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ABSTRACT 

 

 In 2004, President Bush unveiled his Vision for Space Exploration (VSE) plan, 

which defined many goals for NASA including revisiting the Moon in unmanned and 

manned missions. As a result, there has been a renewed interest in the study of lunar 

missions, particularly pertaining to lunar orbits that would be suitable for mapping 

missions. One type of lunar orbit that is beneficial for a mapping mission is a Sun-

synchronous orbit, which provides constant lighting conditions for imaging. However, 

lunar Sun-synchronous orbits do not exist naturally, and instead must be created and 

continuously maintained using active control hardware. 

 This thesis presents a method for maintaining a long-term lunar Sun-synchronous 

orbit using continuous low-thrust hardware. The control method is developed using 

optimal control theory, which involves controlling a system through the minimization of 

a desired cost function. The advantage of this method is that the creation of the cost 

function is entirely up to the user, and thus can be easily modified to control various 

orbital elements depending on the needs of the mission at hand. Weights can also be 

assigned to the elements in the cost function in order to prioritize the control of one 

element over another 

 A transition matrix algorithm is used to solve the optimal control problem. 

Simulations of this algorithm are presented which show its effectiveness for maintaining 

the Sun-synchronous condition, as well as keeping the orbit near-polar. Case studies are 

also presented which describe the effects on the trajectory and control magnitudes from 

changing the control weighting in the cost function. 
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1. INTRODUCTION 

 

1.1. INTRODUCTION TO SUN-SYNCHRONOUS ORBITS 

 With the announcement of NASA’s Vision for Space Exploration there has been a 

renewed interest in lunar missions. One of the more significant goals of the VSE is to 

commence unmanned and manned missions to the Moon by 2008 and 2020, respectively. 

Each of these missions will require a lunar orbit that is tailored to satisfy predetermined 

mission requirements. One special type of lunar orbit that is useful for a variety of 

missions is a lunar Sun-synchronous orbit. 

 A Sun-synchronous orbit can be defined as a near-polar orbit in which the line of 

nodes rotates at such a rate that it is always oriented at a constant angle with a vector 

directed from the Sun to the body the spacecraft is orbiting [1]. Figure 1.1 depicts a lunar 

Sun-synchronous orbit, and shows how the line of nodes is oriented relative to the Sun by 

the angle φ  in such an orbit. 

 

φ

φ

φ

φ

 

Figure 1.1.  Example of a Sun-Synchronous Orbit 
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These types of orbits are useful for many reasons. For example, mapping missions 

can benefit from the constant lighting conditions along the spacecraft’s groundtrack, and 

many more missions can benefit from the constant thermal environment due to unvarying 

solar exposure [1].  

 The exact rate at which the line of nodes needs to rotate in order for the orbit to be 

Sun-synchronous will generally depend on what body in space is being orbited. For 

example, since the Earth orbits the Sun in one sidereal year (365.2563 days), a Sun-

synchronous orbit about the Earth would require a nodal rotation of 360°/365.2563 days, 

or 0.9856°/day. This rotation rate of 0.9856
º
/day would apply to a lunar Sun-synchronous 

orbit as well since the Moon also makes a full revolution around the Sun in one sidereal 

year.  

   Earth Sun-synchronous missions benefit from the Earth’s oblateness or “bulge” 

about the equator, which allows for the generation of Sun-synchronous orbits that do not 

require maneuvers to maintain the orbit. The equatorial oblateness creates an out of plane 

gravitational force which, for orbits with certain altitudes and inclinations, can rotate an 

orbit at the desired Sun-synchronous rate [1]. Since the lunar oblateness is much less than 

the Earth’s, this luxury is not present when trying to generate a lunar Sun-synchronous 

orbit. Instead, generating and maintaining a lunar Sun-synchronous orbit requires 

continuously applying an out-of-plane thrust to rotate the orbit at the desired rate. 

The goal of this work was to develop methods to efficiently establish and maintain such 

lunar Sun-synchronous orbits. 

 

1.2. THESIS OVERVIEW 

 Following this introductory section, the remainder of the document is organized 

as follows: 

• Section 2 - This section reviews the current state of low-thrust hardware, 

summarizes low-thrust missions that have been proposed and studied, and 

gives an overview of previous work that has been performed in lunar Sun-

synchronous orbit mission design. 
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• Section 3 - This section presents the equations of motion for a low-altitude 

lunar orbiter. The section ends with a case study of how increasing the 

degree and order of a lunar gravity model affects the results. Appendices 

A and B contain additional information related to this section. 

• Section 4 – This section provides an introduction to optimal control 

theory, and goes on to derive an algorithm for controlling a lunar Sun-

synchronous orbit.  

• Section 5 – This section presents results generated from the controller 

described in Section 4 and contains case studies showing the effect of 

applying weights to the control requirements and the control inputs. 

• Section 6 – This section summarizes the results gained from this work and 

provides conclusions. 

• Section 7 – This section provides an overview of future developments for 

this research. 
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2. LITERATURE REVIEW 

 

2.1. CURRENT STATE OF LOW-THRUST HARDWARE 

 While interest in the use of low-thrust systems for aerospace applications has been 

around since the 1960s, efficient and reliable low-thrust hardware has been developed 

only recently. Today, many commercial communication satellites are equipped with low-

thrust systems, using the small thrust levels for orbit stationkeeping [2].Two of the most 

prevalent types of low-thrust hardware currently being used for space applications are 

Hall and Ion thrusters. This section summarizes a review of the capabilities of current 

Hall and ion thrusters. 

 Wilson in [2] discusses new Hall and Ion thrusters currently being produced by 

Aerojet. In terms of Hall systems, Aerojet is currently producing a Hall Thruster 

Propulsion System (HTPS) which uses a BPT-4000 Hall thruster. The power level of the 

HTPS can be toggled between 3 to 4.5 kW, giving a thrust range of 161 to 282 mN. 

Aerojet also recently developed the NEXT ion propulsion system. The NEXT system can 

operate at power levels ranging from 0.54-6.9 kW, with a maximum thrust that is greater 

than 236 mN. Aerojet developed the NEXT system with application to future NASA 

robotic exploration missions. 

 In [3], Spores and Birkan present current low-thrust hardware efforts within the 

U.S. Air Force (USAF). Of particular note is a dual-mode Hall thruster that the authors 

describe. Under development by the Busek Co., Inc., the thruster is being designed to 

toggle between a low and high thrust level. The thruster is expected to develop Isp values 

greater than 1900 sec with a thrust near 550 mN, and also be able to operate at an Isp of 

1000 sec and a thrust of 750 mN. 

NASA has also been working on low-thrust systems, developing a highly efficient 

ion propulsion system called Dawn [4], [5].  Dawn’s engines have a specific impulse of 

3100 s and a maximum thrust level of 90 mN. The Dawn ion propulsion system will be 

used on a mission to rendezvous with and map the two largest main-belt asteroids, Vesta 

and Ceres, and will be the first use of ion propulsion on a full-up NASA science mission. 

The launch of the spacecraft equipped with the Dawn system is planned for summer 

2007. 
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 In [6], Jacobson and Manzella describe the 457-M Hall Thruster developed by 

NASA.  The thruster was tested over a range of 8.5 kW to 74.0 kW, and was found to 

produce thrust levels ranging from 390 mN to 2.5 N. In this test, Krypton was used as a 

propellant, rather than using the propellant most common in current Hall systems, Xenon. 

It was found that while using Krypton as a propellant increases the maximum thrust 

levels, it also leads to a slightly lower efficiency. 

 

2.2.  REVIEW OF LOW-THRUST MISSIONS 

 Due to many of the promising aspects of using low-thrust systems, previous work 

has been performed on applying a low-thrust analysis to various mission types. This 

section gives an overview of the types of previously researched missions that were 

identified of interest. 

2.2.1. Low-Thrust Trajectory Optimization. One field that has seen many low-

thrust analyses is trajectory optimization. Trajectory optimization can be defined as the 

process of designing a trajectory that minimizes or maximizes some measure of 

performance. The following are examples of the low-thrust work that has been done in 

this field. 

 Whiting studied optimal low-thrust transfers between LEO and GEO in [14]. 

What is unique about his method is that he presents a controller that simulates a thruster 

with variable specific impulse at constant power and others that include periods of 

coasting along the transfer. One of the coasting controllers involves turning off the engine 

whenever the spacecraft is in the Earth’s shadow, a method which Whiting calls “Eclipse 

Control.” When the spacecraft is in the Earth’s shadow, the engine is power by solar 

panels alone, which helps conserve the batteries for use after the transfer. He compares 

the results from the various controllers, and shows that using Eclipse Control leads to the 

lowest total ∆V. 

In [7], Kluever presents an approach to an Earth-Moon trajectory optimization 

problem. The approach consists of three phases: a continuous-thrust spiral escape 

trajectory from a Low-Earth Orbit (LEO), a sub-optimal translunar coasting phase, and 

then a continuous-thrust spiral capture trajectory at the Moon. Sequential Quadratic 

Programming (SQP) is used in solving the associated optimal control problem. Kluever 
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uses this approach for a planar Earth-Moon trajectory, with a total trip time of 7.73 days. 

He then adds more complexity to the approach in [8] by analyzing trajectories from LEO 

to an inclined low-lunar orbit. It was found that, compared to the planar case in [7], only 

0.6% more fuel is required to transfer into a polar lunar orbit. The total trip time was 

found to be around 7.5 days for this case.  

 Kluever further examines the approach of [7] and [8] by specifying specific types 

of propulsion systems for the transfer. In [9], he examines a transfer using combined 

chemical-electrical propulsion. The spiral Earth-escape trajectory is replaced with a 

chemical-stage boost from LEO to the translunar coasting phase, and then the electrical 

system is used for the capture spiral to a lunar polar orbit. For the capture spiral, two 

types of electrical propulsion were studied: arcjet thrusters and stationary plasma 

thrusters (SPT). It was found that using the arcjet thrusters led to a total trip time of 46.4 

days, and using an SPT system led to a total trip time of 48.52 days.  

  A low-thrust Earth-Moon trajectory problem was also analyzed by Conway and 

Herman in [10]. Rather than use the thrust-coast-thrust approach studied in [7-9] 

however, the authors study a fully continuous thrust trajectory from a Geostationary 

Earth Orbit (GEO) to a polar low-lunar orbit with no coasting phase. The authors also use 

an initial thrust acceleration of 10
-4

 g, a thrust level which is 30 times smaller than the 

magnitude assumed by Kluever. Their analysis led to a total trip time of 32.54 days. 

 In [11], Kim creates an optimization algorithm to solve general minimum time 

transfer trajectory optimization problems. Kim’s approach consists of first generating an 

optimal trajectory with given boundary conditions using adaptive simulated annealing 

and Newton methods. Once this optimal trajectory is found, symmetry methods are used 

to find other optimal trajectories. The author analyzed Earth-Mars transfer and Earth-

Mars-Earth transfers using electric propulsion and solar sail spacecraft. 

 In [12] and [13], Thorne studies minimum-time transfers between coplanar 

circular orbits. The transfers are performed using continuous thrust of constant 

magnitude. Thorne places special emphasis on employing methods of generating optimal 

initial costates. 

 2.2.2. Low-Thrust Stationkeeping. Low-thrust systems are particularly useful 

for missions which require orbital stationkeeping. Stationkeeping involves keeping a 
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spacecraft in a desired orbit despite all of the natural perturbations that would decay the 

orbit. Since most stationkeeping missions only require making small corrections in the 

orbit, low-thrust systems are becoming a crucial candidate for their success. Today, a vast 

majority of geostationary communication satellites are outfitted with electric propulsion 

systems for stationkeeping purposes [2]. The following summarizes research that has 

been performed into various low-thrust stationkeeping missions. 

 One of the earliest works relating to low-thrust stationkeeping was performed by 

Hunziker in 1970 [15]. In [15], Hunziker creates a controller for the purposes of 

stationkeeping a nearly circular equatorial orbit for a 24-hour satellite. The goal of his 

controller was to minimize the change in spacecraft longitude over the course of the 

integration, leading to the spacecraft staying directly overhead a certain point on the 

Earth and the “24-hour satellite” designation. Hunziker pursued a bang-bang controller 

approach to the problem, solving the problem using variation of parameters and 

correcting each initial estimate for the optimal trajectory using a Newton-Rhapson 

method. His controller was a success, leading to a maximum longitude change of only 

0.4° over the course of 105 days. 

    More recently, the authors in [16] present an analysis of using solar electric 

propulsion (SEP) for insertion into a geostationary orbit and for 15 year North-South 

stationkeeping once in that geostationary orbit. The method involves using the remaining 

fuel in the Centaur stage of an Atlas IIAS rocket along with onboard chemical propulsion 

systems to insert the spacecraft into what the authors refer to as an “SEP starting orbit.” 

Once on the SEP orbit, the electric propulsion systems are used to insert the spacecraft 

into GEO. Once in the GEO, the electric systems are used for North-South station 

keeping for a total of 15 years. The authors analyze the net mass increase associated by 

using SEP rather than chemical systems to insert into a GEO, and discover that the net 

mass is increased by as much as 45% through the use of SEP. 

 In [17], the authors compare two different strategies for the stationkeeping of a 

geostationary satellite using ionic propulsion. One of the strategies splits the 

stationkeeping into two branches: North-South (N-S) stationkeeping for controlling the 

inclination of the orbit and East-West (E-W) stationkeeping for controlling the 

eccentricity and longitude drift. The other strategy, created by the authors, involves 
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controlling the inclination, eccentricity, and longitude drift all together during N-S 

stationkeeping by making use of the large thruster cant angles. Simulations were 

performed, and it was found that performing all stationkeeping maneuvers during N-S 

stationkeeping required only 1 percent more fuel than controlling only inclination. The 

authors conclude that the N-S stationkeeping strategy is favorable when there are tight 

restrictions on the eccentricity, but the combined N-S and E-W stationkeeping strategy is 

more efficient for missions where the restrictions on eccentricity are not very strict. 

 In [18], Losa presents a geostationary low-thrust stationkeeping controller that 

uses a direct optimization approach. The controller is created with the goal of holding a 

satellite’s latitude and longitude constant to within 0.01° for 28 days. For solving the 

control problem, a method called differential inclusion was used. Differential inclusion is 

a direct optimization approach which involves discretizing the state variable time history 

and replacing constraints on the control with constraints on values of the state variable 

time rates of change [19]. Using this approach, results were presented which showed the 

controller’s success at keeping a satellite’s latitude and longitude constant for 28 days, 

with a maximum required thrust force of around 40 mN. 

 2.2.3. Low-Thrust Rendezvous Missions. One final type of mission that has 

seen low-thrust research is the rendezvous mission. A rendezvous is defined as a mission 

where a spacecraft, usually called a chaser or interceptor, attempts to transfer from an 

initial state to a final state that coincides with some target body at some desired time. The 

target body is typically either another spacecraft or some small body in space such as an 

asteroid. The following is a summary of research that has been performed towards a 

variety of rendezvous missions. 

 One of the earliest works on low-thrust rendezvous was performed in 1964 by 

Edelbaum [20]. In [20], Edelbaum derives a method for the optimal correction of all six 

orbital elements of a general elliptic orbit. His method involves finding a closed-form 

analytic solution relating changes in the orbital elements to Lagrangian multipliers which 

define the control variables. Results are presented on the optimal thrust programs for 

changing various elements, and the author states that this method could also easily be 

applied to low-thrust stationkeeping.  
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 Another early work on low-thrust rendezvous was performed by Billik [21]. In 

[21], Billik analyzed various low-thrust rendezvous missions by employing the technique 

of differential games. He presents solutions to three different rendezvous problems. The 

first problem, called a passive rendezvous, involves transferring the interceptor spacecraft 

from its initial state to a final state which is coincident with the target spacecraft. The 

second problem involves the transfer of the interceptor from some initial state to a final 

state in which the interceptor passes at some desired distance from the target, and is 

called a passive fly-by. Both of these problems involve an interceptor spacecraft with 

continuous thrust capabilities and a target body on a circular orbit that has no control 

capabilities. The final problem Billik presents is called active rendezvous, a case in which 

both vehicles have low-acceleration engines. This final problem can be seen as a “pursuit 

and evasion” type of problem, in which the interceptor spacecraft has to attempt 

rendezvous with a target spacecraft that is trying to escape. Billik presents solution 

methods to all three of these problems using optimal control theory and the technique of 

differential games. 

 In 1969, Euler further developed the passive rendezvous problem presented by 

Billik by analyzing coplanar rendezvous maneuvers between a maneuvering spacecraft 

and a nonmaneuvering target in an elliptic orbit [22]. The optimal rendezvous trajectories 

are found using a Newton-Rhapson algorithm, and Euler presents simulations showing 

that rendezvous with the target is successfully achieved with a maximum required thrust 

magnitude of around 0.016 N.   

 In [23], the authors study rendezvous missions to minor planets between Earth 

and Jupiter. Minor planets are also sometimes known as planetoids or asteroids, and 

account for thousands of bodies that orbit the Sun between Earth and Jupiter. The 

propulsion system used in the authors’ analysis is a 30 cm Kaufman thruster with a thrust 

force of 0.132 N at a power input of 2.7 kW. Simulations are presented for rendezvous 

missions to ten different minor planets, with total flight times ranging from 240 to 480 

days. The authors note that in several cases, enough propellant remains after rendezvous 

with the target minor planet for a continuation of the mission to a second target. One two-

target mission of this type was studied to the bodies Aten and 1951 NL, both of which 
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orbit in nearly the same plane. The total trip time for this mission was found to be 807 

days. 

 In [24], Aleshin and Guelman study low-thrust, fixed-time rendezvous missions 

between spacecraft in LEO. The authors present a method slightly different than previous 

papers by imposing constraints on the chaser’s final approach to the target. Their 

approach to the problem involves a two-stage process. The first stage involves a transfer 

from the initial conditions to an intermediate point in the final line of approach, and the 

second stage involves the constrained terminal approach to the target approach. The 

authors present results showing how the terminal approach direction of the chaser 

spacecraft is successfully controlled. In [25], the authors expand their approach by 

imposing a constraint on the maximum control acceleration of 5 x 10
-4

 m/s
2
. The authors 

present simulations of chaser trajectories with this control constraint and show that the 

optimal terminal approach direction is still obtained. 

  

2.3. REVIEW OF WORK IN GENERATING LUNAR MAPPING ORBITS 

 Sun-synchronous orbits are useful for many different missions, but a mission type 

for which such orbits are specifically useful are mapping orbits. A mapping orbit is 

typically a low-altitude, polar orbit designed to obtain the maximum coverage of the body 

by a satellite equipped with cameras or other sensors. Due to an increasing interest in the 

Moon, most of the recent and upcoming lunar missions involve mapping of the lunar 

surface. Mapping orbits used to image of the surface benefit from the constant lighting 

conditions produced by a Sun-synchronous orbit. This section discusses some of the 

research into the field of lunar mapping and details some of the recent lunar mapping 

missions that have been conducted.  

In [26], Park and Junkins present lunar mapping orbits that are created using a 

frozen orbit concept. A frozen orbit is typically defined as an orbit in which the 

eccentricity, argument of periapsis, and inclination variations are approximately zero. 

Such an orbit is “fixed” in its structure, hence the name frozen orbit. The authors show 

that by using this frozen orbit concept, lunar orbits can be obtained which are near 

circular, near constant low altitude, and near polar. It is also shown that at an inclination 

of 101.4°, a near Sun-synchronous orbit exists in which the orbit node deviates from the 
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Sun-synchronous condition by approximately 10° over one month. To obtain the frozen 

orbit conditions, the authors studied Lagrange’s Planetary equations of motion. These 

equations are differential equations in terms of the six orbital elements, and a frozen orbit 

is found by finding the elements which make some of the derivatives equal to zero. Using 

this method, the authors found a frozen orbit which exists at an eccentricity of 0.0013 and 

an argument of periapsis of 90°. The authors present results which show that the orbit 

stays roughly frozen while keeping within 10° of the Sun-synchronous nodal condition 

over a month. After a month, however, the orbit node line will continue to rotate away 

from the Sun-synchronous condition. 

 Lunar mapping orbits are also studied by Ramanan and Adimurthy in [27]. The 

authors abandon the idea of identifying a Sun-synchronous orbit, and instead focus on 

finding a near polar, circular, low altitude lunar orbit with a long lifetime. In particular, 

the authors study the effect of the initial inclination on the lifetime of a 100 km altitude 

circular orbit. It is shown that the orbital lifetime is directly related to the inclination, 

minimizing at approximately 20 days for an initial inclination of 11° and lasting longer 

than 730 days for an initial inclination of 95°. For the 95° inclination case, the authors 

show that the periapsis altitude variation is only around 26 km. The authors also show 

that the initial ascending node can have an impact on the orbital lifetime, and that an 

initial ascending node of 120° can extend the lifetime by around 35 days. 

 Due to constantly evolving interest in the Moon, several lunar mapping missions 

have actually been conducted. One such mission is the 1994 Clementine mission that was 

jointly led by NASA and the Naval Research Laboratory (NRL) [28, 29]. The goals of 

the Clementine mission were to map the lunar surface through the use of an advanced 

sensor complement and then perform a close flyby of the asteroid 1620 Geographos. The 

lunar mapping portion of the mission involved a two month stay in a polar lunar orbit 

with an eccentricity of 0.36 and a semimajor axis of 5,116 km. During each orbit, 80 

minutes of mapping was performed around periapsis with 139 minutes of downlink time 

around apoapsis. The periapsis location was initially 30 degrees below the lunar equator 

for the first month of the mapping mission, and a maneuver was performed to shift the 

periapsis to 30 degrees above the equator for the second month. The lunar mapping 

portion of the mission was a success, but a computer malfunction after the mapping phase 
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prevented Clementine from reaching its second objective of performing a flyby around 

Geographos. 

 After Clementine, the next lunar mapping mission to be performed was NASA’s 

Lunar Prospector (LP) mission in 1998 [30]. The goals of the LP mission were to map the 

composition of the lunar surface, study the Moon’s gravity and magnetic fields, 

investigate levels of tectonic and volcanic activity, and search for evidence of water ice at 

the Moon’s poles. LP consisted of a one-year stay in a 100 km altitude polar mapping 

orbit, with correction maneuvers performed every 56 days to correct the eccentricity and 

argument of periapsis. In order to minimize the maneuvers required and maximize the 

orbital lifetime, the LP mapping orbit was a Quasi-Frozen orbit which lowered the 

eccentricity and argument of periapsis variations [31]. The LP mission was a success, 

providing a high-resolution map of the Moon as well as obtaining a large amount of data 

on the Moon’s gravity field. 

 NASA is also currently planning another lunar mapping mission which will begin 

in 2008 [32, 33]. Called the Lunar Reconnaissance Orbiter (LRO) mission, some of its 

primary goals are to map mineralogy across the Moon, search for indications of ice, 

provide sub-meter resolution imaging of the Moon and to provide an assessment of 

possible lunar landing sites. The LRO will conduct its mission from a 50 km polar lunar 

orbit for a duration of one year. While no maneuvers are to be made to obtain a Sun-

synchronous orbit, as explained in [33] stationkeeping maneuvers will be performed to 

correct the eccentricity and argument of periapsis drift. The stationkeeping maneuvers are 

intended to be performed once per lunar orbit period, or 27.4 days.  

 In light of the previous work performed in generating lunar mapping orbits, the 

efforts presented in this thesis can be seen as a strong advancement to the field. In 

particular, while previous efforts have been made towards generating short duration Sun-

synchronous missions, a method for generating long-duration Sun-synchronous missions 

will be presented in this thesis. Also, it will be shown that Sun-synchronous orbits can be 

achieved using current-age low-thrust hardware, something which up to this point has not 

been a focus of study.  
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3. SYSTEM MODELS AND EQUATIONS OF MOTION 

 

3.1. MEAN SELENOGRAPHIC REFERENCE FRAME 

3.1.1. Definition of the Mean Selenographic Reference Frame. Since orbits 

about the Moon are to be analyzed, it is desired to solve the system dynamics in a 

reference frame that is fixed in the Moon. For this reason, a selenographic reference 

frame is chosen. A selenographic frame is defined as a rotating reference frame with the 

origin in the center of the Moon, where the x̂ , ŷ  and ẑ axes correspond to the Moon’s 

principal axes of inertia [34]. The x̂ axis is in the Moon’s equatorial plane pointing 

towards Earth, the ẑ axis is through the Moon’s north pole, and the ŷ axis completes the 

right-handed coordinate system. Figure 3.1 depicts such a selenographic coordinate 

system. 

 

 

x̂

ŷ

ẑ

 

Figure 3.1. Example of Selenographic Coordinate Frame 

 

 

Escobal in [34] describes two basic types of selenographic reference frames. One, 

called the true selenographic coordinate system, incorporates the physical librations of 
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the Moon, while another, the mean selenographic reference frame, does not include the 

librations. It was decided to use the mean selenographic reference frame for this initial 

analysis, due in part to the Moon’s librations being very complicated to model and 

because the libration effects likely cause very small perturbations in the model.  

3.1.2.    Transformation from Ecliptic Frame to Mean Selenographic Frame.  

In solving the equations of motion presented later, it will be necessary to convert from the 

ecliptic frame to the mean selenographic frame discussed in Section 3.1.1. The ecliptic 

frame is defined as the plane of Earth’s orbit around the Sun. The x̂ axis of the ecliptic 

frame is directed towards the vernal equinox, the ẑ  axis is tilted approximately 23.44° 

from the Earth’s north pole, and the ŷ axis completes the right-handed coordinate system. 

This coordinate transformation is required because position vectors originating from 

Earth, such as the vectors from the Earth to the Sun or from the Earth to the Moon, are 

typically defined in an ecliptic frame. The coordinate frame transformation which is 

described in this section is derived in Escobal [34].  

It is first required to calculate some auxiliary angles that will be needed in the 

transformation. These angles are defined with respect to the independent variable 

                                       
36525

.).(.. 1900,5.0Jan

u

DJDJ
T

−
=                                            (3.1) 

where J.D. is the current Julian date with the epoch date taken as 

                                                  2415020.).( 1900,5.0 =JanDJ                                              (3.2) 

Now, define the variables λmoon and Ω as follows [34], 

  
352

101888889.0001133333.08831417.267,4814341639.270 uuumoon TxTT −°+°−°+°=λ      (3.3) 

             
352

102222222.0002077778.01420083.934,11832750.259 uuu TxTT −+°+°−°=Ω      (3.4) 

Ω  is the longitude of the mean ascending of the lunar orbit measured in the ecliptic 

frame from the mean equinox of date, and λmoon  is the geocentric mean longitude of the 

Moon, ηλ +Ω=moon , where η is the angle between the Moon and the location at which 

its orbit crosses the ecliptic plane. Equations (3.3) and (3.4) are very useful in that they 

give precise values for both λmoon and Ω as a function of time.  
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 Three different rotations are needed in order to convert from the ecliptic frame to 

the mean selenographic frame. Figure 3.2 shows these three required rotations. 

 

 

θ

ψ

φ

sx

 

Figure 3.2. Transformation from Ecliptic to Mean Selenographic Frame 

 

 

The first rotation, φ , is taken about the ẑ axis of the ecliptic frame and is equal to  

                                                               πφ +Ω=                                                           (3.5) 

The second rotation, θ , is taken about the intermediate 'x̂ axis and is equal to 

                                                                  I=θ                                                              (3.6) 

where I is the mean inclination of the mean selenographic reference frame to the ecliptic 

frame which is equal to 1.53889°. The final rotation is about the resultant ''ẑ axis and is 

equal to  

                                                             Ω−= moonλψ                                                       (3.7) 

 The φ , θ , and ψ angles, also known as the Euler angles, are used to create a 

direction cosine matrix (DCM) which will convert a position vector expressed in the 

ecliptic frame to the mean selenographic frame. It should be noted that the trigonometric 

expressions in the following DCM are abbreviated as 
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                                                              )sin(αα =S                                                         (3.8) 

                                                             )cos(αα =C                                                         (3.9)          

The resulting DCM, as described in Escobal [34], is 
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DCM                 (3.10) 

With the DCM given by Equation (3.10), a position vector in the ecliptic frame 

can be expressed in the mean selenographic frame as 

                                        [ ]selenographic eclipticDCM=r r                                           (3.11) 

If it were also desired to convert velocities from the ecliptic to the mean selenographic 

frame, additional calculations would have to be made. However, since for this work only 

position vectors will need to be converted, Equation (3.11) will suffice. 

 

3.2.   DERIVATION OF THE EQUATIONS OF MOTION 

In this section, the equations of motion of a low-altitude lunar orbiter will be 

derived. The equations will incorporate perturbations from Earth, the Sun, and the highly 

nonuniform lunar gravity field.  

 As depicted in Figure 3.3, the system consists of four bodies: Earth, Sun, Moon, 

and spacecraft. Also, the point “O” in Figure 3.3 is considered to be an inertially fixed 

point in space, and is needed for starting the derivations. 

 Let the vector from the Moon to the spacecraft be defined by 

                                                 /
ˆ ˆ ˆ

moon s c x y z− = + +r x y z                                              (3.12) 

where the x̂ , ŷ  and ẑ axes correspond to the mean selenographic frame described in 

Section 3.1. This position vector is defined with respect to a rotating reference frame, but 

the velocity and acceleration vectors must be expressed in an inertial reference frame in 

order to be used in Newton’s Law. 
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Figure 3.3. Four-Body Sun-Earth-Moon-Spacecraft System 

 

 

In order to express the velocity and acceleration with respect to an inertial 

reference frame, the basic kinematic equation (BKE) must be used to express the first and 

second derivatives of (3.12) as  

                                   cs
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R
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I
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where zw ˆ
m

RI w=   and rad/sec10661699.2 6−= xwm is the Moon’s rotational velocity. 

Evaluating (3.13) and (3.14) leads to  

                                          zyxr ˆˆ)(ˆ)(/ zxwyywx mmcsmoon
&&&& +++−=−                              (3.15) 

                                 zyxr ˆˆ)(ˆ)(/ zywx2wyxwy2wx
2

mm

2

mmcsmoon
&&&&&&&&&& +−++−−=−           (3.16) 
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Equations (3.15) and (3.16) give the inertial position and velocity of the spacecraft with 

respect to the Moon. 

 Next, using Newton’s Law 

                                                          cscss/cm // FR =&&                                                    (3.17) 

where cs /F  is the sum of the external forces on the spacecraft. Also, from Figure 3.3  

                                                     csmoonmooncs // −+= rRR                                             (3.18) 

From (3.18), it can be seen that  

                                                     mooncscsmoon RRr &&&&&& −=− //                                             (3.19) 

 Now, it can be shown that  

                             / / /
s/c earth s/c sun

s c earth s c sun s c Moon3 3

earth s/c sun s/c

m m m m
m G G m U

r r
− −

− −

= − − + ∇&&
s/c s/cR r r             (3.20) 

and that  

                         moonsun3

moonsun

sunmoon

moonearth3

moonearth

earthmoon

moon
r

mm
G

r

mm
Gm −

−

−

−

−−= rrRmoon
&&                (3.21) 

where from Figure 3.3 

                                                  csmoonmoonearthscearth /−−− += rrr                                        (3.22) 

                                          scmoonmoonearthsunearthscsun −−−− ++−= rrrr                                 (3.23) 

                                               moonearthsunearthmoonsun −−− +−= rrr                                       (3.24) 

In Equations (3.20) and (3.21), 
2

3
20

kg.s

km
10673.6 −= xG  is the universal gravitational 

constant, MoonU∇  is the gradient of the lunar gravity potential which is defined in the next 

section, and mearth, msun, and mmoon correspond to the masses of the Earth, Sun, and Moon, 

respectively.  Ephemeris equations presented in Escobal [34] and in the JPL software 

Quick [35, 36] are used to solve for moonearth−r  and sunearth−r  in Equations (3.22-3.24). The 

ephemeris equations give accurate positions of the bodies as a function of the current 
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Julian Date. Since both vectors are computed in the ecliptic frame, they have to be 

converted into the selenographic frame through the process detailed in Section 3.1.2.  

 Now, define the gravitational parameter terms earthearth Gm=µ  and sunsun Gm=µ . 

Dividing Equations (3.20) and (3.21) by ms/c and mmoon , respectively and substituting the 

resultant equations into Equation (3.19) yields 

                            

/ / /
earth sun earth

moon s c earth s c sun s c earth moon3 3 3

earth s/c sun s/c earth moon

sun
sun moon Moon3

sun moon

µ µ µ

r r r

µ
U

r

− − − −
− − −

−
−

−
= − +

+ + ∇

&&r r r r

r

               (3.25) 

 It is now desired to convert this second-order system into a first-order form. Let 

the state vector x
r

be defined as 
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Also, allow for the possibility of a control acceleration along each direction as u1, u2, and 

u3, respectively. By setting Equation (3.16) equal to Equation (3.25), the six differential 

equations are obtained 

                                                                 41 xx ====&                                                         (3.27) 

                                                                 52 xx ====&                                                         (3.28)     

                                                                 63 xx ====&                                                         (3.29)        
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 Equations (3.27-3.32) represent six first-order equations that specify the dynamics 

of a low-altitude lunar orbiter under perturbations from Earth, the Sun, and the Moon’s 

gravity field. The lunar gravitational potential term, MoonU∇ , in Equations (3.30-3.32) is 

derived in the following section. 

 

3.3. DERIVATION OF LUNAR GRAVITATIONAL POTENTIAL 

 The primary perturbation that a low-altitude lunar orbiter experiences comes 

from the Moon’s highly nonspherical gravity field. Therefore, a good model of the lunar 

gravitational potential is crucial for obtaining a high-fidelity dynamic model. This section 

will describe a numerical method for calculating the gradient of the lunar gravitational 

potential using the most recent gravity model available for the Moon. A majority of the 

analysis in this section is taken from Vallado [37]. 

 As described in Vallado [37], the gravitational potential U of any general body 

can be described as 

                                                              ∑
∞

=

=
1Q Q

Qm
GU

ρ
                                                   (3.33) 

where G is the gravitational constant of the body, mQ is an infinitesimal mass on the 

body, and Qρ , called the slant range, is defined as the distance from the infinitesimal 

mass to some point in space P at which it desired to evaluate the potential. In this case, 

point P will correspond to a satellite. Figure 3.4 shows the geometry involved. 
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ẑ

 

Figure 3.4. Setup for the Lunar Gravitational Potential Derivation 

 

 

Equation (3.33) can further be expressed in the form of an integral over the entire 

body as  

                                                          dmGU

Body Q
∫=

ρ
1

                                                   (3.34) 

 Now, define the geocentric distance from the body to the satellite at point P as r 

and the distance from the center of the body to the infinitesimal point as rQ where 

                                                        222 zyxr ++=                                                   (3.35) 

                                                        222 ξηε ++=Qr                                                 (3.36)  

Using the law of cosines, the slant range Qρ  can be computed as  

                                                      )cos(2
22 Λ−= QQ rrrρ                                               (3.37) 

where as shown in Figure 3.4, Λ is the angle between the r and Qr vectors. The Λ angle 

can be computed through the dot product of the position vectors as 
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=Λ)cos(                                        (3.38) 

 Inserting Equation (3.38) in Equation (3.37), the slant range is now 

                                                  2)cos(21 ααρ +Λ−= rQ                                            (3.39) 

where 

                                                                 
r

rQ=α                                                          (3.40) 

 Using Equation (3.38), the gravitational potential of the body now becomes 

                                              ∫
+Λ−

=
Body r

dm
GU

2)cos(21 αα
                                        (3.41) 

The α variable will always be less than 1.0 for a point P outside the body, and the 

absolute value of the )cos(Λ quantity will always be less than or equal than 1.0, therefore 

the binomial theorem can be used to expand the denominator of Equation (3.41) into a 

series. As explained in Vallado [37], this leads to the following equation for the 

gravitational potential U: 
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 The )][cos(ΛlP term in Equation (3.42) is referred to as a Legendre polynomial, 

and the full equation involves a series of Legendre polynomials. Setting ω=Λ)cos( , 

Vallado [37] gives an equation for the Legendre polynomials as 
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The first six Legendre polynomials are  

                                                                 1][0 =ωP                                                        (3.44) 

                                                                ωω =][1P                                                        (3.45) 
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It should also be noted that the l=0 term of Equation (3.42) is 

                                                    
rr

Gm
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r

G
U

µ
=== ∫0                                               (3.50)  

which is the standard equation for the gravitational potential of a spherically symmetric 

and homogenous body. For some bodies Equation (3.50) is a good approximation for the 

gravitational potential, but due to the Moon’s nonspherical gravity field an accurate high-

fidelity model for a lunar orbiter involves computing a large amount of the terms in 

Equation (3.42). 

 In order to compute the Legendre polynomials for large degrees of l, the 

following recursive algorithm is used. 

• Define the first two Legendre polynomials by Equations (3.44) and (3.45).  

• Use Bonnet’s recursion to solve for the rest of the Legendre polynomials up to a 

desired maximum degree lmax: 
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 Further simplifying Equation (3.42), Vallado [37] illustrates that by using the 

addition theorem of spherical harmonics the )][cos(ΛlP  term can also be expressed as 
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where 
Qgcφ , Qλ , 

Pgcφ  and Pλ are the geocentric latitude and longitude of the infinitesimal 

mass on the body and the point P, respectively, and the summation indices l and m are the 

degree and order, respectively.  

The mlP , terms in Equation (3.52) are referred to as associated Legendre functions. 

These functions have the general form of 
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Some of the first few associate Legendre functions are 

                                                                 10,0 =P                                                          (3.54) 

                                                            )sin(0,1 satgcP φ=                                                   (3.55) 

                                                            )cos(1,1 satgcP φ=                                                   (3.56) 

                                                     { }1)(sin3
2

1 2
0,2 −=

satgcP φ                                             (3.57) 

                                                  )cos()sin(31,2 satsat gcgcP φφ=                                            (3.58) 

                                                         )(cos3
2

2,2 satgcP φ=                                                 (3.59) 

When m = 0, or for zero order, the associated Legendre function is equal to the Legendre 

polynomial evaluated at the same value of l. 

 While Equation (3.53) is sufficient for hand calculations, it is inefficient for 

calculations on a computer due to the derivative term. Therefore, it is desired to obtain a 

recursive equation for computing the associated Legendre functions that would be easy to 

implement on computer software. The following algorithm is used for obtaining this 

recursive equation: 

• First define the three starting values for the associated Legendre functions by 

Equations (3.54-3.56). Also define the three starting values for the derivative term 

in Equation (3.53) as 
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• Use the following recursive equation for calculating the derivatives of the 

Legendre polynomials up to some lmax and mmax: 
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 It should be noted that for the cases where m = 0, ( ) ( )
m
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• With the derivatives obtained from Equation (3.63), the associated Legendre 

functions can be computed using Equation (3.53). 

 

With expressions obtained for the associated Legendre functions, Equation (3.42) 

can now be separated into terms that are dependent on the satellite’s location and terms 

that only depend on the central body. While all of the equations before this point would 

apply for any general body, at this point the focus will change to specifically choosing the 

Moon as the central body. The Moon’s radius will be defined as RMoon, which is equal to 

1737.4 km, and the mass of the Moon will be defined as mMoon, which is equal to 

7.36x10
22

 kg. To begin the separation of the terms in Equation (3.42) define the 

following coefficients: 
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The C’l,m and S’l,m coefficients in Equations (3.64) and (3.65) represent the 

mathematical modeling of the Moon’s shape using spherical harmonics and are referred 

to as gravitational coefficients. Each of the gravitational coefficients describes surface 

spherical harmonics for some point on the Moon. For example, the m = 0 coefficients 
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describe zonal harmonics and represent bands of latitude , the l=m coefficients describe 

sectorial harmonics which represent bands of longitude, and the l ≠ m terms describe 

tesseral harmonics indicating specific regions of the Moon. Also, if the center of the 

coordinate system corresponds with the attracting body’s center of mass, the coefficients 

C’1,0, C’1,1 and S’1,1 are equal to zero.   

Substituting Equations (3.64) and (3.65) into Equation (3.42) leads to the 

following series representation for U:                                                                                                       
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It is seen from Equation (3.65) that in order to have proper units, the C’ and S’ 

gravitational coefficients will need to be nondimensionalized. Therefore, the coefficients 

are nondimensionalized as      
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 Substituting Equations (3.67) and (3.68) into Equation (3.66) and noting that the 

U0 term is defined by Equation (3.50), the final equation for the gravitational potential is 

obtained as 
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 The C and S gravitational coefficients are typically computed from observing the 

results of missions that have been conducted around the desired central body. For the 

Moon, many missions have been conducted, some of which are the Apollo Missions, the 

Clementine Mission, and the Lunar Prospector mission. Current lunar gravity models 

contain C and S coefficients that have been determined using the results from many of 

these missions. The lunar gravity model used in this work is the LP165P gravity model 
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obtained from the NASA PDS Geosciences Node, which contains lunar C and S 

coefficients up to a degree and order of 165x165 [39]. This gravity model is free for 

public use, and was obtained off of the NASA website. 

Now that the gravitational potential function is defined by Equation (3.69), the 

next step is to calculate the acceleration, equal to the gradient of the gravitational 

potential function defined as 
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However, since U is defined in terms of spherical coordinates (r,
Pgcφ , Pλ ) and it is 

desired to find the acceleration is Cartesian coordinates (x, y, z), the chain rule must be 

applied. This leads to the equation for the gradient as 

 

                         







∂

∂

∂
∂

+








∂

∂

∂
∂

+







∂
∂

∂
∂

=∇
rrr

sat

sat

T

gc

gc

T

Moon

λ

λ

Uφ

φ

Ur

r

U
U sat

sat

                       (3.71) 

where  
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 After the substitution of Equations (3.72-3.77) into Equation (3.71), Equation 

(3.71) can be used to solve for the acceleration induced by the lunar gravitational 

potential. The three components of Equation (3.70), 
xMoonU∇ , 

yMoonU∇ , and
zMoonU∇ are 

then used in the equations of motion for the satellite, Equations (3.27-3.32). As explained 

at the beginning of this section, the lunar gravitational potential is one of the main 

perturbations on a low-altitude lunar orbiter, thus the addition of Equation (3.71) to the 

equations of motion greatly increases the fidelity of the dynamic model. 

 

 3.4. DYNAMIC MODEL CREATION AND RESULTS 

 This section details the development of a dynamic model in MATLAB, and 

concludes with results that show the evolution of a low-altitude lunar orbit over an 

extended period of time and the effects of using a large number of terms from the gravity 

model. 

 For the purposes of integrating Equations (3.27-3.32), a MATLAB ode integrator 

is utilized. In particular, the “ode113” integrator is used, which is a variable order 

Adams-Bashforth-Moulton PECE solver [39]. The inputs that the integrator requires are 

an initial state vector and the desired timespan. The user specifies the initial orbital 

elements, and the elements are then sent through a subroutine that converts them to 

Cartesian coordinates. This conversion process from orbital elements to Cartesian 

coordinates is described in Appendix A. It is also possible to specify the error tolerances 

for the integrator. For this work, the absolute and relative error tolerances are both set to 

1x10
-14

.  

After all of the inputs for the integrator are set, the integration is performed with 

the output selected as the state vector across the desired timespan. However, the 

integration is performed in coordinates with respect to the rotating selenographic frame 
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while it is desired to plot the results with respect to an inertial frame. Therefore, after the 

integration is completed the states are converted to an inertial frame. This conversion is 

detailed in Appendix B.  

 With the dynamic model created, the results can be analyzed in order to observe 

the long term behavior of the lunar orbits. It should be noted that the only variables that 

will affect the structure of the resultant orbit are the initial orbital elements and the order 

and degree of the gravity model that will be used, i.e. lmax  and mmax. The constraint on the 

lmax and mmax variables is that neither can be larger than 165, as the lunar gravity model 

used for this work is of degree and order 165x165.  The integrator timespan specifies the 

time length over which the results are presented, and does not affect that actual structure 

of the orbit. For most of the graphs presented in this section, the timespan is held 

constant. 

 It was found that the length of computer running time is directly related to the size 

of the lmax  and mmax variables, so an analysis was made to see if sufficient accuracy can 

still be obtained by using a small fraction of the lunar gravity model. This involved a case 

study where a set of initial orbital elements is fixed, and integrations are performed with 

different values for lmax and mmax. The six initial orbital elements used for this case study 

are presented in Table 1.1. These initial orbital elements were chosen to specify a 100 

km, nearly circular, polar orbit. The values for the ascending node, argument of periapsis, 

and true anomaly were chosen arbitrarily. 

 

Table 1.1. Initial Orbital Elements for Dynamic Model Simulations 

Orbital Parameter Value 

Semimajor axis, ai 1837.4 km 

Eccentricity, ei 0.0013 

Inclination, ii 90° 

Ascending Node, Ωi 45° 

Argument of Periapsis, iω  45° 

True Anomaly, iν  0° 
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Graphs were created using the initial orbital elements defined in Table 1.1 and a 

constant timespan of 20 days for various values of lmax and mmax, and are presented as 

Figures 3.5-3.9. 

 

 

Figure 3.5. 20-Day Orbit for lmax = 2, mmax = 0 

 

Figure 3.6. 20-Day Orbit for lmax = 10, mmax = 10 
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Figure 3.7. 20-Day Orbit for lmax = 20, mmax = 20 

 

 

Figure 3.8. 20-Day Orbit for lmax = 25, mmax = 25 
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Figure 3.9. 20-Day Orbit for lmax = 50, mmax = 50 

 

 Figures 3.5-3.9 show the large impact of the lunar gravity field on a lunar orbiter. 

It can be seen from the plots that while the trajectories of a majority of the orbital 

elements are directly affected by the higher order terms in the lunar gravity model, the 

ascending node appears to be unaffected. Also, investigation of the plots shows that using 

further terms beyond 25x25 has a very minimal effect on the results. Because of this, it 

was decided to only use the gravity model terms up to 25x25 for the remainder of the 

analyses in this work. Doing so saves a tremendous amount of computing time while 

maintaining accurate results. 

 In order to get an indication of the long-term behavior of the solutions, a 105-day 

integration was performed using the same initial orbital elements defined above and using 

up to 25x25 in the lunar gravity model. This plot can be found in Figure 3.10. Also, it 

was desired to see how close the spacecraft will get to the Moon during this simulation. 

For this reason, a plot was also made of the periapsis evolution, which can be found in 

Figure 3.11. 



 

 

33

 

Figure 3.10.  Orbital Element Trajectories for 105-Day integration 

 

 

Figure 3.11.  Periapsis Altitude Evolution for 105-Day Integration 
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Figure 3.10 shows that in the long-term, a low-altitude lunar orbit will experience 

drifts in semimajor axis and eccentricity which will eventually need to be corrected 

depending on how long it is desired for the satellite to remain in orbit. This drift occurs 

primarily because of the effects of the highly nonspherical lunar gravity field. It can also 

be seen from Figure 3.10 that the ascending node and inclination both stay in roughly the 

same region, performing oscillations of similar amplitudes. 

Figure 3.11 shows another interesting result of the higher order lunar gravity 

terms. In particular, it can be seen that in 105 days the periapsis altitude decreases by 

approximately 70 km. Since the periapsis is the closest point on the orbit to the lunar 

surface, this gives an indication of the risk of the crashing into the surface. This decrease 

in altitude is caused by the drift in the semi-major axis and eccentricity seen in Figure 

3.10, and it can clearly be assumed that without performing altitude control the spacecraft 

will eventually crash. 
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4.  OPTIMAL CONTROL ANALYSIS 

 

 This section discusses optimal control theory and its application to the low-thrust 

control of a lunar orbiter. The section begins with an introduction to optimal control 

theory, and then leads into the method chosen for solving the two-point boundary value 

problem, the selection of the desired cost function, and the evaluation of the necessary 

conditions for optimality. 

 

4.1. INTRODUCTION TO OPTIMAL CONTROL THEORY 

The discipline of optimal control theory has been around for a relatively long 

time, with its origins emerging in the 1940’s. Optimal control has roots in electrical 

engineering, with engineers first using it to design electromechanical apparatus that were 

efficiently self-correcting relative to some target objective. Since its creation, much work 

has been performed on improving optimal control solution techniques, and it is now an 

often used method of control. 

 Solving optimal control problems requires the use of calculus of variations. A 

good reference for information on calculus of variations is [40]. The general optimal 

control problem involves finding a control input u(t) for a generally nonlinear system  

                                                   ),,( tuxfx =& , )( 0tx given                                             (4.1) 

where x(t) and u(t) are vector functions of size n and m, respectively in order to minimize 

or maximize the performance index  
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while satisfying the constraint 
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In Equation (4.2), 
ft

x(φ , )ft  is a weighting function on the final state and L(x, u, t) is a 

cost function to be minimized during the integration [41]. The final weighting function 

ft
x(φ , )ft and the constraint

ft
x(ψ , )ft should not be confused. 

ft
x(φ , )ft  is a function 
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of the final state that is desired to be small, but may not necessarily be zero. On the other 

hand, 
ft

x(ψ , )ft is a function of the final state that is desired to be fixed at exactly zero. 

 The dynamics constraint ),,( tuxfx =&  and the constraint on the final state  

ft
x(ψ , )ft  can be adjoined to the performance index of Equation (4.2) with multiplier 

functions λ(t) and ν, respectively [41]. This leads to the modified performance index 
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To simplify Equation (4.4), define a scalar function H called the Hamiltonian as 

                                   ),,()(),,(),,( tuxfttuxLtuxH Tλ+=                                             (4.5) 

Substituting Equation (4.5) into Equation (4.4) leads to  
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The second term in the integral of Equation (4.6) can be integrated by parts, leading to 
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 In order to find the minimum of J’, the variation in J’ due to variations in the 

control vector u(t) for fixed times t0 and tf. According to Lagrange theory, the constrained 

minimum of J occurs at the unconstrained minimum of J’, which is achieved when 0'=Jδ  

[42].This means that the differential of J’ must be calculated as 
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Since it would be very difficult to calculate the variations in )(txδ and )(tδλ caused by a 

given )(tuδ , the λ(t) multipliers are chosen to make the coefficients of )(txδ and )(tδλ in 

Equation (4.8) vanish [41]. This implies 
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with the boundary condition  
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 Equation (4.8) now becomes 
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       According to Lagrange theory, the constrained minimum of J occurs at the 

unconstrained minimum of J’ [42]. For J’ to be a minimum, 'Jδ must be equal to zero for 

an arbitrary )(tuδ . As seen from Equation (4.12), this occurs only if 
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Taking the partial of H in Equation (4.12), it is found that 
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 Equations (4.9), (4.10), (4.11) and (4.14) are the necessary conditions for a 

minimum of J, and all solutions to the necessary conditions will lead to stationary points 

of J. Therefore, the necessary conditions do not guarantee a minimum solution; the 

solution could actually be a minimum, a maximum, or a saddle point. In order to 

guarantee a minimum or maximum of J, the sufficient conditions for a minimum must be 

evaluated which involve evaluating the second derivatives of J. However, in this work 

only stationary points are studied.  

In order to find the control vector function u(t) that provides a stationary value of 

J, the 2n differential equations, Equations (4.9) and (4.10) must be integrated from t0 to tf  
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while computing u(t) from Equation (4.14). The boundary conditions for Equations (4.9) 

and (4.10) are x(t0) given and Equation (4.11). Also, it should be noted that the boundary 

conditions are split, with one set of boundary conditions being defined at t0 and the other 

set being defined at tf. This implies that the solution of the optimal control problem 

involves solving a two-point boundary value problem, which is typically very difficult to 

solve for nonlinear systems and requires using numerical methods. 

 The following chapter will discuss the differences between the types of methods 

used to solve optimal control problems, and detail the method chosen for this work. 

 

4.2. SOLVING THE TWO-POINT BOUNDARY VALUE PROBLEM 

 Due in part to the fact that optimal control theory has been around for over forty 

years, much work has been done in generating methods and algorithms for solving 

optimal control problems. Reference [43] gives an excellent overview of many of the 

current methods in use. Of all the current methods available, most can be classified as 

one of two types: indirect and direct [43]. 

 Indirect methods involve deriving the expressions for the necessary conditions for 

optimality and solving the associated two-point boundary value problem [43]. Commonly 

used indirect methods include backward sweep algorithms, indirect shooting methods, 

and indirect transcription methods. One rather serious drawback of indirect methods is 

that they require a very good guess for the initial costates in order to converge. However, 

if a sufficient initial guess is made, these methods typically benefit from quick 

convergence and a guaranteed optimal solution. Another drawback of indirect methods is 

that for complex systems, deriving expressions for the necessary conditions for optimality 

can be tedious. 

 Direct methods, on the other hand, solve the optimal control problem by adjusting 

the control variables at each iteration in an attempt to continually reduce the performance 

index. All direct methods introduce some parametric representation for the control 

variables. Some examples of direct methods used today include collocation [44] and 

direct transcription [43]. One immediate advantage of these methods is that they typically 

do not require deriving expressions for the necessary conditions for optimality, making 

these types of methods more appealing for complex systems. These methods also have a 
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much larger region of convergence than indirect methods, therefore they do not require as 

good of a guess for the initial costates. However, a handicap of direct methods is that they 

tend to take much longer to converge than indirect methods.  

 Both methods have their advantages and disadvantages, as summarized above. 

However, as stated above, if a good guess for the initial costates is available, indirect 

methods are the best choice due to their fast convergence compared to direct methods and 

the guarantee of an optimal solution. Testing was performed, which is explained in more 

detail in Section 5, and it was found that for the system used in this work if it is assumed 

that initially the states are on or near their nominal values, or in other words if it is 

assumed that negligible control accelerations are needed initially, then an initial guess of 

( ) 00 =tλ  is a sufficient guess for convergence. Taking advantage of this, an indirect 

method was chosen. 

 The indirect method that was chosen is a Transition Matrix algorithm described in 

references [41] and [42]. This algorithm is based off of assuming a linear relationship 

between the initial and final costates, and finding a transition matrix that can be used to 

relate changes between them. For the simulations presented in this thesis, no weighting or 

constraints are placed on the final states, therefore Equation (4.11) reduces to 

                                                           0)( =ftλ                                                             (4.15) 

Equation (4.15) is needed in the implementation of the Transition Matrix algorithm. 

A step-by-step walkthrough of the algorithm is as follows: 

• Step 1:  Guess the n unspecified initial costates, )( 0tλ . 

• Step 2: Numerically integrate Equations (4.9) and (4.10) forward from t0 to tf, 

using Equation (4.14) to determine the control vector u(t). 

• Step 3:  Record )(1 ftλ , )(2 ftλ , …… )( fn tλ . 

• Step 4:  Determine the (n x n) transition matrix 
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. This matrix is found 

through a finite differencing method by performing n additional integrations of 

Equations (4.9) and (4.10), where in each of the integrations one of the 

( )0tiλ values is changed by a small amount. After each of the integrations, the 
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quantities ( )ftδµ are calculated as the difference between the final costates 

achieved and the values recorded in Step 3 
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and then are divided by )( 0tiδλ . Each ( )ftδµ vector makes up one column of the 

total 
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matrix. 

•  Step 5:  Choose another ( )ftδµ vector which will bring the next solution closer to  

    the desired final costate values. This ( )ftδµ vector is found by comparing the final   

    costates recorded in Step 3 with the desired values specified by Equation (4.15). 

•  Step 6: With the ( )ftδµ vector computed in Step 5, invert the transition matrix  

    from Step 4 to find ( )0tδλ : 
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•  Step 7: Calculate the corrected initial costates as 

                                            ( ) ( ) ( )000 ttt
oldnew

δλλλ +=                                    (4.18)  

             and then repeats Steps 1-6 until the required ( )0tδλ  is sufficiently small. 

 

 In most of the simulations performed in this thesis, the above algorithm converges 

to the optimal trajectory within only three to four iterations. While the algorithm has 

proven to be very useful, it should be noted that due to the linearity assumption inherent 

to use of the transition matrix, the algorithm may not necessarily be as efficient when 

trying to control a different system under different constraints. The requirement that no 

large control accelerations are needed initially is also a handicap, as it leads to a lack of 



 

 

41

robustness for the controller. For these reasons, future efforts with this work will involve 

studying the use of direct optimal control methods. 

 

4.3. COST FUNCTION SELECTION 

 The selection of the L(x,u,t) cost function to be used in the performance index 

defined by Equation (4.2) will typically depend directly on the requirements of the 

particular mission being analyzed. In this work, the following objectives are prescribed: 

• Maintain a polar orbit 

• Maintain a Sun-synchronous orbit by forcing the ascending node to rotate at the  

    rate of 0.9856 °/day 

• Minimize the total amount of thrust acceleration required 

From the above objectives, it is evident that the cost function will need to have terms 

relating to inclination, ascending node, and the control accelerations. Taking this into 

account, a cost function was chosen as 

            
( ) ( )[ ]

( )2

3

2

2

2

13

2

002
2

1 ()(cos)(cos)(cos),,(
0

uuuw

tttttwiwtuxL msunsynchtR

+++

−−−Ω+Ω−Ω+= ω&

       (4.19)            

In Equation (4.19), )(tRΩ is the ascending node with respect to the rotating frame, 

0t
Ω  is the initial ascending node, and sunsynchΩ&  is the desired Sun-synchronous rate of 

0.9856 °/day. Also, the variables 1w , 2w , and 3w are weights which can be defined by the 

user in order to stress the minimization of one element of the cost function over another.  

By minimizing the first term of Equation (4.19), the inclination i is kept close to 

90°. The second term involves minimizing the difference between the actual ascending 

node and the desired Sun-synchronous ascending node. It should be noted that the 

tmoonω term accounts for the fact that the ascending node is measured with respect to a 

rotating frame rather than an inertial frame. Finally, the squared control terms in Equation 

(4.19) indicate that the total energy is to be minimized. It should also be noted that all of 

the terms in Equation (4.19) are squared in order to satisfy the requirement that L(x,u,t) 

must be positive definite in order for a minimum to exist. 

In order to use the above cost function with the dynamics described in Section 3, 

the first two terms of Equation (4.19) will need to be converted into a Cartesian form. 
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The conversion of each of these terms into Cartesian coordinates is described in the 

remainder of this section, beginning with the )(cos2 i term. 

The inclination i is defined as 

                                                  









= −

h

zhi 1cos                                                  (4.20) 

where h is the angular momentum vector  

                               zyxVrh ˆ)(ˆ)(ˆ)( xyyxzxxzyzzy &&&&&& −+−+−=×=                               (4.21) 

and hz  is the ẑ component of the angular momentum vector 

                                                             xyyxhz && −=                                                       (4.22) 

It can be seen from Equation (4.20) that 

                                                              
h

zh(i)=cos                                                       (4.23) 

Substituting Equations (4.21) and (4.22) into Equation (4.23), taking the square, and 

using the state space format defined in Section 3 leads to 
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( ) ( ) ( )2
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=                    (4.24) 

 With )(cos2 i expressed in terms of the state space coordinates defined in Section 

3, the next step is to perform the same conversion for the second term of Equation (4.19). 

Begin by calculating the node vector n
r

, which is the vector from the origin of the 

coordinate frame to the ascending node of the orbit. This vector is defined as 

                                                               
h

h
zn ×= ˆ                                                        (4.25) 

Carrying out the cross product in Equation (4.25) leads to  
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                                                         y
h

x
h

n ˆˆ xy hh
+

−
=                                                  (4.26) 

 Now, the cosine of the ascending node, ( )RΩcos , is defined as 

                                                           ( )
n

nx ⋅
=Ω
)

Rcos                                                   (4.27) 

Substituting Equation (4.26) into Equation (4.27) leads to 
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Noting the definition of the angular momentum components from Equation (4.20) and 

substituting the appropriate components into Equation (4.28), the equation for ( )RΩcos in 

terms of the state space variables is obtained as 
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 With Equations (4.24) and (4.29) in hand, they can be substituted into Equation 

(4.19) in order to obtain a cost function that is represented in terms of state space 

variables. This representation for the cost function is found as 
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It should be noted that the ( ))()(cos 000
tttt msunsyncht −−−Ω+Ω ω&  term is left in its original 

form because it is a function of time only, and not the states.  
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4.4. DERIVATION OF NECESSARY CONDITIONS FOR OPTIMALITY 

 With the cost function generated in the previous section and the system dynamics 

described in Section 3, it is now possible to evaluate the necessary conditions for 

optimality for this system. These conditions are defined by Equations (4.9), (4.10), 

(4.11), and (4.14). As explained in Section 4.1, the necessary conditions for optimality 

guarantee a stationary point for the performance index used in this work 

                                                         ∫=
ft

t

tuxLJ

0

),,(                                                         (4.31) 

but do not guarantee a minimum. 

 The first condition, Equation (4.9), simplifies to Equations (3.27-3.32), the 

equations of motion for the system. This specifies six differential equations with the 

boundary condition of ( )0tx given. 

 The second condition is Equation (4.10), which specifies the differential equations 

for the six costates. Carrying out the partial derivative in Equation (4.10) leads to 
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It is evident that in order to utilize Equation (4.32) the partials 
x

tuxf

∂
∂ ),,(

 and 

x

tuxL

∂
∂ ),,(

must be calculated.  

 The first partial in Equation (4.32), 
x

tuxf

∂
∂ ),,(

, is obtained by taking the partials of 

Equations (3.27-3.32) with respect to the six state variables. The physical significance of 

this matrix is that it indicates the change to the state dynamics that occurs from a small 

change in one of the states. The 
x

tuxf

∂
∂ ),,(

matrix is a 6x6 matrix of the form 
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The individual terms of the matrix in Equation (4.32) are  
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 The second partial derivative in Equation (4.32) is 
x

tuxL

∂
∂ ),,(

. This partial 

derivative vector is found by taking the partials of Equation (4.30) with respect to the six 

state variables and is in the form of  
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Physically, the 
x

tuxL

∂
∂ ),,(

vector indicates the sensitivity of the cost function to a small 

change in the state variables.  
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 Before solving for the individual terms in Equation (4.40), the following auxiliary 

variables are defined: 

                                                        5362 xxxxhA x −==                                                (4.41) 

                                                        6143 xxxxhB y −==                                                (4.42)  

                                                        4251 xxxxhC z −==                                                (4.43) 

                                                          222 CBAD ++=                                                  (4.44)      

                                                              22 BAE +=                                                      (4.45) 

                                           )()( 000
tttt msunsyncht −−−Ω+Ω= ωβ &                                    (4.46)   

In terms of the auxiliary variables, the cost function in Equation (4.30) becomes  
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and the six partial derivatives required for Equation (4.40) are 
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 Equation (4.32) specifies six first order differential equations for the costates. The 

boundary condition for these differential equations comes from the third necessary 

condition for optimality, Equation (4.11). As explained in Section 4.2, since no weights 

or constraints are being placed on the final states, Equation (4.11) becomes  

                                                                  ( ) 0=ftλ                                                       (4.54) 

 The final necessary condition for optimality is Equation (4.14). This condition is 

called the stationarity condition, and it states that the optimal control input will lead to a 

stationary value of the Hamiltonian, H. The usefulness of Equation (4.14) is that it can be 

used to solve for the optimal control input. 
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found. By taking partial derivatives with respect to the three control inputs u1, u2, and u3, 

these matrices are found as 
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 Substituting Equations (4.55) and (4.56) into Equation (4.14) leads to  
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Equation (4.57) can now be solved to obtain the equations for the three control inputs as 
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Equations (4.58-4.60) indicate that if the costates are known, the control inputs required 

for the equations of motion (Equations (3.27-3.32)) can easily be found. 

 The result of the analysis in this section is twelve differential equations supplied 

by Equations (3.27-3.32) and Equation (4.32) with boundary conditions given by 

( )0tx given and Equation (4.54), where the three control inputs are found via Equations 

(4.58-4.60). It should be noted that the differential equations are highly nonlinear and 

also that the state and costate dynamics are interrelated. Because of this, the system is 

very sensitive to small changes in the unspecified boundary conditions. Since the 

boundary conditions for the differential equations are split, the method presented in 

Section 4.2 must be used in order to solve the system.  

 Incorporating the equations derived in this section with the dynamic model 

created in Section 3 allowed for a controller to be made in MATLAB. Called “Controller 

A”, this controller is suitable for use when the initial states are very close to nominal 

values. A second controller was also created which is suitable for cases in which the 

initial states deviate from nominal values, and is described in the next section.  

 

4.5. TERMINAL STATE CONTROLLER 

The analysis outlined in the previous sections works well when the initial states 

are such that no large control accelerations are required to correct them. When this is the 

case, as explained in Section 4.2, a guess for the initial costates of ( ) 00 =tλ  has been 

found to be very sufficient for convergent. However, when this is not the case, the 

methods described above are not sufficient. For example, the method described above 

would not be able to correct an initial inclination deviation of 5°. This section presents 
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another method that can be used in the cases where corrections are needed for the initial 

states.              

 The primary reason that the transition matrix algorithm outlined in Section 4.2 is 

not sufficient when the initial states need to be corrected is due to the fact that it requires 

a full integration over a specified timespan in order to correct the guess for the initial 

costates. When the initial states do not need to be corrected and a guess of ( ) 00 =tλ  is 

made for the costates, a stable trajectory is obtained which easily allows for the costates 

to be corrected. However, if the initial states are slightly off of their nominal values and 

need corrected, using a guess of ( ) 00 =tλ  will lead to a diverging trajectory. In such a 

scenario, the difference between the final costates produced by the integration and the 

desired final costates of ( ) 0ftλ = is so large that a correction cannot be found. Therefore, 

in order for the transition matrix algorithm to be used for these cases, either a better guess 

for the initial costates must be found or simplifications must be made which will allow 

for a stable trajectory over the integration. 

 It was decided that when a situation arises where corrections are needed for the 

initial states, a controller is desired that will correct the initial states to their nominal 

values in a specified amount of time. Such a controller is often called a terminal state 

controller. After the states achieve their nominal values, a switch will be made to 

Controller A since at that point the method defined in the previous sections will be 

applicable. However, it should be noted that since a controller switch is made, the 

combined trajectories are no longer optimal but rather suboptimal.   

 If it is only desired to get the states from some point A to another point B in some 

time t with no restrictions on the path between the two points, certain simplifications can 

be made. Namely, the inclination and ascending node weights in the cost function of 

Equation (4.30), 1w and 2w , can both be set to zero. Doing this states that the inclination 

and ascending node are allowed to attain any possible values along the path. With this 

simplification, it is easily seen that  

                                                          0
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                                                       (4.61)                                  

Substitution of Equation (4.61) into the equation for the costate dynamics (Equation 

(4.32)) leads to 
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It can be seen from Equation (4.62) that if the initial costates are set to zero, the costates 

will be equal to zero for any time t > 0. If the costates are zero then the control input is 

also zero via Equations (4.58-4.60), so a guess of ( ) 00 =tλ will lead to an uncontrolled 

trajectory. While this uncontrolled trajectory will have a deviation from the desired 

optimal trajectory, it will at least be a stable trajectory, which implies that a correction to 

the initial costates can be made.  

 Aside from a simplified set of dynamics for the costates (Equation 4.62), the only 

other difference between this terminal state controller and Controller A will be the 

terminal boundary conditions. While the terminal boundary condition for Controller A 

takes the form of Equation (4.54), the terminal boundary condition for this controller is in 

the form of ( )ftx  given. The ( )ftx  conditions specify a polar, Sun-synchronous orbit with 

a prescribed semimajor axis and eccentricity. Essentially, the six conditions of Equation 

(4.54) are traded with another set of conditions, ( )ftx  given, so that the problem still has 

twelve boundary conditions.  

 In summary, the terminal state controller, called “Controller B”, consists of 

twelve differential equations (Equations (3.27-3.32) and Equation (4.62) with boundary 

conditions of ( )0tx and ( )ftx  given, where the three control inputs are found through 

Equations (4.58-4.60). Using a guess of ( ) 00 =tλ , the transition matrix algorithm 

described in Section 4.2 can be used to solve this system. Since the specified terminal 

boundary condition is in terms of the states rather than the costates, the ( )ftδµ vectors 

required in the algorithm are found by comparing the final values of the states rather than 

the costates, taking the form 
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 To demonstrate the effectiveness of this method, Figure 4.1 shows the results of 

attempting to correct an initial inclination error of 15° in 144 minutes. 
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Figure 4.1. Correction of an Initial 15° Inclination Error 

 

 

As seen in Figure 4.1, the 15° error is sufficiently corrected after only three iterations. 

 It is emphasized that assuming that no constraints are imposed on the values of 

the ascending node and inclination along the path can only be tolerated for small time 

durations. Therefore, Controller B is not used for long time durations, for if it were it 

would defeat the purpose of obtaining a Sun-synchronous orbit.  

 

4.6.    SPECIAL CONSIDERATIONS FOR EQUATOR AND POLE CROSSINGS 

 An analysis of the partial derivatives of the cost function in Equation (4.30) has 

shown that there are certain regions where the partial of one of the terms will go to zero. 

Specifically, it has been found that around equator crossings the partial derivative due to 

the ascending node term will go to zero and around pole crossings the inclination term 
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will go to zero. This comes from the fact that due to the geometry of the orbit, the 

ascending node and inclination cannot physically be controlled around equator and pole 

crossings, respectively. In other words, in these areas a suitable control function simply 

does not exist. When attempts are made to use Controller A through these regions, a 

specific trend is seen. As the spacecraft enters the problematic region, the orbital element 

that cannot by physically controlled will start to exhibit uncontrolled oscillations, and 

after getting passing through the region the oscillations will increase rather than decrease. 

Figure 4.2 shows an example of this behavior when trying to use Controller A to control 

the inclination around the Moon’s North Pole. 
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Figure 4.2. Example of Control Difficulties around Pole Crossings 

 

 

It is theorized that this behavior occurs due to problems with the transition matrix 

algorithm not being able to converge when singularities exist along the path. It is possible 

that there might be a value for )( 0tλ that, when used, will allow Controller A to stabilize 

the trajectory after one of these regions, but ( ) 00 =tλ is apparently not a sufficient initial 
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guess for achieving the desired )( 0tλ . Due to this difficulty, a different type of controller 

needs to be used when traversing these problematic regions. 

 It would seem that one possible method for solving this problem would be to 

simply set the weight for the orbital element that cannot be controlled to be equal to zero 

when going through these regions. However, after leaving the region, the oscillations of 

the uncontrolled orbital element would then have to be dampened out, leading to the 

same situation stated earlier. A better solution is to utilize the terminal state controller 

that was described in the previous section. 

 It was arbitrarily decided that at approximately 10° in latitude before each equator 

and pole crossing, a switch would be made from Controller A to Controller B. The final 

values of the states produced by Controller A are set as the initial states for Controller B. 

Controller B is then used from 10° before the problematic region to 10° after, with the 

terminal boundary conditions specifying a polar, Sun-synchronous orbit. After 

completion of the Controller B run, a switch is made back to Controller A, which can 

now operate successfully due to the states being corrected to their nominal values. 

 As stated in Section 4.5, one difficulty with Controller B is that it can only be 

used for small time durations since it places no constraints on the ascending node and 

inclination along the path. However, since the 20° of latitude over which Controller B 

would operate in the above plan would only account for roughly six minutes of the 

satellite’s total orbit period, this does not pose a problem. 

 It should again be noted that because of this switching method, the combined 

trajectories can no longer be considered optimal. Ambiguity is added to the problem by 

switching to Controller B at 10° in latitude before the problematic regions, since it is 

possible that switching to the controller at a different latitude could lead to a more 

optimal trajectory. The 10° in latitude was chosen by simply performing simulations and 

noticing that one of the orbital elements will start to follow its uncontrolled path roughly 

10° before an equator or pole crossing. A search will be made for a method to get beyond 

these problematic regions and still generate trajectories that can be considered optimal, as 

explained in Section 7. 
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5.    CASE STUDIES AND RESULTS 

 

 This section contains simulations performed using the controllers developed in 

Section 4, as well as case studies to show the effects of changing the control weight 3w in 

the cost function. Results are first presented for inclination-only and ascending node-only 

control to show the controller’s effectiveness at controlling each individual element. 

Next, results are presented for combined inclination and ascending node control, and it is 

shown that difficulties arise when attempting to control both orbital elements at the same 

time. Finally, longer duration simulations are presented which show the successful 

generation of a longer-term Sun-synchronous orbit. Each of the simulations presented in 

this section is performed using terms in the lunar gravity model up to 25x25. 

 

5.1.   SIMULATIONS OF ASCENDING NODE-ONLY CONTROL 

 In this section, simulations are presented which show the effectiveness of 

Controller A at maintaining a Sun-synchronous orbit. For this analysis the polar orbit 

requirement is removed, and it is therefore only desired to control the rate of change of 

the ascending node to coincide with the Sun-synchronous rate of 0.9856°/day. This is 

performed by setting the inclination weight 1w  in Equation (4.30) to be equal to zero. 

 The simulations in this section were all performed using the initial orbital 

elements defined in Table 5.1. 

 

 

Table 5.1.  Initial Orbital Elements for Ascending Node-only Control Simulations 

Orbital Parameter Value 

Semimajor axis, ai 1837.4 km 

Eccentricity, ei 0.0013 

Inclination, ii 90° 

Ascending Node, Ωi 45° 

Argument of Periapsis, iω  15° 

True Anomaly, iν  10° 
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 The initial orbital elements were chosen to start in a specific type of orbit. The 

semimajor axis is chosen as 1837.4 km so that the orbit will initially be roughly 100 km 

in altitude, which corresponds to a low-lunar orbit. Also, the eccentricity is chosen as 

0.0013 so that the orbit will be nearly circular and the inclination is chosen as 90° so that 

the orbit will be polar. Finally, the true anomaly was chosen as 10° so that the orbit is 

begun directly after an equator crossing. 

 Figures 5.1-5.3 show the results of a 0.03 day (43.2 minutes) integration of 

Controller A with Ascending Node-only control using the initial orbital elements defined 

in Table 5.1. The small 43.2 minute timespan is chosen so that an equator crossing does 

not have to be dealt with. Because of this, no switch from Controller A to Controller B 

needs to be made, and therefore the trajectories presented can be considered optimal. 

Figure 5.1 shows the orbital element trajectories, Figure 5.2 contains a plot showing the 

evolution of the costates, and Figure 5.3 shows a plot of the optimal control accelerations.  

 

 

 

Figure 5.1. Simulation of Ascending Node-only Control 
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Figure 5.2. Costate Evolution for Ascending Node-only Control 

 

 

Figure 5.3. Control Accelerations for Ascending Node-Only Control 
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 From Figure 5.1, the main feature to notice is that the ascending node is correctly 

rotated by approximately 0.03° in 0.03 days, demonstrating that a Sun-synchronous orbit 

is obtained. While performing this, it is seen that the other five orbital elements are not 

adversely affected by the continuous thrusting. The semimajor axis and eccentricity 

actually follow their uncontrolled trajectories since no in-plane thrusting is performed. 

 Figure 5.2 shows the behavior of the costates during the integration, and it can be 

seen from the plots that the costates are all successfully driven to the desired final costate 

value of ( ) 0=ftλ prescribed by Equation (4.54). The final costates converged after only 

three iterations, validating the transition matrix algorithm used to solve the problem. 

Since Equation (4.54) is satisfied, the necessary conditions for optimality are all achieved 

and a stationary point of the performance index J is obtained. 

 It can be seen from Figure 5.3 that the required control accelerations stay fairly 

small, never getting larger than 2 x 10
-5

 km/s
2
. Also, it is found that the acceleration in 

the ẑ direction, u3, is two orders of magnitude smaller than the other two acceleration 

components. This is due to the fact that the inclination is very close to 90°, meaning that 

the ẑ  axis will be almost parallel to the orbit plane. Since only out-of-plane thrusting is 

performed, it is thus expected that u3 will be very small. 

 Having shown that a Sun-synchronous orbit is achieved, it is next desired to study 

the effects of increasing the weight on the control accelerations, 3w , in order to see if it is 

possible to decrease the required control accelerations while still achieving a Sun-

synchronous orbit. A case study was therefore performed in order to examine the effects 

of large control weights. In order to convert the control accelerations into forces, a 

spacecraft mass of 1000 kg is assumed. A 0.03 day integration of Controller A was 

performed for various values of 3w , and plots of the ascending and control force 

magnitude 

                                                       2

3

2

2

2

1 uuuumag ++=                                                (5.1) 

were obtained from each integration. These plots can be found in Figures 5.4-5.8. 
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Figure 5.4. Case Study 1: w3 = 1 

 

Figure 5.5.  Case Study 1: w3 = 3 
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Figure 5.6.  Case Study 1: w3 = 7 

 

Figure 5.7.  Case Study 1: w3 = 12 
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Figure 5.8.  Case Study 1: w3 = 20 

 

 

 An examination of Figures 5.4-5.8 shows that by increasing the control weighting, 

the magnitude of the control force decreases but the ascending node begins to deviate 

from the Sun-synchronous path. When 13 =w , the ascending node is tightly controlled 

with an average thrust magnitude of approximately 25 N, whereas when 203 =w  the 

ascending node deviates from the Sun-synchronous path by around 0.1° with a highly 

decreased average thrust magnitude that is less than 0.7 N. However, this 0.1° deviation 

is still usually acceptable, especially for long duration missions.  

 The above case study shows that a Sun-synchronous orbit can be achieved using 

thrust levels lower than 0.7 N, levels which are within the capabilities of current low-

thrust hardware. Therefore, a low-thrust Sun-synchronous orbit can be achieved.  

 

5.2.   SIMULATIONS OF INCLINATION-ONLY CONTROL 

 In order to gauge the capabilities of the controllers for maintaining a polar orbit, 

simulations were performed where only inclination is controlled. Therefore, all of the 
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simulations in this section were created by setting the ascending node weight 2w in 

Equation (4.30) to zero.  

While the natural motion of the ascending node is to continuously deviate from 

the Sun-synchronous path, the inclination will naturally perform small oscillations about 

its initial value when left uncontrolled, as seen in Figures 3.5-3.10. This leads to the 

supposition that the control accelerations required for inclination stationkeeping will be 

less than the accelerations required for ascending node stationkeeping. This assumption is 

found to be true from the simulations presented in this section. 

The first simulation presented in this section is a 0.03 day (43.2 minutes) 

integration of Controller A with inclination-only control. The initial orbital elements used 

for this simulation are defined in Table 5.2.  

 

Table 5.2.  Initial Orbital Elements for Inclination-only Control Simulations 

Orbital Parameter Value 

Semimajor axis, ai 1837.4 km 

Eccentricity, ei 0.0013 

Inclination, ii 90° 

Ascending Node, Ωi 45° 

Argument of Periapsis, iω  20° 

True Anomaly, iν  -80° 

 

  

 As in the simulation for ascending node-only control, the initial orbital elements 

were chosen to correspond to a 100 km, nearly circular polar orbit. However, a different 

true anomaly of -80° is chosen so that the orbit will begin directly after a pole crossing. 

As with the simulations in the previous section, the duration of 0.03 days is 

chosen so that a switch from Controller A to Controller B is not required. Figures 5.9-

5.11 show the results from this simulation in the form of the orbital element trajectories, 

the evolution of the costates, and the control accelerations. 
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Figure 5.9.  Simulation of Inclination-only Control 

 

 

Figure 5.10.  Costate Evolution for Inclination-only Control 
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Figure 5.11.  Control Accelerations for Inclination-only Control 

 

 

 Figure 5.9 shows that Controller A is able to perform very a tight stationkeeping 

control on the inclination, controlling the element to within approximately 0.001° of the 

desired 90°. Also, as seen in Figure 5.10, the costates are driven to the desired condition 

of ( ) 0=ftλ , implying that a stationary point of J is obtained. Finally, while it is seen 

from Figure 5.11 that the control accelerations are indeed slightly smaller than those 

required for ascending node control in Figure 5.3, the u3 acceleration in particular is seen 

to be much smaller. This is due to the fact that the inclination in this simulation is 

maintained much closer to 90° than it is in the simulation shown in Figure 5.1, meaning 

that the ẑ axis in this case is even closer to being parallel with the orbit plane. Because of 

this, and the fact that only out-of-plane thrusting is performed, it is intuitive that a larger 

portion of the total control acceleration will be delivered by the u1 and u2 components. 



 

 

65

 The previous simulations were all initiated with the initial states at their nominal 

values so that no corrections are needed initially. However, it is also desired to study the 

ability of combining Controller A and Controller B to correct the error in an initial 

element followed by maintenance of that element about its desired value. In this regard, a 

simulation was performed with an initial value for the inclination of 85°. The inclination 

is first corrected to 90° using Controller B, and then a switch is made to Controller A in 

order to stationkeep the inclination about 90°. The result of this simulation can be found 

in Figure 5.12. It should be noted that in this simulation, ascending node was not 

controlled. 

 

 

 

Figure 5.12. Initial Correction and Stationkeeping for Inclination 
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 As shown in Figure 5.12, the initial 5° error is corrected in 0.05 days (72 

minutes), and then successfully maintained about 90°. However, since a switch is 

performed between two controllers, the trajectory is only suboptimal. 

Since it has been demonstrated that inclination stationkeeping can be successfully 

performed and that initial corrections can be made if needed, it is now desired to perform 

a case study in order to see the effects of control weighting on inclination control. As 

with the case study performed in Section 5.1, the study is conducted by performing 0.03 

day integrations of Controller A with varying values of 3w . Also, a 1000 kg spacecraft 

mass is again assumed in order to convert the control accelerations into forces. The 

results of this case study can be found in Figures 5.13-5.17. 

 

 

 

Figure 5.13.  Case Study 2: w3 = 1 
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Figure 5.14. Case Study 2: w3 = 5 

 

Figure 5.15. Case Study 2: w3 = 8 
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Figure 5.16. Case Study 2: w3 = 12 

 

 

Figure 5.17. Case Study 2: w3 = 17 
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 As with the case study done in the previous section, it is again seen that increasing 

the control weighting will decrease the magnitude of the control force, but will also lead 

to larger variations in the inclination. By setting the control weighting to be equal to 17, 

the control force magnitude can be decreased by approximately 21 N to a low-thrust 

average of 0.7 N. Accompanied with this control decrease, the inclination variation is 

increased by approximately 0.04°. However, that amount of inclination variation is 

typically considered  small and the orbit can still be regarded as polar.  

 Figures 5.13-5.17 also show that a smaller control force is required to control the 

inclination as compared to the ascending node. Comparing Figures 5.4 and 5.14, it is seen 

that with no extra weighting on the control, the inclination requires an average control 

force that is approximately 5 N less than that required for controlling the ascending node. 

It is also seen that a larger control weighting is required to decrease the ascending node 

control force so that it can be considered low-thrust.  

 

5.3.  SIMULATIONS OF COMBINED ASCENDING NODE AND INCLINATION  

       CONTROL 

 Having proven the capability for controlling ascending node and inclination 

separately, it is now desired to examine how efficiently Controller A can control both of 

the elements at the same time. In this section, simulations are presented which 

incorporate both ascending node and inclination control, and it is shown that some 

difficulties arise when attempting to control both elements. 

 To study the effects of controlling both elements, a 0.01 day (14.4 minutes)  

integration of Controller A was performed with the weights on the ascending node and 

inclination terms in Equation (4.30) both set to one. The 0.01 day duration is chosen so 

that no pole or equator crossings are encountered, and thus no switching between 

Controller A and Controller B needs to be performed. The integration was performed 

with the initial orbital elements defined in Table 5.3. As with the previous simulations, 

these initial orbital elements were chosen in order to specify a 100 km, nearly circular 

polar orbit. 
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Table 5.3.  Initial Orbital Elements for Combined Ascending Node and Inclination 

Control Simulations 

 

Orbital Parameter Value 

Semimajor axis, ai 1837.4 km 

Eccentricity, ei 0.0013 

Inclination, ii 90° 

Ascending Node, Ωi 45° 

Argument of Periapsis, iω  15° 

True Anomaly, iν  -80° 

 

 

 

The results of this simulation can be found in Figures 5.18-5.20 in the form of the 

orbital element histories, the evolution of the costates, and the control accelerations. 

 

 

 

Figure 5.18. Simulation of Combined Ascending Node and Inclination Control 
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Figure 5.19. Costate Evolution for Combined Ascending Node and Inclination Control 

 

 

Figure 5.20. Control Accelerations for Combined Ascending Node and Inclination 

Control 
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 It can be seen from Figure 5.18 that both the inclination and the ascending node 

have a fairly significant variance from their desired values. The inclination varies roughly 

0.05° from the desired 90° value, and the ascending node deviates from the Sun-

synchronous path by approximately 0.1°. While both of these variations would be 

tolerable, and as shown in Figure 5.19 the desired final costate is achieved, Figure 5.20 

shows that the control accelerations are an order of magnitude larger than the 

accelerations required for controlling either element alone. Figure 5.21 contains a plot of 

the control force magnitude for this simulation where a 1000 kg spacecraft mass is 

assumed, and shows that the required control force is nearly 400 N larger than those 

presented in the previous sections. 

 

 

Figure 5.21. Control Force Magnitude for Combined Ascending Node and Inclination 

Control 

 

 Therefore, in order to decrease the control force to a magnitude where it would be 

considered low-thrust, a very large control weighting would have to be used. As shown in 

the case studies presented in Sections 5.1 and 5.2, this large control weighting will lead to 
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the ascending node and inclination variations in Figure 5.18 becoming substantially 

larger.  

 It is theorized that this difficulty with controlling both the ascending node and 

inclination stems from the fact that each element has a different requirement in terms of 

the force needed for control. For example, since the natural motion of the inclination is to 

oscillate, controlling the inclination requires an oscillating torque that will continuously 

be driving the inclination above and below 90°. The natural motion of the ascending node 

also tends to make large oscillations about its initial value, as shown in Figures 3.5-3.10, 

which means it will constantly tend to deviate from the desired Sun-synchronous path. 

Therefore, controlling the ascending node requires a torque that will constantly rotate it in 

the Sun-synchronous direction. Since controlling the ascending requires a relatively 

constant torque and controlling the inclination requires an oscillating torque, it is thought 

that attempting to control both orbital elements at the same time will lead to difficulties. 

  However, despite these difficulties, it is noticed from Figure 5.1 that when 

performing ascending node-only control the inclination still stays fairly close to 90°, 

deviating by only approximately 0.1°. Therefore, even if the ascending node is the only 

orbital element controlled, a polar orbit is still obtained. Also, the inclination would still 

be corrected back to the desired 90° when Controller B is used across equator crossings, 

so it is expected that in long duration simulations the inclination will not deviate 

substantially more than 0.1°. 

 From the knowledge gained from this analysis, it was decided that further long-

term simulations would incorporate ascending node only control in order to achieve a 

polar, Sun-synchronous orbit. Since Controller A will be operating with the inclination 

weight 1w set to zero, the poles will no longer be a problematic region and Controller B 

will only need to be used for equator crossings. 

 

5.4 LONG TERM SIMULATIONS 

               5.4.1. Difficulties at Ascending Nodes of 0° and 180°. After performing 

simulations over a range of ascending nodes, it was found that controllability difficulties 

appear when the ascending node with respect to the rotating frame is near 0° or 180°. As 

with equator crossings, when entering one of these regions the ascending node will begin 
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to enter uncontrolled oscillations. However, unlike equator crossings, the time spent in 

these regions is substantial and on the order of 0.8 days (19.2 hours). This is an 

excessively large timespan for Controller B to be used, and therefore a different type of 

method must be used for these regions. 

 The reason for the control difficulties in these regions can be seen from Equations 

(4.48-4.53). When the ascending node with respect to the rotating frame is equal to 0° or 

180°, the x̂ axis lies within the orbit plane. Since the angular momentum vector h is 

always directed perpendicular to the orbit plane, this implies that the component of the 

angular momentum vector in the x̂ direction ( xh ) is equal to zero. The x̂ component of 

the angular momentum vector comes into Equations (4.48-4.53) through the auxiliary 

variable A. It can be seen from Equations (4.48-4.53) that when A = 0, 0
),,(

=
∂

∂
x

tuxL
. 

Therefore, the ascending node will experience uncontrolled oscillations when passing 

through these regions. However, this is strictly a property of the mathematics and the 

manner in which the cost function is designed. There is no physical reason for why the 

ascending node should be any more difficult to control at 0° than at any other angle. 

 Since the rotating frame x̂ axis rotates much faster with respect to the inertial 

frame than the Sun-synchronous ascending node, the rotation rate of the ascending node 

with respect to the rotating frame will be nearly equal to the x̂ axis rotation rate. In 

particular, the ascending node with respect to the rotating frame will rotate 360° in 

approximately 27.3 days. Therefore, a 0° or 180° crossing will occur roughly every 13.65 

days. 

 As stated previously, Controller B cannot be used in these regions due to the long 

timespan, so a different type of method must be used. It was decided that 4° before the 

ascending node with respect to the rotating frame reaches a 0° or 180° value, Controller 

A will make a switch from ascending node-only to inclination-only control. Once the 

ascending node has passed either point by 4°, a switch will be made back to ascending 

node-only control. It should be noted that since these regions involve inclination-only 

control, Controller B will have to be used around equator crossings rather than pole 

crossings. 
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 5.4.2. Simulations.  Having devised a proper control scheme and identified all the 

problematic regions, it is now possible to perform simulations that gauge the controllers’ 

effectiveness at maintaining a long-term polar, Sun-synchronous orbit. Aside from 

equator crossings and regions where the rotating ascending node is near 0° or 180°, these 

simulations involve Controller A performing ascending node-only control. 

 The initial orbital elements for the simulation presented in this section can be 

found in Table 5.4. Once again, these initial orbital elements are chosen to specify a 100 

km altitude, nearly circular polar orbit.  

 

 

 

Table 5.4.  Initial Orbital Elements for Long-Term Control Simulation 

Orbital Parameter Value 

Semimajor axis, ai 1837.4 km 

Eccentricity, ei 0.0013 

Inclination, ii 90° 

Ascending Node, Ωi 45° 

Argument of Periapsis, iω  15° 

True Anomaly, iν  -80° 

 

 

 

A 50-day simulation was performed using the initial orbital elements defined in 

Table 5.4 and the coefficients in the lunar gravity model up to 25x25, and can be found in 

Figures 5.22-5.24. Figure 5.22 contains a plot of the orbital element trajectories, Figure 

5.23 shows the evolution of the control forces, and Figure 5.24 shows the total control 

force magnitude. 
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 Figure 5.22. Orbital Element Trajectories for Long-Term Control Simulation 

 

 

 

               Figure 5.23. Control Force Evolution for Long-Term Control Simulation 
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Figure 5.24. Total Control Force Magnitude for Long-Term Control Simulation 

 

 

 As shown in Figure 5.22, the ascending node is correctly rotated approximately 

50° in 50 days. Also, the inclination is maintained close to 90°, with a maximum 

deviation of approximately 0.3°. Therefore, a long-term polar, Sun-synchronous orbit has 

been successfully achieved. Also, it can be seen from Figure 5.22 that there are four 

points at which the rotating ascending node is equal to 0° or 180° and a switch is made to 

inclination-only control. These regions are seen as spans across which the inclination is 

controlled much closer to 90° and the ascending node performs a slight variation from the 

Sun-synchronous path. It can also be seen, upon comparison to Figure 3.10, that the 

semimajor axis and eccentricity follow their uncontrolled trajectories and are thus not 

affected by the continuous thrusting.  

 Figures 5.23 and 5.24 show that this Sun-synchronous orbit is achieved using low 

thrust levels. In particular, the maximum control force in the x̂ and ŷ directions is 

approximately 0.76 N. It is also seen from Figure 5.23 that there is a slight control force 

in the ẑ direction. This occurs due to the fact that the inclination is not exactly equal to 

90°. 

 Having proven that a long-term Sun-synchronous orbit can be achieved, it is now 

of interest to check how close the spacecraft will get to the lunar surface and if it will 
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eventually impact. In this regard, a plot was made which shows the evolution of the 

periapsis altitude for the above simulation. The periapsis altitude is defined by  

                                              4.1737)1( −−=−= eaRrh Moonpp                                      (5.1) 

The periapsis is the point on the orbit at which the spacecraft is closest to the Moon’s 

surface, and is therefore an indication of the risk of impact. The plot of the periapsis 

altitude evolution can be found in Figure 5.25. 

 

 

 

Figure 5.25. Periapsis Altitude Evolution for Long-Term Control Simulation 

 

 

 As shown in Figure 5.25, the periapsis altitude decreases significantly during the 

simulation, decreasing approximately 40 km in 50 days. This decrease in the periapsis 

altitude is directly affected by the highly nonspherical lunar gravity field, and is not 

related to the continuous thrusting that is being performed to control the inclination and 

ascending node. This can be seen by comparing Figure 5.25 to Figure 3.11, which shows 
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that the periapsis altitude evolution for the controlled case is the same as for the 

uncontrolled case. 

 From the trajectory presented in Figure 5.25, it can be seen that even though a 

polar, Sun-synchronous orbit was achieved, the spacecraft will eventually impact the 

Moon unless an in-plane control force is made to arrest the decrease in periapsis altitude. 

It should be emphasized, however, that the spacecraft would crash in the same amount of 

time even if the inclination and ascending node were not controlled. 
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6. CONCLUSIONS 

 

 This thesis presents a method for creating and maintaining a polar, Sun-

synchronous lunar orbit using continuous low-thrust systems. This type of orbit would be 

very beneficial for a lunar mapping mission by providing for constant lighting conditions. 

A 50-day simulation is presented which shows that a Sun-synchronous orbit can be 

maintained for longer-duration missions, assuming that low-thrust hardware is available 

that could be used for such a timespan. 

 Also, it has been shown that optimal control theory can be used to control various 

orbital elements. The use of a transition matrix algorithm for solving the optimal control 

problem has been validated, and the algorithm quickly converges to the optimal trajectory 

provided that a sufficient guess for the initial costates is on hand.  

 Finally, this thesis illuminates many of the effects of the highly nonspherical lunar 

gravity field on a lunar orbiter. In particular, it has been found that the lunar gravity field 

will produce a large decrease in the periapsis altitude for long-term missions. It has also 

been shown that the argument of periapsis will go through large oscillations due to the 

nonspherical gravity field. For low-altitude orbits, the spherical Moon assumption will 

lead to large inaccuracies. However, it has been shown that the lunar gravity field can be 

accurately modeled using only the coefficients in the lunar gravity model up to 25x25. 
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7. FUTURE WORK 

 

 While the results presented in this thesis are very promising, there are still many 

areas that would benefit from future work. This section outlines some possible 

improvements to this work that will be conducted in the near future. 

 First, future developments in this work will involve the search for different 

control methods. The transition matrix algorithm used in this work is useful for special 

cases, but is not sufficiently robust to admit singular regions or trajectories in which a 

guess for the initial costates is not obvious. Since the algorithm is ineffective during 

singular regions, controller switches have to be performed and the generated trajectories 

are only suboptimal. Therefore, a search will be made for a “direct” optimal control 

method. Current direct methods exist that can deal with singular regions, and therefore 

true optimal trajectories may be found. Also, by not necessarily requiring accurate first 

guesses for the initial costates, a direct method could lead to a much more robust 

controller. 

 This work can also be improved by searching for a control method that is more 

representational of current low-thrust hardware. The control method presented in this 

thesis assumes that a constantly changing thrust level is available continuously in all 

three directions. However, many current low-thrust devices can only produce a constant 

low-thrust level. Therefore, a more realistic method would involve assuming a constant 

thrust magnitude and switching the thrusters “on” and “off” as needed. For this reason, 

future work will involve the study of “bang-bang” controllers.  

 While a Sun-synchronous orbit was successfully obtained, it has also been shown 

that in order to keep the spacecraft from eventually crashing into the Moon some in-plane 

control force will need to be made. This could be done by including other elements such 

as the semimajor axis and the eccentricity into the cost function, which would minimize 

the variations in each element and prevent the periapsis altitude from decreasing. Also, 

including a term involving the argument of periapsis into the cost function would 

minimize its variation and lead to a constant location for the periapsis. For these reasons, 

future efforts in this work will involve the inclusion of additional orbital elements into the 

cost function. Aside from creating a long-term Sun-synchronous with a constant periapsis 
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altitude, the overall of future developments will be to show that optimal control theory 

can be used to control any general orbit. 

 Finally, future efforts will involve continuously increasing the fidelity of the 

dynamic model. One way in which the fidelity could be increased would be to add 

additional perturbations to the equations of motion, such as solar radiation pressure and 

Jupiter’s gravity. Also, with many lunar missions occurring in the near-future, there will 

be an improving base of knowledge of the lunar gravity field. Current lunar gravity 

models will be updated based on information gained from these missions. Therefore, 

future efforts will involve updating the lunar gravity model used in this work to coincide 

with current advances in lunar gravity models. 
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APPENDIX A. 

      CONVERSION FROM ORBITAL ELEMENTS TO CARTESIAN COORDINATES 
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For many computer applications, it is necessary to convert between classical 

orbital elements and Cartesian coordinates. This is due to the fact that orbital elements 

give a very good visual indication of the size and orientation of an orbit, while Cartesian 

coordinates are more useful mathematically when attempting to form differential 

equations for the motion of a satellite. Most computer applications begin with specifying 

the initial state of the satellite in terms of orbital elements, and then convert those orbital 

elements into Cartesian coordinates in order to provide differential equations that can be 

integrated. Finally, after integration the states are then typically converted back into 

orbital elements to form. This Appendix begins with a brief overview of orbital elements, 

and then describes the transformation from orbital elements to Cartesian coordinates and 

vice versa. 

 Six orbital elements are needed to fully describe the motion of a satellite, and 

these orbital elements can be divided into two categories: in-plane orbital elements and 

out-of-plane orbital elements. The in-plane orbital elements describe the size and shape 

of the orbit, while the out-of-plane orbital elements describe the orientation of the orbit 

plane with respect to some specified coordinate system. A basic understanding of both of 

these types of orbital elements is necessary for analyzing the three-dimensional motion of 

a satellite. 

 Figure A.1 is a sketch of a typical elliptical orbit, and indicates some of the 

primary in-plane orbital elements.  
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Figure A.1. General Elliptic Orbit 
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The attracting body is located at the primary focus of the ellipse, and the periapsis 

and apoapsis are the points on the orbit that are closest to and farthest from the attracting 

body, respectively. An orbital element that describes the size of the orbit is the semimajor 

axis a, which as shown in Figure A.1 is equal to half of the distance between periapsis 

and apoapsis. Another important orbital element shown in Figure A.1 is the true anomaly 

ν. The true anomaly locates the satellite in the orbital plane and is the angular 

displacement measured from periapsis to the position vector along the direction of motion 

[37]. One final in-plane orbital element is the eccentricity e which indicates the orbit’s 

shape, or in other words its “roundness” or “flatness.” An eccentricity of zero 

corresponds to a circular orbit, while an eccentricity of one corresponds to a parabolic 

orbit. As shown in Figure A.1, the eccentricity vector e
r
 is a vector from the attracting 

body to the orbit’s periapsis. 

The semimajor axis, eccentricity, and true anomaly define the size and shape of 

the orbit plane. However, in order to obtain the orientation of the orbit plane with respect 

to some fixed coordinate system, three out-of-plane orbital elements must be defined. 

Figure A.2 gives a sketch of an arbitrarily oriented orbit plane with respect to a fixed set 

of axes, and indicates the three out-of-plane elements. 
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Figure A.2. Orientation of an Orbit Plane With Respect to a Fixed Coordinate 

System 

 One of the out-of-plane orbital elements seen in Figure A.2 is the right ascension 

of the ascending node (RAAN), Ω . The RAAN is defined as the angle from the x̂ axis to 
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the point at which the orbit intersects the equator going from south to north. This point at 

which the equator and orbit plane meet is called the ascending node. As shown in Figure 

A.1, the ascending node is also identified by the node vector n , which is a vector from 

the origin to the ascending node.  

Another out-of-plane orbital element seen from Figure A.1 is the argument of 

periapsis, ω . The argument of periapsis is defined as the angle, measured along the orbit, 

from the ascending node to the orbit’s periapsis.  

The final out-of-plane orbital element is the inclination i. The inclination is 

defined as the angle between the ẑ axis and the angular momentum vector h , which is a 

vector that is always perpendicular to the orbit plane. In other words, the inclination 

indicates how inclined the orbit plane is with respect to the equator. An inclination of 

0°corresponds to an equatorial orbit, while an inclination of 90° corresponds to a polar 

orbit. 

Having given a brief description of the six orbital elements, it is now desired to 

find a method for converting from orbital elements into Cartesian coordinates. The basic 

goal of this conversion method is as such: 
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A majority of the equations used in the analysis that follows are taken from Vallado [37]. 

 Begin the transformation by defining the position magnitude r as 
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Now, using the energy equation 
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the velocity magnitude V can be found as 
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where µ is the gravitational parameter, which will vary depending on which body is 

being orbited. 

 Next, define the mean motion as 
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and the eccentric anomaly as  
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The derivative of the eccentricity anomaly, E& , can be found as 
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 Now define the vectors P and Q  
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Using the vectors defined by Equations (A.7) and (A.8), the position and velocity vectors 

of the spacecraft in Cartesian coordinates can now be found through 
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There are also times where it is needed to convert a system based in Cartesian 

coordinates into orbital elements. As explained previously, most dynamic models involve 

integrating equations of motions defined in terms of Cartesian coordinates, and after the 
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integration those coordinates are transformed into orbital elements when plotting the 

results. Therefore it is desired to find a second method that will perform the reverse of the 

method presented above. The objective of this second method is as such: 
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 Begin this second transformation by determining the position vector and velocity 

vector magnitudes 

                                            222 zyxr ++=                                                 (A.11) 
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Now, Equation (A.2) can be solved for the semimajor axis as 
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 Next, determine the magnitude of the angular momentum vector 
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Using Equations (A.14) and (A.2), the eccentricity can be found as 
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 Define the node vector nas 
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The right ascension of the ascending node can now be found through 
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Since the arccosine function will always return an angle between 0° and 360°, a quadrant 

check must be performed to ensure the correct Ω is taken. It can be seen from Figure A.2 

that if the ŷ component of the node vector n is negative, then Ω must be between 180° 

and 360°. Therefore the following method will lead to the correct value for Ω from 

Equation (A.17): 

[ If ( 0<yn ), then Ω = 360° - Ω ] 

 Next, the inclination can be found as 
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Since the inclination is defined as an angle between 0° and 180° no quadrant check is 

needed for Equation A.18.   

 The eccentricity vector can be determined by 
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With the eccentricity vector known, the argument of periapsis can be found as 
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The argument of periapsis is defined as an angle between 0° and 360°, so a quadrant 

check must be performed. As seen in Figure A.2, if the ŷ component of the eccentricity 

vector e is negative, then ω is between 180° and 360°. This leads to the following 

quadrant check for the argument of periapsis: 

[ If 0<ye , then ω = 360° - ω ] 

Finally, the true anomaly can be found as 
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This angle must also be put through a quadrant check. In order to determine a proper 

quadrant check for the true anomaly, the properties of the dot product between the 

position and velocity vectors can be analyzed. In particular, the product is always positive 
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when the spacecraft is going away from periapsis and negative when going towards 

periapsis. Therefore, the following quadrant check can be used: 

[ If ( ) 0=⋅Vr , then ν = 360° - ν ] 
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APPENDIX B. 

    CONVERSION FROM THE ROTATING FRAME TO THE INERTIAL FRAME 
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As discussed in Section 3, the coordinate system on which the equations of 

motion are based upon is a rotating selenographic frame. However, this presents 

problems when trying to define a Sun-synchronous orbit, as such an orbit requires some 

inertial x̂ axis to measure the ascending node from. Therefore, an inertial frame also 

needs to be specified from which the ascending node can be measured from. This 

appendix defines an inertial frame that can be used for this purpose, and also details a 

method for converting between the rotating and inertial coordinate systems. 

 The inertial frame chosen involves the placement of the Moon and Earth at the 

start of the integration. In particular, the inertial x-axis, Ix̂ , is defined to be along the 

initial Earth-Moon line. The inertial z-axis, Iẑ , goes through the Moon’s north pole and 

the Iŷ axis completes the  right-handed coordinate system. In other words, the inertial 

frame is chosen as the initial selenographic coordinates axes. It should be noted that since 

this inertial frame is defined based on the initial positions of the Earth and Moon, the 

orientation of the inertial frame may be different integrations. Basically, the orientation of 

the inertial frame will depend on the starting Julian date for the integration. 

 In order to form a conversion method, the properties of the selenographic 

coordinate frame must be analyzed. As stated in Section 3, the selenographic sx̂ axis is 

always pointed towards Earth, and therefore the axis rotates as the Moon revolves about 

the Earth. One of the interesting properties of the Moon is that it revolves about the Earth 

at the same speed as which it rotates. It is because of this property that the same face of 

the Moon is always seen from Earth, and why there is currently a sparse amount of data 

for the back side of the Moon. The lunar rotation rate, called mω , is roughly constant at 

2.661699 x 10
-6

 rad/sec. Therefore, after an amount of time t, the sx̂ axis will have 

rotated by an angle tmω . This rotation angle is shown in Figure B.1. 
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Figure B.1. Angle of Moon’s Revolution about Earth 

 

 

 A product of the constant rotation rate mω is that the angle between the x and y 

axes for the inertial and selenographic coordinate frames will always be equal to tmω , as 

shown in Figure B.2. 
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Figure B.2. Conversion Between Rotational and Inertial Coordinates 
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 With the above knowledge, a direction cosine matrix can be made that will allow 

a conversion between the selenographic frame and the inertial frame. First define the 

angle 

                                                             tmω=∆                                                             (B.1) 

Using the angle ∆ , the direction cosine matrix can be found as 
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Now, given a position vector sr defined with respect to the selenographic frame, the 

corresponding position vector in the inertial frame is 

                                                      [ ] sI DCM rr =                                                            (B.3) 

 In order to convert a velocity vector from the selenographic frame to the inertial 

frame, the basic kinematic equation (BKE) must be used. Given a velocity vector sV  in 

the selenographic frame, the corresponding velocity vector in the inertial frame is found 

as  

                                                  srωVV ×+= mSI                                                           (B.4) 

Noting that zω ˆ
mm ω= , Equation (B.4) can also be written as 
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Finally, carrying out the cross product in Equation B.5 and using the state-space format 

defined in Section 3, the three inertial velocity components are  

                                                     24 xxx mI ω−=&                                                           (B.6) 

                                                      15 xxy mI ω+=&                                                          (B.7)  

                                                            6xz I =&                                                                (B.8)                    
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