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Dental implants have mainly three types of macro-retentive features:  screw 

threads (tapped or self tapping), solid body press-fit designs and/or porous-coated 

technologies.  While the threaded design is currently by far the most popular one 

clinically, porous-coated press-fit implants have also been successful in certain clinical 

applications.  Many clinical studies performed on the commercial porous-coated press-fit 

implant system (Endopore) show high success when used as short implants.1, 2  They have 

been successfully used as abutments for over dentures,1, 3-5 replacing missing teeth 

especially in narrow areas,6-10 and in areas of maxillary sinus proximity and low levels of 

bone.4, 8, 11-14  The coating technique was first developed for orthopedic prostheses like 

femoral stems by using different sintering techniques to form a mesh or a sintered bead 

surface for bone to grow into.1, 2-4  In the 1980s, Pilliar and group1, 2, 4 examined the use 

of these implants in endosseous designs.  Several studies were carried out and results 

showed 93 percent to 100 percent relative success in three to five years with very short 

implants (7.7 mm) even in the posterior maxilla, which led to the development of the 

implant system (Endopore, Innova Corp., Toronto, Canada).1,2, 4  Initial healing periods 

are shorter than for the traditional screw type:  10 weeks for the anterior mandible; and 16 

weeks for the maxilla and posterior mandible.  Clinical studies have suggested that when 

Endopore implants are placed in acceptable bone quality they would be able to function 

in a period shorter than that of longer length implant designs.1, 4  The porous surface helps 

in bone contact, and is formed by sintering which is a diffusion process that bonds the 

titanium Ti-6Al-4V particles 44 to 150 µm in size to each other and to the titanium 
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substrate surface using high temperature and controlled atmosphere.  It includes a solid-

state diffusion that leads to particle-particle and particle substrate junctions to make and 

maintain interconnected openings all over the sintered surface.  Endopore has a 

multilayered surface with pores ranging from 50 µm to 200 µm, 35 volume-percent 

porosity, a range in thickness of the porous area of around 0.3 mm, and a surface area that 

ranges between 512 mm to 638 mm, which is the highest surface area/unit implant length 

of the implant systems and which allows for faster bone formation during initial healing 

than threaded implants.1, 3  

On the other hand, rapid manufacturing (RM) 1 is a novel processing method 

developed in the last two decades.  It uses a computer-controlled heating source to create 

three-dimensional (3D) objects from metal powders to replicate the 3D profile from a 

Computer-Aided-Design (CAD) program or patient’s computer tomography (CT) data.  

RM decreases lead-time and increases the build flexibility for low volume production of 

customized metal parts.  Depending on the manufacturing method, several RM machines 

are available, including selective laser sintering (SLS), laser micro sintering, selective 

laser melting (SLM), three- dimensional (3-D) laser cladding, electron beam sintering 

(EBS) and electron beam melting (EBM).14  Electron Beam Melting (EBM) has been 

used to make porous Ti-6Al-4V titanium structures for orthopedic applications.15  The 

manufacturing process controls the problems of high chemical affinity of liquid titanium 

with atmospheric gases, which decreases ductility of the metal.  To investigate the in vivo 

performance of these implants, a study was done using a smooth compact and porous Ti-

6Al-4V device made by the EBM technique as scaffolds for bone formation.  It shows 

that highly porous titanium implants made using EBM are appropriate scaffolds for bone 
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in growth.16  Fifteen pigs with skull defects were used and EBM implants were placed in 

those defects.  Microradiographs and histomorphometric analyses performed at 14 days, 

30 days, and 60 days after surgery showed bone ingrowths increased to 14 percent, 30 

percent and 46 percent, respectively.  EBM has also been used to make personalized 

dental implants with a porous surface that provides better osseointegration.16  The root 

form and the abutment are made as one piece and have the same shape of the patients 

tooth.  Scanning a tooth by computer tomography does it and then it is converted to a 

computer-aided design to be produced by EBM (Figure 1).  This may reduce surgery and 

recovery times and could be more cost effective.  In mechanical properties, EBM samples 

have ultimate tensile strength of 1,028 MPa and 14 percent in tensile strain, similar to the 

mechanical properties of wrought Ti-6Al-4V.17  Since the EBM specimens will be made 

by Ti-6Al-4V, we also do not expect problem in its biocompatibility.  However, there has 

been very limited information about the in vivo performance of these implants.  

Moreover, the in vivo performance of EBM implants has never been evaluated side-by-

side with commercially-available porous-coated press-fit implants.   

 
PURPOSE OF THE STUDY 

The objective of this study was to evaluate the in vivo performance of the novel 

dental implant fabricated via the rapid-prototyping technique, electron beam melting 

(EBM), and compare it to the commercially-available porous-coated press-fit dental 

implants (Endopore, Innova Corp.).  This study is important as a preliminary study to 

examine the bone to implant integration of EBM and the potential application of EBM.  

We plan to use a drilling method to standardize the size of osteotomy to evaluate the 

osteointegration of the implants.  We do recognize that the future implant site may be an 
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extraction socket, which will have a different bone healing physiology compared to a 

drilled hole.  However, we think the standardization is important in this preliminary 

study.  Moreover, it is possible that in the future the extraction sockets may also be 

perforated to increase blood flow and to facilitate bone regeneration, which bear some 

similarities to the healing environment seen by drilling. 

 
NULL HYPOTHESIS 

There is no difference in bone to implant contact and pushout strength between 

EBM implants and the Endopore commercial dental implants after being implanted in 

rabbit tibia for six weeks. 

 
ALTERNATIVE HYPOTHESIS 

There is a statistically-significant difference in the bone-to-implant contact and 

pushout strength between the EBM implants and the Endopore commercial dental 

implants after being implanted in rabbit tibia for six weeks. 
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Dental implants have the ability of restoring the patient’s teeth contour, esthetics, 

speech and health, which are the main goals of modern dentistry.  The main function of a 

dental implant is to act as an abutment for a prosthetic device, and provide the same 

functions as of a natural tooth.18  The number of implants used in the United States has 

increased from 1983 until the present by about more than tenfold.  More than 90 percent 

of dentists offer dental implant treatment to their patients, and more than one million 

implants are inserted each year.19  

The increased need for dental implants results from the aging population living 

longer, tooth loss related to age consequences of prosthetic failure, anatomic 

consequences of edentulism, poor performance of removable prosthesis, psychological 

aspects of tooth loss, advantages that implant supported restorations provide, predictable 

long term results of implant prosthesis, and increased public awareness.19 

After many years of experimenting in bone, P.I. Brånemark20 found the 

phenomenon of osseointegration in the early 1950s.  It was first described as a 

histological condition where direct bone-to-implant contact could be seen under the light 

microscope.20  This definition could not be applied clinically, so another definition by 

Zarb and Albrektsson21 introduced “a process whereby clinically asymptomatic rigid 

fixation of alloplastic materials is achieved and maintained in bone during functional 

loading.”  Rigid fixation is a clinical term for implants, which describes the absence of 

observed clinical mobility with vertical or horizontal forces under 500 g.  For years, rigid 

fixation and osseointegration have been used interchangeably.  Today, “lack of mobility” 
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is used in implant movement, and is a clinical condition most often used to indicate 

implant integration.21 

A range of dental implants were tested clinically and in vitro for about 30 years 

before they received worldwide acceptance.22 

Since the very early designs of the 1960s, endosseous “endosteal and intraosseos” 

dental implants have been constantly modernized and adjusted and became more 

accepted with the introduction of the single root tooth by Brånemark.2   The high success 

of endosseouss implants is due to the initial stability of the implant and the amount, 

quality and distribution of bone within the implant site.23   In a meta-analysis, Lindh et 

al.,24 stated that the success of implants placed in the posterior maxilla was less than other 

regions of the mouth and depends on the amount of bone in the area.  The response of 

trabecular bone to the mechanical environment is a vital factor, especially in areas where 

the cortical thickness of bone and local material properties are inadequate to resist 

vertical forces.24  The long-term success of implants does not only depend on bone 

stability, but transmucosal implants or the implant abutment interface also plays an 

important role in implant success.23  To facilitate the improvement of implant therapy, 

lots of work has been done in developing implant biomaterials.  These technologies have 

grown and improved from changing the surface oxides to nano-scale technologies.23  

Implants used in the oral cavity have one of three major types of macro-retentive 

features:  screw threads (tapped or self tapping), solid body press-fit designs and/or 

sintered bead technologies.  The threaded design has lasted for a long time, but 

cylindrical implants without threads, showed preliminary osseointegration, and led to 

high secondary loss of bony support.  They are designed to allow initial implant stability 
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and to create large spaces to allow bone growth.  Bone has the ability to favorably 

respond to compressive loads (without the presence of a PDL) but not to shear forces.  

Hence, screw thread designs have been adapted to achieve a compressive loading of the 

surrounding bone.23  

 
THE ENDOPORE DENTAL IMPLANT SYSTEM 

In the late 1960s, porous surface implants for bone interfacing purposes were 

found by the University of Toronto.  Orthopedic prosthesis like femoral stems, pelvic 

acetabular caps, etc. have used different sintering techniques to form a mesh or sintered 

beads as a surface for bone to grow into.1, 4  In the 1980s, Pillar and group1, 4 started 

research supported by the Medical Research Council of Canada to examine the use of 

these porous implants in endosseuos designs.  Lots of successful studies have been done 

and results show a 93 percent to 100 percent relative success in 3 to 5 years with very 

short implants (7.7 mm) even in the posterior maxilla, which lead to the development of 

the implant system (Endopore).  Clinical trials began at the University of Toronto in 

1989.1, 4  

The design of the Endopore implant is unique in various ways, it is truncated, 

conical, and tapered in shape, which helps to seat it in and allows for a lasting more 

durable implant.  It also insures a firm fit to bone; moreover it allows a more contained 

surgical procedure, by less removal of bone in the apical portion and decreasing the 

potential of injury of the adjacent teeth and bone.  Initial healing periods are shorter than 

the traditional screw type:  10 weeks for the anterior mandible and 16 weeks for the 

maxilla and posterior mandible.  Clinical studies have reflected that when the Endopore 

implants were placed in acceptable bone quality they were able to function within 10 
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weeks, or a period shorter than that of longer length implant designs.1, 4  The Endopore 

implants are present in a variety of lengths, widths and diameters.  The greatest diameter 

(5 mm wide body) implants are used for posterior mandibular and maxillary regions, that 

need those types due to the bone condition and quality1, 4, 6  They are available in shorter 

implant lengths 7.0 mm, 9.0 mm, and 12 mm.  The 3.5 mm mini implant is used for the 

anterior part of the maxilla and mandible in which a narrower sized implant is required 

for small spaces.  The most frequently used Endopore implants are the ones that are 4.1 

mm in diameter and are 7 mm, 9 mm, and 12 mm in length.  Endopore has made a high 

achievement when using relevantly shorter implant lengths than other designs.  They can 

be easily used in areas that have a crown-to-root ratio lower than that normally 

recommended for other implant types, normal teeth, and when the apical cortical bone 

does not need to be engaged by the implant.  One of the reasons for introducing 

roughened surfaces was to see if the change in the surface of the implants would improve 

their performance in short lengths.  Sintered porous-surfaced (SPS) press-fit implants 

perform well in lengths of 7 mm12-14 because of the three-dimensional interlock by bone 

ingrowths into their macro porous surface layer, transferring the stress to bone under 

loading.  Measurement of SPS implant stability using an electronic mobility testing 

machine from baseline (1 month after prosthesis insertion) to 2 years in function showed 

that 7-mm-long, 4.1-mm-diameter SPS implants were as stable as the ones with the same 

diameter but with longer lengths (9 mm or 12 mm).  In addition, as the time in function 

increased, SPS implants became more stable, leading to continued bone growth and 

increased peri-implant bone density because of loading.  Crestal bone modification with 

SPS implants happen in relation to the machined collar area, as an outcome of a 
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combination of ‘‘stress shielding’’ of bone adjacent to the collar and remodeling needed 

to reform ‘‘biologic width.’’  As a result, there seems to be no need to use lengths greater 

than 7 mm with SPS implants.  A review done by Hagi et al.,10 focused on the outcomes 

using short (< 7 mm) endosseous dental implants in partially edentulous patients, because 

generally threaded dental implants do not usually perform well in short lengths (< 10 

mm).  

Machined-surface implants demonstrated higher failure rates than textured-

surface implants; except for the sintered porous-surfaced implants, 7 mm long seem to 

have greater failure rates than those greater than 7 mm in length.  And with textured-

surface implants, higher failure rates were seen in the maxilla more than in the mandible. 

Whereas, with machined surface implants there was no difference in failure between 

maxillary and mandiblular arches.1  

The implant has two different surfaces:  a smooth polished collar on the coronal 

surface that is in contact with soft tissues, and a porous surface.  The smooth surface 

requires a simple surgical approach that is either 1.0 mm or 2.0 mm in height to prevent 

plaque accumulation and it allows for situations in which absence of bone in one aspect 

prevents the implant from being totally submerged within bone.  Clinical trials have 

shown no further bone loss if the porous part is not totally submerged into bone and the 

remainder of the implant is covered by a porous surface.  These surfaces are designed to 

be biocompatible with the adjacent tissues.  As a result of the weak support and stresses 

subjected to this area, bone remodeling occurs, and a net crestal bone loss occurs adjacent 

to the porous surface above the implant region.  Many studies have shown that the 

amount of bone loss is controlled and it advances towards the junction between the 
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smooth surface and porous region, and creates no major change in the crestal bone 

geometry.  These studies have also revealed that this small change in the crestal bone is 

due to the low forces applied to this area, because it is incapable of transferring stresses 

from the implant to bone through the smooth surface area.  The amount of bone loss is 

around 1 mm for an implant with 1mm smooth coronal surface.  The change in the 

coronal surface seen with Endopore implants is not greater than that seen with other 

dental implants.1 

The porous surface helps in bone contact and is formed by sintering the titanium 

Ti-6Al-4V alloy powders of particle size 44 µm to 150 µm on a solid titanium surface 

forming the porous implant surface.  It forms a two- to three-particle thick zone that 

forms a part of the implant unit.  Sintering is a diffusion process that leads to bonding of 

the particles to each other and to the titanium substrate surface using high temperature 

and controlled atmosphere.  It does not include melting the titanium but involves a solid-

state diffusion that leads to particle-particle and particle-substrate junctions to make and 

maintain interconnected openings all over the sintered surface.  The pores are of suitable 

size “50-200um” for bone and fibrous tissue to grow.1  The proper selection of the 

particle size, sintering temperature, and sintering time leads to the formation of the 

opened pore structure while forming the desired mechanical integrity of the particles 

junctions.  It has a multilayered surface with pores ranging from 50 µm to 200 µm with 

35-volume-percent porosity; and thickness of the porous area around 0.3 mm with a 

surface area that ranges around 512 mm to 638 mm, the highest surface area/unit implant 

length of the implant systems that allows for faster bone formation during initial healing 

than threaded implants.  One of the early studies researched the effect of the size of the 
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pore on the rates of bone ingrowths and interface strength and showed that pores ranging 

from 50 µm to 300 µm in size lead to the most rapid and fast rate of bone interface shear 

strength formation.1  Histological studies of tetracycline-labeled samples taken from 

human implanted Endopore showed normal bone remodeling through the 0.3 mm-thick 

porous surface area specifying that appropriate blood supply was available for the bone 

formed in the porous area.  This maybe noteworthy in that it implies the ability of the 

grown tissue to support a host defense response against microbial challenges in the area.1 

14  Animal studies also indicated that fibrous and osseous tissues infiltrate all regions, 

while bone did not necessarily appear in the entire porous surface.  The interconnected 

zone shows the structure of cancellous and cortical bone.  Allowing appropriate 

vascularization in all areas of the porous surface is important to assess the long-term 

stabilization of the tissues.1 

Examining the prepared metallographic samples across the porous structure show 

sinter necks that are similar to the Ti6A14V.  The sintering procedure shows a more 

realistic method for forming a network of pores within the implant that allows bone to 

grow after placing the implant.1  This leads to the formation of a biological bond of 

implant to bone that is able to withstand forces of occlusion, compressive, shear and 

tensile stresses.  Animal studies have shown that initial implant stabilization results from 

the ability of 3-dimensional integration of initial pre-mineralized tissue with the porous 

implant surface and aids in bone formation, so osseointegration forms in a much shorter 

time and mechanical interlocking with bone.  Even with the presence of micro movement 

in the healing phase, it favors bone formation within the implant pores.1  Some animal 

studies showed that initial movements of 50 µm can be put up with without influencing 



 

 

14

the rate of bone growth.  Nevertheless, early loading should be avoided in implant 

placement allowing fast problem-free osseointegration.1  A variety of implant surface 

designs are available including machined, grit based, acid etched, and plasma sprayed 

surfaces, as well as a combination of surface treatments.  The irregular rough surface 

allows bone to implant interlock and provides resistance to interfacial tensile forces.  

Bone grows and forms into surface depressions or intrusions, and not in openings on the 

implant surface zone.  Both transverse and vertical stresses work on dental implants 

during motion and during the healing stage after implant placement, and there is little 

resistance against the tensile stresses at the junction caused by transverse tipping forces.  

Consequently long periods and long implants are needed in order to allow reliable 

implant performance.1, 4  

When comparing the Endopore implant with the threaded type in animal studies, 

the Endopore showed increased surface area of osseointegration, and it demonstrated that 

it allows the placement of short length implants to support prostheses.  In other words, 

the Endopore implant can be used in cases where implants were not recommended due to 

absence of bone or to their proximity to vital structures.1, 4 

 Studies on animals showed some bone loss for threaded cylindrical implants but 

no bone loss has been observed for porous truncated coated implants.  A clinical study on 

the Endopore system revealed that the greatest bone remodeling “ mean loss = 0.44 mm” 

occurred in the first year of function, “mean loss = 0.14 mm” occurred between the first 

two years, and “mean loss = 0.17 mm” occurred between the second and third years, but 

no further loss occurred beyond that time.1  This remodeling did not extend beyond the 

junction between the collar and the body of the implant.1  A prospective study examined 
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the factors affecting the successes and failures of 1,003 pure titanium dental implants 

placed from 1987 to 2002 and were followed to 2003.  Success rates were affected mostly 

by the age of the implant.  Whereas, other factors like the patient age, gender, surface 

roughness of implant, site of placement, smoking, bone type, arch, screw versus press-fit, 

diameter, length, manufacturer, reason for tooth loss, site bony augmentation, placement 

timing, one- versus two-stage placement, or torque testing of implants did not 

significantly affect rate of success.  Seventy-five percent of failures occurred before 

restoration.  Failure rates were diverse, and while the age of the implant was statistically 

important in calculating failure, male smokers, maxillary first molars, and type 4 bone 

had increased failure rates.  The study also showed that threaded surface-roughened 

implants had the highest success rates.25 

 Another study examined two sintered porous-surfaced dental implant designs to 

compare methods of crestal bone remodeling during a 14-month functional period in 

healed extraction sites in dog mandibles.  The control, or short-collar design, was a press-

fit implant with a machined collar of 2-mm, while the rest of the implant has a sintered 

porous surface.  The test or hybrid design (long-collar) had three coronal-machined 

threads, while the rest of the implant had a sintered porous surface.  Standardized 

radiographs showed significantly less crestal bone loss (0.82 mm to 0.93 mm versus 1.45 

mm to 1.5 mm) with the hybrid design, and a slower approach to a steady state (12 

months to 14 months for the hybrid versus 7 months for the standard design).  

Morphometric assessment of back-scattered scanning electron micrographs showed that 

crestal bone loss was significantly less for the hybrid design but the lingual part of the 

implant.  The addition of coronal threads to the implant with a sintered porous surface for 
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long-term osseointegration reduced the amount of crestal bone loss compared to a 

machined collar area.21  A study done to obtain histometric measurements of bone and 

peri-implant mucosal tissue in contact with two sintered porous-surfaced designs.  The 

short-collar design had a collar height (smooth coronal region) of 0.75 mm, while the 

long-collar model had a smooth coronal region of 1.8 mm.  Implants were placed two per 

side in healed mandibular extraction sites of four beagle dogs using a submerged method.  

After four weeks, they were uncovered and used to support fixed partial dentures for up 

to nine months.  Samples were taken and nondemineralized specimens were observed 

histometrically to see the most coronal bone-to-implant contact (BIC) using the micro 

gap as a reference and standard mucosal parameters of biologic width.  Significant 

differences in first BIC were found between designs (1.97 mm for long-collar versus 1.16 

mm for short-collar implants) for posterior implants but not for anterior ones (1.21 mm 

versus 1.38 mm; p = 40).  If crestal bone loss involved sintered surface, fibrous 

connective tissue ingrowths were observed to replace lost bone.  No significant 

differences in peri-implant mucosal measurements were found between the implant 

designs.  Histometric data seen for bone contact showed no significant differences 

between the long- and short-collar implant designs.26  

 
USES 

 
AS AN ABUTMENT FOR OVERDENTURES 

Dental implants with a sintered porous surface used for implant fixation are a 

predictable and effective means of retaining a mandibular over denture in patients with 

advanced mandibular ridge resorption.  The first clinical studies carried by  
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Pilliar et al.1, 4, 8 involved the placement of 156 implants in 52 patients.  Three Endopore 

implants ranging from 7.0 mm to 10.0 mm in length were placed in the anterior part of 

the mandible of each patient.  After ten weeks, the implants were exposed to allow the 

placement of the over denture abutments.  The final over denture was inserted in 

approximately 14 weeks.  Their results showed a 95-percent success rate four years post-

function (8 out of 156 failed).  No mobility or pain suggestive of implant failure was 

detected.  A minimum of 0.44 mm crestal bone loss was found in the first year, 0.17 mm 

in the second year and 0.13 mm in the third year of the study; this bone loss occurred at 

the area between the collar and the body of the implant.  There was no bone loss 

exceeding the porous coat of the implant.1, 4, 8  This study was followed for up to 10 years 

by Deporter et al.,13 whose results revealed a 10-year implant survival of 92.7 percent and 

mean annual bone loss after one year to be 0.03 mm.  

 
REPLACING MISSING TEETH 

Ultra short sintered porous surfaced dental implants are used to replace missing 

teeth.  Dental implant surface structure is a major aspect to determine how well the 

implants function in lengths ≤7 mm.  As threaded implants show higher failure rates in 

short versus longer lengths, sintered porous surfaced implants perform well in short 

lengths.11  A prospective study was carried out on 20 patients (10 males and 10 females) 

ranging in age between 30 years to 60 years, in which a single implant (10.mm mean 

length) was placed in each individual, and then restored with a crown after a four-month 

healing period.  Radiographs and periodontal measurements were taken; no failures were 

noted.3  Another study examined 48 Endopore dental implants ranging from 7mm to  

9 mm, which replaced 17 premolar teeth and 31 molars in the mandibles of 24 partially-
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edentulous patients.  Eighty-three percent were replaced by single crowns.  After a mean 

functional time of 32.6 months (range:  8.2 months to 50.3 months), the implant survival 

rate was 100 percent, and radiographic assessment showed minimal to no crestal bone 

loss.9  Another study placed 151 Endopore dental implants with a mean implant length of 

8.7 mm (76.8 percent in the posterior maxilla) of 50 partially-edentulous patients.  When 

re-accessing the area, the implants were osseointegrated and used to support fixed 

prostheses.  The mean functional time was 34.6 months and the cumulative survival rate 

was 97.3 percent (4 implants had failed).  Radiographic analysis showed that there were 

no significant changes in crestal bone levels after 6 months, 1 year, and 2 years in 

function.  There were no correlations between crestal bone loss and the implant length (7 

mm, 9 mm, or 12 mm), implant diameter (3.5 mm, 4.1 mm, or 5.0 mm), and the position 

of the implant.7  In a clinical study done by Deporter et al.,6 26 sintered, porous-surfaced 

press-fit dental implants that were 5 mm long and had a coronal diameter of 5 mm were 

placed in 20 individuals to replace maxillary and mandibular molars.  Failure rates 

measured after 8 years of function were14.3 percent for the maxilla and 0 percent for the 

mandible. 

 
IN AREAS OF MAXILLARY SINUS PROXIMITY  
AND LOW LEVELS OF BONE 
 

Using dental implants in the maxilla is much difficult than in the mandible and are 

least predictable.  Short, porous-surfaced root-form dental implants are used with an 

indirect, osteotome-mediated sinus elevation to restore the posterior part of the maxilla 

when limited amount of bone is remaining “ 3 mm.”1  This method helps control the 

posterior maxilla with minimal bone height below the sinus floor. 
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A study carried out by Rahmani et al.14 investigated the healing phases of 

localized indirect osteotome-mediated maxillary sinus floor elevation in relation to the 

use of sintered porous-surfaced dental implants in rabbits.  On one side of the maxilla of 

each of 28 rabbits an implant was placed with no bone graft material, while on the 

collateral side an implant was placed after first adding Bio-Oss graft particles to the 

osteotomy.  Samples were taken for morphometric assessment after 2 weeks, 4 weeks, 6 

weeks, and 8 weeks of healing to assess bone contact and bone ingrowths of the porous 

implant surface.  All implants became osseointegrated by bone ingrowths into the porous 

implant area.  Placing a graft did not lead to a significant increase in the measurements; 

greater bone contact and particularly bone ingrowths at the apical portion of the implants 

were observed as healing time increased.14  A clinical study carried on 16 patients with a 

mean implant length of 6.9 mm and a mean functional time of 11.1 months showed 100 

percent success.11  Another study of 334 implants (Endopore) placed in 112 fully- and 

partially-edentulous patients who were followed for 3 years.  A technique of spreading 

buccal and lingual plates with osteotomes to place these implants in proximity to the 

sinus of the posterior maxilla was used.  When the maxilla was prepared, the implants 

could be successfully placed in areas having limited available bone.  Success rates were 

97.0 percent for implants stabilizing a mandibular over denture, and 94.8 percent for 

implants placed in partially-edentulous patients.  Many times, sinus lift or other 

augmentation procedures can be avoided in the maxilla and mandible, allowing for less 

patient morbidity and for an implant reconstruction that is more affordable for the 

patient.1  Another study also reported the use of short (primarily 7-mm-long) sintered, 

porous-surface implants to treat the posterior maxilla using the indirect, sinus lift 
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procedure.  One-hundred-four Endopore implants were used in 70 patients.  The mean 

subantral bone height before implant placement was 4.2 mm, and all implants were 

placed using hand osteotomes and a graft of bovine hydroxyapatite.  After an average 

time in function of 3.14 years, two implants were lost.  The study concluded that the use 

of short, sintered, porous-surfaced implants and localized indirect sinus lift is an approach 

to help manage the posterior maxilla with low preoperative subantral bone height around 

5 mm.12  A study carried out by Kermalli et al.27 used threaded surface-washed and sand-

blasted, and sintered porous surface implants.  This study involved 62 patients who 

received 97 implants; the results showed an 80.4 percent success rate for the press-fit 

implant, 97.5 percent for implants used in the direct technique, and 96.6 percent for 

threaded implants used in the indirect technique.  There was also a significant difference 

in the length of the implants used, with the press-fit implants being much shorter than the 

threaded type.  Crestal bone loss was significantly lower for the press-fit (0.57 mm).  

Their study also showed that using dental implants with a sinus elevation procedure is a 

predictable treatment for a resorbed maxilla.27 

 
ELECTRON BEAM MELTING IMPLANTS 

Charles Deckard, University of Texas in Austin, in 198617 produced fully 

functional parts by adding sintered layers.  The layers are formed by the use of a 

computer-controlled laser that melts the powder to cover the cross sectional aspect made 

by a computer design model.  This research was funded by The National Science 

Foundation and he invented rapid manufacturing, and the DTM machine producing metal 

parts from metal powder.17  Rapid manufacturing decreases lead-time and increases the 

build flexibility for low-volume production of tailored pieces of metal.  At present, rapid 
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manufacturing technologies include laser sintering (SLS), laser micro-sintering, selective 

laser melting (SLM), three- dimensional (3-D) laser cladding, electron beam melting 

(EBM), and electron beam sintering (EBS).17  The formation of personalized dental 

implants by EBM makes it possible to greatly produce customized dental implants, which 

have a porous surface that aids in better osseointegration.  By producing the root form 

and the abutment as one piece that has the same shape as the patient’s tooth, less fracture 

at the crown root interface is expected.  It is simply done by scanning an existing tooth by 

computer tomography and then converting it to a computer-aided design for production 

by EBM.  This may reduce surgery and recovery time, as well as being more cost 

effective, providing better osseointegration.  In mechanical properties, EBM samples 

have ultimate tensile strength of 1,028 MPa and 14 percent in tensile strain, similar to the 

mechanical properties of wrought Ti-6Al-4V.17  Selective electron beam melting (SEBM) 

has been used progressively to make Ti-6Al-4V titanium structures for orthopedic 

usage.15  

The generation of porous titanium products by (SEBM) conquers problems 

associated with high chemical affinity of liquid titanium to atmospheric gases, which 

decreases ductility of the metal.  A study was done to examine using a smooth compact 

and a porous Ti-6Al-4V device made by the SEBM technique as scaffolds for bone 

formation.  Fifteen domestic pigs with skull defects were used and the SEBM-formed 

titanium implants were placed into those defects.  Microradiographs and 

histomorphometric analyses were performed 14 days, 30 days, and 60 days after surgery 

in order to examine the direct contact between bone and implant surfaces, and to measure 

the ingrowths of osseous tissue into the porous structure.  Bone ingrowth increased 
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significantly.  After 14 days the outer parts of the implants were filled with new bone 

tissue (14 percent).  After 30 days the bone volume inside the implants reached almost 30 

percent, and after 60 days bone formation inside the implants was about 46 percent.  

During the study bone-implant contact was found around all implants:  9 percent around 

compact samples, and 6 percent around porous samples after 60 days.  This experiment 

showed that highly porous titanium implants with excellent interconnectivity 

manufactured using the SEBM method were suitable scaffolds for bone in growth.16  In 

another study (Ti6Al4V) were made by free-form-fabrication (FFF), and were used as 

produced or after machining, and compared with wrought machined Ti6Al4V.  

Examination of the surface properties was done by Auger electron spectroscopy (AES), 

depth profiles, and interferometry.  After 6 weeks, the tissue response in rabbit femur and 

tibia was examined by using light microscopy and histomorphometry.  The results 

showed that the chemical and mechanical properties of the wrought machined titanium 

and the electron beam-melted (EBM) material were within the ASTM F136 

specifications.  The produced EBM Ti6Al4V implants had increased surface roughness 

and thicker surface oxide and, with the exception of a higher content of iron, a similar 

surface chemical composition when compared with machined EBM Ti6Al4V and 

machined, wrought Ti6Al4V implants.  The implants had no difference in surface 

properties.  The tissue response was similar for all three implant types. 

Histomorphometry showed a great degree of bone-to-implant contact for all the three 

implant types.  The present results show that the surface properties of EBM Ti6Al4V 

display biological short-term behavior in bone equal to that of conventional wrought 

titanium alloy.16  
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Microcomputer tomography (microCT) studies show the ability to form three-

dimensional structures with an interconnected porosity and pore sizes appropriate for 

tissue ingrowth and vascularization.  Mechanical properties of the examined specimens, 

such as compressive strength and elastic modulus, were quite similar to the properties of 

human bone.  Due to a lower strength difference between implant and bone, stress 

shielding effects after implantation might be prevented.  Changing the chemical surface 

using HCl and NaOH induced bone creation in vitro bioactivity tests in simulated body 

fluid under active state.  The modified bioactive surface is thought to aid in the 

stabilization of the implant and to enhance its long-term fixation.28  A study was done by 

Li X et al.,29 to measure the mechanical properties of a porous Ti-6Al-4V implants made 

by using the electron beam melting (EBM) method.  X-ray diffraction (XRD) analysis to 

examine the specimens indicated that the EBM technique did not change the components 

of Ti-6Al-4V.  The samples showed a Vickers micro-hardness value of approximately 

428 HV.  Compression and three-point bending tests were done to examine the 

mechanical properties of the 60-percent porosity of the Ti-6Al-4V implants.  The 

compressive yield strength was 194.6 MPa, Young's modulus was 4.25 GPa, and ultimate 

compressive strength was 222.6 MPa, respectively.  The bending stiffness was 3.7 GPa 

and bending strength was 126.3 MPa.  The outcome of the study indicated that the porous 

Ti-6Al-4V implant with a low stiffness and high porosity could be used for biomedical 

applications.29  

However, there has been very limited information about the in vivo performance 

of these implants.  Moreover, the in vivo performance of EBM implants has never been 

evaluated side-by-side with commercially-available porous-coated press-fit implants.
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ANIMALS 

Six healthy male New Zealand white rabbits (Myrtle’s Rabbitry, Inc., Thompson 

Station, TN) weighing between 3.0 kg to 3.5 kg were used.  En bloc samples were 

obtained 6 weeks following surgical placement of the implant for histological, 

histomorphometric, and mechanical testing.  The Institutional Animal Care and Use 

Committee (IACUC) at Indiana University, Indianapolis, Indiana, USA approved the 

study.   

 
IMPLANTS 

Two implant types were used.  Twelve Endopore (Innova Corp.) dental implants 

5mm long and 3.5 mm wide were used as controls.  Twelve Electron beam melting 

(EBM) dental implants 5 mm long and 3 mm wide made using Ti6Al4V ELI (ASTM 

Grade 23) were used as a testing group.  They were designed and manufactured by 

Southern Methodist University. 

 
SUGICAL PROCEDURE AND IMPLANT 
INSERTION  
 

The implantation surgeries were done under sterile conditions.  On the day of 

surgery, Meloxicam (Boehringer Ingelheim Vetmedica, Inc., St. Joseph, MO) (0.2 mg/kg 

SC) was administrated 40-60 minutes before the procedure as an analgesic drug.  At the 

time of anesthesia, the animals were induced by Acepromazine (Butler Animal Health 

Supply, Dublin, OH) plus Torbugesic (Fort Dodge Animal Health, Fort Dodge, IA) (Ace 
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0.6mg/kg + Torb 0.75mg/kg).  After initial induction, the anesthesia was maintained 

using Isoflurane (Butler) (3.5% at 1.5 l/m) via gas mask.  Baytril (Bayer HealthCare 

LLC, Animal Health Division, Shawnee Mission, KS) 4 mg/kg SC was given as a 

prophylactic antibiotic.   Following onset of anesthesia, hair over both hind limbs was 

clipped with electric clippers using #40 blades.  Skin was disinfected with Betadine 

(Butler) and alcohol and the surgical site was draped with a sterile cloth.  The rabbits 

were placed on a sterile cloth on top of a warm water-circulating blanket.  Implants were 

inserted in a standard fashion.  Holes were drilled with sharp drills (the drill was not used 

for more than 10 times) at low drill speeds under copious irrigation with saline solution.  

Four implants (two from each type) were placed in each rabbit; two implants from the 

same type were placed in each tibia.  All implants were sterilized by autoclaving.  Two 

implants were carefully pushed into the medial tibia at a distance of 11 mm apart.  The 

soft tissues were closed in layers using 4-0 Vicryl (Ethicon, Inc. (A Johnson & Johnson 

Company, Somerville, NJ) in a subcuticular pattern to contain the implant.  The 

procedure was repeated on the contralateral side.  

 
POST-SURGICAL PROCEDURES  

The animals were allowed full weight-bearing activity, water, and rabbit chow 

(Ralston Purina, Richmond, IN) ad libitum.  They were monitored for any complications.  

After the surgery, Baytril (Bayer) 4 mg/kg SC was administered once daily for 4 days and 

Meloxicam (Boehringer) 0.2 mg/kg SC was given once daily for 2 days.  Buprenex 

(Reckitt Benckiser Healthcare (UK) Ltd., Hull, England) was used at breakout pain (0.01-

0.05 mg/kg SC, q8-24 hours).  Animals were checked daily until the surgical wound 

healed.  Body temperature, hydration status, activity, food and water consumption, and 
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conditions of operative site were examined.  The suture material on the skin was removed 

on day 10 postoperatively.  At 2 weeks and 1 week before sacrifice, calcein green 

(Sigma, St. Louis, MO) and alizarin red (Sigma) were injected at 10 mg/kg and 20 mg/kg 

through intramuscular injection. 

After 6 weeks, the rabbits were sacrificed.  At sacrifice, the rabbits were 

anaesthetized as described above and received an overdose of pentobarbitalum (Solfoton, 

ECR Pharmaceuticals, Richmond, VA) and natricum (Aventis Pharmaceuticals, Inc., 

Bridgewater, NJ) intravenously; lung puncture was performed in order to insure their 

death. 

 
SPECIMEN RETRIEVAL AND HISTOLOGICAL 
PREPARATION   
 

Specimens were retrieved from the right and left tibia.  Twelve implants, 6 each 

of the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.), were fixed for 48 

hours in 10-percent phosphate-buffered formaldehyde solution in order to be used for 

histology analysis.  The specimens were then embedded un-decalcified in polymethyl-

methacrylate (PMMA).  Five sections 50-μm in thickness were cut parallel to the long 

axis of the implant using a rotating microtome.  Sections were placed on glass slides, 

coverslipped, and stained with toluidine blue (Sigma). 

 
HISTOLOGICAL AND HISTOMORPHOMETRIC  
ANALYSIS  
 

The slides were photographed and then evaluated at X10 and X20 using an 

automated histomorphometry system (Bioquant, Nashville, TN) under a light microscope 

(Nikon Eclipse 50i, Tokyo, Japan) equipped with a charge-coupled distributor camera 
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and connected to a computer (Dell Optiplex GX280, Round Rock, TX).  Total implant 

perimeter in the first 3 mm into the cortical bone and the length in direct contact with 

bone were measured.  Both the left and right side of the histology section were measured.  

Bone-to-implant contact (BIC) was obtained by dividing the total perimeter by the length 

in direct contact with bone and measured in micrometers.  The mean values and standard 

deviations were calculated for the implant groups.   

Using fluorescent light microscopy, fluorochrome analysis was performed on 

sections left unstained and examined with ultraviolet illumination.  Mineral apposition 

rate (MAR) was calculated by measuring the distance between the edges of two 

consecutive labels divided by the number of days.  The number of areas available for 

measurement and the mean value of the measurement may differ with the length of the 

labeling interval.30  Three different areas were measured:  away from the implant, next to 

the implant, and the posterior tibial border.  The mineral apposition rate was calculated in 

(µm/day) units. 

 
PUSHOUT TEST  

Twelve specimens were used to examine the mechanical properties of the 

implants and were stored in saline at 4°C until testing.  A pushout test was conducted to 

test the effects of implant type on bone ingrowths.  A pushout jig was constructed.31   

(Figure 2).  The specimen was placed on a support jig with clearance for the implant at 

least 0.7mm to minimize non-uniform stress distribution.  Accurate alignment among the 

plunger, the specimen, and the support jig was essential to prevent the implant from 

jamming within its track of exit.  The specimen was seated on the support fixture.  The 

specimens were cemented to the support jig to assure ideal fit and alignment.31  The 
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sample was loaded at a rate of 1 mm/min.  Load was applied to the implant through the 

plunger connected to the crosshead of the materials testing machine and a force-

displacement curve was recorded.  The peak pushout force (F) was recorded in Newtons 

(N) and the apparent shear stiffness (E’) was obtained from the slope of the load-

displacement cure in its linear region.31 

After the pushout test the specimens were examined under SEM.  The samples 

were prepared by fracturing off only half of the bone at the bone-to-implant junction and 

leaving the implant on the bone.  Then the samples were sputter coated with gold.  The 

specimens were then embedded un-decalcified in PMMA.  Five sections 50 µm in 

thickness were cut parallel to the long axis of the implant using a rotating microtome.  

Sections were stained with toluidine blue (Sigma). 

 
STATISTICAL ANALYSIS 

Mean histomorphometric and biomechanical values were calculated and recorded 

along with their standard deviations for each implant in each subject.  Statistical analysis 

was performed using the paired t-test.  A p-value of < 0.05 was set for significance.   
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IMPLANT 

SEM of the Endopore (Innova Corp.) implant surface (Figure 3) shows spherical 

beads with size ranging from 39 µm to 134 μm, the average being 82±26 μm.  The EBM 

(Southern Methodist Univ.) dental implant surface appears to have a smaller bead size, 

ranging from 28 µm to 81 μm, with an average size of 47±12 μm.  The beads in the EBM 

(Southern Methodist Univ.) implants appeared rougher and more irregular than those 

seen in Endopore (Innova Corp.). 

 
CLINICAL OBSERVATIONS 

The rabbits showed uneventful healing throughout the 6-week experimental time 

period.  None of the implants showed clinical signs of mobility or inflammation.   From 

radiographic and clinical aspects, all implants appeared to have osseointegrated.  

 
HISTOLOGY 

For both EBM (Southern Methodist Univ.) and Endopore (Innova Corp.) 

implants, gross examination of the light microscopic sections revealed periosteal and 

endosteal callouses in close proximity to the implant; however, there were no signs of 

inflammation or soft tissue encapsulation around implants (Figures 4 and 5).  A clear 

demarcation was noted between the original cortical bone and new bone growing in 

between the threads.  The original cortical bone was clearly defined by its compact, 

lamellar appearance and by the presence of osteons; whereas the bone growing between 

implant and original cortical bone appeared to be less organized, less lamellar, and 
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appeared to be consistent with woven bone.  In the Endopore (Innova Corp.) implant, 

some areas of resorption were seen followed by new bone formation.  The resorption was 

likely due to the close proximity of the implant beads.  In the EBM (Southern Methodist 

Univ.) implant, it can be seen that there were some loose metal beads that migrated into 

the tissue.  This does not seem to have caused any inflammatory reaction in the 

surrounding bone.  Bone that had grown into the porous space between the beads was 

also observed (Figure 6). 

Mineral apposition rate to measure the amount of new bone formation was 

calculated in three different areas for both the EBM (Southern Methodist Univ.) and 

Endopore (Innova Corp.) samples, and showed no significant statistical difference 

between the two implants (Table I, Figure 7). 

 
BONE TO IMPLANT CONTACT 

Results of the bone to implant contact analysis are shown in Figure 8.  A 

comparison between the Endopore (Innova Corp.) and the EBM (Southern Methodist 

Univ.) implant demonstrated similar bone-to-implant contact (BIC).  The mean BIC for 

the Endopore (Innova Corp.) implant was approximately 35% ± 6% while the mean BIC 

for the EBM (Southern Methodist Univ.) implant was 32% ± 9%.  Although the BIC 

value tended to be higher for the Endopore implants, it failed to reach statistical 

significance (p > 0.05). 

 
PUSHOUT TEST 

A typical load-displacement curve of the test sample is shown in Figure 9.  The 

peak pushout force for Endopore (Innova Corp.) implants ranges from 112 N to 269 N, 



 

 

33

with an average of 198.80 ± 61.29 N.  The peak pushout force for EBM (Southern 

Methodist Univ.) implants was higher, ranging from 188 N to 379 N, with an average of 

243.21 ± 69.75 N (Figure 10). 

The apparent shear stiffness between bone and implant for the Endopore (Innova 

Corp.) implants ranges from 366 N/mm to 691 N/mm with an average of 577.36 ± 129.99 

N.  The apparent shear stiffness for EBM (Southern Methodist Univ.) implants was 

higher, ranging from 352 N/mm to 782 N/mm with an average of 584.48 ± 146.63 N 

(Figure 11).  Neither the peak pushout force nor the apparent shear stiffness of the 

implants was statistically different between the two groups. 

SEM images taken of the Endopore (Innova Corp.) implant surface after 

removing the bone at the implant bone junction show parts of bone attached between the 

implant beads (Figure 12).  On the apposing bone surface, a replica of the implant beads 

can be seen indicating that bone grows around the titanium spherical beads (Figure 13).  

SEM images of the EBM (Southern Methodist Univ.) implant surface show smooth areas 

where beads have been pulled away when the bone was fractured and areas where bone is 

attached between the beads (Figure 14).  Looking at the fractured bone surface we can 

see many implant beads remaining on the surface, as well as areas that are an indentation 

of the implant surface (Figure 15).  The EBM (Southern Methodist Univ.) fracture 

specimen showed the direction of the pushout test to be downwards on the implant; the 

indentation of the implant on bone could also be seen.  Part of the bone attached to the 

implant at the area of fracture; as well, part of the implant is still attached to bone  

(Figure 16). 

  



 

 

34

 

 

 

 

 

 

 

 

 

 

FIGURES AND TABLES 

 

  



 

 

35

 

 

 

 

 

FIGURE 1. Steps for producing customized EBM dental implants.4 
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FIGURE 2. Schematic of a typical mechanical test fixture used in the 

pushout test.  The support tube has an inner diameter 
greater than the diameter of the implant creating clearance. 
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FIGURE 3. The surface of Endopore (Innova Corp.) (left) and EBM 

(Southern Methodist Univ.) 31 implants under SEM at X100 
(top) and X1,000 (bottom). 
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FIGURE 4. Picture showing and overview of the osseointegrated 
Endopore (Innova Corp.) (left) and EBM (Southern 
Methodist Univ.) 31 implant.  There are no signs of 
inflammation and soft tissue encapsulation around 
implants.  
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FIGURE 5. Picture showing periosteal callus overgrowth on Endopore 
(Innova Corp.) (left) and EBM (Southern Methodist Univ.) 
31 implant under X2.5 magnification.  There are no signs of 
inflammation or soft tissue encapsulation around implants.  
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FIGURE 6. Picture showing new bone layer (+) formed between 

implant and the original cortical bone, Endopore (Innova 
Corp.) (left) and EBM (Southern Methodist Univ.) 31 
implant under X10 magnification.   
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FIGURE 7.  Fluorescent microscopy images (X4) were used to measure 

the mineral apposition rate.  The fluorochrome labels used 
were calcein (green) (Sigma) and Alaziran (red) (Sigma).  
The implant bone interface can be seen on the left and the 
border of cortical bone is visible on the right. 
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FIGURE 8. Chart showing the bone-to-implant contact (BIC) of EBM 

(Southern Methodist Univ.) and Endopore (Innova Corp.) 
implant.   
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FIGURE 9. Chart showing a typical load-displacement curve from the 

pushout test. 
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FIGURE 10. Chart showing the pushout force from Endopore (Innova 

Corp.) and EBM (Southern Methodist Univ.) implants. 
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FIGURE 11. Chart showing the apparent shear stiffness from Endopore 

(Innova Corp.) and EBM (Southern Methodist Univ.) 
implants. 
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FIGURE 12. SEM Images of Endopore (Innova Corp.) implant surface 
after fracturing the bone at the implant bone junction:  X50 
(top left); X200 (bottom) shows the implant on the left and 
bone on the right; and at X350 (top right) bone pieces can 
be seen between the titanium implant beads. 
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FIGURE 13. SEM images of the fractured bone surface apposing an 

Endopore (Innova Corp.) implant.  At X50 (top left) the 
replica of implant beads formed by bone can be seen.  The 
bottom view (X200) shows how bone grows around the 
titanium beads.  And at X350 (top right) the bone surface is 
more clearly seen. 
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FIGURE 14. SEM images of EBM (Southern Methodist Univ.) implants 

after bone removal at the implant bone interface:  At X50 
(left), and more so at X500 31, smooth areas appear on the 
implant surface where beads had been pulled away with the 
bone.  
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FIGURE 15. SEM images of the fractured bone surface apposing the 
EBM (Southern Methodist Univ.) implant.  At X50 (top 
left) and X200 (top right) many titanium beads are attached 
to the bone surface.  At X1500 (bottom) a fractured bead 
left on the bone is visible.  The original attaching point can 
be seen on the upper left of the bead. 
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FIGURE 16. Histological picture of EBM (Southern Methodist Univ.) 

implant after pushout test.  The direction of the pushout test 
is indicated by the large white arrow and the indentation of 
the implant on bone is indicated by the smaller white 
arrows.  Note that part of the bone is attached to the 
implant at the area of fracture and part of the implant is still 
attached to bone as well. 
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TABLE I 

Mineral apposition rate (µm/day) measured in fluorescent 
samples.  Values displayed as mean ± standard deviation.  
No statistical significance was found between the two types 
of implants. 

 

 Away from implant Next to implant Posterior tibial border 

Endopore 2.80± 0.90 2.99 ±1.19 3.09 ±0.88 

EBM 2.78 ±1.05 3.00 ± 1.04 2.96 ± 0.99 
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DISCUSSION 
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Porous-coated press-fit implants have been successful in certain clinical 

applications.  Many clinical studies done on the commercial porous-coated press-fit 

implant system (Endopore) show high success when used as short implants.1, 2  They have 

been successfully used as abutments for over dentures,1, 3-5 replacing missing teeth, 

especially in narrow areas,6-10 and in areas of maxillary sinus proximity and low levels of 

bone.4, 8, 11-14  It has a multilayered surface with pores ranging from 50 µm to 200 µm 

with 35 volume percent porosity.  The thickness of the porous area is around 0.3 mm and 

the surface area ranges between 512 mm and 638 mm, which is the highest surface 

area/unit implant length of the implant systems that allows for faster bone formation 

during initial healing than threaded implants. 

On the other hand, rapid manufacturing33 is a novel processing method developed 

over the last two decades.  Electron Beam Melting (EBM) has been used to make porous 

Ti-6Al-4V titanium structures for orthopedic applications.  EBM has been used to make 

personalized dental implants with a porous surface that provides better osseointegration.16  

This may reduce surgery and recovery times and could be more cost effective.  The early 

in vitro studies showed great biocompatibility, good mechanical properties, and a good 

potential for bone in growth.  However, the in vivo performance of EBM implants has 

never been evaluated side-by-side with commercially-available porous-coated press-fit 

implants.  

The results from this study confirmed the in vivo biocompatibility of the EBM 

(Southern Methodist Univ.) dental implants.  No adverse effects were seen, and animals 
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had normally recovered after surgery.  After 6 weeks of implantation, the implants were 

well integrated in the surrounding bone and showed new bone penetrating into the porous 

space.   

There are various methods used for the evaluating bone growth into porous 

structures.  Two-dimensional (2D) image analysis is usually used to measure the amount 

of bone in the pores and to analyze the bone-implant contact by measuring the contact 

lines between the Ti and bone by optical, radiographical techniques, or SEM.34  Though 

many clinical studies were published on the use of Endopore in clinical situations, not 

many animal studies have been reported.  In our study we calculated the bone-to-implant 

contact in both Endopore (Innova Corp.) and the EBM (Southern Methodist Univ.) 

implants and found similar values.  Our readings are slightly higher than those obtained 

by Rahmani et al.,14 (22.8% ± 10.8) who measured bone contact and bone in growth of 

customized sintered porous-surfaced dental implants on one side of the maxilla of 28 

rabbits after 8 weeks of healing.  The difference in the readings could be due to 

difference in the implant shape, size and length the area where the implants were placed 

and the time the samples were retrieved.  Their implants were customized and 

manufactured by Innova Corp., Toronto, Canada.  The implants were cylindrical, 3 mm 

in length, 2 mm in diameter, and were placed in the bone underlying each of the right and 

left maxillary sinuses where the bone is more cancellous.  Whereas our implants were 

tapered, 5 mm in length, 3mm in diameter, and were placed in the tibia where the bone is 

more cortical.  Ponader et al.16 measured the BIC in compact and porous titanium 

cylinders (8 mm long x 4mm diameter) prepared by selective electron beam-melting of 

Ti-6Al-4V powder using EBM S12 system (Arcam AB, Mölndal, Sweden) and placed in 
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skull defects of pigs.  For the compact samples, BIC decreased from 29.27% ± 11.23% 

on day 14 to 18.78% ± 9.74% on day 30 and 8.98% ± 2.89% on day 60.  Whereas, the 

BIC around porous samples was 0.47% ± 0.47% on day 14, 4.14% ± 4.14% on day 30, 

and 5.96% ± 1.36% on day 60.  BIC decreases because of necrotic bone resorption 

opposite to the titanium surface reducing the mechanical stability of the implant and 

micromovements of the implant hinder bone formation.16  Our results are within the 

range of the results obtained by De Riu et al,35 where titanium implants were placed in 

sheep tibia with and without autologous bone grafts had a BIC of 29.54% ± 9.00% for 

grafted implants and 26.76% ± 5.00% for the controls after two months.  In another 

study, titanium microimplants with machined and sandblasted acid-etched surfaces were 

placed in human maxilla.  Two months after placement, the mean BIC was 20.66% ± 

14.54% for the machined surfaces and 40.08% ± 9.89% for the sandblasted acid-etched 

surfaces36  Because Endopore has performed well in clinical situations and our results 

show that EBM (Southern Methodist Univ.) has similar bone-to-implant contact as 

Endopore (Innova Corp.), we expect EBM (Southern Methodist Univ.) to have good 

compatibility as well.  

Pushout test is regularly used to evaluate the mechanical proficiency of biological 

attachment of orthopedic implants through the measurement of the shear strength of the 

bone- implant interface.  It measures the force needed to displace the implant from the 

surrounding tissue.  When pushout data from various studies are compared, a large 

difference in data is seen, even of similar implant materials due to differences in bonding 

of bone and implant and also due to the dissimilarity in the ways of testing.  Readings 

may also vary within a single test and prevent proper comparison of the data.31  To our 
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knowledge, Endopore dental implants have never been evaluated by a pushout test.  In 

our study, EBM (Southern Methodist Univ.) showed slightly higher pushout force and 

shear stiffness that was not statistically different from that of Endopore (Innova Corp.).  

Our data is consistent with the results from Boone et al.,33 which measured the pushout 

force in the same animal model of different types of hydroxyapatite-coated polymer rods 

after 12 weeks implantation (120.7± 104.1 N).33  Our readings were much lower than the 

readings obtained by Deglurkar et al,37 who measured the interface stiffness in porous 

tantalum implants (Trabecular Metal, Minneapolis, MN) of three different groups 

inserted in the distal femur of rabbit models.  Cell-culture disks machined the 

conventional way (2300 N/mm), machined using a wire EDM machine (Mitsubishi, 

Cypress, CA) (2500 N/mm) and TM disks, used as controls (1500 N/mm).  The great 

difference could be due to the difference in the implant type, size (25 mm in length by 5 

mm in diameter), location, and the way the test was conducted.38  On the other hand, our 

shear stiffness values were much higher than those obtained by Jakobsen et al,38 who 

measured the shear stiffness in cylindrical porous bead-coated implants (Ti-6Al-4V, 

ASTM F-136) with a diameter of 6.0 mm and length of 10.0 mm (DePuy Orthopaedics, 

Warsaw, IN) placed in the proximal part of dog humerous 6 weeks after insertion.  That 

could be because a displacement rate of 5 mm/min with a 2500 N load cell was used, 

where we used a loading rate of 1 mm/min.  Li et al.39 measured the BIC and pushout 

force of grit-blasted Ti implants and hydrofluoric acid treated implants in ovariectomized 

rats 12 weeks after being implanted in the femur.  Their mean BIC results are 20 percent 

for the untreated and 55 percent for the treated implants.  Their pushout force 

measurements are 32.6 N ± 3.5 for the untreated and 71.7 N ± 10.2 for the fluoride 
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modified.  Their readings for the BIC for the untreated model are lower than our results, 

as well as the pushout force for both models.  This could be due to the difference in the 

animal model, the type of bone, and type of implant as they used grit blasted titanium 

implants.  

Mineral apposition rate µm/day is used to measure the amount of new bone 

apposition during the healing period by administrating certain bone markers 

subcutaneously within the animals.  Witte et al. 40 measured the MAR in the same animal 

model around open-porous scaffolds made of magnesium alloy AZ91D and compared the 

peri-implant bone remodeling around an autologous bone transplant in the opposite side 

after 3 months and 6 months.40  They found MAR of 1.8 ± 0.2 µm/day after 3 months in 

the control side and 2.4 ± 0.4 µm/day on the magnesium scaffold side.  Our data is 

slightly higher compared to the study by Witte et al.40   That could be due to the 

difference in the area where the implants were placed as they placed their implants in the 

condyles of the knees while our implants were placed in tibia.  Foley et al.41 measured the 

BIC and MAR around acid etched titanium implants with phosphate coating that had 

been inserted in the mandibles of six foxhounds 12 weeks post implant placement.  Their 

MAR results were lower than our readings, due to the difference in the animal model, 

type and size of implant, and implant location.  Their BIC results were higher than our 

results for the same reasons as well as the difference in the way the BIC was calculated.  

Our results were similar to Clark et al.,42  who calculated the average MAR of 

mechanically loaded titanium implants (5 mm was significantly greater than the average 

MAR of unloaded controls at 2.2 ± 0.92 µm/day ( P< 0.01).  A study by Wang et al.43 

measured the BIC, pushout force, and bone apposition rate of titanium implants placed in 
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cortical and cortico-cancellous bone of sheep femur for six weeks.  The BIC and bone 

apposition rate results in were low compared to our results, whereas the pushout force 

was greater than the measurements we obtained, and their specimens were loaded at a 

loading rate of 10 mm/min with a 20 kN load cell.  Another study was carried out using 

three types of cylindrical, 5 mm diameter, 25 mm long, fully porous-coated implants 

placed in rabbit knees.  Their MAR readings, measured at 6 weeks after placement, were 

higher than our readings as was the the interface stiffness, which could be due to the use 

of larger and longer implants and the difference in the implant location, as well as the 

difference in the displacement rate of the pushout test (0.1 mm/ second).32  

Within our study our results show similar range of MAR for the Endopore 

(Innova Corp.) and EBM (Southern Methodist Univ.) implants, suggesting bone 

remodeling behavior in both implant types.  

In SEM and histology samples, we observed scattering of many small titanium 

particles in EBM (Southern Methodist Univ.), compared to Endopore (Innova Corp.) in 

freshly-retrieved and in mechanically-tested samples.  In freshly-retrieved samples the 

particles could have been dislodged into the tissue at the time of implant placement.  

While in mechanically tested samples, they could have been dislodged from the implant 

surface at the time of testing.  The loose titanium particles from EBM (Southern 

Methodist Univ.) could be a result of weaker bonding between particles.  Whether the 

dislodged particles would become an issue in the long-term use will need to be 

investigated further.  
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In this study, we compared the in vivo performance of EBM (Southern Methodist 

Univ.) implant with a commercial porous-coated dental implant (Endopore, Innova 

Corp.) by evaluating the histology, bone-to-implant contact, mineral apposition rate, and 

mechanical properties of the retrieved samples.  The histology evaluation shows 

osseointegration of surrounding bone with both implant types.  Bone was found to grow 

into the porous space between the beads.  There was no significant difference in the bone-

to-implant-contact (BIC), nor mineral apposition rate (MAR) between the EBM 

(Southern Methodist Univ.) and Endopore (Innova Corp.) implants.  In mechanical 

property evaluations, the peak pushout force and the apparent shear stiffness of EBM 

(Southern Methodist Univ.) were higher than the Endopore (Innova Corp.) implants.  

However, there were no statistical differences in these results.  These results suggest that 

the implants manufactured by EBM (Southern Methodist Univ.) perform equally well 

with the commercial implant Endopore (Innova Corp.) in this current animal model.  
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BONE REGENERATION IN NOVEL  

POROUS TITANIUM IMPLANTS 

 

 

by 

Naseeba Khouja 

Indiana University, School of Dentistry 
Indianapolis, Indiana 

 

The objective of this study was to evaluate the in vivo performance of the novel 

press-fit dental implant fabricated via electron beam melting (EBM, Southern Methodist 

Univ.) and compare it to a commercially-available porous-coated press-fit dental implant 

(Endopore, Innova Corp.). 

Twelve cylindrical shaped implants 3 mm in diameter x 5 mm long were made by 

EBM (Southern Methodist Univ.) using Ti6Al4V ELI alloy.  Twelve commercial 

implants (Endopore, Innova Corp.) of the same geometry were used as controls.  Samples 

were implanted in rabbit tibia and retrieved six weeks postoperatively.  Six specimens 



 

 

68

from each implant type were embedded undecalcified, sectioned, and stained with 

toluidine blue (Sigma) for histomorphometry analysis.  Bone-to-implant contact (BIC) 

was measured.  On the six remaining samples from each implant type, the mechanical 

properties were evaluated by pushout test on a material testing machine.  The samples 

were loaded at a loading rate of 1 mm/min.  The pushout strength was measured and the 

apparent shear stiffness was calculated.  The results were analyzed with a paired-t test. 

The histology shows osteointegration of surrounding bone with both implant 

types.  Bone was found to grow into the porous space between the beads.  Both the 

Endopore (Innova Corp.) and the EBM (Southern Methodist Univ.) showed similar BIC.  

The mean BIC for the Endopore (Innova Corp.) and EBM (Southern Methodist Univ.) 

implant were 35 ± 6% and 32 ± 9%, respectively.  It failed to reach statistical significance 

(p > 0.05).  The peak pushout force for Endopore (Innova Corp.) and EBM (Southern 

Methodist Univ.) implants were 198.80 ± 61.29 N and 243.21 ± 69.75 N, respectively.  

The apparent shear stiffness between bone and implant for the Endopore (Innova Corp.) 

and EBM (Southern Methodist Univ.) implants were 577.36 ± 129.99 N/mm; and 584.48 

± 146.63 N/mm, respectively.  Neither the peak pushout force nor the apparent shear 

stiffness of the implants was statistically different between the two groups (p > 0.05).  

The results suggest that the implants manufactured by EBM (Southern Methodist Univ.) 

perform equally well as the commercial implant Endopore (Innova Corp.) in this current 

animal model. 
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