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INTRODUCTION 

 

Polymerization Shrinkage Stress 

 Investigation of dimethacrylate-based resin composites, their polymerization, and 

the resulting shrinkage stresses is hardly a contemporary discipline.  In 1967, the work of 

Dr. Rafael L. Bowen introduced the phenomenon of “hardening shrinkage” of those 

composite materials bonded to solid tooth structure of a cavity wall 1.  Through his 

continued work and that of his colleagues, the early 1980s was marked by a surge of 

interest in the area of polymerization shrinkage stress and its reduction, most notably by 

Davidson, De Gee, and Feilzer 2-5.  Nearly fifty years later, polymerization shrinkage 

stress remains a compromising factor in the success of photopolymerized, 

dimethacrylate-based dental composites.           

Photopolymerization of a dental resin composite is the chemical reaction that 

transforms small molecules into large polymer chains or networks; it is a complex and 

fast reaction transforming a viscous-plastic into a rigid-elastic phase 6.  Photoinitiators are 

activated by a light source, and converted to an excited state in which they are able to 

react with a coinitiator to form free radicals.  These free radicals in turn react with 

monomer molecules to create an active center and the polymerization process propagates.  

The polymer chain grows by rapid, sequential addition of monomer to the active centers 

through covalent bonds until the maximum conversion of carbon-carbon double bonds 

into carbon-carbon single bonds is achieved 7,8.  Conversion of the monomer molecules 

into a polymer network is associated with closer packing of the molecules resulting from 

the reduction of the intermolecular distance between monomeric units.  Prior to 

polymerization, monomer molecules are at intermolecular distances of 3-4 Å, but after 
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polymerization distance between the polymer units is only 1.5 Å 9-11.  This reduction of 

intermolecular distances leads to a bulk volumetric contraction of the resin composite 

typically in the order of 1-5% 8,12,13.   

Polymerization shrinkage stress is the product of this volumetric contraction 

taking place under confinement, due to bonding of the resin composite to the cavity walls 

14,15.  The stresses result from the rigid nature of the reinforced cross-linked polymer 

network formed during the course of the polymerization reaction 8.  These stresses, 

however, challenge the integrity of the resin’s bond to tooth structure. 

If the polymerization shrinkage stress exceeds either the adhesive or cohesive 

strength of the system, micro- or macro- defects can result 16.  In areas where the 

shrinkage forces exceed the bonding strength at the interface, a gap will develop, 

resulting in the incomplete sealing of the tooth-restoration interface and increasing the 

possibility of post-operative sensitivity and pain, marginal staining, bacterial 

microleakage, and recurring caries 17-22.  Should this interface be preserved, however, the 

contraction forces can be transferred to neighboring dental structures leading to cuspal 

deflection or cracks in the enamel 7,11,23,24.  A well-preserved interfacial bond between the 

resin composite and tooth structure as well as maintenance of the surrounding dental 

structure is of vital importance to the success of a composite restoration 19.  Efforts to 

reduce polymerization shrinkage stress and thereby enhance the clinical performance of 

composite restorations have taken one of two approaches: modification of the material or 

modification of the curing scheme.  
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Materials Approach to Reducing Shrinkage Stress 

 The inclusion of nanofillers (fibers and spheres) in modern dental resin 

composites provides a large surface area to volume ratio, increasing the possibility of 

surface reaction between filler and polymerizing monomer and thereby increasing the 

potential for stress through constraint of molecule mobility during polymerization 8.  One 

potential solution to relieve polymerization shrinkage stress would be the inclusion of 

non-surface treated silica nanofillers and polyethylene spheres, or those treated with a 

non-functional silane coupling agent.  Such fillers would minimize the interaction 

between the developing polymer and the filler surface 8,18.  Non-bonded micro- and nano-

fillers have also been introduced to achieve controlled pore structure, as microscopic 

porosity in the resin composite prior to polymerization results in reduced polymerization 

shrinkage and stress development as a result of the formation of enlarged voids in the 

polymer 16.  Incorporation of ultrahigh molecular weight polyethylene fibers, whose 

intrinsic properties allow for plastic deformation as polymerization shrinkage stress 

develops, could also reduce the overall contraction stress of the system 7.    

The typical dimethacylate monomers used in modern dental composites can also 

be replaced with alternative monomers.  New silorane and oxirane (cycloalipathic epoxy 

resin) chemistries provide for a reduction in shrinkage stress while maintaining 

comparable properties to methacrylate based resin composites of similar cross-link 

density 8,16,18.  Instead of free radical polymerization of the dimethacrylate monomers, 

siloranes are dependent upon ring opening polymerization of the silorane molecules.  

These monomers open their molecular structures with local volumetric expansion, which 

compensates for the volumetric shrinkage from carbon-carbon double bonds 7.  Ordered 
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liquid crystalline monomers yielding amorphous polymers have also been developed 16.  

Development of low-shrinkage monomers and novel filler-monomer systems that match 

clinically important properties of current dimethacrylate based resins however, is a 

challenging task.        

 

Curing Protocol Approach to Reducing Shrinkage Stress 

Several modifications to the curing scheme have been investigated in the 

literature.  These “soft-start” methods are the two-step, pulse-delay, and ramped curing 

modes.  In the two-step method, an initial exposure of reduced intensity is applied for a 

short period of time and then immediately followed by an exposure of higher intensity for 

the final cure of the resin composite 7,15,21,25,26.  The pulse-delay method also involves an 

initial application of lower intensity exposure followed by a final cure at a higher 

intensity, but there is a waiting or dark period without irradiance between these two 

applications 7,15,21,25,26.  In the ramped curing mode, irradiance is gradually increased over 

the course of the exposure stepwise, linearly, or exponentially 21,26.   

Theoretically, polymers cured at slower rates allow more time for viscous flow 

and polymer chain relaxation prior to reaching the gel point 8,9,17,27.  This slower rate 

delays the onset of polymerization shrinkage stress, extending the pre-gel phase where 

shrinkage forces can be dissipated before polymer cross-linking reaches an advanced 

stage of vitrification, after which compensation of the stress is severely hindered 12-14,26-29.  

Therefore, the greater proportion of the total volumetric shrinkage occurring while the 

resin composite remains in a non-rigid state leaves a smaller fraction of the shrinkage 

available to contribute to stress development 18.  Soft-start modes of polymerization with 
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initial light exposures at lower irradiance levels could lead to the formation of fewer 

polymer growth centers, slow the reaction rate, delay and decrease stress development, 

and thereby reduce damage at the adhesive interface 7,11,23.  There are mixed reviews in 

the literature, however, on the success of these methods to reduce shrinkage stress and 

their ability to do so without negatively impacting the degree of conversion and 

mechanical properties of the restoration.  

For as many studies which conclude that a significant reduction in shrinkage 

stress using soft-start polymerization occurs at no expense to the degree of conversion 

and mechanical properties, there are those having observed a significant decrease in final 

conversion 15,17,22.  It has also been demonstrated that a soft-start polymerization provides 

no additional advantages in the reduction of polymerization shrinkage stress 9.  With 

specific regards to the pulse-delay method, in order for adequate shrinkage stress 

relaxation to be achieved, a clinically impractical relaxation time between the two 

irradiances is necessary 11,15,19.  Concerns have also been raised with respect to the 

integrity of the final polymer structure.  Despite equivalent degrees of conversion, it is 

possible that the soft-start methods will lead to different polymer structures.  Fewer 

centers of polymer growth may result in a more linear polymer structure with relatively 

few crosslinks and therefore more likely to be influenced by softening substances of food 

or by enzymatic attack 25.  A more linear polymer structure could also result in an 

increased release of residual free monomer, compromising the health of surrounding oral 

tissues.  The effectiveness of different soft-start protocols may also be influenced by 

material composition; thereby making the development of a universal protocol producing 
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a significant reduction of shrinkage stress for the majority of commercial composites a 

challenging task.  Such a challenge requires an innovative approach. 

 

Photopolymerization Through Single Apertures 

The soft-start methods of polymerization combine low intensity light with 

exposures of high intensity light, in efforts to cure resin composites with reduced 

polymerization shrinkage stress.  When using these methods, the gel point of the overall 

polymer structure, while delayed, occurs at once.  According to the Carothers theory of 

gelation, polymers have the ability to form infinite networks (the gel point) at relatively 

low levels of conversion 30.  Remaining unreacted functional groups of the polymer 

structure are able to contribute to the shrinkage stress of the resin composite as final 

stages of polymerization commence.  By the Carothers theory, approximately 50% or 

more of the functional groups remain unreacted at the gel point.  If we can polymerize the 

polymer network to a higher degree of conversion prior to the gelation of the overall 

structure, we can potentially further reduce the polymerization shrinkage stress.  It is our 

prediction that this is possible through the use of a point light source.    

By photo-curing through a single aperture mask, a dental light curing unit is 

transformed from a planar light source to a point light source.  A fully cured, three-

dimensional bullet shaped curing front is predicted for the resin beneath the aperture.  

The surface profile, its curing front, defines the most exterior surface where the polymer 

network can gel and form an insoluble cross-linked structure.  The bullet can be cured to 

a final degree of conversion and will generate shrinkage stress within itself, but so long as 

the edges and curing front do not touch the cavity walls or floor, the shrinkage stress of 
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the bullet is not transferred across the restoration; the bullet’s shrinkage stress is able to 

relax within the uncured polymer network (Figure 1).  The source of polymerization 

shrinkage stress for the overall polymer structure is the uncured resin separating the 

bullet from the cavity walls and floor.  This phenomenon has significant implications as a 

potentially novel method for reducing the polymerization shrinkage stress of dental resin 

composites.   

 We propose that conversion of the overall polymer structure can be maximized, 

while the volume of uncured polymer sufficient to isolate the bullet minimized.  By 

reducing the volume of uncured composite in contact with the cavity walls and floor, 

shrinkage stress of the restoration is also reduced.  Follow-up with a planar light source, 

an unmasked light curing unit, fully polymerizes the restoration.  To quantitatively 

describe the curing front and predict the size of the three-dimensional bullet, we utilize 

mathematical modeling.    

 

Mathematical Models in the Literature 

Several models have been proposed to describe the relationship between the depth 

of cure and exposure, and between the depth of cure and curing time of 

photopolymerized dental resin composites 31-40.  Using infrared spectroscopy to 

determine monomer conversion, Rueggeberg et al., studied the significance of time, 

intensity, filler type, and shade on the polymerization of resin composites 34.  Their 

experimental results generated a predictive mathematical model for the extent of resin 

composite polymerization.  Standardizing variables such as light source, filler type, and 

filler surface treatment, Emami et al. investigated the potential prediction of light 
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absorption in photopolymerized resin composites with respect to Beer-Lambert’s law 36.  

Despite its complexity, their mathematical model allowed them to determine how such 

variables affect light attenuation and revealed significant differences in adsorption values 

for different materials.  Chen et al. utilized a Monte Carlo model to simulate photon 

migration within resin composite materials to predict absorbed radiant exposure 

distribution, and thereby determine the light-curing efficiency for a photopolymerized 

system 37.  Their overlying goal was to develop a simple model based on reciprocity of 

irradiance and exposure time which accurately predicts the depth of cure for any resin 

composite.  The relationships and models presented by these works, however, only 

describe the curing behavior underneath the surface of an uncured composite 

polymerized by a planar light source, a dental light curing unit.    

In 1992, Jacobs proposed a simple mathematical model describing the depth of 

cure and curing energy in unfilled photopolymers cured with a linear light source 41.  

Jacobs’ model describes a linear relationship between the depth of cure of a composite 

resin and the natural logarithm of the energy applied to the surface of the resin.  

Specifically: 

𝐶𝑑 =  𝐷𝑝 ln �
𝐸
𝐸𝑐
� 

where Cd is the cure depth of the composite resin, E is the energy applied to the surface of 

the resin, Ec is the critical energy required to reach gel point, and Dp is the characteristic 

penetration depth where the energy is reduced to 1/e of E.  Several years later, Chu et al. 

demonstrated that this relationship also held for particle-filled polymer slurries 42.  When 

a liner light source is used, a laser beam traveling across the surface of the resin 

composite for example, a two-dimensional curing front develops underneath the 
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composite taking a parabolic shape 41.  A similar phenomenon was demonstrated by Chen 

et al., as the two-dimensional cross section of radiant exposure underneath the surface 

revealed a hemi-elliptical curing front 37.  From these models, it can be predicted that 

when a point light source is used, a three-dimensional bullet-shaped curing front will 

develop underneath the surface of a resin composite.        

 

Specific Aims 

The overall objective of this study was to investigate the curing phenomenon 

under a single point light source and its effects on the polymerization of a model resin 

composite.  To accomplish this, the specific aims were: 

1. To demonstrate and mathematically model the curing phenomenon of a 

model resin composite polymerized under a point light source. 

2. To evaluate the effect of point light source polymerization on the degree 

of conversion of a model resin composite. 

3. To evaluate the effect of point light source polymerization on the Knoop 

hardness of a model resin composite. 

4. To evaluate the effect of point light source polymerization on the 

polymerization shrinkage stress of a model resin composite.   

The null hypothesis of this study was that point light source polymerization would 

not significantly increase the degree of conversion and Knoop hardness, nor significantly 

decrease the polymerization shrinkage stress of a model resin composite. 
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EXPERIMENTAL PROCEDURES 

 

Materials 

Model Resin Composite 

Chemical Composition and Ratios 

 A 1:1:1 weight ratio mixture of bisphenol A-glycidyl methacrylate (Bis-GMA), 

urethane dimethacrylate (UDMA), and triethylene glycol dimethacrylate (TEGDMA) 

(Esstech, Inc., Essington, PA) served as the neat resin base for the methacrylate based 

model resin composite (MRC).  The addition of camphorquinone (CQ) (Esstech, Inc.), 

dimethylaminoethyl methacrylate (DMAEMA), and butylhydroxytoluene (BHT) (Sigma-

Aldrich, St. Louis, MO) in weight percentages of 0.5%, 0.25%, and 0.5%, respectively, 

completed the matrix phase.  The filler was a 30% BaO, silanated, barium borosilicate 

dental glass (BBAS) (Esstech, Inc.) having a mean particle size of 0.7 µm (Table 1). 

Composition of the final MRC was 30% matrix phase and 70% BBAS filler by 

weight.   

Preparation 

 A 50:50 Bis-GMA:TEGDMA stock solution was received from Esstech, Inc.  

This solution was mixed with UDMA in a wide-mouth jar under continuous stirring to 

make a 1:1:1 ratio neat resin.  To ensure homogeneity, this was left to mix on a magnetic 

stir plate set at a medium-low speed.  After 24 hours of continuous stirring, the neat resin 

was placed under vacuum for 24 hours to extract any air bubbles and stored at 5° C until 

desired use.  The monomers were used as received without purification.  

10 
 



 

 Under dark conditions, CQ, BHT, and DMAEMA were mixed with a metal 

spatula in a wide-mouth amber jar until the CQ and BHT were completely dissolved in 

the DMAEMA.  After dissolution, the neat resin was added from the stock directly to the 

amber jar.  This matrix phase was left to stir under dark conditions on a magnetic stir 

plate set at a medium-low speed to ensure homogeneity.  After 24 hours of continuous 

stirring, the matrix phase was placed under vacuum for 24 hours to extract any air 

bubbles. 

BBAS filler was incorporated by hand into the matrix phase.  After thorough 

mixing, the finished MRC was placed under vacuum for 24 hours to extract any air 

bubbles which may have resulted from the manual mixing.  During the course of the 

study, the MRC was stored at 5° C. 

 

Single Aperture Masks and the Light Curing Unit 

Fabrication of the Masks 

 Single aperture masks (SAMs) were fabricated by first cutting 0.4 mm thick disks 

from machined aluminum rod (ø=13 mm) using an Isomet 1000 Precision Saw (Buehler, 

Lake Bluff, IL).  Next, a single aperture was created in the center by drilling through the 

disk with a standard drill bit.  After drilling, the masks were lightly finished on both sides 

with wet 600 grit SiC paper.  For the purposes of this study, three aperture diameters 

were selected: 0.5 mm, 0.4 mm, and 0.25 mm (Table 2, Figure 2).     

Selection and Characterization of the Light Curing Unit 

Based on previous pilot work, the QHL75 light curing unit (Dentsply, York, PA) 

with an 8 mm diameter curing tip was selected for the study.  Spectral characteristics 
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(average irradiance and spectral range) of this halogen light curing unit were determined 

using a MARC® Resin Calibrator (BlueLight Analytics, Inc., Halifax, NS, Canada).  The 

MARC® Resin Calibrator incorporates a laboratory grade UV-VIS spectrometer and two 

(top and bottom) laboratory grade cosine corrected sensors.  Light captured by the 

sensors is transmitted to the spectrometer through a bifurcated fiber optic cable, after 

which dedicated software provides real-time irradiance data display.      

Spectral characteristics were collected by placing the curing tip flush against the 

surface of the top cosine corrected sensor.  Setting the MARC® Resin Calibrator to 

monitor the QHL75 for 60 s, irradiance was continuously measured for 60 s and an 

average irradiance calculated.  The light’s spectral range was also measured and 

displayed graphically.  Irradiance and spectral range were monitored for five trials 

(Figure 3).  The average irradiance for the QHL75 light curing unit was determined to be 

748 mW/cm2.   

 

Methods: Curing Profile Under a Point Light Source 

Demonstration of the Curing Phenomenon Under a Point Light Source 

Specimen Preparation and Exposure of the Curing Front 

 Under dark conditions, a clean glass slab was placed on sheet of brown bench 

paper.  Next, a Delrin® mold (h=5 mm, ID=6 mm) was placed on the clean glass slab and 

slightly overfilled with the MRC.  A 1 mm thick glass microscope slide was then placed 

over the resin filled mold and sufficient pressure applied (100 g balance calibration 

weight, 20 s) to remove excess material and prevent entrapment of air bubbles.  Next, a 

SAM was placed over the glass slide and positioned such that the aperture of the mask 
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aligned with the center of the resin filled mold (Figure 4).  The specimen was cured, after 

which the SAM was removed.   

 Following removal of the SAM, the resin filled mold and glass slide were gently 

separated from the lower glass slab and laid to rest (glass slide facing down) on the lab 

bench.  To expose the curing front, alternating applications of a gentle acetone wash and 

compressed air were applied until only cured resin remained within the mold.  The 

Delrin® mold was removed from the glass slab with a sharp scalpel, and a final 

application of acetone wash and compressed air applied to the cured resin before being 

placed overnight in a desiccator (Figure 5).          

   For each of the three SAMs, curing times of 10, 20, 30, and 40 s were 

investigated.  Five specimens for each SAM-cure time combination were fabricated.   

Measurement of Select Bullet Dimensions 

 Based upon the dome-shaped, bullet-like appearance of the cured resin profiles 

the dimensions of width (diameter) and cure depth (height) were measured.    

 To measure bullet width, a specimen was secured (flat side down) to a glass 

microscope slide with double-sided tape.  The slide was placed on the stage of a UM-2 

Measurescope (Nikon Metrology, Inc., Brighton, MI), and the diameter of the bullet 

measured with a ND1200 Quadra-Check digital readout system (Heidenhain, 

Schaumburg, IL) (Figure 6).  The bullet was rotated 120° and a second measurement 

taken.  A third measurement was made in the same manner and an average width 

calculated.    

To measure cure depth, a glass microscope slide was secured to a Teflon® block.  

A specimen was secured (flat side down) to the glass slide with double-sided tape, and 
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the Teflon®-slide-bullet assembly placed on the stage of the measurescope.  The 

Teflon®-slide-bullet assembly was rotated 90° on its side such that when looking through 

the eyepiece, the bullet’s dome-shaped profile was in the field of view.  The cure depth of 

the bullet was measured with the digital readout system, the bullet rotated 120°, and a 

second measurement taken.  A third measurement was made in the same manner and an 

average cure depth calculated.    

Imaging the 3D Bullets 

 To evaluate the curing phenomenon qualitatively, side profiles of the bullets were 

photographed.  Utilizing the camera feature of the PG-2 PocketGoniometer (Testing 

Machines, Inc., New Castle, DE), each bullet was centrally placed on the stage of the 

goniometer and an image of the semi-circular side profile captured (Figure 7).  One 

picture of each specimen was taken. 

 

Theoretical Modeling of the Curing Phenomenon Under a Point Light Source 

Modeling the 2D Curing Front Profile 

As previously mentioned, the curing front profile of the bullets was dome-shaped.  

Based on this observation, an ellipsoid dome was selected to model the 2D curing fronts.  

A horizontal ellipse whose major axis and minor axis coincide with the axes of the 

Cartesian coordinate system is mathematically defined as follows: 

𝑥2

𝑎2
 +  

𝑦2

𝑏2
 = 1 

Where the semi-major axis of the ellipse (equal to one half of the diameter) is a, and b is 

the semi-minor axis (equal to the height).  For the cured resin bullets, a is equal to one 

half of the mean width and b is the mean cure depth.  Rearranging this equation into “y -
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equals form”, yields: 

𝑦 = �𝑏2 −
𝑏2𝑥2

𝑎2
 

In the case of an ellipsoid dome, the x and y values are limited by the conditions of: 

−𝑎 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏 

    To model the 2D curing front profiles, for each SAM-cure time combination the 

corresponding values of a and b were substituted into the rearranged equation for an 

ellipse.  Using this SAM-cure time specific equation, values of x at the extremes and 

within the limiting conditions stated above were substituted into the equation in refined 

increments of 0.1mm to solve for y.  The resulting x,y coordinate pairs were then plotted 

in Microsoft® Excel 2010 as an x-y scatter plot.         

Prediction Modeling of the 2D Curing Front Profile  

 Although the ellipsoid dome approach does characterize the curing front profile of 

the cured resin bullets, it is dependent upon the measured a and b values of a specimen 

for a given SAM-cure time combination.  Such methodology is impractical for the 

investigation of a wide range of curing times, and therefore unsuccessful in providing a 

more comprehensive model of the curing front profile.  In an effort to correct this 

deficiency, a prediction model of the curing front profile was evaluated. 

 Jacobs’ derivation of the relationship between cure depth and energy describes a 

linear relationship between the depth of cure of a composite resin and the natural 

logarithm of the energy applied to the surface of the resin.  Specifically: 

𝐶𝑑 =  𝐷𝑝 ln �
𝐸
𝐸𝑐
� 
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where Cd is the cure depth of the composite resin, E is the energy applied to the surface of 

the resin, Ec is the critical energy required to reach gel point, and Dp is the characteristic 

penetration depth where the energy is reduced to 1/e of E.  Recognizing Cd as b from our 

ellipsoid dome model, a simple substitution approach was taken for the derivation of the 

prediction model. 

 To account for a, the parameter Cw was identified as the width counterpart of Cd 

to describe the lateral spreading of the composite resin.  As such, Cw was defined as: 

𝐶𝑤 =  𝐷𝑝 ′ ln �
𝐸
𝐸𝑐′

� 

where Dp′ and Ec′ are the lateral cure distance and critical energy specific to the width of 

the cured resin bullet.  Since a represents the radius of the bullet, ½ of Cw is its 

equivalent.              

 Substituting Cd and ½ Cw into the “y-equals” form of our ellipsoid dome formula, 

the resulting prediction model for the curing front profile is: 

𝑦 =  ��𝐷𝑝 ln �
𝐸
𝐸𝑐
��
2  

−
�𝐷𝑝 ln �𝐸𝐸𝑐

��
2  
𝑥2

1
2 �𝐷𝑝 ′ ln �

𝐸
𝐸𝑐′

��
2    

With the limiting conditions of: 

−1
2
�𝐷𝑝 ′ ln �

𝐸
𝐸𝑐′
�� ≤ 𝑥 ≤ 1

2
�𝐷𝑝 ′ ln �

𝐸
𝐸𝑐′
��  

and 

 0 ≤ 𝑦 ≤ 𝐷𝑝 ln �𝐸
𝐸𝑐
� 

The values of Dp, Ec, Dp′, and Ec′ were calculated from non-linear regressions of 

the bullet width and bullet cure depth v energy (logarithmic scale) data for each SAM.  
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To evaluate the prediction model of the curing front, an x-y scatter plot was constructed 

in Microsoft® Excel 2010 for each SAM-cure time combination in an identical manner to 

the previously described method. 

 

Methods: Effect of a Point Light Source on Polymerization 

Definition of Curing Protocols and Identification of Experimental Groups 

Curing Protocols 

For all experimental procedures, a 60 second curing time without a SAM served 

as the control group. 

The standard mode of polymerization was defined by a total curing time of 60 s, 

whereby an initial cure with a SAM was immediately followed with curing without the 

SAM: 

Total Curing Time (60 s) = Initial Cure w/ SAM + Follow-Up Cure w/o SAM 

In this mode of polymerization, total energy applied to the top surface of a specimen 

varied among experimental groups, but the total curing time remained the same. 

The plus mode of polymerization was defined by an initial cure with a SAM 

immediately followed by 60 s of curing without the SAM: 

Total Curing Time (+60 s) = Initial Cure w/ SAM + Follow-Up Cure w/o SAM (60 s) 

In this mode of polymerization, the total energy applied to the top surface of a specimen 

was held relatively constant (equal to the curing energy of the initial cure plus the energy 

applied to the top surface during the follow-up cure).  This was done to ensure sufficient 

curing. 
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Experimental Groups 

 SAM-cure time combinations for the initial cure component of the experimental 

groups were limited by the polymerization shrinkage stress testing configuration’s height 

component (methodology to follow).  To ensure that the outer edges of the resin bullets 

did not touch the quartz rods, only those SAM-cure time combinations yielding a bullet 

diameter less than 3 mm were investigated.   

 

The Effect of a Point Light Source on the Degree of Conversion 

Background 

In this infrared spectroscopic technique, the degree of conversion (DC) of a resin 

composite is measured with a Fourier transform infrared spectrometer (FTIR) in 

attenuated total reflection (ATR) mode (FT/IR-4100, JASCO Analytical Instruments, 

Easton, MD) (Figure 8).  The degree of conversion is calculated utilizing the mid-IR 

range peaks of 1608 cm-1 and 1638 cm-1 (Figure 9).  The area under the peak at 1638 cm-1 

(P1) represents the vinyl C=C groups of the resin composite, while the area under the 

peak at 1608 cm-1 (P2) represents the aromatic C=C and serves as the internal standard.  

DC is calculated directly from an intensity decrease at 1638 cm-1 using the following 

equation: 

DC = �1 − �
𝑐𝑢𝑟𝑒𝑑 �𝑃1

𝑃2�

𝑢𝑛𝑐𝑢𝑟𝑒𝑑 �𝑃1
𝑃2�

�� × 100% 

Specimen Fabrication 

Under dark conditions, a clean glass slab was placed on sheet of brown bench 

paper.  Next, the glass slab was lined with Mylar®.  A clear plastic tube (h=6 mm, 
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ID=6.35 mm) was placed on the Mylar® lined, clean glass slab and slightly overfilled 

with the MRC.  A Mylar® square was then placed over the resin filled mold, followed by 

a 1 mm thick glass microscope slide.  Sufficient pressure was applied (100 g balance 

calibration weight, 20 s) to remove excess material and prevent entrapment of air 

bubbles.  The glass slide was removed and a SAM placed over the Mylar® square, 

positioned such that the aperture of the mask aligned with the center of the resin filled 

mold.  The specimen was then polymerized according to the curing protocol of its 

respective group.  Five specimens for each group were fabricated. 

  After polymerization, the top and bottom surfaces of a specimen were polished 

with wet 600 grit SiC paper before 0.4 mm “thin” slices were sectioned from the top and 

bottom of the specimen with an Isomet 1000 Precision Saw.  Each top-bottom pair of 

“thin” slices was ultrasonically cleaned for 6 minutes in Type I DI H2O, blotted dry with 

a Kimwipe™, and further dried with compressed air.   

Measurement of the Degree of Conversion 

For the uncured MRC, a small quantity of the MRC was placed directly on the 

spectrometer’s ZnSe crystal (ø =1.8 mm) under dark conditions (Figure 8).  Spectra were 

collected in absorbance mode between wavenumbers of 1500 cm-1 and 1700 cm-1, from 

64 coadded scans at a wavenumber resolution of 4 cm-1.  Three scans of the uncured 

MRC were performed.  

For the cured MRC, a “thin” slice was placed directly on the spectrometer’s ZnSe 

crystal sample holder with the surface of interest facing the crystal (upper surface of the 

top “thin” slice and lower surface of the bottom “thin” slice).  Spectra were collected in 
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the same manner as for the uncured MRC.  Three scans from different areas of the 

surface (left, center, and right) for each slice were performed. 

     Each spectrum was processed with smoothing and baseline correction. 

 

The Effect of a Point Light Source on the Knoop Hardness 

Background 

 A micro-hardness test, Knoop hardness is a measure of a material’s ability to be 

plastically deformed by indentation; a higher Knoop hardness number (KHN) reflects a 

harder material.  A pyramidal diamond indenter is applied to the flat, polished surface of 

a test material for a specified dwell time with a known force, and the resulting indentation 

is measured using a microscope.  The KHN is the ratio of the applied load to the area of 

the resulting indentation using the following equation: 

KHN =  
𝑃

CpL2
 

where P is the applied load (kgf), Cp is a constant relating L to the projected area of the 

indentation, and L is the length of the indentation along its long axis (mm).  The units for 

KHN are kg/mm2.    

Specimen Fabrication 

Under dark conditions, a clean glass slab was placed on sheet of brown bench 

paper.  Next, the glass slab was lined with Mylar®.  A clear plastic tube (h=6 mm, 

ID=6.35 mm) was placed on the Mylar® lined, clean glass slab and slightly overfilled 

with the MRC.  A Mylar® square was then placed over the resin filled mold, followed by 

a 1 mm thick glass microscope slide.  Sufficient pressure was applied (100 g balance 

calibration weight, 20 s) to remove excess material and prevent entrapment of air 
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bubbles.  The glass slide was removed and a SAM placed over the Mylar® square, 

positioned such that the aperture of the mask aligned with the center of the resin filled 

mold.  The specimen was then polymerized according to the curing protocol of its 

respective group.  Five specimens for each group were fabricated. 

After polymerization, the specimens were cross-sectioned with an Isomet 1000 

Precision Saw and top halves set-aside.  The upper surface of these top samples were 

polished with wet 400, 600, 800, and 1200 grit SiC paper sequentially.  The samples were 

then ultrasonically cleaned for 6minutes in Type I DI H2O, blotted dry with a 

Kimwipe™, and further dried with compressed air.   

Measurement of the Knoop Hardness 

 Top half samples were placed on the loading platform of an M-400 Hardness 

Tester (LECO, St. Joseph, MI) (Figure 10).  Under an applied load of 50 g with a dwell 

time of 15 s, an indentation was made on the top surface with the diamond Knoop 

indenter.  The length of the indentation was then measured optically at 20x 

magnification, and a KHN calculated automatically by the hardness tester.  Three 

indentations, at least 1 mm apart were made for each top half sample.     

 

The Effect of a Point Light Source on the Polymerization Shrinkage Stress 

Background 

 A tensometer (ADA Foundation/Paffenbarger Research Center, Gaithersburg, 

MD) is a variable tension load cell whose operation is based upon basic engineering 

beam theory (Figure 11).  When a tensile load generated by a shrinking resin composite 

specimen pulls down upon a cantilevered beam (stainless steel rectangular beam, 10 mm 
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in width and 40 mm in height; Young’s modulus of 193 GPa), the load causes the beam 

to bend downward.  This downward bending is measured with a linear variable 

differential transformer (LVDT) located 23 cm away from the sample assembly at the 

free end of the cantilever beam.   

The load (tensile force) is calculated based upon the beam’s calibration constant, 

which is depended upon the distance between the specimen position on the beam and the 

start of the cantilever.  Polymerization shrinkage stress (PSS) is then calculated by 

dividing the measured tensile force by the specimen’s cross-sectional area and reported in 

MPa (Figure 12). 

Specimen Fabrication 

 Two vertically positioned quartz rods (ø=6 mm) and a clear plastic tube (L=13 

mm, ID=6.35 mm, and a wall thickness=0.79 mm) formed the sample holder: an upper 

rod connected to the cantilever beam 12.50 cm from the beam holder, a lower rod, and 

the plastic tube to hold the resin composite in place (Figure 11).  To prepare the quartz 

rods, the ends were cut with the Isomet 1000 Precision Saw, polished with wet 600 grit 

SiC paper, and twice silanated with Lute-It Silane Coupler (Pentron Clinical, Orange, 

CA).  Two holes were drilled into opposing sides of the plastic tube: one for sample 

injection and the second for the extrusion of air and excess material.   

 To better mimic the clinical situation, a side curing (as opposed to bottom-up) 

test setup was selected.  In this orientation, the direction of the polymerization shrinkage 

stress is perpendicular to the light source.  Using a gauge block, the distance between the 

quartz rods was fixed at 3 mm.  Next, the SAM was secured against the side of the acrylic 

tube and held in position using black electrical tape and a plastic spatula (Figure 13).  The 
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aperture of the SAM was then centered relative to the ends of the upper and lower quartz 

rods to ensure the edges of the cured bullets would not contact the rods during formation.  

Under dark conditions, MRC was injected into the sample holder to completely fill the 

space.  The specimen was then polymerized from the side of the specimen holder 

assembly according to the curing protocol of its respective group.  

Measurement of the Polymerization Shrinkage Stress 

Polymerization shrinkage stress was measured for 30 minutes from the start of 

polymerization, with data collected every second.  Five specimens for each group were 

tested. 

 

Statistical Analysis 

Summary statistics (mean and standard deviation) for bullet width and cure depth 

were calculated for each SAM-cure time combination.  Analysis of the measured and 

prediction curing front profile models was conducted by overlaying the bullet side profile 

images with the respective x-y scatter plot for each SAM-cure time combination.  To 

compare the two models, a prediction error was calculated for each SAM-cure time 

combination.  

Summary statistics for top and bottom degree of conversion were calculated for 

each group.  Bottom-top degree of conversion ratios (B/T) were also computed for each 

specimen and B/T summary statistics calculated for each group.  Summary statistics for 

top surface Knoop hardness and maximum PSS at t30mins were calculated for each group.       

Group differences were analyzed using a one-way ANOVA at a 5% significance 

level (α=0.05).  Because of non-homogeneous variances, each group combination was 
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allowed to have a different variance in the ANOVA.  Pair-wise comparisons were 

performed using a simulation-based method.   
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RESULTS 

 

Demonstration of the Curing Phenomenon 

Summary statistics are presented in Table 3 for bullet width and cure depth.  

Those SAM-cure time combinations selected for further investigation are also identified.  

Representative side profile images for the SAM-cure time combination are shown in 

Figure 14.  

 Plots of bullet width vs. curing time and bullet cure depth vs. curing time are 

presented in Figures 15 and 16.  A linear regression analysis of both plots reveals a 

relatively good fit of the lines for the 0.4 mm SAM (width R2=0.955 and depth 

R2=0.944), but an excellent fit of the lines for the 0.5 mm and 0.25 mm SAMs (width 

R2=0.993, depth R2=0.974 and width R2=0.982, depth R2=0.982, respectively).   

 

Theoretical Modeling of the Curing Phenomenon 

 The semi-major(a) and semi-minor(b) values for all SAM-cure time combinations 

are presented in Table 4.  Substitution into the “y equals” form of the ellipsoid dome 

equation and consideration of the limiting conditions resulted in x-y scatter plots 

modeling the 2D curing front profiles.  These are presented in Figures 17, 18, and 19.  As 

an example, the curing front of a bullet from a 0.5 mm aperture mask cured for 40 

seconds would be modeled by the equation:     

𝑦 = �2.1392 −
2.1392𝑥2

1.9152
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and have the limiting conditions of  

−1.915 ≤ 𝑥 ≤ 1.915 and 0 ≤ 𝑦 ≤ 2.139 

Scatter plots for the SAM-cure time combinations selected for further investigation are 

shown in Figure 20.   

 Plots of bullet width vs. bullet energy (log scale) and bullet cure depth vs. bullet 

energy (log scale) are presented in Figures 21 and 22.  A non-linear regression analysis of 

both plots reveals an excellent fit of the lines to the logarithmic regression for the 0.5, 

0.4, and 0.25 mm SAMs (width R2=0.98 and depth R2=0.991, width R2=0.999 and depth 

R2=0.997, and width R2=0.991 and depth R2=0.991, respectively).    

Representative scatter plot-side profile image overlays for the two models are 

presented in Figures 23 through 26.  Resulting values of Dp, Ec, Dp′, and Ec′ are listed in 

Tables 5 and 6.  As an example of the predictive model, the curing front profile of a 

bullet polymerized through a 0.5 mm aperture mask would be described by the equation:    

𝑦 =  ��0.6251 ln �
𝐸

2.03522
��
2  

−
�0.6251 ln � 𝐸

2.03522��
2  
𝑥2

1
2 �1.1911 ln � 𝐸

2.59758��
2    

with the limiting conditions of: 

−1
2
�1.1911 ln � 𝐸

2.59758
�� ≤ 𝑥 ≤ 1

2
�1.1911 ln � 𝐸

2.59758
��  

and 

 0 ≤ 𝑦 ≤ 0.6251 ln � 𝐸
2.03522

� 

where E (the energy applied to the top surface of the specimen) would be dependent upon 

curing time and the intensity of the light source.  A side-by-side comparison and 

prediction error of the values of a and b between the measured and predictive models are 
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listed in Tables 7 and 8.  Prediction errors for bullet cure depth ranged from 0.43% (0.5 

mm, 20 s) to 3.25% (0.5 mm, 30 s).  Prediction errors for bullet radius (½ width) ranged 

from 0.14% (0.4 mm, 10 s) to 3.78% (0.5 mm, 30 s).  The curing nearest the light tip is 

much wider than the aperture, showing significant side scattering of the light.  The curing 

front profile of the bullet demonstrates the traveling front of the light.     

 

Experimental Groups 

 Standard and plus mode curing protocols for the SAM-cure time combinations 

selected for further investigation, as well as the control curing protocol are outlined in 

Table 9.  The energy applied to the top surface for a specimen of a given SAM-cure time 

combination is also presented for these groups. 

 

Effect on the Degree of Conversion 

Summary statistics for top and bottom degree of conversion as well as B/T ratios 

are presented in Tables 10 through 13, and Figures 27 through 32.  Statistical groups are 

indicated by superscript letters.   

 For the standard mode of polymerization, the degree of conversion of the top 

surface of Group G < E and F < B < A, C, and D.  The top surface DC of Group C < A.  

At the bottom surface, the degree of conversion of Groups G and E < F < A, B, C, and D.  

The bottom surface DC of Groups C and D > B.  For the B/T ratio, Group E < B, C, D, F, 

and G.  Group A < B, C, and F, and Group G < C and F. 

For the plus mode of polymerization, the degree of conversion of the top surface 

of Groups A, J, K, L, and M had a significantly higher DC than Groups H and I.  At the 
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bottom surface, Groups J and L had a significantly higher DC than Groups A, H, I, K, 

and M.  The B/T ratio of Groups H, I, J, and L were significantly higher than Groups A 

and K.  There was no significant difference in B/T ratio between Group M and any group. 

 When comparing a SAM-cure time combination between polymerization modes, 

the plus mode had a significantly higher top surface DC than the standard mode for 

combinations of 0.25 mm-20 s (Group E v. K), 0.25 mm-30 s (Group F v. L), and 0.25 

mm-40 s (Group G v. M) (Table 11).  At the bottom surface, the plus mode also had a 

significantly higher DC than the 0.25 mm-10 s combination (Group D v. J) (Table 12).  

The standard and plus modes of polymerization did not have significantly different B/T 

ratios for any group (Table 13).     

 

Effect on the Knoop Hardness 

Summary statistics for top surface Knoop hardness are presented in Tables 14 and 

15, and Figures 33 and 34.  Statistical groups are indicated by superscript letters. 

For the standard mode of polymerization, the top surface KHN of Group G < E 

and F < B < C and D < A. 

For the plus mode of polymerization, Group J had a significantly higher KHN 

than Groups H, I, and M.  Group L had a significantly higher KHN than group H.  The 

KHN of Group A was significantly lower than all groups. 

When comparing a SAM-cure time combination between polymerization modes, 

the plus mode of polymerization had a significantly higher KHN than the standard mode 

for all groups (Table 15). 
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Effect on the Polymerization Shrinkage Stress 

Summary statistics for the polymerization shrinkage stress are presented in Tables 

16 and 17, and Figures 35 and 36.  Statistical groups are indicated by superscript letters.  

As a result of the length of time between testing of the two polymerization modes and the 

intrinsic sensitivity of the equipment, a second control (A′) for the plus mode was 

established for purposes of statistical analysis. 

 For the standard mode of polymerization, the PSS of Group G < F < E < D < B 

and C < A. 

For the plus mode of polymerization, Group M had a significantly lower PSS than 

Groups H, I, and L.  Group J had a significantly lower PSS than Group H, and Group K 

had a significantly lower PSS than Group L.  Group A′ was not significantly different 

from any of the groups. 

 The PSS of Group A′ was found to be significantly higher than the PSS of Group 

A; the control groups were statistically different from each other (Table 17).  As a result, 

comparisons between polymerization modes for a given SAM-cure time combination 

were not evaluated for PSS.  
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DISCUSSION AND FUTURE DIRECTIONS 

 

The past work of Chen et al. used a photon migration approach to model energy 

influx of a dental resin composite 37.  We are the first group to successfully demonstrate 

and model the curing front profile of a resin composite polymerized by a point light 

source.  The ellipsoid dome model derived from the measured specimens is empirically 

fit to the curing front profile of the resin bullets.  From this model, the Jacobs and Chu et 

al. models were also fit to the curing front profile to calculate the values of Dp, Ec, Dp′, 

and Ec′.  Comparing the results of our study to that of Chen et al., the curvature, or 

necking, at the base of the bullet is not described by the previous work.  This difference is 

most likely attributed to the presence of the mask in our study and its absence in previous 

work.  The thickness of the mask itself may also have an influence on the scattering 

effect and traveling front of the light.  Variations in aperture size (ø < 0.25 mm), number 

and arrangement of apertures, and mask thickness as well as material and their influence 

on the curing front profile will be key components of future studies.  Additional and more 

detailed approaches to modeling the curing front and the evaluation of these models and 

those proposed in this study will also be investigated.        

Large reductions in degree of conversion (up to 21%) and Knoop hardness (up to 

25%) were expected for the standard mode, and observed, due to the lower amount of 

energy delivered to the surface of the specimens.  With regard to the plus mode, a narrow 

range of conversion (within +/- 3.5%) and Knoop hardness (within +/- 3.5%) were 

expected, and observed, due to similar energy levels delivered to the surface of the 

specimens.     
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One interesting observation is in the specific cases of Groups B, C, H, and I; the 

B/T degree of conversion ratios were significantly increased as compared to the control.  

The increase is attributed to a lower top surface degree of conversion while the bottom 

surface degree of conversion remains similar.  This observation indicates that the “pre-

cure” area (the base of the bullet) contributes to the lower degree of conversion at the top 

surface, but not the bottom surface.  The lower top surface degree of conversion is 

interesting especially for Groups H and I which have a full 60 seconds of follow-up 

polymerization in the plus mode.  It is known that not all free radicals generated by the 

initiation event contribute to polymerization reaction.  The efficiency of an initiator is 

related to the initiating condition and monomer combination.  Therefore, there is a 

corresponding initiator loss in each initiation event.  Quite possibly, the pre-curing during 

bullet formation results in some “waste” of the free radical absorbed by oxygen before 

the follow-up cure.  With two initiating events (initial cure with mask and follow-up 

without), there would be twice as much waste of the free radical at the surface of the resin 

composite and therefore result in a lower degree of conversion on the top surface.  

However, because the light of the first initiating event does not reach the bottom surface 

of the specimen, it does not result in an initial free radical waste as it does at the top.  

Only the light energy in the second curing event, which is equivalent to the energy used 

in the control group, reaches the bottom layer.  Therefore a same level of degree of 

conversion was found at the bottom surface.  The implications of this reduced degree of 

conversion at the top surface with regards to flexural strength, fracture toughness, and 

polymer structure (ethanol storage test) will be investigated in future studies.  Further 

work exploring the possible “double waste” phenomenon will provide greater insight to 
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point light source polymerization, but could potentially contribute new insights to our 

knowledge of the mechanisms leading to the softer top surface commonly documented 

for soft-start polymerization methods, particularly pulse-delay methods. 

The polymerization shrinkage stress experiment was setup to utilize a side curing 

approach to better mimic the clinical situation.  The results, however, were disappointing.  

Although the PSS for the standard mode significantly decreased as compared to the 

control, this decrease is more than likely reflective of the accompanying reduced degree 

of conversions.  This is most evident for Groups E, F, and G whose top and bottom 

surface degree of conversions were significantly less than the other groups.  Statistically 

significant groups were identified for the plus mode of polymerization between the mask-

cure time combinations, but with no statistical difference between these groups and the 

control, conclusions are merely speculative.  After calculating the volume ratios of the 

cured bullet to that of a tensometer specimen, they were found to be in the rage of 0.35% 

to 3.77%.  Such small volume ratios clearly indicate that the amount of cured pre-

shrinkage resin composite (the bullet volume) was too low; influence of the bullet on the 

polymerization shrinkage stress was minimal at best.  In future work, the volume ratio 

could be increased by returning to a bottom-up experimental setup.  This switch 

transforms the measured direction of specimen height from perpendicular to the quartz 

rods and therefore a fixed height of 6 mm, to parallel with an adjustable specimen height.  

Reducing the tensometer specimen’s height to 3 mm or less would result in volume ratios 

upwards of 20%.  Such an approach will also make it possible to investigate additional 

SAM-cure time combinations since the limiting factor (bullet width) for the tensometer 

experiments would increase to 6mm, the diameter of the quartz rods.  Investigation of a 
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wider variety of SAM-cure time combinations will only increase our ability to analyze 

point light source curing as a potentially novel method of reducing polymerization 

shrinkage stress of dental resin composites and strengthen proposed conclusions.   

As with all early investigations of novel concepts, devices, or materials, this study 

was exploratory in nature with few, if any published resources available for guidance 

outside of basic testing methodology.  While several conclusions were drawn from the 

results, the work of this thesis greatly represents an investigation of testing methodology 

and preliminary stages of optimization in efforts to understand and study the implications 

of polymerizing dental resin composites with a point light source.  Several suggestions 

for changes and improvements to the experiments have been presented, with many others 

discussed during the final stages of this project.  Implementation of these suggestions and 

the inclusion of additional experiments are planned for the near future.  Despite the 

disappointing results, through successful demonstration and modeling of the curing 

phenomenon and observation of subtle changes to Knoop hardness and degree of 

conversion, we remain confident that point light source polymerization is a novel 

approach to reducing polymerization shrinkage stress worth continued investigation.             
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TABLES
 

 

 

Component Material WT% Total Composition 

 

Monomer 

Bis-GMA 

TEGDMA 

UDMA 

 

30% 

 

 

 

Initiator CQ 0.5 

Co-initiator DMAEMA 0.25 

Inhibitor BHT 0.5 

Filler BBAS  70% 

 

Table 1:  Composition of the model resin composite.   

 

 

Mask Drill Bit Aperture ø (mm) Aperture Area (mm2) 

0.5 mm #76 0.508 0.196 

0.4 mm #78 0.406 0.126 

0.25 mm  #87 0.254 0.049 

 

Table 2:  Drill bit and aperture details.  Standard drill bits used to create the 

SAMs and the resulting diameter and area of the apertures. 
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Mask Time (s) Bullet Width (mm) Bullet Depth (mm) Test Group 

0.5 mm 

10 2.119 (0.113) 1.243 (0.080)  

20 2.820 (0.158) 1.673 (0.063)  

30 3.270 (0.238) 1.873 (0.073)  

40 3.830 (0.186) 2.139 (0.132)  

0.4 mm 

10 1.685 (0.035) 0.940 (0.032)  

20 2.488 (0.060) 1.462 (0.025)  

30 2.990 (0.059) 1.700 (0.038)  

40 3.282 (0.087) 1.902 (0.024)  

0.25 mm 

10 0.987 (0.048) 0.553 (0.017)  

20 1.474 (0.067) 0.861 (0.057)  

30 1.739 (0.078) 1.027 (0.045)  

40 2.056 (0.072) 1.226 (0.036)  

 

Table 3:  Mean(SD) bullet width and depth.  Bullet width and depth for all 

SAM-cure time combinations.  Groups selected for further investigation are also 

indicated.   
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Mask Time (s) Semi-Major (a) Semi-Minor (b) 

0.5 mm 

10 1.060 1.243 

20 1.410 1.673 

30 1.635 1.873 

40 1.915 2.139 

0.4 mm 

10 0.843 0.940 

20 1.244 1.462 

30 1.495 1.700 

40 1.641 1.902 

0.25 mm 

10 0.494 0.553 

20 0.737 0.861 

30 0.870 1.027 

40 1.028 1.226 

 

Table 4:  Semi-major and semi-minor values.  Calculated semi-major and semi-

minor values for all SAM-cure time combinations.    
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Mask Dp Ec 
0.5 mm 0.6251 2.03522 

0.4 mm 0.6895 2.35847 

0.25 mm 0.4715 1.16202 

 

Table 5:  Dp and Ec values.  Characteristic penetration depth (Dp) and energy 

(Ec) values specific to the depth of the cured resin bullet. 

 

 

Mask Dp′ Ec′ 

0.5 mm 1.1911 2.59758 

0.4 mm 1.1626 2.20102 

0.25 mm 0.7487 1.00643 

 

Table 6:  Dp′ and Ec′ values.  Characteristic lateral cure distance (Dp′) and 

energy (Ec′) values specific to the width of the cured resin bullet. 
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Mask Time Predicted b Measured b Prediction Error (%) 

0.5 mm 

10 1.235 1.243 0.65 
20 1.680 1.673 0.43 
30 1.934 1.873 3.25 
40 2.114 2.139 1.19 

0.4 mm 

10 0.953 0.940 1.43 
20 1.455 1.462 0.53 
30 1.734 1.700 1.99 
40 1.933 1.902 1.62 

0.25 mm 

10 0.542 0.553 1.98 
20 0.869 0.861 0.94 
30 1.060 1.027 3.22 
40 1.196 1.226 2.47 

 

Table 7:  Cure depth values (b) derived from mathematical models.  Bullet 

cure depth values derived from both the measured and predicted mathematical 

models for all SAM-cure time combinations.  The prediction error between the 

two models is also presented.    
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Mask Time Predicted a Measured a Prediction Error (%) 

0.5 mm 

10 1.03172 1.060 2.63 
20 1.45549 1.410 3.23 
30 1.69697 1.635 3.78 
40 1.8683 1.915 2.43 

0.4 mm 

10 0.8439 0.843 0.14 
20 1.26655 1.244 1.81 
30 1.50225 1.495 0.47 
40 1.66948 1.641 1.73 

0.25 mm 

10 0.4845 0.494 1.84 
20 0.74398 0.737 0.97 
30 0.89577 0.870 3.02 
40 1.00346 1.028 2.38 

 

Table 8:  Bullet radius values (a) derived from mathematical models.  Bullet 

radius values derived from both the measured and predicted mathematical models 

for all SAM-cure time combinations.  The prediction error between the two 

models is also presented.    
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Table 9:  Curing protocols and top surface energy.  Protocols of the control, 

standard, and plus mode polymerization groups investigated in the study.  Energy 

applied to the top surface is also presented.      
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Mode Group Top DC (%) Bottom DC (%) B/T Ratio (%) 

Control A 76.99 (0.98) a,A 70.15 (2.23) a,b,A 91.13 (3.13) a,b,A 

Standard 

B 70.17 (1.87) b 68.22 (1.91) a 97.27 (3.63) c,d 

C 74.09 (1.38) c 72.04 (1.65) b 97.23 (1.58) c 

D 75.58 (1.86) a,c 71.37 (1.93) b 94.51 (4.56) a,c 

E 66.86 (1.34) d 59.11 (1.69) c 88.44 (3.36) b 

F 64.42 (1.92) d 63.16 (1.35) d 98.08 (2.24) c 

G 60.12 (1.66) e 57.06 (1.36) c 94.91 (0.98) a,d 

Plus 

H 71.55 (1.90) B 70.50 (1.97) A 98.55 (1.77) B 

I 72.41 (1.36) B  71.04 (1.74) A 98.14 (2.68) B 

J 76.10 (2.21) A 74.83 (1.14) B 98.40 (3.54) B 

K 77.61 (1.82) A 70.93 (1.69) A 91.43 (2.60) A 

L 77.25 (1.95) A 74.80 (1.97) B 96.88 (3.72) B 

M 75.43 (2.31) A 71.52 (1.87) A 94.89 (3.96) A,B 

 

Table 10:  Mean(SD) top, bottom, and B/T degree of conversion.  Statistical 

groups are indicated by lowercase (control and standard) or capital (control and 

plus) superscript letters in each column. 
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 Group Standard Plus 

Top DC 

(%) 

0.5 mm-10 s 70.17 (1.87) a 71.55 (1.90) a 
0.4 mm-10 s 74.09 (1.38) a 72.41 (1.36) a  
0.25 mm-10 s 75.58 (1.86) a 76.10 (2.21) a 
0.25 mm-20 s 66.86 (1.34) a 77.61 (1.82) b 
0.25 mm-30 s 64.42 (1.92) a 77.25 (1.95) b 
0.25 mm-40 s 60.12 (1.66) a 75.43 (2.31) b 

 

Table 11:  Comparison of top degrees of conversion between modes.  

Mean(SD) degrees of conversion on the top surface comparing standard and plus 

modes.  Statistical groups are indicated by lowercase superscript letters in each 

row. 

 

 

 Group Standard Plus 

Bottom DC  

(%) 

0.5 mm-10 s 68.22 (1.91) a 70.50 (1.97) a 
0.4 mm-10 s 72.04 (1.65) a 71.04 (1.74) a 
0.25 mm-10 s 71.37 (1.93) a 74.83 (1.14) b 
0.25 mm-20 s 59.11 (1.69) a 70.93 (1.69) b 
0.25 mm-30 s 63.16 (1.35) a 74.80 (1.97) b 
0.25 mm-40 s 57.06 (1.36) a 71.52 (1.87) b 

 

Table 12:  Comparison of bottom degrees of conversion between modes.  

Mean(SD) degrees of conversion on the bottom surface comparing standard and 

plus modes.  Statistical groups are indicated by lowercase superscript letters in 

each row.  
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 Group Standard Plus 

B/T Ratio  

(%) 

0.5 mm-10 s 97.27 (3.63) a 98.55 (1.77) a 
0.4 mm-10 s 97.23 (1.58) a 98.14 (2.68) a 
0.25 mm-10 s 94.51 (4.56) a 98.40 (3.54) a 
0.25 mm-20 s 88.44 (3.36) a 91.43 (2.60) a 
0.25 mm-30 s 98.08 (2.24) a 96.88 (3.72) a 
0.25 mm-40 s 94.91 (0.98) a 94.89 (3.96) a 

 

Table 13:  Comparison of B/T degree of conversion ratios between modes.  

Mean(SD) B/T ratios comparing standard and plus modes.  Statistical groups are 

indicated by lowercase superscript letters in each row. 

 
  

43 
 



 

 
 
 

Mode Group KHN (kg/mm2) 

Control A 52.30 (0.71) a,A 

Standard 

B 46.50 (0.53) b 

C 49.35 (0.76) c 

D 49.55 (0.84) c 

E 40.77 (0.84) d 

F 40.93 (0.51) d 

G 39.22 (0.47) e 

Plus 

H 58.94 (0.52) B 

I 59.41 (0.57) B,C 

J 60.78 (0.50) D 

K 60.12 (0.97) B,C,D 

L 60.31 (0.88) C,D 

M 59.61 (0.91) B,C 

 

Table 14:  Mean(SD) top surface Knoop hardness numbers.  Statistical groups 

are indicated by lowercase (control and standard) or capital (control and plus) 

superscript letters. 
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 Group Standard Plus 

KHN  

(kg/mm2) 

0.5 mm-10 s 46.50 (0.53) a 58.94 (0.52) b 
0.4 mm-10 s 49.35 (0.76) a 59.41 (0.57) b 
0.25 mm-10 s 49.55 (0.84) a 60.78 (0.50) b 
0.25 mm-20 s 40.77 (0.84) a 60.12 (0.97) b 
0.25 mm-30 s 40.93 (0.51) a 60.31 (0.88) b 
0.25 mm-40 s 39.22 (0.47) a 59.61 (0.91) b 

 

Table 15:  Comparison of Knoop hardness numbers between modes.  

Mean(SD) top surface Knoop hardness numbers comparing standard and plus 

modes.  Statistical groups are indicated by lowercase superscript letters in each 

row. 
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Mode Group PSS (MPa) 

Control A 2.426 (0.022) a 

Standard 

B 2.226 (0.009) b 

C 2.249 (0.026) b 

D 2.073 (0.036) c 

E 1.690 (0.031) d 

F 1.319 (0.010) e 

G 0.877 (0.045) f 

Control′  A′ 2.753 (0.139) A,B,C,D,E 

Plus 

H 2.906 (0.169) A,B 

I 2.908 (0.212) A,B,C,D 

J 2.632 (0.199) C,D,E 

K 2.737 (0.049) A,C,E 

L 2.811 (0.038) B,D 

M 2.588 (0.125) E 

 

Table 16:  Mean(SD) polymerization shrinkage stress at 30 minutes.  

Statistical groups are indicated by lowercase (control and standard) or capital 

(control′ and plus) superscript letters. 

 

 
 Group Control (A) Control′ (A′) 

PSS No Mask 2.426 (0.022) a 2.753 (0.139) b 

 

Table 17:  Comparison of the control group polymerization shrinkage 

stresses.  Mean(SD) polymerization shrinkage stress values for the two controls.  

Statistical groups are indicated by lowercase superscript letters. 
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FIGURES
 

 

      
 

Figure 1:  Predicted curing phenomenon beneath a point light source.  Side- 

and top- profiles (left and right, respectively) of the predicted bullet (gold) 

beneath a point light source, separated from the cavity walls and floor by uncured 

resin (tan). 

 

 

 
 

Figure 2:  Single aperture masks.  Left to right, the aperture diameters are 0.5 

mm, 0.4 mm, and 0.25 mm respectively.    
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Figure 3:  QHL75 spectral range and irradiance.  Spectral range (top) and 

irradiance (bottom) of the QHL75 from the five trial runs.  
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Figure 4:  Experimental setup to investigate point light source curing.  

Arrangement of the glass slides, resin filled mold, and single aperture mask. 

 

 
 

 
 

Figure 5:  Stages of exposing the cured resin bullet.  Side (top) and overhead 

(bottom) views of the stages of exposing the cured resin bullet.  
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Figure 6:  Measurescope and digital readout system.  Instrument used to 

measure the cured resin bullet dimensions. 
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Figure 7:  PocketGoniometer.  Instrument used to image the side profiles of the 

cured resin bullets. 
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Figure 8:  FTIR.  Instrument (top) used to measure the degree of conversion.  

The ZnSe crystal and mounting assembly for such measurements (bottom). 

  

52 
 



 

 
 

Figure 9:  Representative degree of conversion curves.  Overlay of 

representative curves from an uncured (blue), top surface (red), and bottom 

surface (green) of a specimen from the control group.  The vinyl C=C (1638 cm-1) 

and aromatic C=C (1608 cm-1) are also identified.   
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Figure 10:  Knoop hardness tester.  The hardness tester (top) and its loading 

platform (bottom) with the 20x eyepiece and Knoop indenter for determining the 

hardness numbers of a specimen.  
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Figure 11:  ADA tensometer.  Instrument (top) for the measurement of 

polymerization shrinkage stress.  The side curing approach testing setup for this 

study (bottom) with quartz rods, plastic tube, and curing light in position. 
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Figure 12:  Representative shrinkage stress vs. time curves.  Representative 

curves for the model resin composite. 
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Figure 13:  Experimental setup for side curing.  Setup for polymerization with 

a single aperture mask in position before filling the space between the two quartz 

rods with the model resin composite.  
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Figure 14:  Representative side profile images of cured resin bullets.  
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Figure 15:  Linear regression analysis of width vs. time. 

 

 
 

Figure 16:  Linear regression analysis of cure depth vs. time. 
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Figure 17:  0.5 mm mask x-y scatter plots.  Scatter plots modeling the curing 

front of a resin bullet.  The boundaries of the aperture are represented by black 

arrows along the x-axis. 
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Figure 18:  0.4 mm mask x-y scatter plots.  Scatter plots modeling the curing 

front of a resin bullet.  The boundaries of the aperture are represented by black 

arrows along the x-axis. 
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Figure 19:  0.25 mm mask x-y scatter plots.  Scatter plots modeling the curing 

front of a resin bullet.  The boundaries of the aperture are represented by black 

arrows along the x-axis.  
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Figure 20:  Scatter plots of investigated SAM-cure time combinations.   
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Figure 21:  Non-linear regression analysis of bullet width vs. energy.  

 

 
 

Figure 22:  Non-linear regression analysis of bullet cure depth vs. energy.  
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Figure 23:  0.5 mm, 10 second model scatter plot-side profile overlay.  Scatter 

plot-side profile overlay of the mathematical models for a 0.5 mm mask and 

curing time of 10 seconds.  Boundaries of the aperture are represented by black 

arrows along the x-axis. 
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Figure 24:  0.4 mm, 10 second model scatter plot-side profile overlay.  Scatter 

plot-side profile overlay of the mathematical models for a 0.4 mm mask and 

curing time of 10 seconds.  Boundaries of the aperture are represented by black 

arrows along the x-axis. 
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Figure 25:  0.25 mm, 30 second model scatter plot-side profile overlay.  

Scatter plot-side profile overlay of the mathematical models for a 0.25 mm mask 

and curing time of 30 seconds.  Boundaries of the aperture are represented by 

black arrows along the x-axis. 
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Figure 26:  0.25 mm, 40 second model scatter plot-side profile overlay.  

Scatter plot-side profile overlay of the mathematical models for a 0.25 mm mask 

and curing time of 40 seconds.  Boundaries of the aperture are represented by 

black arrows along the x-axis. 
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Figure 27:  Standard mode mean top degree of conversions.  Degree of 

conversion at the top surface of specimens cured using the standard mode or with 

no mask (control).  Statistical groups are indicated by lowercase letters. 
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Figure 28:  Standard mode mean bottom degree of conversions.  Degree of 

conversion at the bottom surface of specimens cured using the standard mode or 

with no mask (control).  Statistical groups are indicated by lowercase letters. 
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Figure 29:  Standard mode mean bottom/top degree of conversion ratios.  

Bottom/top degree of conversion ratios of specimens cured using the standard 

mode or with no mask (control).  Statistical groups are indicated by lowercase 

letters. 
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Figure 30:  Plus mode mean top degree of conversions.  Degree of conversion 

at the top surface of specimens cured using the plus mode or with no mask 

(control).  Statistical groups are indicated by lowercase letters. 
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Figure 31:  Plus mode mean bottom degree of conversions.  Degree of 

conversion at the bottom surface of specimens cured using the plus mode or with 

no mask (control).  Statistical groups are indicated by lowercase letters. 

 

70.15% 
a 

70.50% 
a 

71.04% 
a 

74.83% 
b 70.93% 

a 

74.80% 
b 71.52% 

a 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

A H I J K L M

Bottom DC 
(Plus Mode) 

73 
 



 

 
 

Figure 32:  Plus mode mean bottom/top degree of conversion ratios.  

Bottom/top degree of conversion ratios of specimens cured using the plus mode or 

with no mask (control).  Statistical groups are indicated by lowercase letters. 

  

91.13% 
a 

98.55% 
b 

98.14% 
b 

98.40% 
b 

91.43% 
a 

96.88% 
b 

94.89% 
a,b 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

A H I J K L M

B/T Ratio 
(Plus Mode) 

74 
 



 

 
 

Figure 33:  Standard mode mean Knoop hardness numbers.  Knoop hardness 

numbers at the top surface of specimens cured using the standard mode or with no 

mask (control).  Statistical groups are indicated by lowercase letters. 
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Figure 34:  Plus mode mean Knoop hardness numbers.  Knoop hardness 

numbers at the top surface of specimens cured using the plus mode or with no 

mask (control).  Statistical groups are indicated by lowercase letters. 
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Figure 35:  Standard mode mean shrinkage stresses at 30 minutes.  

Polymerization shrinkage stresses for specimens cured using the standard mode or 

with no mask (control).  Statistical groups are indicated by lowercase letters. 
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Figure 36:  Plus mode mean shrinkage stresses at 30 minutes.  Polymerization 

shrinkage stresses for specimens cured using the plus mode or with no mask 

(alternate control).  Statistical groups are indicated by lowercase letters. 
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