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The prevalence of dental erosion has significantly increased over the last few 

decades.
1
 Dietary acids are considered to be the most important factors causing dental 

erosion at the population level.
2
 Attempts to prevent erosion have focused on either 

enhancing remineralization or preventing demineralization of the tooth structure. The 

protective properties of fluoride have been shown in many in-vitro and in-situ 

studies.
3-6

 The efficacy of stannous solutions in erosion prevention has also been well 

established in the literature.
3,7-12 

There are indications that the presence of both ions is 

relevant for erosion prevention.
13

 The mechanism of the stannous and fluoride ions in 

erosion prevention is related to the formation of a thin layer on the enamel surface, 

composed by different precipitates such as Sn2(PO4)OH, Sn3F3PO4, Ca(SnF3)2, and 

CaF2.
14

 This layer acts as a physical barrier, inhibiting acid contact with the enamel 

surface. Due to the low pH of stannous solutions, they may also react with enamel 

leading to the incorporation of the stannous ion into the enamel structure, which 

increases the enamel resistance against acid erosion.
13

  

Acquired dental pellicle (ADP) is a protein-based selective permeable 

membrane; it acts as a physical barrier to prevent the acid contact with the tooth 

surfaces.
15

 The protective effect of the ADP against erosion has been thoroughly 

investigated in both in-vitro and in-situ studies.1
5-17

 The protective level of the pellicle 

is regulated by its composition, thickness and maturation stage.
15,148 

 It also shows 

dose-dependency to acid concentration and duration of exposure.
18

 A study conducting 

protein analysis of in-vivo pellicle using proteomic approaches identified 130 proteins  
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associated with ADP.
21

 It has been suggested that some of pellicle’s proteins may have 

a role in erosion prevention.
20

 For instance, salivary mucins, particularly MUC5B, 

have been found to be from the components of ADP basal layer and to be involved in 

erosion inhibition.
21-23

 Moreover, statherin, histatins, and acidic proline-rich proteins 

(PRPs) compose the basal layer of the ADP and may impact dental erosion by 

modulating calcium and phosphate concentration within the oral cavity.
20,24,25

 Other 

proteins found to be involved in remineralization are S100 calcium-binding protein, 

calgranulin, and those of the annexin families.
21

  

The protein adsorption to tooth structure during ADP formation is a highly 

selective process. Therefore, only a small fraction of the proteins from the oral fluids 

is incorporated into this proteinaceous integument.
42

 After protein adsorption, ADP 

undergoes maturation that may include proteolysis and cross-linking processes.
149

 Two 

main mechanisms have been demonstrated to be involved in ADP maturation, 

including intrinsic and extrinsic modulation. Intrinsic maturation occurs by pellicle 

enzymes, while extrinsic occurs by enzymes present in saliva.
150,151 

It has been found 

that enzymes as amylase, lysozyme, carbonic anhydrases, glucosyltransferases, and 

fructosyltransferase are immobilized in an active conformation in the in-vivo ADP and 

contribute to its modification and in homeostasis.
151

 Transglutaminase was shown to 

be present in enamel pellicles formed in situ and exhibits crosslinking action on the 

primary pellicle precursor proteins such as statherin, cystatins, histatins, and acidic 

proline rich proteins.
149,150

 Moreover, aspartate amino transferase and alanine amino 

transferase have been detected as integral components of the in-situ pellicle, which 

may indicate their involvement in the intrinsic maturation of the ADP.
152

 The 
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conformational changes and cross-linking process that occur between pellicle proteins 

after adsorption may explain the tenacity of ADP and its protective effect. 

Few studies have investigated the interaction between surface protective agents 

and pellicle, and the role of their interaction on erosion prevention. In an in-vitro 

study, Hove et al.
26

 compared the erosion-inhibiting effect of solutions containing 

TiF4, SnF2, or NaF on pellicle-covered and non-covered enamel. They concluded that 

pellicle-covered SnF2- treated enamel specimens reduced tooth loss due to erosion by 

45 percent after 2 min and 14 percent after 8 min compared with the control with 

pellicle (with no SnF2 treatment).
26

 Wiegand et al. investigated the in-vitro effect of 

titanium tetrafluorides and pellicle on erosion prevention on both enamel and dentin, 

finding that the pellicle enhanced the effect of titanium tetrafluorides, especially in 

dentin.
29

 However, it is not clear how the interaction between tin and the pellicle 

proteins affects the protective properties of the pellicle. It has been shown that the 

stannous ion can have a cross-linking action on polyphosphates adsorbed to the 

enamel surface
28

 that possibly relates to its protective action against erosion. We 

hypothesized that this cross-linking action may also exist with the acquired dental 

pellicle layer formed on the tooth surfaces and increases protection against erosion.  

Until now information is scarce regarding the effects of stannous and fluoride 

ions on the acquired dental pellicle and subsequently on erosion prevention. Therefore, 

we proposed the use of an in-vitro model to better understand the influence of the 

ADP on the anti-erosion properties of stannous and fluoride-containing solutions on 

enamel and dentin surfaces. 
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OBJECTIVES 

The objectives of this in-vitro study were: 1) To compare the protective effect 

of stannous and fluoride-containing solutions on enamel and dentin erosion 

prevention; 2) To analyze the protein profile of the pellicles treated with stannous and 

fluoride-containing solutions.  

 

HYPOTHESES 

 

Null Hypotheses 

1. There is no difference among stannous solutions, fluoride-containing 

solutions, and stannous-fluoride-containing solutions on erosion prevention. 

2. There is no difference among the protein profiles of pellicles treated 

with stannous solutions, fluoride-containing solutions, and stannous-fluoride-

containing solutions.  

 

Alternative Hypotheses 

1. There is at least one significant difference among stannous solutions, 

fluoride-containing solutions, and stannous-fluoride-containing solutions on erosion 

prevention. 

2. There is at least one significant difference among the protein profiles of 

pellicles treated with stannous solutions, fluoride-containing solutions, and stannous-

fluoride-containing solutions.  

  



6 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW OF LITERATURE  



7 

 

 

 

DEFINITION AND PATHOPHYSIOLOGY OF EROSION 

Dental erosion refers to a progressive dental tissue loss due to chemical processes 

without involvement of bacteria.
31

 It occurs due to dissolution of dental tissue by acids 

when the surrounding environment is unsaturated in relation to the mineral content of 

tooth tissue.
32

 Enamel and dentin are mainly composed of calcium-deficient carbonated 

hydroxyapatite (HA) crystals (Ca10-x Nax(PO4)6-y (CO3)z(OH)2-uF) at 85 percent and 

47 percent by volume, respectively. Acids in saliva (as citric acid and hydrochloric acid) 

dissociate into hydrogen ions and anions, decreasing the pH of the oral environment and 

making it unsaturated in relation to the dental surfaces. When hydrogen ions attack tooth 

structure, they combine with the carbonate and/or phosphate molecules, releasing calcium 

ions from the apatite crystals. The continuous acid exposure increases mineral loss from 

tooth structure and can lead to changes in the physical properties of the tooth structure. 

For example, studies have showed that microhardness decreases significantly after acid 

exposure, indicating softening of dental tissue.
33

 In the persistence of this process, 

substantial dental surface loss may happen eventually.  

 

ETIOLOGY AND CLASSIFICATION 

Erosion is a multifactorial dental condition.
31

 The interaction of many factors 

influences the occurrence of dental erosion including patient-related and diet-related 

factors.
34

 Chemical factors of diet are important for the erosion process.
35

 The pH value 

of soft drinks together with their calcium, phosphate, and fluoride content have a great 
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influence on the degree of saturation, and consequently, the driving force for 

demineralization.
35

 The pH value of beverages is to be more important when a large 

volume of acid is present in the oral cavity.
35

 However, buffering capacity plays a more 

important role when beverages remain in the oral cavity for long periods. The higher the 

buffering capacity of beverages, the longer the time needed for saliva to neutralize the 

acid, which enhances the process of mineral dissolution.
35

 Moreover, the type of acid 

influences the process of dissolution significantly. For example, an in-vitro study found 

that over the common pH range, citric acid is more erosive than phosphoric acid at any 

given pH, due to its chelating properties.
36

 It has been found that citric acid in orange 

juices complexes up to 32 percent of calcium in saliva, decreasing the super-saturation of 

saliva and enhancing the dissolution of tooth minerals.
37

 In addition to chemical factors, 

behavioral factors have a considerable modifying effect on erosion.
88

 Frequency and 

duration of exposure to acidic diet, manner of consumption, and night-time versus day-

time exposure all have a strong effect on the erosive potential of dietary acids.
88

 Besides, 

a healthy lifestyle could contribute to dental erosion due to an increase in acidic juices 

through dietary consumption and frequent tooth brushing.
88

  

Erosion can be classified according to the source of acid, which could be either 

extrinsic or intrinsic. Extrinsic acids are mainly from diet. The erosion potential of diet 

depends mainly on its pH, buffering capacity, titratable acidity, and drinking or 

consumption patterns.
38,39

  Acid exposure from occupational sources also has been 

reported, such as from battery and galvanizing factories.
38

 In addition, exposure to 

intrinsic sources of acid may occur mainly due to chronic vomiting, eating disorders, and 

gastroesophageal reflux disease (GERD).
38
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BIOLOGICAL FACTORS CONTRIBUTING TO EROSION 

Saliva, acquired dental pellicle, tooth structure, and positioning in the oral cavity 

are biological factors of major importance on the development of erosion.
15 

 

Saliva  

Saliva is considered to be the most important biological factor that influences 

dental erosion.
15

 It has a direct effect against erosive challenges by clearing, diluting, and 

buffering acids.
15

 It also renders demineralization by forming acquired dental pellicle 

ADP over teeth surfaces, and enhances remineralization by providing calcium, 

phosphate, and fluoride to demineralized dental tissues.
15

 The higher salivary flow rate 

increases the ability of saliva to buffer and neutralize acids, due to the higher content of 

hydrogen bicarbonate.
15

 Therefore, studies have shown that erosion is strongly associated 

with low salivary flow (hyposalivation).
89 

 

Role of Acquired Dental Pellicle (ADP)  

ADP is a thin bacteria-free protein-based integument forming upon exposure of 

tooth surfaces to saliva.
21

 Adsorption of proteins to form ADP occurs mainly by 

electrostatic interactions between proteins and tooth surfaces. It is composed of 

glycoproteins, salivary proteins, non-salivary-derived proteins, carbohydrates, and 

lipids.
41

 The components of ADP come from different sources including exocrine 

salivary glands, gingival crevicular fluid, oral epithelial cell products, and micro-

organism products.
42

 The analysis of in-vivo pellicle using liquid chromatography-

electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS) led to the 

identification of 130 different proteins, 14.4 percent of them derived from glandular 
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secretions, 67.8 percent derived from cells, and 17.8 percent derived from serum through 

crevicular fluid.
21

  

Several studies support the role of ADP in regulation of minerals homeostasis and 

preventive effect against acid-induced demineralization.
43-46

 This preventive effect was 

found to be related to the prevention of demineralization by reducing acid diffusion rather 

than preventing mineral loss from dental tissues.
26,45

 The acid resistance of ADP depends 

mainly on its maturation level; therefore, 2-h pellicle dissolves more rapidly from the 

enamel surface than 6-, 12- and 24-h pellicles.
47

 The ultrastructure of ADP has shown to 

change after acid challenge. It has been observed that the outer global layer is removed 

after acid exposure, while the basal layer is preserved.
42

  

The proteins composing the ADP are important in the progression of dental 

erosion. Salivary mucins (MUC5B, MUC7) are high-molecular-weight glycoproteins, 

considered to be one of the main components of the pellicle, and 7 percent to 26 percent 

of total salivary proteins.
23

 Since the affinity of high-molecular-weight mucin (MUC5B) 

to hydroxyapatite is about six times more than the low-molecular weight one (MUC7), 

the former adsorbs to the tooth surface and contributes to the formation of the acquired 

dental pellicle.
90

 Moreover, it has been suggested that mucin (MUC5B) presents at the 

basal layer of the pellicle, strongly related to the protective properties of the pellicle, as it 

has shown to persist even after 120 min of citric acid exposure.
22

 Studies have shown 

that, at simulated physiological concentrations in vitro, mucins adhered to enamel surface 

inhibiting demineralization due to an erosive challenge.
24,25

 It was shown that a pellicle 

formed by 3 days incubation in mucins from human whole saliva in vitro led to 100 

percent protection against 1.0-percent citric acid erosion.
25

 Other proteins such as 
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statherin, histatins and acidic proline-rich proteins (PRPs) also compose the basal layer of 

the ADP and can control dental erosion by modulating calcium and phosphate 

concentration within the oral cavity.
21,26,27

 Histatins, another salivary protein family, are 

low-molecular-weight salivary proteins secreted by the major and minor salivary 

glands.
91,92

 The three main types of histatins that could be detected as ADP components 

are histatin 1, histatin 3, and histatin 5.
46 

 They are multifunctional proteins; in addition to 

their antifungal effect,
93

 it exhibits significant protection against erosive challenges.
46

 

Phosphoproteins such as histatin and statherin have shown protection against acid 

demineralization.
46,48

 It has been suggested that phosphorylated proteins have more 

affinity to hydroxyapatite (HA); therefore, phosphorylated residues of histatin 1 and 

statherin appear to provide greater protection than non-phosphorylated residues.
41,49

 Also, 

albumin, a hydrophilic acidic protein with molecular weight 66.5 kDa, has been 

suggested to inhibit demineralization.
94

  

In addition, proteins may enhance the effect of other anti-erosive agents. For 

example, in an in-vitro study comparing the anti-erosive effect of toothpastes containing 

3500 ppm of stannous solution and different proteins including mucin, casein, mucin and 

casein, or albumin, it was observed that toothpastes with albumin showed the best 

protection, which suggested a positive interaction between stannous ions and albumin.
50

  

 

Dental Substrate 

Enamel is thought to be more prone than dentin to dental erosion due to 

continuous exposure to oral environment. However, lengthier retention of teeth overtime 

a lifetime and gingival recession can lead to dentin exposure, making this substrate 
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vulnerable to acids in the oral cavity and subsequently to dental erosion.
15

 Therefore, 

recent studies have investigated the erosion process and mechanism in both enamel and 

dentin.  

The difference in the composition of enamel and dentin are crucial in order to 

understand the different behavior of both tissues during erosive challenges. Enamel 

composed of 85 percent by volume carbonated hydroxyapatide (HA), 12-percent water 

and 3.0-percent protein and lipid, while dentin contains 47 percent, 20 percent, and 33 

percent of carbonated HA, water and protein and lipid respectively.
100

 Although both 

enamel and dentin are composed of HA, dentin contains higher carbonate (5 percent to 6 

percent) than in enamel (3 percent), which makes dentin more soluble than enamel.
33

 

Also, the sizes of HA crystals are much smaller in dentin than in enamel and lead to a 

larger surface area that makes dentin more susceptible to acid attack.
33

  

When exposed to strong acids, enamel demineralization leads to a softening of the 

surface layer and the subsequent permanent loss of enamel tissue, if the challenge 

persists.
95

 But after an erosive challenge to dentin, demineralization and etching of the 

inorganic layer occur, leaving the organic layer intact. The organic layer of dentin shows 

a protective effect against erosive challenges by preventing acid diffusion or mineral 

release.
96,97

 Therefore, the mechanical or chemical removal of this layer leads to a 

progression of erosive lesion
97

 and decreasing remineralization.
98

  

Regarding the behavior of eroded enamel and dentin, an in-situ study analyzed the 

surface microhardness recovery of enamel and dentin after exposure to erosive attack 

using acidic beverages. It was found that enamel and dentin remineralized up to 37.8 

percent and 55.4 percent, respectively, after 24 h of exposure to the oral environment.
99

 



13 

 

Nevertheless, when enamel and dentin were treated with fluoride gel after the erosive 

attack, the remineralization rate of enamel significantly increased to 57.2 percent, yet 

there was no significant increase in the remineralization rate of dentin.
99

  

 

EROSION PREVENTION STRATEGIES 

 

Erosive Acid Modification 

Different strategies have been used to prevent and to repair erosion. First, the acid 

source responsible for the erosive challenge should be identified and either eliminated, 

decreased, or modified.
38

 Extrinsic acids are mainly from diet, medications, or occupation 

sources. The erosive potential of diet can be reduced by calcium, phosphate, and fluoride 

supplementation. The addition of calcium and/or phosphate to erosive drinks makes the 

environment supersaturated with respect to tooth mineral thus preventing dissolution of 

dental structure.
55

 The calcium-containing low-pH black currant juice significantly 

reduces the erosive effect of the drink in comparison with a calcium-free one.
101

 In 

another in-vitro study compared between calcium-supplemented and non-supplemented 

commercially available acidic beverages have shown that calcium addition was found to 

be effective in reducing the erosive potential of those beverages.
102

  

 

Neutralizing Solutions 

Both intrinsic acids, as in GERD, and extrinsic acids can be neutralized. Intrinsic 

acids can be counteracted by using acid suppressive treatments, antacids, psychological 

therapy, or even surgical intervention if needed.
103

 Water, milk, lozenges, antacid 

chewing tablets, and rinsing with sodium bicarbonate can be used to buffer acids and 
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increase pH in the oral cavity.
38,103 

 

Substrate Modification  

Erosion prevention by dental substrate modification using lasers either alone or in 

combination with fluorides also has been thoroughly investigated by many in-vitro 

studies. Nevertheless, most of those studies failed to prove any extra preventive effect of 

lasers without the use of fluorides. The effect of Nd:YAG laser irradiation on enamel pre-

treated with NaF and TiF4 varnishes and solutions was analyzed in vitro, and the laser 

irradiation was found to have no significant effect on erosion prevention.
51

 Another  

similar but more recent study has showed that Nd:YAG laser irradiation combined or not 

with fluoride gel/varnish was not more effective than fluoride alone to prevent enamel 

demineralization.
104

 On dentin surfaces also, CO2 laser irradiation showed no preventive 

effect when combined with amine fluoride and/or cerium chloride.
105

 Moreover, an in-

vitro study investigated the effect of pulsed CO2 laser (lambda = 10.6 μm) treatment with 

or without fluoride gel pretreatment on enamel and dentin erosion. The pulsed CO2 laser 

(lambda=10.6 μm) alone showed no preventive effect on enamel or dentin against 

erosion.
106

  

On the other hand, in-vitro irradiation of dental enamel with a CO2 laser at 0.3 

J/cm
2
 (5 μs, 226 Hz) was found to decrease mineral loss by 97 percent and to harden 

previously softened enamel.
52

 Not only in enamel, irradiation was also found to have a 

protective effect with no harmful effects in a study of root dentin treated with a diode 

laser with levels set at 60 J/cm
2
.
 53 
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Anti-erosive Agents 

Protein caseinphosphopeptide (CPP) with amorphous calcium phosphate (ACP) 

has been claimed to promote a supersaturated environment close to dental hard tissue, 

enhancing remineralization.
107

 It has been used either in toothpaste or as an additive to 

soft drinks.
55

 An in-vitro study evaluated a CPP-ACP paste for preventing dentin and 

enamel erosion produced by a soft drink. Using atomic force microscopy and scanning 

electron microscopy, the researchers found that application of a CPP-ACP paste is 

effective in preventing dentin and enamel erosion produced by a soft drink.
108

 Adding 

CCP-ACP to cola-type soft drink provides significantly reduced enamel erosion.
109

 

Moreover, application of tooth mousse reduces erosive wear of dentin and enamel after 

toothbrush abrasion.
110

 An in-situ study investigated the remineralization potential of 

CPP-ACP after exposure to Coca Cola and showed the synergistic effect of fluoride and 

CPP-ACP.
111

  

In addition, since ADP has protective properties against erosive challenges, 

attempts have been made to strengthen the effect of this naturally occurring organic 

covering. For instance, the use of casein and mucin have been shown to have 

considerable acid resistance effect.
43

 An in-situ study showed the effectiveness of iron- 

containing mouthrinse in preventing erosion and toothbrush abrasion in human enamel 

and dentin.
112

 This could be due to the formation of ferric phosphate precipitates on tooth 

surface increasing the resistance against tooth wear.
55

 As with iron, sodium 

hexametaphosphates also have been shown to contribute to anti-erosive protection 

through the formation of a surface layer.
55

 The use of polymers such as xanthan gum and 

carboxymethyl-cellulose also has been reported.
54

 An in-vitro study found that a novel 
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polymers system (carboxymethylcellulose, xanthan gum and copovidone,) significantly 

reduced surface roughness and enhanced the fluoride uptake by erosive lesions.
113

 

Another in-vitro study investigated the influence of different polymers addition on the 

erosion potential of orange juice. They have shown that calcium lactate pentahydrate and 

sodium pyrophosphate tetrabasic polymers significantly reduced the erosive potential of 

orange juice on enamel and dentin, without interfering with remineralization process.
114

  

 

FLUORIDE AND STANNOUS IONS IN EROSION PREVENTION 

The effect of different fluoride formulations on dental erosion has been 

thoroughly investigated.
55

 The anti-erosive effect of high-concentration topical fluorides, 

including toothpastes, gels, varnishes, and mouth rinses, is based mainly on the formation 

of precipitates on the tooth surface.
38

  

Fluoride-containing toothpastes were more effective in prevention of tooth wear 

when compared with non-fluoridated ones.
56

 Under relatively severe erosive conditions, 

conventional toothpastes containing 1400 ppm F to 1490 ppm F as sodium fluoride (NaF) 

exhibited significant protective effect against erosion.
57

 In an in-vitro study, dentifrices 

with 5000 ppm F (NaF) and 500 ppm F (NaF) plus 3.0-percent sodium trimetaphosphate 

(TMP) provided more erosion prevention than a 1100-ppm F (NaF) dentifrice.
58

 

Moreover, the type of fluoride compound may influence the efficacy of toothpaste 

against erosion. An in-vitro study compared the anti-erosive effect of three toothpastes 

that contained stannous fluoride (SnF2), NaF, or sodium monofluorophosphate (SMFP).
3
 

The authors found that the toothpaste containing stabilized SnF2 demonstrated a highly 

significant level of protection compared with all other types of pastes.
3
 In an attempt to 
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simulate clinical situations, an in-vivo study was done to compare NaF- and SnF2- 

containing toothpastes in erosive demineralization. The toothpaste containing 1000 ppm 

F as SnF2, and 1.0-percent stannous pyrophosphate reduced mineral loss significantly 

compared with toothpaste containing 1500 ppm F as NaF.
59

  

Fluoride varnishes and gels also have been suggested to be effective against 

erosion due to the high concentration of fluoride compounds and the prolonged contact of 

fluoride with tooth surfaces.
38

 Even though its effects are regarded as controversial in the 

literature, an in-vitro study showed an experimental varnish that contains TiF4 (24500 

ppm F) had promising results in prevention of both enamel erosion and abrasion.
60

 It 

showed superior prevention over experimental NaF (24500 ppm F), NaF-Duraphat 

(22600 ppm F), and placebo varnishes.
60

 Another in-vitro study compared a fluoride 

varnish (Duofluorid) and a fluoride gel (Duraphat) against erosion caused by orange juice 

and Pepsi. The fluoride gel significantly provided better prevention against acidic 

beverages than varnishes.
61 

Nevertheless, in another study, both an NaF varnish and an 

APF gel were able to inhibit enamel erosion approximately equally.
4
 Although NaF 

varnish contains a higher fluoride concentration, acidic APF gel could create a greater 

accumulation of CaF2-like layer on the enamel surface, which would make its effect 

equal to the varnish.
4 

 

 

FLUORIDE AND STANNOUS-CONTAINING MOUTHRINSES 

Fluoridated mouthrinses provide considerable protection against tissue loss in 

comparison with non-fluoridated ones.
62

 Mouthrinse that contains 450 ppm fluoride as 

NaF provides significant protection over less concentrated mouthrinses (112 ppm F, as 
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NaF).
63

 The efficacy of mouthrinses that contain tetrafluorides and stannous ions has 

been investigated. Their protective effect was more prominent in presence of pellicle in 

both in-situ and in-vitro studies.
28,64

 It has been found that multiple applications of a 0.5-

percent (531.9 ppm F) TiF4 mouthrinse significantly decreased enamel erosion in vitro.
65

 

Even though all rinses contained 9500 ppm F, a concentration of 3.9-percent SnF2 

showed significant protection for the enamel surfaces, and 1.5-percent TiF4 provided the 

best protection against erosive attack. However, 2.1-percent NaF had no significant 

protective effect in both in-vitro and in-situ situations.
28,64 

 However, data from in-situ 

studies revealed controversial results on the beneficial effect of TiF4 on enamel erosion.
66

  

Studies have investigated solutions containing SnCl2 as a source of tin, either 

alone or combined with fluoride. Different tin/fluoride ratios have been explored in an 

attempt to determine the proper concentration of both ions. An in-vitro study investigated 

six solutions with different F/Sn ratios as follows: 1500 ppm F was combined with 2800 

ppm Sn, 2100 ppm Sn, 1400 ppm Sn, and 700 ppm Sn; while 1000 ppm F was combined 

with 2100 ppm Sn and 1400 ppm Sn. The pH for all solutions was adjusted to 4.5.
67

 The 

best erosion prevention was obtained by combination of 1500 ppm F with 2800 ppm Sn, 

and 1000 ppm F with 2100 ppm Sn. Within the solutions with same concentration of tin, 

the one with higher fluoride concentration was less effective, which indicated that the 

stannous concentration appeared more important than F, and that the higher the tin 

concentration, the better the preventive effect.
67

 In another in-vitro study by the same 

authors, solutions containing concentrations of tin ranging between 800 ppm and 2800 

ppm, and fluoride concentrations of 500 ppm and 250 ppm were investigated. They 

concluded that an 80-percent reduction in enamel surface loss was achieved by the 2800 
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ppm Sn/500 ppm F solution, while the lowest reduction (54 percent) was achieved by the 

800 ppm Sn/250 ppm F solution.
13

 Regarding erosion prevention in dentin, different 

solutions were compared. An in-vitro study found that the AmF- and NaF-containing 

solutions (250 ppm F) reduced tissue loss by 60 percent, while the stannous solution 

SnCl2 (815 ppm Sn) reduced erosion by 52 percent.
68

 However, solutions containing 

combinations of fluoride and tin, including AmF/SnF2 (250 ppm F, 409 ppm Sn) and 

SnF2 (250 ppm F, 809 ppm Sn), reduced dentin surface loss by 74 percent and 89 percent, 

respectively.
68

 It has been suggested that SnF2 is effective even against hydrochloric acid 

(simulating intrinsic erosion), which is very strong acid with considerably low pH (1.2 

and 2.2).
69

 In a comparison with 2.0-percent NaF (9,040 ppm F) solution, 0.4-percent 

SnF2 (1000 ppm F) solution showed significantly higher inhibition of demineralization.
69

  

In addition to the concentrations of tin and fluoride, the pH level influences the 

efficacy of stannous ions. It has been proved that the fluoride agents at lower pH had 

better protection against erosion.
6
 At the same concentrations, acidic SnF2 and AmF 

provided more protection against erosion than NaF.
70

 It is been suggested that the anti-

erosive effect of metallic ion-containing solutions (as Ti and Sn) are more prominent at 

low pH,
9
 and that they are less stable at higher pH.

14
 Therefore, most studies investigated 

the effect of stannous solutions at pH 4.5. 

 

IN-VITRO EROSION MODELS 

The benefits of the in-vitro experiments over in-situ or in-vivo ones are the shorter 

times needed to conduct the experiment; the use of smaller budgets and fewer staff, and 

the ability to proceed without study-participant compliance. However, data obtained from 
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in-vitro models should be interpreted with caution because they do not focus on the 

biological variations that affect the erosion process in the oral environment.
71 

Nevertheless, reasonable and valuable data have been obtained from in-vitro studies.
71

  

 

Study Design  

To design an erosion model we have to understand and to visualize the erosion 

process in the oral cavity. When extrinsic acid enters the oral cavity, the acid is mixed 

with saliva and will contact the teeth surfaces and soften them, which will increase their 

susceptibility to abrasive wear.
72

 When acids are swallowed, some residual acids can 

remain in the mouth, but eventually be cleared or neutralized by saliva. Therefore, to 

design an experimental erosion model, many factors must be considered, including the 

chemical (e.g. acid-tooth interaction, acid concentration and pH), behavioral (e.g. way of 

drinking beverages), and biological (e.g. salivary flow, ADP) factors.
72

 Moreover, the 

outcome measures of the study have to be determined, either to assess initial surface 

softening or advanced deep surface loss.  

 

Dental Hard Tissue Substrates 

Specimens can be slabs of either enamel or dentin obtained from extracted human 

teeth, which best represent in-vivo situations. Access to human tissue could be difficult; 

therefore, bovine enamel and dentin (from lower incisors) can and have been used as  

substitutes for human tissue.
73

 An in-vitro erosion/abrasion cycling study found that 

bovine enamel is more susceptible to demineralization than human enamel;
74

 while 

bovine dentin performed similarly to human dentin in the same testing conditions.
75

 Even 

though human hard tissues are preferred for more realistic models, bovine teeth have 
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been accepted because they can provide adequate relative results.
73

 Chemical, 

morphological, and physical differences among these dental substrates are therefore 

considered during data interpretation.
76

 Hydroxyapatite powder, particles, and discs also 

have been used as a substitute for enamel.
72

 Specimen preparation is determined 

according to the method of erosion assessment. For instance, in the case of surface 

microhardness and surface loss profilometry, specimens usually are ground and polished 

to give more accurate results, while natural surfaces can be used for chemical analyses 

(calcium, phosphorus and fluoride release).
77

  

 

Cycling Protocol 

Very few studies used a single-erosion model, because it does not reproduce the 

dynamics of erosion development in the mouth. The majority of in-vitro erosion studies 

were conducted using cycling models ranging from three to 720 cycles.
73

 Studies that 

aimed to test initial erosive lesions tend to use fewer cycles, while more frequent cycles 

are used in studies testing more advanced and aggressive erosive challenges.
73

  

When designing an erosion experimental model, lab variables should be properly 

described and justified to allow comparisons among different studies.
71

 Those variables 

include solution volumes, exposure times, flow rates, temperatures, and stirring methods 

and rates.
71,72

 The determination of these experimental parameters depends mainly on two 

factors, the simulation of an in-vivo situation and the chosen method of erosion 

assessment.
72

 Therefore, in most circumstances, it is preferable to design a model with a 

short erosion period; however, the model should ensure enough demineralization that can 

be detected and assessed by the method of choice.
72
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Regarding the testing of preventive treatments, many in-vitro studies have used 

specimens with topical treatment followed by either single or multiple erosive 

challenges.
72

 The frequency of preventive treatment applications also varies according to 

the objectives of the study.
72

 Frequent applications may be incorporated in the erosive 

model to assess the efficacy of certain preventive products and to determine its 

appropriate regime.
72,87 

 

Remineralizing Solution 

Some in-vitro erosion models incorporate remineralization phase using demin-

remin cycling procedures to simulate clinical situations. Artificial mouths and other 

devices have been developed in attempt to be more realistic and standardized.
71

 Different 

types of remineralizing solutions have been used, including stimulated or unstimulated 

whole saliva, centrifuged saliva using different centrifugation parameters, and artificial 

saliva with different formulations.  

 

Type of Acid 

The acid type, concentration, and pH to be used as the erosive solution depend on 

the objectives of the study. When simulating acids from dietary sources, citric acid (pH 

2.3-3.8), soft drinks and sodas (pH 2.3–3.2), sport beverages (pH 2.81 to 3.55),
78

 acidic 

candies (pH 2.3–3.1),
79

 candy sprays (pH 1.9–2.3), 
80

 and fruit juices (orange, grapefruit 

or lemon: pH 3–4)
81

 have been used. For intrinsic erosion, hydrochloric acid with pH 

range 1.2-2.9 has been used to simulate erosion caused by eating disturbances, vomiting, 

and GERD.
72

 The time of acid exposure should ideally reproduce clinical conditions. The 

average exposure time in the oral cavity has been reported to be approximately 2 min.
82
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The temperature of erosive solution contributes to the degree of erosion
85

 proportional to 

surface loss and inversely proportional to surface nanohardness.
54

 Finally, stirring rate 

can increase the tooth dissolution rate by increasing the speed of the reaction.
86
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METHODS AND MATERIALS 
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This study was conducted in two phases. In Phase I, the effects of different rinse 

treatments were tested using an in-vitro cycling model. In Phase II, the effects of these 

rinses on the protein composition of the pellicle were analyzed.  

 

PHASE 1 

 

Study Design  

This phase followed a complete randomized design testing the effects of rinse 

treatment (at 4 levels, SnCl2 /NaF-, NaF-, SnCl2 -containing solutions and deionized 

water (DIW) as negative control). The experimental units were polished enamel and 

dentin slabs cut from bovine teeth (n = 10 per group). The response variables were 

surface loss (in µm) measured at the end of the cycling phase. 

 

Solutions Preparation  

Sodium gluconate (FisherSci AC18139; 2.3 g/l solution) and tin chloride (SnCl2, 

Sigma-Aldrich CAS# 7772-99-3; 800 ppm Sn in the solution equated to 1.277 g SnCl2 /l 

solution) were added to prepare the SnCl2-containing solutions. Sodium gluconate was 

allowed to dissolve first, and then tin chloride was added. Two-hundred-fifty (250) ppm 

fluoride as 0.553 g/l NaF (Sigma-Aldrich CAS# 7681-49-4) was used. To allow for 

appropriate comparison, all solutions were pH-adjusted to 4.5 using HCl or KOH. 

Solutions preparations are described in Table I.  
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Specimen Preparation 

Enamel and dentin slabs (4 mm width × 4 length mm × 2 mm thickness) were cut 

from bovine incisors using a microtome (Isomet, Buehler, Lake Bluff, IL). The 

specimens were embedded in acrylic resin (Varidur, Buehler) and the resulting blocks (10 

mm × 10 mm × 8 mm) containing 1 enamel and 1 dentin specimen were ground flat and 

polished with water-cooled abrasive discs (500-, 1200-, 2400- and 4000-grit Al2O3 

papers; MD-Fuga, Struers Inc., Cleveland, OH) and polishing cloth with diamond 

suspension (1 µm; Struers Inc.) (Figure 1, Figure 2). After the polishing procedures, they 

were sonicated in detergent solution and selected. Specimens with any cracks or structure 

defects were discarded. Adhesive unplasticised polyvinyl chloride (UPVC) tapes were 

placed on the polished surface of each specimen, leaving an area of 4 x 1 mm
2
 exposed to 

subsequent testing (Figure 3). Specimens were then randomly assigned to four 

experimental groups (n = 10 per group).  

 

Saliva Collection 

Human saliva collection is approved according to IRB protocol #0304-58. 

Stimulated whole saliva was collected 1 h after breakfast from volunteers without active 

caries, saliva dysfunction, and not on medications. Salivary secretion was stimulated by 

chewing a gum base for 1 min, and saliva was collected for 2 h directly into 50-ml ice-

chilled tubes to collect approximately 1.5 L. After collection, saliva was pooled and 

immediately centrifuged at 14,000 g for 20 min at 4 °C. The supernatant was separated 

from the pellet, pooled, and stored in -80°C. 
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Cycling Procedures 

For the cycling, the specimens were fixed on the lids of 12-well plates, allowing 

them to be individually immersed into the test solutions (Figure 4, Figure 5, Table II). For 

the first day, all specimens were incubated in the saliva (2 ml/specimen) for 24 h at room 

temperature under gentle agitation (85 rpm to 90 rpm) (Figures 6, 7). After that, the 

cycling phase started with a cycle consisting of 5-min immersion in 0.3-percent citric 

acid (pH 2.6, 4 ml/specimen), followed by 60 min of immersion in clarified saliva (2 

ml/specimen). This cycle was repeated 6 times per day for 5 days. The remin solutions 

were renewed 3 times/day, while the demin solution was renewed after each 

demineralization episode. After demin the specimens were rinsed in DIW for 10 s, and 

the excess of water was gently removed with the aid of kimwipes. The exposure to the 

rinse solutions (4 ml/specimen) was performed in the 30 min after the start of 1st, 3rd and 

6th remineralization periods for 2 min. No DIW-rinse was done after exposure to saliva 

and the treatments. The excess of the rinse solutions was gently removed with kimwipes. 

All the experimental procedures were conducted at room temperature.  

 

Surface Profilometry 

After cycling, the tapes were removed from the specimens and the surface 

analyzed. An area of 2 mm long (X) × 1 mm wide (Y) was scanned with an optical 

profilometer (Proscan 2000, Scantron, Venture Way, Tauton, UK) (Figure 8). The scan 

covered the treated area and the protected reference surfaces on both sides. The step size 

was set at 0.01 mm and the number of steps at 200 in the X-axis; and at 0.05 mm and 20 

mm, respectively, in the Y-axis. The depth of the treated area was calculated based on the 
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subtraction of the average height of the test area from the average height of the two 

reference surfaces by using the dedicated software (Proscan Application software v. 

2.0.17). 

 

PHASE 2 

Study Design  

This phase tested the effect of rinse treatments on the acquired dental pellicle 

(ADP) protein composition formed by clarified human saliva (CHS) as in Phase I. The 

same solutions tested in Phase 1 were tested: SnCl2/NaF-, NaF- and SnCl2-containing and 

DIW (negative control). The experimental units were polished 8 × 8 mm
2
 bovine enamel 

slabs (n = 8 per group). All groups were incubated in clarified saliva for 24 h at room 

temperature under gentle agitation. Then, all specimens were subjected to a 2-min 

treatment with the solutions followed by ADP formation for 2 h (Figure 9). Different 

color-coded forceps were used for each group (Figure 10). The dental pellicle specimens 

after the three cycles were collected and analyzed for protein profile and composition 

using proteomic techniques (Table 3). 

 

Specimens Preparation 

Thirty-two enamel slabs (8 mm width × 8 length mm × 2 mm thickness) were cut 

from bovine incisors using a microtome (Isomet, Buehler, Lake Bluff, IL). Specimens 

were ground flat and polished with water-cooled abrasive discs (500-, 1200-, 2400- and 

4000-grit Al2O3 papers; MD-Fuga, Struers Inc., Cleveland, OH) and a polishing cloth 

with diamond suspension (1 µm; Struers Inc.). After the polishing procedures, they were 

sonicated in detergent solution and selected. Specimens with any cracks or structure 
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defects were discarded. All specimens were sonicated again in detergent solution for 3 

minutes just before the experiment to remove debris and pellicle (Figures 11, 12).  

 

Harvesting ADP from Specimens  

Collection strips of 0.5 cm × 1.0 cm (electrode wick filter paper, Bio-Rad, 

Hercules, CA) pre-soaked in 3.0-percent citric acid were folded so they could be held 

from one end with a dental forceps, while the other end was brought into contact with the 

surface of the specimens (Figure 13 through Figure 17). Each surface of the folded strip 

was used to collect pellicle from the surface of one specimen, i.e. four collection strips 

were used per group (1 strip/2 specimens). After collection, the strips were placed into a 

polypropylene microcentrifuge tube. The collection strips were then kept frozen at -80 °C 

until used
146

 (Figure 18, Figure 19). 

 

ADP Protein Extraction 

Procedures for AEP extraction and in-solution digestion were as described by 

Zimmerman et al. (2013).
146

 To extract the AEP proteins from the collection strips, 200 

μL of 50 mM ammonium bicarbonate, pH 7.8, was added to each of the polypropylene 

microcentrifuge tubes containing the 4 collected strips. Each microcentrifuge tube was 

then sonicated for 1 min, and the recovered solution was then collected and placed into a 

new microcentrifuge tube for each group. This procedure was repeated for a total of 4 

times. The extracted solution was then centrifuged at 14,000 × g for 15 min and the 

supernatant was extracted. This centrifugal procedure was carried out to prevent the 

debris from the collection strip that could be released into the solution during the 

sonication step. The supernatant was dried using a rotary evaporator (Eppendorf, 
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Parkway, NY) and then resuspended in 100 μL of distilled water. Micro bicinchoninic 

acid (Micro BCA) assay was carried out to determine the total protein concentration of 

the extracted solution from each group. All samples were dried using a rotary evaporator 

and stored at 4 °C until they were needed for further experimentation.
146

  

In-Solution Digestion 

Dried samples were resuspended in 50 μL of 4 M urea, 10 Mm DTT and 50 mM 

ammonium bicarbonate at pH 7.8 and incubated for 1 hour at room temperature. 

Afterwards, 150 μL of 50 mM ammonium bicarbonate was added to the samples, 

followed by 2.0-percent (w/w) trypsin (Promega, Madison, WI). The sample was then 

allowed to incubate overnight at 37 °C. Finally, the samples were dried in a rotary 

evaporator, de-salted by C-18 ZipTip Pipette Tips (Millipore, Billerica, MA) and 

subjected to mass spectrometry.
146 

 

ADP Peptidome 

 

The samples were filtered by centrifugal filtration using a 10 kDa molecular 

weight cut-off (MWCO) membrane (Pall Life Sciences, Ann Arbor, MI). The eluted AEP 

was centrifuged for 10 min at 14,000 × g using a refrigerated Eppendorf table-top 

centrifuge (Eppendorf, Parkway, NY). The filtrate containing the proteins/peptides with 

molecular weights below 10 kDa was collected, dried, and subjected to MS analysis.
146 
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Liquid Chromatography Electrospray Ionization 

Tandem Mass Spectrometry (LC-ESI-MS/MS) 

Mass spectrometric analyses were carried out with a LTQ-Velos (Thermo 

Scientific, San Jose, CA). This allowed for in-line liquid chromatography with the 

capillary-fused silica column (column length 10 mm, column ID 75 μm) packed in-house 

using C-18 resin of 3.0-μm spherical beads and 100-Å pores size (Michrom 

BioResources, Auburn, CA) linked to the mass spectrometer using an electrospray 

ionization in a survey scan in the range of m/z values 390-2000 tandem MS/MS. A 

dynamic exclusion criterion was established as a repeat count of 1 and a repeat duration 

of 30 s. All samples were dried by rotary evaporator and re-suspended in 15 μL of 97.5-

percent H2O/2.4-percent acetonitrile/0.1-percent formic acid and then subjected to 

reversed-phase LC-ESI-MS/MS. The nano-flow reversed-phase HPLC was developed 

with linear 65-minute gradient ranging from 5 percent to 55 percent of solvent B (97.5-

percent acetonitrile, 0.1-percent formic acid) at a flow rate of 200 nL/min with a 

maximum pressure of 280 bar. Electrospray voltage and the temperature of the ion 

transfer capillary were 1.8 kV and 250 °C respectively. Each survey scan (MS) was 

followed by automated sequential selection of seven peptides for CID with dynamic 

exclusion of the previously selected ions.
146

  

 

Peptide and Protein Identification  

For proteome and peptidome analysis, the obtained MS/MS spectra were searched 

against human protein databases (Swiss Prot and TrEMBL, Swiss Institute of 

Bioinformatics, Geneva, Switzerland, http://ca.expasy.org/sprot/) using SEQUEST and 

Percolator algorithms in Proteome Discoverer 1.3 software (Thermo Scientific, San Jose, 
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CA). A maximum of two miscleavages were allowed; carbamydomethylation of cysteine; 

phosphorylation of serine, threonine and tyrosine; and oxidation of methionine were 

included as dynamic modification. For proteome analysis, a trypsin-specific cleavage site 

was considered; peptidome analysis was carried out with no specified fragmentation 

search. Search results were filtered for a false discovery rate of 1.0 percent employing a 

decoy search strategy utilizing a reverse database. A total of three mass spectrometric 

runs were carried out in each condition.
146

 

  

STATISTICAL ANALYSIS 

 

Phase 1 

 Mixed-model ANOVA was used to test the effects of surface (enamel, dentin) 

and rinse (DIW, NaF, Sn, Sn+NaF) on surface loss. Pair-wise comparisons were made 

using Tukey's method to control the overall significance level at 5 percent. 

 

Phase 2  

An approach was used similar to that adopted in Siqueira et al. (2012)
123

 to 

determine the relative abundance of proteins among experimental groups. Relative 

abundance of an individual protein from the experimental groups was considered 

significantly different protein level when the values observed were 0.75 for decreased 

abundance or 1.25 for increased abundance. Significance level of 5 percent was adopted 

for all analyses. 
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RESULTS 
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PHASE 1 

Overall, the solutions and the substrates and their interaction had significant 

impact on surface loss (Table IV, Table V).  

 

Substrate Comparisons  

For the SnCl2 and the SnCl2/NaF groups, dentin had significantly more surface 

loss than enamel (p < .0001) (Table VI).  

 

Solutions Comparisons  

On dentin surface: 1) The SnCl2 group had significantly more surface loss than 

the NaF group (p < 0.05) and the SnCl2/NaF group (p < .0001), but less than the DIW 

group (control) (p < .0001); 2) The NaF group had significantly more surface loss than 

the SnCl2/NaF group (p < .0001), but less than the DIW group (p < .0001); and (3) The 

SnCl2/NaF group had significantly less surface loss than the DIW group (p < .0001) 

(Table VII; Figure 20).  

On enamel surface: 1) The SnCl2 group had significantly more surface loss than 

the SnCl2/NaF group (p < .0001), but had less than the NaF group and the DIW group (p 

< .0001); 2) The NaF group had significantly more surface loss than SnCl2/NaF group (p 

< .0001) but less than the DIW group (p < .0001); and 3) The SnCl2/NaF group had 

significantly less surface loss than the DIW group (p < .0001) (Table VII; Figure 21).  
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PHASE II 

After elution of ADP from collection strips and trypsinization, equal amounts of 

protein peptides were subjected to nanoscale LC-ESI-MS/MS. Four (4) runs per group 

were carried out. The base-peak chromatogram for reversed-phase chromatography 

monitored by the mass spectrometer represents the intensity of all peptide ions in the 

sample in a single scan. SEQUEST search was used to identify the peptide ions following 

the criteria as described in Methods. The results indicated a high overlap in ADP proteins 

among the 4 groups (Table VIII through Table XII). A Venn diagram with the number of 

proteins from each group and their overlaps among the four groups are shown in Figure 

30.  A total of 72 proteins were present in all four groups. Thirty proteins were 

exclusively present in the DIW control group. Twenty proteins were exclusively present 

in the SnCl2/NaF group. Nineteen proteins were exclusively present in the NaF group and 

other 13 proteins were only present in SnCl2 (Table XIII through Table XVI; Figure 30). 
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TABLE I 

Testing solutions preparation 

 

 

 

 

 

 

  

Solutions Amounts 

SnCl2  800 ppm Sn: 1.277 g SnCl2 /l, 2.3 g Na-gluconate g/l, pH 4.5 

NaF 250 ppm F: 0.553 g/l NaF pH 4.5 

SnCl2/NaF 

 

800 ppm Sn: 1.277 g SnCl2 /l, 2.3 g Na-gluconate g/l; 250 ppm F: 0.553 

g/l NaF,  pH 4.5 

 

0.3% citric 

acid (pH 

2.6) 

 

a. Weigh 3.0 g of powdered citric acid anhydrous (C1857, Sigma) and  

add to a beaker with ~800 ml of DIW 

 

b. Adjust the volume to 1 liter, with sterile water  

c. Determine the pH of the solution using a calibrated pH meter, under 

agitation. It should be 2.6. 

d. Record the pH value 
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TABLE II 

 Daily cycling procedure for Phase I 

Steps Procedures 

Pellicle formation 24h exposure to saliva (2 ml/specimen) 

Demin 1 5 min in 0.3% citric acid pH 2.6, (4ml/specimen) 

DIW rinse, blot dry (Kimwipes) 

Remin 1, Treatment 1 (fresh 

saliva) 

30 min in saliva (2 ml/specimen) 

Blot dry 

2 min rinse treatment (4 ml/specimen) 

Blot dry 

30 min in saliva 

Blot dry 

Demin 2 Similar to D1 

Remin 2 60 min in saliva 

Blot dry 

Demin 3 Similar to D1 

Remin 3, Treatment 2 (fresh 

saliva) 

Similar to R1, T1 

Demin 4 Similar to D1 

Remin 4 Similar to R2 

Demin 5 Similar to D1 

Remin 5, Similar to R2 

Demin 6 Similar to D1 

Remin6, Treatment3 (fresh 

saliva) 

Similar to R1, T1 

Remin Immersion in saliva overnight 
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TABLE III 

Cycling procedure for Phase II 

Steps Procedures 

1 Saliva incubation - 24 h 

2  

 

Treatment - 2 min 

 

3  2 h - Saliva incubation 

Steps 2 & 3 were repeated 3 times for one day 

 

 

 

TABLE IV 

ANOVA table 

Effect 
Num 

DF 
Den DF F Value P Value 

Group 3 36 211.86 <.0001 

Substrate 1 36 71.68 <.0001 

Group*Substrate 3 36 39.99 <.0001 
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TABLE V 

Results summary (A: SnCl2, B: NaF, C: SnCl2/ NaF, D: DIW) 

Substrate Group N Mean Standard 

Deviation 

Confidence 

Limits 

Dentin SnCl2 10 -13.24 1.11 ( -14.04, -12.45) 

 NaF 10 -10.98 0.87 ( -11.60, -10.35) 

 SnCl2/ 

NaF 

10 -6.89 0.83 ( -7.49, -6.30) 

 DIW 10 -17.18 0.83 ( -17.78, -16.59) 

Enamel SnCl2 10 -6.14 1.50 ( -7.21, -5.06) 

 NaF 10 -10.85 1.51 ( -11.93, -9.77) 

 SnCl2/ 

NaF 

10 -2.05 0.72 ( -2.56, -1.53) 

 DIW 10 -18.60 3.32 ( -20.98, -16.23) 

 

 

TABLE VI 

 Substrate comparisons 

Comparison Difference Standard Error P value 

A: Dentin < Enamel -7.10 0.63 <.0001 

B: Dentin & Enamel n.s. -0.13 0.63 1.0000 

C: Dentin < Enamel -4.85 0.63 <.0001 

D: Dentin & Enamel n.s. 1.42 0.63 0.3491 
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TABLE VII 

 Solutions comparisons 

Comparison Difference Std Error P value 

Dentin: A < B -2.27 0.70 0.0462 

Dentin: A < C -6.35 0.70 <.0001 

Dentin: A > D 3.94 0.70 <.0001 

Dentin: B < C -4.08 0.70 <.0001 

Dentin: B > D 6.21 0.70 <.0001 

Dentin: C > D 10.29 0.70 <.0001 

Enamel: A < C -4.09 0.70 <.0001 

Enamel: A > B 4.71 0.70 <.0001 

Enamel: A > D 12.46 0.70 <.0001 

Enamel: B < C -8.80 0.70 <.0001 

Enamel: B > D 7.75 0.70 <.0001 

Enamel: C > D 16.55 0.70 <.0001 
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TABLE VIII 
 

Proteins present in all groups. (A: SnCl2, B: NaF, C: SnCl2/NaF, D: DIW) 

 

Accession 

Number 

Protein Name GPA/ 

GPD 

P Value GPB/ 

GPD 

P Value GPC/ 

GPD 

P 

Value 

A7Y9J9 Mucin 5AC, oligomeric 

mucus/gel-forming 

1.20 0.001 2.38 0.278 1.98 0.000 

A8K2H9 cDNA FLJ78503, highly 

similar to Homo sapiens 

keratin 13 (KRT13), 

transcript variant 1, mRNA 

0.90 0.001 0.92 0.001 1.87 0.000 

A8K2U0 Alpha-2-macroglobulin-like 

protein 1 

1.05 0.001 0.96 0.002 1.32 0.000 

B1AN48 Small proline-rich protein 3 0.56 0.001 0.99 0.000 1.87 0.010 

B4DGT4 cDNA FLJ61241, highly 

similar to Histone deacetylase 

5 

0.87 0.001 0.94 0.020 1.38 0.013 

B4DPR2 cDNA FLJ50830, highly 

similar to Serum albumin  

0.90 0.001 1.14 0.002 1.77 0.045 

B4DZ16 cDNA FLJ58649 0.53 0.001 1.02 0.004 1.42 0.320 

B4E1T1 cDNA FLJ54081, highly 

similar to Keratin, type II 

cytoskeletal 5 

1.13 0.001 1.07 0.031 1.37 0.015 

B5ME49 Mucin-16 0.97 0.001 0.93 0.001 1.09 0.020 

B7Z5K0 cDNA FLJ52445, highly 

similar to Homo sapiens 

membrane-associated ring 

finger (C3HC4) 7 

(MARCH7), mRNA 

1.97 0.001 1.98 0.070 2.50 0.001 

B7ZMD7 Amylase, alpha 1A (Salivary) 1.19 0.001 0.65 0.000 1.20 0.003 

B8ZZJ3 Alstrom syndrome protein 1 0.99 0.001 1.01 0.017 1.34 0.002 

C9JA77 Uncharacterized protein 0.69 0.001 0.65 0.000 2.32 0.001 

E7EMQ1 Carbonic anhydrase 6  0.90 0.001 1.01 0.038 1.38 0.002 

E7EQT2 Mucin-4 beta chain 0.91 0.001 0.91 0.003 1.37 0.003 

E7ESM2 Urokinase-type plasminogen 

activator chain B 

0.88 0.001 0.86 0.003 1.34 0.000 

E7ETI5 Uncharacterized protein 0.99 0.001 1.18 0.001 1.43 0.002 

F4MHJ1 Ubiquitously transcribed 

tetratricopeptide repeat 

protein Y-linked transcript 

variant 97  

0.95 0.001 0.98 0.001 1.43 0.005 

F6KPG5 Albumin 0.92 0.001 0.84 0.001 1.45 0.012 

G3CIG0 MUC19 variant 12 0.97 0.001 0.98 0.001 1.46 0.001 

H0Y930 Extracellular matrix protein 

FRAS1  

0.96 0.001 0.69 0.001 1.08 0.001 

H6VRF8 Keratin 1  0.81 0.001 0.93 0.001 1.67 0.006 

H7BXM7 Uncharacterized protein 1.10 0.001 1.52 0.001 1.61 0.003 

(continued) 
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TABLE VIII (cont.) 

 
 

H7BYJ0 Uncharacterized protein 0.92 0.001 0.87 0.001 1.60 0.005 

O15079 Syntaphilin 0.97 0.001 1.17 0.001 1.48 0.001 

P01034 Cystatin-C 1.08 0.002 0.92 0.001 1.37 0.000 

P01036 Cystatin-S 0.70 0.002 0.99 0.001 1.51 0.000 

P01037 Cystatin-SN 0.98 0.001 0.95 0.001 1.54 0.002 

P01833 Polymeric immunoglobulin 

receptor 

1.06 0.000 1.20 0.001 1.40 0.002 

P01877 Ig alpha-2 chain C region 0.99 0.010 1.06 0.001 1.38 0.002 

P02808 Statherin 0.59 0.030 0.57 0.001 1.08 0.000 

P02810 Salivary acidic proline-rich 

phosphoprotein ½ 

0.93 0.017 2.25 0.001 2.37 0.023 

P02812 Basic salivary proline-rich 

protein 2 

1.16 0.002 0.99 0.001 1.43 0.000 

P02814 Submaxillary gland 

androgen-regulated protein 

3B 

1.11 0.048 1.00 0.001 1.40 0.001 

P04080 Cystatin-B 0.90 0.048 0.55 0.001 1.19 0.006 

P06733 Alpha-enolase 0.55 0.002 0.71 0.002 1.42 0.002 

P07737 Profilin-1 1.05 0.003 1.25 0.001 1.42 0.001 

P09228 Cystatin-SA 0.98 0.019 0.97 0.001 1.35 0.004 

P0CG05 Ig lambda-2 chain C regions 0.75 0.051 0.62 0.001 1.10 0.006 

P15515 Histatin-1 0.89 0.068 0.78 0.001 1.46 0.002 

P15516 Histatin-3 3.20 0.005 1.96 0.001 3.27 0.001 

P19961 Alpha-amylase 2B 0.65 0.010 0.96 0.001 1.23 0.003 

P28325 Cystatin-D 1.54 0.002 0.91 0.001 1.28 0.001 

P35908 Keratin, type II cytoskeletal 2 

epidermal 

0.79 0.350 0.78 0.001 1.41 0.001 

P54652 Heat shock-related 70 kDa 

protein 2 

0.93 0.015 0.78 0.001 2.35 0.001 

Q8TAX7 Mucin-7 0.93 0.000 2.02 0.001 1.47 0.002 

Q8WVD6 PHTF2 protein 0.75 0.825 0.89 0.001 1.48 0.005 

Q8WZ42 Titin 0.93 0.095 0.92 0.001 1.37 0.001 

Q9HC84 Mucin-5B 0.79 0.278 0.91 0.001 2.36 0.001 

Q9NR09 Baculoviral IAP repeat-

containing protein 6 

0.95 0.001 0.79 0.001 1.47 0.002 

Q9NV58 E3 ubiquitin-protein ligase 

RNF19A 

0.62 0.000 1.95 0.001 1.14 0.001 

A0M8Q9 C1 segment protein 0.96 0.234 0.78 0.001 1.58 0.001 

A8K5I6 cDNA FLJ78643, highly 

similar to Homo sapiens 

cornulin (CRNN), mRNA 

0.91 0.020 0.94 0.001 1.44 0.012 

(continued) 
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TABLE VIII (cont.) 

 

B2R853 

 

cDNA, FLJ93744, highly 

similar to Homo sapiens 

keratin 6E (KRT6E), mRNA 

 

 

1.11 

 

0.002 

 

0.97 

 

0.001 

 

1.39 

 

0.012 

B3W5Y6 Serpin B3 1.06 0.002 0.95 0.001 1.48 0.004 

B4DL17 cDNA FLJ52558, highly 

similar to Keratin, type I 

cytoskeletal 13  

1.85 0.003 1.37 0.015 1.33 0.001 

B4DRR0 cDNA FLJ53910, highly 

similar to Keratin, type II 

cytoskeletal 6A 

0.89 0.002 1.00 0.003 1.96 0.002 

E7EQV7 Uncharacterized protein 0.95 0.002 0.92 0.032 1.49 0.001 

G3V1A4 Cofilin 1 (Non-muscle), 

isoform CRA_a  

0.62 0.001 1.01 0.006 1.30 0.011 

P01040 Cystatin-A 0.98 0.017 0.86 0.171 1.26 0.023 

P01857 Ig gamma-1 chain C region 0.94 0.000 0.90 0.028 1.34 0.010 

P04792 Heat shock protein beta-1 1.09 0.038 1.91 0.002 2.61 0.010 

P05109 Protein S100-A8 0.74 0.041 0.95 0.002 1.35 0.015 

P06702 Protein S100-A9 0.83 0.001 0.88 0.003 1.39 0.003 

P07355 Annexin A2 1.15 0.024 1.23 0.001 1.47 0.016 

P07737 Profilin-1 2.04 0.003 3.20 0.010 1.02 0.010 

P27482 Calmodulin-like protein 3 0.80 0.003 1.01 0.000 1.42 0.001 

P31947 14-3-3 protein sigma 0.94 0.002 0.95 0.035 1.45 0.002 

P35908 Keratin, type II cytoskeletal 2 

epidermal 

0.77 0.001 0.88 0.000 1.61 0.000 

P47929 Galectin-7 0.84 0.003 0.78 0.001 1.39 0.003 

P62805 Histone H4 1.06 0.003 2.96 0.005 2.32 0.000 

P68371 Tubulin beta-4B chain 1.25 0.005 0.99 0.005 1.42 0.000 
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TABLE IX 

 

Proteins present in SnCl2 and NaF groups 

 

Accession 

Number 

Protein Name 

A4D1R9 Homeodomain interacting protein kinase 2  

B3KVI8 cDNA FLJ16604 fis, clone TESTI4008097, highly similar to Polycomb 

group protein ASXL1  

B3KVV3 cDNA FLJ41584 fis, clone CTONG2020445, highly similar to ATP-

binding cassette sub-family A member 12 

B4DT53 cDNA FLJ52905, highly similar to Runt-related transcription factor 3 

B4E1M1 cDNA FLJ60391, highly similar to Lactoperoxidase (EC 1.11.1.7) 

D3DVP6 Macrophage erythroblast attacher, isoform CRA_d  

E7EQE3 no name 

E7ESP5 no name 

E7EWI7 no name 

F8WAI1 Immunoglobulin-like and fibronectin type III domain-containing protein 1 

H7C0P6 Mitogen-activated protein kinase kinase kinase kinase 4 

O43157 Plexin-B1 

P49454 Centromere protein F 

Q2NKL1 Mineralocorticoid receptor 

Q5T1R4 Transcription factor HIVEP3 

Q5T3N0 Annexin A1 

Q6WKZ4 Rab11 family-interacting protein 1 

Q6WRI0 Immunoglobulin superfamily member 10 

Q7Z7G8 Vacuolar protein sorting-associated protein 13B 

Q9BQK8 Phosphatidate phosphatase LPIN3 

Q9UKZ4 Teneurin-1 

Q9ULK2 Ataxin-7-like protein 1 
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TABLE X 

 

Proteins present in SnCl2 and SnCl2 /NaF groups 

 

Accession 

Number 

Protein Name 

Q9C0A1 Zinc finger homeobox protein 2 

A8K008 cDNA FLJ78387 

A8K4G7 cDNA FLJ78528, highly similar to Homo sapiens vacuolar protein 

sorting 4B (yeast) (VPS4B), mRNA 

B3KU50 cDNA FLJ39199 fis, clone OCBBF2005189, highly similar to Homo 

sapiens ankyrin repeat domain 17 (ANKRD17), transcript variant 2, 

Mrna 

B4DII4 cDNA FLJ53493, highly similar to HEF-like protein  

B5MCY1 Tudor domain-containing protein 15 

C0JYZ1 Dynein, axonemal, heavy chain 11 

E9PCX8 Tensin-3 

F5H2N0 no name 

O60284 Suppression of tumorigenicity 18 protein 

P35568 Insulin receptor substrate 1 

Q53EU2 GATA binding protein 6 variant 

Q9NSI6 Bromodomain and WD repeat-containing protein 1 

Q9ULM3 YEATS domain-containing protein 2 

Q9UQB3 Catenin delta-2 
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TABLE XI 

 

Proteins present in SnCl2 /NaF and DIW (control) groups. 

 

Accession 

Number 

Protein Name 

A4FUT8 JMJD1B protein 

A5YKK5 KIAA0232 

B3KNA1 

cDNA FLJ14021 fis, clone HEMBA1002513, highly similar to Histone 

deacetylase 6 

B3KRV8 

cDNA FLJ34970 fis, clone NTONG2005363, highly similar to Castor 

homolog 1 zinc finger protein  

B4DZR3 cDNA FLJ59826, highly similar to Zinc finger protein ZFPM 

B7Z8W3 

cDNA FLJ53272, highly similar to Homo sapiens LIM domain 7 

(LMO7), mRNA  

E9PDX3 Kinesin-like protein KIF13A 

F6SWM5 C-Jun-amino-terminal kinase-interacting protein 2 

F8W7E2 no name 

F8WC76 no name 

H0Y8W5 Rho GTPase-activating protein 21 

H3BLS7 Vacuolar protein sorting-associated protein 13D 

Q14517 Protocadherin Fat 1 

Q4VXP2 Potassium voltage-gated channel subfamily KQT member 2  

Q5CZC0 Fibrous sheath-interacting protein 2 

Q6UB99 Ankyrin repeat domain-containing protein 11 

Q6UX82 Ly6/PLAUR domain-containing protein 8 

Q6ZMI9 

cDNA FLJ23911 fis, clone CAE01964, highly similar to Homo sapiens 

EGF, latrophilin and seven transmembrane domain containing 1 (ELTD1) 

Q86YR6 POTE ankyrin domain family member D 

Q8N7Z5 Putative ankyrin repeat domain-containing protein 31 

Q8TB46 ANKRD50 protein 

Q92574 Hamartin 

Q9UQ35 Serine/arginine repetitive matrix protein 2 

Q9Y4B6 Protein VPRBP 

Q9Y6X0 SET-binding protein 
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TABLE XII 
 

 Proteins present in NaF and SnCl2 /NaF groups 
 

Accession 

Number 

Protein Name 

A4D1A8 Similar to Piccolo protein (Aczonin)  

A7E2D6 NAV2 protein 

B4DI39 cDNA FLJ54328, highly similar to Heat shock 70 kDa protein 1  

B4DSK7 cDNA FLJ50196, highly similar to Peroxisome proliferator-activated receptor-binding 

protein 

B4DV38 PAP-associated domain-containing protein 5 

D3DS86 E3 ubiquitin-protein ligase HECTD1 

D3DX93 HCG1745555, isoform CRA_b 

E7EPM4 Mucin-17 

E9PJL5 Putative uncharacterized protein C12orf63  

F5GWX1 no name 

F8VW64 RNA-binding protein Nova-1  

O75592 Probable E3 ubiquitin-protein ligase MYCBP2 

P15822 Zinc finger protein 40 

P48169 Gamma-aminobutyric acid receptor subunit alpha-4 

P52948 Nuclear pore complex protein Nup98-Nup96 

P58397 A disintegrin and metalloproteinase with thrombospondin motifs 12 

P78333 Glypican-5 

Q05BP9 OLIG2 protein 

Q12923 Tyrosine-protein phosphatase non-receptor type 13 

Q14204 Cytoplasmic dynein 1 heavy chain 1 

Q1RMC5 Claspin homolog (Xenopus laevis) 

Q2NKW8 Adenosylhomocysteinase 

Q6N030 Putative uncharacterized protein DKFZp686I15212 

Q7Z4S6 Kinesin-like protein KIF21A 

Q7Z6E9 E3 ubiquitin-protein ligase RBBP6 

Q86T35 Putative uncharacterized protein DKFZp451A177 

Q8WVD6 PHTF2 protein 

Q9H8V3 Protein ECT2 

Q9Y2I7 1-phosphatidylinositol 3-phosphate 5-kinase 

Q9Y6E7 NAD-dependent protein deacetylase sirtuin-4 
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TABLE XIII 

 

Proteins exclusively present in SnCl2 group 

 

Accession 

Number 

Protein Name 

Q96E61 Uncharacterized protein 

P06310 Ig kappa chain V-II region RPMI 6410 

Q6PIT5 Uncharacterized protein 

Q6GMW0 Uncharacterized protein 

Q7Z2U7 Uncharacterized protein  

Q6GMV8 Uncharacterized protein 

P22079 Lactoperoxidase 

Q6NS95 Uncharacterized protein 

Q8NEJ1 Uncharacterized protein 

Q6PIH6 Uncharacterized protein 

Q6GMW4 Uncharacterized protein 

Q6GMX4 Uncharacterized protein 

P02787 Serotransferrin 
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TABLE XIV 

 

Proteins exclusively present in NaF group 

 

Accession 

Number 

Protein Name 

Q502W4 Uncharacterized protein 

P61626 Lysozyme C 

Q6GMV7 Uncharacterized protein 

Q9UBC9 Small proline-rich protein 3 

Q6PIH4 Uncharacterized protein 

P14618 Pyruvate kinase isozymes M1/M2 

P12273 Prolactin-inducible protein 

Q8TDL5 BPI fold-containing family B member 1 

Q71V83 Alpha-A-crystallin  

C9JS40 Uncharacterized protein 

B3KSF4 Probable ATP-dependent RNA helicase DDX4 

O15230 Laminin subunit alpha-5 

B3KU03 cDNA FLJ39022 fis, clone NT2RP7003724, weakly similar to 

Serine/arginine repetitive matrix protein 1 

B4DYM8 cDNA FLJ60373, highly similar to Zinc finger CCCH domain-containing 

protein11A  

Q9ULK2 Ataxin-7-like protein 1 

F8WEP2 ADP-ribosylation factor-like protein 6-interacting protein 4  

E5RJ68 AP-3 complex subunit beta-1  

F5H894 Uncharacterized protein 

P20930 Filaggrin 
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TABLE XV 

 

Proteins exclusively present in SnCl2/NaF group 

 

Accession No.    Protein Name 

Q6GMX8 Uncharacterized protein 

P23280 Carbonic anhydrase 6 

P07339 Cathepsin D 

P29508 Serpin B3 

Q9UBX7 Kallikrein-11 

P30740 Leukocyte elastase inhibitor 

Q6PJF2 Uncharacterized protein 

A6NN68 Uncharacterized protein 

P02765 Alpha-2-HS-glycoprotein 

P13796 Plastin-2 

P09228 Cystatin-SA 

P02679 Fibrinogen gamma chain 

Q13349 Integrin alpha-D 

H0YET1 Liprin-beta-2 

B7Z9B9 Anoctamin 

Q5T6C4 Ataxin-7-like protein 2  

D1MPS6 Uncharacterized protein 

H0Y7L2 Dedicator of cytokinesis protein 7  

Q5T4S7 E3 ubiquitin-protein ligase UBR4 

Q9NXG0 Centlein 
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TABLE XVI 

 

Proteins exclusively present in DIW (control) group 

 

Accession 

Number 

Protein Name 

Q6P5S2 UPF0762 protein C6orf58 

Q5NV90 V2-17 protein 

Q14515 SPARC-like protein 1 

P31025 Lipocalin-1 

P10599 Thioredoxin 

Q9NQ38 Serine protease inhibitor Kazal-type 5 

P31947 14-3-3 protein sigma 

P04075 Fructose-bisphosphate aldolase A 

P00450 Ceruloplasmin 

P02749 Beta-2-glycoprotein 1 

P20061 Transcobalamin-1 

P60174 Triosephosphate isomerase 

P54108 Cysteine-rich secretory protein 3 

P09211 Glutathione S-transferase P 

P22748 Carbonic anhydrase 4 

P62937 Peptidyl-prolyl cis-trans isomerase A 

P02675 Fibrinogen beta chain 

Q6MZM9 Uncharacterized protein C4orf40 

P15516 Histatin-3 

P01009 Alpha-1-antitrypsin 

P06733 Alpha-enolase 

P00738 Haptoglobin 

P02766 Transthyretin 

B4DYR3 cDNA FLJ60976  

Q3MIV8 Myosin-11 

Q9UPR6 Zinc finger RNA-binding protein 2 

H7BXJ7 Uncharacterized protein 

H7BYT2 Uncharacterized protein 

Q68D65 Putative uncharacterized protein DKFZp686B17277  

B4DSN8 cDNA FLJ60863, highly similar to High mobility group protein 2-like 1 
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FIGURE 1. Dentin (D) and enamel (E) block (Phase I). 

 

FIGURE 2. Each block is labeled (Phase I). 

 

FIGURE 3. Blue tapes (arrows) were placed to determine lesion area (Phase I). 
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 FIGURE 4. Specimens mounted on 12-well plate cover (Phase I). 

 

 

FIGURE 5. Both plates and cover were labeled (Phase I). 
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FIGURE 6. Saliva incubation under gentle agitation (both phases). 

 

FIGURE 7. Treatment and acid erosion by 12-well plates (Phase I). 
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FIGURE 8. Optical profilometer (Proscan 2000) (Phase I). 
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FIGURE 9.  Specimens were immersed in 

solutions and saliva (Phase II). 
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FIGURE 10. Forceps, plates and covers were color coded (Phase II). 

 

 

FIGURE 11 (top), FIGURE 12 

(bottom). 

Bovine enamel 

specimens 

(8x8x2mm
3
)
 
(Phase II). 
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FIGURE 13. Collection strips of 0.5 cm × 1.0 cm (Phase II). 
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FIGURE 14.  Materials needed for pellicle 

collection; specimens, strips, citric 

acid, forceps and microcentrifuge 

tubes (Phase II). 
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FIGURE 15. Folded strip (Phase II). 

 

FIGURE 16. Strip being soaked in 3% citric 

acid (Phase II). 
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FIGURE 17. Pellicle collection from the surface of 

the specimens (Phase II). 

 

 

 

  

FIGURE 18. Strips being placed in 

microcentrifuge tubes after 

collection (Phase II). 
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FIGURE 19.  4 strips/group (Phase II). 
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FIGURE 20. Bar graph displays the surface loss in enamel for each 

group (Phase I) . 
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FIGURE 21.  Bar graph displays the surface loss in dentin for each group 

(Phase I). 
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FIGURE 23. NaF group. Example of  

profilometric analysis image  

(Phase I): enamel. 

 

 

   FIGURE  22. SnCl2 group. Example of  

profilometric analysis image 

(Phase I): enamel.  

  



67 

 

 

                          

 

 

 

 

 

 

FIGURE 24.  SnCl2/NaF group. Example of  

profilometric analysis image 

(Phase I): enamel. 

 

  

 

 

 

 

 

 

 

 

  

  

  

 

 

FIGURE 25. DIW (control) group. Example of  

profilometric analysis image 

(Phase I): enamel.   
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FIGURE 26. SnCl2 group. Example of 

profilometric analysis image 

(Phase I): dentin.   

FIGURE 27. NaF group. Example of  

profilometric analysis image 

(Phase I): dentin.     
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FIGURE 26.  

 

SnCl2 group. Examples of  

profilometric analyses images 

(Phase I): dentin.     

FIGURE 28.  SnCl2/NaF group. Example of  

profilometric analysis image 

(Phase I): dentin.     

  

FIGURE 29. DIW (control) group. Example of 

profilometric analysis image 

(Phase I): dentin. 
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FIGURE 30. 

 

Venn diagram of ADP proteins identified in 

each group and across groups (Phase II). 
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DISCUSSION 
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PHASE I 

 

Model and Evaluation Methods 

Phase I was designed to investigate dental surface loss resulting from the 

interaction between pellicle proteins and stannous and fluoride-containing rinse solutions 

during cycles of erosive challenges. Initially, the samples were incubated in clarified 

human saliva for 24 h to allow a mature acquired dental pellicle (ADP) to form before 

starting the cycling procedure. This was done to enhance the interactive effects of 

stannous and fluoride ions on the ADP. The cycling model used in the present study was 

based on previous protocols and involved episodes of erosion (acid exposure) six times a 

day, for 5 min each
8,13,14

and a rinse solution application three times a day, for 2 min 

each.
9,11-14,64,115

 Specimens were kept in clarified human saliva while not in the demin or 

rinse solutions to simulate remineralization and ADP re-formation. The choice of 

clarified human saliva over artificial formulations was done, so that a more realistic 

pellicle could have been formed. In an attempt to mimic clinical conditions, rinse 

treatment was performed after the first, the third, and the sixth erosive challenges 

representing exposure to the test rinses after the main meals (breakfast, lunch, and dinner, 

respectively). Citric acid was used to simulate dental exposure to most of the acidic 

beverages available, corroborating previously reported studies on the area.
6,8,9,11-14,115

  

Several laboratory techniques are available for the evaluation of dental erosion on 

tooth surfaces, including surface profilometry, microradiography, chemical analysis, 

micro-indentation, and scanning electron microscopy (SEM).
77,121,122

 In this study, 
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profilometry was used because it allows for the quantification of surface loss in a 

sensitive and reproducible way. The detection limit of this method has been reported to 

be approximately <0.3 µm and <0.5 µm for enamel and dentin, respectively.
106

 

Moreover, profilometry is the most commonly applied quantitative method to determine 

both dentin and enamel.
77

 Non-contact profilometry was used because it has good 

flexibility for analyzing deep erosive lesions and avoids interference with the soft 

partially eroded dental surfaces, as commonly observed on the contact technique.
77

  

 

SnCl2-rinse Effect on Enamel and Dentin 

The SnCl2 solution was able to reduce enamel surface loss by 67 percent, 

compared with the DIW control. This result is similar to previous findings showing that a 

commercially available stannous mouthrinse (Meridol, GABA International), as well as a 

SnCl2 (815 ppm, pH 2.6) test rinse could reduce the loss of enamel by 90 percent
118

 and 

65 percent
9
 respectively. The SnCl2 is capable of depositing appreciable amounts of tin 

on enamel, forming a stable protective layer.
117

 It has been shown by SEM that this tin 

layer could be detected even after a 2-min exposure to 1.0-percent citric acid (pH 2.3).
9
 

Although the tin-containing testing solutions mentioned above had some differences 

compared to the one used in the present study, and despite that their specific mechanisms 

of action are unclear, it is evident that they can offer protection to the tooth surfaces 

against erosion. SnCl2 also showed superior erosion protection when compared with the 

NaF rinse, which is in contrast with a previous study
9
 where similar protection was 

observed. Differences among the test solutions and the erosion models could explain the 

contrast. Although the rinse solutions used in this study had similar concentrations to the 
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previous study, the pH values were different. In this study, the pH values for all solutions 

were adjusted to 4.5, while in the previous study SnCl2 and NaF rinses presented pH of 

2.3 and 3.5, respectively. Therefore, it can be speculated that the lower pH value of the 

NaF-rinse may have contributed to its better protection.
9,147

 The erosive challenge was 

also different regarding acid concentration, pH, and total exposure time. The present 

study used 0.3-percent citric acid (pH 2.6), 5 min exposure for six times a day, for a total 

of 5 days; while the previously mentioned study used 1.0-percent citric acid with pH 2.3, 

2 min exposure for six times a day, for a total of 10 days. Finally, clarified human saliva 

was used in this study, in contrast with the artificial saliva used in the previous study, 

which may have had an important role due to the interaction of the ADP and test rinses.  

In dentin, SnCl2 solution significantly reduced surface loss when compared with 

control (23 percent). The observed protection may be related to the same mechanisms as 

explained for enamel and is consistent with a previous study.
68

 The relatively less 

prominent effect of tin-containing solutions in dentin compared with enamel might be 

due to its lower content of minerals, reducing the surface area for stannous action, which 

is known to be highly reactive with hydroxyapatite.
12

 Another potential explanation may 

be due to the absence or formation of a less protective acquired pellicle on dentin than on 

enamel.  

 

NaF-rinse Effect on Enamel and Dentin 

The 250-ppm NaF rinse provided 42-percent reduction of enamel surface loss 

compared with the control. The mechanism of action of fluoride in erosion prevention is 

reported to be due to the formation of a CaF2- or CaF2-like layer on the enamel surface 
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after topical application. This would provide a physical mineral barrier for the erosive 

acids to dissolve before reaching the underlying enamel.
98

 Nevertheless, the effect of a 

CaF2-like layer is more obvious at higher concentrations
98

 and could explain the less 

prominent anti-erosive effect of NaF solution in this study compared with the effect of 

the SnCl2-rinse. This observation contrasts with an in-vitro study testing a more 

concentrated NaF solution (500 ppm F, pH 4.5),
12

 where no significant better protection 

was found in comparison with the untreated control.
12

 A possible explanation for the 

contrasting results is that a more aggressive erosive challenge was used in that study, 

consisting of 2.5 mmol/L HCl (pH 2.6), for 25 min in consecutive manner with no 

remineralization.
12

  

The protocols of application and testing conditions are important factors 

determining the relative erosive protection provided by the NaF-rinses. An in-situ study 

compared erosion prevention of a single application of NaF 500 ppm F pH 4.5 and 

AmF/NaF/SnCl2 solutions against erosive attack using 1.0-percent citric acid with pH 2.3 

for 5 min 6 times/day for 7 days.
8
 Minimum surface loss reduction was observed for the 

NaF solution (19 percent) in comparison with the control.
8
 In that study, an aggressive 

erosion model was used, including higher concentration of citric acid with low pH 

accompanied with a single application of the treatment solution per day. It was suggested 

that this led to a dissolution of CaF2 precipitates making the preventive effect of NaF less 

prominent.
8
 An in-vitro study that tested the effect of NaF (500 ppm F, pH 4.5) and 

AmF/NaF/SnCl2 solutions in erosion progression prevention used 0.65-percent citric acid 

pH 3.6 as an erosive solution and clarified human saliva for remineralization.
115  

 The 

NaF solution significantly slowed down the erosion progression when compared with the 
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control, yet AmF/NaF/SnCl2 solution provided better protection, which is in agreement 

with the present findings.
115

  

In this study, NaF solution reduced surface loss on dentin by 36 percent compared 

with the control, which is significantly more than SnCl2 but less than the combination of 

both. The protective effect of NaF is most probably due to retention of fluoride in 

peritubular, intertubular, and intratubular dentin after topical application because of the 

porosity and the water content of dentin, providing a fluoride reservoir.
98,119,120

 Although 

the same treatment ranking order has been observed in another in-vitro study (NaF was 

better than SnCl2 but less than the combination), the NaF effect was more obvious at 59 

percent and 34 percent with and without the organic matrix, respectively.
68

 As mentioned 

before, supersaturated artificial saliva used by that study could enhance remineralization 

in the presence of fluoride, which was not the case in the current study. In an in-situ 

study, NaF-rinse (500 ppm F, pH 4.5) provided 23-percent protection against erosion,
8
 

which may indicate that lower efficacy should be expected in clinically relevant 

conditions.  

  

NaF/SnCl2-rinse Effect on Enamel and Dentin 

SnCl2/NaF provided an 89-percent surface loss reduction in enamel. This 

observation indicates that the combination of tin and fluoride ions in the same rinse was 

significantly more effective in surface loss reduction than that provided by each ion 

alone. The effectiveness of stannous fluoride solution as an anti-erosive agent has been 

shown by different studies.
8,9,11,12,14,115

 It has been suggested that the erosion-protective 

potential of tin-containing fluoride solutions in enamel is related to the incorporation of 
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tin in the surface layer of enamel, increasing its resistance against acids attacks.
14

 In 

addition, a layer of precipitates containing Sn2OHPO4, Sn3F3PO4, Ca(SnF3)2, and CaF2 

found to be formed on the enamel surface after application.
14,116

 This layer acts as a 

protective barrier enhancing the acid resistance of enamel
14,116

 and is considered to be 

more stable and resistant to acid attack than the one formed by fluoride alone (CaF2).
9,12

 

From this comparison, the combination of both ions has a synergistic action on both 

enamel and dentin.  

Sixty percent surface loss reduction was shown by a SnCl2/NaF solution on 

dentin. A similar mechanism of action on enamel is assumed to be applicable for dentin 

as well. However, it can be speculated that the different protective effect of SnCl2/NaF 

solution in enamel and dentin might be due to the lower content of minerals in dentin, as 

well as less prominent pellicle formation on dentin than enamel surface. 

 

Dentin vs. Enamel 

The comparison of enamel and dentin surface loss showed that when they were 

treated with NaF-rinse or DIW, no significant differences could be found. This 

observation can be explained taking two factors into account, the organic matrix of 

dentin, and also the strength of the acid used to simulate erosion. The organic matrix can 

act as a physical barrier preventing not only the further diffusion of acid into sound 

dentin, but also the tooth mineral release from the lesion to the surrounding environment. 

The matrix also has been shown to provide buffer effect against acids.
119

 In this study, the 

organic matrix was not removed, which may be the reason why similar surface loss was 

observed for the NaF and DIW groups. Keeping the organic matrix has been described as 
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less representative of clinical situations, where continuous removal and degradation of 

the matrix occurs once in contact with the oral environment. The organic matrix of dentin 

can be removed either chemically using enzymes (collagenase),
68

 or mechanically by 

brushing.
50

 However, this degradation has not been fully investigated and understood 

clinically and is a point of disagreement among researchers, which is why we opted for 

not modeling this phenomenon in the present study.  

Some of our previous unpublished work using the same cycling model with a less 

aggressive acid (0.3-percent citric acid, pH 3.8) showed an overall higher relative surface 

loss for dentin, whereas when a more aggressive acid (1.0-percent citric acid, pH 2.3) was 

used, an overall higher relative surface loss was observed for enamel. This observation is 

in agreement with previous studies
8,68

 and highlights the importance of the acids and the 

dentin organic matrix on the comparison of results between enamel and dentin.
119 

 

 

Role of Acquired Dental Pellicle (ADP) 

Only inferences can be made on the possible role of ADP in the results of this 

study, as groups with no ADP were not included in the study. Difficulties establishing a 

protocol for saliva dialysis did not allow us to obtain clarified human saliva without the 

presence of the proteins (to eliminate the presence of ADP), while keeping the same 

mineral content (for similar remineralization potential). Therefore, it can be only 

speculated in Phase I that the better erosive prevention observed with SnCl2 and 

SnCl2/NaF on enamel than on dentin may be associated to the stannous ion’s ability to 

interact with the pellicle. An in-vitro study suggested that the stannous ion has cross-

linking action on pellicle proteins that enhance its protective effect. This finding also 
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supports data from the present study.
30 

To further explore these findings, protein analyses 

of ADP treated with test solutions were done in Phase II of this study. 

 

PHASE II 

 

Methods, Pellicle Analysis and Model Justification 

Different approaches have been used to acquire the data important to study and to 

understand proteomics, including gel electrophoresis and chromatography techniques.
123

 

In the past, 2D-PAGE (two-dimensional gel electrophoresis) and/or 2DIGE (two-

dimensional differential gel electrophoresis) were the most common techniques for 

quantitative proteomic analyses.
123

 Nevertheless, the limited visualization of proteins in 

the gel, low sensitivity, and reproducibility decreased the accuracy of these methods.
128

 

To overcome these limitations, the use of liquid chromatography accompanied with mass 

spectrometry has been proposed.
123

 The label-free LC-ESL MS/MS methodology has 

been used as described by Siqueira et al. 2012 to explore the relative quantitation of in-

vitro-acquired dental pellicle (ADP) formed on HA surfaces treated with fluoride -

containing solutions.
123

 This approach seems particularly appropriate for the exploratory 

analysis of pellicle protein profiles between experimental and control groups, as it 

identifies common proteins among groups comparing their relative abundance.
123

 

Proteins exclusively present in each group were also identified and described.
123

 

Therefore, the influence of treatments on the pellicle protein composition can be done at 

common and exclusive protein levels.  

In the present study, a total of 72 common proteins were identified, which is 

higher than what was found in a previously related study.
123

 Therefore, the difference in 
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testing conditions between the two studies has to be considered. In the previous study, 

HA was pretreated with high-concentration fluoride solutions (4,950 ppm, 9,040 ppm, 

22,600 ppm F) and incubated in clarified human saliva for 2 h before protein analyses. 

All procedures were done at 37 C°
123

.  In Phase II of the current study, enamel slabs were 

used as substrate and were incubated in clarified human saliva for 24 h before being 

submitted to three cycles of 2 min treatment-2 h saliva incubation at room temperature. It 

has been shown that fluoride application considerably reduced proteins adsorption on 

enamel surface, and with higher fluoride concentrations, lower proteins adsorption has 

been observed.
123,141

 In addition to the difference in fluoride concentration, the 

maturation stage of the pellicle contributes to the amount and the nature of proteins 

adsorbed on enamel.
148

 For example, due to the competition with other proteins, such as 

acidic proline rich proteins, mucins participate slightly in pellicle formation in the 

beginning.
148

 However, the involvement of mucins increases with time,
148

 which was the 

case in our study, in which 24-h saliva incubation was done before treatment. To enable 

observation of the best rinse effect and protein expression on the analyses performed, the 

laboratorial procedures of Phase I and Phase II had to be done differently. This should be 

kept in mind when relating the results of Phase II to those from Phase I. Our main goal 

from the cycling procedure of Phase II was to create greater amounts of pellicle treated 

with tested solutions to be able to detect as large a protein number as possible. 

 

Rinse Effect on Pellicle-Protein Composition 

The proposed null hypothesis was rejected because there were significant 

differences among the protein profiles of pellicles treated with the different rinses in this 
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study. Focusing on the proteins found in all groups, it was possible to identify some 

previously reported to be associated with enamel demineralization and remineralization. 

In general, SnCl2 /NaF-treated group showed more protein abundance than NaF- and 

SnCl2-treated groups when compared with the control. This observation suggests that the 

combination of tin and fluoride ions may enhance protein retention and enhance the 

protective effect of ADP against dental erosion. Salivary mucins including MUC5B 

(MG1), MUC7 (MG2), MUC4, MUC 16, MUC19, and MUC5AC were identified as 

common proteins between all groups. Most of them (MUC5AC, MUC4, MUC19, MUC7, 

MUC5B) showed significantly higher abundance in SnCl2/NaF-treated group than other 

test groups compared with the control. Generally, salivary mucins are considered to be 

the major constituents of ADP.
136

 Further, mucins, particularly MUC5B and MUC7, are 

characterized with heterotypic complexing property, which gives them the ability to 

interact with other salivary molecules to provide multiple biological protective 

functions.
137

 Their interactions with other proteins also concentrate proteins (as 

phosphoproteins) on the surface of the teeth enhancing the preventive effect of ADP 

against erosion and even abrasion.
43,137

 Moreover, the large mucin MUC5B was 

suggested to be an important component of the salivary pellicle that protects the oral 

surfaces against sodium dodecyl sulfate (SDS), which is a typical surfactant present in 

oral care products.
138

 In the SnCl2-treated group, there was no statistical difference in the 

abundance of all mucins in comparison with the control, while in the NaF-treated group, 

only MUC7 showed greater abundance than the control group.  

Histatin 1 and histatin 3 were identified in all groups. Pellicle profile for 

SnCl2/NaF-treated group showed significantly higher abundance of both histatins (1 and 
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3), while other test groups showed higher abundance of histatin 3 but not histatin 1. 

Regarding differences between histatin1 and histatin 3, the former contains 1 mole of 

phosphate/mole of protein; therefore, it is considered to be phosphoprotein, while the 

latter lacks phosphate.
133

 Although both types have been shown effective in antifungal 

and demineralization prevention, it is likely that because histatin 1 is a phosphoprotein, 

its main function may be that of a precursor of the ADP and inhibitor of hydroxylapatite 

crystal growth, while the less phosphorylated histatin 3 may act mainly as an antifungal 

and an antimicrobial agent.
46,134

 An in-vitro study found that histatin 1 enhanced 

significantly the overall rate and the extent of remineralization for enamel with pre-

formed artificial subsurface lesions, and that its effect was greater than that of 

statherin.
135

  This finding supports the superior anti-erosive effect of stannous fluoride 

solutions in Phase I of this study.  

SnCl2 /NaF-treated group showed a higher abundance of three types of proline 

rich proteins (PRPs) that have been detected in all groups including acidic proline rich 

phosphoproteins 1 and 2, small proline rich protein, and basic proline rich protein. PRPs 

are from the major salivary proteins that form the pellicle because of its high affinity to 

HA.
139,141

 The acidic proline rich proteins strongly bind to the calcium from HA 

maintaining the concentration of ionic calcium in saliva,
139

 which may suggest its role in 

the anti-erosive effect of ADP. They also can inhibit precipitation of minerals on teeth 

surfaces.
139

 The basic proline rich protein is a non-phosphorylated protein with a 

significant amount of proline. However, the function of basic proline rich protein is not 

well established in the oral cavity.
123,140

  In the NaF-treated group, acidic PRP was 

significantly higher than the control. The SnCl2-treated group showed lower, but not 
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significantly lower abundance than the control. Interestingly, SnCl2/NaF and NaF-treated 

groups showed similar values of acidic PRP abundance, which may indicate a synergistic 

effect of F with this particular protein, except in higher concentration (22,600 ppm F) 

where acidic PRP was absent.
123

 This possible interaction deserves further investigation. 

Cystatin C, cystatin S, cystatin SN, cystatin SA, cystatin B, cystatin D and 

cystatin A were detected as common proteins for all groups. All detected cystatins, 

except cystatin B, showed a higher abundance in the SnCl2 /NaF-treated group, whereas 

only cystatin D was higher in the SnCl2-treated group compared with control. In 

comparison to statherin, the affinity of cystatin to hydroxyapatite surfaces has been 

considered lower; however, their influence on the growth kinetics of hydroxyapatite has 

been shown to be greater.
143

 Therefore, they are considered to be from the major 

components of the ADP.
141

 Comparing the function of salivary cystatins, SA and SN are 

involved in the prevention of periodontal tissue destruction by acting as protease 

inhibitors.
142,144

 While cystatin S had no protease inhibitor effect, it binds more to 

calcium than SA or SN, which suggests its main role to be in maintaining the mineral 

balance of the tooth.
142

 

Statherin was significantly less abundant in the SnCl2-  and NaF-treated groups, 

while a combination of both showed no significantly different abundance compared with 

the control. Regarding its interaction with fluoride, this observation is consistent with a 

previous study in which statherin decreased as fluoride concentration increased.
124

 

Statherin has a high affinity to hydroxyapatite and binds to enamel surface by both 

electrostatic and hydrogen bonding interactions through its acidic N-terminal that 

contains two phosphoserines.
124,125

 It acts as an efficient inhibitor of mineral precipitation 
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on teeth surfaces and crystal growth inhibitor.
125

 The strong binding of statherin peptides 

to HA may also contribute to the mechanism by which statherin inhibits enamel 

demineralization.
129,130

 Moreover, statherin has been shown to be a potential 

preventive/therapeutic agent in the treatment of enamel erosion and dental caries.
130

  

Protein S100-A8 and 9 showed higher abundance in SnCl2 /NaF-treated group 

over control. Those proteins have the ability to bind to calcium and zinc; therefore, it has 

been suggested that they may bind to the CaF2 precipitates on the tooth surface and act as 

a reservoir for calcium.
124,145

 Also, other proteins such as amylase, carbonic anhydrase 6, 

and albumin were higher in SnCl2 /NaF-treated groups than the control, and those 

proteins were found to be components of in-vivo formed pellicle.
21

  

Overall, the SnCl2 /NaF-treated group showed higher protein abundance than 

other test groups in comparison with the control. This observation may suggest the 

combination of tin and fluoride enhances retention of pellicle proteins and possible 

interaction between those proteins, which may contribute with the superior anti-erosive 

effect of SnCl2 /NaF-treated group over other tested groups observed in Phase I. 

Interestingly, the SnCl2-treated group showed overall lower values of protein abundance, 

which may indicate that the stannous ion may decrease the affinity of proteins to 

hydroxyapatite. Data from this study suggest that the mechanisms of action of tin and 

fluoride as anti-erosive agents may depend not only on formation of precipitates on the 

tooth surface, but also on the interactions between pellicle and tin and fluoride on the 

tooth surface. These results suggest that further investigation on these interactions are 

warranted, aiming to develop more effective preventive and therapeutic measures against 

dental erosion.  
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SUMMARY AND CONCLUSIONS 
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The objectives of this study were to compare the anti-erosive properties of 

fluoride-containing and stannous solutions on enamel and dentin, and to characterize the 

protein profile of the acquired dental pellicle (ADP) treated with the test solutions. The 

experiments were conducted on two phases. In Phase I; the anti-erosive effect of 

SnCl2/NaF, SnCl2, NaF solutions were compared with the DIW (control) using 

profilometry. While in Phase II the protein profiles of ADP treated with the test solutions 

were investigated using liquid chromatography electrospray ionization tandem mass 

spectrometry (LCESI-MS/MS). 

Within the limitations of this study, the following conclusions can be drawn: 

1. SnCl2/NaF combination had the best anti-erosive effect among the tested 

solutions. 

2. SnCl2 had significantly superior preventive effect over NaF on enamel, but 

not on dentin. 

3. Tested solutions significantly changed the protein profile of ADP. 

4. SnCl2/NaF had a significantly greater abundance of proteins compared 

with the control (DIW). 

Based on the results of the present study, it can be concluded that the combination 

of fluoride and tin significantly prevents surface loss due to erosive acids and modifies 

acquired pellicle protein composition. 
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Clinical significance: Based on the results of this study, SnCl2 and NaF solutions 

provide significant protection against dental erosion, which is modulated by their 

interaction with the proteins of the acquired dental pellicle. 
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INTERACTION BETWEEN TIN/FLUORIDE-CONTAINING SOLUTIONS 

 AND ARTIFICIALLY CREATED DENTAL PELLICLES 

ON EROSION PREVENTION IN VITRO 

 

 

 

 

 

 

by 

Amnah Abdullah Algarni 

Indiana University School of Dentistry 

Indianapolis, Indiana 

 

 

BACKGROUND: Fluoride and stannous ions have been reported to be relevant 

for dental erosion prevention. However, their interaction with the acquired dental pellicle 

(ADP), a clinically relevant erosion protective factor, is not well known and needs to be 

investigated. OBJECTIVES: To investigate the anti-erosive properties of fluoride-

containing solutions and stannous solutions on enamel and dentin surfaces with a 

previously formed ADP. To characterize the protein profile of the ADP treated with the 

test solutions. METHODS: Phase I tested four solutions: SnCl2/NaF, NaF, SnCl2 and 

deionized water (DIW) (as negative control). Forty bovine enamel and dentin specimens 
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(442 mm
3
) were prepared and randomly distributed into 4 groups (n = 10). The 

specimens were incubated in clarified human saliva (CHS) for 24 h for pellicle formation 

and then they were subjected to a cycling procedure that included a 5-min erosive 

challenge (0.3-percent citric acid, pH 2.6); a 2-min treatment with the solution (between 

1st, 3rd and 6th cycles); a 2-h immersion in CHS, and overnight immersion in CHS. 

Cycles were repeated 6x/day for 5 days. The outcome measure was surface loss (SL) 

using profilometry. Phase II:  Thirty-two (32) bovine enamel specimens (882 mm
3
) (n 

= 8) were similarly prepared and incubated in saliva for 24 h and then treated with the 

solutions for 2 min followed by CHS immersion for 2 h. This cycle was repeated 3x for 

one day. The pellicles formed and treated with the test rinse solutions were collected, 

digested, and analyzed for specific protein content using liquid chromatography 

electrospray ionization tandem mass spectrometry (LCESI-MS/MS). RESULTS: Phase I: 

for enamel, SnCl2/NaF, SnCl2, NaF solutions provided 89 percent, 67 percent, and 42 

percent SL reduction respectively compared with the control, while in dentin they 

provided 60 percent, 23 percent, and 36 percent, respectively, all significant at p < 0.05. 

Phase II: Seventy-two (72) common proteins were identified in all groups, 30 exclusive 

to DIW, 20 to SnCl2/NaF, 19 to NaF, and 13 to SnCl2. SnCl2/NaF increased the 

abundance of pellicle proteins than each one alone. CONCLUSION: SnCl2/NaF showed 

the best anti-erosive effect on both enamel and dentin. The findings suggest that the 

composition of acquired pellicle changes with different solutions, which may be related 

to their anti-erosive effect.  
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