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ABSTRACT 

 

Rodrigo F. Viecilli 

 

ORTHODONTIC MECHANOTRANSDUCTION AND THE ROLE OF THE P2X7 

RECEPTOR 

The first part of the study describes the development of a microCT based 

engineering model to study orthodontic responses.  

The second part investigated the relationship between orthodontic stimulus, root 

resorption and bone modeling. It was hypothesized that stress magnitudes are insufficient 

to portray the mechanical environment and explain the clinical response; directions also 

play a role. An idealized tooth model was constructed for finite element analysis. The 

principal stress magnitudes and directions were calculated in tipping and translation. It 

was concluded that within the same region of root, PDL and bone, there can be 

compression in one structure, tension in another. At a given point in a structure, 

compression and tension can coexist in different directions. Magnitudes of compression 

or tension are typically different in different directions. Previously published data 

presenting only stress magnitude plots can be confusing, perhaps impossible to 

understand and/or correlate with biological responses. To avoid ambiguities, a reference 

to a principal stress should include its predominant direction. Combined stress 

magnitude/direction results suggest that the PDL is the initiator of mechanotransduction. 

The third part of this project tested the role of the P2X7 receptor in the 

dentoalveolar morphology of C57B/6 mice. P2X7R KO (knockout) mice were compared 

to C57B/6 WT to identify differences in a maxillary molar and bone. Tooth dimensions 
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were measured and 3D bone morphometry was conducted. No statistically significant 

differences were found between the two mouse types. P2X7R does not have a major 

effect on alveolar bone or tooth morphology.  

  The final part examines the role of the P2X7 receptor in a controlled 

biomechanical model. Orthodontic mechanotransduction was compared in wild-type 

(WT) and P2X7R knock-out (KO) mice. Using Finite Element Analysis, mouse 

mechanics were scaled to produce typical human stress levels. Relationships between the 

biological responses and the calculated stresses were statistically tested and compared. 

There were direct relationships between certain stress magnitudes and root resorption and 

bone formation. Hyalinization and root and bone resorption were different in WT and 

KO. Orthodontic responses are related to the principal stress patterns in the PDL and the 

P2X7 receptor plays a significant role in their mechanotransduction. 

 

Thomas R. Katona, Ph.D., D.M.D, Chair 
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INTRODUCTION 

Orthodontic Tooth Movement, Bone Response and Root Resorption 

Background  

The identification of variables associated with orthodontic ERR (external root 

resorption) and rate of tooth movement has been a subject of research for many decades. 

This problem has been examined in cellular, animal and clinical experimental models. 

Although the literature is abundant, results from each model have been contradictory. 

Clinical studies, despite providing the most realistic orthodontic model possible, are often 

limited to 2D radiographic data. The existence of a large range of morphological 

variability in dento-alveolar structures requires large numbers of subjects to maintain 

statistical power, causing these types of studies to be expensive and laborious (Chan & 

Darendeliler, 2004; Darendeliler et al., 2004). Given that the biomechanical relationships 

between many of the variables are not known, or sometimes not considered, the existence 

of controversial results is not surprising.Traditional animal models allow in-depth 

analysis of the physiology with histology. However, they are typically compromised by 

the same difficulties: 2D data and problems with ERR and bone formation assessment 

techniques.  

Inbred strains of mice (Thyagarajan et al., 2003), where individual variability is 

practically eliminated, have recently been explored in orthodontic studies (Al-Qawasmi 

et al., 2004; Al-Qawasmi et al., 2006; Ignelzi et al., 1995; Oshiro et al., 2002). With the 

development of genetic engineering, it has become possible to analyze the effects of a 

single biological variable (encoded by a gene) in orthodontic responses. However, it is 

still a challenge to accurately quantify 3D experimental variables such as root resorption 
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and bone formation. It is known that the mechanical stimuli for orthodontic responses are 

the 3D distributed stresses/strains on the root and bone-PDL (periodontal ligament) 

interface (Andersen et al., 1991a; Andersen, Pedersen & Melsen, 1991b; Cattaneo, 

Dalstra & Melsen, 2005; Davidovitch, 1991; Fukui, 1993; Jones et al., 2001; Katona et 

al., 1995; Kawarizadeh et al., 2003a; Kawarizadeh et al., 2004; Krishnan & Davidovitch, 

2006; Melsen, 1999; Melsen, 2001; Middleton, Jones & Wilson, 1996; Provatidis, 2002; 

Roberts, Goodwin & Heiner, 1981; Rygh, 1976; Toms et al., 2002; Wright & Yettram, 

1979). Histology provides only 2D data and the results greatly depend on the choice of 

the representative sections, as well as choice of method of root resorption assessment. 

Because the tooth root is a 3D object, it is technically difficult to choose sections 

according to a method that is biomechanically consistent (i.e., to cut the dento-alveolar 

complex through areas of similar stresses and strains). Moreover, if bone formation is 

studied, the use of traditional bone labels for quantification requires thick mineralized 

histological sections, which further increase the above mentioned complications. It has 

been argued that the methodology for this type of research needs to be significantly 

improved (Chan & Darendeliler, 2005; Chan & Darendeliler, 2006; Chan & Darendeliler, 

2004; Chan et al., 2004a; Chan et al., 2004b; Chan, Petocz & Darendeliler, 2005; 

Darendeliler et al., 2004). 

The methods developed in this study can be used as tools for 3D-based 

quantification of biomechanical variables such as PDL stress, bone microstructure, ERR 

and bone formation in orthodontic animal studies. The experiments with the P2X7R mice 

serve as the first example of application of this model, as well as provide animal evidence 
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for the role of this receptor in orthodontics associated bone modeling and remodeling, 

and ERR. 

Malocclusion 

Malocclusion is a common problem. A survey in the 1960’s showed that 60% of 

children between 6 and 11 years old and more than 83% of teenagers in the 12-17 age 

interval had crowding and misalignments (Proffit & Fields, 2000). Such orthodontic 

problems may lead to psychosocial disorders, muscular stress and speech difficulties.  

The large prevalence of malocclusion implies that side effects of orthodontic 

treatment, such as ERR, are also a large population problem (Jakobsson & Lind, 1973; 

Lupi, Handelman & Sadowsky, 1996; Mirabella & Artun, 1995a). For instance, one study 

showed that 50 out of 54 maxillary central incisors of orthodontic patients had 

radiographic evidence of ERR (McLaughlin, 1964), 25% had more than 3mm of 

resorption (Hollender, Ronnerman & Thilander, 1980) and 5% had more than 5mm 

(Copeland & Green, 1986). Histological studies often reveal a larger prevalence and 

extent of ERR than 2D radiographic studies, because resorption on buccal and lingual 

faces of the root cannot be seen on the radiograph (Kurol, Owman-Moll & Lundgren, 

1996). This type of side effect can result in legal complications for orthodontists, which 

in itself may contribute to increases in malpractice insurance costs (Brezniak & 

Wasserstein, 1993a; Brezniak & Wasserstein, 1993b; Brezniak & Wasserstein, 2002b). 

Patients who undergo significant ERR partially lose the PDL and bone support, which 

can result in immediate deleterious consequences. In addition, in the event of 

establishment of a periodontal disease, less tissue destruction is necessary to increase 

tooth mobility and in the ultimate tooth loss. The possibility of genetic predisposition of 
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ERR has accumulated a large amount of evidence in the last decade. Family clustering 

(Harris, Kineret & Tolley, 1997; Newman, 1975), influence of ethnicity (Sameshima & 

Sinclair, 2001), heritability studies (Harris et al., 1997; Ngan et al., 2004), and clinical 

association studies (Al-Qawasmi et al., 2003a) have provided extensive evidence for the 

existence of genetic predisposition to ERR. The identification of genes that mediate the 

ERR process will possibly become a future prevention strategy. In addition, it may also 

lead to technologies to modulate its effects directly during treatment. 

The increasing demand for orthodontic treatment in the US as a result of 

population growth, has not been compensated by an increase in the number of 

orthodontists (Waldman, 1998), possibly because of the reduced number of orthodontic 

residency programs and the high rate of retiring orthodontists. A possible solution to this 

problem is to discover methods to enhance orthodontic treatment velocity. Several 

attempts to accomplish this have been made; however, they are often associated with 

traumatic surgical procedures, or increased side effects such as ERR and pain. To 

stimulate basic research that focuses on the understanding of the normal physiology of 

mechanical and molecular mechanisms that control orthodontic mechanotransduction is 

probably a good long-term strategy to open new possibilities for breakthroughs in this 

area.  

Mechanical variables in orthodontic tooth movement and ERR 

Orthodontic tooth movement is ultimately a result of bone adaptation to 

stresses/strains induced by forces and/or moments in the bone and PDL (Burstone & 

Pryputniewicz, 1980; Choy et al., 2000; Christiansen & Burstone, 1969; Fukui, 1993; 

Katona et al., 1995; Kawarizadeh et al., 2003a; Kawarizadeh et al., 2004; Melsen, 1999; 
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Melsen, 2001; Middleton et al., 1996; Nagerl et al., 1991; Smith & Burstone, 1984; 

Tanne, Burstone & Sakuda, 1989a; Tanne et al., 1989b; Tanne, Sakuda & Burstone, 

1987; Toms et al., 2002; van Steenbergen et al., 2005a; van Steenbergen et al., 2005b; 

Vanden Bulcke et al., 1987; Vanden Bulcke et al., 1986). The changes in the mechanical 

environment that surrounds the tooth depend not only on the force system, but also on the 

morphology of the root and alveolar bone (Burstone & Pryputniewicz, 1980; Choy et al., 

2000; Nagerl et al., 1991; Tanne et al., 1989a; Tanne et al., 1991). Because the stress 

magnitude is inversely related to the extension of the loaded area, it is natural that 

different regions surrounding the root will withstand more stresses than others. In 

addition, localized irregularities will act as stress concentrators, because of their relative 

small surface. Studies that examined ERR damage to the surface of the root revealed that 

this damage is concentrated in areas of PDL hyalinization (Kurol & Owman-Moll, 1998; 

Miyoshi et al., 2001; Nakamura, Sahara & Deguchi, 2001; Ramanathan & Hofman, 2006; 

Rygh, 1974; von Bohl et al., 2004), which, in turn, are result of compressive strains. A 

recent study that used software to convert 2D scanning microscopy images of ERR in 3D 

volumetric data showed that there are significant and much more ERR in areas of 

compression than tension, and that the extent of ERR increases with the force magnitude 

(Chan & Darendeliler, 2006). This study used the difference in grayscale caused by the 

topology of the root surface, obtained with scanning electron microscopy (2D image), 

multiplied by the area of the crater to perform software conversion from 2D to 3D data (~ 

15% error rate). It was the first attempt to explore the third dimension in ERR. However, 

an experiment that provides true 3D measurements of volume for either ERR or bone has 

never been published. 
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Another important aspect of this biomechanics is the possibility of bending of the 

root (Graber, Vanarsdall & Vig, 2005), especially significant if we consider the high 

loads exerted by the muscles involved in mastication. In addition, when the teeth move, 

there may be a premature contact situation, which can result in loading of a single tooth 

with forces that were physiologically appropriate for the entire dentition. Although this 

particular aspect of ERR is still under investigation, it is probably natural that under these 

circumstances, where load is very high, the pattern of damage distribution along the root 

could be inconsistent with strains in the PDL. However, most of the evidence tends to 

show correlation of ERR with areas of PDL compression and not root bending, and the 

effect of root bending on root resorption still needs to be further investigated. 

Studies have tried to assess parameters that affect the distribution of stresses and 

strains, such as root shape and length. Some studies have found that shorter roots undergo 

more ERR (Goldson & Henrikson, 1975; Harris et al., 1997; Jakobsson & Lind, 1973; 

Newman, 1975; Taithongchai, Sookkorn & Killiany, 1996; Thongudomporn & Freer, 

1998), others found no difference (Goldin, 1989; Levander & Malmgren, 1988), and 

others found the opposite (Mirabella & Artun, 1995b; Sameshima & Sinclair, 2001). A 

likely mechanical explanation for this controversy is that length alone is a very poor 

indicator of the stresses/strains on the apical region of the root. If a root is longer, it can 

so be by changing its shape in different ways, also changing the surface area distribution 

along the root and the position of the center of resistance. In this situation, it is impossible 

to predict stresses and strains in a generalized manner. On the other hand, clinically 

determined abnormalities in root shape such as pipette-shaped and apically bent roots 

denote a relatively large portion of the root with a small surface area, which will typically 
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develop significant stress concentration if compared to a normal root. Typically, the 

literature is in agreement that abnormal shapes are correlated to an increase in ERR 

(Hartsfield, Everett & Al-Qawasmi, 2004; Kjaer, 1995; Levander & Malmgren, 1988; 

McFadden et al., 1989; Mirabella & Artun, 1995b; Newman, 1975; Sameshima & 

Sinclair, 2001; Thongudomporn & Freer, 1998). 

A good experimental model for comparison of biological factors that influence 

ERR needs to be able to control and somehow quantify the parameters that determine 

stresses and strains which act along the dento-alveolar complex. To do this, it is 

necessary to control root morphology, natural occlusion, and to apply a reproducible and 

accurate force system. This type of variable control not only increases the statistical 

power of the study by decreasing in-group result variability, but also increases the 

strength of the evidence provided by avoiding confounders. For instance, the 

investigation of the effect of a biological variable, such as the influence of a gene that 

encodes a growth factor in inflammation associated with ERR, could be problematic if 

this growth factor previously affected the morphology of the root during tooth formation. 

If root morphology differences are not quantified, the results of the study could reflect a 

change in the mechanical environment rather than reveal the direct role of this particular 

biological variable in inflammation. Moreover, depending on the region of the root that is 

analyzed in each study, studies on the same growth factor could provide opposite results, 

because different root regions in different roots would have unpredictable comparison 

values. 
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Orthodontic mechanotransduction 

Tooth movement occurs after mechanical stimuli, from occlusion and/or 

orthodontics are transduced into biological signals that ultimately result in catabolic and 

anabolic bone modeling, and a local increase in the bone remodeling rate (Roberts, 1999; 

Verna & Melsen, 2003; Verna, Zaffe & Siciliani, 1999). The rate limiting step in this 

process is catabolic modeling, because after PDL equilibrium, tooth displacement is 

primarily limited by bone resorption (Roberts, 2004).  

The process of orthodontic mechanotransduction, or how the bone, root surface 

and/or PDL react to the stresses and strains through biological signals, is still far from 

clear. The first attempts to understand this process were made with histological research 

by Sandstedt, Oppenheim and Schwartz, which led to the so called “pressure-tension” 

theory (Krishnan & Davidovitch, 2006). The theory basically states that in the pressure 

side cell replication decreases due to vascular constriction, whereas in the tension side the 

opposite happens due to stretching of PDL fibers. This concept was further developed by 

Schwartz, who tried to correlate the applied force with the capillary bed blood pressure, 

stating that forces should not overcome this pressure on the root surface (Schwarz, 1932). 

If they do, tissue necrosis would occur (PDL hyalinization). Reitan defined hyalinization 

as areas where normal PDL structure has been disrupted: fiber organization was lost and 

no cells are observed (Reitan, 1994). He found that hyalinization occurred more during 

tipping than during translation. These studies were the first to conclude that the tissue 

degeneration and rate of tooth movement were correlated to a force per unit area (stress). 

The bone in compression areas could be resorbed directly, by osteoclasts lining up on the 

bone-PDL interface, or indirectly, on the underside of bone beyond necrotic tissue. Areas 
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of hyalinization produced undermining resorption, characterized by bone resorption 

adjacent to the necrotic area. Melsen hypothesized that indirect resorption, unlike direct 

resorption, is not directly induced by the load, but by the inflammation that follows the 

presence of necrotic tissue itself (Melsen, 1999). FEA simulations seem to corroborate 

that the correlation of principal or linear stresses in the PDL coincide with the actual 

movement tendency and cell response (Katona et al., 1995; Kawarizadeh et al., 2003a; 

Kawarizadeh et al., 2004). In addition, analysis of location of ERR sites were visually 

compatible with these areas of high stresses and strains related to tension and mainly 

compression (Chan & Darendeliler, 2005; Chan & Darendeliler, 2006). However, a 

systematic study that examines the 3D distribution of EARR sites in direct comparison to 

bone or PDL stimulation is still lacking. 

An alternative theory of how tissues react to the mechanical stimulus is based on 

bone bending, initially suggested by Farrar (Krishnan & Davidovitch, 2006). Epker and 

Frost are responsible for a well-known version of this theory, which states that the 

alveolar bone wall at the tension side bends decreasing its radius of curvature, causing 

bone compression which results in apposition and resorption (as a result of a regional 

acceleratory phenomenon) (Epker & Frost, 1965). Experiments in dog mandibles also 

showed that in areas of PDL tension the bone assumes a concave shape, whereas in 

compression areas it tends to assume a convex shape (Bassett & Becker, 1962; Bassett, 

Pawluk & Becker, 1964; Krishnan & Davidovitch, 2006; Zengo et al., 1974; Zengo, 

Pawluk & Bassett, 1973). According to this theory, the resulting apposition and 

resorption processes in orthodontics would then be consistent with known orthopedic 

behavior of long bones. The problem of this theory seems to be the lack of extensive 
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literature showing correlation of the strains in the bone with the actual cellular response, 

measured by labeling bone or cell activity markers. The high strain levels that lead to 

formation in long bones have not been matched by many of the FE simulations because 

orthodontic tooth movement happens even with extremely small loads. Recently, a purely 

mechanical finite element simulation was published to try to correlate this theory with the 

orthodontic response, arguing that the bone is being continuously bent by pre-tension in 

the PDL fibers in strain levels that match the “maintenance” strain levels for bone 

structure (Cattaneo et al., 2005). The application of compression in these areas would 

lead to “disuse”, or “lack of tension” and, when combined with RAP, bone resorption. In 

the tension side, the load would tend to add to the pre-existent tension and thus induce 

bone apposition. Although the FEA could show consistent results with this theory, the 

gap of this model is the lack of data regarding the magnitude of pre-tension in the PDL 

fibers, so that strain values cannot be compared directly with orthopedic standards for 

disuse, maintenance, formation and crack formation levels. 

Until now, two animal studies have tried to correlate biological responses in terms 

of bone formation with mechanical stimulus. In one of them, a 2D finite element analysis 

(FEA) of rat tooth movement was used for 2D histological correlation of osteoblast 

activity (Katona et al., 1995). The other performed a 3D FEA and correlated strains with 

osteoclast activity in 2D histological sections (Kawarizadeh et al., 2003a; Kawarizadeh et 

al., 2004). The main limitation of these studies is the lack of 3D biological data on bone 

formation and/or cell activity. The results are also limited by the technical difficulties 

involved in calibration of the FE model with the actual in vivo tissue behavior, lack of 
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simulation of the direction effect of PDL fibers, and the natural limitations of the use of a 

computer model rather than an in vivo simulation.  

From a molecular perspective, bone mechanotransduction has been associated 

mainly with fluid flow stimulation of osteocytes (Roberts, 2004). A comprehensive 

review by Robling, Castillo and Turner (Robling, Castillo & Turner, 2006b) summarized 

the known mechanisms of bone mechanotransduction: when the bone is loaded, bending 

causes fluid movement in the canalicular network, which leads to shear stress on integrin 

and actin molecules mainly on the cell surface of osteocytes. This effect has been also 

observed in other bone cells; however, because the proportion between osteocytes and 

other bone cells is approximately 20:1, it is believed that osteocytes probably have the 

main role in this process. Fluid shear enhances ATP release and causes an influx of Ca2+ 

via voltage-sensitive channels. ATP then binds to P2Y (g-protein coupled) or P2X 

(ligand-gated ion channel) receptors. The P2Y G protein pathway leads to Ca2+ release. 

ATP binds to P2X7 receptor increasing pore formation and causing the release of PGE2, 

which in turn binds to EP (PGE receptor) stimulating bone formation through a pathway 

that is still unknown. PTH seems to have a role in this process to increase PGE2 levels, 

also through a pathway that is still unknown. Typically PTH tends to increase bone 

resorption, but intermittent PTH hormone injections induce formation. The anabolic 

action involves hormone regulation of apoptosis, proliferation, and differentiation of cells 

of the osteoblast lineage. In addition, there is regulation of remodeling, and impact on 

systemic factors such as FGF2, vitamin D and others (Jilka, 2007; Goltzman, 2008). 

There is evidence that wnt (wingless-type MMTV integration site family member) 

signaling through the lrp5 receptor (LDL-receptor related protein 5), which acts through 
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beta-catenin translocation to the nucleus to modify gene expression, also has a role in 

bone formation. Pressure on the marrow cavity or fluid stress on marrow cells may 

stimulate NO synthase activity and NO release, which is a strong inhibitor of bone 

resorption and probably decreases RANK-L expression and increases OPG production, 

ultimately inhibiting osteoclast differentiation. PGE2 and PTH (parathyroid hormone) 

apparently maintain a close relationship in mechanotransduction.  

PDL stress/strain is also a strong candidate for a role in orthodontic 

mechanotransduction. The strain, which initially acts on the extracellular matrix, is 

transduced to the cytoskeleton through cell surface proteins, such as actin 

(microfilaments) and integrins (which connect the cell to the extracellular matrix) 

(Krishnan & Davidovitch, 2006). The strains can induce reorganization of the 

cytoskeleton, secretion of cytokines, ribosomal activation and gene transcription. Studies 

in fibroblasts from the PDL showed that tension stress decreases M-CSF production, a 

factor important for osteoclast differentiation (M-CSF knockout mice have osteopetrosis 

(Yoshida et al., 1990)). This would cause a net decrease in bone resorption that could 

favor the anabolic component of remodeling in the tension side of the PDL. Another in 

vitro study on osteoblast-like cells showed that IL-1β production is inhibited under 

tensile strains of lower magnitude, again contributing to bone formation in areas subject 

to tension (Agarwal et al., 2003; Long et al., 2002). According to the same studies, this 

cytokine leads to a decrease of PGE2 production in fibroblasts under low-magnitude 

tensile stress. Unlike bone mechanotransduction mechanisms, PDL transduction 

mechanisms seem to connect IL-1β and PGE2 with bone resorption (Agarwal et al., 

1998; Agarwal et al., 2003; Brady et al., 1998; Long et al., 2002; Saito et al., 1991b). 
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Studies on the role of ATP as a signaling molecule also open the possibility of purine 

receptor activation in fibroblasts, monocytes and macrophages, which could potentially 

lead to release of inflammatory mediators. This particular aspect of transduction will be 

discussed in the P2X7 receptor section. 

Although defenders of both tooth movement theories have tried to think in 

separate ways, evidence supporting both sides raises the possibility that orthodontic 

mechanotransduction happens as a simultaneous response to bone loading (with the 

resulting bone mechanotransduction pathways), and PDL loading and damage (with the 

resultant inflammatory pathways). Orthodontics has taken benefit from the results of 

general bone biology and immunology research for many decades. However, because of 

the specific physiology of the bone-PDL interface, the mechanisms can be more intricate 

and complex, and theoretically need much more effort to be unveiled. On the other hand, 

because orthodontics can take advantage of previous research results from bone biology 

and immunology, experimental models can be planned at relatively advanced levels of 

investigation. It is hard, or maybe impossible, to perform experiments where bone, PDL 

and tooth root cells maintain a relationship close as in live animals. Animal models are 

probably the only comprehensive way to test the roles of different molecular mechanisms 

in orthodontic mechanotransduction. 

The transduction mechanisms for root resorption are basically unknown. Evidence 

shows that compressive zones, associated with hyalinization, undergo much more 

resorption than tensile areas. Root resorption continues even after the force application is 

stopped, but halts after the PDL structure is restored (Brudvik & Rygh, 1995a; Brudvik & 

Rygh, 1995b). This opens the possibility for the hypothesis that normal PDL physiology, 
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or PDL tension, are necessary to maintain balance between repair and resorption. From 

the molecular perspective, one study showed that calcitonin, a known inhibitor of 

osteoclast activity, also inhibits odontoclast activity, but the signaling pathway uses 

protein kinase A (PKA), which is different from osteoclast signaling. This result also 

corroborates the hypothesis that mechanotransduction in orthodontics may be a result of 

complex or specific molecular pathways. 

Biological factors in rate of tooth movement and ERR  

Rate of orthodontic tooth movement and ERR are influenced by a wide range of 

molecule types. Cytokines, prostaglandins, nitric oxide, hormones, the biologically active 

form of Vitamin D and growth factors are widely accepted examples (Krishnan & 

Davidovitch, 2006; Roberts, 2004). Each molecular category acts on different levels of 

the response. For many one of these, there are genes that may encode molecules which 

perform their actions with normal, increased or decreased activity. This is part of the 

physiological basis for diversity in orthodontic responses that needs to be unveiled, to 

determine to which extent the response can be modified with treatment. 

Levels of cytokines such as IL1-β and TNF-α have been associated with 

enhancement of tooth movement (Agarwal et al., 1998; Davidovitch et al., 1988; Hou, 

Liang & Luo, 1997; Iwasaki et al., 2001; Jager et al., 2005; Lossdorfer, Gotz & Jager, 

2002; Saito et al., 1991a; Saito et al., 1991b; Yamaguchi & Kasai, 2005; Yang et al., 

2000). These cytokines induce recruitment of endothelial cells (monocytes) that 

differentiate into osteoclasts after binding of RANKL (receptor activator of nuclear factor 

kappa ligand), an osteoclast differentiation factor (Ogasawara et al., 2004). On the ERR 

side, an animal study and one clinical association study revealed that absence or a mutant 
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gene (less transcribed) of IL1-β are respectively linked to increase in orthodontic ERR 

(Al-Qawasmi et al., 2004; Al-Qawasmi et al., 2003a). A possible biological explanation 

to this fact is that the unavailability of this cytokine compromises neutrophil chemotaxis, 

fibroblast mitosis, and ultimately, the healing of the PDL. This compromises restoration 

of the original physiologic conditions that would keep repair and resorption balance. The 

presence of this cytokine is typically associated with catabolic activity: reduction of 

osteocalcin, TIMP (MMP inhibitor) and alkaline phosphatase and increase in proteases. 

Initial catabolic activity is necessary to remove hyalinized areas and restore the normal 

physiology of the PDL. Another interesting fact is that the absence of this cytokine 

impairs PGE2 and NO production (Hurwitz et al., 1997; Ralston & Grabowski, 1996), 

which favors anabolic activity in the bone mechanotransduction pathway mentioned in 

the previous section. Nitric oxide (NO) increases root and bone resorption in orthodontics 

(Akin, Gurton & Olmez, 2004; Leitao et al., 2005; Leitao et al., 2004), an effect opposite 

to that in orthopedic reactions. Currently, there is no proven explanation for these 

contradictions. There might be still unknown relationships in these mechanisms, such as 

dosage-dependent changes in molecular effects (like already proven dosage-dependent 

PTH and PGE2 effects).  

Some research has also been performed to analyze the role of cytokine family 

factors involved in osteoclast differentiation in orthodontics. Linkage disequilibrium was 

shown between orthodontic ERR and a marker for the TNFRSF11A gene (Al-Qawasmi 

et al., 2003b), encoding RANK, a receptor essential for RANKL-mediated 

osteoclastogenesis. Although RANKL gene transfer has been shown to increase tooth 

movement (Kanzaki et al., 2006), RANKL levels have also been linked to severe 
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orthodontic ERR (Yamaguchi et al., 2006). Another focus of research is OPG 

(osteoprotegerin), a decoy receptor that competes with RANKL to bind RANK, which 

when bound leads to suppression of osteoclast differentiation and activation, also 

inducing apoptosis. OPG gene transfer to the PDL was shown to inhibit tooth movement 

and osteoclast differentiation (Kanzaki et al., 2006; Kanzaki et al., 2004; Yamaguchi et 

al., 2006). 

Although PGE1 seems to increase the rate of tooth movement and root resorption 

(Lee, 1990; Spielmann, Wieslander & Hefti, 1989; Yamasaki, Shibasaki & Fukuhara, 

1983; Yamasaki et al., 1984; Zhang, 1992), some of the PGE2 effects in orthodontics are 

still controversial. In bone biology, lower dosages of PGE2 were shown to have anabolic 

effects, whereas higher dosages appear to disrupt this effect and cause bone resorption- 

this effect appears to be linked to a consequential increase in IGF-1 levels (Baylink, 

Finkelman & Mohan, 1993). In orthodontics, there seems to be a consensus on the fact 

that PGE2 injections increase the rate of tooth movement (Bao, Zhao & Rao, 1995; Chao 

et al., 1988; Kale et al., 2004; Kokkinos et al., 1993; Leiker et al., 1995; Roberts, 2004; 

Seifi, Eslami & Saffar, 2003). In contrast to orthopedic studies, which typically show 

anabolic effects of PGE2 (Norrdin, Jee & High, 1990), studies have reported increase in 

bone resorption alone(Boekenoogen et al., 1996; Chao et al., 1988; Kale et al., 2004; 

Leiker et al., 1995; Seifi et al., 2003; Yamasaki, Shibata & Fukuhara, 1982). For ERR, 

there are studies that report an increase (Boekenoogen et al., 1996; Leiker et al., 1995), 

but there are also studies that report no significant effect of this molecule (Brudvik & 

Rygh, 1991). The controversies regarding bone formation, resorption and ERR may be 

related to differences in the methods of these studies, including dosage of PGE2 and 
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previously discussed limitations of histological methods. In high dosages, PGE2 also 

causes orthopedic bone resorption. 

Although the research on growth factors, rate of tooth movement and ERR is not 

as abundant as the previously mentioned molecule categories, results show that they may 

have an important role (Krishnan & Davidovitch, 2006). TGFβ was shown to enhance 

osteoclast differentiation, also attracting monocytes and fibroblasts (Bonewald & Mundy, 

1990; Filvaroff et al., 1999; Hock, Canalis & Centrella, 1990; Karst et al., 2004; Koseki 

et al., 2002; Kubota et al., 1990; Massey et al., 2001; Mundy, 1991; Pilkington, Sims & 

Dixon, 2001; Sells Galvin et al., 1999; Yan et al., 2001). IGF-I and II stimulate cell 

proliferation and differentiation and may have a role in orthodontic tooth movement 

(Canalis et al., 1989; Mochizuki et al., 1992; Raisz et al., 1993a; Spencer et al., 1991; 

Thaller et al., 1993). Administration of recombinant VEGF (vascular endothelial growth 

factor) increases the rate of tooth movement and the number of osteoclasts, whereas the 

inhibition of this growth factor has the opposite effect (Kaku et al., 2001; Kohno et al., 

2005). 

In a comparison study, the active form of Vitamin D enhanced tooth movement as 

much as PGE2, but PGE2 promoted higher number of Howship’s lacunae in the 

compression side (Kale et al., 2004). However, Vitamin D increased the number of 

osteoblasts in the formation side. According to the author, a possible explanation is that 

this vitamin promotes a coupled resorption/formation enhancement. 

Damage-associated molecular pattern molecules/ Alarmins 

 Molecules released by damaged or dying cells have been termed damage-

associated molecular pattern molecules (DAMPs). They contribute to the induction of 
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inflammation and interact with pattern recognition receptors. Disrupted or injured cells 

recruit innate inflammatory cells by releasing DAMPs. They are protein, or non protein 

(e.g. ATP, uric acid) molecules which are typically inside cells, but are released to the 

extracellular medium upon cell damage, or are sometimes released by cells. Many 

receptors for DAMPs and PAMPs (pathogen associated molecular patterns) are shared, 

indicating that similarities exist between pathogen-induced and noninfectious 

inflammatory responses. The repertoire of molecules released varies according to the type 

of injured tissue, and, therefore, the associated inflammation varies accordingly. DAMPs 

can serve to accentuate (e.g. HMGB1) or inhibit (e.g. adenoside) an inflammatory 

response (Rubartelli et al., 2007).  

 Alarmins can be defined as endogenous molecules with several characteristics: 1) 

rapidly released following nonprogrammed cel death, but not released by apoptotic cells; 

2) immune system cells can be later induced to produce alarmins without dying; 3) they 

recruit and activate receptor-expressing cells of the innate immune system, such as 

dentritic cells, and also promote adaptive immunity responses and 4) can restore 

homeostasis by promoting reconstruction of the tissue (Bianchi, 2007). Clearly, the 

definitions of Alarmins and DAMPs overlap. Defensins, cathelicidin, eosinophil-derived 

neurotoxin (EDN), and high mobility group box protein 1 (HMGB1) can be considered 

typical alarmins.  

 Alarmins can bind to different receptors such as TLRs or IL1R, which are 

classical receptors leading to inflammatory and immune responses. RAGE also appears to 

be a receptor that plays a key role in alarmin function. Alarmins can play specific roles in 

the metabolism of mineralized tissue. Two major examples of alarmins have been shown 
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to affect bone: extracellular ATP (binding to P2X7R) and HMGB1 (binding to RAGE), 

which will be discussed below. 

HMGB1 and Bone 
 

HMGB1 plays a significant role in endochondral but not intramembranous 

ossification. HMGB1 KO mice die shortly after birth but the embryos reveal that long 

bone development is significantly compromised, whereas the calvaria appears unaffected 

HMGB1 moves from the cytosol of hypertrophic chondrocytes at the growth plate to be 

released into the immediate environment. The released molecule acts as a 

chemoattractant for invading osteoclasts, osteoblasts and endothelial cells (Taniguchi et 

al., 2007).   

This is consistent with a recent report showing differences between marrow and 

calvarial derived osteoblasts to recombinant HMGB1. The results suggest that HMGB1 

acts as a potent bone resorption signal within the confines of the long bone marrow 

microenvironment but it may have a distinct role in flat bones (Yang et al., 2007). 

A model has been recently proposed to explain control of bone resorption by 

HMGB1, embased by a close relationship between inflammation and bone loss associated 

with the RANK/RANKL/OPG mechanism. The hypothesis maintains that the osteocyte 

release of HMGB1 into the bone microenvironment triggers the expression and release of 

potent bone resorption agents such as RANKL, TNFa and IL-6 from BMSCs, osteoblasts 

and macrophages upon bindng to the RAGE, TLR2 and TLR4 receptors. This HMGB1 is 

chemotactic to the alerted osteoclasts. In addition, HMGB1 might also trigger the release 

of pro-inflammatory cytokines including HMGB1 itself acting as such. In normal bone 

remodeling, the release of modest amounts of HMGB1 brings the appropriate number of 

osteoclasts and osteoblasts to a microcrack in the osteocyte network caused by 
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microdamage during normal turnover. In the pathological setting, an adverse 

inflammatory stimulus such as infection or arthritic erosion, the massive one time release 

of this alarmin would mobilize an excessive number of osteoclasts and disrupt the 

remodeling response (Bidwell et al., 2008). 

P2X7 receptor: a possible mediator of orthodontic mechanotransduction 

A P receptor was initially defined as a purine receptor, but research showed that 

some of these receptors also bind to pyrimidine nucleotides and nucleosides (North & 

Barnard, 1997; Rassendren et al., 1997; Surprenant et al., 1996). P1 and P2 differ 

consistently in the molecular structure, but functionally their mechanisms are variable. 

The functional differentiation in these receptors is denoted by the letter (X or Y)- X 

means that the receptor is ionotropic (ligand-gated ion channel), whereas Y means that 

the receptor is metabotropic (G-protein or tyrosine kinase coupled receptors) (North & 

Barnard, 1997; Rassendren et al., 1997; Surprenant et al., 1996). These receptors are 

expressed by a wide variety of cell types, including osteocytes, osteoblasts, fibroblasts 

and monocytes (Gartland et al., 2001; Naemsch, Dixon & Sims, 2001; Solini et al., 

1999). This receptor forms a signaling complex (Kim et al., 2001) and some of the known 

mechanisms affected by them are related to neuronal, immunological, oral and skeletal 

physiology (Collo et al., 1997; Turner et al., 1998). 

P2 receptors typically can be activated by ATP release by the same (autocrine) or 

by other (paracrine) cells (North & Barnard, 1997; Rassendren et al., 1997; Surprenant et 

al., 1996). It has been shown that P2 activation leads to increases in concentration of 

intracellular calcium and PGE2 release (Naemsch et al., 2001). ATP, which activates this 

pathway, is typically released by bone, endothelial and epithelial cells and fibroblasts 
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under stress conditions, acting as a DAMP/alarmin (Bodin & Burnstock, 1998; 

Burnstock, 1999; Furuya, Sokabe & Furuya, 2005; Grygorczyk & Hanrahan, 1997; John 

& Barakat, 2001; Katsuragi & Migita, 2004; Katz, Boland & Santillan, 2006; Kerkweg & 

de Groot, 2005; Milner et al., 1992; Milner et al., 1990b; Ohata et al., 1997; Patel et al., 

2005; Romanello et al., 2001; Sauer, Hescheler & Wartenberg, 2000; Yamamoto et al., 

2003). 

The P2X7 receptor, encoded by the P2X7R gene, was shown to induce cytolytic 

pore formation, release of interleukin 1 beta in immune cells, cell membrane blebbing 

and necrosis/apoptosis. Interestingly, it also forms a complex with cell surface proteins 

with known role in mechanotransduction, such as alpha-actins and beta-integrins. These 

facts lead to the investigation on a possible role of this receptor in bone physiology.  

True P2X7R KO mice were developed by construction of a targeting vector (Solle 

et al., 2001). A cDNA probe specific to the mouse P2X7R gene was synthesized by 

reverse transcription-polymerase chain reaction using 2 primers, which were designed 

based on the published rat cDNA sequence of the P2X7R gene. Total RNA isolated from 

the J774 A.1 mouse monocyte/macrophage cell line was used as the template RNA. This 

polymerase chain reaction product was 401 base pairs long and was cloned and 

sequenced to verify that it corresponded to the mouse P2X7R gene. The probe was used 

to screen a 129/Sv mouse genomic library and to isolate a single positive genomic clone. 

Sequence analysis of BamHI subcloned fragments confirmed that this clone corresponded 

to the mouse P2X7R gene. A targeting vector was constructed that inserted the neomycin 

resistance gene from the pJNS2 plasmid directly after the Arg505 codon, deleting from 

Cys506 to Pro532, which is in the carboxyl-terminal domain of the P2X7R gene product. 
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Homologous recombination of the targeting vector with the endogenous P2X7R gene 

disrupts the carboxyl-terminal coding region of the P2X7R gene. 129/Ola-derived 

E14Tg2a ES cells were grown, transformed, and screened using standard methods. 

Targeted ES cells and mice carrying the mutant allele were identified using a probe 

specific to a genomic region upstream of the targeted locus. Chimeric mice derived from 

targeted ES cells were mated with C57B/6 mice originally for 7 generations. 

The KO mice showed reduced mineral content and periosteal circumference in the 

femur (Ke et al., 2003). They also show increased trabecular bone resorption and reduced 

periosteal bone formation. A recent study also showed, using KO mice, that the activation 

of this receptor affects the linear response to mechanical loading of bone (Li et al., 2005). 

The basic mechanism was shear stress=>ATP release=> P2X7 activation=> increased 

intracellular [Ca2+] and release of PGE2. The osteogenic response was 73% less in male 

P2X7R KO mice and it is not associated with cell apoptosis. 

Activation of the P2X7 receptor by ATP causes release of IL-1β by means of 

intracellular calcium signaling and cAMP (Chakfe et al., 2002; Ferrari et al., 2006; 

Grahames et al., 1999; Gudipaty et al., 2003). Increases in extracellular calcium after 

mechanical stimulation lead to further ATP release, which magnifies the process. In vitro 

experiments showed that P2X7R KO mice monocytes and macrophages were not able to 

post-process and release IL-1β extracellularly, and cell media had undetectable levels of 

this cytokine. The secretion of IL1 receptor antagonist is also dependent of signaling 

through this receptor (Wilson et al., 2004). In bone, this cytokine stimulates resorption. 

Absence of the cytokine would theoretically result in increased formation. The results 

from the P2X7 receptor study apparently show that the effect of this cytokine is probably 
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comparably minor in bone mechanotransduction, because a decrease in the level of this 

cytokine in bone would imply increased formation in the KO mice. The exact opposite 

was shown by the studies involving the role of the P2X7R in bone.  

These details may have important implications for orthodontics. Testing the role 

of this receptor in tooth movement could give us evidence of whether the previously 

mentioned mechanotransduction pathways play a major role in tooth movement, and 

confirm the role of this cytokine in root resorption. We hypothesize that the absence of 

this receptor will result in deficient bone formation and resulting low levels of IL-1β will 

result in decreased catabolic activity in the compression sides of the PDL. The net result 

would be a decreased rate of tooth movement. Because previous studies showed a link 

between IL-1β and root resorption, a similar finding in this study would provide evidence 

for another stage of the root resorption pathway: that the P2X7 activation mediates the 

mechanism. The summarized evidence suggests that the absence of the P2X7R could 

result in a compromise of signaling in transduction mechanisms in the PDL and bone.  

From the genetics perspective, there are two polymorphisms that lead to a null 

allele of the P2X7 gene, one of them affecting 1-2% of the Caucasian population, has 

already been reported (Gu et al., 2004; Skarratt et al., 2005). In addition, one 

polymorphism was proven to impair ATP-induced IL-1β release from human monocytes 

and one to affect normal trafficking of this receptor (Sluyter, Shemon & Wiley, 2004; 

Wiley et al., 2003). If the role of the P2X7 receptor in tooth movement is shown in an 

experimental model controlling for multiple variables, it could provide a strong base for 

association studies of these polymorphisms with ERR, and rate of tooth movement. 
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Optimization of µCT Data Processing for Modelling of Dental Structures in 

Orthodontic Studies 

 
 Introduction 

Many studies have been published on the accuracy of µCT measurements the 

relationship of instrument settings to the rendering of tooth morphology and the results of 

bone morphometry (Kim, Paik & Lee, 2005; Kohler et al., 2005; Olejniczak & Grine, 

2006; Thomsen et al., 2005; Waarsing, Day & Weinans, 2004; Yeni et al., 2005). 

Recently, several authors have extracted anatomical contours from µCT data to construct 

FE models (Cattaneo et al., 2005; Rahimi et al., 2005). The accuracy and reliability of 

these methods depend not only on the algorithm used for segmentation, but also on the 

quality of the acquired data. ‘Resolution’ is one measure of image quality. Resolution 

refers to smallest interval measurable by a scientific instrument. In tomography, it is 

typically given by the linear size of one side of the pixel (for instance, 8 micrometer 

resolution). Definition is a broader term, and refers to the distinctness of the reproduced 

image and its fidelity to the object. High resolution is necessary, but not sufficient, for 

good definition. That is, a blurred or noisy high resolution image lacks definition.  

Obtaining good definition µCT radiographic images and reconstructions is not 

trivial. The objective of this project was to provide guidelines and procedures for 

optimizing µCT acquired data for dental applications and to demonstrate the high 

definition images and segmentations obtainable with commercially available software. 

The model of µCT used was Skyscan® 1072 (Skyscan®, Aartselaar, Belgium). The 

specific application is the development of models for the biomechanical analysis of 

orthodontics associated root resorption. 
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Some external root resorption is normal on human root surfaces where 

cementoclasts (cells very similar to osteoclasts) and osteoblasts function in a dynamic 

equilibrium. However, this balance may be perturbed by changes in the environment due 

to pathogens, trauma, orthodontic loading or occlusal interferences (Hartsfield JK Jr, 

2004). The literature on root resorption is particularly ambiguous because of 

controversial and contradictory findings (Krishnan, 2005). It is therefore crucial to 

develop biomechanical models with adequate control of variables. Optimized µCT image 

processing is a critical component of that process. 

Materials and Methods 

Biomechanical Models of Orthodontic Responses 

The first study evaluated mechanical damage on the root surface derived from 

fatigue loading. A hypothesis is that pre-existing irregularities on the root surface act as 

loci of stress concentrations that could initiate resorption. In the experiments, laboratory 

fatigue loading of dog teeth with a MTS Bionix® 858 (Minneapolis, MN-USA) machine 

simulates situations such as a premature contact, or orthodontically induced occlusal 

interferences (Fig. 1). To detect surface differences in µCT images and to build 

representative FE models, good µCT output definition and sophisticated solid modelling 

are required. 

The second model addressed the biological aspects of root resorption and tooth 

movement. In this model, transgenic and inbred strains of mice were used to quantify 

orthodontic responses. Within an inbred strain, all the mice have practically identical 

genetic backgrounds and they are homozygous for all loci. The comparison of mice from 

a particular inbred strain to a transgenic mouse (such as a gene knockout mouse derived 
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from the same original inbred strain) allows us to compare differences in the anatomy and 

function of craniofacial structures that are attributable to that single genetic change. 

Through this comparison, differences in anatomical characteristics of dental structures 

are minimized to optimize control of mechanical variables along the root. In addition, 

comparison of orthodontic responses such as root resorption and velocity of tooth 

movement can be performed between different strains of mice (or transgenic mice) to 

evaluate associations between the response and other variables such as bone structure. 

For the latter model, G&H® Wire Company (Greenwood, IN- USA) helped to 

develop a special pseudoelastic NiTi spring that can deliver forces as low as 1cN with a 

load-deflection rate below 1cN/mm. A mouth prop was bent to allow placement and 

checking of the position and activation of the spring, thus minimizing activation error 

(Fig. 2). The force level was measured with a transducer with 1cN of accuracy 

(Orthomeasurements®, Fairfield, CT- USA). This level of accuracy in the force system 

helps to assure that the animals will always have a very reproducible stimulus, so that 

changes in anatomy can be detected through imaging with decreased variability. 

µCT Acquisition of Radiographs 

The basic µCT acquisition settings are amperage, voltage and exposure. 

Amperage refers to the intensity of the delivered x-ray beam. Voltage regulates the 

spectrum curve that is emitted by the polychromatic source. The higher the voltage, the 

greater are the proportions of x-rays with high energy. However, data from the 

manufacturer show that most of the radiation is within the 40-60 KeV range, independent 

of the voltage setting. Exposure is the duration of the exposure. A high exposure helps to 
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assure that the entire specimen is exposed to the full spectrum range. The best contrast 

was achieved with 85KeV and 9 seconds of exposure at 116mA. 

After these parameters were set, the acquisition of good images depended on the 

minimization of artifacts and the use of small (0.23o) rotational steps when performing 

180o scans. 360o scans generate more alignment discrepancies between the radiographic 

images, so they were not used, although they may be useful for other applications where 

there are high-density objects such as implants in the specimen. If the distance between 

the object and the central axis is large on the radiographic image (large magnification) it 

is necessary to use small rotation steps to prevent loss of information (gaps filled by 

interpolation) on the periphery of the object. The drawback is the increase in scanning 

time. In the 20-30x magnification range, maximum detail was achieved by using the 

minimum rotational step setting possible (0.23o) in a 180o scan. Using this setting, the 

definition of the later reconstructions was similar to a microradiograph of a histological 

section. 0.45o increments decreased the scan time by 50%, but the sharpness of the image 

was not acceptable for our purposes. For both models, the optimum quality images were 

taken with 8-11 micrometers resolution. The size of a resorption cavity is typically larger 

than 10 micrometers (the size of a mature osteoclast). Although the system can achieve 

resolutions of up to 2 micrometers, at resolutions below 8 micrometers it becomes 

practically impossible to accurately represent specimens of our size, because of the 

increased number of magnification alignment artifacts. 

The most common artifacts are due to noise, beam hardening and alignment. 

Noise is related to imperfections in camera detection, heterogeneous x-ray emission, 

cosmic events, and the presence of air/dust. There are two ‘functional’ types of noise. 
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One type is ‘static’ noise due to camera imperfections or dust on its surface. Static noise 

can be effectively eliminated by using a flat field, an image that is subtracted from each 

radiograph. The other is ‘dynamic’ or random noise, which results from cosmic events, 

heterogeneity in x-ray distribution, or floating dust. Flat field correction can incorrectly 

subtract random noise, which changes in each frame. Its minimization is discussed next. 

Control of Point Noise 

      How to deal with dynamic noise? One standard tool is to average different frames 

(Frame Averaging). This means taking more than one radiograph for each angular 

position. Naturally, this causes an increase in scanning time. This procedure takes care of 

most of the lower intensity noise, such as floating dust, but the stronger cosmic events 

still remain. A software tool recommended by the manufacturer is the Median Filter. It 

substitutes the median greyscale value for all pixels within a determined region on the 

radiograph. This is very effective in removing noise due to cosmic events, but it also 

blurs the edges of objects within an image. For the dog tooth fatigue model, this entails 

the risk of a significant loss of information about cracks, imperfections, etc.  

A more conservative approach to dealing with dynamic noise is Random 

Movement. During the scanning of a frame, both the camera and the object move in 

synchrony. This causes the noise to ‘wash out’, or become a line with a lower grey value 

that is inversely proportional to the amount of the Random Movement. For instance, 

Random Movement of 80 means that there will be an 80-line range of vertical movement 

during the scanning of the frames. Just like point noise, this line can generate ring 

artifacts in the reconstruction. However, when dealing with mineralized tissue, these 

artifacts can be eliminated with greyscale thresholding. When that does not work (for 
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instance, with low magnifications), ring artifact correction must be used during 

reconstruction. Large random movement with high frame averaging is a conservative 

alternative to the median filter approach to remove noise (Fig. 3).  

 The ideal settings for both experimental models are 8 frame averages and random 

movement of 100 lines. We found that random movement of 100 removes almost 

completely the ring artefacts, but less than that tends to increase dramatically their 

number, compromising the thresholding and segmentation processes later. Figure 3 

illustrates examples of noisy reconstruction sections obtained when random movement 

and median filter were off and frame averaging was low. 

Control of Beam Hardening 

Beam hardening occurs when the lower energy x-rays are absorbed by the outside 

of the specimen, allowing only high energy radiation to reach the camera. This causes the 

interior parts of the object to look more radiolucent than they really are in comparison to 

the outside of the object. In the acquisition process, beam hardening can be controlled 

with aluminium filters. The aluminium filter skews the spectrum towards the high energy 

range, thus minimizing the beam hardening effect. We used a 0.5mm aluminium filter in 

our mouse scans to eliminate beam hardening issues that could interfere with bone 

density measurements. For the dog model, it was not necessary to use the Aluminium 

filter because bone density measurements were not be taken. The presence of high-

density objects (such as implants) may also lead to streak artifacts and loss of 

information. The information loss can be controlled with a 360o scan, at the expense of 

image sharpness, because with 360o scans the possibilities for alignment mismatches 

increase. 
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 Control of Alignment Artifacts 

One of the most important and unique of all settings during µCT image 

acquisition is the alignment. There are two issues related to alignment: ‘wobbling’ and 

magnification discrepancies. To avoid ‘wobbling’, the x-ray focus, the rotation axis of the 

specimen stage, and the camera center must be on the same line. Although mechanical 

calibration of the machine should take care of this, it is difficult to attain a sufficient level 

of precision. Imperfections in the rotational mechanism and in the straightness of the 

specimen holder itself may lead to deviant movements of the stage. The result is a lateral 

misalignment of the radiographs that appears in the reconstruction as wing artifacts - 

wing-shaped extensions of the object (Fig. 4). The misalignment varies gradually with 

the wobbling of the holder, which explains the wing shape after convolution. This type of 

artifact can pose a significant problem during subsequent image processing.  

The µCT control software has an algorithm for alignment correction. It consists of 

calculating the average misalignments at the top, centre and bottom of the rotational stage 

using the central vertical line of the screen as the reference. Appropriate compensations 

are then made in the positioning of the camera (at lower magnifications) or source (at 

higher magnifications). Software compensations are also made for misalignment between 

the top and bottom of the camera. The software also provides compensation for offsets 

associated with the lifting of the specimen stage, which naturally changes the alignment. 

To perform this procedure, a cylinder balanced on a specimen stage must be used. This is 

a partial solution to the problem, because there can be inconsistencies in the ’straightness’ 

of different specimen holders and cylinders and in the way they are gripped by the chuck. 

As a practical issue, the small cylinder tends to topple off during the scan. To solve all 
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these issues, we designed a precision-machined (by Mechanical Engineering, School of 

Engineering and Technology, IUPUI) tool with a removable alignment cylinder. Thus, 

the specimen can be scanned on the same holder that is used for alignment (Fig. 5). 

Unfortunately, there are other alignment issues that are more difficult to control. 

Cone-beam geometry has a drawback: magnification differences in the images at each 

rotational position. Any object that significantly extends laterally from the long axis of 

the holder is subject of imperfections in the reconstruction derived from magnification 

differences in the radiographs (Fig. 6). The equation below establishes the relationship 

between the expected difference in magnification and the position of the object between 

the source and the camera.  

c
d

b
a
=  (1) 

The equation (1) demonstrates that the lower the pixel size (higher resolution), the 

more problems can be expected from magnification differences (c) in the radiographic 

images. The point of the object facing the source at 0 will be in a different position on the 

camera at the 180o rotation step. These magnification inconsistencies (as well as lateral 

misalignments) can be visualized directly on the screen of the NRecon® reconstruction 

software when the two radiographic images, 180o apart, are superimposed. In summary, 

an increase in resolution does not necessarily imply an increase in the definition of the 

object for all applications when using cone beam geometry. 

This problem is not eliminated by software; however, it can be minimized. The 

smaller the size of the object (i.e. the closer it is in size to the long axis of the specimen 

holder), the lower the differences in magnification between two images 180 degrees 

apart. Naturally, this also means that the volume of interest in a particular object should 
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always be centralized on the specimen holder. The only method to minimize this problem 

is to find, by trial and error, the minimum pixel size that does not cause magnification 

alignment artifacts on the reconstruction image. For the dog scans, we use the minimum 

(14x) magnification. For the mice, good results were obtained in the 23-30x range. 

Despite of all these technical problems, µCT reconstruction has proven to be reasonably 

precise for human dental applications (Kim et al., 2005; Peters et al., 2000). 

Reconstruction 

The reconstruction software made available by Skyscan®, NRecon®, provides 

the cross-sections based on the radiographs. For our purpose, NRecon smoothing and 

correction for beam hardening were not used because they often cause loss of valuable 

information.  

 Post-Acquisition Alignment Correction 

In the reconstruction step, post-alignment correction reduces magnification and 

lateral misalignment artifacts. It gives the user an opportunity to customize the 

reconstruction output with pixel shifting. If the machine is aligned, the shift value should 

be close to zero. The alignment tool allowed for the machine to be aligned specifically at 

the magnification position determined for the object, so optimal pixel shift values were 

typically between -1 and +1 pixel. 

Greyscale Thresholding 

Greyscale thresholding consisted of clearing (making white) soft tissue from the 

data and establishing the darkest pixel as black. This minimized the amount of 

information that had to be loaded into the segmentation software (Mimics®- 

Materialise®, Leuven, Belgium). To threshold accurately, we left some soft tissue 
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reference on an unimportant area of the specimen. This allowed us to find the best range 

to establish our greyscale. All soft tissues were made white during the process, and the 

pixel with lowest value in the histogram determined the darkest value (black). The range 

obtained was then recorded for further reconstructions.  

Segmentation  

We used Mimics software for segmentation. The first step was to construct a 

‘mask’ (coloured group of pixels) that included all mineralized tissue previously 

thresholded. The second step was to use a region growing algorithm to render the tooth 

with a colour code, thus establishing a new mask.  

The region growing algorithm consists on adding voxels that have fairly 

homogeneous greyscale values adjacent to the seeding voxel (Myers, 1995). The voxels 

that are added are determined by a specified threshold, or standardized by the software. 

As new voxels are added, the algorithm will start to consider the greyscale of the growing 

region and the limits of other voxels in the region.  

This algorithm is excellent for delineating the boundaries of the object’s surface 

structure. It allows the isolation of the tooth from the mineralized tissue mask while 

preserving all the irregularities and discontinuities that are typically removed by other 

methods. The compromise in definition is determined only later, during smoothing of the 

STL (triangulated surface-stereolithography) file. To use this approach, it was critical to 

minimize the number of (mainly alignment) artifacts that ‘ankylose’ tooth to bone along 

the space of the periodontal ligament. 

After the tooth was separated from the mineralized tissue mask, a Boolean 

operator was used to subtract the tooth mask from the mineralized tissue mask to obtain 
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the bone mask. To segment the PDL, air and tooth pulp in the remaining ‘white space’ 

were separated. To do this, ‘assistant’ pixels were added to the mineralized tissue (bone 

and tooth) mask to close the root apex. Then, a cavity fill tool, which marks all white 

pixels inside a cavity, was used to produce a new ‘air + PDL’ mask. The air space above 

the bone level was then deleted from this mask with the multiple slice edit tool. Because 

we consider the PDL to be within the bone-tooth interface, manual deletion was 

necessary near the alveolar crest to precisely determine the limits of the PDL space. After 

this, all structures were segmented (Fig. 7). 

Bone Morphometry, 3D Rendering and Solid Modelling for FEA 

To characterize bone structure, we used CTAn®/CTVol® software (Skyscan®) to 

select a bone sphere in a standard location between the roots of the tooth and calculated 

its morphometric parameters (Table I). Bone mineral density was obtained after 

calibration of Hounsfield units with 2 hydroxyapatite phantoms (densities of 0.25g/cm3 

and 0.75g/cm3) that matched the dimensions of our bone specimen. The elastic modulus 

of bone can be approximated using its mineral density (Fig. 8) (Krischak et al., 1999; 

Lang et al., 1988; Lotz, Gerhart & Hayes, 1990; Wachter et al., 2001; Wachter et al., 

2002). 

The bone, PDL and tooth were then 3D rendered in Mimics® using gray value 

interpolation, providing maximum accuracy for visual inspection. In these renderings, all 

surface pixels were represented (Fig. 9). Then, they were exported as STL files. The STL 

files were further edited and converted to C1 NURBS surfaces, and then to CAD solid 

models (.igs extension B-rep surfaces) using Raindrop Geomagic Studio® and/or 

Rapidform® software (Fig. 10) (Sun, 2005). The solid models can be edited, meshed and 
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joined using I-DEAS® 10 software and then exported to ANSYS® 10 for finite element 

analyses. 

Discussion 

In the dog model, this methodology allows accurate solid modelling of defects 

associated with changes in root surface caused by deformations of the root during fatigue 

loading.  

In the mouse model, it allows specific analyses on the role of bone structure 

(morphometry), root morphology and immune reaction, as well as measurements of root 

dimensions pre- and post- treatment. This leads us to a better understanding of individual 

variability in humans, given that the mouse genome often has correspondence to human 

genes. Susceptibility to root resorption attributable to orthodontic force is a trait that has 

been analyzed in several experiments. However, the complexities of tooth movement 

biomechanics make research on this concept very challenging.  

One important issue is the root resorption measurement method. Measuring by 

counting cavities per area in histological sections, for instance, is a common approach 

(Al-Qawasmi et al., 2004; Al-Qawasmi et al., 2006). In contrast to volumetric 

measurements, this method does not necessarily give a result of net root resorption, 

because it could also reflect a change in the turnover of cementum on the surface of the 

root. In addition, given that root morphology is an important factor in root resorption, 

variation in the area chosen for the measurement could lead to different results of 

susceptibility due to, for example, different positions of the centre of resistance in the two 

strains. For instance, in a simple analysis, if the strains are genetically identical for 

everything except a gene that determines distal root length, we could end up with a 
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paradox: choosing the mesial root for analysis could tell us strain B is more susceptible, 

while choosing the distal root could tell us that strain A is more susceptible. Naturally, 

depending on the selected area, the overall results of the study can change because of a 

change in the stress patterns on each root, thus changing the ‘susceptibility’ of a given 

strain with respect to a given gene, thereby making this type of comparison meaningless.  

Measuring root resorption by overall and local volume changes in locations of 

similar stimulus, or comparing mice with similar root morphology, are probably better 

options (Chan & Darendeliler, 2005; Chan et al., 2004a; Chan et al., 2004b; Chan et al., 

2005; Darendeliler et al., 2004).  

Conclusions 

This investigation showed that obtaining good output from the µCT required a 

thorough optimization of all settings specific for each research application. The described 

methodology allows for the analyses of specific morphological and physiological 

variables, which can produce meaningful conclusions on the role of mechanical and 

genetic variables on orthodontic responses. 
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The Three-dimensional Mechanical Environment of Orthodontic 

Tooth Movement and Root Resorption 

Introduction 

Three fundamental biological responses are attributed to orthodontic loads: bone 

formation, bone resorption, and iatrogenic external root resorption. The former two make 

orthodontics possible, while the latter is the foremost medico-legal issue for orthodontists 

(Brezniak & Wasserstein, 2002a; Brezniak & Wasserstein, 2002b). 

In the general view of orthodontic tooth movement, “bone formation is associated 

with the tension side, and resorption with a pressure (compression) side” (Krishnan & 

Davidovitch, 2006; Reitan, 1951; Schwartz, 1932). Other concepts link tooth movement 

to the flexion of the alveolar wall, and/or indirect resorption caused by compressive 

ischemia and periodontal ligament (PDL) necrosis (Baumrind, 1969; Epker & Frost, 

1965; Melsen, 2001). The tension/compression theory is ubiquitous in orthodontic 

research(Mitsui et al., 2005; Nishijima et al., 2006; Yamaguchi et al., 2004). Orthopedics 

proposes several mechanisms of mechanotransduction (Robling et al., 2006b) but 

applicability to orthodontics is unclear and there is no analogy to root resorption. 

In a recent review, it was reported that uncertainties regarding orthodontic loads 

and the mechanical environment have led to issues in basic science and clinical research 

(Ren, Maltha & Kuijpers-Jagtman, 2003). For instance, rodents in which standard clinical 

armamentaria are utilized to apply orthodontic loads are exposed to stresses in their 

alveolar structures that are orders of magnitude higher than would be applied in humans 

(Kawarizadeh et al., 2003a; Kawarizadeh et al., 2004). Root asymmetries, multiple roots, 

and uncontrolled and/or unavoidable loading offsets produce complex and unintuitive 
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stress patterns due to simultaneous displacements and rotations in all three planes 

(Viecilli, Katona & Roberts, 2007). Histological results can be puzzling (Verna et al., 

1999) if the sectioning plane orientations are not determined according to specific stress 

(loading) patterns. This is sometimes neglected in clinical and basic science studies in 

which biological responses are linked to orthodontic loads and/or “stresses” that are 

improperly characterized (Iwasaki et al., 2006). Although there are some attempts for 

clarification, e.g., parametric analyses and partial descriptions, knowledge gaps abound at 

virtually all steps of the cascade shown in Figure 11. In recent publications (Chen et al., 

2007; Viecilli, 2006), even commonly accepted notions about the clinical load systems 

generated by typical orthodontic mechanisms are still being questioned. 

There is no consensus on the underlying mechanisms that link the orthodontic 

mechanical environment (stresses and/or strains) to biologic responses. Before such a 

relationship can be established, it is essential to thoroughly understand and control the 

mechanical environment, as it has been done in orthopedic research (Li et al., 2005). To 

do so even qualitatively, the applied orthodontic loads must be realistically delineated 

and the mechanical behavior of the involved materials must be reasonably approximated. 

Unfortunately, some of this required information is unavailable, inadequately described, 

or ignored. Thus, greater emphasis must be placed on the understanding of the 

mechanical environment that is associated with orthodontic responses. 

Because of the intricacies of the dento-alveolar assembly (complex shapes 

consisting of 3 different materials: tooth, bone and PDL,) closed-form analytical 

calculations to characterize the mechanical environment are, for all intents and purposes, 

impossible. Useful results are obtainable with experimental and computer-based 
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numerical models. By far the most powerful and popular example of the latter is FEA 

(Finite Element Analysis).  

In this numerical study, we focused primarily on one aspect of the cascade (Fig. 

11), the detailed elucidation of the mechanical environment within the dental structures 

that are subject to known orthodontic loads. Specifically, we use FEA to calculate the 

stresses and deformations produced during the distal translation or tipping of a stylized 

right maxillary human canine into a 1st premolar extraction site. In addition to the 

typically considered principal stress magnitudes, we place emphasis on their directions. 

With this approach, we can examine two critical ambiguities in the orthodontic 

tension/compression concept. First, the specific tissue in which the pertinent 

tension/compression acts is sometimes not explicitly stated. That is, it is occasionally 

unclear if the mechanical environment under consideration is acting within bone, root or 

PDL. Second, there is a general lack of attention paid to the direction of the 

tension/compression. We hypothesize that (1) stresses in bone, PDL and root do not 

follow a simple pattern as assumed in the tension/compression theory of orthodontic 

tooth movement, (2) tension and compression can coexist with various combinations of 

magnitudes and directions in the dentoalveolar structures and (3) stress directions play an 

essential role in the description of the mechanical environment. 

The first descriptive FEA studies of orthodontic tooth displacement and stress 

magnitudes were published by Tanne and Burstone more than 15 years ago (Tanne et al., 

1989b). Since then, FEM studies have been published about parameters that may 

influence orthodontics associated stress magnitudes and their patterns. Most are technical 

studies of PDL mechanical properties, including its linear/non-linear (Cattaneo et al., 
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2005), isotropic/anisotropic (Provatidis, 2000), and viscoelastic behaviors (Krstin et al., 

2002; Natali et al., 2004), and the absence/presence of principal PDL fibers (Qian, Chen 

& Katona, 2001). Studies have also looked at the role of bone heterogeneity (Cattaneo et 

al., 2005). For the purposes of this study, the PDL is modeled as a relatively simple 

linearly elastic isotropic material. The nuances of non-linearity of the PDL, which 

slightly affects the displacement pattern of the tooth, will be discussed in a separate 

paper. 

Intricate objects such as the dento-alveolar complex should be modeled in 3-D. 

For instance, even loads initially applied in one dimension can lead to the appearance of 

stresses in three dimensions, depending on the supporting constraints. If the cube (Fig. 

12, A) is uniformly compressed in the y direction, it is free to expand in the x and z 

directions (Poisson’s effect) and stress will exist only in the y direction, although strain 

exists in all directions. If the cube’s expansion is constrained in the x or z directions, 

compressive stresses will exist in all directions because the constraints will also load the 

body in response to Poisson’s effect. 

Typically, it is difficult to decipher the effects of the 6 simultaneously acting 3-D 

stress tensor components (3 shear and 3 normal stresses). Moreover, this type of stress 

characterization will depend on the coordinate system. It is, therefore, useful to 

mathematically transform the general stress tensor into a simpler equivalent state of stress 

in which the shear stresses disappear, and the three associated normal stresses (i.e., the 

principal stresses) assume their peak magnitudes. Conceptually, this is achieved by 

appropriately rotating the aforementioned imaginary cube within the body (Fig. 12, B). 

The obtained maximum, intermediate and minimum principal stresses at a point are 
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referred to as the 1st (S1,) 2nd (S2) and 3rd (S3) stresses, respectively, all perpendicular to 

each other. The principal stress numbers (S1, S2 and S3) are defined by convention solely 

on the basis of their algebraic magnitudes, not their directions. The magnitudes and 

directions of the principal stresses are invariant, thus they are an ideal way to present 

stress field results. The directions are perpendicular to each other, and can be indicated by 

the direction cosines of the normal vectors to the stress cube surfaces. As noted above, 

these are the critical (principal) directions that are generally overlooked or deemphasized 

in orthodontic stress analyses.  

The state of stress at a point can also be characterized according to its effect 

(Chen & Lui, 2005). For example, one component, the hydrostatic stress, changes the 

volume of an element without altering its shape. The other component, the deviatoric 

stress, distorts the element proportions without altering its overall volume. The former is 

analogous to fluid pressure on a solid body and its magnitude is the average of the three 

principal stresses. The hydrostatic stress tensor has equal stresses in all directions but no 

shear, thus it can be represented by a simple number (scalar.) The deviatoric stress tensor 

is obtained by subtracting the hydrostatic stress from the 3 principal stresses, thus, it 

cannot be represented by a scalar quantity. The von Mises stress/criterion is often cited in 

biological studies. However, it could be questionable to apply von Mises stress to PDL, 

bone and tooth because it is a criterion based on energy principles involving the yield of 

ductile materials such as metals (Beer, 2002). 

Thus, given the various ways in which mechanical environments are characterized 

and reported, coupled with great anatomic variability, uncertainties about mechanical 

properties and loading, and ambiguities regarding the involved tissues and stress 
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directions, it may be easy to see why the biological mechanisms of tooth movement and 

root resorption remain largely unexplained. Nonetheless, there have been attempts to 

correlate biological activity with changes in the mechanical environment as characterized 

by the 6 stress components (Kawarizadeh et al., 2004). 2D principal stresses (Katona et 

al., 1995) or hydrostatic stresses (Dorow & Sander, 2005). Due to the previously 

mentioned limitations, the results are not conclusive. In the literature, the mechanical 

environment is typically depicted with color-coded stress magnitude gradients 

superimposed on the structure, or line graphs that show the stress and/or strain 

magnitudes along specific paths, but until recently (Cattaneo et al., 2005), without regard 

for their directions. Thus far, there is no published comprehensive description of the 

orthodontics-associated mechanical environment within the dento-alveolar complex that 

includes not only the principal stress magnitudes, but also their directions. 

For our descriptive purposes, a cylindrical coordinate system nomenclature 

affords a relatively precise and unambiguous way to discuss the mechanical environment 

in the alveolus even if it is not entirely applicable to the tapered root/socket. In a 

cylindrical coordinate system, the three mutually perpendicular directions are 

longitudinal, radial, and circumferential (hoop). The longitudinal direction is in the apico-

gingival direction. The radial direction could be represented by the spokes of a wheel and 

the tangential (or circumferential) direction would be the tangent to the wheel. Thus, on 

the mesial and distal sides of the tooth, the circumferential direction is in the buccal-

palatal direction and the radial direction corresponds to the mesio-distal direction. On the 

buccal and palatal sides of the tooth, the circumferential and radial directions are the 

mesio-distal and the buccal-palatal directions, respectively. As an example, it will be 
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shown that with crown tipping toward the distal, the maximum principal stress in the 

distal PDL changes from a radial tension in the apical half, to a longitudinal compression 

in the gingival half. These types of direction changes, typically overlooked, may have 

profound biological implications. 

 

Materials and Methods 

The presented model simulated canine distalization by tipping or by translation 

into a premolar extraction site (Fig. 13, A) The anatomies of the canine root and socket 

and the two proximal roots and sockets were based on published average sizes fitted to 

regular elliptical paraboloid geometries (Marseiller, 1977). (The cross-sections of the 

roots/sockets are elliptical. The longitudinal shapes, viewed from the mesio-distal and the 

bucco-palatal directions, and in-between, are parabolic). The uniform PDL was modeled 

0.2 mm thick. Bone geometry approximated the real shape of the buccal and palatal 

alveolar plates. 

Using Solidworks 2006 (Dassault Systems S.A., Concord, MA-USA,) a CAD 

(computer-aided design) model of all structures was constructed. To reduce modeling 

intricacy, the 3.2 mm difference in the levels of the alveolar bone crest on the 

mesial/distal sides vs. the buccal/lingual sides, was uniformly leveled to the average of 

the two. Accordingly, the buccal crown length was reduced by 1.6 mm (i.e., half the 3.2 

mm difference) from the 9.5 mm average to 7.9 mm to match the modification. The root 

length average of 17 mm was increased by 1.6 mm, totaling 18.6 mm. A stainless steel 

bracket, centered 4.5 mm from the cusp tip (21 mm from the root apex,) was simulated so 

that realistic orthodontic loads could be applied to the slot. The bracket width was 3 mm. 
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The assembly of bone, teeth and PDL, in IGES file format, was imported into 

ANSYS 10.0 University Research Version (ANSYS Inc., Canonsburg-PA, USA,) the 

FEA solver. For node sharing at the interfaces, the generated volumes were digitally 

glued with a tolerance of 0.003 mm. Iterative meshing was performed with SOLID92 10-

noded tetrahedron elements which could maintain element quality and preserve the 

original CAD generated geometry. The final model (Fig. 13, B) consisted of 210,239 

elements and 285,423 nodes. The origin of the FE model coordinate system was defined 

at the geometric center of the elliptical cross-section of the upper right canine root at the 

level of the alveolar crest (Fig. 13) Mesial (x), buccal (z) and apical (y) are the positive 

directions. 

All materials were assumed to be homogeneous, isotropic and linearly elastic with 

Poisson’s ratios equal to 0.3. The Young’s moduli of bone (average of cortical and 

cancellous bone), PDL (consistent with the toe area of an experimentally determined 

bilinear PDL), tooth, and stainless steel bracket were 12,200 MPa, 0.05 MPa, 20,000 

MPa, and 200,000 MPa, respectively (Cattaneo et al., 2005;Vollmer et al., 1999). 

Orthodontic loads were applied to nodes on the bracket to simulate two realistic 

movements, pure distal translation (M:F = ~-11.67 mm, see below) and simple distal 

tipping (M:F = 0 mm.) In both loading conditions, the applied distal force was (F =) -1.2 

N, along with a calculated anti-first order rotation moment, ~4.55 N-mm. The boundary 

conditions, assigned as zero 3D displacements at the bottom and lateral walls of the bone, 

simulated natural anatomical constraints. 

To obtain the appropriate M:F for pure distal translation (i.e., the distance from 

the bracket to the axis of resistance,) a negative couple about the z axis was applied to the 
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bracket and combined with an ad hoc approach for refinement of the final value. 

Basically, the displacements of 500 uniformly distributed points on a line connecting the 

root apex with the coordinate system origin, extrapolated from nodal displacements near 

that path, were determined using an ANSYS function. The coordinates of the two points 

closest to zero displacement were used to interpolate the approximate location of zero 

displacement. Its vertical distance to the bracket was the necessary M:F (-11.67 mm) for 

translation. 

Post-processing of results focused on the nodal stresses and displacements next to 

material interfaces. As an example, for the PDL side of the PDL/root interface, only data 

from the interface-adjacent PDL elements were extrapolated to the interface nodes. Thus, 

results from different materials were never combined and stress discontinuities across 

interfaces were preserved. For PDL and root, results were considered in two 

representative planes, with emphasis on the DAM plane (defined by the distal of the 

alveolar crest, up to the apex, and down to the mesial of the alveolar crest) because it is 

the plane in which the canine moves. Less emphasis was given to the (perpendicular) 

BAP (buccal-apical-palatal) plane. For bone, the results are presented in a general 3-D 

fashion with vector plots and cervical graphs, because, unlike with root and PDL, the 

DAM plane does not align with the more palatally located areas of maximum bone 

stresses; an interesting confounding consequence of arch curvature. 

Results 

To aid in the visualization of principal stress directions, each principal stress’ x 

(radial,) y (longitudinal) and z (tangential) components were calculated with their 

ANSYS-provided direction cosines. The stress direction components do not have 
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individual physical meaning. They are presented separately to facilitate spatial 

visualization of the principal stress directions. The results are generally presented in the 

format of a direct buccal view of the tooth. In each graph, the side of the tooth (distal or 

mesial) is identified and the results are plotted as a function of vertical distance from the 

root apex (0.0 mm) down to the CEJ (18.6 mm) for the root, or from the apex of the 

socket (0.0 mm) down to the alveolar crest (18.8 mm) for the PDL/bone interface. (The 

0.2 mm difference reflects the thickness of the apical PDL.) Unless otherwise noted, 

discussions pertain to the DAM plane. 

Displacements and deformations 

Figure 14, A shows the calculated total root displacements produced by the 

tipping (1.2 N distally directed force, and M = 0) and translating (1.2 N distally directed 

force with an 11.67 x 1.2 = 14.0 N-mm counter-clockwise couple) loads. The results 

indicate that the CRes in the DAM-plane was located approximately 8.2 mm, or 44.1% of 

root length, from the average bone level. Similarly, the tipping CRot was located at 10.4 

mm, 55.9%. Figures 14, B and C depict the corresponding tooth deformations. It was 

observed that loads on the canine also deformed the adjacent sockets and that peak bone 

stresses also occurred in those adjacent sockets (Fig. 15). 

 

 

Root stresses 

In the DAM plane, root stresses during translation followed a relatively simple 

pattern. On the distal, tension (S1) increased linearly from the apex to its peak at the CEJ 

(Fig. 16, A). Moreover, S1 was overlaid by its S1y component. This indicates tooth 



47 
 

bending. Consequently, the stress was predominantly longitudinal, with a small x 

component perpendicular to the root. The situation on the mesial was the same except 

that the predominant stress (S3) was compressive (Fig. 16, B). S2 on both sides was 

small, but non-trivial. On the mesial and distal it was predominantly radial tension or 

compression, respectively, both in reaction to the PDL (Figs. 16, C and D). 

With tipping, the peak stress magnitudes in the root were approximately the same 

as with translation, but the stress fields were more complex (Fig. 17). On both sides of 

the root, the peak stresses (compression on the distal, Fig. 17, A and tension on the 

mesial, Fig. 17, B) occurred at mid-root. Furthermore, on both sides, the dominant 

principal stresses (S3 on the distal, S1 on the mesial) had Sy as the main component and 

Sx as the minor component. Thus, as with translation, tooth bending caused the dominant 

stresses, although in tipping the root was bent in the opposite direction. S2, the mainly 

radial principal stress, followed the patterns of PDL S1 on the mesial and PDL S3 on the 

distal (Figs. 17, C and D). 

PDL stresses 

In general, the magnitudes of principal stresses S1 and S3 within the PDL were 

only slightly smaller at the PDL/bone interface than at the PDL/root interface and their 

directional patterns were very similar. Thus, only results for the former are presented. 

In translation, all principal stresses in the distal PDL were compressive (Fig. 18, 

A-D) with peaks near the apex. By convention, S3 is defined as the algebraically smallest 

principal stress, so when all stresses are compressive, S3 (which is in the radial direction, 

see explanation below) has the largest absolute magnitude. S2 (which approximates a 

hoop, or circumferential, stress) and S1 (longitudinal stress) overlay each other with 



48 
 

magnitudes approximately 50% of S3. Figure 18, C shows the components of S3, the 

dominant principal stress on the distal side. The S3x component coincided with S3 itself, 

indicating that the largest principal stress was compressive, primarily in the radial (x) 

direction. S3 also had a small longitudinal stress component, S3y, near the apex. S1 (Fig. 

18, A) and S2 (Fig. 18, B) were virtually identical in magnitude, but the former acted 

primarily in the axial (longitudinal) direction (S1y) while the later was a hoop stress 

(S2z.) On the mesial side, not shown, the situation was a near mirror image analogue, 

with all tensile stresses, including the small longitudinal component at the apex. 

With tipping, the PDL stress distributions were more complex (Fig. 19, A-C,) and 

the peak stresses were about three times higher than those with translation. And as with 

translation, the mesial and distal sides were virtual mirror images, with S1 reversing roles 

with S3. With tipping, however, the PDL stresses were sufficiently different in the apical 

vs. the gingival halves to be considered separately. On the distal side, all principal 

stresses in the apical half of the PDL were tensile, with peaks near the apex. In the 

gingival half, all principal stresses became compressive, increasing linearly to their peak 

values at the alveolar crest. The dominant stress in the apical half was S1, a radial tensile 

stress, S1x (Fig. 19, A). The main stress in the gingival half was S3, a radial compressive 

stress, S3x (Fig. 19, C). At approximately 40% of S1 values, S2 (Fig. 19, B) and S3 (Fig. 

19, C) in the apical half were tangential (hoop, S2z) and longitudinal (S3y) tensile 

stresses, respectively. In the gingival half, they were tangential (hoop, S2z) and radial 

(S3x) compressive stresses, respectively. S1 also had a nontrivial longitudinal (S1y) 

compressive component near the apex, Figure 19, A. S3’s longitudinal tensile component 

(S3y) along the entire gingival half (Fig. 19, C) is also noteworthy. Except for these two 
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components, as mentioned above, the stresses on the mesial (not shown) were mirror 

images of the distal. 

At the apex, the magnitudes of all stresses were very small, and the stress 

directions tended to a pure shear component (S1 and S2 were generally opposite at 45° to 

the x and y axes) in tipping and translation. The largest principal stresses were just 

gingival to the apex, but when the bone constraint to movement decreased, the stresses in 

the PDL became small. 

In the PDL, the difference between the average principal stresses (hydrostatic 

stress) and the principal stress tensors was small, thus the deviatoric stress tensor is minor 

compared to the hydrostatic stress. The data also revealed that the overall stress 

magnitude varies significantly cervico-apically and between the MAD and BAP plane 

along the PDL/bone interface in translation (Fig. 18, D) and tipping. In the BAP plane, 

S1 and S3 were at 45° to x, y and z, revealing that the stress state is pure shear. 

Bone stresses 

The state of stress in bone is complex, irregular, and at times, surprising. 3-D 

color-coded depictions of magnitudes and directions, and polar graphs (Figs. 20 and 21) 

provide an overall view of the stress patterns. With translation, the highest tensile stress 

within bone was in the circumferential direction in the premolar socket wall, adjacent to 

the canine (Figs. 20, A-C and 11, A-C.) Similarly, the peak compressive bone stress was 

within the socket of the incisor, (Fig. 20, C) also in the circumferential direction (Figs. 

21, B, D). 

If analysis is confined to the canine socket, the highest magnitude stresses were 

circumferential. Two of the peak tension areas were located near the alveolar crest, one 
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area just buccal, another just palatal, to the thin interproximal distal bone. The third local 

tensile peak was located at the mesial interproximal bone (Fig. 20, A). Interestingly, the 

highest compression on the distal side was flanked by the two above mentioned tensile 

areas on the distal, and the above mentioned tensile area on the mesial was flanked by 

compressive areas just to the buccal and palatal (Figs. 20, C and 21.) Thus, viewed from 

the occlusal (Fig. 21), in a relatively short distance close to the adjacent sockets, the 

predominant stress, a hoop stress, changed from tension-to-compression-to-tension on the 

distal side, and from compression-to-tension-to-compression on the mesial. 

The peak stresses occurred at, or near, the crestal bone, and with tipping, their 

patterns are similar to those with translation, except that the magnitudes are ~4 times 

higher (Figs. 22 and 23). Away from the alveolar crest, the stress patterns changed. For 

instance, on the distal surface of the socket, the peak stress was S3, a compressive hoop 

stress at the thinnest bone septum in the region. S1 and S2 were predominantly a tensile 

longitudinal stress and a compressive radial stress, respectively. Moving 11 mm apically, 

the stresses gradually changed directions. S3 became a compressive radial stress (a 

reaction to direct PDL loads,) S2 a compressive hoop stress and S1 converged to zero 

(Fig. 21, A). Thus, there was a swap in the directions of S2 and S3 as the bone became 

thicker. The effects of translation on the mesial bone surface were almost symmetric to 

those on the distal surface – a difference existed due to the dissimilar socket shapes 

mesially and distally. The stress with the maximum absolute value was S1, a tensile hoop 

stress. S2 was a tensile radial stress and S3 a compressive longitudinal stress. 

Approximately 12 mm apically (6.6 mm from the apex,) S1 and S2 remained tensile, but 

they gradually swapped their directions as S3 converged to zero (Fig. 21, B). 
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With tipping, the patterns of stresses and their magnitudes near the alveolar crest 

were the same as with translation. However, moving apically a difference developed in 

the pattern of stress directions: instead of one swap in directions between principal 

stresses, there are two. In the distal side, the first direction swap was completed ~5 mm 

apically (13.6mm from apex,) where S3 became a compressive radial stress (the reaction 

to PDL loads becomes the highest stress as the bone becomes thicker,) S2 a tensile hoop 

stress and S1 a small longitudinal stress (Fig. 23, A). Later, at about 9 mm (9.6 mm from 

the apex,) there was another swap. S1 became the radial stress (where the PDL loads 

changed senses,) S2 a small tensile hoop stress and S3 tends to zero. The stress patterns 

in the mesial side during tipping are approximately the mirror image of the distal side, but 

S1 and S3 swap roles (Fig. 23, B). 

Near the apex, S1 and S3 changed directions and tended to symmetric values and 

directions at 45° to the x and y axes, characterizing pure shear. The stresses also tended to 

have large shear components as they deviated away from the MAD plane regions of the 

alveolar crest and approached the BAP regions. 

Discussion 

The calculated location of the axis of resistance was slightly different from those 

found in other experimental and FEA studies. (Nagerl et al., 1991; Provatidis, 1999; 

Vollmer et al., 1999) (In 3-D, CRes and CRot must be thought of as axes rather than 

points as in 2-D. When 3-D results are depicted in 2-D schematics, as in Figure 14, A, it 

must be recognized that the symbols that mark the center locations are, in actuality, axes 

that run in-out of the plane, generally not at 90°. In asymmetric roots and other situations, 

axes of resistance can be different in each plane, not intersecting at the “center of 
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resistance.”) Possible reasons for this variability include: modeling of the root as a 

(symmetric) paraboloid of revolution or as a “real” tooth rather than an elliptic 

paraboloid; different root conicities; bucco-palatal vs. mesio-distal bone level as the 

reference; different bone insertion level. For average Caucasian population 

measurements, (Marseiller, 1977) the elliptic paraboloid appears to be the best 

morphological idealization of the canine root. Additional variation can be expected if the 

PDL is modeled as anisotropic or nonlinear, with or without PDL fibers. Thus, caution is 

advised against blind clinical implementation of these results. 

An interesting observation is that the proximal sockets were deformed by the 

orthodontic loads on the canine, Figure 15. Of course, this phenomenon cannot be 

detected in typical single tooth FE models. The implication is that clinically observed 

orthodontic movements of proximal teeth may not be entirely due to the attributed action 

of transeptal fibers (Stubley, 1976), particularly with thin interproximal bone. 

With tipping, the 1.2 N distal force on the bracket caused the tooth to bend in such 

a way that it cupped toward the distal. With translation, the 1.2 N force caused the same 

cupping, but tooth deformation due to the 14.0 N-mm counter-clockwise moment (buccal 

view) on the bracket must be superimposed. That moment by itself would cause cupping 

of the tooth in the opposite direction with a magnitude that is sufficient to produce net 

root cupping toward the mesial when combined with the force. Thus, tipping and 

translation bent the root in opposite directions (Fig. 14, B). This was also shown in an 

earlier 2-D FE model (Katona, 1994). 

Furthermore, these bending distortions generated longitudinal stresses, by far the 

largest stresses in the root. With distal translation, on the distal side, usually referred to as 
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the “compression” side, the root was entirely in tension (Fig. 16, A). On the mesial (the 

“tension”) side, the root was in compression (Fig. 16, B). With tipping, the distal apical 

half is generally considered to be “tension” while the gingival half is “compression.” Yet, 

the entire distal of the root was in compression (Fig. 17, A). On the mesial side, there was 

a similar disparity, also in the apical half (Fig. 17, B). These examples illustrate the 

importance of defining not only the specific structure, but also the specific location 

within that structure, in which a state of stress is being reported or discussed. 

With distal translation, the distal PDL is correctly characterized as in 

“compression” because all stress components, expressed in terms of the principal stresses 

(S1, S2, and S3) or in terms of their directions (radial, hoop, and longitudinal) were 

indeed compressive (Fig. 18). However, that description does not convey the fact that the 

radial component is ~2.5 times larger than the other two, which, perhaps more 

importantly, are nontrivial (Fig. 18, D). Similarly, the mesial side is the “tension” side. In 

tipping, on the distal side, the radial stress is S3 in the cervical half of the PDL, whereas 

it is S1 in the apical half. This illustrates the importance of observing stress directions 

when trying to correlate the mechanical environment with biological responses. 

It was found that the stress distribution pattern within bone is intricate. There 

were locations with quickly changing simultaneous tensile and compressive stresses in 

different directions. The stress field complexity can be attributed, in part, to two factors. 

First, because the line-of-action of the force intersects the socket slightly buccal to the 

thin interproximal bone, a complex asymmetric condition is created. Second, the bending 

deformations of the relatively thin interproximal septum of bone, particularly near the 

alveolar crest, had profound obfuscating effects on the local bone stresses. So, even with 



54 
 

translation, the principal stresses swap directions at least once, and their magnitudes vary 

considerably. In tipping, this swap occurs twice. Moreover, the stress patterns can change 

dramatically depending on the alveolar bone shape and/or the presence of adjacent 

sockets, which could cause even more stress pattern variations (such as high longitudinal 

loads at the top of the crest in more realistic models). Thus, bone stresses appear to be 

sensitive to the modeling approach and to the clinical circumstances. In any case, as with 

the root, characterizing bone as the “tensile” or “compressive” side is inappropriate. 

Practically, the asymmetry of the high bone stresses complicates the appropriate selection 

of histological sections for the evaluation of bone response, assuming that bone stresses 

play a role in orthodontic mechanotransduction. 

Impact on Biological Responses 

The primary purpose of this chapter was the presentation of the details and 

nuances in the stress fields of orthodontically loaded alveolar structures. The possible 

implications for the mechanotransduction of bone formation and bone and root resorption 

are briefly discussed below. 

In general, the PDL stresses in the DAM plane were either entirely compressive 

or entirely tensile in all directions. However, it was demonstrated that the magnitudes of 

the tensile (or compressive) stresses were not equal in all directions. The ratios between 

radial, circumferential, and longitudinal stress magnitudes were ~2:1:1 for translation 

(Fig. 18) and ~3:1:1 for tipping (Fig. 19). These observations suggest the possibility that 

PDL stress directions, not only stress magnitudes, could play roles in the stimulation of 

biological responses. It is plausible that, for example, the radial stress component, 

because it pushes the PDL against/into bone and root, may have a larger impact on 
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biochemical signaling (Roberts, 2005; Roberts, 2004) or cell damage at the bone-PDL 

and root-PDL interfaces than the circumferential and longitudinal stress components. It 

could also be possible that PDL cells do not respond differentially to specific directions, 

but they do so to a change in volume (caused by hydrostatic stress). In that case, seeking 

correspondence with the average principal stress would be better than with a specific 

principal stress. Although the overall calculated tensile and compressive areas in the PDL 

are consistent with the known patterns of bone formation and resorption, respectively, 

and root resorption,(Chan & Darendeliler, 2006; Reitan, 1951) biological experiments are 

needed to evaluate the potential influences of stress directions. An interesting observation 

based solely on the presented data is that the tooth translation associated PDL stress 

gradients (Fig. 18, A-C) were inconsistent with the requirement that the bone socket must 

resorb uniformly along the entire length of its distal surface for translatory root 

displacement to occur. Thus, under the hypotheses that perfect translatory movement is 

clinically possible and PDL compression mediates bone resorption, some sort of 

threshold or saturation phenomenon must be involved. On the other hand, control could 

be attributed to the relatively flat hoop and/or longitudinal stress components (Fig. 18, 

D). The same discussion does not necessarily apply to the bone formation on the mesial 

side because formation is limited by the resorption on the distal side. (Roberts, 2005; 

Roberts, 2004) 

It is noteworthy that, with both loading conditions, the dominant root stresses are 

longitudinal and that they are perpendicular to the adjacent dominant radial PDL stresses. 

If root structure is taken into account, then tensile and compressive longitudinal stresses 

would tend to separate or crush the dentinal tubules, respectively, and affect the overlying 
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cementum differentially, particularly if there are preexisting root surface defects. This 

may impact root resorption in areas where osteoclastic activity is already present, for 

instance, due to orthodontic loads or dysfunctional occlusion, that cause additional 

fatigue-mediated root degeneration. There are regions in which bone resorption takes 

place and the root is in tension (the distal side under translation (Fig. 16, A), and the 

apical mesial half with tipping (Fig. 17, B) or compression (gingival half of the distal 

side with tipping (Fig. 17, A). Thus, although the PDL stresses better fit root resorption 

patterns, the possibility exists that root resorption is linked to combinations of root and 

PDL stresses in which the former enhances root susceptibility to the cellular activity 

triggered by the latter.  

With the hypothesis that there is bone response dependency on stress directions, 

bone stresses alone do not correlate with tooth displacement patterns. In tipping, for 

instance, there are two swaps in stress direction along the root axis. Based on previously 

published descriptions of tooth movement, the direction swap at approximately 5 mm 

apically does not seem to have any observable experimental or clinical impact. However, 

as proposed for root resorption, above, the presented data does not exclude the possibility 

of a combination of PDL and bone stress magnitudes and directions that produce loci of 

bone formation and resorption in some complex fashion. 

Another finding was that stress magnitudes were dependent on the type of tooth 

movement, in agreement with previous classic work (Tanne et al., 1989b). The primary 

implication is that the concept of an optimal orthodontic force magnitude depends on the 

type of tooth movement. The mechanical stimulus caused by the same force magnitudes 

in translation and tipping can be very different. Thus, one should speak about optimal 
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orthodontic loads (the combined forces and moments), and in specific dentoalveolar 

morphological conditions, rather than force magnitude alone, because ultimately, stresses 

are the likely mechanical stimuli. However, to apply this concept clinically, future work 

should focus on the specifics of how stress patterns are correlated to orthodontic 

responses.  

Finally, perhaps the main biomechanical limitation of the present model is the 

simulation of only static loads. Although these loads appear to be the main determinants 

of tooth displacement, they are always superimposed on normal function. Unfortunately, 

complete mechanical information to construct dynamic FE models is still unavailable. 

However, it is essential to view all aspects of the biomechanics response in the grand 

scheme of dynamic functional loads, which produce constant subperiosteal bone 

modeling, sometimes far from the PDL/bone interface (Roberts, 2005; Roberts, 2004). So 

far, there has been only one attempt in the orthodontic literature to systematically define 

the role of a static load superimposed on function (Roberts et al., 1984).  

 

Conclusions 

The mechanical environment associated with orthodontic tooth movement and 

root resorption is more complex than is generally appreciated. Often, it is 

counterintuitive. 

 

1. In the same region of root, PDL and bone, there can be predominantly 

compressive stresses in one structure, but tensile stresses in another. Thus, when 
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referencing a region of compression or tension, the structure in which it occurs 

must be specified. 

2. At a given point in any of the dento-alveolar structures, such as within bone, it is 

possible to have coexisting compression and tension in different directions. 

3. Even if the state of stress is purely compressive or tensile in a specific region of a 

structure, such as the PDL, the stress magnitudes can be different in different 

directions, i.e., the stress is 3-D and not purely hydrostatic. Thus, it is 

inappropriate to refer to orthodontic stresses simply as “pressure” or to perform 

simplified 1-D calculations taking force and root surface area into account. 

4. The principal stresses can swap their directions (and denominations) within a 

structure. A stress magnitude graph often displays sudden changes in behavior (as 

in Figure 19), which are typically a result of a change in direction. Consequently, 

previously described mechanical environments, based solely on stress magnitude 

plots, can be confusing, difficult to understand and/or to correlate with biological 

responses.  

5. To avoid ambiguities, when a description of the orthodontic mechanical 

environment is given in terms of compression and tension, references to a 

principal stress must include not only the structure, but also the predominant 

direction of the stress in question.  

6. The mechanical environment of the PDL is consistent with previously reported 

areas of root resorption and bone formation/resorption, and is, most likely, 

somehow, the main initiator of orthodontic mechanotransduction. Biological 

experiments in animal models are necessary to investigate the role of stress 
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directions, as they can affect the direction in which biological reactions take 

place. Because complex loading and root morphology in animal models causes 

non-trivial directional stress fields, careful choice of histological section planes 

based on FE-determined stress directions is highly recommended. 
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Comparison of Dentoalveolar Morphology in P2X7KO and WT Mice for the 

Development of Biomechanical Orthodontic Models 

Introduction 

The purpose of this study was to evaluate the role of the P2X7 receptor (P2X7R) 

in maxillary dental and trabecular bone morphology. P2X7R is an ATP-gated ionotropic 

channel, and a key mediator of inflammation and bone responses (North, 2002). It can be 

activated by extracellular ATP, a danger signal from cells under mechanical stress (Bodin 

& Burnstock, 1998; Milner et al., 1992; Patel et al., 2005; Schneider et al., 2006). This 

causes the accumulation of intracellular calcium, and the release of chemical mediators, 

such as PGE2 and IL-1 α and β, that have utmost importance in inflammation and bone 

biology (Brough et al., 2003; Ferrari et al., 2006; Gudipaty et al., 2003; Li et al., 2005; 

Lister et al., 2007).  

Proper function of P2X7R guarantees a proper acute phase response, helping to 

modulate the later chronic inflammatory reaction, the lack of which could lead to 

overwhelming macrophage infiltrate, even more apoptotic and necrotic cells, and 

generalized tissue damage (Lister et al., 2007).  

At the bone level, P2X7R activation has been shown to be an important 

mechanism in mechanotransduction. For instance, femurs of P2X7R KO mice had 

morphometric characteristics compatible with a lower formation and an increased 

resorption activity, leading to the conclusion that this KO mouse has a bone disuse 

compatible phenotype (Ke et al., 2003). Recently, it has been shown that P2X7R KO 

mice tibia have reduced sensitivity to mechanical loading, especially in males (Li et al., 

2005).  
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It has been suggested that IL-1 might have a role in tooth development and 

eruption, because IL-1 receptors are expressed by ameloblasts during the secretory phase 

of amelogenesis, and odontoblasts during dentinogenesis (Wise, Lin & Zhao, 1995; Xu et 

al., 1998). These characteristics make P2X7R a particularly suited candidate gene to 

investigate a possible mechanical and genetic interaction in tooth and bone development. 

In addition, the importance of P2X7R has been extensively studied in fibroblasts and 

osteoblasts, which have fundamental roles in the initiation of tooth movement (Yee, 

1979; Yee, Kimmel & Jee, 1976). Orthodontic tooth movement involves two 

fundamental processes possibly mediated by P2X7R: the metabolism of an associated 

necrotic-type tissue (hyalinized periodontal ligament tissue) and bone 

modeling/remodeling (Reitan, 1994; Roberts, 2005; Roberts et al., 1981; Roberts, 2004; 

Rygh, 1974; Rygh, 1976). External root resorption, an undesirable side effect of tooth 

movement, has been associated with the presence of macrophages, possibly linking it to a 

chronic inflammatory response (Brudvik & Rygh, 1993a; Brudvik & Rygh, 1993b; 

Brudvik & Rygh, 1994a; Brudvik & Rygh, 1994b; Rygh, 1974; Rygh, 1976; Saito et al., 

1991a). A strong association has been reported between IL-1 beta and root resorption 

(Al-Qawasmi et al., 2004; Al-Qawasmi et al., 2003a).  

Orthodontic responses are dependent on mechanical stimuli (stresses), which, in 

turn, largely depend on the morphology of the dentoalveolar structures and the applied 

load vectors (Choy et al., 2000; Tanne et al., 1991). Any alteration in dentoalveolar 

morphology, due to the lack of the P2X7R for example, would directly affect the PDL 

(periodontal ligament) stress patterns, and therefore all PDL stress-linked biological 

phenomena. This could complicate the comparison of bone modeling and root resorption 
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in different mouse strains. When these responses are analyzed in a specific region, they 

could be caused solely by mechanical environment changes, not by purely inflammatory 

effects, thus not characterizing a true physiological difference at the reactive 

inflammatory level. 

Appropriate structural models are essential for FEM (Finite Element Method) 

calculations of the stresses and strains within dentoalveolar structures. Thus, this 

preliminary study compares the dentoalveolar morphologies of P2X7R KO (in the 

C57B/6 strain) and C57B/6 WT mice using microCT-based and histological methods. 

Specifically, a protocol for the evaluation of their maxillary first molars, the subject of a 

subsequent experimental study, and their surrounding trabecular bone, was developed. 

We hypothesized that there would be no gross differences in their dentoalveolar 

morphology. Failure to reject the hypothesis would justify a single structural model to 

represent both strains. On the other hand, two structural models, one specific to each 

strain, would be necessary if the hypothesis is rejected. Furthermore, the latter would 

require the development of a strategy to normalize biological responses according to the 

stresses in each strain of mouse.  

There are no morphometric data on BMD (bone mineral density), the structure of 

maxillary trabecular bone, or tooth morphology for the C57B/6 WT and P2X7R KO 

mice. Additionally, it has been demonstrated that the interaction of genetic and non-

genetic factors influence bone quantity and architecture differentially in different bones, 

to the extent that, even within the same bone, information from a specific site cannot be 

extrapolated to another (Judex et al., 2004). Thus, the necessity for specific morphometric 
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analysis of mineralized tissue at the site of interest for the purpose of estimating its 

material properties is further justification for this study. 

Materials and Methods 

This animal study was approved by the Indiana University School of Dentistry 

IACUC. A total of 31 adult male mice (19 WT and 12 KO), sacrificed at 17 weeks and 3 

days (± 3 days) of age, were used in this study. The WT mice were purchased from 

Taconic Farms, Inc (Germantown, NY- USA). The KO mice were obtained from a 

colony maintained by the Orthopedic Biomechanics Laboratory at Indiana University 

School of Medicine (IUSM). After arrival, the animals were allowed at least 1 month of 

acclimation. They were euthanized by inhalation of carbon dioxide, and after 

decapitation, the heads were washed and put in NBF solution in the refrigerator for 1 day. 

Sections of the mice maxillas were extracted after dissection and fixed in the refrigerator 

for an additional day. Then, they were placed in 70% ethanol solution and kept at 

ambient temperature. The maxillary sections were coated with paraffin and scanned using 

a Skyscan 1072 microCT (Skyscan, Kontich, Belgium). Reconstruction of the teeth in 2D 

transverse slices was performed using NRecon (Skyscan, Kontich, Belgium) software. 

All scans and reconstructions were standardized with optimized settings as described 

previously (Viecilli et al., 2007). 

Molar Morphology 

The reconstructed data were imported into Mimics 11.1 (Materialise, Aarstelar, 

Belgium). This software was used to segment and perform comparative measurements of 

the teeth, segmented as shown in Figure 7, and defined below. 
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1. Crown length: distance between the midpoint of the mesial marginal ridge 

and distal marginal ridge. 

2. Crown width: distance between the midpoints of the lines formed by union 

of the distal and mesial cusps, buccally and lingually. 

3. Crown height: distance between the cemento-enamel junction and the 

occlusal plane of the maxilla. 

4. Root length (measured on each root, mesial (M), disto-buccal (DB) and 

disto-lingual (DL)): distance between the apex and the bone insertion line, 

measured along the root canal. 

5. Maximum root diameter (measured on each root): maximum root diameter 

below the furcation, measured perpendicular to the root canal.  

6. Minimum root diameter (measured on each root): minimum root diameter 

below the furcation, measured perpendicular to the root canal. 

7. Tooth volume: total volume of the mineralized tissue of the tooth. 

3D Bone Morphometry 

CT Analyzer 4.1 (Skyscan, Kontich, Belgium) software was used to perform 3D 

bone morphometry. The bone used for analysis was sampled from a 0.5mm diameter 

sphere (Fig. 8). The sphere was chosen so that it was equidistant to all roots, and located 

at the midplane between the mesial root apex and the furcation, parallel to the occlusal 

plane. To segment the bone from the rest of the tissue inside this sphere, a global gray 

value threshold was standardized for all specimens. Bone mineral density and Hounsfield 

Unit calibrations were performed using scans of water and hydroxyapatite rods (CIRS, 
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Norfolk-VA, USA) of dimensions similar to the specimens and known mineral densities 

of 0.75g/cm3 and 0.25g/cm3.  

Histology 

Histology was conducted after the teeth were scanned to visually check for gross 

changes in tissue morphology such as disruptive developmental effects in cementum, 

dentin, enamel and PDL. The spatial position of the section plane was standardized. The 

maxillas were embedded in methyl-methacrylate, and ground to 20 µm sections using a 

series of papers up to 1200 grit on an ExaKt system (ExaKt Technologies, Oklahoma 

City-OK-USA). The sections were polished down to 8-10µm using papers of 2500 and 

4000 grit. They were then deplasticized using acetone and xylene, and stained using a 

modified Masson’s trichrome stain protocol, which was optimized for MMA sections of 

teeth (Fig. 24). 

Finite Element Model 

After the results of the morphological comparison were known, the reconstructed 

sections of a specimen representative of average dimensions were imported into Amira 

(Visage Imaging, Dusseldorf, Germany) software. Bone, PDL and tooth were segmented 

into different bodies and smoothed to guarantee a mesh with high quality elements (free 

of ill-conditioned elements). The tissues were meshed with 4 noded tetrahedrons. The 

resulting model had strong anatomical fidelity, keeping the cortical bone and internal 

trabecular structure as distinct parts of the model (Fig. 25). Nodes of each material were 

shared at the interfaces. The model was imported into IDEAS 10, and saved in an IGES 

format to be imported into ANSYS 10, the finite element analysis software, where 

elements were converted into approximately 200K SOLID45 tetrahedrons. The material 
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properties were established based on BMD of the representative specimen and previously 

determined rodent data (Kawarizadeh, Bourauel & Jager, 2003b).  

Statistics 

Because of the reduced number of mice in the KO group, Mann-Whitney’s non-

parametric test was used to compare measurements between strains. The significance 

level was set at 5%. 

Results 

The results for molar morphology comparison are shown in Table II. None of the 

measured dimensions revealed a statistical difference. The results for bone morphometry 

are depicted in Table III. Although none of the measurements revealed statistical 

significance at the 5% level, there was a trend towards decreased trabecular number and 

increased trabecular separation in the KO group (p=0.18 and 0.13 respectively). The 

unexpected strongest trend was towards a higher bone BMD in the KO group, 0.91 g/cm3 

compared to 0.78 g/cm3 in the WT (p=0.1). 

Evaluation of the histological sections, performed with assistance from an 

experienced pathologist, did not reveal any typical noticeable difference in structural 

integrity of the tissues. Two KO mice demonstrated some mild level of enamel 

malformation, evidenced by brownish colored enamel spots similar to amelogenesis 

imperfecta that was detectable under the dissection microscope. Despite these findings, 

closer evaluation revealed no consistent differences in the mineral content or structure of 

teeth in the microCT or histology.  

The lack of significant results in the morphological comparison leads to modeling 

of both the WT and KO mice with the same mechanical characteristics for orthodontic 
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purposes. A single finite element model, representative of the approximate average 

morphological characteristics, was constructed to evaluate the stresses and strains in the 

PDL, and establish a rationale for histological cuts and biomechanical analyses in future 

studies (Fig. 26). 

Discussion 

The results demonstrated a trend towards increased SMI, Tr.Pf and Tr.Sp in KO 

mice, suggesting that KO mice have increased trabecular spacing, decreased connectivity 

and a weaker, rod-like trabecular structure. On the other hand, there was a trend toward 

increased BMD in the KO mice. Although these trends are not statistically significant, 

their combination suggests a possible compensatory mechanism for alveolar bone 

strength in the P2X7R KO mice: the tendency to poor trabecular structure is compensated 

by higher mineral content.  

This is in partial contrast to previous studies that showed significant differences in 

bone morphometric parameters between the P2X7R WT and KO mice in other bone sites. 

Studies performed in the femur and tibia revealed a tendency toward lower BMD, higher 

catabolic, and lower anabolic bone activity in the KO mouse under unloaded and 

artificially loaded conditions (Ke et al., 2003; Li et al., 2005).  

In this study, adult mice (17 weeks and 3 days of age) were used, whereas in the 

original femur and tibia morphology comparison study by Ke et al., littermates and young 

adult mice (2 weeks and 9 weeks were used). The mechanosensitivy study by Li et al. 

also used older mice (16 weeks of age), to prevent interference of growth-associated bone 

modeling in the data. Although it is possible that differences in the developmental age 
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might have caused the contrast between this study and the ones mentioned above, other 

biological complexities are probably the best candidates to explain it, as described below. 

The immediate cause for the disagreement in the long bone and alveolar bone 

phenotypes is a difference in genetic control of bone development. The alveolar bone is 

formed de novo through intramembranous osteogenesis during development, and the long 

bones are developed based on a cartilaginous scaffold (endochondral osteogenesis). The 

formation of bone in endochondral osteogenesis involves the hypoxia and apoptosis of 

hypertrophic chondrocytes (Hirao et al., 2006). The metabolism of apoptotic cells is at 

least partially controlled by the release of cytokines such as IL-1β, which is dependent on 

P2X7R activation (Chen & Brosnan, 2006). Moreover, IL-1β induces inhibition of type II 

collagen expression, controlled by the JNK and c-Jun/AP1 pathways (Hwang et al., 

2005), and ultimately results in inhibition of Sox-9, which controls chondrocyte 

differentiation (Kronenberg, 2003). Since P2X7R KO mice can’t adequately process and 

release IL-1β, it is natural that only mineralized tissues formed by endochondral 

ossification, such as long bones, could be affected by this deficiency. An analogous 

example of the importance of the ossification pattern in the genetic influences on bone 

phenotype has been reported in the literature. TNFR-1 KO mice, which lack a receptor 

that binds to TNF-α, showed an altered phenotype in endochondral osteogenesis but not 

in intramembranous osteogenesis (Lukic et al., 2005). 

From a biomechanical/environmental standpoint, the differences between maxilla 

vs. femur/tibia results could also be attributable to complexities associated with the 

mechanism of bone mechanotransduction. It has been shown that long bones are affected 

by the frequency and magnitude of strain, and the behavior of the surrounding tissues 
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(Burr, Robling & Turner, 2002; Robling, Castillo & Turner, 2006a; Robling & Turner, 

2002). The outcome of the loading patterns, bone formation or resorption, is dependent 

on the resulting expression of the biochemical regulators of bone remodeling. Absence of 

the P2X7R resulted in decreased secretion of PGE2 and bone formation in long bone 

under specific loading conditions. The alveolar bone is typically subjected to masticatory 

loads, which most likely have a different frequency and magnitude if compared to long 

bones. Since the loading frequency and magnitudes in the maxillary bones are typically 

smaller, the resulting small difference in PGE2 production would most likely not produce 

a different phenotype. It is also possible that mechanical loading of the PDL, as a result 

of occlusal loads, leads to a different gene expression and activation profile than the one 

that results from the loading of long bones. Due to different gene arrays controlling bone 

formation at different sites, the strain thresholds for an osteogenic response vary with 

location (Hsieh et al., 2001). 

Our results confirmed previous findings that bone characteristics are very site 

specific (Judex et al., 2004). Biomechanical models of mineralized tissue should be 

constructed based on local analysis rather than on extrapolation of site-specific data to the 

entire skeleton. 
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Orthodontic Mechanotransduction and the Role of the P2X7 Receptor 
 

Introduction 

The sustained cellular activity associated with orthodontic tooth movement is well 

defined (Krishnan & Davidovitch, 2006; Meikle, 2006), but the initial 

mechanotransduction of the orthodontic response is obscure. The purpose of current 

study is to describe the role of the P2X7 receptor in the transduction of mechanical 

loading on the bone adaptation and external root resorption (ERR) responses that are 

associated with orthodontic loads.  

To experimentally determine individual roles of molecular and mechanical factors 

in orthodontic responses, both need to be simultaneously controlled. Data on periodontal 

ligament (PDL) reactions following orthodontic force is restricted primarily to rodents. 

Extrapolating those results to humans would require appropriately scaled orthodontic 

force magnitudes. This problem was recently discussed in a systematic review that 

searched for evidence of optimal orthodontic force magnitudes (Ren et al., 2003). 

Moreover, the complex shape of rodent teeth requires histological sectioning planes that 

take the 3D nature of stresses and strains into account. For instance, it is incorrect to 

assume that “compression” and “tension” areas in the PDL are always along the line of 

action of the force, because typically tooth displacements and rotations occur in all three 

planes of space in these models.  

Stress analysis with finite element (FE) modeling is the state-of-the-art procedure 

for defining the zones of compression and tension in the PDL. Thus, FE modeling is a 

reliable method for determining the optimal orientation for histological sections. Because 

of biomechanical principles that are familiar to orthodontists, the ideal sectioning plane 
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should approximate the stress distributions associated with single rooted teeth tipping in 

one plane. 

There are also biological complications involved in controlling orthodontic 

experiments. Most studies are performed on animals with diverse genetics, resulting in 

highly variable biological responses, which are difficult to partition into biological and 

mechanical variability. Despite attempts to establish relationships between mechanical 

stimuli and orthodontic responses (Katona et al., 1995; Kawarizadeh et al., 2004) the 

specific relationships remain elusive, and controversies remain on the specific roles of 

mechanics and biology in individual variability. 

A clinically relevant biomechanical mouse model of orthodontic treatment was 

developed to overcome these difficulties. Among other advantages, mice share 99% of 

their genes with humans, thus they are very good animal models for studies of human 

biology. Mice from an inbred strain share 99.99% of their genetic material. By using a 

single strain, the role of genetic variation in the dispersion of data is practically 

eliminated. Because inbred mice have the same tooth and bone morphology, they can be 

modeled using a single FE model (Viecilli et al., Submitted in 2008). Using stress results 

from an FE model of a human tooth, it is possible to calculate the orthodontic loads that 

cause similar peak stress levels in mice. Furthermore, it is possible to localize histological 

planes in which the stress magnitudes and directions approximate those of the human 

compressive and tensile zones in the PDL of single rooted teeth exposed to rotation in 

one-plane or uncontrolled tipping.  

Knock-out (KO) mice are invaluable for studying the role of individual genes in 

eliciting a biological response. KO mice differ from the inbred wild-type (WT) strain 
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essentially by the deletion of a single (knocked-out) gene. In this study, the role of the 

P2X7 receptor gene (P2X7R) in the initiation of orthodontic tooth movement was 

studied. A previous study revealed that the mice used in this study (P2X7R KO and 

C57B/6 WT) have similar dentoalveolar morphology and can, therefore, be represented 

by the same FE model (Viecilli et al., Submitted in 2008). 

The P2X7 receptor is an ATP-gated ionotropic channel and a key mediator of 

inflammation and bone adaptation responses (North, 2002). It can be activated (opened) 

after binding to extracellular ATP, which is a danger signal from cells under mechanical 

stress (Bodin & Burnstock, 1998; Milner et al., 1990a; Schneider et al., 2006). Opening 

of the channel causes the accumulation of intracellular calcium and the release of 

inflammatory mediators such as PGE2, IL-1α and IL-1β, all fundamental in the control of 

bone physiology (Brough et al., 2003; Ferrari et al., 2006; Gudipaty et al., 2003; Li et al., 

2005; Lister et al., 2007). 

Recent research has shown that this receptor has a major role in the metabolism of 

apoptotic and necrotic tissue. After mechanical trauma, damaged cells release ATP that 

leads to the activation of P2X7 in macrophages and other cell types, which in turn release 

IL-1 cytokines (Qu et al., 2007). This is a basic general transduction mechanism of 

mechanical stimulus into a biological response. The released cytokines affect non-bone 

marrow derived cells, which, in turn, release chemoattractants for neutrophils and 

lymphocytes (Chen & Brosnan, 2006). The neutrophils can act quickly to eliminate 

apoptotic cells and prevent further necrosis. P2X7R KO-derived macrophages do not 

release IL-1 in response to ATP, resulting on an attenuated acute inflammatory response 

(Labasi et al., 2002; Lister et al., 2007). Normal function of the P2X7R results in an 
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optimal acute phase response that extends the life cycle of neutrophils (Barlow et al., 

2006). An inefficient acute response can lead to an overwhelming chronic response: 

massive macrophage infiltration, abundant apoptotic and necrotic cells, and generalized 

tissue damage (Lister et al., 2007). 

P2X7R activation has already been shown to be an important mechanism in long 

bone mechanotransduction: P2X7R mice tibia have reduced sensitivity to mechanical 

loading due to decreased secretion of PGE2 (Li et al., 2005). Thus, the P2X7R is an ideal 

candidate gene for mediating the orthodontics response, which involves the metabolism 

of an associated necrotic-type tissue (hyalinized periodontal ligament tissue) and bone 

modeling/remodeling (Reitan K, 1994; Roberts, 2005; Roberts et al., 1981; Roberts, 

2004; Rygh, 1974; Rygh, 1976). These processes are mediated by the P2X7R in other 

physiological systems. Moreover, external root resorption (ERR), an undesirable side 

effect of tooth movement, has been associated with the presence of macrophages in 

several studies (Rygh, 1974; Rygh, 1976; Saito et al., 1991a). In addition, a strong 

association has been previously reported between IL-1 β and ERR in animal and clinical 

studies (Al-Qawasmi et al., 2004; Al-Qawasmi et al., 2003a). P2X7R has also direct 

clinical relevance because there are many functional human polymorphisms in the 

P2X7R gene, which can induce different levels of affinity of these receptors to ATP. One 

of these polymorphisms, a null allele that occurs in 2% of the Caucasian population, is 

especially important because it results in reduced expression of the ion channel by 50% 

(Gu et al., 2004). It is hypothesized that variability in the expression of the P2X7R gene 

is an important factor in the individual variation to applied orthodontic loads.  
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Materials and Methods 

Animals 

This animal study was approved by the Institutional Animal Care and Use 

Committee of the Indiana University School of Dentistry. Data for this study were 

obtained from 86 male mice (55 C57B/6 WT and 31 P2X7R KO). The 16 weeks old (± 3 

days) mice were distributed in 7 groups: WT controls (19), WT controls+bone labels (9), 

WT force (18), WT force+bone labels (9), KO controls (12), KO force (10), KO 

force+bone labels (9). The mice that received no bone labels were euthanized at 17 weeks 

and 3 days of age, and the labeled mice were sampled at 17 weeks and 4 days for bone 

formation analysis. The animals were randomized and the examiner was blinded with 

regard to KO/WT strain identification by a coded system until the analysis was complete. 

The WT mice were purchased from Taconic Farms, Inc (Germantown, NY- USA). The 

KO mice were obtained from a colony developed by the Orthopedic Biomechanics 

Laboratory at Indiana University School of Medicine (IUSM). After arrival, the animals 

were allowed at least 1 month of acclimation, to compensate for their different origin. 

They were euthanized by inhalation of carbon dioxide, and after decapitation, the heads 

were washed and prepared for histological and microCT analysis.  

MicroCT Scans and 3D Reconstructions 

The mice heads were put in cold neutral buffered formalin (NBF) solution and 

stored in a refrigerator for 24 hours. Sections of the mice maxillas were extracted after 

dissection and fixed in NBF in the refrigerator for an additional day. Then, they were 

placed in 70% ethanol solution and kept at ambient temperature. The maxillary sections 

were coated with paraffin to prevent dehydration and scanned in a Skyscan 1072 
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microCT (Skyscan, Kontich, Belgium). Reconstruction of the maxilla in 2D transverse 

slices was performed using NRecon (Skyscan, Kontich, Belgium) software. All scans and 

reconstructions were standardized with optimized settings as described previously 

(Viecilli et al., 2007). 

The reconstructed data were imported into Mimics software (Materialise, 

Aarstelar, Belgium), where the left molars were separated from PDL and bone for 

quantification of tooth volume and movement (Fig. 27, A and B). 3D tooth movement 

was also quantified by measuring the minimum distance between the crowns in the non-

labeled force groups. 

3D Bone Morphometry 

CT Analyzer (Skyscan, Kontich, Belgium) software was used to perform 3D bone 

morphometry. The bone used for analysis was sampled from a 0.5mm diameter sphere, 

chosen so that it was equidistant to all roots, and located at the midplane between the 

mesial root apex and the furcation, parallel to the occlusal plane (Fig. 27, C). To segment 

the bone from the rest of the tissue inside this spherical sample, a global gray value 

threshold was standardized for all specimens. Bone mineral density and Hounsfield Unit 

calibrations were performed using scans of water and hydroxyapatite rods (CIRS, 

Norfolk-VA, USA) of dimensions similar to the specimens, and known mineral densities 

of 0.75g/cm3 and 0.25g/cm3. Details of this methodology have been described previously 

(Viecilli et al., 2007). 

Finite Element Models 

The left maxillary molar of a mouse was used to construct the FE model (Viecilli 

et al., Submitted in 2008). The segmentation and meshing was performed with Amira 
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(Visage Imaging, Dusseldorf, Germany) software. Bone, PDL and tooth were segmented 

and smoothed to guarantee a mesh free of self-intersecting units. The tissue surfaces were 

meshed with four-noded tetrahedrons. The resulting model had strong anatomical fidelity, 

keeping the characterized complex internal trabecular structure as part of the model (Fig. 

27, C). Nodes of each material were shared at the interfaces. The model was imported 

into IDEAS 10, and saved in an IGES format to be imported into ANSYS 10, the finite 

element analysis software, where elements were converted into approximately 200,000 

SOLID45 tetrahedrons. The material properties used were obtained from rodent tooth 

displacement experiments on autopsy specimens (Kawarizadeh et al., 2003b). The PDL 

was modeled as a nonlinear (bilinear) isotropic material. The model is shown in Figure 

27, D. 

For the human FE model, a maxillary segment containing a right upper canine 

was constructed using computer-aided design (CAD) software (Dassault Systems S.A., 

Concord-MA, USA). The CAD file was then imported into ANSYS, where it was 

meshed with ~200,000 10-noded tetrahedrons for FE analysis. The material properties 

were also based on previously determined human canine displacement experiments, and 

the PDL was modeled as a nonlinear (bilinear) isotropic material (Vollmer et al., 1999). 

The modeling process is shown on Figure 28. A thorough stress analysis of this model 

has been described previously (Viecilli et al., 2008). 

Force Systems and Stress Analysis 

To determine a clinically translatable force magnitude for the mouse tooth, a 

simulation was conducted using the human FE model. A relatively high tipping force 

(1.2N) was applied to the bracket to produce a simple distal crown tipping of the canine. 
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(An anti-rotation first order couple was also applied.) The mean nodal stress levels in all 

regions of the PDL were computed as a range. Then, orthodontic force was applied 

iteratively in the mouse FEM until the calculated human canine mean principal stress 

overall range in the PDL (-35 to 25KPa) was approximated. With 0.03N (~40 times 

smaller than the 1.2N human force), the mean principal stress range in the PDL was -25 

to 35KPa in the mouse, similar to the calculated human levels. The appropriate force 

magnitudes to compare human to mouse response could be well estimated with this 

method, despite the inherent morphological differences between the teeth. Because the 

mouse maxillary first molar has three roots, each one has a different stress magnitude 

range: generally, smaller roots experience higher magnitude stress ranges than larger 

roots. 

A custom mouse closed coilspring made of very thin 0.003’’ superelastic NiTi 

wire, with a lumen of 0.019’’, was designed and then produced by G&H Wire Co 

(Greenwood, IN- USA). Spring measurements were performed using a 0.01N resolution 

transducer (Orthomeasurements, Fairfield, CT- USA). A pilot study was conducted to 

obtain the average line of action of the force in six mouse specimens. The springs were 

cut to 3mm of length, to obtain a 0.03N force with 2mm of activation, and then tied with 

a metallic ligature to the left maxillary molar and incisor. At the incisor, it was also 

secured with composite resin. The spring insertion procedure and the final average 3D 

line-of-action are shown on Figure 29. Note that the FE calculated maximum 

compression directions are not coincident with the line of action of the force, because the 

tooth displacement demonstrated differential components in all three planes of space 

(simultaneous 3D rotations and translations). It is ideal to use principal stresses in this 
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type of analysis, because orthodontic responses are associated with compression and 

tension. 

 From an engineering standpoint, maximum compression and tension are 

determined in 3D by the calculation of the 3 principal stresses. Each one occurs in a 

specific direction, which aids in the determination of the histological sectioning plane. 

Principal stresses are always compressive or tensile, invariant, and have only three 

ortogonal components. The three principal stresses can be mathematically obtained from 

a general (three shear and three normal components) state of stress by rotating the 

coordinate system used to describe them to a specific position, so that all the stresses 

become normal (no shear). Both representations of the stress state are physically 

equivalent, i.e., the effect of application of three principal stress components in a body is 

the same of application of any mathematically equivalent stress matrix with six stress 

components. 

Histology 

After the teeth from the control and force WT/KO groups were scanned in the 

microCT instrument, histological sections were prepared to: 1. quantify the incidence of 

root resorption, 2. assess the extent of hyalinized PDL tissue, and 3. determine the 

cellular types involved in its resorption 4. measure bone formation.  

The choice of root and section plane for the ERR study was determined by 

identifying the direction and magnitude of the FE calculated maximum compressive 

stress in the mouse PDL. This was found in the PDL of the disto-buccal root, the smallest 

of the three roots. In the PDL of this root, the highest principal compressive stress is 

minimum near the apex and reaches its maximum value near the furcation. This 
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maximum value is equivalent to the maximum stress obtained by high tipping force of 

1.2N on the PDL of the maxillary human canine model. The schematic in Figure 30 

illustrates the rationale for the choice of direction of the cutting plane. A more detailed 

mechanical description of stress directions was described in a previous FE study (Viecilli 

et al., 2008). 

The bone label groups were injected peritoneally after 2 days (calcein green, 30 

mg/Kg) and 9 days (alizarin complexone, 50mg/Kg) of applied force. The disto-palatal 

root was chosen for the bone formation analysis because it demonstrated a relatively 

constant tipping pattern of displacement at the tension side, which was consistent with 

stress levels calculated for typical human canine movement. In the PDL of this root, the 

maximum tensile stress is equivalent to the maximum value obtained from a maxillary 

human canine tipping with 0.5N of force. The cutting plane position for bone formation 

was determined according to the maximum tensile stress directions in this root. The 

cutting plane was parallel to the one used for root resorption, passing through the long 

axis of the disto-palatal root. The movement tendency predicted by the FEM in the bone 

formation and ERR histological sectioning planes is shown on Figure 31. 

Thin mineralized sections were produced to preserve nuclear and cytoplasm shape 

and improve cell identification (non-labeled groups), and to avoid layered 

superimposition and allow preservation of the fluorescent bone labels (bone labeled 

groups). The maxillas were embedded in MMA (methyl-methacrylate), and slowly 

ground using a series of papers up to 1200 grit on an ExaKt system (ExaKt Technologies, 

Oklahoma City, OK- USA), to obtain a section as close as possible to the plane of 

histological analysis, traced on the acrylic surface as determined by FEM. The sections 
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were polished down to 8-10um (nonbone-labeled groups for ERR analysis) and 20um 

(bone-labeled groups) using papers of 2500 and 4000 grit. The nonbone-labeled sections 

were then deplasticized using acetone and xylene and stained using a modified Masson’s 

trichrome stain protocol optimized for MMA sections of teeth. 

Each disto-buccal root was observed under a microscope with 75x magnification 

and photographs were taken. A standardized grid was superimposed to each figure using 

ImageJ (public domain NIH image editing software). The compressive side of the PDL of 

the disto-buccal root was then divided into 3 equally spaced regions according to finite 

element analysis data: (1) high stress (near furcation), (2) medium stress, and (3) low 

stress (near apex). ERR was measured by counting squares adjacent to the root that 

contained resorption cavities. The grid was set up so that each region would have 

approximately 10 squares (square size ~35μm). The final resorption index was obtained 

by dividing this number by the total number of squares in each region, i.e., a score of 0.4 

means 4 regions out of 10 had resorption cavities. Similarly, the hyalinization score was 

obtained by counting the total number of squares that contained necrotic tissue, and 

dividing by the total number of squares in the compressive side of the PDL. These 

methods are a higher resolution modification of a previously developed protocol (Al-

Qawasmi et al., 2006; Lu et al., 1999). The identification of cell types was performed 

with the assistance of an experienced pathologist. 

The PDL of the disto-palatal root was chosen for bone formation analysis. Bone 

interlabel distance was quantified by averaging the distances between the center of the 

calcein green and alizarin complexone labels at 3 different locations within different 

regions of the PDL. The regions were determined by orienting the long axis of the tooth 
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vertically, tracing parallel lines at the average cervical bone level and the apical contour 

of bone, and then dividing the interval in 4 equal segments (Fig. 32). The three calculated 

nodal stresses (n1, n2 and n3) and the three measured bone interlabel distances (d1, d2 

and d3) indicated in the figure were averaged to obtain Stress (mean nodal stress in each 

region) and BILD (mean bone interlabel distance), respectively. This was performed with 

ImageJ by calibrating 250 micrometer bars according to the pixel size of the photograph. 

All the data from KO and WT specimens, in each region, were averaged within each 

type. The values were recorded for statistical regression. 

Statistics 

Mann-Whitney’s non-parametric test was used to compare single measurements 

(tooth movement, hyalinization score, tooth volume and ERR score) between the two 

different mouse types. Kruskal-Wallis analysis of variance and Tamhane post-hoc tests 

were used to compare root resorption in different regions of the disto-buccal root within 

each mouse type. More conservative, non-parametric tests (and the inter-quartile range as 

a measurement of dispersion) were chosen because the assumption of a Gaussian 

distribution of data was questionable (n<20 in each group). In some cases the data clearly 

did not follow a Gaussian distribution (for instance, ERR control section scores were 

skewed toward 0). This justifies the use of medians as the measurement of central 

tendency. 

Linear regression was conducted to assess the relationship of bone formation with 

stress after a natural logarithmic transformation. Analysis of Covariance (ANCOVA) was 

used to compare slopes of the bone formation vs. stress lines in KO and WT mice. The 

significance level for all analyses was set at 5%. 
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Reliability analysis was performed by repeat measurement of 10 randomly chosen 

specimens/data points for each method, after an interval of at least one week, and 

calculating the Pearson correlation. The reliability coefficients of the measurement 

methods of root volume, bone morphometry, bone interlabel distances and 

hyalinization/root resorption scores, were 97%, 94%, 92% and 89% respectively. 

Results 

Hyalinization and ERR 

Ten days after the force was applied, the KO mice had ~8x more (p<0.001) 

hyalinized (necrotic PDL) tissue than the WT (Fig. 33). There was no difference in the 

incidence of ERR between the regions for all control animals across both strains. For the 

WT force group, ERR was 1.8x higher (p=0.002) and 3.7x higher (p<0.001) in the area of 

high stress compared to medium and low stress, respectively. A similar pattern was noted 

for the KO force group: respective scores were 4.7x (p=0.001) and 3.5x (p=0.002), (Fig. 

34).  

When comparing root resorption between KO and WT mice in different regions, 

the Kruskal-Wallis test determined that there was a difference, and that RR was elevated 

in the force groups. The post-hoc test revealed that the significant difference was in the 

region of the highest compressive stress, with 27% more (p<0.02) root resorption craters 

in the KO mice (Fig. 35). There were no significant differences between WT and KO 

controls in any of the regions, nor in regions 2, or 3 in treated mice. ERR was rarely 

observed in tension areas, where hyalinization did not occur. The few observed lesions 

were very shallow compared to the ones that occurred in compressive zones. 
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To confirm that 2D root resorption data was consistent in 3D, tooth volume 

between strains in control and treated animals after the 10 day experimental period were 

compared. Figure 36 illustrates the ~10µm scan resolution of the microCT scan, and how 

it is able to detect resorption lesions. The test revealed that there was no difference in 

tooth volume between control animals after the experimental period. However, tooth 

volume was 8% larger (p=0.002) in the treated WT compared to the treated KO, which is 

consistent with the elevated ERR in the KO animals (Fig. 37). 

Histological sections revealed gross differences between the KO and WT. 

Typically, a larger number of neutrophils, characterized by lobular shaped nuclei and 

small cytoplasm, were detected accompanying a mass of macrophages that accumulated 

at the border of the hyalinized zone in WT mice (Fig. 38), which was a high stress area 

prior to bone resorption. In many WT sections the small neutrophils, identified by their 

characteristic nuclear shape, were active enough to penetrate the narrow hyalinization 

zone to resorb necrotic tissue. The KO PDL space was characterized by cells of larger 

cytoplasmic area and large distance between regular shaped nuclei, suggesting the 

predominant cells were macrophages. The presence of neutrophils was rare in the KO. 

The macrophages did not penetrate the compressed hyalinized tissue, although they 

accumulated at its periphery and failed to remove the hyalinized tissue as effectively as 

the WT cells. Severe ERR and undermining bone resorption occurred adjacent to the 

cellular mass in the region where the initial compressive stress after loading was 

maximum.  
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Bone Response and Tooth Movement 

The within mouse type comparison of alveolar bone morphometric characteristics 

of control and treated animals shows that orthodontic force causes significant bone 

resorption within the alveolar process and at surfaces away from the PDL/bone interface 

(Table IV). This is a manifestation of the rapid acceleratory phenomenon (RAP). It is 

especially evidenced by statistically significant decreases in BMD and BV/TV, as well as 

an increase in BS/BV in WT and KO mice. 

Disto-palatal socket interlabel bone distances were used to evaluate the 

relationship between bone formation in each mouse type and the associated FE-calculated 

PDL maximum tensile stress. Regions 5 - 8 were used for analysis because they 

displayed no evidence of bone formation (growth) in the controls (Fig. 39) and because 

their maximum tensile stress directions were exactly aligned with the plane of the 

histological section. A typical histological section with corresponding stress calculation is 

shown in Figure 32. A natural logarithmic transformation of stress values allowed linear 

regression with bone formation measurements. All coefficients were statistically different 

(p<0.006) from 0, revealing that a logarithmic function was statistically adequate to 

represent the relationship between bone formation and PDL stress (Fig. 40). In contrast, 

no statistically significant difference (p>0.2) was found between bone formation in the 

two different mouse types. 

A previous study revealed no differences in the bone morphometry of P2X7R KO 

and WT control mice (Viecilli et al., Submitted in 2008). However, with force 

application, our results indicate a significant difference in the Structure Model Index 

(SMI) of the two mouse types (Table V). The WT mice had a slightly higher SMI 
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(p<0.05) with a minor tendency toward a rod-like trabecular structure. The data suggest 

that WT mice had slightly higher resorption activity in trabecular bone distant from the 

PDL interface.  

After 10 days of force application, no statistically significant differences (p>0.9) 

were observed in the amounts of tooth movement of each mouse type. Only non-labeled 

mice were used for this comparison to avoid possible interference of the bone labels in 

the data. 

Discussion 

The difference in the extent of hyalinized tissue after 10 days indicates that KO 

mice are less efficient at removing necrotic tissue. These data can be explained by the 

lack of ATP-driven stimulation of IL-1 secretion via the P2X7 receptor, leading to a poor 

initial neutrophil response. This finding is in concordance with previous literature on the 

role of this receptor in necrotic tissue metabolism. It is important to note that both KO 

and WT mice had some residual hyalinized tissue after 10 days of force application. This 

must be taken into consideration when interpreting the results of this study, especially the 

lack of a difference between WT and KO in the amount of tooth movement.  

It was possible to extrapolate the mechanical threshold for clinical hyalinization 

from the coordinated histology and FEM data. Assuming that little necrotic tissue 

resorption took place in the KO mice (Fig. 33), and that hyalinization occurs equally in 

areas of maximum PDL compressive stress in both man and mouse, then FE analysis 

reveals that the minimum necessary compressive stress to produce hyalinization in the 

human or mouse PDL is ~10KPa. In the human upper canine, the minimum load 

magnitudes to cause this stress are approximately 0.4N during simple tipping and 1.2N 
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(plus a moment) during translation. Figure 41 is an illustration of the compressive stress-

hyalinization relationship. These data are relatively consistent with values reported by 

Reitan (Reitan, 1970; Reitan, 1994) who observed hyalinization in upper incisors 

(smaller teeth), with tipping forces as low as 0.3N. This preliminary data indicates that 

this type of analysis is a promising strategy to establish scientific evidence on optimal 

orthodontic force magnitudes in future experiments where the time course of tooth 

movement will be studied with this model. 

Histology showed that severe ERR occurred mainly in areas with dense 

accumulations of leukocytes adjacent to high compression zones. This suggests that, in 

the PDL, dense inflammatory cell accumulation leads to tissue destruction, as seen in 

general inflammatory processes in the body. In the WT mice, despite considerable 

resorption of the hyalinized tissue in areas of medium stress, little ERR was found. The 

statistically significant differences, up to ~4x, in the incidence of ERR in the higher stress 

regions in WT provides strong evidence that a localized elevation in PDL stress leads to a 

dramatic increase in ERR. This is an important finding because this is the first study to 

control genetics and the mechanical stress in the histological sectioning plane.  

The difference in ERR between mouse types occurred at hyalinized areas where 

the stress was the highest subsequent to force application, and where most cell 

accumulation occured. Near the furcation region of the mouse tooth, there is an interface 

between a high compressive stress region at the lateral surface of the alveolar crest, and 

relatively constraint-free region immediately occlusal to the crest that viabilizes 

leukocyte accumulation. This constraint-free region probably facilitates diapedesis from 

blood vessels to the area of high compression, resulting in resorption of root, bone and 
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hyalinized tissue. From a clinical perspective, this observation explains why ERR occurs 

primarily at the apex of single rooted teeth: the apex is an area relatively free of 

constraints, and adjacent to an area of high compressive stress (the lateral compressed 

zone near the apex). 

Compared to the equilibrated macrophage and neutrophil infiltration for 

orthodontically stimulated WT animals, KO mice had a massive macrophage response. 

This suggests that the KO PDL reaction is analogous to an inefficient acute phase 

response associated with inadequate levels of P2X7 and IL-1β. An inefficient acute phase 

response leads to an exacerbated macrophage infiltration, with slow resolution of necrotic 

hyalinization and and excessive tissue damage, characterized by root resorption. The 

association of macrophages with root resorption has been reported previously,(Brudvik & 

Rygh, 1993a; Brudvik & Rygh, 1993b; Brudvik & Rygh, 1994a; Brudvik & Rygh, 

1994b; Roberts et al., 1981) but the role of neutrophils has been overlooked. A very 

interesting contrast in the orthodontic catabolic process in the KO is that more root 

resorption was observed, but not more bone resorption away from the PDL-bone 

interface. Lack of IL-1β contributes to bone resorption away from the PDL-bone 

interface, consistent with the role of this cytokine in bone physiology. However, it also 

contributes to more catabolic activity (tissue damage) in the periphery of the necrotic 

areas of the PDL, consistent with the role of P2X7 and IL-1β in necrotic tissue 

metabolism. Moreover, the decreased bone resorption away from the necrotic areas 

(undermining resorption) in the KO mouse, associated with a lack of IL-1 β, contributes 

to a vicious circle, leading to a denser accumulation of macrophages, and more ERR. The 

objective immunohistochemical quantification of PDL cell populations and molecular 
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markers in orthodontically stimulated WT and KO mice is an important goal for future 

studies to further clarify this dichotomy in the catabolism of bone and root/hyalinized 

tissue.  

Although numerous investigators have suggested associations between genetic 

factors and root resorption (Al-Qawasmi et al., 2004; Al-Qawasmi et al., 2003a; Al-

Qawasmi et al., 2003b; Al-Qawasmi et al., 2006; Harris et al., 1997; Ngan et al., 2004) 

the mechanical environment was an inadequately controlled variable. The current study is 

the first to appropriately control the mechanical environment and select histological 

sectioning planes with FEM. Thus, it was proven that the influence of genetics on ERR 

can be independent of mechanical and anatomical factors. In clinical terms, individuals 

with the same root morphology, who are orthodontically treated with identical 

mechanics, may have different ERR responses as a direct consequence of their genetic 

differences.  

The lack of statistical difference in ERR between KO and WT in areas of low 

(<10KPa) PDL stress suggests that keeping forces at the lowest effective level could be a 

viable strategy for minimizing ERR in all patients, particularly those being treated with 

the new anti-inflammatory drugs that block the P2X7 receptor, or with polymorphisms 

that cause reduced P2X7 function. Although the concept of very light therapeutic loads is 

appealing, it may not be always practical because orthodontic loads are relatively light 

mechanics superimposed on heavy functional and postural loads, which may increase 

after tooth displacement due to a different occlusal contact configuration (Al-Qawasmi et 

al., 2003a; Roberts, 2005). In addition, commonly used appliances have very often 

statically indeterminate force systems. Keeping orthodontics under control to avoid 
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excessive occlusal trauma, and using statically determinate force systems when possible, 

are at least as important as using low stress mechanics.   

Bone morphometry revealed a slight tendency toward decreased resorption away 

from the PDL/bone interface in the KO mice. Bone metabolism in this area is not directly 

influenced by the necrotic tissue, thus, this effect is consistent with the absence of the 

catabolic effect of IL-1 in the bone modeling and remodeling response. An important 

follow-up to the current study would be to study the rate of sustained tooth movement in 

WT and KO animals. Cytokines may affect the initiation and sustained tooth movement 

responses differently. For instance, patients homozygous for allele 1 of IL-1β (diminished 

levels of IL- β) had an accentuated ERR response attributed to a slow initiation of tooth 

movement (Al-Qawasmi et al., 2003a). However, in a recent clinical study, patients 

homozygous for allele 1of IL-1β demonstrated increased rates of sustained tooth 

movement compared to other patients (Iwasaki et al., 2006). This inconsistency may be 

biologically valid and related to timing of the study (the initial presence of necrotic 

tissue,) or it may reflect an uncontrolled mechanical environment in the clinical setting. 

Relative to the current scientific literature, the present data suggests a differential role for 

cytokines in the initiation and sustained tooth movement phases, which is possibly 

associated with the period of necrotic tissue clearance. The controversy about the role of 

cytokines in initiating and sustaining tooth movement could be resolved by varying the 

timing of force application, mechanical environment and sampling sites in the current 

mouse orthodontic model. 

For fluorescent label bone formation analysis, the disto-palatal root was used 

because it had lower (below 14 KPa) PDL maximum tensile stress magnitudes. It is 
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important to note that little or no bone formation was observed on the relatively high 

tension side of the disto-buccal root. Instead, bone cavities with very few active 

osteoclasts were observed (Fig. 42). This suggests that a resorption phase occurred before 

10 days. The lack of initial bone formation in high PDL tensile stresses levels can be 

clinically related to the tooth mobility associated with high force appliances such as 

headgears. Of course, in such cases, bone formation can occur to restore the original PDL 

width after the mechanical stimulus is halted. Alternatively, a resorption/formation cycle, 

a result of a delayed RAP, could be maintained to achieve a sustained response. Future 

studies can examine the dynamics of this process by observing bone formation at 

different time points. 

Interestingly, bone remodeling and apposition were observed on the buccal 

alveolar periosteum of all treated mice (Fig. 42), but not in control mice. Because a 

mechanical correlation with stress patterns could not be found in this region, it is 

proposed that this effect is associated with a gradient in PGE2 concentration from the 

PDL to the periosteum of the buccal bone. PGE2 has a concentration dependent biphasic 

effect on bone: in high concentrations, it has a catabolic effect, and in low concentrations 

an anabolic effect (Raisz, Pilbeam & Fall, 1993b). This possibility is further reinforced 

by the observation that, before formation, significant bone resorption occurred in the 

cervical areas of the buccal bone, which correspond to the areas of higher PDL tensile 

stress, and consequently, initially higher PGE2 concentration that probably decreased 

after the steady state was reached. The nonlinear relationship between bone formation 

and the maximum tensile principal stress could be explained by this same mechanism: 

above 10KPa, a significant decrease in bone formation was observed on the disto-palatal 
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root, which largely explains the non-linearity of the graph. In many specimens, near the 

alveolar crest, where stresses were the highest, there were no labels, or the distance 

between them was greatly reduced. 

The remnants of hyalinized tissue after 10 days probably affected the results of the 

bone formation and tooth movement comparisons between the mouse types. P2X7 

receptor activation is a possible pathway for the release of PGE2; however, no 

statistically significant effects in bone formation and tooth movement were observed in 

this study. The limiting factors for bone formation and tooth movement are bone 

resorption and the persistence of hyalinized PDL tissue. Thus, the lack of demonstrated 

statistical differences in bone formation and tooth movement does not mean that 

significant effects would not become apparent with longer treatment times.  

Conclusions 

1) There is a direct relationship between PDL compressive stress magnitude and 

the incidence of ERR. 

2) Severe ERR is associated with the presence of necrotic (hyalinized) PDL 

tissue, which occurs mainly due to high compressive stresses. 

3) Lack of the P2X7R gene (KO) contributed to a slower removal of the 

hyalinized tissue. 

4) The results of this study complement previous evidence, suggest that ERR and 

hyalinized tissue metabolism are mediated by the ATP-P2X7-IL-1β 

mechanotransduction pathway. 

5) Absence of the P2X7R gene caused increased ERR in the mouse model. 
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6) Bone resorptive activity is slightly diminished away from the PDL/bone 

interface in P2X7R KO mice. 

7) There is a small interval of nonlinear relationship between PDL tensile stress 

magnitude and bone formation. High tensile stresses do not initially lead to 

bone formation, although they may promote a delayed RAP response. 

8) Stress analysis (e.g., FEA) must be an integral component of experimental 

mechanotransduction studies to adequately control the mechanical 

environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



93 
 

SUMMARY 

 

The first part of this investigation showed that obtaining good output from the µCT 

required a thorough optimization of all settings specific for each research application. 

The described methodology allowed for the analyses of specific morphological and 

physiological variables, which can produce meaningful conclusions about the role of 

mechanical and genetic variables in orthodontic responses.  

The second part of this investigation, which analyzed the mechanical environment 

of human orthodontics, revealed that in the same region of root, PDL and bone, there can 

be predominantly compressive stresses in one structure, but tensile stresses in another. 

Thus, when referencing a region of compression or tension, the structure in which it 

occurs must be specified. At a given point in any of the dento-alveolar structures, such as 

within bone, it is possible to have coexisting compression and tension in different 

directions. Even if the state of stress is purely compressive or tensile in a specific region 

of a structure, such as the PDL, the stress magnitudes can be different in different 

directions, i.e., the stress is 3-D and not purely hydrostatic. Thus, it is inappropriate to 

refer to orthodontic stresses simply as “pressure” or to perform simplified 1-D 

calculations taking force and root surface area into account. The principal stresses can 

swap their directions (and denominations) within a structure. A stress magnitude graph 

often displays sudden changes in behavior, which are typically a result of a change in 

direction. Consequently, previously described mechanical environments, based solely on 

stress magnitude plots, can be confusing, difficult to understand and/or to correlate with 

biological responses. To avoid ambiguities, when a description of the orthodontic 
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mechanical environment is given in terms of compression and tension, references to a 

principal stress must include not only the structure, but also the predominant direction of 

the stress in question.  The mechanical environment of the PDL is consistent with 

previously reported areas of root resorption and bone formation/resorption, and is, most 

likely, somehow, the main initiator of orthodontic mechanotransduction. Biological 

experiments in animal models are necessary to investigate the role of stress directions, as 

they can affect the direction in which biological reactions take place. Because complex 

loading and root morphology in animal models causes non-trivial directional stress fields, 

careful choice of histological section planes based on FE-determined stress directions is 

highly recommended, which was performed in the fourth part of this investigation. 

The results of the third part of this investigation demonstrated a trend towards 

increased SMI, Tr.Pf and Tr.Sp in KO mice, suggesting that KO mice have increased 

trabecular spacing, decreased connectivity and a weaker, rod-like trabecular structure. On 

the other hand, there was a trend toward increased BMD in the KO mice. This study is in 

partial contrast to previous studies that showed significant differences in bone 

morphometric parameters between the P2X7R WT and KO mice in other bone sites. 

Studies performed in the femur and tibia revealed a tendency toward lower BMD, higher 

catabolic, and lower anabolic bone activity in the KO mouse under unloaded and 

artificially loaded conditions. Several problems might explain this difference. In this 

study, adult mice (17 weeks and 3 days of age) were used, whereas in the original femur 

and tibia morphology comparison study by Ke et al., littermates and young adult mice (2 

weeks and 9 weeks were used). The mechanosensitivy study by Li et al. also used older 

mice (16 weeks of age), to prevent interference of growth-associated bone modeling in 
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the data. Although it is possible that differences in the developmental age might have 

caused the contrast between this study and the ones mentioned above, other biological 

complexities are probably the best candidates to explain it, as described below.  

The immediate cause for the disagreement in the long bone and alveolar bone 

phenotypes is a difference in genetic control of bone development. The alveolar bone is 

formed de novo through intramembranous osteogenesis during development, and the long 

bones are developed based on a cartilaginous scaffold (endochondral osteogenesis). Since 

P2X7R KO mice can’t adequately process and release IL-1β, it is natural that only 

mineralized tissues formed by endochondral ossification, such as long bones, could be 

affected by this deficiency. From a biomechanical/environmental standpoint, the 

differences between maxilla vs. femur/tibia results could also be attributable to 

complexities associated with the mechanism of bone mechanotransduction. Long bones 

are affected by the frequency and magnitude of strain, and the behavior of the 

surrounding tissues. The outcome of the loading patterns, bone formation or resorption, is 

dependent on the resulting expression of the biochemical regulators of bone remodeling. 

The alveolar bone is typically subjected to masticatory loads, which most likely have a 

different frequency and magnitude if compared to long bones. Since the loading 

frequency and magnitudes in the maxillary bones are typically smaller, the resulting 

small difference in PGE2 production would most likely not produce a different 

phenotype. It is also possible that mechanical loading of the PDL, as a result of occlusal 

loads, leads to a different gene expression and activation profile than the one that results 

from the loading of long bones. Due to different gene arrays controlling bone formation 

at different sites, the strain thresholds for an osteogenic response vary with location. 
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Our results confirmed previous findings that bone characteristics are very site 

specific. Biomechanical models of mineralized tissue should be constructed based on 

local analysis rather than on extrapolation of site-specific data to the entire skeleton. The 

mechanical environment associated with orthodontic tooth movement and root resorption 

is more complex than is generally appreciated. Often, it is counterintuitive. 

The fourth part of this investigation provided several insights on mechanism of 

orthodontic mechanotransduction the role of the P2X7 receptor. There was a direct 

relationship between PDL compressive stress magnitude and the incidence of ERR. 

Severe ERR is associated with the presence of necrotic (hyalinized) PDL tissue, which 

occurs mainly due to high compressive stresses. Lack of the P2X7R gene (KO) 

contributed to a slower removal of the hyalinized tissue. Complementing previous 

evidence, this investigation suggested that ERR and hyalinized tissue metabolism are 

mediated by the ATP-P2X7- IL-1β mechanotransduction pathway. Absence of the 

P2X7R gene caused increased ERR in the mouse model. Bone resorptive activity is 

slightly diminished away from the PDL/bone interface in P2X7R KO mice. There is a 

small interval of nonlinear relationship between PDL tensile stress magnitude and bone 

formation. High tensile stresses do not initially lead to bone formation, although they 

may promote a delayed RAP response.  

Stress analysis (e.g., FEA) must be an integral component of experimental 

mechanotransduction studies to adequately control the mechanical environment. 
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TABLES 

 

Table I- Bone morphometry data from the sphere taken from the C57B6 mouse. Standard 

abbreviations are used. 

 
 
 

BMD 0.82 g/cm3 
BV/TV 46.67% 
BS/BV 43.70/mm 
Tb.N 3.63/mm 
Tb.Th 0.1286 mm 
Tb.S 0.095 mm 
Tb.Pf 14.492/mm 
SMI 3.6 
DA 0.263 
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Table II- Comparison of maxillary molar measurements in WT and KO mice. 
 
 
 
 
 
 

 
 
 
 
 

 WT KO  

Measurement Median Range Median Range p value 

Tooth Volume (mm3) 1.07 0.11 1.06 0.16 0.11 

Crown Length (mm) 1.16 0.14 1.16 0.08 0.82 

Crown Width (mm) 0.90 0.12 0.90 0.11 0.31 

Crown Height (mm) 0.76 0.18 0.74 0.18 0.18 

M Root Length (mm) 1.13 0.14 1.12 0.11 0.12 

M Root mn Diam (mm) 0.37 0.19 0.38 0.08 0.13 

M Root mx Diam (mm) 0.70 0.14 0.70 0.09 0.8  

DB Root Length (mm) 0.82 0.13 0.83 0.16 0.97 

DB Root mn Diam (mm) 0.23 0.13 0.23 0.08 0.75 

DB Root mx Diam (mm) 0.67 0.28 0.67 0.17 0.67 

DL Root Length (mm) 0.81 0.18 0.80 0.12 0.21 

DL Root mn Diam (mm) 0.32 0.15 0.32 0.11 0.87 

DL Root mx Diam (mm) 0.47 0.13 0.49 0.16 0.39 
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Table III- Comparison of bone 3D morphometric parameters. BMD= bone mineral 

density; BV/TV= bone volume fraction; BS/BV= bone surface-volume ratio; Tr.Th= 

trabecular thickness; Tr.Sp= trabecular separation; Tr.N= trabecular number; Tr.Pf= 

trabecular pattern factor; SMI= structure model index; DA= degree of anisotropy; FD= 

fractal dimension. 

 
 
 WT KO  

Measurement Median Range Median Range p value 

BMD (g/cm3) 0.78 0.15 0.91 0.20 0.10 

BV/TV (%) 45 10 45  7 0.65  

BS/BV (/mm) 50 15 49 16 0.99 

Tr.Th (mm) 0.08 0.02 0.09 0.03 0.83 

Tr.Sp (mm) 0.13 0.02 0.15 0.05 0.13 

Tr.N (/mm) 5.6 1.1 5.1 1.4 0.18 

Tr.Pf (/mm) -3 10 -1 14 0.10 

SMI 1.0 0.8 1.8 0.5 0.23 

DA 2.2 1.3 2.1 1.1 0.29 

FD 2.24 0.07 2.12 0.10 0.28  
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Table IV- Comparison of bone morphometry parameters of alveolar trabecular bone 

before and after application of orthodontic force in WT and KO mice. BMD= bone 

mineral density; BV/TV= bone volume fraction; BS/BV= bone surface-volume ratio; 

Tr.Th= trabecular thickness; Tr.Sp= trabecular separation; Tr.N= trabecular number; 

Tr.Pf= trabecular pattern factor; SMI= structure model index; DA= degree of anisotropy; 

FD= fractal dimension.  

 Control Force  

Measurement Median Range Median Range p value 

BMD (g/cm3)         WT 
                     KO   

0.78 
0.91 

0.15 
0.20 

0.54 
0.57 

0.14 
0.14 

<0.001 
<0.001 

BV/TV (%)           WT 
                     KO 

45  
45 

10 
7 

26 
25 

10 
12 

<0.001  
<0.01 

BS/BV (/mm)         WT 
                     KO 

50 
49 

15 
16 

64 
74 

20 
16 

0.001 
0.008 

Tr.Th (mm)           WT 
                     KO 

0.08 
0.09 

0.02 
0.03 

0.07 
0.06 

0.02 
0.01 

0.001 
0.01 

Tr.Sp (mm)           WT 
                     KO 

0.13 
0.15 

0.02 
0.05 

0.16 
0.16 

0.02 
0.09 

0.008 
0.87 

Tr.N (/mm)           WT 
                     KO 

5.6 
5.1 

1.1 
1.4 

3.8 
4.1 

1.6 
1.2 

<0.001 
0.19 

Tr.Pf (/mm)           WT 
                     KO 

-3 
-1 

10 
14 

14 
10 

12 
10 

<0.001 
0.17 

SMI                 WT 
                     KO 

1.0 
1.8 

0.8 
0.5 

2.0 
1.8 

0.5 
0.4 

<0.001 
0.22 

DA                  WT 
                     KO 

2.2 
2.1 

1.3 
1.1 

2.9 
2.1 

2.3 
1.1 

0.57 
0.29 

FD                  WT 
                     KO 

2.24 
2.12 

0.07 
0.10 

2.08 
2.11 

0.08 
0.11 

<0.001  
0.11 
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Table V- Comparison of alveolar trabecular bone morphometry after force application in 

WT and KO mice. BMD= bone mineral density; BV/TV= bone volume fraction; BS/BV= 

bone surface-volume ratio; Tr.Th= trabecular thickness; Tr.Sp= trabecular separation; 

Tr.N= trabecular number; Tr.Pf= trabecular pattern factor; SMI= structure model index; 

DA= degree of anisotropy; FD= fractal dimension. 

 
 WT KO  

Measurement Median Range Median Range p value 

BMD (g/cm3) 0.54 0.14 0.57 0.14 0.58 

BV/TV (%) 26 10 25  12 0.61  

BS/BV (/mm) 64 20 74 16 0.27 

Tr.Th (mm) 0.07 0.02 0.06 0.01 0.31 

Tr.Sp (mm) 0.16 0.02 0.16 0.09 0.94 

Tr.N (/mm) 3.8 1.6 4.1 1.2 0.19 

Tr.Pf (/mm) 14 12 10 10 0.14 

SMI 2.0 0.5 1.8 0.4 <0.05 

DA 2.9 2.3 2.1 1.1 0.41 

FD 2.08 0.08 2.11 0.11 0.23  
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FIGURES 

 

 

 

Figure 1. Fatigue experiment diagram: the apparatus for loading of the dentoalveolar 

structures of a mandibular lower incisor is illustrated. 
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Figure 2. The newly developed NiTi coilspring and its insertion procedure. 
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Figure 3. Sections scanned without (left) and with (right) median filter. Note the 

sharpness and detail of the left image in which random movement of 100 lines and 

averaging of 8 frames were used to remove noise instead of the Median Filter. 

 

 

 

 

 



105 
 

 

 

Figure 4. Alignment (wing) artefacts (arrows) on the mesial root of the mouse first 

molar. 
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Figure 5. Alignment tool, as used for alignment (left) and with separated cylinders for 

specimen scanning (right). 
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Figure 6. A difference in the object magnification from 0 to 180 degrees scans. The 

higher the object width b and the higher the magnification, increased by decreasing a, the 

higher the discrepancy c. 
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Figure 7. Segmentation of bone, periodontal ligament and tooth into different masks 

before and after 3D rendering. 
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Figure 8. Bone plane cut to show the 0.5mm diameter spherical sample from alveolar 

bone between the roots. Transparency was toggled to allow interior visualization. 
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Figure 9. Dog incisor and mouse molar root rendered with maximum accuracy. A close 

up to visualize Retzius striae, cementum-enamel junction and root surface roughness in 

the dog tooth is also included.  
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Figure 10. Examples of solid models generated after editing the stl files. Smoothing was 

performed to allow quality meshing, but the main features of the original scan were 

maintained. 
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Figure 11. Diagram of contemporary orthodontic biomechanics. 
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Figure 12. A, General state of stress; B, Principal stresses in the principal (x’, y’, z’) 

directions.  
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Figure 13. A, CAD model showing internal morphology; B, FE model and coordinate 

system. 
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Figure 14. A, Exaggerated (10x) displaced positions of the root. B, Deformed root 

shapes. C, Exaggerated (x5000) total tooth displacement in translation. The scale is in 

mm. 

A 

B C 
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Figure 15. Exaggerated 3-D occlusal view of socket deformations resulting from tooth 

translation. The final position is the colored solid and the initial position is the element 

skeleton.  
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Figure 16. Tooth translation associated principal stresses in the root: A, distal 

side S1 (S3 is almost zero;) B, mesial side S3 (S1 is almost zero;) C, distal side 

S2; D, mesial side S2 
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Figure 17. Tooth tipping associated principal stresses in the root: A, distal side 

S3 (S1 is almost zero); B, mesial side S1 (S3 is almost zero); C, distal side S2; 

D, mesial side S2. 
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Figure 18. Tooth translation associated principal stresses and their components on the 

distal side of the PDL: A, S1; B, S2; C, S3. D, buccal view of PDL principal stresses in 

the apical ~⅓ of the root during translation (left side is the distal side). 

C 

A B 

D 
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Figure 19. Tooth tipping associated principal stresses and their components on the distal 

side of the PDL: A, S1; B, S2; C, S3. 

 

 

 

 

 

 

 

 

 

 

A B 

C 



121 
 

 
 

Figure 20. Three-dimensional magnitude plot of tooth translation associated 

principal stresses in bone. A, S1; B, S2; C, S3. 
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Figure 21. 3-D direction plots of tooth translation associated principal stresses 

in bone, A, distal side (cuspid socket is on the right) and B, mesial side (cuspid 

socket is on the left;) Polar plots at the cervical region of the bone for C, S1 and 

D, S3. S2 is not shown because it is very small.  

C 
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Figure 22. As in Figure 10 except for tooth tipping. 
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Figure 23. As in Figure 11 except for tooth tipping.  
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Figure 24. Typical histological section, focusing on the root and PDL. Bone and tooth 

root are stained blue, and PDL is stained pink.There were no noticeable differences 

between WT and KO sections. 
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Figure 25. Surface finite element model of a representative specimen showing highly 

organic internal structure, even after smoothing of tissues. Yellow= tooth, blue= bone, 

red=PDL 
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Figure 26. Resulting solid 3D finite element model obtained in ANSYS. 
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Figure 27. A, Segmentation and B, 3D reconstruction of the mouse molar. C, Isolated 

trabecular bone sphere for bone morphometry. D, Finite element model of the mouse 

molar. 
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Figure 28. A, CAD model of the segment, and a cut showing the periodontal ligament, 

adjacent premolar socket and lateral incisor root. B, Finite element model.  
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Figure 29. A, Mouse spring insertion procedure with custom prop. B, Spring in place. C, 

Sagittal and D, occlusal views of the line of action of the force. 
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Figure 30. A, Occlusal view of idealized human canine PDL stress directions during 

tipping. The small red and white arrows represent maximum compressive and tensile 

stress directions, respectively. Note that the line of action of the force (large white arrow) 

and the maximum PDL stress directions are coincident with each other. B and C Apical 

views of the mouse PDL stress directions during tipping, with the correspondent root 

identification (DB=disto-buccal, DP=disto-palatal and M=mesial). Histological cutting 

plane for ERR analysis (dashed black line in B, C, and D) follows the maximum 

compression PDL stress direction (red arrows), not the line of action of the force (white 

arrow in D.)  

 



133 
 

Figure 31. Static sections of the 3D FE model showing calculated initial (contour) and 

final (solid) positions of the teeth on the A, ERR analysis section plane and B, bone 

formation analysis section plane. Because the sections followed stress directions, the 

tooth has negligible out-of- plane movement. This is evidenced by little change observed 

in tooth and root shape between the initial and final positions in these planes. 
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Figure 32. Method to relate FE-computed maximum PDL tensile stresses (left) to 

histologically measured interlabel bone distances (right.) In-plane maximum tensile 

stresses, acting horizontally, decrease from region 8 to 5. Note that the pattern of PDL 

deformation was correctly predicted by the FEA. In bone measurements of the picture, d3 

would be discarded because it is in a remodeling cavity, and only d1 and d2 would be 

averaged. The scale shows the maximum tensile stress values in Pascals.  
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Figure 33. Comparison of tooth hyalinization scores in treated KO and WT mice 

(p<0.001). 
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Figure 34. Comparison of ERR proportion score by region within each strain of treated 

mice. Significant differences in the WT and KO were found between regions 1 and 2 

(p=0.002, p=0.001), and 1 and 3 (p<0.001, p=0.002).  
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Figure 35. Comparison of ERR proportion score by type in the region of high stress 

(p<0.02).  
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Figure 36. Illustration of microCT root resorption detection. A, Histological section of 

the DB root of a KO force group mouse. B, MicroCT reconstructed section of the same 

region and C, its segmentation. Such segmentation of all sections allows 3D rendering of 

the structures and volume estimation. D, Visualization of resorption cavities (c) and the 

area of hyalinized PDL tissue (Hz). 
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Figure 37. Tooth volume by type in control and force groups. A significant difference 

was found only after force application, confirming that KO has more ERR (p=0.002). 
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Figure 38. Example sections of WT (A and C) and KO (B and D) histology. C and D are 

magnified high stress regions of a and b, respectively. Note the increased presence of 

neutrophils (lobular shaped nuclei) in the WT section.  
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Figure 39. Example section of a labeled control WT disto-palatal root. Note normal bone 

apposition around blood vessels. New bone is also observed on the palatal periosteal 

surface and near the apex, suggesting slight eruption during the experimental period. Due 

to this interference, the apical regions (2 apical region 5 points and region 6) were 

eliminated from linear regression analysis in the treated mice. 
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Figure 40. Linear regression plots of the natural logarithm of maximum principal stress 

[ln (Stress)] vs. Bone Interlabel Distance in the DP root of WT and KO mice. The outer 

lines in each regression are the limits of the 95% confidence interval. 
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Figure 41. A, Histological section of a KO mouse. Large area of hyalinized tissue 

remains on the compression side of the DB root. B, Corresponding section of the FE 

model. Note that the FEA correctly predicted the deformation of the PDL. Hyalinization 

occurs at PDL stress levels >~10KPa.  
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Figure 42. Structures around the high-tension PDL of DB root. Note stretched fibroblasts 

and the absence of bone formation and inflammatory cells within the socket. Bone 

formation, however, is prominent on the periosteum of the buccal surface. (1) Root. (2) 

PDL with stretched fibroblasts. (3) Buccal alveolar wall. (4) Osteoid. (5) Osteoblasts. (6) 

Trapped osteoblast that would become an osteocyte. (7) Cervical area where once there 

was resorption, and now there is formation. 
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