
 

 

 

 

 

TEGDMA INDUCTION OF APOPTOTIC PROTEINS 

 IN PULP FIBROBLASTS 

 

 

 

 

 

 

 

 

 

by 

Ghada Batarseh 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of the School of Dentistry in partial fulfillment of the 

requirements for the degree of Master of Science in Dentistry, Indiana University School 

of Dentistry, September 2011. 



ii 

 

 

 

  

Thesis accepted by the faculties of the Departments of Restorative Dentistry, 

Endodontics, and Oral Biology of the Indiana University School of Dentistry in partial 

fulfillment of the requirements for the degree of Master of Science in Dentistry. 

 

 

 

 

 

  

L. Jack Windsor 

 

 

 

Michael A. Cochran 

 

 

 

Jeffrey A. Platt 

 

 

 

Mychel M. Vail 

 

 

 

Karen Gregson 

Chair of the Research Committee 

 

 

 

N. Blaine Cook  

Program Director 

 

 

 

                                                                       Date _______________________________ 

 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEDICATION  



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my wonderful family, who believed in me and supported me 

through the completion of this Master of Science in Dentistry degree. 

 

 

 



v 

 

 

 

 

 

 

 

 

 

 

                                               

 

 

 

 

ACKNOWLEDGMENTS 

 



vi 

 

 

 

 

 

 

       I would like to thank all the faculty members and staff of the Operative, Dental 

Materials and Oral Biology departments. 

Specifically, I want to thank Dr. Karen Gregson and Dr. L. Jack Windsor for their 

support, guidance, and encouragement. This work could have not been done without your 

help. I will never forget the amount of effort you put in on my behalf.  

I also would like to extend my thanks to my other graduate committee members 

Drs. Michael A. Cochran, N. Blaine Cook, Jeffery A. Platt, and Mychel M. Vail. I valued 

their views and input. 

I need to thank Dr. Fengyu Song for all her help, especially at the beginning of 

this project. 

From the oral biology lab, I would like to thank Drs. Zhang Weiping, Liu Yang, 

Sun Jun, Nouf Al Sheebani, and Labban Nawaf.  Each was a big help at certain points of 

the project. 

Finally, I will be forever thankful for my husband and his support; I also thank my 

children (Tamara, Sarah, Salaam, and Yousef) for their understanding. Their love means 

the world to me. 



vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                         TABLE OF CONTENTS 



viii 

 

 

 

 

 

 

 

 

Introduction…………………………………………………………………….   1 

Review of Literature……………………………………………………………   4 

Materials and Methods………………………………………………………… 12 

Results…………………………………………………………………………. 17 

Tables and Figures……………………………………………………………... 20 

Discussion……………………………………………………………………… 34 

Summary and Conclusion……………………………………………………… 41 

References……………………………………………………………………… 43 

Abstract………………………………………………………………………… 49 

Curriculum Vitae  

 



ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF ILLUSTRATIONS 

 

 

 

 

 

 

 

 

 

 



x 

 

 

 

 

 

TABLE I Apoptosis (programmed cell death) and necrosis (pathologic 

cell death)……………………………………………………. 

 

21 

TABLE II BCL-2 superfamily…………………………………………… 22 

TABLE III LDH results and p-values……………………………………. 23 

TABLE IV RayBio human apoptosis antibody array 

(www.raybiotech.com)............................................................. 

 

24 

TABLE V Relative expressions of apoptotic proteins and p-values…….. 25 

FIGURE 1 

 

 

Chemical structure of triethylene glycol dimethacrylate 

(TEGDMA)…………………………………………………… 

 

 

26 

FIGURE 2 Extrinsic and intrinsic pathways………………...................... 27 

FIGURE 3 IAPs and caspase inhibition…………………………………. 28 

FIGURE 4 Extrinsic pathway…………………………………………… 29 

FIGURE 5 Human pulp fibroblasts growing out of pulp tissue…………. 30 

FIGURE 6 

 

Concentration of TEGDMA versus percent of cytotoxicity 

after 24 hour exposure at various concentrations……………. 

 

31 

FIGURE 7 Induced apoptotic proteins at 24 hours……………………….. 32 

FIGURE 8  Induced apoptotic proteins at 6 hours………………………….. 33 



1 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                     

INTRODUCTION 



2 

 

 

 

 

 

            Resin composites (RC) are widely used due to increases in esthetic demand and 

increased concerns about mercury toxicity. Dentists choose RC because of the 

conservative approach of this preparation when compared with amalgam restorations. 

Mechanical properties of these restorations are improving continuously through ongoing 

research in this area. Unfortunately, much research is still needed to test the 

biocompatibility of these materials and their biological behavior. Cytotoxicity tests done 

in vitro and in vivo have shown that there are monomers that leach from the RC and that 

can cause cell death and damage to the surrounding tissues, specifically pulp tissue. In a 

study by  Qvest et al. in 1989, they showed that teeth restored with RC using different 

reducing-leakage methods cause increases in pulp reactions and inflammation/necrosis.
1
 

Studies that compare amalgam to resin-based composite restorations show that 

composites do have higher failure rates than that of amalgam.
2
 In a primary care setting, 

pulp breakdown and endodontic complications were four times more likely with 

composite restorations than with amalgam restorations.
2
 One of the components of RC 

that was found to leach was triethylene glycol dimethacrylate (TEGDMA). These 

monomers were found to leach either due to incomplete polymerization of the resin or  

mechanical or chemical degradation of the restoration.
3
  

TEGDMA is a small hydrophilic monomer (Figure 1). It forms approximately 30 

percent to 50 percent of almost all the resin-based composites. TEGDMA is added to 

improve viscosity and to make the RC more manageable clinically. These monomers can 

reach the pulp and can cause cell death either by necrosis or apoptosis. Apoptosis is a 
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programmed, energy dependent cell death which causes cells to shrink with no loss of the 

membrane integrity. In contrast, necrosis is an uncontrolled, pathological process that 

does not require energy and the cells swell and lose their membrane integrity.  The main 

difference between necrosis and apoptosis is that there are minimal inflammatory 

responses initiated in apoptosis.     

Different dental materials can affect pulp tissue and can even result in apoptosis 

and necrosis.  Although TEGDMA-induced apoptosis in primary human pulp has been 

reported,
4
 the exact molecular mechanisms and the signal transduction pathways through 

which it occurs are not clear. Therefore, the aim of this study was to determine which 

apoptotic proteins are involved in TEGDMA-induced apoptosis.  

 

PURPOSE OF THE STUDY 

The purpose of this study was to determine which apoptotic proteins (anti-

apoptotic proteins and pro-apoptotic proteins) are involved in TEGDMA-induced 

apoptosis in human pulp fibroblasts.  

 

HYPOTHESIS  

TEGDMA will increase the concentrations of pro-apoptotic proteins in the 

extrinsic pathway in human pulp fibroblasts.  
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Resin composites (RC) were introduced in the mid-sixties by R. L. Bowen.
5
 He 

prepared the monomer 2,2-bis[4-(2-hydroxy-3 methacryloyloxypropoxy) phenyl]propane 

(Bis GMA) from combining bisphenol A with glycidyl methacrylate and after that added 

diglycidyl ether of bisphenol. Bis-GMA, molecular weight (MW) 512,  is considered to 

be the backbone of RC.
5
 

To have a better understanding of RC, one should define RC in general and in 

dental terms. RC is defined as "three-dimensional combination of at least two chemically 

different materials with a distinct interface separating the components.”
5
 Fundamentally, 

dental RC are formed from three chemically-distinct materials or phases: 1) the organic 

phase or the matrix, 2) the disperse phase or the inorganic filler, and 3) the coupling 

phase with an organosilane agent that connects the disperse phase with the matrix.
6
 

The matrix of the RC is composed primarily of mono-, di- or tri-monomers. 

Manufacturers still focus on the traditional molecule Bis-GMA alone or in combination 

with urethan dimethacrylate (UDMA). These molecules represent around 20 percent (v/v) 

of the constituents of the RC. These molecules are highly viscous substances. The 

viscosity of water is approximately 1 mPa-s (23°C), while the viscosity of BisGMA is 

approximately 1,000,000 mPa-s (23°C). However to enhance the properties of RC and 

make them clinically manageable, diluents with lower viscosity are added such as 

TEGDMA. TEGDMA is a small (MW 286) hydrophilic molecule.
7
 TEGDMA’s viscosity 

is 10 mPa-s (23˚C), which makes TEGDMA one of the major diluents added to the Bis-

GMA. TEGDMA  actually composes around 30 percent to 50 percent of the RC.
6
  While 



6 

 

 

 

its addition enhances the clinical properties of the RC, other challenges are faced in 

regard to the biocompatibility of these RC. Due to incomplete polymerization and 

continuous degradation attributed either  to mechanical or chemical wear through the 

masticatory forces and salivary esterases, these monomers were found to leach into the 

surrounding tissues.
7
  

Unpolymerized TEGDMA is responsible for some of the cytotoxic effects of RC 

and dental adhesives on pulp and gingival fibroblasts.
8
 Walther et al.

9
 found that a key 

element in TEGDMA-induced apoptosis was the production of reactive oxygen species 

(ROS).
10

 This ROS production was found to be associated with reduced amounts of the 

natural ROS scavenger glutathion (GSH).
11

 It was found that TEGDMA plays a role in 

decreasing GSH levels, for example to 30 percent to 50 percent.
12, 13

 GSH is the most 

abundant non-protein thiol in eukaryotic cells.
14

 GSH plays an important role in 

protecting the cells from the damage caused by ROS. 

Despite the efforts to decrease the amounts of unpolymerized monomers 

remaining in the RC after polymerization, a percentage (1.5 percent to 5 percent) of the 

monomers remain unreacted and may leach.
12

 There are two factors that hinder the 

complete polymerization, especially when direct pulp capping is involved. These issues 

are oxygen and humidity, which are excessively present especially in the previously 

mentioned scenario (direct pulp capping).
15

 However, though this percentage is small, it 

is still enough to induce apoptosis in pulp fibroblasts.
8
  

According to a study conducted by Janke et al.
16

 in gingival fibroblasts, 

TEGDMA caused apoptotic cell death rather than necrotic cell death. Other dental 

materials that may also induce pulp apoptosis are used as pulp capping agents such as: 
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calcium hydroxide, zinc oxide eugenol cement, or 4-Methyl methacrylate–tri-n-

butylborane (4MMT).
17

  Necrosis can be a pulp cell reaction that occurs in response to 

different dental materials. Necrosis is defined as a passive irreversible catastrophic cell 

death that results when ATP is depleted to an incompatible level for cell survival. The 

depletion of ATP levels lead to malfunction of the ATP-dependent ion pump. This 

malfunction of the ATP-dependent ion pump leads to the activation of the so -called 

cytoplasmic death channel. Opening of the death channel causes cationic ions to leak into 

the cells, resulting in disruption in the colloidal osmotic pressure of the cell. This cationic 

entry and the increase in the colloidal osmotic forces cause the cell to swell and then 

rupture.
18

 Therefore, a main criterion of necrosis is the loss of cellular membrane 

integrity and induction of inflammation in the surrounding tissues. Inflammation results 

from the release of the cellular content and pro-inflammatory products of the dying 

cells.
19

 Pulp necrosis and inflammation extends through the apical foramen to the 

surrounding bone and periodontium resulting in periapical inflammation.
20

 In contrast, 

apoptosis is defined as a programmed suicidal death that requires energy for execution. 

The main differences between apoptotic cell death and necrosis is that in necrosis the 

cells are unable to maintain their electrochemical potentials, which results in the rupture 

of cell membrane. When a cellular membrane ruptures, the cell contents are released to 

the surrounding tissue and cause the second important difference, which is the initiation 

of inflammatory response. In apoptosis, cells modify their surface proteins so they can be 

phagocytized by macrophages.
21

 Based on that, apoptosis causes a lower level of  

inflammatory responses than does necrosis.
22

 This could be important in evaluating the 

biocompatibility of a material.
22

 It is important to realize that apoptosis is induced at 
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lower concentrations, while higher concentrations cause necrosis.
18

 TEGDMA was 

shown to cause an increase of necrotic cells at concentrations higher than 3 mM, while at 

concentrations lower than that, apoptotic cells were dominant.
4
 Since the concentration of 

TEGDMA used for this study is less than 3mM, the focus is going to be on apoptosis 

rather than necrosis. The main differences between apoptosis and necrosis are noted in 

Table I.  

There are two major pathways for apoptosis, extrinsic and intrinsic pathways. The 

extrinsic pathway occurs via binding of cell surface death receptors to their specific 

ligands. These transmembrane receptors belong to the tumor necrosis factor receptor 

(TNFR) superfamily and include Fas, TRAIL (TNF-related apoptosis inducing ligand) 

receptor, and TNFR. Upon activation of these transmembrane receptors by their 

corresponding ligands, caspase 8 is activated. Caspase 8 activates caspase 3,  which 

mediates apoptosis (Figure 2).
23

 The intrinsic pathway occurs from activating signals 

from within the cells due to intense cellular stresses such as DNA damage, growth factor, 

severe deprivation, and oxidative stress (ROS production) as shown in Figure 2.
24

 The 

intrinsic pathway depends on the balance between pro-apototic and anti-apoptotic 

proteins of the BCL-2 superfamily (Table II). The balance between the pro-apoptotic and 

anti-apoptotic determines if the cell lives or die.
25

 Any shift in balance changes  

mitochondrial permeabilty.
26, 27

 Mitochondrial permeability increases when the balance 

shifts toward the pro-apoptotic proteins and allows SMAC (second mitochondria-derived 

activator of caspases), HtrA (high temperature requirement protein A) and then 

cytochrome c to be translocated from the mitochondria to the cytosol. SMAC activates 

apoptosis through binding directly to inhibitory apoptotic family (IAP) family members. 
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The release of cytochrome c plays a critical role in mammalian apoptosis.
26

 Cytochrome 

c binds to apoptotic protease activating factor 1 (APAF-1) to form a multiprotein 

structure called apoptosome. The primary function of the apoptosome is the activation of 

caspase 9.
28, 29

 Caspase 3 is then activated by caspase 9, which causes oligonucleosomal 

DNA fragmentation to occur (i.e., apoptosis) (Figure 2).
30

  

Both pathways result in the activation of the caspases. Caspases play a crucial role 

in the induction of apoptosis, and their inhibition can cause failure in apoptosis even if 

the mitochondrial cytochrome c was released.
31

 Caspases are intracellular proteases that 

execute the apoptotic processes through the destruction of cellular proteins that are vital 

for the cells, which ultimately results in cell death. Caspases are usually kept in an 

inactivated form by IAP (inhibitors of apoptosis) proteins such as IAP 1 and IAP2, as 

well as by Survivin. These inhibitory effects can either be achieved directly by binding or 

indirectly through suppression of the caspase initiators.
32

 Some caspases can be initiators 

(caspase 2, caspase 8,  and caspase 9) that are activated through signaling pathways, 

which in turn activate the effector caspases (caspase 3, caspase 6,  and caspase 7) that 

carry out the apoptotic processes.
32

 Figure 3 illustrates the inhibitory roles of the IAPs on 

the caspases (adapted from Ashkenazi, 2002). 

Caspase 8 plays a major role in initiating the extrinsic pathway.  Procaspase 8 

engages the death effecter domains (DED) to form the death inducer signaling complexes 

(DISC). This complex is then ligated to one of the tissue necrotizing factor receptors 

(TNFR). These interactions cause several molecules of procaspase 8 to be in close 

proximity to other molecules of procaspase 8, and this proximity leads to their activation 

through a mechanism called auto-proteolysis as shown in Figure 4. In most cell types, the 
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activation of caspase 8 through the activation of the TRAIL receptors is not enough to 

fully induce apoptosis. In these cells, caspase 8 activates the Bcl-2 pro-apoptotic protein 

Bid, which in turn activates the intrinsic pathway.
30

 Bid is an intermediary proapoptotic 

protein that connects the extrinsic and the intrinsic pathways (Figure 2).
33, 34

 

A study conducted by Spanguolo et al.
4
 showed TEGDMA-induced apoptosis 

rather than necrosis in pulp fibroblasts. This TEGDMA- induced apoptosis was time- and 

concentration-dependent.
4
 Noda et al.

35
 were able to calculate the amount of TEGDMA 

leaching from RC to the pulp. They noted that the concentration of TEGDMA in many 

composites is approximately 30 percent to 50 percent. Pure TEGDMA has a 

concentration of 3.8 mol/L. Therefore, the molar concentration in composites is slightly 

less than 2 mol/L.
36

 The dilution factor of TEGDMA across 0.5 mM of dentin was 

determined to be 500.
36

  Based on that, the amount of TEGDMA that reaches pulp 

fibroblasts is around 4 mM/L.
35

 Small concentrations of TEGDMA in the lower 

millimolar range are clinically significant
35

 and may cause pulp tissue injury.
37

 Pulp is 

connective tissue that responds to TEGDMA leaching. The most common response of the 

pulp is the formation of tertiary dentin in an attempt to preserve the integrity and 

structure of the tissue.
38

 Another response is the decrease in the volume of the pulp 

chamber upon the induction of apoptosis.
39

 

One way that TEGDMA exposure leads to apoptosis could be through oxidative 

stress. TEGDMA causes a drastic depletion of glutathione (GSH) resulting in oxidative 

stress conditions.
40

 GSH is the most abundant non-protein thiol in eukaryotic cells.
14

 

GSH plays an important role in antioxidant defense.
14

The depletion of GSH leads to an 

excessive production of reactive oxygen species (ROS) in the cells. ROS formation 
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results in the release of cytochrome c from the mitochondria. Cytochrome c then activates 

the caspases, which leads to apoptosis. 

Although TEGDMA-induced apoptosis in primary human pulp has been 

reported,
4
 the exact molecular mechanisms and the signal transduction pathways through 

which apoptosis occurs are not clear. Therefore, the aim of this study was to determine 

which apoptotic proteins are altered in TEGDMA-induced apoptosis.  
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MATERIALS AND METHODS 
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CELL CULTURE 

Human pulp tissues were obtained from healthy impacted wisdom teeth. The use 

of the teeth was approved by Indiana University-Purdue University of Indianapolis 

Review Board. The pulp tissues were removed from the pulp cavities using tweezers after 

cutting the teeth in half using a high-speed hand piece with  a 330 fissure bur and water 

spray. The fissure bur was changed regularly to eliminate the friction heat that is 

produced after it becomes dull to avoid heat damage to the pulp tissues. The pulp tissues 

were then minced with a blade into several fragments approximately (1 mm x 1mm x 2 

mm in size). These fragments were then placed in 100-mm culture dishes and air dried, 

and then Dulbecco’s Modified Essential Media (DMEM) was added, supplemented with 

10-percent fetal bovine serum, 4 mM L-glutamine, 2.5 g/mL fungizone, 100 unit/mL 

penicillin, and 50 g/mL gentamicin.
41

 The tissues were maintained at 37˚C in a 

humidified atmosphere of 5-percent CO2. The pulp cells that grew out from the tissue 

fragments were then allowed to reach confluence (Figure 5). Confluent cells were 

detached with 0.25-percent trypsin and 0.05-percent ethylenediaminetetraacetic acid, and 

subcultured as needed. Cells were used at passages 3 through 8.  

 

MEASUREMENT OF TEGDMA CYTOTOXICITY ON  

HUMAN PULP FIBROBLASTS (HPFs) BY LACTATE 

DEHYDROGENASE (LDH) ASSAYS 

 

Cellular membrane integrity was monitored using the permeability assay based on 

the determination of the release of LDH from cells into the media.  The Cytotoxicity 



14 

 

 

 

Detection Kit
PLUS 

(Roche Applied Science, Mannheim, Germany), which measures the 

conversion of tetrazolium salt into a red formazan product, was used as described 

previously.
42

  Cells were treated with 0.125 mM, 0.25 mM, 0.50 mM, 0.75 mM, and 1.00 

mM of TEGDMA in 100-mm incubation dish with serum-free DMEM for 24 hrs. The 

high control (total cell death) was generated by adding 1.9 ml of serum-free DMEM and 

100-µl lysis solution to the control cells as described by the manufacturer after 24 hours, 

which gave the maximum release of LDH.  The low control consisted of serum-free 

DMEM from the untreated control cells after 24 hours and gave the minimal release of 

LDH.  Serum-free DMEM without HPFs was utilized as the background level of the 

assay.  After 24 hours, media from each of the wells were transferred to a 96-well plate 

and 100 µl of reconstituted mix as per the manufacturer (Roche) was added to each well 

and the plates incubated for 15 minutes at room temperature. Absorbance was recorded at 

490 nm in a microplate reader (Titertek, Multiskan MCC, Flow Laboratories, McLean, 

VA).  The experiments were repeated five times and the mean value calculated.  The 

percentage release of LDH from the treated cells was calculated by comparing it to the 

maximum release of LDH.  To determine the cytotoxicity, the absorbance values of the 

background were subtracted from those of the experimented samples, and the cytotoxicity 

was calculated by the following equation: 

Cytotoxicity (%) = (experiment value-low control)/ (high control–low control) 

×100% 

 

CELL TREATMENT WITH TEGDMA 

Sub-confluent layers of HPFs at passages 3 through 8 were utilized for the 

RayBio Antibody Apoptosis kit (Norcross, GA). HPFs (2 x 10
5 
cells/100 mm dish) were 
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incubated with or without 0.25 mM TEGDMA for 6 and 24 hours. 
 

 

PREPARATION OF CELL LYSATES  

Cell lysates were prepared as per the manufacturer at (www.raybiotech.com). 

Briefly, cells were rinsed twice with cold phosphate-buffered saline (PBS) and the 

remaining PBS removed before adding the lysis buffer. The cells were then solubilized at 

2x10
7
cells/ml in lysis buffer containing protease inhibitor cocktail as per the 

manufacturer. The cells were then pipetted up and down, and the lysate rocked gently at 4 

°C for 30 minutes. The extracts were transferred to microfuge tubes and centrifuged at 

14,000 x g for 10 minutes and then the supernatant was collected (cell lysate). 

The protein concentrations of the cell lysates were determined using Bio-Rad 

Protein Assay kit (Hercules,CA). All the lysates were diluted at least five-fold with 

blocking buffer to the same protein concentration of 200 µg/ ml per the manufacturer.  

 

THE RAY BIOTECH APOPTOSIS ARRAY 

A Human Apoptosis Antibody Array kit was purchased from Ray Biotech 

(Norcross, GA). The relative level of 43 apoptosis-related proteins in the cell lysates were 

detected with the RayBio® Human Apoptosis Antibody Array kit according to 

manufacturer’s instructions; the experiment was repeated four times. The arrays were 

analyzed with a Gel-Doc XR imaging system (Bio-Rad, Hercules, CA). Quantity one 

analysis software (Bio-Rad, Hercules, CA) was used to analyze the images obtained. 

Measurements of the protein images were repeated three times. 

Briefly, the treated or untreated cell lysates were added to the antibody array 

membranes. After extensive washing, the membranes were incubated with a cocktail of 

http://www.raybiotech.com/


16 

 

 

 

biotin-conjugated anti-apoptotic protein antibodies. After incubation with horseradish 

peroxidase (HRP)-streptavidin, the signals were visualized by chemiluminescence. 

 

STATISTICAL ANALYSES 

Data were reported as mean± SD (standard deviation). The sample size was three 

samples for each group (0.25 mM and the control). The density of the proteins was 

measured in three different arrays. Since each sample was measured multiple times, the 

density of each protein expression was modeled using a repeated measures analysis of 

variance (ANOVA) model. The ANOVA model had a fixed effect for each group, which 

allowed for estimation of mean density; a random run effect, which allowed for correlation of 

measurements from the same run; and a random sample effect, which allowed for the 

correlation of measurements from the same sample. Pair-wise comparisons between the 6 

treatment combinations were performed using Tukey's method to control the overall 

significance level of the comparisons at 5 percent. 
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RESULTS 
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CYTOTOXICITY RESULTS (LDH) 

The LDH assay was repeated five times and the averages with standard deviation 

(SD) were determined. The p-values were then calculated; significance was established 

where p < 0.05. The highest non-toxic concentration of TEGDMA was determined based 

on the LDH assays. This concentration was the highest concentration that was not 

significantly higher than that of the control in regard to cytotoxicity. TEGDMA at 0.50, 

0.75, and 1.00 mM were statistically higher than that of the control (Table III).  The 

concentration that was chosen for the human apoptosis antibody arrays was 0.25 mM 

TEGDMA, which was not significantly different than the control (p=.806) 

 

RAYBIO APOPTOSIS ARRAY RESULTS 

The relative expression of apoptotic proteins using the RayBio human apoptosis 

antibody array kit that were significantly higher at 6 hours were: B cell lymphoma-w 

(Bcl-w) (p=.010); BH3-interacting domain death agonist (BID) (p= .001); (Bim) 

(p=.009); heat shock protein 27 (HSP 27) (p= .022); HSP 60 ( p= .007); HSP 70 (p= 

.010);  heat shock-inducible protein (HTRA) (p=.001); Insulin like growth factor binding 

protein-1 (IGFBP-1) (p= .004); IGFBP-2 (p= .011); P21(p= .016); (P27) (p= .015); 

second mitochondria-derived activator of caspases (SMAC) (p= .018) (Figure 7). All of 

these were pro-apoptotic proteins.  

The only anti-apoptotic proteins that were significantly increased compared with 

the control at 6 hours were Survivin ( p=.015); IGFBP-5 (p= .012); and Livin (p= .006). 

The pro-apoptotic proteins that significantly decreased compared with the control at 6 
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hours were tumor necrosis factor ligand superfamily member 6 (FASL) (p=.010); TNF-β 

(p= .046); and TRAIL-r2 (p=.003).  

            However at 24 hours, more pro-apoptotic proteins had significant increases 

compared to the control than at 6 hours. These were Bad (p= 0.021); Bax (p= 0.027); Bcl-

2 (p= 0.005); Bcl-w (p= 0.017); Bid (p= 0.005); Bim (p= 0.031); Caspase 3 (p= 0.028); 

Caspase 8 (p= .028); CD40L (p= 0.006); Cytochrome c (Cyto c) (p=.001); IGFBP-5 (p= 

0.020); IGFBP-6 (p= 0.005); cyclin-dependent kinase inhibitor 1B (p27, kip1) (p= 

0.009); P27 (p= 0.006); serum tumor necrosis factor receptor 1 (sTNF-R1) (p= 0.001); 

sTNF-r2 (p= 0.004); Tissue necrotizing factor –α (TNF-α) (p= 0.001); TNF-β (p= 0.003); 

TNF-related apoptosis-inducing ligand receptor 1 (TRAILR 1) (p= 0.016); TRAILR 2 

(p= 0.028); TRAILR 3 (p= 0.039), and TRAILR 4 (p= 0.010). The anti-apoptotic proteins 

that had greater relative expression significant from the control were (Bcl-2) (p= 0.017); 

Livin (p= 0.001); Survivin (p= 0.001); IGF-II (p= 0.001).   

The only anti-apoptotic protein that significantly decreased was HSP 70 (p= 

0.034).  There were no pro-apoptotic proteins that were significantly decreased in their 

relative expression at 24 hours compared to the controls. 
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TABLE I 

  Apoptosis (programmed cell death) and necrosis (pathologic cell death) 

 

Apoptosis Necrosis 

Controlled process, physiological 

stimuli 

Uncontrolled process, pathological 

stimuli 

Energy dependent (ATP required) No energy required (passive) 

Cells shrink (apoptotic bodies) Cells swell (leading to cell lysis) 

No loss of membrane integrity Membrane integrity lost 

Non-inflammatory Inflammatory 

Nuclear fragmentation Nuclear dissolution 

Individual or small cell groups Large cell groups (organ segments) 
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TABLE II 

                                            BCL-2 superfamily
43
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TABLE III 

                                      LDH results and p-values 

Concentration of TEGDMA Cytotoxicity±SD P-value 

NC (negative control, 0 mM) 0±0.00  

0.13 Mm -0.74±0.02 1.00 

0.25 mM 1.46±0.01 .806 

0.50 mM 4.96±0.02 .004٭ 

0.75 mM 10.7±0.02 .000٭ 

1.00 Mm 20.6±0.01 .000٭ 

 

 .Denotes statistical significance (p-value < 0.05) ٭
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TABLE V 

   Relative expressions of apoptotic proteins and p-values 

 

  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
. 

 

* Denotes statistical significance (p < 0.05). 

 

Apoptotic 

protein 6hrs ± SD 

 

P value 24 hrs ± SD 

 

P value 

Bad  1.65 ± 0.71 .116 1.57 ± 0.37 .021* 

Bax  1.29 ± 0.38 .184 1.20 ± 0.17 .027* 

Bcl-2 2.24 ± 0.75 .046 1.59 ± 0.34 .005* 

Bcl-w 2.11 ± 0.41 .010* 1.20 ± 0.12 .017* 

Bid  2.08 ± 0.53 .001* 1.17 ± 0.12 .005* 

Bim  1.63 ± 0.54 .009* 1.21 ± 0.18 .031* 

Caspase3  1.41 ± 0.48 .344 1.54 ± 0.28 .028* 

Caspase8  1.52 ± 0.54 .557 1.59 ± 0.30 .028* 

CD40  1.19 ± 0.46 .510 0.83 ± 0.45 .545 

CD40L  0.74 ± 0.38 .124 1.15 ± 0.07 .006* 

cIAP-2  1.23 ± 0.17 .905 1.15 ± 0.29 .335 

Cyto c  0.88 ± 0.20 .174 1.21 ± 0.05 .001* 

DR6   0.89 ± 0.24 .303 1.02 ± 0.10 .724 

Fas  1.02 ± 0.21 .792 1.12 ± 0.13 .108 

Fasl   0.71 ± 0.22 .010* 1.12 ± 0.11 .072 

HSP27  1.91 ± 0.35 .022* 1.00 ±0.08 .966 

HSP60  1.20 ± 0.10 .007* 0.95 ± 0.13 .355 

HSP70  1.06 ± 0.05 .010* 0.87 ± 0.13 .034* 

HTRA  1.24 ± 0.23 .020* 1.16 ± 0.13 .101 

IGF-I  13.22 ± 5.74 .021* 0.92 ± 0.06 .147 

IGF-II 0.82 ± 0.72 .681 2.91 ± 0.41 .001* 

IGFBP-1 1.61 ± 0.47 .004* 1.47 ± 0.49 .104 

IGFBP-2 1.53 ± 0.29 .011* 1.13 ± 0.20 .100 

IGFBP-3  1.63 ± 0.54 .113 1.11 ± 0.19 .288 

IGFBP-4  1.89 ± 1.14 .247 1.01 ± 0.25 .963 

IGFBP-5  1.33 ± 0.19 .012* 1.23 ± 0.14 .020* 

IGFBP-6  1.60 ± 0.68 .200 1.41 ± 0.02 .005* 

IGF-1sr  0.97 ± 0.03 .214 1.55± 0.41 .036 

Livin  2.74± 0.83 .006* 1.61 ± 0.20 .001* 

P21  1.14± 0.12 .016* 1.15 ± 0.08 .009* 

P27  2.01± 0.43 .015* 1.27 ± 0.17 .006* 

P53  0.97 ± 0.18 .671 1.31 ± 0.15 .070 

SMAC 1.32 ± 0.20 .018* 1.06 ± 0.12 .258 

Survivin 1.29 ± 0.12 .015* 1.21 ± 0.10 .001* 

sTNF-r1  0.55 ± 0.48 .183 1.62 ± 0.02 .001* 

sTNF-r2  1.57 ± 0.39 .063 2.24 ± 0.37 .004* 

TNF-alpha 1.01 ± 0.08 .242 2.25 ± 0.01 .001* 

TNF-beta  0.57 ± 0.20 .046* 1.53 ± 0.18 .003* 

TRAIL- R1  1.28 ± 0.37 .257 1.42 ± 0.06 .016* 

TRAIL- R2  0.78 ± 0.14 .003* 1.20 ± 0.07 .028* 

TRAIL- R3  1.00 ± 0.20 .944 1.64 ± 0.36 .039* 

 TRAIL- R4 1.39 ± 0.35 .068 1.31 ± 0.13 .010* 

 XIAP  1.15 ± 0.24 .259 1.15 ±0.14 .074 
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FIGURE 1. Triethylene glycol dimethacrylate (TEGDMA). 
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                           FIGURE 2. Extrinsic and intrinsic pathway. 
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http://www.biooncology.com/research/apoptosis/pathways/caspase-cascade/index.html 

 

FIGURE 3. IAPs and caspase inhibition. 

 



29 

 

 

 

 

 

 

FIGURE 4. Extrinsic pathway.
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                         FIGURE 5.  Human pulp fibroblasts growing out of pulp tissue. 
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                                                                    TEGDMA  

FIGURE 6. Concentration of TEGDMA versus percent of cytotoxicity after 24-hour 

exposure at various concentrations. *Denotes statistical significance (p-

value < 0.05). HC denotes high control (maximum-released LDH/total cell 

death).  
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                  FIGURE 7. Induced apoptotic proteins at 6 hours. 
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                       FIGURE 8. Induced apoptotic at 24 hours. 
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DISCUSSION 
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The biological effects of TEGDMA on apoptosis of pulp fibroblasts were 

examined. LDH assay was used to measure cell cytotoxicity. The rationale for using the 

LDH assays was to verify the concentration at which necrosis starts and to hopefully 

ensure the presence of apoptotic cells rather than necrotic. The results of this current 

study showed that TEGDMA had statistically significant cytotoxic effects at 0.5 mM and 

above. Therefore, 0.25 mM of  TEGDMA  was used in this study and is clinically 

relevant as discussed previously.
35

  

The results of this study demonstrated that TEGDMA increases the expression of 

the multiple pro-apoptotic proteins. There were statistically significant increases in the 

expression of these proteins after 6 h and 24 h when compared with the control. The 

extrinsic apoptotic pathway is activated through the activation of the transmembrane 

receptors of the TNF family. Members of the TNF family include TNFR 1 and 2, Fas, 

death receptor (DR) 6, CD40, and TRAIL-R 1-4, which bind to their corresponding 

ligands (i.e., TNF-α, TNF-β, fasL, CD40L, and TRAIL, respectively). This study showed 

that there were statistically significant increases in TNF-α and TNF-β after 24 h (Figure 

8). TRAIL-R 1 and 2 contain death domains, which mean they are able to induce 

apoptosis by activating caspase 8, whereas TRAIL-R 2-4 are considered to be 

antagonistic decoys and do not induce death signals.
45

 This study showed statistically 

significant increases in all TRAIL receptors after 24 hours (Figure 8). Fas increased 

slightly when compared with the control; at 24 h, it was not statistically significant. Fas L 
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at 24 h showed a slight increase that was not statistically significant; however, it showed 

a statistically significant decrease at 6 hours (Figure 7). This decrease in the expression of 

Fas L could be explained by the presence of anti-apoptotic proteins that could down- 

regulate it.
46

      

Iwama K et al.
47

 reported that excessive ROS production due to arsenic trioxide 

(ATO) toxicity resulted in changing membrane permeability.  ATO rapidly induced 

TRAIL and then activates caspase 8, which resulted in the phosphorylation of 

Bid.
47

TEGDMA treatment leads to the production of ROS is documented in the 

literature.
48

 This study showed significant increases of all TRAIL receptors at 24 hours 

(Figure 8), which is in line with the previous study.
47

 Activation of the extrinsic pathway 

will result in caspase activation, specifically caspase 8. The process then is induced by 

two parallel pathways. The first pathway is through the cleavage and activation of 

caspase 3 and the second is created when the TRAIL receptors activates the extracellular 

pathway. In that case the intrinsic pathway (mitochondrial pathway) is activated after the 

activation of the pro-apoptotic protein Bid by caspase 8 (Figure 2).
27, 29

 In this study,  the 

caspase pathway was activated, because there were statistically significant increases in 

both caspase 8 and 3 after 24 h, which indicated the extrinsic pathway was activated 

(Figure 7). Bid had increased and was statistically significant after 24 h, which also  

indicated that the mitochondrial pathway had been activated. Upon Bid activation, Bcl-2 

family proteins are activated. The Bcl-2 family includes both pro- and anti-apoptotic 

proteins. Some pro-apoptotic proteins that were induced were Bim, Bax, and Bad. When 

Bad and Bim are phosphorelated, they are sequestered and enter into the mitochondria to 

cause the release of cytochrome c, SMAC and HtrA. Bad also binds to anti-apoptotic 
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proteins (Bcl-2 and Bcl-w) and prevents their inhibitory effects on apoptosis.
27, 49

  The 

interactions between the pro- and anti-apoptotic proteins results in no inhibition of 

apoptosis and thus causes depolarization of the mitochondria. Depolarization of the 

mitochondria results in increases in the permeability of their membranes, thus releasing 

more pro-apoptotic factors like SMAC, HtrA and cytochrome c. This study showed 

significant increases in some of the Bcl-2 family members that are involved in the 

mitochondrial pathway. Bid and Bim (pro-apoptotic proteins of the Bcl-2 family) were 

both significantly increased at 6 h (Figure 8) and 24 h (Figure 7). Bcl-w (anti-apoptotic 

protein) was also significantly increased at 6 h and 24 h. SMAC and HtrA are two pro-

apoptotic proteins that are released upon the activation of the intrinsic pathway. These 

two pro-apoptotic proteins will promote apoptosis through binding to the cIAP anti-

apoptotic protein preventing its inhibitory effects on apoptosis.
50

 SMAC and HtrA were 

increased significantly at 6 h (Figure 8) and increased slightly at 24 h, but was not 

significant.  

Another important pro-apoptotic protein that is released from the mitochondria 

upon the activation of the intrinsic pathway is cytochrome c. Cytochrome c activates 

caspase 9 and then caspase 9 activates caspase 3.  Cytochrome c was statistically 

significantly increased compared with the control at 24 h (Figure 7).
44

 

Members of the heat shock protein (HSP) family are over-expressed under 

biological stress such as heat or when treated with toxic materials. Their function in 

general is to prevent cellular protein aggregation and to increase levels of reduced 

glutathione to protect the cell from reactive oxygen species (ROS). 
51

 HSP 27 and 70 are 

anti-apoptotic proteins, while HSP 60 is a pro-apoptotic protein. The current study agrees 
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with  Noda et al.
35

 They showed that TEGDMA inhibits the phosphorylation of HSPs, 

thereby decreasing their levels.
35, 51

This study showed there was activation of HSP 70 and 

its increase was statistically significant at 6 h (Figure 8), but its level at 24 h was 

decreased significantly (Figure 7), which indicated that the anti-apoptotic effects of HSP 

70 was counteracted. As for HSP 60, there was a slight decrease at 24 h, yet it was not 

significant statistically. HSP 27 was unaltered.  

IGF-1 plays an important role in cell survival pathway and inhibiting apoptosis. 

IGF-1 activation causes induction of two major signaling pathways:  the 

phosphatidylinositol-triphosphate kinase/AKTransforming (PI3K/AKT) pathway and the 

mitogen-activated protein kinase (MAPK) pathway.
52

 This leads to lower concentrations 

of pro-apoptotic proteins like Bax and Bad, but increases the expression of anti-apoptotic 

proteins like Bcl-w. These pathways tend to inhibit caspases specifically caspase-3.
52

 

Spagnuolo et al.
4
 showed that AKT is a main target in TEGDMA-induced apoptosis. This 

study showed significantly higher levels of IGF-1, especially after 6 h. These results are 

in an agreement with Spagnuolo et al., since IGF-1 activates the PI3K/AKT pathway.
4
 

However, IGF-1 expression at 24 h slightly decreased. One of the signs of apoptosis is 

decrease in IGF levels. 

Insulin-like growth factor-binding proteins (IGFBP) had been described to have 

both pro- and anti-apoptotic effects. The effects of IGFBP-5 are variable depending on 

the tissue and cell type.
53, 54

 IGFBP 5 was shown to be anti-apoptotic in gingival 

fibroblasts. However, in the current study, the increase of IGFBP-5 at 24 hours may have 

led to activation of caspase 3. The increase of caspase 3 is an important sign of apoptosis 

activation.
30

 This study also showed elevated levels of IGFBP 6. IGFBP-6 is associated 
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with the apoptotic pathway c-jun N-terminal kinase (JNK) activation and the inhibition of 

nuclear factor kappa B (NFkappaB). Both these pathways were shown by Samuelsen et 

al.
48

 to be involved in the TEGDMA-induced apoptosis. This study showed significant 

increases in the expression of IGFBP-6 in comparison with the control at 24 h. 

There are several reports about TEGDMA causing genotoxicity and cell-cycle 

delay.
55

 The p21 and p27 are cell cycle regulators. The tumor suppressor protein p53 is 

the main regulator of p21. Krifta et al.
56

 showed that there was a slight increase in p53 

expression, while there was a noticeable increase in the expression of p21. This study 

agrees with their findings in that significant increases in p21 occurred at 6 h and 24 h. 

While p53 showed slightly elevated levels at 24 h only and was not significant.  

IAP proteins are caspase inhibitor proteins. Survivin, Livin, XIAP, and cIAP are 

members of this family. It has been shown that XIAP  has high affinity for caspase 3 and 

tries to inhibit apoptosis once it started.
46

 SMAC and HtrA (mitochondrial pro-apoptotic 

proteins) are known to bind to these inhibitory apoptotic proteins and inhibit their 

functions.
46

  Survivin and Livin significantly increased at 6 h and 24 h. However, these 

increases were not enough to inhibit apoptosis. Caspase 8 and caspase 3 were both 

activated at 24 h, indicating the apoptotic process was still continuing.
46

  

This current study showed that TEGDMA-activated apoptosis within 24 h. The 

extrinsic pathway at 24 h is clearly activated and was activated after the activation of 

members of the TNFR family. The activation of the intrinsic pathway started at 6 h, but it 

was amplified at 24 h. Bax and cytochrome c, are essential pro-apoptotic proteins for the 

intrinsic pathway. Bax and cytochrome c were not activated until the extrinsic pathway 
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was also activated. Both pathways play a role in inducing apoptosis in TEGDMA-treated 

HPFs.  
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SUMMARY AND CONCLUSION 
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The results of this study showed statistically significant increases of multiple 

examined pro-apoptotic proteins. The anti-apoptotic proteins were also altered. Most pro-

apoptotic proteins involved in the intrinsic (mitochondrial) pathway were significantly 

increased after 6 h and 24 h. Numerous pro-apoptotic proteins of the extrinsic pathway 

were activated at 24 h. The activation of these pro-apoptotic proteins in the extrinsic 

pathway amplified the intrinsic pro-apoptotic proteins at 24 h. More pro-apoptotic 

proteins in the intrinsic pathway were activated at 24 h than at 6 h. TEGDMA has effects 

on both the extrinsic and intrinsic apoptotic pathways. The results of this study showed 

involvement of some proteins involved in the TEGDMA- induced apoptosis that 

coincides with the aim of this study. More research is still needed to elucidate the net 

effects of this apoptotic process on the pulp tissue and to find more clinically relevant 

ways to stop or even reverse this process if possible.     

 

 



43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                   

REFERENCES 

 

 



44 

 

 

 

 

 

 

 

1. Qvist V, Stoltze K, Qvist J. Human pulp reactions to resin restorations performed 

with different acid-etch restorative procedures. Acta Odontol Scand 

1989;47(5):253-63. 

2. Whitworth JM, Smith J, Walls, AW,  McCabe JF. Endodontic complications after 

plastic restorations in general practice. Int Endodontic J 2005;38:409–16. 

3. Geurtsen W. Biocompatibility of resin-modified filling materials. Crit Rev Oral 

Biol Med 2000;11(3):333-55. 

4. Spagnuolo G, Galler K, Schmalz G, et al. Inhibition of phosphatidylinositol 3-

kinase amplifies TEGDMA-induced apoptosis in primary human pulp cells. J 

Dent Res 2004;83(9):703-7. 

5. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci 

1997;105(2):97-116. 

6. Hervas-Garcia A, Martinez-Lozano MA, Cabanes-Vila J, Barjau-Escribano A, 

Fos-Galve P. Composite resins. A review of the materials and clinical indications. 

Med Oral Patol Oral Cir Bucal 2006;11(2):E215-20. 

7. Geurtsen W, Leyhausen G. Chemical-Biological Interactions of the resin 

monomer triethyleneglycol-dimethacrylate (TEGDMA). J Dent Res 

2001;80(12):2046-50. 

8. Szep S, Kunkel A, Ronge K, Heidemann D. Cytotoxicity of modern dentin 

adhesives--in vitro testing on gingival fibroblasts. J Biomed Mater Res 

2002;63(1):53-60. 

9. Walther UI, Siagian, II, Walther SC, Reichl FX, Hickel R. Antioxidative vitamins 

decrease cytotoxicity of HEMA and TEGDMA in cultured cell lines. Arch Oral 

Biol 2004;49(2):125-31. 

10. Krifka S, Seidenader C, Hiller KA, Schmalz G, Schweikl H. Oxidative stress and 

cytotoxicity generated by dental composites in human pulp cells. Clin Oral 

Investig. 2011/01/18 ed; 2011. 

11. Eckhardt A, Gerstmayr N, Hiller KA, et al. TEGDMA-induced oxidative DNA 

damage and activation of ATM and MAP kinases. Biomaterials 

2009;30(11):2006-14. 



45 

 

 

 

12. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin 

components: a review. Clin Oral Investig 2008;12(1):1-8. 

13. Engelmann J, Leyhausen G, Leibfritz D, Geurtsen W. Effect of TEGDMA on the 

intracellular glutathione concentration of human gingival fibroblasts. J Biomed 

Mater Res 2002;63(6):746-51. 

14. Dickinson DA, Moellering DR, Iles KE, et al. Cytoprotection against oxidative 

stress and the regulation of glutathione synthesis. Biol Chem 2003;384(4):527-37. 

15. Mantellini MG, Botero TM, Yaman P, et al. Adhesive resin induces apoptosis and 

cell-cycle arrest of pulp cells. J Dent Res 2003;82(8):592-6. 

16. Janke V, von Neuhoff N, Schlegelberger B, Leyhausen G, Geurtsen W. TEGDMA 

causes apoptosis in primary human gingival fibroblasts. J Dent Res 

2003;82(10):814-8. 

17. Kitamura C, Ogawa Y, Morotomi T, Terashita M. Differential induction of 

apoptosis by capping agents during pulp wound healing. J Endod 2003;29(1):41-

3. 

18. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev 2006;20(1):1-

15. 

19. Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. 

Curr Opin Cell Biol 2004;16(6):663-9. 

20. Torabinejad M, Walton RE, editors. Endodontics: principles and practice 4th ed. 

St. Louis, MO: Sanunders/Elsevier; 2009. 

21. Arends MJ, Morris RG, Wyllie AH. Apoptosis. The role of the endonuclease. Am 

J Pathol 1990;136(3):593-608. 

22. Becher R, Kopperud HM, Al RH, et al. Pattern of cell death after in vitro 

exposure to GDMA, TEGDMA, HEMA and two compomer extracts. Dent Mater 

2006;22(7):630-40. 

23. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer 

chemotherapy. Oncogene 2006;25(34):4798-811. 

24. Ashkenazi A. Targeting death and decoy receptors of the tumour-necrosis factor 

superfamily. Nat Rev Cancer 2002;2(6):420-30. 

25. Yang H, Zhu YT, Cheng R, et al. Lipopolysaccharide-induced dental pulp cell 

apoptosis and the expression of Bax and Bcl-2 in vitro. Braz J Med Biol 

Res;43(11):1027-33. 



46 

 

 

 

26. Tsujimoto Y. Role of Bcl-2 family proteins in apoptosis: apoptosomes or 

mitochondria? Genes Cells 1998;3(11):697-707. 

27. Coultas L, Strasser A. The role of the Bcl-2 protein family in cancer. Semin 

Cancer Biol 2003;13(2):115-23. 

28. Ashkenazi A. Directing cancer cells to self-destruct with pro-apoptotic receptor 

agonists. Nat Rev Drug Discov 2008;7(12):1001-12. 

29. Srinivasula SM, Datta P, Fan XJ, et al. Molecular determinants of the caspase-

promoting activity of Smac/DIABLO and its role in the death receptor pathway. J 

Biol Chem 2000;275(46):36152-7. 

30. Kim R, Emi M, Tanabe K. Role of mitochondria as the gardens of cell death. 

Cancer Chemother Pharmacol 2006;57(5):545-53. 

31. Kurokawa M, Kornbluth S. Caspases and kinases in a death grip. Cell 

2009;138(5):838-54. 

32. Lavrik IN, Golks A, Krammer PH. Caspases: pharmacological manipulation of 

cell death. J Clin Invest 2005;115(10):2665-72. 

33. Broaddus VC, Dansen TB, Abayasiriwardana KS, et al. Bid mediates apoptotic 

synergy between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 

and DNA damage. J Biol Chem 2005;280(13):12486-93. 

34. Liu W, Bodle E, Chen JY, et al. Tumor necrosis factor-related apoptosis-inducing 

ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell 

lines. Am J Respir Cell Mol Biol 2001;25(1):111-8. 

35. Noda M, Wataha JC, Kaga M, et al. Components of dentinal adhesives modulate 

heat shock protein 72 expression in heat-stressed THP-1 human monocytes at 

sublethal concentrations. J Dent Res 2002;81(4):265-9. 

36. Gregson KS, O'Neill JT, Platt JA, Windsor, LJ. In vitro induction of hydrolytic 

activity in human gingival and pulp fibroblasts by triethylene glycol 

dimethacrylate and monocyte chemotatic protein-1. Dent Mater 

2008;24(11):1461-7. 

37. Costa CA, Teixeira HM, do Nascimento AB, Hebling J. Biocompatibility of an 

adhesive system and 2-hydroxyethylmethacrylate. ASDC J Dent Child 

1999;66(5):337-42, 294. 

38. Smith AJ, Murray PE, Sloan AJ, Matthews JB, Zhao S. Trans-dentinal stimulation 

of tertiary dentinogenesis. Adv Dent Res 2001;15:51-4. 



47 

 

 

 

39. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a 

biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 

2004;15(1):13-27. 

40. Stanislawski L, Lefeuvre M, Bourd K, et al. TEGDMA-induced toxicity in human 

fibroblasts is associated with early and drastic glutathione depletion with 

subsequent production of oxygen reactive species. J Biomed Mater Res A 

2003;66(3):476-82. 

41. Sawa Y, Horie Y, Yamaoka Y, et al. Production of colony-stimulating factor in 

human dental pulp fibroblasts. J Dent Res 2003;82(2):96-100. 

42. Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ. Resin composite 

monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. 

Dent Mater 2004;20(1):409–16.12-20. 

43. Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis. News Physiol Sci 

2003;18:89-94. 

44. Gewies A. Introduction to Apoptosis; 2003. "http:// 

www.celldeath.de/encyclo/aporev/aporev.htm". Accessed February 10, 2011. 

45. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell 

Death Differ 2003;10(1):66-75. 

46. Schimmer AD. Inhibitor of apoptosis proteins: translating basic knowledge into 

clinical practice. Cancer Res 2004;64(20):7183-90. 

47. Iwama K, Nakajo S, Aiuchi T, Nakaya K. Apoptosis induced by arsenic trioxide in 

leukemia U937 cells is dependent on activation of p38, inactivation of ERK and 

the Ca2+-dependent production of superoxide. Int J Cancer 2001;92(4):518-26. 

48. Samuelsen JT, Dahl JE, Karlsson S, Morisbak E, Becher R. Apoptosis induced by 

the monomers HEMA and TEGDMA involves formation of ROS and differential 

activation of the MAP-kinases p38, JNK and ERK. Dent Mater 2007;23(1):34-9. 

49. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of 

death agonist BAD in response to survival factor results in binding to 14-3-3 not 

BCL-X(L). Cell 1996;87(4):619-28. 

50. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 

2007;35(4):495-516. 

51. Csermely P, Yahara I. Heat shock proteins. In: Keri G, Toth I, eds. Molecular 

pathomechanisms and new trends in drug research. London: Taylor & Francis; 

2002. 



48 

 

 

 

52. Novosyadlyy R, Kurshan N, Lann D, et al. Insulin-like growth factor-I protects 

cells from ER stress-induced apoptosis via enhancement of the adaptive capacity 

of endoplasmic reticulum. Cell Death Differ 2008;15(8):1304-17. 

53. Han X, Amar S. Role of insulin-like growth factor-1 signaling in dental fibroblast 

apoptosis. J Periodontol 2003;74(8):1176-82. 

54. Perks CM, Bowen S, Gill ZP, Newcomb PV, Holly JM. Differential IGF-

independent effects of insulin-like growth factor binding proteins (1-6) on 

apoptosis of breast epithelial cells. J Cell Biochem 1999;75(4):652-64. 

55. Schweikl H, Spagnuolo G, Schmalz G. Genetic and cellular toxicology of dental 

resin monomers. J Dent Res 2006;85(10):870-7. 

56. Krifka S, Petzel C, Bolay C, et al. Activation of stress-regulated transcription 

factors by triethylene glycol dimethacrylate monomer. Biomaterials;32(7):1787-

95. 

 

 

 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                  

ABSTRACT 



50 

 

 

 

 

 

 

TEGDMA INDUCTION OF APOPTOTIC PROTEINS 

 IN PULP FIBROBLASTS 

 

 

 

 

 

by 

Ghada Batarseh 

 

Indiana University School of Dentistry 

Indianapolis, Indiana 

 

Monomers like triethylene glycol dimethacrylate (TEGDMA) leach from dental 

composites and adhesives due to incomplete polymerization or polymer degradation. The 

release of these monomers causes a variety of reactions that can lead to cell death. This 

death can be either necrotic, which is characterized mainly by inflammation and injury to 

the surrounding tissues, or apoptotic, which elicits little inflammatory responses, if any at 

all. TEGDMA-induced apoptosis in human pulp has been reported recently. However, the 

molecular mechanisms and the apoptotic (pro and anti) proteins involved in this process 

remain unclear.  

The objective of this study was to determine the apoptotic proteins expressed or 
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suppressed during TEGDMA-induced apoptosis. Human pulp fibroblasts (HPFs) were 

incubated for 24 hours with different TEGDMA concentrations (0.125-1.0 mM). 

Cytotoxicity was determined using the cytotoxicity Detection Kit
PLUS

 (Roche Applied 

Science, Mannheim, Germany). TEGDMA was shown to cause cell cytotoxicity at 

concentrations of 0.50 mM and up. The highest concentration with no significant 

cytotoxicity was used. Cells were incubated with or without 0.25 mM TEGDMA for 6 h 

and 24 h. Cell lysates were then prepared and the protein concentrations determined using 

the Bradford protein assay. A Human Apoptosis Array kit (Bio-Rad Hercules, CA ) was 

utilized to detect the relative levels of 43 apoptotic proteins. The results of this study 

showed statistically significant increases of multiple examined pro-apoptotic proteins. 

The anti-apoptotic proteins were also altered. Pro-apoptotic proteins involved in the 

intrinsic and extrinsic apoptotic pathways were increased significantly. The results 

indicated that TEGDMA has effects on both the extrinsic and intrinsic apoptotic 

pathways.     
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