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Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and deterioration of 

the bone architecture which compromises bone strength, predisposing it to an increase in the risk of 

fractures. The occurrence of osteoporosis increases as the population age increases, and is especially 

common in post-menopausal women. There are approximately 200 million people around the world who 

suffer from osteoporosis. It is anticipated that one-third of women and one-fifth of men over 50-years of 

age will experience an osteoporotic fracture in their lifetime
1
.  

 

Bone remodeling is a lifelong process. Mature bone is removed by a process of bone resorption by 

osteoclasts and new bone is formed by osteoblasts. The bone remodeling cycle controls the replacement 

of bone following injury, including large bone fractures and smaller micro-fractures. The remodeling 

process is regulated by balancing the bone formation and bone resorption processes. When the balance 

between bone formation and bone resorption is disrupted, a decrease in bone mineral density leading to 

osteoporosis can ensue. Osteocytes are another important bone cell type. Osteocytes are fully 

differentiated osteoblasts embedded in mineralized bone lacuna. They play a vital role in cellular 

communication and regulate the functions of both osteoblasts and osteoclasts. They are in direct 

communication with each other and with the other bone cell types through cytoplasmic membrane 

extensions known as dendritic spines, which travel through canaliculi within the bone matrix.  

 

Kalirin is a novel guanine nucleotide exchange factor (GEF) originally identified in the brain.  Several 

studies have reported that Kalirin is involved in the formation of the dendritic spines of neurons and 

intercellular synapses.  Recent studies conducted in Dr. Bruzzaniti’s laboratory demonstrated that Kalirin 

is expressed in osteoblasts and osteoclasts.  Female Kalirin-knockout (Kal-KO) mice exhibited 45% 

lower bone volume compared with wild type (WT) mice at 14 weeks of age, while Kal-KO male mice 

exhibited 19% lower bone volume than control male mice. In addition, a reduction in cortical area was 

found in Kal-KO female mice. These studies revealed that female Kal-KO mice are osteoporotic.  

 

Based on several findings, it was hypothesized that Kalirin may regulate the morphology and function of 

osteocytes; i) Kalirin is expressed in osteoblasts and osteoclasts, ii) Kalirin plays a role in regulating bone 
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mass, and iii) Kalirin regulates the cytoskeleton of neuronal cells. In the current study, the expression of 

Kalirin isoforms was examined in primary osteocytes and in the osteocytic cell line, MLO-Y4. The 

morphology of primary osteocytes from WT and Kal-KO mice were compared by microscopy and the 

expression level of important signaling proteins in osteocytes were determined by quantitative real-time 

PCR (QPCR).  In addition, the effects of Kalirin expression on the formation of cytoplasmic processes in 

MLO-Y4 cells were examined. Findings from this study provide insights into the role of Kalirin in 

osteocytes and its mechanisms of action in the regulation of bone mass.  

 

OBJECTIVES 

1. To determine the role of Kalirin in the regulation of osteocyte morphology and functions.  

2. To determine the expression of Kalirin in primary osteocytes and MLO-Y4 osteocytic cells.  

 

HYPOTHESES 

1. Osteocytes derived from WT mice will exhibit longer cytoplasmic processes and will exhibit 

differences in cellular functions compared with osteocytes from Kal-KO mice. 

2.   Overexpression of Kalirin in MLO-Y4 cells will lead to elongation of cytoplasmic processes and 

affect osteocyte functions. 
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Bone modeling occurs during skeletal growth to increase the size of bones and alter their shape. Bone 

modeling occurs on the periosteal surface without prior bone resorption
2
. The deposition of osseous tissue 

at the periosteal surface increases the stiffness of bone, resulting in rapid strengthening of the cylindrical-

shaped bone. There are two types of bone formation processes: endochondral ossification and 

intramembranous ossification. During endochondral ossification, the cartilage scaffold is replaced by 

bone whereas during intramembranous ossification, bone formation occurs without an intermediate 

cartilage step
3
. Unlike bone modeling, bone remodeling is a surface-dependent process that does not lead 

to alteration of the size and shape of bone. It occurs on endocortical, intracortical and trabecular regions 

of the bone. The bone remodeling process starts with bone resorption by osteoclasts and takes 2-3 weeks 

and is then followed by a period of bone formation by osteoblasts, which occurs over 2-3 months
4
.  

 

Bone remodeling is regulated by three bone cell types; osteoclasts, osteoblasts and osteocytes. An 

equilibrium between bone formation and bone resorption is regulated by the coordinated activities of 

osteoclasts, osteoblasts and osteocytes
5,6

. An imbalance between osteoclast and/or osteoblast functions 

can lead to bone loss and osteoporosis. Osteoporosis is a skeletal disorder characterized by porous, thin 

and weak bones that become fragile and break easily. It occurs especially in women following 

menopause.  Osteoporosis causes 8.9 million fractures annually worldwide, most commonly occurring in 

the wrist, hip, and vertebrae 
7
. Osteoporosis medicaments are classified into 2 groups: anti-resorptives and 

anabolic drugs. Bisphosphonates, calcitonin, estrogen, and selective estrogen receptor modulators 

(SERMs) and Denosumab, an antibody to receptor activator of the nuclear factor kappa-B ligand 

(RANKL), are examples of anti-resorptive or anti-catabolic drugs. Bisphosphonates and calcitonin 

directly impair or inhibit osteoclast functions and induce the apoptosis of osteoclasts
8
, while estrogen and 

SERMs have agonistic effects on intracellular estrogen receptors resulting in increasing estrogen activity 

and a decrease in osteoclast survival which increases bone mineral density (BMD)
9
. Denosumab is a 

monoclonal antibody against RANKL that prevents RANKL from interacting with the RANK receptor on 

osteoclast precursor cells, thereby inhibiting osteoclastogenesis
10

. Strontium ranelate has both anti-

catabolic and anabolic effects by interacting with the RANKL pathway
11

 and stimulating β-catenin in 

Wnt-signaling pathway which promotes osteoblast activity
12

, respectively. The anabolic drugs induce 
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bone formation by activating the proliferation and inhibiting the apoptosis of osteoblasts

13
. Teriparatide 

(recombinant parathyroid hormone) is currently the only FDA-approved anabolic agent
1
. An alternate 

anabolic therapy currently in development is an antibody to sclerostin, the product of the SOST gene, 

which is secreted by osteocytes and promotes bone formation by osteoblasts. In a clinical study, 

administration of the anti-sclerostin antibody with exercise was shown to increase bone mass in patients 

by attenuating the antagonistic activity of sclerostin on canonical Wnt signaling, resulting in increased 

bone formation markers and decreased bone resorption markers
14

.          

 

Osteoclast differentiation and bone resorption 

Osteoclasts are multinucleated cells derived from the hematopoietic stem cell lineage and function in 

bone degradation and resorption. The number and differentiation of osteoclasts is regulated by osteoblasts 

and osteocytes, which secrete macrophage colony-stimulating factor (M-CSF) and RANKL
15

. RANKL 

binds to RANK receptors on osteoclast precursors, and together with the action of M-CSF, stimulates 

osteoclast proliferation and differentiation and leads to an increase in osteoclast numbers
16

. In an in vitro 

study using the MLO-Y4 osteocytic cell line, M-CSF and RANKL expression were identified which were 

localized to the cell surface and to cytoplasmic processes
17

. Isolated osteocytes were also shown to 

express greater amounts of RANKL than osteoblasts and bone marrow stromal cells
15

. Osteoprotegerin 

(OPG) is also secreted from osteoblasts and osteocytes and acts as a decoy receptor for RANKL to inhibit 

osteoclastogenesis
17

.  

 

The differentiation of osteoblasts into osteocytes 

Osteoblasts differentiate from osteoprogenitor cells or pre-osteoblasts, which are derived from the 

mesenchymal stem cells. Osteoblasts function in protein matrix secretion for bone generation
18

. This 

process is regulated by growth factors, hormones, and transcription factors (as shown in Figure 1)
19

. After 

completion of proliferation and differentiation, some osteoblasts change to become quiescent bone-lining 

cells or apoptotic cells, or alternatively, become embedded in the bone matrix and differentiate further to 

become osteocytes
5,20

.  Several key proteins expressed in osteoblasts are shown in Table 1.  
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During osteocyte differentiation (osteocytogenesis), cell motility is arrested and the cells become 

embedded in the secreted bone matrix and undergo alteration in cell morphology 
21

. During the process of 

osteocyte differentiation, actin cytoskeletal rearrangement leads to changes in cell shape from round to 

stellate or dendritic
22,23

.  Concomitant with morphological changes, there is a significant decrease in the 

expression and secretion of several osteoblast-related proteins, including collagen type I, alkaline 

phosphatase, osteocalcin, and bone sialoprotein
24

. In addition, there is an increase in the expression of 

intracellular proteins that are unique to osteocytes, such as dentin matrix protein 1 (DMP1), matrix 

extracellular phosphoglycoprotein (MEPE) or sclerostin (SOST), as listed in Figure 2. The functions of 

these proteins are summarized in Table 2. 

 

The biology of osteocytes 

Osteocytes make up 90% of the total number of bone cells dispersed in the bone matrix. Unlike the 

morphology of osteoblasts, which are cuboidal in shape, mature osteocytes are stellate in shape and 

contain multiple cytoplasmic processes
23

. Osteocytes are deeply embedded in the bone matrix where they 

reside within nests called lacuna. Small channels known as canaliculi contain the osteocyte cytoplasmic 

processes. Both lacuna and canaliculi form the lacuna-canalicular system. Osteocytes maintain a distance 

of 50-80 nm from their cell bodies/cytoplasmic processes to the walls of their lacuna or canaliculi
25

. 

These spaces are filled with periosteocytic fluid, which is essential for metabolite transport for cell 

viability
26

 and fibers for bridging osteocytes processes to the canaliculi walls
25

. The osteocytes in lacuna 

are surrounded by collagen type I. The formation of cytoplasmic processes depends on the cleavage of 

surrounding collagen type I by membrane-type matrix metalloproteinase-1 (MT1-MMP; MMP-14)
27-29

. In 

support of this, osteocytes from MT1-MMP-deficient mice showed shorter and fewer numbers of cellular 

processes than WT mice due to inadequate cleavage of the surrounding collagen type I
29

.        

 

The communication among several cell types is called multicellular syncytium (Figure 3)
30

. The 

cytoplasmic processes of osteocytes can contact the bone marrow, where they stimulate osteoclast 

differentiation. The cytoplasmic processes can also extend to the bone surface where they directly contact 

osteoblasts to promote bone formation
31,32

. The osteocyte cell body is polarized and the surface facing the 
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calcified matrix has shorter and thicker cytoplasmic processes with fewer organelles. In contrast, the cell 

surface facing the vascular space contains longer and thinner processes which are enriched with 

microtubules and microfilaments. These cytoplasmic processes are important in cell-cell communication 

via gap junctions at the tips of cytoplasmic processes. Connexin 43 is a major protein expressed at gap 

junctions, which allows cell-cell signaling of molecules smaller than 1.2 kDa
23

.  

 

Osteocytes also play an important function in mechanical stress detection and biochemical stimuli 

response
33

. Mechanical loading affects osteocytes by altering fluid flow along the lacuna-canalicular 

system
34

. Alteration of the flow of interstitial fluid in canaliculi results in deformation of the osteocyte 

plasma membrane. As a result, several intracellular signaling pathways and signaling molecules are 

activated and secreted. If there is a deficiency in mechanical loading, such as in an astronaut exposed to 

weightlessness, the secretion of osteoclast-inhibitory signals is decreased and pro-osteoclastogenesis 

signals are increased leading to a higher number of osteoclasts. When osteocytes respond to mechanical 

forces, they release prostaglandin E2 (PGE2) which stimulates osteoblast recruitment from the bone 

marrow and activates the Wnt/β-catenin signaling pathway
35

. Osteocytes also respond to mechanical 

loading by secreting nitric oxide, a stimulator of bone formation
36,37

. Bone formation is the physiological 

response to mechanical stress, whereas bone resorption is the reaction to unloading or skeletal disuse
36

.  

 

Osteocytes are also indirectly involved in osteoclastogenesis by stimulating osteoblasts to secrete 

RANKL, M-CSF
38

 and osteoprotegerin (OPG)
39

. Osteocytes are also able to produce RANKL, M-CSF, 

and OPG, which can have a direct effect in regulating osteoclastogenesis
40

. Mechanical stimulation 

inhibits the apoptosis of osteocytes and increases osteocyte viability
41

. In addition, the apoptosis of 

osteocytes regulates osteoclast activity
42

. When micro-damage of bone occurs, osteocyte apoptotic bodies 

are able to activate osteoclastogenesis. This process is RANKL independent, but involves the tumor 

necrosis factor (TNF)-α
43

.  

 

When osteocytes are defective in function, sclerosteosis can occur. Sclerosteosis is a life-threatening 

pathology due to a mutation in the SOST gene, which encodes sclerostin in osteocytes. Sclerostin 
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produced by osteocytes counteracts Wnt signaling in osteoblasts by competitively binding to low-density 

lipoprotein receptor-related proteins (LRP) 5/6 and leading to the inhibition of osteoblastic-mediated bone 

formation. Therefore, a decrease in sclerostin production results in the exaggeration of osteoblastic bone 

formation. The common features in sclerosteosis patients are expansion of the jaw and facial bones and 

thickening and sclerosis of the skull. These pathological conditions result in the entrapment of cranial 

nerves and an increase in intracranial pressure, which can result in impaction of the brainstem and leads 

to death
44

. 

 

The arrangement of osteocyte cytoplasmic processes 

The cytoplasmic processes of osteocytes are important in intercellular communication between 

osteocytes, osteoclasts, osteoblasts, or lining cells on the surface of bone
45

. Osteocyte processes are 

formed by reorganization of actin cytoskeleton
23

. Several actin-bundling proteins, such as CapG, Capzb, 

destrin, E11/gp38, α-actinin and fimbrin were detected in osteocytes. E11/gp38 regulates the dynamics of 

actin filaments by effecting the formation of cytoplasmic processes
46

. E11/gp38 interacts with the ezrin-

radixin-moiesin (ERM) complex, which activates the downstream pathway of RhoA GTPase to regulate 

the dynamics of actin cytoskeleton
47

.  

 

Guanosine triphosphate (GTP)-binding proteins of the RhoGTPase family, such as Rho, Rac and Cdc42, 

play vital roles in many intracellular activities, including; cell migration, synaptic development, 

generation of dendritic spines, endocytosis, and the rearrangement of actin cytoskeleton
48-50

. These 

GTPases are inactive when bound to guanosine diphosphate (GDP).  Guanine nucleotide exchange factors 

(GEFs) promote the dissociation of GDP and the binding of GTP to GTPases. Subsequently, GTPases are 

activated when bound to GTP
51,52

. The activated RhoGTPases bind effector molecules which are specific 

to selective Rho family members
31,53

. Consequently, signal transduction occurs from extracellular stimuli 

to activate intracellular pathways
48,54

.   
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A novel GEF protein, Kalirin 

In mammalian cells, the GTP-exchange factor proteins (GEFs) proteins are subdivided into 3 classes; Dbl 

homology-pleckstrin homology (DH-PH) domain, CDM and Zizimin homology (CZH) proteins, and 

DOCK-180 related proteins
50

. Almost all GEFs contain pleckstrin-homology (PH) domains. The function 

of the GEF domain is to catalyze the exchange reaction of GDP to GTP
55

. Different GEFs can activate 

more than one GTPase, while others can activate the same GTPases
55,56

. 

 

Kalirin is a multi-domain GEF protein belonging to the family of Dbl homology-pleckstrin homology 

proteins and contains two DH-PH domains. It is encoded by the Kalrn gene which undergoes alternative 

mRNA splicing, resulting in multiple isoforms
57

, such as Kalirin-7, Kalirin-9, and Kalirin-12. Kalirin-9 

and Kalirin-12 are highly expressed in developmentally embryonic stages. Their expression substantially 

decreases in adults and is correlated with an increase in the expression of Kalirin-7
58

. Kalirin-7 is the 

predominant isoform found almost entirely in postsynaptic terminals in the central nervous system
58

. The 

expression of Kalirin-7 is positively correlated with the formation of neuronal dendritic spines
58,59

 and the 

density of glutamatergic synapses in hippocampal pyramidal neurons
58

. The expression of Kalirin-7 in 

Sprague–Dawley rats is extremely low during the first 7 days after birth and then increases significantly 

after 2 weeks of age
60,61

. 

 

Kalirin has several functional domains as shown in Figure 4
62

. The sec14 domain is involved in lipid 

interactions
62

; the spectrin-like repeat regions interact with several proteins, such as peptidylglycine α-

amidating monooxygenase
63

, inducible nitric oxide synthase
64

, and Huntingtin-associated protein 1
65

. The 

N-terminal GEF domain binds to Rac1
66,67

 and RhoA
68

. Kalirin-9 and Kalirin-12 isoforms are longer than 

Kalirin-7 and both contain a second C-terminal GEF-domain, which is active against RhoA
66,67

. RhoGEFs 

contain the Dbl-homology (DH) domain followed by a pleckstrin homology (PH) domain. The GEF 

binding site for GTPases is on the DH domain, while the PH domain constitutes the catalytic activity for 

the DH domain
69

. The PDZ domain targets Kalirin to specific locations in the cells and mediates 

assembly of the multi-protein complexes
68

. Kalirin-12 is the largest Kalirin isoform and also has a C-

terminal immunoglobulin-fibronectin III (Ig-FNIII) domain and a serine-threonine (Ser-Thr) kinase 
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domain

70-72
.  Although the functions of Kalirin are still largely unknown, Kalirin has been shown to be 

involved in the outgrowth of axons
67

 and the formation of lamellipodia
73

 and filopodial neurites
67

. Kalirin 

has been shown to be expressed in several tissues, such as neurons, liver, muscles, heart, and endocrine 

cells. In neurons, overexpression of Kalirin-7 resulted in an increase in the density, size of dendritic 

spines, and the number of synapses
74

, while Kalirin-9 in cortical neurons induced the lengthening of 

neurites and had an influence on the morphology of neurons
67

. In addition, Kalirin-12 has been shown to 

interact via its Ig-FnIII region with the dynamin GTPase and affect actin cytoskeleton reorganization and 

endocytic trafficking
70

. 

 

Until recently, the skeletal role of Kalirin was unknown. Recent studies from Dr. Bruzzaniti’s laboratory 

have shown that Kalirin is expressed in osteoclasts and osteoblasts. Importantly, female mice lacking the 

Kalrn gene (Kal-KO) have 45% less trabecular bone mass by 14 weeks of age
75

, whereas male Kal-KO 

mice exhibit 19% bone loss. These findings suggest that Kalirin plays a role in the regulation of bone 

mass. Furthermore, studies from Dr. Bruzzaniti’s laboratory suggest that the bone phenotype of Kal-KO 

mice is in part due to defects in the function of both osteoclasts and osteoblasts. However, the role of 

Kalirin in the function of osteocytes remains to be determined. Given that Kalirin can influence actin 

remodeling, dendritic spine formation and the synapses of neurons, it was hypothesized that Kalirin 

regulates the cytoplasmic processes of osteocytes, which may affect their ability to communicate with 

each other and to regulate the functions of osteoblasts and osteoclasts.    
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1. Generation of Kalirin Knockout Mice 

Kalirin global knockout (Kal-KO) mice were generated by removing exon13 of the Kalrn gene. Exon 13 

encodes the spectrin region, which is a common region of all Kalirin major isoforms
76

. LoxP was 

introduced into the mice genome and flanked by loxP upstream and downstream of exon13. LoxP is a 

specific 34 base pair sequence having an 8-bp core sequence and two 13-bp inverted repeats. Cre 

recombinase is an enzyme recombining two loxP sites. The Cre-loxP recombination is able to delete 

loxP-flanked sequences. The Cre gene and loxP site are not naturally present in the mammalian genome. 

They are separately developed and then crossed to generate Cre-lox stain. Consequently, breeding of mice 

containing the Cre gene under control of the housekeeping gene promoter, hypoxanthine 

phosphoribosyltransferase 1 (HPRT) with Kalrn loxP mice results in progeny that lack all the major 

Kalirin isoforms in all tissues in mice. For all experiments, WT littermate mice were used as controls 
62

. 

 

2. Isolation of primary osteocytes from mice 

For the isolation of osteocytes from WT and Kal-KO mice, long bones (femurs and tibias) from the 

posterior legs of mice were collected in sterilized phosphate buffer saline (PBS). Soft tissue and periosteal 

tissue were removed by scraping. Both ends of tibias and femurs, including the growth plates, were 

removed. The cortical bone was separated from bone marrow by flushing with sterilized PBS (HyClone 

Laboratories, Inc., South Logan, Utah, USA) (Figure 5), followed by cutting into small pieces. The 

remaining soft tissue and bone marrow was removed by incubating in 5 ml of 300 collagenase digestive 

units (CDUs)/ml collagenase from Clostridium histolyticum type IA (Sigma-Aldrich Co. LLC, St. Louis, 

Missouri, USA) in α-Minimum Essential Medium (MEM) for 30 minutes in each digestion at 37°C under 

shaking conditions (200 rpm). The procedure was repeated 3 times, while the first fraction was discarded. 

After each sequential digestion, suspended cells were separated from bone pieces and collected by 

centrifugation. The bone pieces were washed 3 times with PBS. Then, they were alternatively incubated 

in 5 ml of ethylenediaminetetraacetic acid (EDTA) solution (Fisher Scientific, Pennsylvania, USA) and 

collagenase type IA another 6 times for osteocyte isolation
77

. The digest solution was centrifuged at 2000 

rpm for 5 minutes. Cells from fractions 2-5 were plated in osteoblast-culturing medium that consists of α-

Minimum Essential Medium (α-MEM) (HyClone Laboratories, Inc., South Logan, Utah, USA) with L-
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glutamine supplemented with 10% (v/v) fetal bovine serum (FBS) (BioWest, Logan, Utah, USA) and 100 

U/ml penicillin/100 µg/ml streptomycin (Lonza Walkersville, Inc., Walkersville, Maryland, USA). The 

cells from fractions 7-9 were re-suspended in 10% serum-osteocyte culturing medium, which consists of 

α-MEM with L-glutamine supplemented with 5% (v/v) FBS, 5% (v/v) bovine calf serum (BCS) 

(HyClone Laboratories, Inc., South Logan, Utah, USA) and 100 U/ml penicillin/100 µg/ml streptomycin, 

and plated in petri dishes coated with 0.01% calf skin collagen type I and grown for 1 month. The length 

and number of cytoplasmic processes were then observed under the microscope (Leica DMI4000B, 

Wetzlar, Germany). Wilcoxon rank sum tests were performed to analyze the data between the WT and 

Kal-KO groups with a 5% significance level. The remaining cortical bones were washed in sterilized PBS 

and crushed after freezing in liquid nitrogen. The crushed bone was submerged in Trizol (Life 

Technologies Corporation, Carlsbad, California, USA) and kept in -80⁰C for RNA extraction.  

  

3. Scanning electron microscope analysis of osteocyte morphology  

Mice long bones were isolated. Bone samples embedded in methyl methacrylate (MMA) were polished 

and etched for 20 seconds by immersing each specimen in 9% phosphoric acid. Immediately following 

etching, each section was immersed in bleach for 5 minutes, followed by 1-2 seconds in dH2O. The 

sections were placed in a desiccator overnight and mounted on aluminum stubs using double-sided tape. 

The specimens were then sputter-coated with 3-5 nm of gold palladium at 2.5kV at 20mA for 105 

seconds with a Polaron E5000S and then viewed on the JSM JEOL-6390LV scanning electron 

microscope (JEOL USA Inc., Massachusetts, USA) operated at an accelerating voltage of 5kV.   

 

4. Osteocyte staining 

Long bones from 14 week-old mice were isolated, cleaned, and then submerged in 1% basic fuchsin and 

40% ethanol for 4 weeks. They were then immersed in copious amounts of tap water for 48 hours. The 

specimens were dehydrated, cut, and ground 50 µm thick and mounted on glass slides
78

. A number of 

osteocytes in the sections were observed under the microscope and counted from representative pictures 

that were taken from at least 5 different areas from one section. A total of 3 sections per bone specimen 
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were examined. The number of osteocytes in the WT and Kal-KO bone groups was statistically compared 

by Mixed-model ANOVA at a 5% significant level.     

 

5. Culturing of the osteocyte cell line (MLO-Y4)  

MLO-Y4 cells (murine long bone osteocyte Y4) were derived from the long bones of transgenic mice
79

. 

MLO-Y4 cells were grown in 5% serum-osteocyte culturing medium in an incubator at 37ºC with 5% 

CO2. When the cells were 80% confluent, they were washed twice with PBS and detached using a 0.05% 

trypsin/0.44 mM EDTA solution (Life Technologies Corporation, Carlsbad, California, USA) at 37ºC 

for 5 minutes. The action of trypsin/EDTA was neutralized by adding osteocyte-culturing medium, and 

the cell suspension was centrifuged at 2000 rpm for 5 minutes at 4°C. The cell pellet was re-suspended 

with fresh culturing medium and plated on 0.01% (w/v) collagen calfskin (Sigma-Aldrich Co. LLC, St. 

Louis, Missouri, USA) coated petri dishes.   

 

6. Plasmid purification 

Plasmid expression constructs for several of Kalirin’s functional domains were kindly provided by R.E. 

Mains, University of Connecticut Health Center, Connecticut, USA.  Schematic representation of their 

domain structure is shown in Figure 6A. The accession number for Kalirin is 032062.2. The 

pEGFP.HisMyc.Kal-kinase construct containing the EGFP domain (238 amino acids (aa)), a histidine tag 

(HHHHHH) followed by a myc tag (EQKLISEEDL), and the kinase domain of Kalirin-12 (aa 2632-

2959). A pCMS.HisMyc.Kal-kinase.EGFP construct contained the histidine and myc tags as well as the 

Kalirin-12 kinase domain but GFP was under the control of a separate promoter and was co-expressed 

with Kal-kinase in cells. The size of inserts is shown in Figure 6B.       

 

Five microlitres of each cDNA were added into one tube Oneshot Top10
®
 (Life Technologies 

Corporation, Carlsbad, California, USA). The Oneshot Top10 is commercial competent cells 

(Escherichia coli) with high efficiency cloning and plasmid propagation. The mixture was incubated on 

ice for 30 minutes, followed by heat shock in a water bath at 42⁰C for 30 seconds and then suddenly 

placed on ice for 2 minutes. Super Optimal broth with Catabolite repression (S.O.C) 250 μl was added 

https://www.google.com/search?q=carlsbad+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSpOiK2alpnwJLR44oeW38b-Bx_1RCkAAEBCzgNhAAAA&sa=X&ei=rNNvUva1JeX4yQH7yoCgCQ&sqi=2&ved=0CKYBEJsTKAIwEA&biw=1366&bih=664
https://www.google.com/search?q=carlsbad+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSpOiK2alpnwJLR44oeW38b-Bx_1RCkAAEBCzgNhAAAA&sa=X&ei=rNNvUva1JeX4yQH7yoCgCQ&sqi=2&ved=0CKYBEJsTKAIwEA&biw=1366&bih=664
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into the mixture and incubated at 37⁰C for 1 hour at 225 rpm in the shaker incubator. Then, 200 μl of 

cultured solution was spread on Luria-Bertani (LB) agar plates (DOT Scientific Inc., Burton, Michigan, 

USA) containing the 100 µg/ml ampicillin or 100 μg/ml kanamycin, depending on the types of cDNA and 

incubated overnight at 37⁰C. The single colony was picked and inoculated in 10 ml LB media with 

antibiotics and incubated at 37⁰C 200 rpm in the shaker incubator overnight. The culture was diluted in 

250 ml fresh LB broth and cultured under the same condition. Bacteria were then harvested by 

centrifugation at 6000 x g for 15 minutes at 4°C. Plasmids were purified by QIAGEN plasmid mini kit 

(QIAGEN, Hilden, Germany). The bacteria pellet was thoroughly re-suspended into 50 ml of re-

suspension buffer, and then mixed with 50 ml lysis buffer and incubated at room temperature. This 

solution was vigorously mixed with 50 ml chilled neutralization buffer to promote the precipitation of 

genomic DNA, proteins, and cell debris and incubated on ice for 30 minutes. Then the solution was 

centrifuged at 20000 x g for 30 minutes at 4°C. The columns were prepared by loading 10 ml 

equilibration buffer through the column due to gravity to reduce surface tension. The filter sheets were 

placed on top of the column. The supernatant containing plasmid DNA was loaded into the column and 

filtrated by gravity flow. All contaminants were washed out using 60 ml wash buffer. The DNA was 

eluted with 15 ml elution buffer. The DNA was precipitated by adding 10.5 ml room-temperature 

isopropanol into the eluted DNA, mixing vigorously, and centrifuging at 15000 x g for 30 minutes at 4°C. 

The DNA pellet was washed with 5 ml room-temperature 70% ethanol and centrifuged at 15000 x g for 

10 minutes. Finally, the pellet was eluted in Tris-EDTA (TE) buffer pH 8.0 at 4⁰C overnight and kept at -

20°C.   

 

7. Transient expression of Kalirin cDNA in MLO-Y4 cells    

Three million MLO-Y4 cells were cultured in collagen-coated petri dishes to obtain 80-90% confluence 

within 24 hours. They were trypsinized and washed with cold Ca
2+

/Mg
2+

-free PBS. The cell pellet was re-

suspended in 200 μl cold electroporation buffer (25 mM HEPES in PBS). The suspended cell solution 

(200 μl) was mixed with 100 μg DNA and incubated on ice for 15 minutes. The mixture was transferred 

into 2 mm plastic electroporation cuvettes. The cell-plasmid suspension was electroporated at 150 volts 

for 9 msec. The electroporated cells were left on ice for 5 minutes and then transferred into 10% serum-
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osteocyte culturing medium in a collagen-coated petri dish and on a cover-slip in 6-well plates. The 

expression of Kalirin in MLO-Y4 was detected by Western blot analysis, while the morphology of the 

Kalirin-expressing cells was determined by microscopic analysis after immunofluorescent staining of 

cells. 

 

8. Induction of cytoplasmic processes in MLO-Y4 cells 

MLO-Y4 cells (1x10
5
 cells) were cultured in the collagen-coated petri dishes and divided into 4 groups; 

one control group (cultured in osteocyte-culturing medium) and 4 treatment groups (cultured in osteocyte-

culturing medium with 0, 25, 50, and 75 ng/ml nerve growth factor (NGF)- or 50 mM potassium 

chloride (KCl) for 5 days. After treatment, the morphology of the cells was observed by microscopy.  

Alternatively, the cells were trypsinized, collected, and examined by Western blot analysis. 

 

9.  SDS-PAGE and Western blot analyses 

MLO-Y4 cells over-expressing the Kal-kinase domain or treated with NGF or KCl were lysed in SDS 

buffer (100 mM HCl, 500 mM Tris pH8.0, 10% SDS (wt/v) containing 10 µg/ml leupeptin hydrochloride, 

10 µg/ml aprotinin, and 10 µg/ml pepstatin), and sonicated for 2 minutes. The lysates were collected, 

centrifuged at 13,000 rpm for 5 minutes and the supernatant was collected. The amount of protein was 

estimated with the BCA protein analysis kit (Thermo Fisher Scientific Inc., Waltham, Massachusetts, 

USA) and 40 µg of protein was resolved by SDS-PAGE electrophoresis. Protein samples were mixed 

with loading buffer (62.5 mM Tris HCl pH 6.8, 2% w/v SDS, 10% glycerol, 50 mM DTT, and 0.01% 

bromophenol blue). All samples were boiled at 100°C for 5 minutes. The samples were loaded onto 4%-

12% NuPAGE Bis-Tris gels and subject to electrophoresis with NUPAGE MOPS (or MES) SDS 

Running Buffer (Life Technologies Corporation, Carlsbad, California, USA). Molecular weight protein 

markers were added and proteins were resolved at 120 volts, 3.0 amperes for approximately 2.5 hours. 

The proteins were transferred to nitrocellulose membrane in MOPS NuPAGE transfer buffer (Life 

Technologies Corporation, Carlsbad, California, USA) with 20% methanol at 100 volts for 1 hour at 

4°C. The membrane was washed with TBST solution (0.2 M Tris Base and 0.6 M NaCl at pH7.4 

containing 0.1% Tween-20) for 5 minutes at room temperature. Non-specific proteins were blocked with 

https://www.google.com/search?q=carlsbad+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSpOiK2alpnwJLR44oeW38b-Bx_1RCkAAEBCzgNhAAAA&sa=X&ei=rNNvUva1JeX4yQH7yoCgCQ&sqi=2&ved=0CKYBEJsTKAIwEA&biw=1366&bih=664
https://www.google.com/search?q=carlsbad+ca&stick=H4sIAAAAAAAAAGOovnz8BQMDgwsHnxCXfq6-gUlVRUp8rhIHiF1kUp6npZWdbKWfX5SemJdZlViSmZ-HwrHKSE1MKSxNLCpJLSpOiK2alpnwJLR44oeW38b-Bx_1RCkAAEBCzgNhAAAA&sa=X&ei=rNNvUva1JeX4yQH7yoCgCQ&sqi=2&ved=0CKYBEJsTKAIwEA&biw=1366&bih=664
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5% skim milk in TBST solution for 1 hour, shaking. Primary antibodies (Table 3) were diluted (1:1000) 

in TBST buffer. The membrane was incubated with the primary antibody overnight at 4°C. The 

membrane was then washed 3 times for 15 minutes each with TBST buffer. An anti-mouse antibody 

conjugated with horseradish peroxidase (HRP) was diluted 1:20000, while anti-rabbit HRP was diluted 

1:10000 in the TBST buffer and incubated with the membrane for 1 hour at room temperature on the 

shaker. The membrane was washed 3 times for 15 minutes in TBST buffer and proteins were detected 

using the enhanced chemiluminescence (ECL) reagent (SuperSignal West Pico Chemiluminescent 

Substrate, Thermo Fisher Scientific Inc., Rockford, Illinois, USA) for 5 minutes according to the 

manufacturer’s instructions. Membranes were exposed to X-ray film (Thermo Fisher Scientific Inc., 

Waltham, Massachusetts, USA) and developed.      

 

10. Immunofluorescent staining 

Cells on glass cover slips were washed twice with PBS and fixed with 10% formaldehyde in PBS for 15 

minutes, followed by washing twice with PBS. The cells to be stained for actin filaments with rhodamine 

phalloidin were permeabilized by acetone treatment for 3 minutes, followed by washing twice with PBS. 

Non-specific proteins were blocked with blocking solution (0.1% bovine serum albumin (BSA), 0.05% 

saponin, and 5% goat serum) at room temperature for 30 minutes. The blocking solution was removed. 

Primary antibody, rabbit polyclonal anti-Kalirin antibody, was diluted 1:200 in the blocking solution. The 

cover slips were incubated for 2 hours at room temperature. They were washed 3 times with blocking 

solution. The fluorescent-conjugated secondary antibody was diluted 1:100 in the blocking solution. The 

cells were incubated for 1 hour at room temperature and protected from light. They were washed 3 times 

with PBS. Rhodamine phalloidin diluted in blocking solution (1:200) was added to cells on cover slips for 

1 hour. Nuclei were labeled with Dapi diluted (1:600) in PBS. The cover slips were mounted with 

FluorSave medium (Calbiochem, Massachusettes, USA)  

 

11. Isolation of RNA from bones and MLO-Y4 cells 

For cell lines, the plate/flask was grown until 80% confluent and then washed, trypsinized, and 

centrifuged to collect the cells (Section 5). For cortical bones, the crushed bones in Trizol solution 
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(Section 2) were sonicated. The sample was then incubated at room temperature for 5 minutes to permit 

the dissociation of nucleoprotein complexes and centrifuged at 13,000 rpm for 10 minutes at 4°C. The 

supernatant containing RNA was collected in new microcentrifuge tubes. A phase separation was 

performed by adding 200 µl of chloroform into the RNA solution and centrifuged at 13,000 rpm for 15 

minutes at 4°C. The top clear liquid with RNA was transferred into a new tube. To precipitate the RNA, 

500 µl of absolute isopropyl alcohol was added, incubated at room temperature for 10 minutes, and 

centrifuged at 13,0000 rpm for 10 minutes at 4°C. The supernatant was discarded. The RNA pellet was 

washed with 1 ml of cold 75% ethanol, vortexed, and centrifuged at 7,500 rpm for 5 minutes at 4°C. The 

RNA was then re-suspended in 100 µl of RNase-free water. The mRNA was purified using the RNeasy
®
 

Mini Kit (QIAGEN Sciences Inc., Germantown, Maryland, USA). Any remnant genomic DNA in the 

RNA samples was degraded by digestion with DNase I (Applied Biosystems, Warringtons, UK) by 

incubation at 37°C for 30 minutes. Then, 5 mM EDTA solution was added into the RNA-DNaseI solution 

and incubated at 75°C for 5 minutes to remove excess DNaseI. 

 

12. Generation of cDNA by reverse transcription reaction 

Complementary DNA (cDNA) was generated using the Transcriptor First Strand cDNA Synthesis Kit 

(Roche Applied Science, Mannheim, Germany), which used the reverse transcriptase (RT) and oligo 

(dT18) primers to convert mRNA to cDNA. For each reaction, 100 ng of mRNA was added. The solution 

was briefly centrifuged and then incubated on a thermal cycler (C1000, Bio-Rad Laboratories 

Headquarters, Hercules, California, USA) at 50°C for 60 minutes (for reverse transcriptase reaction with 

dNTPs) followed by heating at 85°C for 5 minutes (stop reaction) and at 4°C continually until the cDNA 

was stored at -20°C. 

 

13. Quantitative Real-time Polymerase Chain Reaction  

Quantitative polymerase chain reaction (QPCR) was used to quantify expression of mRNA from WT and 

Kal-KO osteocytes. Syber
®
 green Gene Expression Master Mix (Applied Biosystems, Warringtons, UK) 

was used. A list of the genes examined is shown in Table 4. All oligonucleotide primers were validated 

against their appropriate targets by sequence comparison and by reverse-transcription PCR and agarose 
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gel electrophoresis before being used for QPCR.   The 18S RNA housekeeping gene was used as an 

endogenous control. In each QPCR reaction, 100 ng of cDNA was added. All samples were centrifuged to 

collect reagents and then run in the QPCR machine (Applied Biosystems Prism 7000 using STEP1 

Software Solutions, Newbury Park, California, USA) in duplicate with the temperature profile: 50°C for 2 

minutes, 95°C for 10 minutes, and 50 repeating cycles of 95°C for 15 seconds and 56°C for 1 minute. In 

all experiments, the threshold cycle (Ct) for each test gene was normalized against its respective 

endogenous controls. Real-time PCR was analyzed in fold changes in expression relative to wild-type 

osteocytes with ΔCt values of the sample and reference gene using the formula 2
-ΔΔCt

.  
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1. Differential expression of Kalirin isoforms in primary osteocytes 

The role of Kalirin on osteocyte morphology and function was examined. First, the mRNA expression 

level for the Kalirin isoforms in cortical bone was examined. The isolated mRNA of osteocytes from 

cortical bone of mice tibias and femurs was reverse transcribed to cDNA (see section 11 and 12). The 

expression of Kalirin-7, Kalirin-9 and Kalirin-12 was examined by QPCR using isoform-specific 

oligonucleotide primers. In primary osteocytes, Kalirin-9 mRNA was found to be more abundant than 

Kalirin-12, followed by Kalirin-7 mRNA (Figure 7A).  

 

The mRNA expression level of the Kalirin isoforms was also examined in MLO-Y4 cells, an osteocytic 

cell line developed from murine long bones which was used for in vitro studies of Kalirin (see section 5). 

All 3 major isoforms of Kalirin were also detected in MLO-Y4 cells. Similar to primary osteocytes, 

Kalirin-9 mRNA was more abundant than Kalirin-12, while Kalirin-7 mRNA levels was found to be the 

least abundant of the Kalirin isoforms (data was not shown).  

 

Kalirin protein levels in MLO-Y4 cells was also examined by Western blotting using an antibody that 

detects all major Kalirin isoforms (anti-sec14 antibody) or using a Kalirin-12-specific antibody (Kal12) 

(provided by Drs. Main and Eipper, University of Connecticut Health Center, CT).  Western blot analysis 

revealed the expression of several Kalirin isoforms in MLO-Y4 cells (Figure 7B).  Based on the predicted 

molecular weight of the isoforms, these results indicated that Kalirin-7 protein levels were more abundant 

in MLO-Y4 cells than Kalirin-9. 

 

2. Kalirin is localized to the cytoplasmic extensions of osteocytes 

To further examine the expression of Kalirin in osteocytes, immunofluorescent staining of Kalirin in 

primary osteocytes and MLO-Y4 cells was performed. Primary calvarial osteoblasts were used as a 

positive control in these studies. Cells were plated on coverslips then fixed and labeled with an antibody 

to Kalirin (rabbit polyclonal anti-Kalirin antibody, Millipore Corporation, Billerica, MA, USA) (green).  

Cells were also co-stained for actin filaments using rhodamine phalloidin (red) or for nuclei using DAPI 

(blue) (Figure 8-10). In osteoblasts, Kalirin was found to be expressed at the perinuclear region and was 
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localized to actin-rich fibers/tubules that extended radially from the nucleus to the cell periphery.  

However, Kalirin was not detected in circular actin-rich fibers that surrounded the nucleus (Figure 8). In 

primary osteocytes, Kalirin was also expressed at the area close to the nucleus and was localized to actin-

rich cytoplasmic processes, often extending out to the tips of the processes in contact with an adjacent cell 

(Figure 9). Similar to osteoblasts, Kalirin was detected at the perinuclear area and along linear actin-rich 

fibers in MLO-Y4 cells (Figure 10). 

 

3. Osteocyte morphology is altered in the absence of Kalirin  

The role of Kalirin in regulating the morphology of the cytoplasmic processes in osteocytes was then 

examined in vivo and in vitro using WT and Kal-KO mice. Kal-KO mice were previously generated
80

 and 

lacked all three major Kalirin isoforms, as well as some minor isoforms
81

. First, the femurs of 14 week-

old mice Kal-KO and WT were isolated and the bones cleaned of tissue. The bones were stained with 

basic fuchsin, which stains the cell nucleus, and then sectioned and imaged (Figure 11A). The osteocyte 

cell bodies embedded in lacuna appeared dark red in color and multiple cytoplasmic processes were 

observed (Figure 11A). The number of osteocytes were counted and compared between WT and Kal-KO 

mice (n=3 in each group) from 5 random areas of bone sections. However, the number of osteocytes in 

WT (93.3±3.9) and Kal-KO (83.8±4) bones were not found to be significantly different (p>0.05) as 

determined by mixed-model ANOVA statistical analysis (Figure 11B). The number and morphology of 

osteocytes in cortical bone from Kal-KO and WT mice was also examined by acid-etching of plastic-

embedded bones specimens, followed by imaging using a scanning electron microscope (SEM). Although 

extensive cytoplasmic processes were observed in both WT and Kal-KO bones (Figure 12), no qualitative 

differences between Kal-KO and WT osteocytes were apparent, and further quantitative analyses were 

not possible with these specimens due to the large number of interconnected cytoplasmic extensions 

present.  

 

To better examine the effects of Kalirin deletion on osteocyte morphology, primary osteocytes from Kal-

KO and WT cortical and trabecular bones were used. Cells were isolated from the tibias and femurs of 

WT and Kal-KO mice by sequential collagenase digestion and then cultured in vitro for up to 1 month on 
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collagen-coated dishes. Osteocytes were then examined by microscopy for differences in length and 

number of cytoplasmic processes (Figure 13A). The average number of cytoplasmic processes detected in 

WT osteocytes (4.69±0.3) was significantly higher (p<0.05) than the average number of cytoplasmic 

processes found in Kal-KO osteocytes (3.32±0.21). In addition, the length of cytoplasmic processes of 

WT osteocytes (85.4±3.6 µm) was found to be significantly higher than the cytoplasmic processes of Kal-

KO osteocytes (79.5±4.6 µm) (Figure 13B).  These findings revealed that Kalirin played a crucial role in 

controlling the length and number of cytoplasmic processes of osteocytes. 

 

4.  Kalirin regulates mRNA levels of osteocyte genes 

Given that all 3 major Kalirin isoforms were detected in osteocytes and that osteocytes lacking Kalirin 

isoforms exhibited defects in the number and length of cytoplasmic processes, the role of Kalirin in 

regulating the function of osteocytes was examined. To this end, QPCR analysis of known osteocyte 

marker genes was performed. RNA was isolated from cortical bone of tibias and femurs of WT and Kal-

KO mice, reverse transcribed and subject to QPCR analysis using oligonucleotide primers to known 

osteocyte genes. The expression of 18S RNA was used as the endogenous control and results for Kal-KO 

osteocytes were normalized to WT levels (set as 1.0) (Figure 14). Statistical analysis of QPCR results 

from the WT and Kal-KO bone groups was performed by Wilcoxon rank sum tests (Figure 14).  

 

E11/gp38 is the earliest osteocyte-specific protein to be expressed in osteocytes as they become 

embedded in osteoid. MEPE and PHEX are also markers for osteocytes embedded in osteoid, and also 

function in regulating phosphate homeostasis
82

. QPCR analysis revealed that MEPE mRNA levels were 

significantly decreased (p<0.05) in Kal-KO bones compare to WT bones (Figure 14), whereas E11/gp38 

mRNA levels appeared normal. Dmp1 is also expressed in early mineralizing osteocytes and is a marker 

of osteoblasts transitioning into osteocytes. Similar to E11/gp38, the expression of Dmp1 mRNA was not 

found to be significantly different in Kal-KO osteocytes. Therefore, these findings suggest that in the 

absence of Kalirin, the differentiation of osteoblasts to early osteocytes appears normal, but osteoid 

formation and mineralization by osteocytes may be reduced.  
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IGF-1 is known to enhance the differentiation of late osteoblasts

83
 and to play a role in longitudinal bone 

growth
84

. The expression of IGF-1 was found to be significantly lower in Kal-KO bones than WT, which 

also implied the impairment of early osteocyte formation. FGF23 and SOST are both expressed in mature 

osteocytes. FGF23 plays a role in phosphate metabolism while the product of the SOST gene, sclerostin, 

is an inhibitor of Wnt signaling and inhibits the proliferation and differentiation of osteoblasts
85

. QPCR 

analysis revealed no change in FGF23 mRNA levels. However, SOST mRNA levels were significantly 

lower in Kal-KO than WT bones. ER-α and ER-β are known to be strongly expressed in cortical bone and 

cancellous bone, respectively
86

. The expression of ER-α mRNA in osteocytes was significantly decreased 

(p<0.05) in Kal-KO mice. On the contrary, the expression of ER- mRNA in Kal-KO bones was 

significantly increased (p<0.05) compared in WT bones. Finally, the ratio of RANKL and OPG is critical 

for the regulation of osteoclast differentiation. A significant decrease in OPG mRNA (p<0.05), but not 

RANKL mRNA (p>0.05) levels, was detected in Kal-KO bones compared to WT bones, suggesting a 

decrease in the RANKL/OPG ratio in Kal-KO mice, which would likely affect osteoclast number in these 

mice, consistent with unpublished studies from Dr. Bruzzaniti’s laboratory.   

 

5. Induction of cytoplasmic processes in MLO-Y4 cells regulates Kalirin, Rac1 and RhoA 

Examination of osteocyte morphology revealed Kal-KO osteocytes had shorter and fewer cytoplasmic 

processes than WT osteocytes, while immunofluorescent staining showed that Kalirin was expressed 

along the cytoplasmic processes of osteocytes. To begin to understand the intracellular signaling events 

leading to changes in cytoplasmic process formation, and to confirm Kalirin’s role in this process, two 

novel in vitro approaches to induce cytoplasmic process extension in ML0-Y4 cells were developed.  

Kalirin had previously been shown to play a role in neuronal dendrite formation downstream of nerve 

growth factor (NGF)-
87

. Furthermore, dendritic spine elongation in neurons was promoted using high 

extracellular levels of potassium chloride (KCl), which led to neuronal cell depolarization
88

. Therefore, 

cytoplasmic process elongation in MLO-Y4 cells was examined following treatment with NGF (0, 25, 50, 

75 ng/ml) or 50 mM KCl for 5-7 days. The NGF and KCl concentrations used and the time of treatment 

for these studies were pre-optimized for maximal effects on cytoplasmic process elongation (data not 

shown). Following cell treatment, the protein level of the Kalirin isoforms was determined by Western 



26 

 
blotting. In addition, the phosphorylation of extracellular regulated kinase (ERK), which was previously 

implicated in osteoblast signaling downstream of Kalirin (Huang et al. unpublished data), was examined. 

As shown in Figure 15, the cytoplasmic processes of MLO-Y4 cells were significantly lengthened after 5-

7 days of treatment, with 75 ng/ml NGF and 50 mM KCl inducing maximal morphological responses.  

Western blot analysis using isoform-specific antibodies to Kalirin revealed a dose-dependent increase in 

Kalirin-7 and Kalirin-12 in cells treated with NGF (Figure 16). Consistent with the increase in Kalirin, the 

level of total RhoA was increased, whereas Rac1 protein levels remained the same. In contrast, Kalirin-7, 

Kalirin-12 and RhoA protein levels were reduced in MLO-Y4 cells treated with KCl, compared to vehicle 

treated controls. 

 

6. The Kalirin-12 kinase domain regulates cytoplasmic process formation in MLO-Y4 cells 

To examine the mechanism of action of Kalirin in regulating cytoplasmic process formation, MLO-Y4 

cells were electroporated to express Kalirin functional domain. Mammalian expression constructs 

encoding GEF1, GEF2, Ig/FnIII or the Kalirin-12 Ser-Thr kinase domain were used (see Figure 6).  Two 

plasmid expression constructs for the Kalirin-12 Ser-Thr kinase domain were used; in Kal-kinase1, the 

GFP-tag was directly linked to the C-terminal end of the kinase domain, whereas in Kal-kinase2 the GFP 

expression was under the control of a separate promoter and was co-expressed with the kinase-domain 

(see Figure 6). Although all expression constructs generated protein products of the correct molecular 

weight in control non-osteocytic cells (data not shown), only the Ser-Thr kinase domain of Kalirin-12 was 

successfully expressed in the MLO-Y4 osteocytic cell line (Figure 17). The electroporation efficiency of 

Kal-kinase1 and Kal-kinase2 cDNA constructs was approximately 80% and 60% respectively (Figure 

18). Following electroporation of Kal-kinase1 or Kal-kinase2 the morphology of MLO-Y4 cells was 

examined by microscopy. Changes in the actin cytoskeleton were observed by labeling with rhodamine 

phalloidin (red), while Kal-kinase expression was detected by virtue of the GFP tag. The pEGFP empty 

vector, which also expresses GFP, and non-electroporated cells were used as negative controls. As shown 

in Figure 18, MLO-Y4 cells expressing the Kal-kinase domain (green) exhibited changes in the 

appearance of their cytoplasmic processes (red), compared to empty vector or non-electroporated control 

cells. Specifically, short cytoplasmic processes with extensive branching were observed in MLO-Y4 cells 
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expressing the Kal-kinase domain (Figure 18; arrows), compared with the pEGFP empty plasmid or non-

electroporated cells. 

 

MLO-Y4 cells expressing the Kal-kinase1 and Kal-kinase2 cDNA expression constructs were also 

examined by Western blotting. The expression of Kal-kinase1 and Kal-kinase2 was determined using an 

antibody to the myc tag. We also examined if over-expression of the kinase domain affected Rac1 and 

RhoA protein levels, as well as the phosphorylation of ERK (pERK), which was reported to play a role in 

Kalirin signaling mechanisms
89

. Electroporation appeared to induce the phosphorylation of ERK 

compared to cells electroporated with pEGFP.  Nevertheless, examination of MLO-Y4 cells expressing 

Kal-kinase1 and Kal-kinase2 showed a higher ratio of pERK to total ERK, compared to control 

electroporated cells. Similar to MLO-Y4 cells treated with increasing concentrations of NGF, no change 

in Rac1 levels was observed in cells expressing Kal-kinase1 or Kal-kinase2. Moreover, MLO-Y4 cells 

expressing the kinase domain of Kalirin-12 had higher levels of RhoA than control cells. 
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Proteins Functions 

Alkaline phosphatase (ALP) Marker of bone metabolism
90

 

β-catenin Involved in the differentiation of mesenchymal progenitor cells via the Wnt 

pathway
91

 

Collagen type I Marker for bone formation
92

 

Core-binding factor alpha 1 

(Cbfa1) or 

Runt-related transcription 

factor 2 (Runx2) 

Required for the differentiation of mesenchymal stem cells into the osteoblast 

lineage and for embryonic bone formation
93

 

Is upregulated by BMP2 and Wnt pathways during osteoblast differentiation
93

 

Keratocan Regulation of cell proliferation and differentiation of osteoprogenitor linage cells
94

 

Osteocalcin (OCN) Marker of osteogenic maturation and bone turnover
95

 

Ca
2+

 binding protein
95

 

Osteopontin (OPN) Mediates binding between the bone matrix and the vitronectin receptors expressed 

in the sealing zone of osteoclasts
96

 

Osteoprotegerin (OPG) Negative regulation osteoclastogenesis
97

 

Osterix Involved in immature osteoblasts differentiation into pre-osteoblasts
98

 

Receptor activator of 

nuclear factor kappa-B 

ligand (RANKL) 

Cytokine secreted by osteoblasts that regulates osteoclast activation and 

differentiation
16

 

Bone sialoprotein Bone mineralization and bone growth
99

 

Marker of the late stages of osteoblast differentiation and the early stages of 

mineralization
99

 

 

 

TABLE 1. Osteoblast signaling and regulatory proteins. 

The table shows different proteins which are specifically expressed in osteoblasts, and their functions.  
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Proteins Functions 

Dentin matrix protein 1 

(DMP1) 

Cytoplasmic process formation
100

 

Binding to CD44, which interacts with adapter proteins that link to actin cytoskeleton
101

 

Regulates mineralization and mineral metabolism
102

 

Regulates the maturation of osteocytes and phosphate metabolism
103

 

Expressed in the pericellular matrix, cytoplasmic processes, osteocyte lacuna-canaliculi 

system and several parts of bone; metaphyseal primary trabeculae (bone modeling 

region) and secondary trabeculae (bone remodelling region) as well as cortical 

bone
104,105

 

Marker for the transitioning of osteoblasts into osteocytes
106

 

DMP1 is detected after osteopontin, osteocalcin and bone sialoprotein are activated
106

 

Estrogen receptor α1  Involved in the responsiveness of osteocytes to mechanical stress and the apoptosis of 

osteocytes
107

 

Prevalently presented in the osteocytes in cortical bones
107

 

Estrogen receptor β1  Involved in the responsiveness of osteocytes to mechanical stress and the apoptosis of 

osteocytes
107

 

Predominantly presented in the osteocytes in cancellous bone
107

 

Fibroblast growth factor 

23 (FGF23) 

Regulates renal phosphate excretion
102

 

Regulates the level of phosphorus and Vitamin D metabolisms
108

 

Inhibits osteoblast maturation by disrupting the Wnt signaling pathway
109

 

FGF-23 is regulated by PHEX
108

 

Matrix extracellular 

phosphoglycoprotein 

(MEPE) 

Phosphate homeostasis
82

 

Inhibits bone formation
110

 

Regulates the mineralization process
111

 

Up-regulates osteoprotegerin (OPG)
112

 

Phosphate-regulating gene 

with homology to 

endopeptidases on the X 

chromosome (PHEX) 

Phosphate homeostasis
82

 

Regulates MEPE
113

 

Podoplanin (E11/gp38) A marker of embedded osteoid osteocytes
102

 

Regulated the dendritic and canaliculi formation
102

 

Receptor activator of 

nuclear factor kappa-B 

ligand (RANKL) 

Cytokine secreted by osteocytes that regulates osteoclast activation and differentiation
16

 

Sclerostin (SOST) Inhibits the proliferation and differentiation of osteoblasts
114

 

Stimulates the apoptosis of osteoblasts
115

 

Inhibits bone formation by antagonizing Wnt/β-catenin pathway
116,117

 

The impairment of this gene in mice leads to high bone mass
117

 

 

TABLE 2. Osteocyte signaling and regulatory proteins. 

Different proteins which are specifically expressed in osteocytes and their functions are summarized in the table.  
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Antibodies Company Concentration 

Mouse monoclonal anti-Myc antibody (Clone 9E10) 
Santa Cruz Biotechnology, 

Inc, Dallas, TX, USA 
1:1000 

Mouse monoclonal anti-green fluorescent protein (GFP) 

antibody (Clone JL-8); Living colors
®
 

Clontech Laboratories, 

Inc.,Mountainview, CA, 

USA 

1:1000 

Rabbit polyclonal anti-Kalirin sec14 antibody              

(Clone CT301)  

From RE. Mains and         

BA. Eipper, UConn, CT 
1:1000 

Rabbit polyclonal Anti-COOH terminus of kalirin-12 

antibody (Clone Ab3225) 
61

 

From RE. Mains and BA. 

Eipper 
1:1000 

Rabbit monoclonal anti-P-p44/42 MAPK antibody 

(PhosphoERK) 

Cell Signaling Technology, 

Inc., Danvers, MA, USA 
1:1000 

Rabbit polyclonal anti-ERK1 antibody                          

(Total ERK) 

BD Biosciences, San Jose, 

CA, USA 
1:1000 

Mouse monoclonal anti-Rac1 antibody (Clone 23A8) 
Millipore Corporation, 

Billerica, MA, USA 
1:1000 

Rabbit polyclonal anti-Kalirin antibody  
Millipore Corporation, 

Billerica, MA, USA 
1:200 

Rabbit polyclonal with horseradish peroxidase conjugated 
Promega Corporation, 

Madison, WI, USA 
1:10000 

Mouse monoclonal with horseradish peroxidase conjugated 
Promega, Corporation, 

Madison,WI, USA 
1:20000 

 

TABLE 3. Antibodies for Western blotting and immunofluorescent staining. 

The table shows different antibodies and their concentrations for Western blot assays and immunofluorescent 

staining of primary osteocytes and MLO-Y4 osteocytic cells used in this study. 
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Primers Primer sequences Expression 

Temperature (°C) 

Melting  Annealing 

18S 
Forward: AGTCCCTGCCCTTTGTACACA 

Reverse: CGATCCGAGGGCCTCACTA 
Housekeeping gene 60.5 56 

Dentin matrix protein 1  

(DMP1) 

Forward: TCAGGACAGTAGCCGATCCA 

Reverse: TCCCCGATGGGTTTGTTGTG 

Differentiating osteoblasts 

Early osteocytes 
106

 

Highly expressed in osteocytes 
46,82

 

60 56 

Fibroblast growth factor 23 

(FGF23) 

Forward: GTGTCAGATTTCAAACTCAG 

Reverse: GGATAGGCTCTAGCAGTG 

Highly expressed in osteocytes 
82,118,119

 

Low expressed in osteoblasts 
118,119

 
52 56 

Estrogen receptor-α 
Forward: CTCAACCGCCCGCAGCTCAA 

Reverse: GTAGGCGATGCCCGACTGGC 

Growth plate cartilage 
120

 

Strongly expressed in osteoblasts, 

osteocytes 
86

, and osteoclasts 
120

 in 

cortical bones 

65 60 

Estrogen receptor-β 
Forward: ACCCTCACTGGCACGTTGCG 

Reverse: GGCTTGCGGTAGCCAAGGGG 

Growth plate cartilage 
121

 

Strongly expressed in osteoblasts and 

osteocytes in cancellous bone 
86

 

65 63 

Matrix extracellular 

phosphoglycoprotein  

(MEPE) 
Forward: TCAAGACAGCATTCACAAGGAC 

Reverse: GGAGGGCAGCACCATACC 

Predominantly expressed in osteocytes 

No expression in osteoblasts 
46,82,111,112

 
58.8 56 

Osteoprotegerin  
(OPG) 

Forward: ACCCAGAAACTGGTCATCAGC 

Reverse: CTGCAATACACACACTCATCACT 

Osteoblasts 
97

 

Osteocytes 
112

 
59 56 

Phosphate-regulating gene 

with homology to 

endopeptidases on the X 

chromosome  

(PHEX) 

Forward: TGATGGAAGCAGAAACAG 

Reverse: CTTGGAAACTTAGGAGACC 
Osteocytes 

82,112
 52 56 

Podoplanin  

(E11/gp38) 

Forward: AGCCCAGTCCTAAGCATCCA 

Reverse: CGTGGCTCCTCAACTCATCG 

Early osteocytes 

Osteoblasts differentiate into osteocytes 
100

 

60 56 

Receptor activator of 

nuclear factor kappa-B 

ligand  

(RANKL) 

Forward: TCCTGTACTTTCGAGCGCAC 

Reverse: CCAGAGTCGAGTCCTGCAAA 

Osteoblasts 
97

 

Osteocytes 
112

 
59 56 

Sclerostin  
(SOST) 

Forward: CCACAAAGACTGAAAGCCGC 

Reverse: TAACAATGCCTCTGGTCGGG 
Restrictedly expressed in osteocytes 

115
 59.75 56 

Kalirin-7 
Forward: GATACCATATCCATTGCCTCCAGGACC 

Reward: CCAGGCTGCGCGCTAAACGTAAG 

Hippocampus and the cerebral cortex of 

the brain 
122

 
61 57 

Kalirin-9 
Forward: GCCCCTCGCCAAAGCCACAGC 

Reward: CCAGTGAGTCCCGTGGTGGGC 
Growth cones of the axon and neurites

67
  62 59.5 

Kalirin-12 
Forward: CTTCATAGAACGCCGCAAGC 

Reverse: ACCTCAGGGGTTGTGGGATA 
Neurons 

61,122
 61 57.5 

 

TABLE 4. Oligonucleotide primers used for QPCR. 

The table shows the oligonucleotide primer sequences and their melting and annealing temperatures, including 

information regarding the expression of each gene in different tissues. These primers are specific to the selected 

genes. 
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  Genotype Mean±SE p-value 

Number of processes 

WT 4.69±0.3 
0.0004  

KO 3.32±0.21 

Length of processes 

WT 85.4±3.6 
0.0276  

KO 79.5±4.6 

Number of osteocytes 

WT 93.4±4.7 
0.2243  

KO 83.6±2.6 

 

TABLE 5. Analysis of osteocyte cytoplasmic processes from Kal-KO and WT mice. 

The chart summarizes data comparing the number and length of cytoplasmic processes detected in cultured 

osteocytes from WT and Kal-KO mice. To determine the number and length of cytoplasmic processes, a total 

number of 68 WT and 78 Kal-KO osteocytes were examined from one preparation of cells isolated from mouse 

femur and tibia (pooled samples). Microscopic analysis revealed that Kal-KO osteocytes have significantly shorter 

and fewer cytoplasmic processes compared to WT osteocytes (p<0.05). The average numbers of osteocytes 

embedded in cortical bones from WT (6 independent bone sections) and Kal-KO (8 independent bone sections) 

mice, as determined by basic fuchsin-staining, are also shown. There is no statistic different in number of osteocytes 

between WT and Kal-KO groups (p>0.05). All data was analyzed using the Wilcoxon rank sum tests.  
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FIGURE 1. Schema for mesenchymal stem cell differentiation into osteoblasts.  

Osteoblasts are specialized fibroblasts which are able to secrete and mineralize the bone matrix. They differentiate 

from mesenchymal stem cells. Osteoblast differentiation involves the interaction of transcription factors as well as 

endocrine, paracrine and autocrine factors. BMP-2 induces Cbfa1 activity in mesenchymal stem cells 
123

. Cbfa1 

directs mesenchymal stem cells to commit to an osteoblast pathway 
124

. TGF-β regulates the proliferation of 

undifferentiated mesenchymal stem cells and the differentiation of osteoprogenitor cells 
125

. Growth factors (BMP, 

TGF, IGF, VEGF and FGF) also support the recruitment and proliferation of osteoprogenitor cells 
125

.  

 

Osteoprogenitor cells differentiate into pre-osteoblasts depending on several regulatory factors. Osterix is important 

to shifting bipotent osteoprogenitor cells from the chondrocytic lineage to the osteoblastic lineage 
126

. IGF and PGE2 

promote the proliferation and differentiation of osteoprogenitor cells to pre-osteoblasts 
127

. PTH balances the 

differentiation of osteoprogenitor cells by inhibiting the late stage of differentiation of osteoprogenitor cells to pre-

osteoblasts 
128

. Pre-osteoblasts differentiate into osteoblasts via an increase the activity of Cbfa1 and increases in the 

expression of collagen type I, BSP, OPN, ALP and Galectin-3, and begin to express OCN 
123

. The mature 

osteoblasts further differentiate into either bone lining cells or osteocytes.  

 

BMP: Bone morphogenic protein; TGF: Transforming growth factor; IGF: Insulin-like growth factor; VEGF: 

Vascular endothelium growth factor; FGF: Fibroblast growth factor; PTH: Parathyroid hormone; (OSF-)-1 

osteoblast stimulating factor or pleiotrophin (PTN) or heparin-binding growth-associated molecules (HB-GAM), 

Cbfa1: Core-binding factor alpha 1 or Runt-related transcription factor 2 (Runx2); PGE2: Prostaglandin E2; BSP: 

Bone sialoprotein; OPN: Osteopontin; ALP: Alkaline phosphatase and OCN: osteocalcin.   

 

Osteoprogenitor cell Pre-osteoblast 

Osteocyte 

Mesenchymal stem cell 
IGF, PTH, (OSF-)-1 

PGE2, Osterix 

BMP-2, TGF-β, IGF, 

VEGF, FGF-2, Cbfa1 

Bone lining cell 
Osteoblast 

Collagen type I, BSP, OPN and ALP 

Collagen type I, BSP, 
OPN, ALP and Galectin-3 

Collagen type I, BSP, OPN, 
ALP, Galectin-3 and OCN 
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FIGURE 2. Schema describing the osteocyte differentiation process.  

Mature osteoblasts express Cbfa1, Osterix, ALP and OCN. When they start to embed in the bone matrix, osteoblasts 

undergo a differentiation process toward osteoid osteocytes, mineralizing osteocytes and finally to mature 

osteocytes. E11/gp38 is one of the earliest specific proteins to be expressed during osteoblasts-to-osteocyte 

transition (osteoid osteocytes) 
100

. DMP1 has high calcium ion-binding capacity 
105

, so it is expressed only in 

mineralized tissue 
105,129

. DMP1 is a marker of transitioning osteocytes, and is expressed in young osteocytes. PHEX 

and MEPE regulate mineralization during osteocyte differentiation. MEPE is stimulated by Wnt3a and functions to 

inhibit bone mineralization by osteoblasts
130,131

. PHEX promotes bone mineralization. PHEX binds with high 

specificity to MEPE 
132

 to protect MEPE from proteolysis by cathepsin B
113

. Mature osteocytes express specific 

markers such as FGF23 which regulates phosphate homeostasis and sclerostin, which is an inhibitor of Wnt 

signaling and inhibits the proliferation and differentiation of osteoblasts 
85

. 

 

ALP: Alkaline phosphatase; OCN: Osteocalcin; MEPE: Matrix extracellular phosphoglycoprotein; PHEX: 

Phosphate-regulating gene with homology to endopeptidases on the X chromosome; DMP1: Dentin matrix protein 1 

and FGF23: Fibroblast growth factor 23.    
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FIGURE 3.  Signaling between bone cells.  

Bone cells signal to each other via a number of cytokines and ligand-receptor interactions. Osteocytes 

secrete RANKL and M-CSF to activate osteoclast proliferation and differentiation, and this process is 

balanced by competitive binding of OPG to RANKL. IGF-1 from osteocytes induces osteoblast 

proliferation and differentiation. Nitric oxide activates osteoblast functions while sclerostin inhibits 

osteoblast functions. Osteoblasts also secrete RANKL, M-CSF, OPG as well as OSCAR, to regulate 

osteoclast proliferation and differentiation. Mature osteoclasts secrete BMPs and Wnt10b to activate 

osteoblast functions
133

 and promote osteoblastogenesis
134

 respectively.  The ephrin (ligand)-EPH 

(receptor) complex is important for communication between osteoblasts and osteoclasts and regulates the 

activities of both cells, including regulating the differentiation of osteoblast lineage cells
135

.    

 

RANKL: Receptor activator of nuclear factor kappa-B ligand, M-CSF: macrophage colony-stimulating 

factor, OPG: Osteoprotegerin, OSCAR: osteoclast-associated receptor, BMP: bone morphogenetic 

protein, IGF: Insulin-like growth factor and Ephrin: Eph receptor interacting protein.   
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FIGURE 4. The domain structure of Kalirin isoforms.  

Common domains of all three Kalirin major isoforms are Sec14, spectrin-like repeats and GEF1. Kalirin-9 is larger 

than Kalirin-7 with an additional GEF-2 domain. Kalirin-12 is the largest isoform with an additional GEF2, Ig, FnIII 

and Ser/Thr kinase domains. 

 

DH: Dbl homology, PH: pleckstrin homology, GEF: guanine nucleotide exchange factor, SH3: Src homology 

domain, Ig: immunoglobulin-liked domain, FnIII: fibronectin III domain, and Ser/Thr: serine/threonine protein 

kinase domain. 
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FIGURE 5. Mice tibias and femurs before and after bone marrow removal. 

For osteocyte isolation, the bone marrow of tibias and femurs were flushed with sterilized PBS.  Mice tibias and 

femurs before (A) and after (B) flushing with sterilized PBS are shown.  
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Name Vector Insert Size of insert 
Total 

(kDa) 

Kal-kinase1 pEGFP.Hismyc.Kal-kinase   

(GFP tagged) 

 

EGFP 

Histidine 

Myc 

Kalirin Kinase 

238 amino acids (26.9 kDa) 

0.840 kDa 

1.202 kDa 

328 amino acid (36 kDa) 

65 

Kal-kinase2 pCMS.Hismyc.Kal-kinase 

(GFP co-expressed on a 

separate promoter) 

Histidine 

Myc 

Kalirin Kinase 

0.840 kDa 

1.202 kDa 

328 amino acid (36 kDa) 

38 

 pEGFP plasmid GFP 238 amino acids  26.9 

 

FIGURE 6. Domain structure of the Kalirin cDNA expression constructs. 

(A) Schematic representation of the Kal-kinase1 (I) and Kal-kinase2 (II) cDNA expression plasmids are shown. 

Kalirin was tagged with histidine (His) and myc. (B) The predicted molecular weights of the protein domains are 

shown. The molecular weight of inserts is used to interpret Western blot assay results. 

I. II. 

A. 

B. 
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FIGURE 7.  Determination of Kalirin mRNA and protein levels in osteocytes.  

(A) The expression of Kalirin isoform mRNA levels in primary osteocytes (n=4) was quantified by QPCR. All three 

major isoforms are expressed.  (B) The expression of Kalirin isoforms in MLO-Y4 cells was detected by Western 

blot analysis. Kalirin-7 was more highly expressed than Kalirin-9 at the protein level. 
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FIGURE 8. Immunofluorescent labeling of Kalirin in primary osteoblasts. 

The immunofluorescent labeling of Kalirin (green), actin filaments (red), nuclei (blue) and composite of primary 

osteoblasts. The expression of Kalirin is at the perinuclear region and extending from the nucleus to the cell 

periphery.  
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FIGURE 9. Immunofluorescent labeling of Kalirin in WT osteocytes. 

The immunofluorescent labeling of Kalirin (green), actin filaments (red), nuclei (blue) and composite of WT 

osteocytes. Kalirin is localized to the perinuclear region and along the cytoplasmic processes, extending out to the 

tips of the processes of primary osteocytes.  
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FIGURE 10. Immunofluorescent labeling of Kalirin in MLO-Y4 cells. 

The immunofluorescent labeling of Kalirin (green), actin filaments (red), nuclei (blue) and composite of MLO-Y4 

cells. Similar to primary osteocytes, Kalirin is localized to the perinuclear region in MLO-Y4 cells.  
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FIGURE 11. Basic fuchsin staining of osteocytes in cortical bone.  

(A) Basic fuchsin stained osteocytes in lacuna in the cortical bones from the distal femurs of WT and Kal-KO mice.  

(B) Comparison of the number of osteocytes in tibias and femurs from WT and Kal-KO mice is shown. Statistical 

analysis was performed using mixed-model ANOVA (n=10).  The number of osteocytes in cortical bone of WT and 

Kal-KO mice was not found to be statistically different (p>0.05). 

p = 0.2243 

WT Kal-KO 

A. 

B. 

50 μm 50 µm 
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FIGURE 12. Analysis of osteocytes from Kal-KO and WT mice by SEM.  

Representative SEM images after acid-etching of female long bones from Kal-KO and WT mice reveal osteocytes in 

lacuna. WT and Kal-KO osteocytes have numerous cytoplasmic processes extending from their cell bodies and 

joining the processes of adjacent cells (arrows).   
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FIGURE 13. The morphology of primary osteocytes from WT and Kal-KO mice.  

(A) A morphology of osteocytes from the tibias and femurs of WT and Kal-KO mice (n=8 and 7, respectively) 

cultured on collagen-coated plates for one month after isolation.  (B) The average length and number of cytoplasmic 

processes per cell in WT and Kal-KO osteocyte (n=68 and 78 cells, respectively) is shown.  Kal-KO osteocytes have 

significantly shorter and fewer processes than the WT group (p<0.05 base on the Wilcoxon rank sum test). 

II. 

* 
p = 0.0004 

I. 

A. 

B. 

WT Kal-KO 

* 
p = 0.0276 
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p = 0.0004 
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Detector Mean±SE p-value 

E11/gp38 1.07±0.42 0.84 

OPG 0.50±0.09 0.0313 

RANKL 4.25±2.01 0.11 

SOST 0.45±0.1 0.0156 

DMP1 0.70±0.21 0.31 

FGF23 0.73±0.32 0.63 

MEPE 0.43±0.1 0.0313 

Phex 0.46±0.17 0.08 

ER alpha 0.51±0.1 0.0156 

ER beta 13.26±7.94 0.0313 

IGF-1 0.49±0.13 0.0313 

 

FIGURE 14. Comparison of mRNA expression levels in WT and Kal-KO osteocytes. 

The expression of specific osteocyte genes detected in WT and Kal-KO osteocytes was quantified by QPCR, 

normalized to 18S RNA and compared.  The experiment was repeated 4 times and results from all experiments were 

averaged. Asterisks in the graph and highlighted p-values in a table show the statistic difference between WT and 

Kal-KO osteocyte genes.    

* * * * * 

* 
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FIGURE 15. The morphology of MLO-Y4 cells after treatment with NGF or KCl.  

Representative images of the morphology of untreated MLO-Y4 cells compared with cells treated with increasing 

concentrations of nerve growth factor (NGF-) or KCl for 5 days. (A, control; B, 25ng/ml NGF; C, 50 ng/ml NGF; 

D, 75 ng/ml NGF; E, 50 mM KCl). MLO-Y4 cells treated with high concentrations of NGF or KCl exhibit a distinct 

elongation of their cytoplasmic processes compared to untreated control cells.  Experiments were reproduced 4 

times. 
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FIGURE 16. Western blot analysis of MLO-Y4 cells treated with NGF or KCl. 

Western blot analysis of Kalirin-7, Kalirin-12, RhoA and pERK from total cell lysate of MLO-Y4 treated with 

increasing concentration of NGF or KCl. The highest expression of Kalirin-7, Kalirin-12, RhoA and pERK were 

observed in the 75 ng/ml NGF treatment group in which cytoplasmic processes were elongated (see Figure 13). 
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FIGURE 17. Western blot analysis of MLO-Y4 cells expressing the Kalirin-12 kinase domain.  

The Kalirin-12 kinase domain was expressed in MLO-Y4 cells by electroporation. The expression constructs for the 

Kalirin-12 kinase domain each contained a myc tag which was detected with an anti-myc antibody by Western blot 

assay. The myc blot represents the expression level of the kinase domain after electroporation. Controls included 

non-electroporated cells and cells electorporated with a PE plasmid (empty plasmid). The expression of pERK and 

RhoA in Kal-kinase domain expressing cells were higher than the negative control groups. 
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FIGURE 18. Immunofluorescent labeling of MLO-Y4 cells expressing the Kalirin-12 kinase domain. 

Kalirin Ser-Thr kinase domain plasmids (pEGFP.Hismyc.Kalkinase and pCMS.Hismyc.Kalkinase) tagged with GFP 

were transfected into MLO-Y4 cells by electroporation. The control group was transfected with empty pGFP 

plasmid, expressing GFP. Transfected MLO-Y4 cells were detected by virtue of GFP (green) while the actin 

cytoskeleton was detected by staining with rhodamine phalloidin (red). Cells expressing the Ser-Thr kinase domain 

(green cells) exhibit more branching of their cytoplasmic processes compared with non-transfected cells (not 

expressing GFP).    
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FIGURE 19.  Working model for the mechanism of action of Kalirin in osteocytes.  

In wild-type osteocytes, external stimuli such as nerve growth factor activates Kalirin. Activated Kalirin 

promotes RhoA-GTP binding, resulting in the reorganization of actin cytoskeleton and the elongation of 

the cytoplasmic processes in osteocytes. In addition, the Ser-Thr kinase of Kalirin potentially leads to the 

phosphorylation of ERK, which in turn may lead to OPG and SOST transcription. In the absence of 

Kalirin, changes in the length of osteocyte dendritic spines as well as decreased secretion of OPG and 

sclerostin may potentially regulate osteocyte communication, osteoclast differentiation and osteoblast 

activity, respectively.   
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Osteocytes are deeply embedded within the mineralized bone matrix, making their biology difficult to 

examine. As a result, much less is known about this cell type than osteoblasts, from which they are 

differentiated. In 2010, Kramer et al. reported that genetically modified mice lacking -catenin only in 

osteocytes (driven by the DMP1-Cre promoter), exhibited progressive bone loss, growth retardation and 

premature lethality. Cancellous bone mass was almost completely absent and cortical bone thickness was 

severely reduced 
136

. In other studies, it was shown that the cytoplasmic processes of osteocytes are very 

important for osteocyte viability and their ability to communicate with each other as well as osteoblasts 

and osteoclasts 
137

. In addition, osteocytic processes regulate the cell’s ability to respond to mechanical 

stimuli, fluid shear stress and changes in circulating levels of hormones, calcium or phosphate. However, 

a clear mechanistic understanding of the extension/retraction of the osteocyte cytoplasmic processes and 

their role in bone homeostasis is lacking.   

 

Most studies to date have focused on the role of the novel GEF protein, Kalirin, in brain tissue and 

neuronal plasticity. Kalirin-7 mRNA was the most abundant isoform found in neurons of the central 

nervous system 
58

. Kalirin-9 and Kalirin-12 were found to be highly expressed during embryonic 

development, with Kalirin-7 protein levels increasing in adult brain 
58

. In the current study, the influence 

of Kalirin on the function of osteocytes and the formation of cytoplasmic processes in osteocytes was 

examined. QPCR analysis of Kalirin isoforms in primary osteocytes and MLO-Y4 osteocytic cells 

revealed that Kalirin-9 mRNA was more abundant than Kalirin-12, followed by Kalirin-7 mRNA. On the 

other hand, Western blot analysis indicated that Kalirin-7 was more highly expressed than Kalirin-9 and 

Kalirin-12. However, the latter finding may be due to differences in the specificity of the polyclonal 

antibodies used in these studies. Alternatively, it is possible that the isoforms exhibit differences in 

mRNA or protein stability. Further study is needed to clarify the expression and functions of the three 

major Kalirin isoforms in osteocytes.          

 

To examine the effects of Kalirin on the number of osteocytes, basic fuchsin staining of mouse distal 

femurs was used, which revealed a similar numbers of osteocytes in Kal-KO and WT cortical bones. To 

quantify differences in osteocyte cytoplasmic extensions, primary osteocytes were isolated and examined 
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in vitro using phase-contrast and immunofluorescent microscopy. The morphology of osteoblasts and 

osteocytes was found to be distinctly different, especially with the appearance of cytoplasmic processes in 

osteocytes. Primary osteocytes from WT mice contained an average of 4.7±0.3 cytoplasmic extensions 

per cell, which were 85±3.6 µm in length. In contrast, the number (3.3±0.2) and length (79.5±4.6 m) of 

cytoplasmic extensions in primary osteocytes from Kal-KO mice were significantly reduced. In 2005, 

Holmbeck et al. used Bodian silver stain to directly observe the length and number of processes of 

osteocytes in bone pieces from tibia and femur of WT mice. Cytoplasmic processes were found to be 4-8 

µm in length, and 9-26 cytoplasmic processes per osteocyte were reported 
29

. In 2006, Beno et al. 

reported 40-100 cytoplasmic processes per osteocyte 
138

. Thus, the number of osteocyte cytoplasmic 

processes reported in bone sections appears to be significantly higher than the number of processes 

identified in our studies using primary osteocytes cultured in vitro. The discrepancy in these findings may 

be due to the fact that the length of cytoplasmic processes in bone may be constrained by the mineralized 

matrix and the established canaliculi network, and by the number of neighboring osteocytes or other bone 

cells. In vitro, however, these physical constraints may be eliminated or reduced allowing for lengthening 

of cytoplasmic processes. The number and length of cytoplasmic processes may also be affected by 

plating density. Indeed, collagenase digestion of bone yields a small number of osteocytes, which when 

cultured are physically isolated from other osteocytes. As osteocytes re-establish a communication 

network, the lengthening of individual cytoplasmic processes may be favored rather than altering the 

number of processes per cell. Immunofluorescent staining also revealed the perinuclear localization of 

Kalirin in primary osteocytes (Figure 9) and MLO-Y4 cells (Figure 10). Kalirin also colocalized with a 

subset of radially-directed actin filaments which extended outwards towards the plasma membrane. Taken 

together, our studies demonstrate that Kalirin plays a role in regulating both the length and number of 

cytoplasmic extensions in primary osteocytes. Future studies will examine the effect of cell density on the 

length and number of cytoplasmic processes in primary osteocytes from WT and Kal-KO mice. 

 

After serial collagenase digestion of bones to isolate primary osteocytes, deeply embedded osteocytes 

remaining in bones were examined for changes in mRNA expression.  Several genes specific for 

osteoblasts or osteocytes were examined from these bones.  mRNA for SOST, DMP1 and E11/gp38 were 
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all detected.  In contrast, the expression of KERA, which is the specific marker for osteoblasts not 

detected (data not shown). Therefore, mature osteocytes were the main cellular source or RNA present in 

these bones.  

 

To examine the role of Kalirin on osteocyte function, QPCR analysis of osteocyte genes was performed. 

Several osteocyte markers were examined including markers for early osteoid osteocytes (MEPE, PHEX 

and E11/gp38), mineralized osteocytes (Dmp1) and mature osteocytes (FGF23 and SOST) 
139

. E11/gp38 

is the earliest osteocyte-specific protein (osteoid osteocytes), which is expressed early during the 

transition of osteoblasts to osteocytes 
100

. Although no change in the level of E11/gp38 was detected in 

Kal-KO osteocytes, potentially indication a similar number of osteocytes were present in these bone 

preparations, a significant decrease in MEPE mRNA was observed in Kal-KO osteocytes, compared to 

WT cells, suggesting that Kalirin may play a role in the mineralizing activity of osteocytes. QPCR 

analysis also revealed a decrease in SOST mRNA levels, suggesting that sclerostin secretion by Kal-KO 

osteocytes may be decreased. Since sclerostin is involved in antagonizing Wnt signaling in osteoblasts, 

resulting in an increase in β-catenin degradation 
140,141

.  These findings suggest that osteocyte-osteoblast 

communication may be impaired in the absence of osteocytic Kalirin.  The decrease in sclerostin mRNA 

suggested that osteoblast activity may be enhanced.  Consistent with this finding, unpublished findings 

from this laboratory suggest that the differentiation of early osteoblasts is enhanced in Kal-KO 

osteoblasts.  However, Kal-KO osteoblasts also exhibit a decrease in the mineralizing activity of mature 

osteoblasts, which may contribute to the decrease in cortical bone mass observed in Kal-KO female mice 

(Huang et al. unpublished data).   

 

The estrogen receptors (ERs) are nuclear hormone receptors which can initiate or enhance gene 

transcription 
142

. Osteocytes in cortical bone strongly express ER-α while osteocytes in trabecular bone 

predominately express ER-β 
120

. Moreover, low levels of estrogen or defects in estrogen signaling leads to 

bone loss, in part by promoting osteoclast survival 
143

. QPCR analysis revealed a decrease in ER- and an 

increase in ER- in Kal-KO compared to WT osteocytes. The osteocyte preparations for this study 

consisted of pooled cells from cortical and trabecular bone. The decrease of ER- and increase in ER- 
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mRNA levels may therefore indicate that estrogen-signaling is disrupted in Kal-KO mice, potentially 

contributing to the reduced bone mass of female Kal-KO mice. Consistent with this speculation, 

osteoclast number was increased in femoral sections of Kal-KO mice (Huang et al., unpublished studies). 

Osteoclast differentiation is also controlled by the ratio of RANKL and OPG, which acts as a decoy 

receptor for RANKL. QPCR analysis revealed a decrease in OPG mRNA levels in Kal-KO osteocytes, 

which could lead to alterations in the RANKL/OPG ratio and further promote osteoclast differentiation.  

 

Osteocytes express a large amount of IGF-1, which acts as an osteogenic growth factor to promote bone 

formation by osteoblasts 
144

. IGF-1 mRNA is also upregulated in osteocytes in response to mechanical 

loading 
145

. In transgenic mice in which IGF-1 over-expression was targeted to osteoblasts using the 

osteocalcin promoter, an increase in bone mineral density and bone volume was observed 
146

.  In addition, 

an increase in osteocyte lacunae occupancy was observed, suggesting that IGF-I may extend osteocyte 

life span. In osteocytes from Kal-KO mice, a decrease in IGF-1 mRNA levels was observed by QPCR, 

suggesting that osteocyte life-span may be decreased in Kal-KO mice compared to WT osteocytes. Kal-

KO mice may also be less responsive to mechanical loading. However, the physiological consequence of 

reduced IGF-1 mRNA levels in Kal-KO osteocytes remains to be determined.   

 

Overall, QPCR analysis of osteocytes from WT and Kal-KO mice suggest defects in the function of 

osteocytes as well as their ability to regulate the activities of osteoblasts and osteoclasts.  However, at this 

time, we cannot exclude the possibility that sequential collagenase digestions from WT and Kal-KO 

bones (which are osteoporotic) did not lead to the isolation of a different subset of osteocytes from the 

different mice genotypes.  Future studies will include comparing the expression of osteocyte mRNA 

levels in collagenase and non-collagenase treated bones as well as from isolated osteocytes. 

                       

To study the mechanism of Kalirin’s effects on cytoplasmic elongation in osteocytes, the functional 

domains of Kalirin were introduced into MLO-Y4 cells by electroporation. The cytoplasmic processes of 

MLO-Y4 cells over-expressing the Ser-Thr kinase domain of Kalirin-12 were found to be longer and 

more branched than control cells. Furthermore, an increase in the expression of phosphorylated ERK was 
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observed in cells expressing the Ser-Thr kinase domain. Of interest, mechanical stimulation promotes the 

survival of osteocytes by activating ERK signaling 
147

. Moreover, Plotkin et al. reported that ERK 

signaling was not activated by mechanical loading in ER-α and ER-β knock-down osteocytes 
148

. Based 

on these findings, it is possible that Kalirin may be involved in promoting cytoplasmic spine elongation in 

osteocytes via an ER- and/or ERK-dependent pathway following mechanical stimulation.  

 

High extracellular KCl has been shown to promote the elongation of cytoplasmic processes in neurons, 

which is dependent on chloride channel activation 
88

. Chakrabarti et al. also reported that Kalirin bound to 

the NGF receptor TrkA in neurons and induced the extension of dendritic processes of neurons
87

.  

Therefore, we speculated that osteocyte dendritic processes might be regulated by NGF or KCL.  

Interestingly, the cytoplasmic processes of MLO-Y4 cells were found to be dose-dependently increased in 

the presence of NGF. KCl-treated MLO-Y4 cells also showed significant elongation of their cytoplasmic 

processes compared to control cells. Western blot analysis further revealed that NGF dose-dependently 

increased the protein levels of Kalirin-7, Kalirin-12 and RhoA in MLO-Y4 cells. Although KCl-treated 

cells exhibited elongated cytoplasmic processes, the expression of Kalirin-7, Kalirin-12 and RhoA were 

lower than in the NGF-treated cells, suggesting that KCl promoted the elongation of cytoplasmic 

processes via a different intracellular mechanism than NGF. Furthermore, the ability of NGF to promote 

cytoplasmic process elongation appeared to involve Kalirin and RhoA, which is a known Kalirin GEF 

target.   Future studies will focus on understanding the mechanism of action of NGF and KCL on 

dendritic spine elongation in osteocytes, and on identifying the NGF receptors expressed in osteocytes, 

which currently remain unknown. 
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Osteocytes are deeply embedded within the mineralized matrix, and play an essential role in the 

regulation of bone mass via cellular communication with osteoclasts and osteoblasts. Kalirin was found to 

be expressed in osteoclasts and osteoblasts and global deletion of Kalirin leads to a loss of trabecular and 

cortical bone mass. We examined the role of Kalirin on the morphology and function of osteocytes.  

Quantitative PCR (QPCR) and Western blotting revealed the expression of the three major Kalirin 

isoforms (Kal-7, Kal-9, Kal-12) in osteocytes, while immunofluorescent staining revealed Kalirin was 

localized to the perinuclear region and the cytoplasmic processes of osteocytes.  In the absence of Kalirin, 

the number and length of cytoplasmic processes were significantly reduced in osteocytes, suggesting 

Kalirin regulates cytoskeletal remodeling. Moreover, the mRNA levels of osteoprotegerin and SOST, 

which are important for controlling osteoclast differentiation and Wnt signaling leading to bone formation 

by osteoblasts, respectively, were reduced in Kal-KO osteocytes. Finally, MLO-Y4 cells treated with 

NGF, which is known to activate Kalirin in neurons, or over-expressing the Ser-Thr kinase domain of 

Kal-12, promoted cytoplasmic process elongation and upregulated phosphorylated ERK and RhoA levels.   

 

Overall, these results suggest that Kalirin controls osteocyte morphology and function in part by 

regulating cytoskeletal remodeling and the activity of ERK and RhoA. Kalirin is also involved in 

intercellular signaling via sclerostin and OPG to regulate both osteoblast function and osteoclast 

differentiation, respectively. Furthermore, Kalirin may regulate the bone remodeling process in vivo 

through direct and indirect effects on the function of osteoclasts, osteoblasts and osteocytes. 
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KALIRIN: NOVEL ROLE IN OSTEOCYTE FUNCTION 

K. Wayakanon*, S. Huang, P. Eleniste, M. Allen and A. Bruzzaniti 

Indiana University School of Dentistry, Indianapolis, IN 

Communication between bone cells is important for the maintenance of bone mass.  Although osteocytes 

are deeply embedded within the mineralized matrix, they are essential for the regulation of osteoblast and 

osteoclast functions. However, the intracellular proteins that control the morphology and function of 

osteocytes, and their ability to communicate with other bone cells are still unknown. Kalirin is a novel 

multi-domain GTP exchange factor (GEF) protein that activates the RhoGTPases. Recently, we found 

that 14 week old female Kalirin knockout (Kal-KO) mice exhibit a 45% decrease in trabecular bone 

density and have significantly lower cortical area, perimeter, thickness and polar cross-sectional moment 

of inertia (-12.6%, -7.2%, -7.6% and -21.9%, respectively) than WT mice. Kalirin was found to be 

expressed in osteoclasts and osteoblasts but its expression and function in osteocytes is currently unclear. 

We examined the role of Kalirin on the morphology and function of osteocytes. Primary osteocytes were 

isolated by sequential collagenase digestions from long bones (femurs and tibias) of 10-week old WT and 

Kal-KO mice. Immunofluorescent staining revealed Kalirin was localized to the perinuclear region of 

primary osteocytes and MLO-Y4 cells, and was detected along the cytoplasmic processes of primary 

osteocytes. We also examined primary osteocytes isolated from the long bones of Kal-KO and WT mice 

for changes in the length and number of cytoplasmic processes. Kal-KO osteocytes were found to express 

significantly fewer cytoplasmic processes per cell (3.3±0.21) than WT osteocytes (4.7±0.3). In addition, 

the cytoplasmic processes of Kal-KO osteocytes were shorter (79.5±4.6 µm) than those observed for WT 

osteocytes (85.4±3.6 µm) (p <0.01). Quantitative PCR revealed the expression of mRNA for the three 

major Kalirin isoforms (Kal-7, Kal-9, Kal-12) in primary osteocytes and in MLO-Y4 cells.  Moreover, the 

mRNA levels of osteoprotegerin (OPG) and SOST, which are important for controlling osteoclast 

differentiation and Wnt signaling leading to bone formation, respectively, were reduced in Kal-KO 

osteocytes. Next, the role of Kalirin in osteocyte morphology and function was further examined. 

Treatment of MLO-Y4 cells for 5 days with nerve growth factor, which is known to activate Kalirin in 

neurons, or over-expression of the Ser-Thr kinase domain of Kal-12, promoted cytoplasmic process 

elongation and upregulated phosphorylated ERK and RhoA levels. Together, these results suggest that 

Kalirin controls osteocyte morphology and function in part by regulating cytoskeletal remodeling and the 

activity of ERK and RhoA. Furthermore, Kalirin may control the bone remodeling cycle by regulating 

osteocyte signaling to osteoclasts and osteoblasts. 

 



76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CURRICULUM VITAE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



77 

 
Kornchanok Wayakanon, DDS., Ph.D. 

 

1997-2003 Chulalongkorn University, Bangkok, Thailand     

  Degree: Doctor of Dental Surgery (DDS.) 

Research project: Comparison between Penetrating Abilities of Sealant and Depth   

                            of Pits and Fissures 

2007-2011 Department of Oral and Maxillofacial Surgery, School of Clinical Dentistry,  

University of Sheffield, Sheffield, United Kingdom  

Degree: Doctor of Philosophy (Ph.D.)                                                    

Research project: Intracellular antibiotic therapy using polymer nano-vesicles for  

                            Porphyromonas gingivalis infected keratinocytes  

2011-present Department of Restorative Dentistry, School of Dentistry, Indiana University, 

Indianapolis, Indiana, USA  

Degree: Master of Science in Dentistry (MSD)                                                   

 Research project: Kalirin: Novel Role in Osteocyte Function 

 

Professional and Scientific experience: 

 2000: Clinical research project championship award, Chulalongkorn University, Thailand 

 2003-present: Full-time faculty member, Department of Restorative Dentistry, Faculty of Dentistry, 

Naresuan University, Thailand 

● 2008: Awarded grant “Oral and Dental Research Trust”, United Kingdom 

● 2009: Oral competition in British Society Dental Research (BSDR), Glasgow, United Kingdom 

● 2010: Oral presentation in International Association for Dental Research (IADR), Barcelona, Spain 

● 2010: Oral presentation in International Association of Science and Technology for Development 

(IASTED), Cambridge, Massachusetts, USA 

 2010: Awarded 2
nd

 place Medicine category , Anglo Thai Society, London, United Kingdom 

 2013: Poster presentation in International Association for Dental Research (IADR), Seattle, 

Washington, USA 

 2013: Poster competition in Research day, Indiana section of the AADR (INAADR), Indiana 

University School of Dentistry, Indiana, USA 

 2013: Awarded Delta Dental Award for Innovation in Oral Care Research, Indiana University School 

of Dentistry, Indiana, USA 

 2013: President’s Poster Award Competition in the American Society for Bone and Mineral Research 

(ASBMR) in Baltimore, Maryland, USA 

 

 

 


