosis and cell death or (ii) indirectly, where these microorganisms will activate 

inflammatory cells that produce mediators that will act on the host cells and 

cause tissue destruction (e.g., cytokines) (Bascones-Martinez, Munoz-Corcuera 

et al. 2009). It has also been reported that some bacteria can interfere with the 

host defense mechanisms in two other ways: (i) by inhibiting the action of 

phagocytic cells or (ii) by deactivating specific antibodies (Williams 1990). 

Numerous bacteria can degrade tissue directly and indirectly but Birkedal-

Hansen (Birkedal-Hansen 1993) reported interestingly that the host connective 

tissue (collagen) is mainly degraded by host mechanisms in periodontal disease. 

This degradation is a result of the host attempting to protect itself from the 

microorganisms. The host responses involve the activation of both the innate and 

adaptive immunities (Kornman, Page et al. 1997). 
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In 1976, Page and Schroeder (Page and Schroeder 1976) classified the 

development of periodontal disease in animals into a series of stages. Stage 1: 

The initial lesion occurs within the first four days following the beginning of 

plaque accumulation. It is characterized by the formation of edema, increased 

gingival fluid, and the accumulation of neutrophils. It is also characterized by the 

loss of connective tissue. With the increased gingival fluid, activation of the 

complement system through the alternative pathway can occur. Neutrophils 

migrate to the gingival tissues and into the gingival sulcus to play protective 

roles. They form a barrier between the subgingival plaque and the underlying 

epithelium (Dixon, Bainbridge et al. 2004). The lesion occurs in no more than 5-

10 percent of the connective tissue and is still not clinically evident. Stage 2: The 

early lesion arises between 4-7 days of plaque accumulation. It is characterized 

by an increased number of lymphocytes and macrophages. There is a 

subsequent increase in the flow of gingival crevicular fluid. Neutrophil numbers 

increase four-fold within the junctional epithelium. In this stage, 60-70 percent of 

the collagen within the infiltrated zone is degraded. Stage 3: The established 

lesion occurs 14-21 days after plaque accumulation. The established lesion can 

be readily identified by the presence of plasma cells and this lesion may remain 

stable for extended periods of time, thus this lesion might or might not develop 

into periodontal disease. Stage 4: The advanced lesion is characterized by bone 

loss and is called a periodontal lesion or disease. 
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The bone loss seen in periodontal disease results from the secretion of 

enzymes and the release of oxygen radicals (Palmer 2010). Furthermore, the 

imbalance between the osteoclasts and osteoblasts can favor osteoclastic bone 

resorption (Assuma, Oates et al. 1998). This happens from the increased 

osteoclastogenesis which is stimulated by the receptor activator of NFkB ligand 

(RANKL) that are expressed on the surfaces of the osteoblasts. Another factor 

that can increase osteoclastogenesis is the increased expression of cytokines 

such as interleukin-1 (Assuma, Oates et al. 1998). With the increased resorption 

found in periodontal disease, the tooth becomes mobile in its socket and is 

eventually lost. 

Periodontal disease is a multi-factorial disease with many host risk factors. 

These include systemic diseases, age, sex, smoking, nutrition, stress, and 

environmental exposure. All of these have been reported to exacerbate the 

severity of the disease (Kinane 2001). Epidemiological studies have also linked 

periodontal disease to many chronic diseases, thus suggesting that oral diseases 

impact the individual’s general health (Williams, Barnett et al. 2008). Periodontal 

disease has been reported to be a risk factor for diabetes mellitus (Saremi, 

Nelson et al. 2005), rheumatoid arthritis (Mercado, Marshall et al. 2003), kidney 

disease (Shultis, Weil et al. 2007), cardiovascular diseases (Bahekar, Singh et al. 

2007) and respiratory infections (Garcia, Nunn et al. 2001). 
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Porphyromonas gingivalis 

The role of specific gram-negative bacteria in the etiology and 

pathogenesis of periodontal disease has been well established (Holt and 

Bramanti 1991; Tokuda, Duncan et al. 1996). Porphyromonas gingivalis (P. 

gingivalis), Prevotella intermedia, and Aggregobacter actinomycemcomitans 

have been confirmed as being more virulent than other related pathogens 

(Haffajee and Socransky 1994). P. gingivalis is an anaerobic, non-motile, 

nonsporulating coccobacillus (Haffajee and Socransky 1994). There is increasing 

evidence that P. gingivalis is the major etiological agent in the severe forms of 

periodontal disease (Lamont and Jenkinson 1998; Slots and Ting 1999). P. 

gingivalis contain many virulence factors that facilitate the colonization of the 

gingival sulcus and the initiation of periodontal disease. These virulence factors 

include lipopolysaccharides (LPS) (Pussinen, Paju et al. 2007), gingipains 

(Travis, Pike et al. 1997), polysaccharide capsule, fimbriae, immunoblogulin A 

and G proteases, and outer membrane proteins. 

LPS is composed of three components: lipid A, antigen O, and an 

oligosaccharide that binds them together (Bascones-Martinez, Munoz-Corcuera 

et al. 2009). It is known that lipid A can trigger significant inflammatory 

responses. LPS can activate the innate system by stimulating and interacting 

with the Toll-Like Receptor-2 (TLR-2) and -4 (Darveau, Pham et al. 2004), and 

this is due to the multiple forms of lipid A found in the P. gingivalis LPS (Darveau, 

Pham et al. 2004). TLRs are cell surface proteins that recognize bacterial 
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products and play important roles in the induction of antimicrobial responses in 

different host cell types. 

Gingipains play important roles in the development of periodontal disease 

(Imamura 2003). The gingipains are trypsin-like cysteine proteinases that have 

been reported to contribute to 85% of the overall proteolytic activity and 99% of 

the trypsin-like activity associated with P. gingivalis (Potempa, Sroka et al. 2003). 

They are cysteine proteinases that cleave the C-terminal peptide bonds of either 

arginine (Arg-X) or lysine (Lys-X) residues (Potempa, Sroka et al. 2003). Arg-

gingipains (RgpA and RgpB) are encoded by two genes rgpA and rgpB 

respectively (Curtis, Thickett et al. 1999). Lys-gingipain (Kgp) is encoded the 

gene kgp (Curtis, Kuramitsu et al. 1999). Reports describing P. gingivalis 

mutants that were deficient in rgpA and/or rgpB and/or kgp genes demonstrated 

that RgpA, RgpB, and Kgp are major virulence factors of P. gingivalis 

(Nakayama, Kadowaki et al. 1995; Tokuda, Duncan et al. 1996). Gingipains have 

been shown to degrade a range of tissue components, as well as host matrix and 

plasma proteins (Cutler, Kalmar et al. 1995). They have also been shown to be 

involved in producing fimbriae (Tokuda, Duncan et al. 1996) and activating pro-

thrombin to thrombin (Imamura, Tanase et al. 2001). Arg-gingipains have been 

also shown to activate latent matrix metalloproteinase-2 (MMP-2) in vivo, which 

may contribute to periodontal tissue destruction (Grayson, Douglas et al. 2003). 

In addition, Al-Shibani and Windsor demonstrated that Arg-gingipain could 

enhance the collagen degrading ability of human gingival fibroblasts through the 

activation of multiple MMPs (Al-Shibani and Windsor 2008). 
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P. gingivalis, as well as other periodontopathogenic bacteria, have 

proteolytic activity that can degrade some of the components of the complement 

system (e.g., C3 and C5). With this degradation, the bacteria prevent the 

opsonization process (Bascones-Martinez, Munoz-Corcuera et al. 2009). 

 

Matrix Metalloproteinases 

Matrix metalloproteinases (MMPs) are a family of proteinases whose 

primary purpose is believed to be the degradation of the extracellular matrix 

(Johnson, Dyer et al. 1998). The MMPs contribute to both normal and 

pathological tissue remodeling. The physiological roles for MMPs include cell 

migration and tissue remodeling during growth, wound healing, and 

angiogenesis. They play major roles in pathological conditions such as arthritis, 

periodontal disease and cancer. 

Most of the MMPs are secreted by multiple cell types as inactive 

precursors (pro-MMPs) (Ryan and Golub 2000). They are divided into several 

subfamilies, which include the collagenases (MMP-1,-8 and -13), gelatinases 

(MMP-2 and -9), stromelysins (MMP-3,-10, and -11), matrilysins (MMP-7 and -

26), membrane-type MMPs (MMP-14, -15, -16, -17, -24, and -25) and others 

(MMP-12, -20, and -23) (Table 1.1). The collagenases have the ability to cleave 

Types I, II, and III fibrilar collagens into characteristic ¾ and ¼ fragments, but 

they can also digest other extracellular matrix molecules and soluble proteins 

(Visse and Nagase 2003). The gelatinases can degrade denatured collagens 

(gelatin). Gelatinase A (MMP-2) can also cleave Type I collagen, but at a slower 
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rate than the collagenases. The gelatinases digest a number of extracellular 

molecules including Types IV, V, and XI collagens. The stromelysins digest a 

number of extracellular molecules and participate in the activation of some of the 

pro-MMPs. Membrane-type MMPs are also able to degrade Types I, II, and III 

collagens, but at a slower rate than the collagenases and they play important 

roles in angiogenesis. 

The MMPs have been highly correlated with periodontal disease and are 

believed to be the major players in the collagen breakdown that occurs during 

periodontal tissue destruction. The MMPs are expressed by inflammatory host 

cells (neutrophils, monocytes, macrophages, and lymphocytes) and by resident 

host cells (fibroblasts, epithelial cells, osteoblasts, and endothelial cells) 

(Birkedal-Hansen 1993). The MMPs are regulated at the level of expression and 

activation, as well as by the tissue inhibitors of metalloproteinases (TIMPs). The 

TIMPs bind to the active sites of the MMPs and inhibit them at a 1:1 ratio. The 

imbalance between the MMPs and TIMPs can lead to tissue destruction. 

MMP-8 and -9 play central roles in the turnover and degradation of 

periodontal tissue. MMP-8 is mainly expressed by neutrophils (neutrophil 

collagenase), but it is also expressed by other cells (Bentwood and Henson 

1980). MMP-8 is stored in the secondary granules of neutrophils and is released 

upon recruitment to inflamed lesions and activated. MMP-9 was first discovered 

in neutrophils but is also produced by other cells including macrophages and 

monocytes (Lepidi, Kenagy et al. 2001). It is stored in the tertiary granules of the 

neutrophils and is released upon neutrophil activation. 
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Evidence has documented that the MMPs are the most important 

enzymes involved in periodontal tissue destruction (Birkedal-Hansen 1993). It 

has been reported that the collagenases and gelatinases are not only found in 

crevicular gingival fluid (Teng, Sodek et al. 1992) and saliva (Makela, Salo et al. 

1994), but also in biopsy specimens of inflamed periodontal tissues in higher 

amounts than in non-inflamed control tissues (Ejeil, Igondjo-Tchen et al. 2003). A 

study by Marcaccini et al. (Marcaccini, Meschiari et al. 2010) demonstrated that 

MMP-8 and -9 levels decreased significantly after non-surgical periodontal 

therapy, while they were reported to be at higher levels in chronic periodontal 

patients (Sorsa, Uitto et al. 1988; Sorsa, Ding et al. 1995; Kinane, Darby et al. 

2003). 

MMP-9 forms dimers consisting of covalently bonded monomers with a 

disulfide bond that allows these dimers to be found in tissues. This is a unique 

feature of MMP-9 (Olson, Bernardo et al. 2000). Both monomeric and dimeric 

forms of MMP-9 can cleave gelatin, as well as can be activated by MMP-3. The 

only difference between the monomeric and dimeric forms of pro-MMP-9 is that 

the dimeric catalytic efficiency of MMP-9 is 10-fold lower than that of the 

monomeric MMP-9. Also, it has been reported that the dimeric form is more 

stable than the monomer form (Olson, Bernardo et al. 2000) thus leading to the 

belief that they might behave differently in vivo such as the monomeric form 

being activated much faster than the dimeric form. 
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The role of MMP-8 in periodontal destruction has been well documented in 

the literature (Sorsa, Tjaderhane et al. 2004; Giannobile 2008). MMP-8 levels 

decreased significantly after scaling and root planing in periodontal patients, thus 

suggesting that this enzyme may be useful as a marker of current periodontal 

disease status and a predictor of future disease (Kinane, Darby et al. 2003). 

P. gingivalis has been reported to affect the expression and activation of 

several MMPs expressed by periodontal fibroblasts (DeCarlo, Windsor et al. 

1997). When HGFs were treated with P. gingivalis, MMP-15 mRNA increased 

1.41 fold and MMP-2 mRNA increased slightly (1.25 fold), while MMP-14 mRNA 

decreased 0.67 fold. The mRNA expression of TIMP-1 and TIMP-2 increased 

1.58 and 1.68, respectively (Zhou and Windsor 2006). Also, MMP-9 production 

was disrupted in gingival epithelial cells following contact with P. gingivalis, which 

may interfere with extracellular repair and organization (Fravalo, Menard et al. 

1996; Grayson, Douglas et al. 2003). Purified gingipains from P. gingivalis  

upregulated MMP-8 and MMP-3 expression in rat epithelial cells (DeCarlo, 

Grenett et al. 1998) and also activated the latent forms of MMP-1, -3, and -9 

(DeCarlo, Windsor et al. 1997). 

 

Human Neutrophils 

Neutrophils are professional phagocytes and are the most abundant 

leukocytes in the circulation (Meng, Xu et al. 2007). They also help promote 

inflammatory resolution and tissue healing (Schenkein 2006). They respond to 

infections by the “3 R’s”: Recruitment, Response, and Resolution (Nussbaum 
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and Shapira 2011). Neutrophils are believed to be a key protective cell type in 

the periodontal tissues (Meng, Xu et al. 2007). Neutrophils are crucial for the 

maintenance of periodontal health as evident from the many severe periodontal 

diseases associated with the dysfunction of neutrophils including chronic/cyclic 

neutropenia and syndromes such as Papillon-Lefevere syndrome, Chediak-

Higashi syndrome, and leucocyte adhesion deficiency syndrome (Cainciola, 

Genco et al. 1977; Carrassi, Abati et al. 1989; Delcourt-Debruyne, Boutigny et al. 

2000; Inaloz, Harman et al. 2001). 

After the neutrophils leave the bone marrow, they remain in the circulation 

for about 12 hours. When they are recruited, they adhere to the microvascular 

walls and then are attracted to the site of infection (Nussbaum and Shapira 

2011). The neurophils will then penetrate the endothelial layer and migrate 

through the connective tissue to reach the site of infection. When the neutrophils 

enter the tissue, they undergo apoptosis (programmed cell death) after 1-2 days 

and then are cleared by the macrophages, which are induced to produce anti-

inflammatory cytokines such as transforming growth factor β (TGF β) (Scott and 

Krauss 2012). The apoptosis process prevents tissue damage and is considered 

an anti-inflammatory process in contrast to necrosis where reactive oxygen 

species (ROS) and enzymes from the neutrophils are released in the 

periodontium and cause collateral damage to the surrounding connective tissue. 

The neutrophil targets the bacteria through several cell-surface receptors 

including Fcᵞ receptors for the Fc regions of antibodies, pattern recognition 

receptors and also receptors for C3b, which is an opsonizing molecule of the 
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complement system (Garcia-Garcia 2005). After the binding of the neutrophils to 

one of these receptors, the neutrophils engulf the microorganisms and internalize 

them into a phagosome. The lysosome will then fuse with the phagosome to 

create a phagolysosome (Tapper 1996). In the phagolysosome, the neutrophil 

will begin the killing mechanisms to destroy the microorganisms by two general 

types of killing mechanisms: oxidative and non-oxidative. The oxidative 

mechanism involves the production of ROS, which are primarily released to kill 

the bacteria. However, the extracellular release of ROS also results in collateral 

damage of the surrounding tissues. ROS include oxygen derived free radicals 

such as the superoxide radical, hydroxyl radical, and nitric oxide radical species, 

as well as non-radical derivatives of oxygen such as hydrogen peroxide and 

hypochlorous acid (Waddington, Moseley et al. 2000). It has been reported that 

ROS, especially the active hydroxyl radical, can degrade a number of structurally 

and metabolically functional macromolecules in an attempt to balance its 

unpaired electronic state and thus causes tissue damage (Waddington, Moseley 

et al. 2000). 

Following the activation of the neutrophils, the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase complex generates superoxide 

radicals. The superoxide radical then dismutates to hydrogen peroxide, which 

forms a number of ROS species including hypochlorous acid through 

myeloperoxidase, hydroxyl radicals or peroxynitrite anions (Chapple and 

Matthews 2007). 
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In regard to the non-oxidative mechanisms, they include many 

components within the granules of the neutrophils which exert antimicrobial 

effects. These are the defensins, bacterial/permeability increasing protein, and 

the neutral serine protease family, which includes elastase, proteinases 3, 

azurocidin, and cathepsin G. Elastase, which is released extracellularly during 

neutrophil activation, can degrade multiple proteins in the extracellular matix. 

This complex interaction between the pathogenic bacteria and the host immune 

response give rise to tissue damage (Canakci, Cicek et al. 2005). 

 

Specific Aims 

The overall goal of this study was to examine the ROS production and 

MMP-9 release from neutrophils when stimulated with different cigarette tobacco 

smoke components. The study was accomplished by the following specific aims. 

 

Specific aim 1: To assess the ROS release when neutrophils are stimulated with 

either nicotine alone, P. gingivalis alone, and a combination of both. 

The relationship between tobacco smoking and periodontal disease has 

been well documented (Bergstrom and Floderus-Myrhed 1983; Feldman, 

Bravacos et al. 1983; Ismail, Burt et al. 1983; Bergstrom, Eliasson et al. 1991). 

Currently, there is a large body of scientific evidence that smokers have an 

increased risk, incidence, and severity of periodontal disease as evident by 

increased gingival recession, tooth loss, and periodontal destruction. Smokers 

have deeper probing depths (Feldman, Bravacos et al. 1983), deeper pockets, 
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and more attachment loss (Haffajee and Socransky 2001), as well as more 

gingival recession (Haffajee and Socransky 2001). They also have more alveolar 

bone loss (Bergstrom, Eliasson et al. 2000), more teeth with furcation 

involvement (Mullally and Linden 1996; Craig, Boylan et al. 2001), and suffer 

more tooth loss than non-smokers (Daniell 1983; McGuire and Nunn 1999). 

Tobacco contains about 6700 compounds and almost 4000 compounds of 

these have been identified in tobacco smoke (Baker, Ainsworth et al. 2000). 

These compounds include known carcinogens, toxic heavy metals, and many 

untested chemicals (Rogers 2009). The major additive ingredient in tobacco is 

nicotine. Many studies in the literature have focused on the adverse effects of 

nicotine on both cell-mediated and humoral immune responses (Palmer, Wilson 

et al. 2005), as well as on its effects on various cell types including neutrophils, 

epithelial cells, and fibroblasts. Nicotine has been reported to have two effects on 

the release of ROS. First, it inhibits the synthesis of superoxide. Second, it 

directly absorbs any superoxide that is produced (Pabst, Pabst et al. 1995). 

These two effects lead to reduced oxidative burst. This is in agreement with 

Sorensen et al. (Sorensen, Nielsen et al. 2004), who studied the effects of 

smoking on neutrophils and monocytes. Smoking reduced the neutrophil and 

monocyte oxidative burst by half, which may translate into impaired oxidative 

killing and bactericidal activity. 

 

Specific aim 2: To examine the cytotoxicity, ROS production, and MMP-9 

release from cigarette smoke condensate (CSC) treated human neutrophils. 
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CSC is the particulate matter of smoke. It is compromised of more than 

4000 compounds and is believed to be a powerful inducer of inflammatory 

responses (Gao, Chen et al. 2005). It has been intensively investigated during 

the past twenty years to identify the mechanisms by which it causes a variety of 

cancers including lung, oral cavity, larynx, paranasal sinuses, urinary bladder, 

and pancreas (Cancer 2004). The mechanisms involve mutagenic activity and 

genotoxicity (DeMarini 1983) of tobacco smoke, as well as smoking-related DNA 

and protein adducts in human tissues (Phillips 2002). 

 

Specific aim 3: To determine the cytotoxicity levels of 4 different tobacco smoke 

components (2-naphthylamine, hydroquinone, acrolein, and acetaldehyde) on 

human neutrophils and to investigate the effects of these chemicals on the 

production of ROS from neutrophils and their release of MMP-9. 

2-Naphthylamine is known to be a human carcinogen. In 1969, the 

International Agency for Research on Cancer classified 2-naphthylamine as a 

Group 1 Carcinogen based on human and animal evidence of its carcinogenic 

potency (Smith, Livingston et al. 1997). There is sufficient evidence that chemical 

workers exposed to 2-naphthylamine are at an increased risk of bladder cancer 

(IARC 1987). It has been reported that cigarette smoking accounts for about two-

thirds of the bladder cancer cases in men in industrialized countries (Brennan, 

Bogillot et al. 2000). Many carcinogens, such as 2-naphthylamine, can bind to 

DNA to form adducts which if not repaired can lead to mutations and ultimately 

cancer (Benhamou, Laplanche et al. 2003). 
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Hydroquinone is a reactive metabolite from benzene biotransformation 

(Snyder and Hong 2004). After inhalation of hydroquinone, it is oxidized in the 

liver by cytochrome P450 to form benzene epoxide (Snyder 2002). This easily 

penetrates the bone marrow compartment and can be locally metabolized. It 

accumulates in the bone marrow leading to toxicity (Henderson 1996). A study by 

Macedo et al. demonstrated that hydroquinone exposure alters neutrophil 

mobilization, which results in an exacerbated response after an injury (Macedo, 

Lourenco et al. 2006). 

In a study by Poggi et al. (Poggi, Rota et al. 2002), acrolein and 

acetaldehyde produced similar changes in human gingival fibroblasts. These 

changes included a decrease in cell viability and adhesion, disruption of 

micromolecules, decrease in intermediate filaments and actin filaments, changes 

in cell shape and a decrease in cell size, the presence of vacuoles, and non-

specific immunofluorescence patterns (Poggi, Rota et al. 2002). Poggi et al. 

(Poggi, Rota et al. 2002) used concentrations between 10-5 M and 10-4 M for 

acrolein and 10-3 M and 10-2 M for acetaldehyde. At the highest doses of acrolein 

(10-4 M) and acetaldehyde (10-2 M), severe disorganization of the microtubules 

was noted and the network morphology was no longer visible (Poggi, Rota et al. 

2002). These findings were also supported by Cattaneo et al. (Cattaneo, Cetta et 

al. 2000), who showed that acrolein and acetaldehyde produced dose-dependent 

inhibition of the attachment and proliferation of HGFs. 
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Vrsalovic et al. (Vrsalovic, Vrsalovic et al. 2007) investigated the influence 

of acetaldehyde on neutrophil phagocytic functions. The ability of neutrophils to 

phagocytose was attenuated significantly in a dose-dependent fashion at 

concentrations of 0.0625, 0.125, and 0.5 mM. Acetaldehyde had no influence on 

the neutrophil phagocytic activity (Vrsalovic, Vrsalovic et al. 2007). Cytogenetic 

effects reported from acetaldehyde treatment included several types of DNA 

damage (Grafstrom, Dypbukt et al. 1994). 

 

Dissertation Outline 

This dissertation is divided into five chapters. The current chapter 

(Chapter One) is an introduction to periodontal disease and one of its major risk 

factors (i.e., tobacco usage), as well as MMPs, human neutrophils and the 

importance of the production of ROS. Chapter Two describes the materials and 

methods of the three projects which investigated the non-toxic concentrations of 

the different chemicals and their effects on the ROS production and MMP-9 

release with and without P. gingivalis from neutrophils. Project one examines 

nicotine, project two examines CSC, and project three examining four different 

components of tobacco smoke (2-naohthylamine, hydroquinone, acrolein, and 

acetaldehyde). Chapter Three describes the results of the three projects. Chapter 

Four discusses the results. Chapter Five concludes this dissertation and 

summarizes the results, as well as the significance of the data from these 

studies. It also describes future directions for continuing the research. 
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Table 1.1. Classification of matrix metalloproteinases 

SUBGROUPS  

Collagenases MMP-1, MMP-8, MMP-13, and MMP-18 

Gelatinases MMP-2 and MMP-9 

Stromelysins MMP-3, MMP-10, and MMP-11 

Membrane-

type MMPs 

MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and 

MMP-25 

Others 
MMP-12, MMP-19, MMP-20, MMP-21, MMP-23, MMP-

27, and MMP-28 
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CHAPTER TWO 

Materials and Methods 

 

Neutrophil Separation 

Buffy coats were purchased from the Central Indiana Regional Blood 

Center in Indianapolis, Indiana following separation from freshly collected whole 

blood from healthy adult donors (Institutional Review Board approval number 

NS0806-02). Once in the laboratory, the buffy coats were diluted 1:1 with 

Roswell Park Memorial Institute (RPMI) cell media (Sigma Aldrich, St. Louis, MO) 

to maximize the efficiency of separation. The neutrophils were separated by the 

Double Dextran Gradient Method (Boyum 1968) as follows: 

1. Three milliliters of room temperature HISTOPAQUE-1119 

(Sigma Aldrich, St. Louis, MO) was added to a 15 mL tube. 

2. Three milliliters HISTOPAQUE-1077 (Sigma Aldrich, St. 

Louis, MO) was carefully layered on the HISTOPAQUE-1119. 

3. Six milliliters of the buffy coat/RPMI-1640 mixture was 

carefully layered on the HISTOPAQUE-1077. 

4. The samples were centrifuged at 1700 RPM for 35 minutes 

at room temperature. 

5. The mononuclear layer was drawn off with a pipette. 

6. This layer was washed with 10 mL of phosphate buffer 

saline (PBS) at room temperature and then centrifuged at 950 RPM 

for 10 minutes. 
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7. Step 6 was repeated. 

8. The samples were washed with 10 mL RPMI-1640. 

9. The neutrophils were resuspended in RPMI-1640 to a 

concentration of 1.0 x 106 cells/mL. The neutrophils were counted 

under a hematocytometer using the Trypan Blue Exclusion Test 

(Wahaidi 2010). The viability in all of the samples was > 99%. 

 

Bacterial Supernatant 

Porphyromonas gingivalis ATCC 33277 was maintained on enriched 

trypticase soy agar plates containing 3% sheep blood (Bodet, Chandad et al. 

2006). Cultures were grown in Todd Hewitt Broth with 0.001% hemin and 

0.0001% Vitamin K or menadione. Cultures were incubated in an anaerobic 

chamber with an atmosphere of 80% nitrogen, 10% hydrogen, and 10% carbon 

dioxide. When the bacterial growth yielded an OD600 of 1.0 (1.15 X 109 cells/mL), 

the cultures were stopped. The bacterial supernatants were harvested by 

centrifugation at 13,000 g for 20 min at 4°C. The collected supernatants were 

filtered twice through 0.2 µm membranes and then stored at 20°C. 

 

Chemicals 

The nicotine, 2-naphthylamine, hydroquinone, acrolein, and acetaldehyde 

were obtained commercially from Sigma Aldrich (St. Louis, MO), and stored 

away from light. The CSC was obtained from Murty Pharmaceutical Incorporated 

(Lexington, KY).  
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Measurement of Cytotoxicity Using Lactate Dehydrogenase Assays (LDH) 

Cell membrane integrity was monitored using the permeability assay 

based on the determination of the release of lactate dehydrogenase into the 

media. The conversion of tetrazolium salt into a red formazan product was 

measured by the Cytotoxicity Detecting Kit (Roche Applied Science, Mannheim, 

Germany). Neutrophils (1 × 106 cell/mL) were treated with different 

concentrations of the chemicals for 4 hours. The concentrations of the 

chemicals/agents used are shown in Tables 2.1, 2.2, and 2.3. The low control 

consisted of RPMI media from untreated control neutrophils after 4 hours and 

gave the minimal release of lactate dehydrogenase, while the high control 

consisted of 1.9 mL of RPMI media with 100 µL of lysis solution added to the 

control cells as provided by the manufacturer to generate the total cell death of 

the neutrophils. The experiments were repeated four times and the mean values 

were calculated. Calculation of the cytotoxicity was determined using the 

following equation: 

Cytotoxicity (%) = (experiment value - low control) / (high control – low control) × 

100%. 

 

Chemiluminescence (CL) Assays 

The CL assays were performed according to established protocols for 

neutrophils (Permpanich, Kowolik et al. 2006) in a luminometer. For each run of 

the experiment, there were 16 reaction cuvettes. To each reaction cuvette, the 

following was added: 500 μl of neutrophil suspension (1×106 cell/mL) in RPMI, 
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300 μl of PBS and 100 μl luminol (5 amino-2,3-dihydro-1,4-phthalazindione) that 

was used as a CL probe for signal augmentation and dispensed at  baseline. 

Luminol is an activity amplifier and has been frequently used in the free radical 

research field (Dahlgren, Karlsson et al. 2007). After 30 minutes, different 

concentrations of the chemicals with and with P. gingivalis were added (Tables 

2.4, 2.5, and 2.6). The study groups also included a negative control blank that 

contained no neutrophils and a 10-11 M N-formyl-methionyl-leucyl-phenylalanine 

(fMLP) treated neutrophil sample that served as a positive control. The reactions 

were followed for 90 minutes and this represented the neutrophil activation 

phase. Neutrophil activation was recorded in millivolts, the integrals were 

calculated, and data analysis was performed on the mean values of triplicate 

experiments. 

 

Western Blot Analysis 

Western blots were performed to examine the release of MMP-9 in the 

conditioned media. After the incubation of the different chemicals with the 

neutrophils for 2 hours at the concentrations shown in Tables 2.4, 2.5, and 2.6, 

and after protein concentrations were equalized, the conditioned media from the 

treated cells and untreated cells were resolved in 10% SDS-PAGE gels at 200 V. 

The proteins on the gels were transferred to polyvinylidene fluoride  (PVDF) 

membranes at 0.3 A for 80 minutes using blotting buffer (25 mM Tris-HCL, pH 

8.3, 192 mM glycine, and 10% methanol). The membranes were then incubated 

in 5% milk in PBS solution with 0.1% Tween-20 (pH 7.4) for 1 hour to block non-
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specific binding. The membranes were incubated with primary antibody against 

MMP-9 (pAb-4542-92K-GL) (Pickett, Harber et al. 1999) at 4°C overnight. The 

membranes were washed three times with phosphate-buffered saline with 

Tween-20 and incubated with anti-rabbit secondary antibody (Amersham 

Biosciences, Piscataway, NJ, USA) for 1 hour at room temperature. The 

membranes were then developed with the Amersham ECLTM western blotting 

detection kit (Thermo Fisher Scientific, Rockford, IL) according to the 

manufacturer. Finally, the National Institution of Health (NIH) Image software 

1.46 was used to scan the blot exposed x-ray films and for measuring the bands. 

 

Gelatin Zymography 

After the incubation of the different chemicals with the neutrophils for 2 

hours at the concentrations shown in Tables 2.4, 2.5, and 2.6, the conditioned 

media from the chemically treated cells and untreated cells (no chemicals), as 

well as the positive control (neutrophils incubated with fMLP), were resolved in 

10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

gels containing 1 mg/mL of gelatin at 200 V. The gels were then stepwise 

washed with solution 1 (2.5% (v/v) Triton-X 100 and 2 mM NaN3), solution 2 

(2.5% (v/v) Triton-X 100, 50 mM Tris, pH 7.4, and 3 mM NaN3), solution 3 (2.5% 

(v/v) Triton-X 100, 50 mM Tris, pH 7.4, 5 mM CaCl2, 1 µM ZnCl2, and 3 mM 

NaN3), and solution 4 (50 mM Tris, pH 7.4, 5 mM CaCl2, 1 µM ZnCl2, and 3 mM 

NaN3) for 20 minutes each. The gels were then incubated in solution 4 at 37°C 

overnight. After staining with coomassie blue, the proteinases capable of 
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digesting the gelatin were visualized as lytic bands against the blue background 

of the gel. The molecular weights of the proteinases on the zymograms were 

estimated by measuring the relative migrations of the molecular weight 

standards. 

 

Statistical Analysis 

For the CL assays, the controls were averaged within each experimental 

run and the results for the other groups were divided by the control mean. 

Comparisons between the groups were performed using analysis of variance 

(ANOVA) with a term for group and a random effect for experimental run. 

Comparisons are presented after adjustment for multiple comparisons using 

Tukey's method to control the overall significance level. To satisfy the ANOVA 

assumptions, the analysis were performed on the log-transformed data. 

For the cytotoxicity and MMP-9 release, the data was presented a mean 

and standard deviation. ANOVA was performed with Tukey’s test in the 

Statistical Package for Social Science (SPSS) 11.5 (SPSS Inc., Chicago, IL). The 

level of significance was set at p < 0.05. 
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Table 2.1. Project I. Nicotine concentrations 
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Table 2.2. Project II. CSC concentrations 
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Table 2.3. Project III: 2-Naphthylamine, hydroquinone, acrolein, and 

acetaldehyde concentrations 

2-Naphylamine Hydroquinone Acrolein Acetaldehyde 

40 mM 

20 mM 

10 mM 

5 mM 

2.5 mM 

1.25 mM 

0.6 mM 

0.3 mM 

40 mM 

20 mM 

10 mM 

5 mM 

2.5 mM 

1.25 mM 

0.6 mM 

0.3 mM 

100 mM 

50 mM 

25 mM 

12.5 mM 

6.25 mM 

3.125 mM 

1.56 mM 

0.78 mM 

100 mM 

50 mM 

25 mM 

12.5 mM 

6.25 mM 

3.125 mM 

1.56 mM 

0.78 mM 
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Table 2.4 Project I: Chemiluminescence / Nicotine 

 

Blank (RPMI media) 

Negative control (neutrophils alone) 

Primed neutrophils + 80 µg/ml nicotine 

Primed neutrophils + 80 µg/ml nicotine + 10% P. gingivalis 

Primed neutrophils + 10% P. gingivalis 

Positive control 
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Table 2.5. Project II: Chemiluminescence / CSC 

 

Blank (RPMI media) 

Negative control (neutrophils alone) 

Primed neutrophils + 10 µg/ml CSC 

Primed neutrophils + 25 µg/ml CSC 

Primed neutrophils + 50µg/ml CSC 

Primed neutrophils + 50 µg/ml CSC + 10% P. gingivalis 

Primed neutrophils + 10% P. gingivalis 

Positive control 
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Table 2.6. Project III: Chemiluminescence / 2-Naphthylamine, hydroquinone, 

acrolein, and acetaldehyde 

2-Naphthylamine Hydroquinone Acrolein Acetaldehyde 

Blank (RPMI) 

Negative control 

0.0004 mM 

0.004 mM 

0.008 mM 

0.008 mM + 10% 
P. gingivalis 

 
P. gingivalis alone 

Blank (RPMI) 

Negative control 

0.03 mM 

0.3 mM 

0.6 mM 

0.6 mM + 10% P. 
gingivalis 

 
P. gingivalis alone 

Blank (RPMI) 

Negative control 

0.008 mM 

0.08 mM 

0.16 mM 

0.16 mM + 10% P. 
gingivalis 

 
P. gingivalis alone 

Blank (RPMI) 

Negative control 

0.046 mM 

0.46 mM 

0.92 mM 

0.92 mM + 10% P. 
gingivalis 

 
P. gingivalis alone 
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CHAPTER THREE 

Results 

 

Project One: Responses of Human Neutrophils to Nicotine with/without P. 

gingivalis 

 

Cytotoxicity of Nicotine on Neutrophils by LDH 

The cytotoxicity values were calculated after incubating the neutrophils for 

4 hrs with different concentrations of nicotine and then compared with the 

controls. The cytotoxicity was statistically not significant from the low control for 

25 µg/mL (0.9 ± 0.5) with a p-value = 0.1000, 50 µg/mL (1.5 ± 0.665) with a p-

value = 0.194, and 100 µg/mL of nicotine (2.385 ± 0.74) with a p-value = 0.098, 

but was statistically significant for 200 (4.65 ± 0.52), 400 (7.341 ± 0.665), and 

800 µg/mL (14.33 ± 0.77) with p-values of 0.037, 0.03, and 0.012, respectively 

(Figure 3.1.1 and Table 3.1.1). 

 

Chemiluminescence Assays 

The positive control, P. gingivalis, and P. gingivalis plus nicotine groups 

had significantly higher mean,  active, and peak CL than the nicotine group, all 

with p-value < 0.0001 (Figure 3.1.2, Table 3.1.2, and Table 3.1.3). The active CL 

represents the total energy output under the curve, while the peak CL measures 

the intensity of the reaction. The active CL of P. gingivalis (37806 ± 3915) and P. 

gingivalis plus nicotine (34298 ± 3726) groups were not significantly different 
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from each other (p-value = 0.98). Similarly, the peak CL of P. gingivalis (9.80 ± 

1.03) and P. gingivalis plus nicotine (8.60 ± 0.83) groups were also not 

significantly different from each other (p-value = 0.99). The positive control group 

had significantly higher peak CL (27.31 ± 5.83) than P. gingivalis (9.80 ± 1.03) 

with a p-value = 0.0224, but did not have significantly different active CL (32962 

± 4907) from P. gingivalis (37806 ± 3915) with a p-value = 0.10. The positive 

control group had significantly higher peak CL (27.31 ± 5.83) than P. gingivalis 

plus nicotine (8.60 ± 0.83) with a p-value = 0.0457 and a significantly lower active 

CL (32962 ± 4907) than P. gingivalis plus nicotine (34298 ± 3726) with a p-value 

= 0.0490. 

 

MMP-9 Western Blot 

MMP-9 release was statistically increased in all groups from the control 

with p-values of 0.032, 0.001, or 0.001 for nicotine alone, nicotine plus P. 

gingivalis, and P. gingivalis alone, respectively. (Figure 3.1.3 panel A and Table 

3.1.4). 

 

Gelatin Zymography 

MMP-9 levels in the zymograms (92 kDa bands) was increased and 

statistically significant in all the groups compared to the control with p-values of 

0.03, 0.03, or 0.01 for nicotine alone, nicotine plus P. gingivalis, and P. gingivalis 

alone, respectively. The P. gingivalis alone group was also significantly higher 

than the control with a p-value of 0.001 (Figure 3.1.3 panel B and Table 3.1.4).  
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Figure 3.1.1. Project I: Cytotoxicity (%) of nicotine on neutrophils. The lysis (high 

control) was the maximal cytotoxicity (total cell death). Results were presented 

as mean with standard deviation (SD). Error bars represent SD. *denotes 

significant difference compared with the control (p-value < 0.05). 
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Table 3.1.1. Project I: Cytotoxocity of nicotine on neutrophils 

Nicotine Concentration Value ± SD p-value 

25 µg/ml 
 

0.9 ± 0.5 0.1 

50 µg/ml 
 

1.5 ± 0.665 0.194 

100 µg/ml 
 

2.385 ± 0.74 0.098 

200 µg/ml 
 

4.65 ± 0.52 0.037* 

400 µg/ml 
 

7.341 ± 0.66 0.03* 

800 µg/ml 
 

14.33 ± 0.77 0.012* 

 

*denotes significant difference compared with the control (p-value < 0.05) 
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Figure 3.1.2. Project I: Active, mean, and peak chemiluminescence after 

stimulation the neutrophils with nicotine with/without P. gingivalis. *denotes 

statistical significance p-value < 0.05 when compared to nicotine. 
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Table 3.1.2. Project I: Active, mean, and peak chemiluminescence after 

stimulation the neutrophils with nicotine with/without P. gingivalis. SE: Standard 

Error. Min: Minumum, Max: Maximum. 
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Table 3.1.3. Project I: Active and peak chemiluminescence. A: Denotes 

statistically significant value when compared to nicotine. B: Denotes statistically 

significant value when compared to the negative control. 

 Active Peak 

Group Mean ± SE p-value Mean ± SE p-value 

Negative 

control 
3486 ± 196  0.89 ±0.09  

Positive 

control 

32962 ± 

4907 

< 0.0001 A 

< 0.0001 B 

27.31 ± 5.83 

< 0.0001 A 

< 0.0001 B 

P. gingivalis 
37806 ± 

3915 

< 0.0001 A 

< 0.0001 B 

9.8 ± 1.03 

< 0.0001 A 

< 0.0001 B 

nicotine 
13041 ± 

1893 

< 0.05 B 

 

2.99 ± 0.45 < 0.05 B 

P. gingivalis 

+ nicotine 

34298 ± 

3726 

< 0.0001 A 

< 0.0001 B 

8.6 ± 0.83 

< 0.0001 A 

< 0.0001 B 
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Figure 3.1.3. Project I: A: MMP-9 (92 kDa) western blot. B: MMP-9 gelatin 

zymography 
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Table 3.1.4. Project I: MMP-9 release by western blot after stimulation of 

neutrophils with nicotine 

 Control 
80 µg/ml 
nicotine 

80 µg/ml 
nicotine + P. 
gingivalis 

P. 
gingivalis 

Positive 
control 

Western 
Blot 

76 ± 
9.5 

111.3 ± 
13.4 

135.7 ± 19.4 
122.5 ± 
20.4 

165.2 ± 
13.6 

Gelatin 
Zymography 

88.25 ± 
6.5 

83.3 ± 9.5 101.2 ± 3.6 
124.9 ± 
11.9 

188.9 ± 
7.1 

 

*denotes significant difference compared with the control (p-value < 0.05) 
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Project Two: The Responses of Human Neutrophils to CSC with/without P. 

gingivalis 

 

Cytotoxicity of CSC on Neutrophils by LDH 

The cytotoxicity values were calculated after incubating the neutrophils for 

4 hrs with the different concentrations of CSC and then compared with the 

controls. The cytotoxicity was not statistically significant for 25 µg/mL (1.96 ± 

0.21) with a p-value = 0.103 and 50 µg/mL (4.08 ± 0.88) with a p-value = 0.071, 

while CSC was cytotoxic at 100 µg/mL (6.3 ± 0.17), 200 µg/mL (8.55 ± 1.67), 400 

µg/mL (15.884 ± 5.4), and 800 µg/mL (55.012 ± 9.5) with a p-value = 0.04, p-

value = 0.0011, p-value = 0.0011, and p-value = 0.0001 respectively (Figure 

3.2.1 and Table 3.2.1 ). 

 

Chemiluminescence Assays 

The amount of ROS produced after the stimulation with 10 µg/mL, 25 

µg/mL, or 50 µg/mL CSC was not statistically significantly different from the 

control with p-values of 0.25, 0.8, and 0.33, respectively. Increasing the 

concentration of CSC from 10 µg/mL to 50 µg/mL resulted in a non significant 

dose dependent decrease in the ROS production (p-value = 0.65) compared to 

the control. P. gingivalis plus CSC decreased the production of ROS significantly 

(p-value = 0.0001), while P. gingivalis alone increased ROS production (p-value 

= 0.0001) (Figure 3.2.2. and Table 3.2.2). 
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MMP-9 Western Blot 

MMP-9 release was increased and statistically significant in all the groups 

compared to the control with p-values of 0.0001, 0.001, or 0.005 for the 

concentrations of 10 µg/mL, 25 µg/mL, or 50 µg/mL CSC, respectively. P. 

gingivalis plus CSC caused a significant increase in the release of MMP-9 (p-

value = 0.0001) as did P. gingivalis alone (p-value = 0.0001) (Figure 3.2.3 panel 

A and Table 3.2.3). 

 

Gelatin Zymography 

MMP-9 in the zymograms (92 kDal bands) showed no significant increase 

in the 10 µg/mL CSC compared to the control (p-value = 0.15), but 

concentrations of 25 or 50 µg/mL showed increased release of MMP-9 with p-

values of 0.005 and 0.003, respectively. CSC plus P. gingivalis and P. gingivalis 

alone groups were also significantly higher than the control with a p-value of 

0.0001 and 0.006, respectively (Figure 3.2.3 panel B and Table 3.2.3). 
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Figure 3.2.1. Project II: Cytotoxicity (%) of CSC on neutrophils. The lysis (high 

control) was total cell death. Results were presented as mean and standard 

deviation (SD) Error bars represent SD. *denotes significant difference compared 

with the control (p-value < 0.05). 
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Table 3.2.1. Project II: Cytotoxicity of CSC on neutrophils with p-values. 

CSC Concentration Value ± SD p-value 

25 µg/ml 1.96 ± 0.21 0.103 

50 µg/ml 4.08 ± 0.88 0.071 

100 µg/ml 6.3 ± 0.17 0.04* 

200 µg/ml 8.55 ± 1.67 0.0011* 

400 µg/ml 15.884 ± 5.4 0.0011* 

800 µg/ml 55.012 ± 9.5 0.0001* 

 

*denotes significant difference compared with the control (p-value < 0.05). 
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Figure 3.2.2. Project II: Active, mean, and peak chemiluminescence after 

stimulation the neutrophils with CSC with/without P. gingivalis. 
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Table 3.2.2. Project II: Active chemiluminescence after the stimulation with 

different concentrations of CSC. SE. Standard Error. 

 Active SE p-value 

Control 1250 242  

10 µg/ml CSC 188 55 0.67 

25 µg/ml CSC 149 41 0.92 

50 µg/ml CSC 120 30 0.95 

50 µg/ml CSC + P. gingivalis 303 20 0.0001* 

P. gingivalis 6412 1062 0.0001* 

 

*denotes significant difference compared with the control (p-value < 0.05) 
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Figure 3.2.3. Project II: A: MMP-9 (92 kDa) western blot. B: MMP-9 gelatin 

zymography. 
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Table 3.2.3. Project II: Release of MMP-9 from neutrophils into the media at the 

different CSC concentrations compared to the control by western blots and 

gelatin zymography. 

 Control 
10 
µg/ml 
CSC 

25 
µg/ml 
CSC 

50 
µg/ml 
CSC 

50 µg/ml 
CSC + P. 
gingivalis 

P. 
gingivalis 

Western 
Blot 

89.22 ± 
1.3* 

108.2 ± 
2.45* 

101.5 
± 2.1* 

98.9 ± 
2.14* 

149 ± 3.2* 
142.2 ± 
3.27* 

Gelatin 
Zymography 

136.6 ± 
1.39 

132.37 
± 1.01* 

144.1 
± 1.9* 

144.4 
± 1.9* 

150.5 ± 2.2* 
143.8 ± 
1.8* 

 

*denotes significant difference compared with the control (p-value < 0.05). 

.  
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Project Three: The Responses of Human Neutrophils to Four Different Smoke 

Components with/without P. gingivalis 

 

Cytotoxicity of 2-Naphthylamine, Hydroquinone, Acrolein, and 

Acetaldehyde on Neutrophils by LDH 

2-Naphthylamine: The cytotoxicity values were not significant at 0.3 mM 

(p-value = 0.87), 0.6 mM (p-value = 0.8), 1.25 mM (p-value = 0.42), or 2.5 mM (p-

value = 0.1), but were statistically significant at 5 mM (p-value = 0.04). The high 

dimethyl sulfoxide (HDMSO) group contained 8% DMSO and represented the 

same concentration of DMSO found in the 40 mM group, while the low DMSO 

(LDMSO) group contained 0.06% DMSO and represented the same 

concentration of DMSO found in the 0.3 mM group. The median DMSO 

(MDMSO) represented the concentration of DMSO found in the 1.25 mM group 

(Figure 3.3.1 and Table 3.3.1). 

Hydroquinone: The cytotoxicity values were not significant at 0.3 mM (p-

value = 0.89), 0.6 mM (p-value = 0.414) or 1.25 mM (p-value = 0.109), but were 

statistically significant at 2.5 mM with a p-value < 0.001 (Figure 3.3.1 and Table 

3.3.1). 

Acrolein and Acetaldehyde: Both acrolein and acetaldehyde had similar 

results. They were not toxic to the neutrophils at any of the concentrations 

examined (Figure 3.3.1 and Table 3.3.1). 
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Chemiluminescence 

2-Naphthylamine: The amount of ROS produced after the stimulation 

with 2-naphthylamine from one cigarette was not statistically significant from the 

control (p-value = 0.35). The ROS production from neutrophils treated with 2-

naphthylamine concentrations in 10 cigarettes and 20 cigarettes was statistically 

significantly higher than the control with p-values < 0.001 for both. The 20 

cigarettes treatment resulted in more ROS production than any of the other 

chemicals at any concentration (49036 ± 21590). P. gingivalis alone and P. 

gingivalis plus 2-naphthylamine were statistically significant from the control with 

p-values < 0.001 for both (Figure 3.3.2. and Table 3.3.2). 

Hydroquinone: The amount of ROS produced by neutrophils after the 

stimulation with the different concentrations of hydroquinone was statistically 

significantly lower than the control with p-values < 0.001 for all the 

concentrations. Increasing the concentration of hydroquinone to that found in 1 

cigarette to 20 cigarettes decreased the ROS production compared to the 

control. P. gingivalis plus hydroquinone also decreased the production of ROS 

significantly (p-value < 0.001), while P. gingivalis alone increased ROS 

production (p-value = 0.001) (Figure 3.3.2. and Table 3.3.2). 

Acrolein: Similar to hydroquinone, the amount of ROS produced after the 

stimulation of neutrophils with all the concentrations of acrolein (10, 25, and 50 

µg/mL) were statistically significant from the control with p-values of 0.0206, 

0.00001, and 0.00001, respectively. P. gingivalis plus hydroquinone also 
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decreased the production of ROS significantly while P. gingivalis alone increased 

ROS production (all with p-values of 0.001) (Figure 3.3.2. and Table 3.3.2). 

Acetaldehyde: The stimulation of neutrophils with acetaldehyde resulted 

in statistical significant increases in the ROS production at the concentrations 

found in 1 cigarette, 10 cigarettes, and 20 cigarettes with p-values of 0.0018, 

0.0195, and 0.0002, respectively. Acetaldehyde plus P. gingivalis and P. 

gingivalis alone also increased the ROS production with p-values of 0.0002 and 

0.0001, respectively (Figure 3.3.2. and Table 3.3.2). 

 

MMP-9 Western Blotting 

2-Naphthylamine: MMP-9 release was increased and statistically 

significant in all the groups from the control with p-values of 0.002, 0.0001, and 

0.0001 for the concentrations found in 1 cigarette, 10 cigarettes, and 20 

cigarettes, respectively. P. gingivalis plus 2-naphthylamine and P. gingivalis 

alone were significantly different from the control with p-values of 0.0001 for both 

(Figure 3.3.3 panel A and Table 3.3.3). 

Hydroquinone and Acrolein: MMP-9 release was significantly decreased 

when hydroquinone or acrolein were added with P. gingivalis with p-values of 

0.006 and 0.0001, respectively (Table 3). There was also a non significant 

decrease in MMP-9 release when the concentrations of these tobacco 

components were increased from 1 cigarette to 20 cigarettes with all p-values > 

0.05 (Figure 3.3.3 panel A and Table 3.3.3). 
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Acetaldehyde: No detectable changes were detected in MMP-9 release 

when acetaldehyde was added alone at any concentration. When combined with 

P. gingivalis, MMP-9 release was significantly increased compared to the control 

(p-value = 0.0001) (Figure 3.3.3 panel A and Table 3.3.3). P. gingivalis alone was 

increased significantly compared to the compared with a p-value = 0.0001. 

 

Gelatin Zymography 

2-Naphthylamine: MMP-9 release was increased from the control but 

was only statistically significant in the groups for the concentrations found in 10 

cigarettes and 20 cigarettes with p-values of < 0.001 for both. P. gingivalis plus 2-

naphthylamine and P. gingivalis alone were significantly different from the control 

with p-values < 0.0001 for both (Figure 3.3.3 panel B). 

Hydroquinone and Acrolein: MMP-9 release was significantly decreased 

when hydroquinone or acrolein were added with P. gingivalis with p-values of 0 

0.0001 for both (Figure 3.3.3 panel B). There was also a significant decrease in 

MMP-9 release compared to the control when the concentrations of 

hydroquinone were increased from 10 cigarettes to 20 cigarettes with p-values < 

0.0001 for both. In regard to acrolein, there was a statistically significant 

decrease when the cells were treated with concentrations of 1 cigarette,10 

cigarettes, or 20 cigarettes compared to the control with p-values of 0.005, 0.001, 

and 0.001, respectively (Figure 3.3.3 panel B). 

Acetaldehyde: MMP-9 release was statistically significantly increased 

when acetaldehyde was added alone at all the concentrations tested with p-
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values < 0.001 for all. P. gingivalis alone or when combined with acetaldehyde 

showed significant increase compared to the control (all with p-values < 0.0001) 

(Figure 3.3.3 panel B).  
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Figure 3.3.1. Project III: Cytotoxicity (%) of A: 2-Naphthylamine, B: 

Hydroquinone, C: Acrolein, and D: Acetaldehyde. The lysis (high control) was the 

maximal cytotoxicity to the neutrophils (total cell death). Results were presented 

as mean and standard deviation (SD). Error bars represent SD. *denotes 

significant difference compared with the control (p-value < 0.05). 
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Table 3.3.1. Project III: Cytotoxicity results with p-values 

Chemical  Concentration  Value ± 
SD  

p-value  

2-Naphthylamine  0.3 mM  0.39 ± 4.3  0.87 

  0.6 mM  0.24 ± 0.36  0.8 

  1.25 mM   0.64 ± 
0.52  

0.42 

  2.5 mM  1.7 ± 0.32  0.1 

  5 mM  5.11 ± 0.75  0.04 

  10 mM  11.14 ± 
0.79  

< 0.001  

  20 mM  18.5 ± 0.87  <0.001 

  40 mM  26.5 ± 1.27  <0.001  

Hydroquinone  0.3 mM  0.54 ± 2.1  0.89 

  0.6 mM  0.49 ± 0.25  0.414 

  1.25 mM  2.98 ±0.5  0.109 

  2.5 mM  6.4 ± 0.43  <0.001 

  5 mM  10.2 ± 1.33  <0.001  

  10 mM  15.2 ± 0.6  <0.001  

  20 mM  18.6 ± 1.9  <0.001  

  40 mM  21.3 ± 0.8  <0.001 

Acrolein  0.78 mM  0.22 ± 1.8  1 

  1.56 mM  -1.15 ± 
0.25  

1.00  

  3.125 mM  -1.2 ± 0.52  1.00  

  6.25 mM  -2.6 ± 0.41  0.997  

  12.5 mM  -3.77 ± 
0.05  

0.962  

  25 mM  -5.5 ± 0.28  0.961  

  50 mM  -5.5 ± 0.45  0.951  

  100 mM  -5.7 ± 0.45  0.95  

Acetaldehyde  0.78 mM  0.41 ± 0.9  1 

  1.56 mM  0.5 ± 0.6  1 

  3.125 mM   0.86 ± 
0.98  

1 

  6.25 mM  -0.73 ± 
0.98  

1.00  

  12.5 mM  2.0 ± 0.25  0.993 

  25 mM  1.5 ± 1.57  0.999 

  50 mM  -2.24 ± 
1.56  

0.986  

  100 mM  -2.09± 1  0.992 
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Figure 3.3.2. Project III: Active chemiluminescence after stimulation of the 

neutrophils with 2-naphthylamine, hydroquinone, acrolein or acetaldehyde. 
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Table 3.3.2. Project III: Active chemiluminescence (CL) after stimulation of 

neutrophils with 2-naphthylamine, hydroquinone, acrolein or acetaldehyde. Conc 

1: concentration found in 1 cigarette, Conc 2: concentration found in 10 

cigarettes, Conc 3: Concentration found in 20 cigarettes, Conc 4: Concentration 

found in 20 cigarettes + 10% P. gingivalis, and Conc 5: 10% P. gingivalis alone. 

 
2-
Naphthylamine 

Hydroquinone Acrolein Acetaldehyde 

 CL SD CL SD CL SD CL SD 

Negative 
control 

1250 242 1250 242 1250 242 1250 242 

Conc 1 1652 245 253* 27 128* 68 3605* 769 

Conc 2 10768* 9033 175* 24 -54* 39 3428* 827 

Conc 3 49036* 21590 45* 11 -85* 25 3785* 559 

Conc 4 6770* 1892 115* 31 -1* 39 7623 1701 

Conc 5 6412* 1062 6412* 1062 6412* 1062 6412* 1062 

Positive 
control 

10525* 2261 10525* 2261 10525* 2261 10525* 2261 

 

*denotes statistical significance difference of p-value < 0.05. 
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Figure 3.3.3. Project III: MMP-9 (92 kDa) western blot and gelatin zymography 

after stimulation of neutrophils with 2-naphthylamine, hydroquinone, acrolein or 

acetaldehyde. Conc 1: concentration found in 1 cigarette, Conc 2: concentration 

found in 10 cigarettes, Conc 3: concentration found in 20 cigarettes, Conc 4: 

concentration found in 29 cigarettes + 10% P. gingivalis, Conc 5: 10 % P. 

gingivalis alone. *denotes statistical significance difference (p-value < 0.05). 1: 

Naphthylamine, 2: Hydroquinone, 3: Acrolein, and 4: Acetaldehyde.  
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Table 3.3.3. Project III: MMP-9 (92 kDa) western blot release after stimulation of 

neutrophils with 2-naphthylamine, hydroquinone, acrolein, and acetaldehyde. 

Concentration (Conc 1): concentration found in 1 cigarette, Conc 2: concentration 

found in 10 cigarettes, Conc 3: Concentration found in 20 cigarettes, Conc 4: 

Concentration found in 20 cigarettes + 10% P. gingivalis, Conc 5: 10% P. 

gingivalis alone. 

 2-Naphthylamine Hydroquinone Acrolein Acetaldehyde 

Negative 
control 

53.51± 5.43 78.28 ± 11.5 128.47 ± 8.37 128.5 ± 8.4 

Conc 1 79.18 ±3.4* 123.07 ± 16.09 158 ± 6.7 130.99 ± 8.66 

Conc 2 104.46 ± 4.08* 105.58 ± 14.3 147.93 ± 8.61 120.3 ± 7.5 

Conc 3 107.91 ±3.9* 94.41 ± 12.57 101.32 ± 7.54 115.47 ± 5.9 

Conc 4 126.29 ± 7.22* 40.60 ± 5.325* 
102.4 ± 
5.855* 

143.2 ± 4.2* 

Conc 5 141.84 ± 10.5* 149.20 ± 7.7* 
113.172 ± 
4.1* 

130.6 ± 6.2* 

Positive 
control 

130.22 ± 4.82* 143.53 ±16.98* 150.59 ± 7.1* 148.071 ± 6.7* 

 

*denotes statistical significance difference < 0.05. 
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CHAPTER FOUR 

Discussion 

 

Tobacco smoking is considered a major modifiable risk factor for 

periodontal disease (Johnson and Guthmiller 2007). It affects the ecology of the 

oral environment, the gingival tissues, and the vasculature, as well as the host 

immune response (Palmer, Wilson et al. 2005). Tobacco smoking is associated 

with a two- to seven-fold increased risk for periodontal attachment loss and bone 

loss (Bergstrom, Eliasson et al. 1991; Gelskey, Young et al. 1998; Calsina, 

Ramon et al. 2002). Tobacco contains about 6700 compounds and almost 4000 

of them have been identified in tobacco smoke (Baker, Ainsworth et al. 2000). 

These components include known carcinogens, toxic heavy metals, and many 

unidentified chemicals (Rogers 2009). 

Nicotine is the major addictive agent in tobacco. Many studies in the 

literature have focused on the adverse effects of nicotine on both cell-mediated 

and humoral immune responses (Palmer, Wilson et al. 2005), as well as on its 

effects on various cell types in the body such as neutrophils, epithelial cells, and 

fibroblasts (Drost, Selby et al. 1992; Theilig, Bernd et al. 1994; Giannopoulou, 

Geinoz et al. 1999; Giannopoulou, Roehrich et al. 2001). Nicotine is an alkaloid 

and a tertiary amine consisting of a pyridine and pyrrolidine ring (Dani, Jenson et 

al. 2011). It has been reported that the unprotonated form of nicotine is absorbed 

through the mucous membrane during cigarette smoking, while the protonated 
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form is deposited in the lung and later absorbed (Benowitz 1988; Dani J.A. 

2009). 

Neutrophils are the first line of defense in the body and are critical cells in 

the maintenance of periodontal health for their role in the control of bacteria 

(Battino, Bullon et al. 1999), but they can also contribute to the progression of 

periodontal disease through the production of reactive oxygen species (ROS) 

(Canakci, Cicek et al. 2005). These ROS are primarily released to kill the 

bacteria, but the extracellular release of ROS also results in collateral damage of 

the surrounding tissues. The ROS include oxygen derived free radicals such as 

the superoxide radical, hydroxyl radical, and nitric oxide radical species, as well 

as non-radical derivatives of oxygen such as hydrogen peroxide and 

hypochlorous acid (Waddington, Moseley et al. 2000). It is known that ROS, 

particularly the active hydroxyl radicals, can degrade a number of structurally and 

metabolically functional macromolecules in an effort to balance its unpaired 

electronic state and thus result in cellular damage (Waddington, Moseley et al. 

2000). 

A study by Guentsch et al. (Guentsch, Puklo et al. 2009) showed that the 

extracellular release of ROS by neutrophils was detected when they were 

exposed to P. gingivalis, thus resulting probably in not only the killing of the 

bacteria but also in damaging of the surrounding periodontal tissues. The ROS 

have also been shown to be capable of degrading a number of extracellular 

matrix components (e.g., proteoglycans and glycosaminoglycans) (Fujisawa and 

Kuboki 1991; Limeback 1991). They have been reported to play important roles 
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in attacking collagen and making it more susceptible to breakdown by the 

collagenases, which can  be activated by ROS (Madison, McCallum et al. 2002). 

ROS is also believed to activate osteoclasts (Bax, Alam et al. 1992) and increase 

their numbers (Garrett, Boyce et al. 1990). 

Activated neutrophils release ROS, which can be assessed by luminol-

enhanced chemiluminescence (CL). Luminol-enhanced CL is produced by the 

neutrophil-released ROS during host/bacteria interactions and has been 

demonstrated to correlate well with antibacterial integrity (Dahlgren and Karlsson 

1999). 

Project one investigated the effects of nicotine with/without P. gingivalis 

supernatant on the ability of neutrophils to release ROS. Various studies have 

used nicotine concentrations ranging between 50 µg/mL to 100 µg/mL (Theilig, 

Bernd et al. 1994; Payne, Johnson et al. 1996; Qui, Mei et al. 2004; Roman, 

Ritzenthaler et al. 2004), but none of these studies examined ROS release. 

Therefore, an intermediate concentration of 80 µg/mL was utilized for the current 

study. Ten percent P. gingivalis supernatant was utilized based on previous 

studies by Zhou and Windsor (Zhou, Olson et al. 2007; Zhou and Windsor 2007). 

Priming of the neutrophils with 10-11 M fMLP was performed before adding 

the stimulants. This increases the number of receptors and surface proteins on 

the neutrophils and results in the potential for full scale neutrophil activation 

(Gasmi, McLennan et al. 1994). Priming is considered an intermediate state 

between resting and activation, and it enables the neutrophils to respond to the 

stimulant (e.g., bacteria) in a more powerful way (Smith 1994). After adding the 
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stimulants, the CL was measured. CL is the light energy generated from the 

neutrophils interaction with any stimulant. It quantifies the level of peripheral 

neutrophils metabolic oxidative activity. It has been confirmed in the literature 

that CL is a very sensitive and non-invasive technique to measure the ROS that 

are produced as a consequence of NADPH oxidase activation (Gasmi, 

McLennan et al. 1994). 

NADPH oxidase in neutrophils produces superoxide (O2
.-), which initiates 

generation of the respiratory burst that is crucial for the bacterial destruction. The 

NADPH enzyme complex consists of two membrane-bound components P22phox 

and gp91phox. These components comprise the enzymatic center of the NADPH 

complex (Valko, Leibfritz et al. 2007). Superoxide anion is considered the primary 

ROS and can further interact with other molecules to produce secondary ROS. 

It has been reported that nicotine has two effects on the release of ROS: 

(1) inhibition of synthesis of superoxide and (2) the direct absorption of any 

superoxide that is produced (Pabst, Pabst et al. 1995). Sorensen et al. 

(Sorensen, Nielsen et al. 2004) studied the effects of smoking on the oxidative 

burst and the reactivity of neutrophils. They found that smoking reduced the 

oxidative burst of the neutrophils by half when compared to neutrophils 

stimulated with fMLP, which may translate into impaired oxidative killing and 

bactericidal activity.  

Interestingly, in the current study, the P. gingivalis supernatant plus 

nicotine group did not differ significantly from the P. gingivalis group. Nicotine has 

been reported to compromise ROS production when compared with the 
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maximum release of ROS produced by the neutrophils when treated with a 

stimulant such as fMLP (Sorensen, Nielsen et al. 2004), which may reduce the 

capacity of the neutrophils to destroy the bacterial plaque. In the presence of P. 

gingivalis, the neutrophils produced significant higher amounts of than the 

positive control. The P. gingivalis group (37806 ± 3915) and the P. gingivalis plus 

nicotine group (34298 ± 3726) had a consistently higher ROS production than the 

nicotine group alone (13041 ± 1893) (Table 2.1). Thus, it appears that any effects 

of nicotine on neutrophil ROS production may be masked by the effects of the P. 

gingivalis. The negative control did have low level CL that could have been due 

to either handling of the neutrophils in vitro or minor contaminants found in the air 

during the CL assays. 

P. gingivalis supernatant has been used in multiple investigations in the 

literature (Pattamapun, Tiranathanagul et al. 2003; Zhang, Song et al. 2010; 

Zhou, Zhang et al. 2012), but this could be a limitation of this study. It is unknown 

if live bacteria could affect the priming with/without activation of the neutrophils in 

a different manner. If so, the effects that P. gingivalis exerted on the neutrophils 

may not fully reflect the situation with the live bacteria. Another point to 

remember is that this study was limited to studying ROS, which is the most 

important aspect for activation of the neutrophils. But other neutrophil activation 

components should also be considered (Wahaidi 2010) such as elastase activity 

as it has been reported to be significant during the activation of the neutrophils 

with other bacteria such as Fusobacterium nucleatum (Sheikhi, Gustafsson et al. 

2000). 
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The level of ROS release induced by nicotine was not at the same level as 

seen with the bacteria supernatant, but still could contribute to the damage that 

occurs in the extracellular matrix during periodontal disease. The nicotine did not 

further enhance the ROS release by the neutrophils in the presence of bacterial 

supernatant, thus suggesting that P. gingivalis induced the maximum ROS 

release. Nicotine only induced 34% of the ROS level as that induced by P. 

gingivalis. However, it should be emphasized that ROS is only one mechanism 

by which neutrophils contribute to tissue damage. They also express matrix 

metalloproteinases that are released from granules when stimulated with bacteria 

supernatant or nicotine. In addition, it has been reported that ROS can disrupt 

the protective function of the tissue inhibitors of matrix metalloproteinases 

(TIMPs) by either preventing their expression or by modifying them (Hadjigogos 

2003). 

Iho et al. (Iho, Tanaka et al. 2003) demonstrated that nicotine stimulates 

neutrophils to produce interleukin-8 in vitro. This process would be expected to 

recruit more neutrophils in vivo and thus enhancing the production of the ROS 

(Palmer, Wilson et al. 2005). It may be that nicotine increases ROS not by 

maximizing its production by neutrophils, but by increasing the migration of more 

neutrophils to the area whereas bacteria maximize ROS production. This study 

demonstrated that P. gingivalis supernatant plus nicotine did not have an additive 

effect on ROS production when compared to the stimulation with P. gingivalis 

supernatant alone. Nicotine is only one compound in a mixture of 4000 in 

tobacco smoke that might have different effects on ROS production. 
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Project two investigated the effects of CSC on neutrophil functions. 

Cigarette smoke is a complex of more than 4000 compounds with more than 100 

that are known carcinogens, mutagens and/or tumor promoters (Barbour, 

Nakashima et al. 1997). Cigarette smoke can be separated into two phases, a 

particulate tar phase that can be trapped and collected as a condensate and a 

gas phase that can be divided into mainstream and sidestream smoke. The 

mainstream smoke is drawn through the burning tobacco column and filter tip, 

and runs through the mouthpiece of the cigarette while the sidestream smoke is 

diluted into the surrounding air from the end of the smoldering cigarette and is 

mostly inhaled by nonsmokers. Cigarette smoking has long been known as a risk 

factor for periodontal disease and the relationship between tobacco smoking and 

periodontal disease has been well documented (Bergstrom and Floderus-Myrhed 

1983; Feldman, Bravacos et al. 1983; Ismail, Burt et al. 1983; Bergstrom, 

Eliasson et al. 1991). Smokers have an increased risk, incidence, and severity of 

periodontal disease as evident by increased gingival recession, tooth loss, and 

periodontal destruction. 

Cigarette smoke condensate (CSC) contains thousands of chemicals 

including nicotine, cadmium, heavy metals, and chemical carcinogens. Many 

studies have demonstrated that CSC can induce DNA strand breaks in 

mammalian cells in either culture or in vitro (Nakayama, Kaneko et al. 1985; 

Fielding, Short et al. 1989). Using human gingival fibroblasts seeded on collagen 

plates, Zhang et al. (Zhang, Song et al. 2010) demonstrated that adding CSC 

and P. gingivalis to the cells would lead to more collagen degradation by 
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destroying the balance between the MMPs and their inhibitors, as well as by 

increasing MMP activation. The MMPs are a group of zinc dependent 

endopeptidases that play major roles in physiological and pathological conditions 

(Chaussain-Miller, Fioretti et al. 2006). It is believed that during periodontal 

disease, several members of the MMPs are involved in the process such as 

MMP-1, MMP-2, and MMP-3 (Sorsa, Tjaderhane et al. 2004). 

The neutrophils participate in the inflammatory process by producing ROS 

through the multi-component enzyme, NADPH oxidase. In addition to the 

membrane components previously mentioned, NAPDH oxidase is comprised of 

several cytosolic components, p67phox, p47phox, p40phox, and Rac2 (Quinn 

and Gauss 2004). Before activation, p47phox is phosphorylated and then 

translocated to the membrane. This is an essential conformational change that is 

needed to activate the microbicidal process. Upon translocation, p47phox, 

p67phox, and Rac 2 assemble themselves at the membrane, and the enzyme 

complex converts molecular oxygen to superoxide anion through a one electron 

transfer (Sigal, Gorzalczany et al. 2003). 

Studying the cytotoxicity of chemicals and other agents on different human 

cells allows for better understanding of the mechanisms of action of these 

chemicals on cells and tissues. It is believed that cytotoxicity plays an important 

role in some pathological conditions such as carcinogenesis and inflammation 

(Zhang, Song et al. 2009). 

 



 

66 
 

Concentrations ranging from 0-800 µg/mL of CSC were used to treat the 

neutrophils in the current study. According to Hellerman et al. (Hellermann, Nagy 

et al. 2002), the average yield of CSC is 26.1 mg/cigarette or in other words 522 

mg/pack. With salivary secretion around 1L/day, the dilution of the CSC will 

range around 522 µg/mL. The maximum amount of CSC used on human 

neutrophils without significant cytotoxicity was 50 µg/mL, which is much lower 

than what a smoker’s saliva might yield, whereas Zhang et al. reported a higher 

cytotoxic level for human gingival fibroblasts when treated with CSC up to 200 

µg/mL (Zhang, Fang et al. 2011). 

Regarding the ROS experiments, the concentrations of CSC used were 

10, 25, and 50 µg/mL. They all inhibited the ROS production from the neutrophils 

in a dose dependent response manner. The active CL for 10, 25, and 50 µg/mL 

was 188 ± 55, 149 ± 41, and 130 ± 30 respectively. The P. gingivalis group 

produced a high level of ROS (6412 ± 1062) comparable to the positive control 

(10525 ± 2261). 

Project two showed that P. gingivalis increases the ROS production from 

neutrophils, but the addition of CSC inhibited it. This inhibition may lead to the 

survival of the bacteria in the periodontal tissues and secretion of the toxins and 

enzymes leading to periodontal destruction, as well as activation of host 

responses. It is unclear how CSC inhibits the ROS production, but assumptions 

can made similar to that of the ROS inhibition by nicotine. Pabst et al. (Pabst, 

Pabst et al. 1995) assumed that nicotine might inhibit the ROS production either 

by the inhibition of the synthesis of superoxide and/or the direct absorption of 
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any superoxide that is produced. This is inconsistent with one study (Al-Shibani, 

Labban et al. 2011) where nicotine increased the ROS production from 

neutrophils by 34% of that induced by P. gingivalis. 

In western blot analysis and gelatin zymography, MMP-9 showed 

increased release with 10, 25, or 50 µg/mL CSC compared to the control. P. 

gingivalis plus CSC group had the most MMP-9 release in both the western blot 

and gelatin zymography assays. MMP-9 has been associated with periodontal 

disease and numerous studies have shown it has increased circulation levels in 

periodontal disease patients (Marcaccini, Novaes et al. 2009; Ozcaka, Bicakci et 

al. 2011). A study by Ozcaka et al. (Ozcaka, Bicakci et al. 2011) found a 

significant increase in the serum concentration of MMP-9 in smokers with chronic 

periodontal disease. Their results support those of this study that found 

significant increases of MMP-9 release in the P. gingivalis and CSC group. 

Persistent smoking and the presence of periodontal bacteria can enhance the 

release of MMP-9. 

Other studies have also demonstrated a relationship between CSC 

exposure and the production of ROS. Jaimes et al. (Jaimes, DeMaster et al. 

2004) reported that CSC treated endothelial cells resulted in an increase in ROS 

production, while Dunn et al. (Dunn, Freed et al. 2005) demonstrated that CSC 

alone did not prompt ROS production from the neutrophils. This could be due to 

lower concentrations used in their study. In their study, they prepared fresh CSC 

extract from a commercial brand, then serial dilutions were made to 1:25, 1:250, 

1:2500, and 1:25,000. 
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This current study showed that P. gingivalis increases the ROS production 

from neutrophils, but the addition of CSC inhibited the ROS production. This 

inhibition may lead to the survival of the bacteria in the periodontal tissue and 

their secretion of the toxins and enzymes leading to periodontal destruction. 

MMP-9 release was increased in all the concentrations of the CSC groups and 

even more in the CSC plus P. gingivalis group, demonstrating the detrimental 

effects that CSC has on neutrophil normal functions. Interestingly, smokers are 

known to have increased risk of P. gingivalis infections (Haffajee and Socransky 

2001), and other reports have confirmed that the number of P. gingivalis cells are 

greater in patients who smoke than non-smokers (Zambon, Grossi et al. 1996). 

Project three investigated four different components of smoke. 2-

Naphthylamine is an arylamine and has a molecular weight of 143.2 g/mL 

(Stabbert, Schafer et al. 2003). It has the characteristics of primary aromatic 

amines and is also a weak base. The concentration of 2-naphthylamine in one 

cigarette has been determined to be between 0.0002 mM to 0.0004 mM 

(Hoffmann, Djordjevic et al. 1997). 2-Naphthylamine is known to be a human 

carcinogen and has been reported to cause bladder cancer (Lyon 1987). 

Hydroquinone is another major compound found in smoke at concentrations 

ranging between 0.001 mM and 0.03 mM in one cigarette (Hoffmann D 1986). It 

has a molecular weight of 110.06 g/mL. It is a white crystalline solid and is 

soluble in water (Regev, Wu et al. 2012). Joseph et al. (Joseph, Klein-Szanto et 

al. 1998) demonstrated that hydroquinones are mutagenic compounds. Their 

experiments showed that hydroquinones can cause specific deletion of a 
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cytosine from a group of five cytosines or a single guanosine from a group of five 

guanosines in the complementary strand, which results in a frameshift mutation 

(Joseph, Klein-Szanto et al. 1998). It was also concluded that hydroquinones 

also function as initiators of carcinogenesis (Joseph, Klein-Szanto et al. 1998). 

Acrolein and acetaldehyde are two of the most active aldehydes in tobacco 

smoke. Acrolein is a volatile flammable liquid with a molecular weight of 56.06 

g/mL (Anand, Emmadi et al. 2011) and acetaldehyde has a molecular weight of 

44.05 g/mL. A study by Anand demonstrated that acrolein has a dose-dependent 

cytotoxic effect on human gingival fibroblasts with complete inhibition of 

attachment and proliferation at 10-4 M (Anand, Emmadi et al. 2011). A study by 

Wang reported that only acrolein and not acetaldehyde inhibited chemotaxis of 

human bronchial epithelial cells and altered their functions (Wang, Liu et al. 

2001). The concentrations of acrolein and acetaldehyde in one cigarette have 

been determined to be between 0.003 mM to 0.008 mM and 0.02 mM and 0.046 

mM, respectively (Fujioka and Shibamoto 2006). 

ROS production is considered a powerful method of bacterial elimination 

by the neutrophil defense system. When the neutrophils are activated, the 

NADPH oxidase produces superoxide by transferring electrons from NAPDH 

across the membrane and these electrons couple to oxygen, so generating a 

superoxide anion. The superoxide anion undergoes secondary reactions to 

produce more ROS that are powerful agents that kill microbes. 

The tobacco components tested are only four of thousands of components 

found in tobacco smoke, but were chosen for specific reasons. 2-Naphthylamine 
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and hydroquinone were chosen because of their high concentrations in tobacco 

smoke, while acrolein and acetaldehyde were chosen because they are two of 

the most active aldehydes found in smoke. This should not undermine the 

importance of the other components in smoke that might be present in minute 

concentrations, but have potent effects on neutrophils and other oral cavity cells. 

2-Naphthylamine and hydroquinone were toxic to the neutrophils at very 

high concentrations (5 mM and 2.5 mM, respectively). Although both components 

can be dissolved in water, they were not completely soluble in water at the high 

concentration (40 mM) used in the cytotoxicity study. DMSO was used as a 

solvent for both components in these experiments.  

2-Naphthylamine is an aromatic amine that is present in mainstream 

smoke (which is inhaled by the smoker) and also found in sidestream smoke 

(which is released in the air). It has been reported that active smokers are 

exposed to 2-naphthylamine greater than passive smokers due to the inhaled 

toxic agents in addition to the polluted atmosphere (Goniewicz and Czogala 

2005). Hydroquinone is another major component of smoke and it has been 

reported to pollute the atmosphere indoors and outdoors (McGregor 2007). In a 

mice study (Shimada, Ribeiro et al. 2012) after exposure to hydroquinone, the 

mice had reduced secretion of monocyte chemoattractant protein-1 (MCP-1). 

The reduction of MCP-1 secretion by hydroquinone treated cells could impair the 

onset and the resolution of any inflammatory process, which may contribute to 

the higher incidence of lung infections in smokers. 
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Acrolein and acetaldehyde were not toxic to the neutrophils at any of the 

concentrations tested. In addition, increasing the concentrations of acrolein 

seemed to protect cells from necrosis. In addition to the effects that acrolein has 

on fibroblasts as discussed in Chapter One, acrolein was reported to suppress 

macrophage activation (Li and Holian 1998) and reduce the innate immune 

responses to LPS (Kasahara, Poynter et al. 2008). 

The cytotoxicity and the effects on proliferation of these components on 

human gingival fibroblasts were previously determined (Allam 2011). The 

cytotoxic concentrations detected were lower than those determined for the 

neutrophils. This could be due to the fact that the fibroblasts were incubated with 

the tobacco components for three days while the neutrophils were incubated only 

for 2 hours. Secondly, neutrophils are phagocytic and defensive cells, so it would 

be logical for them to have a higher threshold for stimulants compared to other 

cells. 

It is imperative to note that although 2-naphthylamine is toxic to the 

neutrophils at 5 mM, it has been reported to be toxic to the fibroblasts at 

concentrations as low as 5 µM (Allam 2011). The concentrations of 2-

naphthylamine in one cigarette were reported to be between 0.2 and 0.4 µM. If 

the higher end of the scale was used, the concentration of 2-naphthylamine in 20 

cigarettes (smokers who smoke one pack a day) will be 8 µM, which is toxic to 

fibroblasts. It would be interesting to determine the cytotoxicity of these 

components on human epithelial cells as they are the first cells to be exposed to 

the tobacco smoke in the oral cavity (Table 5.1). 
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2-Naphthylamine increased ROS production with 20 cigarettes having the 

most impact in comparison to all the other chemicals tested. Interestingly, 

hydroquinone and acrolein inhibited ROS production at all the concentrations 

tested. When P. gingivalis was also added to them, they inhibited the ROS 

production and masked the effects of P. gingivalis. A previous study by Al-

Shibani et al. (Al-Shibani, Labban et al. 2011) reported that P. gingivalis alone 

increased ROS production to a level similar to the positive control (fMLP). 

Acetaldehyde showed increased ROS production to a lesser degree than 2-

naphthylamine. 

In the western blots, 2-naphthylamine showed a dose dependent increase 

in the MMP-9 release that was significant at all the concentrations tested (all p-

values < 0.05) (Table 1). The concentration in 20 cigarettes of 2-naphthylamine 

plus P. gingivalis and P. gingivalis alone groups showed the highest release of 

MMP-9. Hydroquinone and acrolein showed decreased MMP-9 release 

especially at higher concentrations of the tobacco components. There was a 

significant decrease noticed when concentrations of hydroquinone or acrolein 

found in 20 cigarettes and P. gingivalis were added (Figure 3). It appears that 

these components decrease or weakens the normal physiological function of the 

neutrophils. Acetaldehyde did not significantly alter the MMP-9 release, but there 

was a significant increase in MMP-9 with the combination of acetaldehyde and P. 

gingivalis. 
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These are only 4 tobacco smoke components in a mixture of more than 

6700 other components, but it is crucial to know how each tobacco component 

affects host cells and alters host defense mechanisms. This study showed that P. 

gingivalis increases the ROS production from neutrophils, but the addition of 

hydroquinone and acrolein inhibits this ROS production. This inhibition may lead 

to the survival of the bacteria in the periodontal tissue with the secretion of toxins 

and enzymes, as well as activation of host responses, leading to periodontal 

tissue destruction. MMP-9 release showed gradual decrease in both 

hydroquinone and acrolein groups suggesting the detrimental effects that these 

chemicals have on normal neutrophil functions.  
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CHAPTER FIVE 

Summary and Conclusion 

 

This chapter provides a general summary and conclusions from the 3 

studies that were described in Chapters Two through Four of this dissertation. 

This chapter also discusses the significance of these results in general terms and 

suggests future directions for continuing the research. 

The broad objective of these investigations was to increase the knowledge 

of the causal association between tobacco and periodontal disease. With a better 

understanding of the mechanisms of smoke-related periodontal disease, its 

etiology can be defined more clearly. 

These studies aimed at exploring the biological mechanisms underlying 

the possible etiological links between tobacco and periodontal disease. In 

general, it was hypothesized that tobacco smoke components will increase the 

ROS production from the neutrophils to aid in killing the foreign objects (bacteria) 

in the tissues and with the additional stimulation by P. gingivalis that the ROS 

would increase even more. MMP-9 release from the neutrophils, after their 

stimulation with the tobacco smoke components, was also examined. 

In the first study, the ROS production was examined when neutrophils 

were stimulated with either 80 µg/mL nicotine and/or 10% P. gingivalis. The 

results showed that nicotine increased the ROS production but this increase was 

significantly less than the increase caused by stimulation with P. gingivalis alone. 

The stimulation of neutrophils with both nicotine and P. gingivalis did not have an 
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additive effect on the production of ROS. These results were inconsistent with 

other studies that showed that nicotine inhibited the ROS produced from 

neutrophils. Pabst et al. (Pabst, Pabst et al. 1995) reported inhibition of ROS 

production from neutrophils when exposed to nicotine. The concentrations they 

used were higher than what was used in the current studies ranging between   

10-6 and 10 -4 M of nicotine. 

The second study investigated the effects of CSC on the ROS production 

and MMP-9 release from the neutrophils. Both CSC and the combination of CSC 

with P. gingivalis inhibited the ROS production. In addition, MMP-9 release 

increased as the concentrations of CSC increased. 

The third study investigated the effects of four components of tobacco 

smoke on ROS production and MMP-9 release from neutrophils. 2-

Naphthylamine was incubated with neutrophils at different concentrations and 

was found to increase ROS production significantly. The MMP-9 release was 

also increased. Adding P. gingivalis and 2-naphthylamine together increased 

ROS production and MMP-9 release from the neutrophils. Hydroquinone and 

acrolein inhibited the ROS production of the neutrophils. Interestingly, they also 

inhibited the effects of P. gingivalis enhanced ROS production when either of 

these chemicals were simultaneously added with P. gingivalis. The MMP-9 

release was also decreased with these two chemicals. The MMP-9 release from 

the P. gingivalis-hydroquinone or P. gingivalis-acrolein groups was decreased 

significantly. The fourth component investigated was acetaldehyde, which 

showed increased ROS production. MMP-9 did not show any significant change 
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when the neutrophils were stimulated with acetaldehyde. But the addition of 

acetaldehyde and P. gingivalis resulted in a significant release of MMP-9. 

The studies completed are considered preliminary investigations to 

develop more specific and focused investigations. Cigarette smoking related 

health issues is a dominant health burden for our society. Understanding the 

mechanisms for smoking-induced pathological changes such as ROS production 

and MMP release facilitate effective preventive treatment for various smoking 

associated diseases. 

In the first study, nicotine increased the ROS production from neutrophils 

but not as much as P. gingivalis-treated neutrophils. The increase of ROS for 

nicotine-treated neutrophils will open new research related to the nicotine 

replacement therapies including nicotine gums. Nicotine gums are used to deliver 

nicotine to the body because it is the addictive component in tobacco. This has 

been widely used for the therapeutic purposes of smoking cessation in clinic and 

daily life, but this continuous intake of nicotine could still interrupt the functional 

recovery of neutrophils in smokers who are trying to quit cigarettes. Future 

investigations are needed to determine if the nicotine gums can induce ROS in 

the oral cavity at concentrations that can lead to extracellular matrix degradation 

and periodontal disease. 

The second study investigated ROS production and MMP-9 release from 

the neutrophils when stimulated with CSC. The mechanism of how CSC inhibits 

the ROS is still not clear. Further studies are needed to evaluate if this inhibition 

is due to CSC’s interference with the NADPH proteins translocation or 
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interference in the signaling pathways of the NADPH oxidase. In addition, 

although nicotine is the major addictive ingredient in CSC, it did not influence the 

ROS production as much as expected. It seems that other components in CSC 

have a bigger influence on inhibiting ROS, including acrolein and hydroquinone. 

If all the components in CSC can be identified and categorized according to their 

effects on the ROS, then it would be possible to remove some of these 

components to a level that would not inhibit the ROS when P. gingivalis is 

present, or add other components that would inhibit this effect. Understanding 

these mechanisms, based on these preliminary data, could lead to modifying the 

effects that CSC has on the effects of P. gingivalis or ROS, which will lead to the 

survival of bacteria in the tissue and eventually periodontal disease. 

The third study investigated the ROS production of four different 

components of smoke. 2-Naphthylamine has been classified by the International 

Agency of Research on Cancer (IARC) as IARC Group I human carcinogen and 

has been reported to be present in the mainstream smoke. Hydroquinone is an 

aromatic amine that has been reported to a cardiovascular toxin and has shown 

genotoxic activity. Acrolein and acetaldehyde are the most active aldehydes in 

tobacco smoke. The exposure of neutrophils to these different chemicals resulted 

in different responses with the ROS production. These biological mechanisms 

could explain part of the etiological relationship between tobacco and the tissue 

destruction found in periodontal disease. These are only four compounds in a 

complex of 4000 other compounds in tobacco smoke and more research is 
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needed to successfully put the pieces of the puzzle together to have an overview 

of all the significant compounds and their effects on the oral cavity. 

In addition to exploring and understanding the mechanisms by which 

tobacco smoke acts on ROS production from neutrophils, it is also important to 

standardize in vitro and in vivo models to investigate additional active 

components in tobacco smoke that cause damage. The studies accomplished 

here were all conducted in vitro. It would be interesting to translate these studies 

into animal models to investigate the role of tobacco and it’s mechanisms in 

periodontal disease. The neutrophils were exposed to tobacco components for 

short period of times, whereas patients who are smokers are exposed to tobacco 

for very long periods of time. Further studies are needed to explore these long 

term effects in addition to the stimulation of neutrophils to live bacteria and other 

bacteria relevant to periodontal disease (e.g., Actinobacillus 

actinomycetemcomitans).  
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Table 5.1. Cytotoxicity of human gingival fibroblasts when exposed to 2-

naphthylamine, hydroquinone, acrolein, and acetaldehyde. 

 

*denotes statistical significance difference (p-value < 0.05) 
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