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ABSTRACT 

Bacterial panicle blight (BPB) and sheath blight (SB), caused by the bacteria 

Burkholderia glumae and B. gladioli, and the fungus Rhizoctonia solani, respectively, are two 

major rice diseases in southern rice growing regions of US. No completely resistant rice cultivars 

have been identified for these diseases. However, a medium-grain cultivar, Jupiter, showed 

partial resistance to BPB. In order to understand the mechanisms of rice resistance against BPB 

and SB, rice genetics and genomics studies have been conducted. Alternative methods to 

suppress BPB and SB were also studied. Broad-sense heritability and correlations were 

calculated for the traits, BPB and SB disease ratings, days to heading, and plant height, with 

recombinant inbred lines generated from a cross between Trenasse and Jupiter in replicated trials 

for two years. Days to heading and plant height had high heritability, and were negatively 

correlated with BPB and SB disease ratings. The traits with high heritability will not have 

environmental influence, and can be used as indirect selection tools. 

Study on genomic characteristics of five rice genotypes grown in Louisiana using their 

whole genome sequence data provides genome-wide DNA polymorphisms among them. These 

information will enable us to understand genetic elements for phenotypic variations among these 

genotypes, which will help to enhance the genetic studies of US rice cultivars. The sequence data 

were also used to develop microsatellites and single nucleotide polymorphism markers, which 

can be used for genetic mapping studies. 

Previous microarray studies showed that the gene encoding a NAC4-like transcription 

factor, named bacterial panicle blight response gene 1 (BPR1), was highly up-regulated in 

Jupiter upon B. glumae inoculation. Expression of BPR1 in response to B. glumae was not 

detected in both Jupiter and Trenasse at seedling and tillering stages. However, rapid induction 
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of BPR1 expression was observed in Jupiter, but not in Trenasse, when it was treated with B. 

glumae or chemicals, such as ascorbic acid and jasmonic acid, at its heading stage, suggesting 

that BPR1 expression is tissue-specific, and might be involved in rice defense response against B. 

gluame. 

Several rice-associated bacteria (RAB) isolated from healthy rice leaves were tested for 

their ability to suppress BPB and SB in rice. Those RAB were able to suppress bacterial cell 

growth and sclerotia germination in vitro, and were able to reduce the BPB and SB symptoms in 

rice in the field. Based on the 16S rDNA sequencing analysis, those RABs were identified as 

Bacillus and Lysinibacillus spp., and are potential candidates for biological control agents. 
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CHAPTER I: GENERAL INTRODUCTION 

1.1 INTRODUCTION 

Rice belongs to the grass family Poaceae, and to the genus Oryza. Rice is a major staple 

for about 50% of world population, and 90% of which are from Asian countries (Mohanty, 

2013). It provides about 35- 60 % of the calories intake to the people from developing countries. 

It comes after wheat in terms of area and production. It can be grown in wide ranges of soil 

moisture regimes and growing environments, including irrigated and rain-fed lowlands, 

wetlands, and uplands. It is grown in more than one hundred countries around the world with 

acreage of 158 million hectares of cultivated area (http://ricepedia.org/rice-as-a-crop/rice-

productivity). Two species of rice are commonly grown: Oryza sativa, known as Asian rice, 

which is grown worldwide, and O. glaberrima, known as African rice, which is grown in some 

parts of west Africa. O. sativa has two subspecies, indica and japonica. Indica rice has light 

green leaves, long grains, and tends to shatter more easily. It is grown in the tropical and 

subtropical regions, whereas japonica rice is grown in cooler regions of subtropical and in 

temperate regions. Japonica rice is characterized with short plant height with narrow, dark green 

leaves, short and round grains, and does not shatter easily compared to indica rice 

(http://ricepedia.org/rice-as-a-plant/rice-species/cultivated-rice-species).  

 Domestication of rice was supposed to be started before 9000 years ago (Huang et al., 

2012; Molina et al., 2011). Indica rice was grown in Indian subcontinent and was brought to 

Madagascar and East Africa, and then to West Africa, whereas japonica rice was supposedly 

domesticated in southeast Asia, and brought to northern regions including Korea and Japan as 

early as first century. Migrants of Indonesia introduced japonica rice in Madagascar in 5th 

century. Similarly, Portuguese introduced indica and tropical japonica to Brazil from Indonesia, 

and later Spanish people brought it to Latin Americas. Rice was introduced in the United States, 
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in South Carolina, in 1685 from Madagascar (Khush, 1997). From South Carolina, rice was 

brought to the southern regions of US in 19th century (www.lsuagcenter.com).  

 In the United States, about 40 commercial rice varieties are grown in six states including 

Arkansas, California, Louisiana, Mississippi, Missouri, and Texas (USA rice Federation, 

http://riceinfo.com/media-resources/usa-rice-federation-fact-sheet). USA is one of the largest 

rice exporters after India, Vietnam, Thailand, and Pakistan (Production, Supply and Distribution 

Online; Foreign Agriculture Service, USDA). It produced 8,613,094 tones of rice from 998,765 

hectares of harvested area in 2013 

(http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor).  

 Growth of the world population is increasing in geometric proportion and the food 

production in an arithmetic proportion that is creating a gap between demand and supply of food. 

At the same time cultivable agricultural land is also decreasing due to overgrowing population. It 

is becoming a challenge to produce surplus food to fulfill the demand of ever increasing 

population of the world with limited cultivable agricultural land resources. The demand for rice 

is growing day by day due to rapid growth of population mainly in rice feeding countries. It is 

necessary to increase the grain production by 50% by 2025 to meet the food demand. The 

development of modern tools of biotechnology and its use in crop production will be useful to 

improve crop yield with higher level of micronutrients (Khush, 2001). However, about 10% of 

the crop production is reduced due to various plant diseases caused by various plant pathogens 

including bacteria, fungi, and viruses (James, 1998). 

 Rice production around the world is threatened due to various rice diseases including 

fungal diseases, such as sheath blight (SB), brown spot, and blast caused by Rhizoctonia solani, 

Cochliobolus miyabeanu, and Pyricularia grisea, respectively; bacterial diseases, such as 
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bacterial leaf blight and bacterial panicle blight caused by Xanthomonas oryzae pv. oryzae and 

Burkholderia glumae and B. gladioli, respectively; and several other seedling diseases. In the 

rice-growing areas of United States including Louisiana, these diseases cause about 7 to 15% 

annual yield loss (Groth, 2008; Latif et al., 2011). Bacterial panicle blight (BPB) caused by 

bacteria, B. glumae and B. gladioli, is an economically important rice disease in the southern 

United States (Nandakumar et al., 2007). However, B. gladioli is less virulent and found less 

frequently compared to B. glumae from naturally infected rice plants (Nandakumar et al., 2009). 

B. glumae was previously described as a causal agent of grain rot, seedling blight, and seedling 

rot of rice in Japan in 1956 (Goto & Ohata, 1956). BPB became an emerging rice disease around 

the rice growing areas of the world including Korea, Vietnam, USA, the Philippines, China, 

South Africa, and recently in Ecuador (Cottyn, B. et al., 1996; Cottyn, B et al., 1996; Luo et al., 

2007; Riera et al., 2014; Shahjahan et al., 2000; Trung et al., 1993; Zhou, 2014). BPB is 

characterized by discoloration of panicles with sterile florets that causes reduction in yield. A 

typical BPB symptom in rice is shown in Figure 1.1. High humidity and high night temperature, 

above 90°F during the growing season favors the epidemics of BPB (Kurita et al., 1964; 

Tsushima et al., 1995). Flowering time of rice plants grown in late season coincides with high 

temperature environment, resulting in more disease development in Louisiana. So, BPB 

development occur more frequently in late season rice plants compared to early season plants. 

Severe outbreaks of BPB have been reported to have occurred in Louisiana, and causing about 

40% of yield loses in severely infected fields in 1995, 1998, and 2000 (Nandakumar et al., 2009; 

Shahjahan et al., 2000). As high temperature favors this disease, it will be one of the major rice 

diseases around the rice growing regions of the world due to global warming (Ham et al., 2011; 

Schaad, 2008). 
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 B. glumae, a rod-shaped, Gram-negative bacteria with four polar flagella is one of the 

two causal agents of BPB. It produces water-soluble yellow pigment in nutrient rich media 

including King’B, potato dextrose agar, and Luria Broth media, when incubated at 37°C, but 

toxoflavin production is much lower at the temperatures below 30°C (Matsuda & Sato, 1988). 

The yellow phytotoxin, toxoflavin,  is a major virulence factor and regulated by quorum-sensing 

of B. glumae (Kim et al., 2004). Toxoflavin acts as an active electron carrier between NADH and 

oxygen that helps to generate peroxides, and this peroxides can be poisonous to plants (Latuasan 

& Berends, 1961).!B. glumae is a seed-borne pathogen with wide host ranges causing bacterial 

wilt in tomato, sesame, perilla, and eggplant (Jeong et al., 2003). Infected rice seeds act as a 

primary source of inoculum for the following year (Tsushima, 1996). As rice plants develop this 

pathogen moves from lower leaves to upper leaves and ultimately colonizes flag leaf, and that 

colonization is essential for disease development (Tsushima, 1996; Tsushima et al., 1991). It 

enters through stomatal openings in the lemma and palea of rice seed, multiplies in the 

intercellular space, and uses vascular system of the plant for the long distance movement (Tabei 

et al., 1989; Yuan, 2004). 

 Sheath blight (SB), a major rice disease worldwide, is caused by a fungal pathogen R. 

solani. This disease is an economically important disease in the southern United States 

(Damicone JP, 1993; Lee & Rush, 1983). Yield loss was estimated to be between 1 to 10% in 

lowland rice in tropical regions of Asia (Savary et al., 2000). High nitrogenous fertilizers and 

plant densities create conducive microclimates for the development of sheath blight. Early 

maturing rice cultivars are more prone to this disease susceptibility compared to late maturing 

due to the more favorable environmental conditions during the early cultivation of rice. Since it 

is a soil-borne disease, soil-borne sclerotia act as a primary source of inoculum that infect the 
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water-line sheath area of rice plant (Belmar et al., 1987; Lee, 1980). Water-soaked, circular to 

ellipsoid lesions during late tillering stage on sheath of lower leaves of rice characterize sheath 

blight in rice. A typical symptom of sheath blight in rice is shown in Figure 1.2. High 

temperature of 80 to 90°F with relative humidity of 95% favors those lesions to spread rapidly 

toward upper parts of rice plants using hyphae. In this case, hyphae act as a secondary source of 

inoculum. Those lesions merge together covering whole plant parts. The lodging of plants 

ultimately cause reduced yield and grain quality. Losses in grain yield and reduced milling 

quality caused by sheath blight in the United States were estimated up to 42% and 20%, 

respectively (Marchetti, 1983). Upon maturity sclerotia will form near the infected tissues, and 

those sclerotia are prone to separate from the plant after maturity (Lee & Rush, 1983). These 

sclerotia overwinter on soil and serve as a primary source of inoculum for the following year.  

Various types of cultural practices including crop rotation and clean cultivation, 

biological control, judicious use of pesticides and fungicides, and exploitation of genetic 

diversities of several landraces and germplasm are the common practices used for plant disease 

management. In addition, use of biotechnology techniques is an emerging field for crop 

improvement in recent years. 

Oxolinic acid, a quinolone derivative, was used for rice seed treatment before sowing in 

the rice field to manage BPB. This chemical inhibits DNA synthesis in bacterial cell by 

inhibiting supercoiling activity of the DNA gyrase (Drlica & Zhao, 1997; Nandakumar et al., 

2005). However, this chemical agent is not allowed for rice treatment in the US (Nandakumar et 

al., 2009). Moreover, some strain of B. glumae develops resistance to oxolinic acid (Maeda et al., 

2004). Host resistance is a desirable and durable control measure for most of the plant diseases. 

However, most of the rice cultivars commercially grown in Louisiana are susceptible to BPB 
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(Nandakumar et al., 2005; Shahjahan et al., 2000) and SB. None of the rice cultivars are 

completely resistant to both diseases. However, a medium-grained rice cultivar, Jupiter and a 

long-grained, gamma-radiated mutant-derivative of Lemont, LM-1, developed by LSU AgCenter 

showed high levels of partial resistance against BPB (Groth et al., 2007; Sha et al., 2006). Better 

understanding of the molecular mechanisms of rice resistance will give an insight to develop 

disease resistant lines and cultivars. Application of biocontrol agents including avirulent strains 

of B. glumae and bacteriophages that lyse B. glumae have also been introduced to suppress 

seedling rot and seedling blight caused by B. glumae, which can be more efficient than chemical 

control to manage BPB in rice (Adachi et al., 2012; Furuya et al., 1991). In addition, genetically 

modified strain of Burkholderia sp. has been used as a biocontrol agent to reduce seedling rot in 

rice caused by B. glumae. This genetically modified biocontrol agent contains an N-acyl-

homoserine lactonase (aiiA) gene derived from Bacillus thuringiensis that inhibits the production 

of quorum-sensing signal in plant pathogenic B. glumae (Cho et al., 2007). 

Unlike BPB, various types of fungicide trials have been conducted to manage sheath 

blight in rice (Araki & Yabutani, 1993; Groth, 2005; Miah et al., 1994). Use of these fungicides, 

however, increases the cost of cultivation, leaves a residual effect to the environments, and 

increases the risk of development of fungicide-resistant fungi (Bennett, 2012). Use of biological 

control agents can be an alternative method to fungicide usage to manage and suppress sheath 

blight in rice. Various epiphytic, endophytic, and rhizospheric bacteria have been isolated either 

from plant parts or from soil, and used to manage and suppress sheath blight in rice (De Costa et 

al., 2008; Kanjanamaneesathian et al., 1998; Nagendran et al., 2014; Padaria & Singh, 2009; 

Wang et al., 2013). Those types of biocontrol agents were used either by spraying on plant parts 

or by soil treatments (Soe & De Costa, 2012). Various bacterial species including Pseudomonas 
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fluorescens, Trichoderma sp., Aspergillus niger, and hyphal colonizing Burkholderia 

vietnamiensis have been reported as biocontrol agents to manage sheath blight in rice (Cuong et 

al., 2011; Devi et al., 1989; Naeimi et al., 2010). These biocontrol agents produce different kinds 

of secondary metabolites including β- 1,3-glucanase, hydrogen cyanide, chitinase by P. 

fluorescens, 2,4-diacetylchloroglucinol by P. putida, and pyrrolnitrin by B. cenpacia that 

suppress mycelial growth of R. solani. These metabolites, when sprayed in pure form or in the 

form of culture filtrates, can reduce growth and development of disease in rice. (Nagarajkumar et 

al., 2004; Rosales et al., 1995). In addition, these bacterial agents not only suppress disease 

symptoms but also help to induce plant resistance, and stimulate growth of plant and enhance 

yield (Niranjan Raj et al., 2006). Different formulations of biocontrol agents either by using two 

or more biological agents together or by integration with different fungicides and fertilizers have 

increased effectiveness of its usage (Datnoff et al., 1995; Duffy & Weller, 1995; 

Kanjanamaneesathian et al., 1998). 

Similar to BPB, there is no completely resistant rice cultivars for sheath blight, but it has 

been reported that partial or horizontal resistant rice cultivars are available (Lee & Rush, 1983; 

Liu et al., 2009). Various trials have been conducted in rice growing areas to identify sources of 

resistance for sheath blight from wild relatives of rice. However, those wild relatives of rice also 

lack complete resistance. Several moderately resistant rice cultivars for sheath blight have been 

described from several different areas in the world. In the US, medium-grained rice cultivars 

have higher level of resistance compared to long-grained rice cultivars (Lee & Rush, 1983). 

 

 

 



! 8 

 

 Plants are continuously facing various stresses including biotic and abiotic stresses, 

which reduce plant performance in terms of yield and quality. Regarding biotic stresses, various 

plant pathogens including bacteria, fungi, viruses, and nematodes cause huge crop losses every 

year. Plants are evolving with efficient mechanisms to confront the challenges from external 

stresses. Physical as well as chemical barriers are developed as plant defense mechanisms that 

will hinder the plant pathogen infection. In addition, some other defense mechanisms are 

activated by external signal associated with pathogen infection, which is called microbe-

associated molecular patterns (Bittel & Robatzek, 2007). It involves signal transduction after 

pathogen infection that induces expression of various genes associated with plant defense (Yang 

et al., 1997). Gene-for-gene interaction, also known as vertical resistance, in which a single 

avirulence gene of a pathogen is recognized by its corresponding resistance (R) gene in host 

plant (Flor, 1971). Various R genes conferring complete resistance from several plant hosts have 

been characterized, and these R genes share conserved motifs. Most of the R genes encode 

nucleotide binding site-leucine-rich repeat (NBS-LRR) proteins, which occur in a clusters at 

specific loci following gene amplifications and duplications (Marone et al., 2013). 

Figure 1.1 Typical symptom of bacterial 
panicle blight in rice. 

Figure 1.2 Typical symptom of sheath 
blight in rice. 
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 Various studies report involvement of several R genes for major rice diseases, including 

blast and bacterial blight, caused by Pyricularia grisea and Xanthomonas oryzae oryzae, 

respectively. Some of the R genes were well characterized and cloned, and most of them showed 

race-specific resistance and have dominant trait. R genes for X. oryzae oryzae, including Xa21, 

encoding leucine-rich repeat/ kinase receptor protein, and Xa1 nucleotide binding site- leucine-

rich repeat were identified by map-based cloning (Song et al., 1995; Yoshimura et al., 1998). 

However, unlike bacterial blight of rice, no known dominant R gene(s) has been reported yet for 

BPB and sheath blight. It has been reported that most R genes are strain-specific and are not 

durable because it will lose its effectiveness easily during time course (McDonald & Linde, 

2002). So, concept of non-host resistance evolved, in which all plant species show resistant to 

specific pathogen (Heath, 2000). Vertical resistance governed by a single R gene is monogenic, 

while horizontal disease resistance govern by many genes with cumulative effects is polygenic.  

Various agronomically important traits, including plant height, yield, abiotic and biotic 

stress resistance are controlled by polygenes. The polygenic resistance is durable, non-race 

specific and are quantitative in nature. Study of these traits controlled by multiple genes is 

complex and can be performed with the help of molecular markers by quantitative trait loci 

(QTL) mapping (Tanksley, 1993). The QTL mapping was first described by Sax in 1923 (Sax, 

1923). With the help of QTL mapping, genetic architecture of a trait, its relationship with 

biological function can be determined. QTL mapping of any quantitative trait is highly 

dependent on the level of effect on specific phenotype. Large population is required to detect the 

QTL for a trait with small effects. In addition, large populations with large number of molecular 

markers help to detect recombination effects resulting in increased mapping resolution (Lander 

& Botstein, 1989). Unlike other rice diseases, very few reports were available for partial 
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resistance to BPB and bacterial grain rot in rice caused by B. glumae (Mizobuchi et al., 2013; 

Pinson et al., 2010). In these studies, heading date of rice was correlated to BPB resistance. So, 

little is known about the QTL mapping of BPB in rice. However, several studies were conducted 

for the QTL mapping of sheath blight in rice (Channamallikarjuna et al., 2010; Sharma et al., 

2009; Zou et al., 2000). 

QTL mapping utilized DNA-based molecular markers including, random-amplified 

polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), amplified 

fragment length polymorphism (AFLP), and simple sequence repeats (SSR), which facilitate 

isolation of loci along the chromosomes associated with agronomically important traits such as 

disease and insect resistance (McCouch et al., 1988). In recent years, single nucleotide 

polymorphisms are used for genetic mapping and association mapping (Kumar et al., 2012; 

Rafalski, 2002). Each type of molecular marker has its own advantages and disadvantages. 

Choice of these molecular markers depends on the structure of population, availability of marker, 

technological complexity and cost (Staub et al., 1996). 

Analysis of genome sequence of cereals including corn and rice has been conducted since 

1990 to identify genes associated with biotic and abiotic stress tolerance, and agronomically 

important traits (Sasaki et al., 2008). However, the advent of next-generation sequencing 

technology is making large-scale genomic studies possible with large amount of genomic data. 

Several next generation sequencing platforms are available for whole genome sequencing. Each 

platform has its specific characteristics, which includes pyrosequencing-based 454 (Margulies et 

al., 2005), sequencing-by-synthesis-based Illumina (Bentley, 2006), sequencing-by-ligation-

based SOLiD (Valouev et al., 2008), hydrogen-ion detecton-based Ion-torrent (Rusk, 2010), and 

Pacific Bioscience (Brakmann, 2010) and Oxford Nanopore (Clarke et al., 2009). These 
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advances in platforms helped to reduce the cost of sequencing and time drastically (Bentley, 

2006). 

Genome sequencing of economically important cereal crops has provided a 

comprehensive analysis of the gene structure, function, and gene-trait relationships. 

Identification of variants and development of various molecular markers can be implemented 

using sequence information from next-generation sequencing technology including SSR and 

SNPs (Qu & Liu, 2013; Zhang et al., 2007; Zou et al., 2013). This leads to formation of bridge 

between the genotype and phenotype. In addition to its implications for a trait of an individual, 

next-generation sequencing technology provides an opportunity for population genomic and 

evolutionary genomic studies (Fumagalli et al., 2013). 

Early domestication and genetic diversity of rice, relatedness between cultivated and wild 

relatives of rice, and association studies of agronomically important rice traits have been 

conducted with the help of whole genome sequence data. Along with bulk-segregant analysis 

techniques, whole genome sequencing data was used for QTL mapping, host pathogen 

interaction, and identification of candidate and/or specific genes for a particular trait, including 

sheath blight resistance in rice (Abe et al., 2012; Silva et al., 2012; Takagi et al., 2013; Terauchi 

et al., 2011). 

Furthermore, RNA-Seq and ChIP-Seq were used to analyse genome-wide expression of 

genes, and DNA-binding protein activity, respectively (Nagalakshmi et al., 2010; Park, 2009). In 

recent years, sequencing of organisms of several ecological niches, known as metagenomics, is 

providing the genetic information of the particular environment. Those information can be used 

to manipulate environment for beneficial uses.  
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CHAPTER II: PHENOTYPIC CHARACTERIZATION OF RECOMBINANT INBRED 
LINES (RILS) GENERATED FROM THE CROSS BETWEEN TRENASSE AND 

JUPITER 

2.1 INTRODUCTION 

Rice is a major staple throughout the world. It is a major source of calories in diet for 

people in many Asian countries. Rice is grown in more than 158 million hectares of cultivated 

area around the world. In the United States, rice industry is a multi-billion dollar industry. It 

produces approximately 19 billion pounds of rice on more than 2 million acres of land. The 

United States covers 2% of world rice market and ranks among the top five rice-exporting 

nations (USA Rice Federation, 2007). Rice is grown in six states, including Arkansas, California, 

Louisiana, Mississippi, Missouri, and Texas in the United States. Planted and harvested area of 

rice in 2013 was estimated to be 2.49 and 2.47 million acres, respectively, which is 8% lower 

than 2012. However, average yield throughout the United States was estimated 7,694 pounds per 

acre, which is 245 pounds higher than in 2012. Favorable environmental conditions with new 

varieties and dry weather during harvesting helped to increase the yield in the southern United 

States (USDA, 2013). Among these states, Louisiana is the third-largest rice producer, and 

mostly grown long-grain rice. In 2013, rice has been cultivated on about 410 thousands acres of 

land with 31 millions cwt. of rice with gross value of more than $494 million.  

Various abiotic and biotic stresses on rice plants are reducing the rice production each 

year worldwide. Bacterial and fungal diseases are major threats for rice industry. Bacterial 

panicle blight (BPB), caused by Burkholderia glumae and B. gladioli, and sheath blight, caused 

by Rhizoctonia solani are the two economically important diseases in the southern rice growing 

states of the United States including Louisiana (LSUAgCenter, 2013). The environmental 

conditions in Louisiana during rice growing season favors the development of both diseases. 

Prolonged high temperature and high humidity favor BPB development (Cha et al., 2001). BPB 
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causes panicle sterility, thereby reducing total rice yield, whereas sheath blight causes dark-

brown ellipsoid lesions on the sheath causing rice plant prone to lodging (Lee & Rush, 1983; 

Shahjahan et al., 2000). About 10 to 20% of yield loss has been reported each year due to BPB 

and sheath blight in rice (Groth, 2008; Latif et al., 2011; Savary et al., 2000; Shahjahan et al., 

2000). 

Despite its economic importance, few control measures have been developed so far for 

BPB, and no chemical pesticide has been registered to control BPB in the US. For controlling 

sheath blight, few fungicide treatments are available (Groth, 2005; Miah et al., 1994). Various 

cultural management practices including proper use of inputs such as disease resistant varieties, 

optimum seed rate, recommended doses of fertilizers, and changing planting dates help to reduce 

BPB as well as sheath blight (LSUAgCenter, 2013). However, there are few rice cultivars that 

are resistant to either BPB or sheath blight. Most of the commercially grown rice cultivars in 

Louisiana are susceptible to BPB and sheath blight, and only some of the cultivars are partially 

resistant to these diseases (Lee & Rush, 1983; Sha et al., 2006; Shahjahan et al., 2000). However, 

genetic and molecular mechanisms of the partial resistance to BPB and/or sheath blight are still 

unknown. Better understanding of disease resistance at both phenotypic and genotypic levels is 

important for the rice breeders and geneticists to develop strategies for effective selection. In 

rice, late flowering trait was reported to be associated with BPB resistance, and similarly, plant 

height and days to heading were shown to be associated with sheath blight resistance (Pinson et 

al., 2010; Sharma et al., 2009). 

Various genetic parameters for agronomically important traits have been studied. A 

commonly used parameter for quantitative traits, like disease resistance is heritability, which 

measures the proportion of phenotypic variance that is due to genetic factors. Estimation of 
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heritability of traits provides power to the breeders for the effective selection (Bernardo, 2002). 

There are various ways to estimates heritability from various populations including double 

haploids population, backcross population, and recombinant inbred lines (RILs). Use of 

recombinant inbred line (RIL) population is appropriate to estimate heritability of a trait (Dudley 

& Moll, 1969). In addition, these RILs are useful assets for mapping quantitative trait loci (QTL) 

fro target traits. RILs are developed by crossing two lines with contrasting agronomic traits of 

interest, and hybrids resulting from the cross are self-pollinated to develop F2 plants. Individual 

F2 plants are further advanced using single seed descent method until F7 to F9 by selfing (Brini, 

1966). Several studies on the heritability of agronomical traits of rice including sheath blight and 

bacterial blight resistance, days to heading, plant height, and yield have been conducted, which 

showed medium to high heritabilities. Development of rice breeding line with desirable features 

depends heritability of traits (Aung, 1990; Mazid et al., 2013; Nelson et al., 2012).  The focus of 

this study was to estimate heritability and calculate correlations among phenotypic traits 

including bacterial blight resistance, sheath blight resistance, days to heading, and plant height, 

using RILs derived from the cross between Trenasse and Jupiter. 

2.2 OBJECTIVES 

i. To estimate heritability of phenotypic traits, including bacterial panicle blight reistance, 

sheath blight resistance, plant height, and days to heading, and 

ii. To study correlations among those phenotypic traits.!

2.3 MATERIALS AND METHODS 

A mapping population was developed from a cross, between a partially resistant medium-

grained cultivar Jupiter (Sha et al., 2006), and a susceptible long-grained cultivar Trenasse 

(Linscombe et al., 2006; Nandakumar et al., 2007). A total of 300 F2 plants were chosen and 
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grown to develop recombinant inbred lines (RILs) following single seed descent method. Briefly, 

individual panicles harvested from each F2 plant were grown, and progeny from F2 individual 

plants were developed as separate lines in each generation by harvesting a single panicle per 

plant. Seeds from F5, F6 and F7 generations were used to grow in 2012, 2013 and 2014, 

respectively, in this study to represent the RILs. 

RILs were grown at the Rice Research Station, Crowley, with two replicates. Each 

replication includes rows for parental lines, and each row contains approximately 15 to 20 plants. 

Phenotypic evaluation for two economically important rice diseases, BPB and SB, and other 

important agronomic traits, plant height and days to heading, was conducted in 2012 and 2013. 

In 2014, only sheath blight was assessed.!

2.3.1 Inoculation of RILs with Burkholderia glumae 336gr-1 inoculum 

 Each replication of RILs was inoculated with 1×108 CFU/ml of bacterial inoculum 

prepared in deionized water with the help of hand sprayer in 2012 and 2013. Inoculation was 

done until the inoculum run off at 30% heading stage of rice plants. Since there was no 

synchronization of heading in a population to reduce the chance of escapes, at least four 

inoculations were done in 2-4 days interval.  

2.3.2 Inoculation of RILs with Rhizoctonia solani inoculum 

 Both replications of RILs were inoculated with the inoculum of R. solani at an active 

tillering stage of rice plants in 2012 and 2013. R. solani inoculum was prepared in rice grain:hull 

(1:2 v/v) mixture. Briefly, 600 gm of the mixture with 500 ml of water was sterilized at 121°C 

for 30 min. The sterilized mixture in a flask was inoculated with ~16 cm2 of PDA plugs 

containing 5 to 7 days old R. solani mycelia, and incubated at 25°C for 10 days. After 10 days, 

inoculum was prepared and mixed with larger volume of the sterilized rice grain:hull mixture at 
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1:2 ratio and sterilized to increase the inoculum volume. After proper mixing the mixture was 

spread uniformly on a clean brown paper sheet and covered with a clean plastic sheet at room 

temperature. Inoculum for application was ready in about 24 h of incubation. 

2.3.3 Field evaluation 

Data on major agronomic traits, including days to heading, disease score of both BPB and 

sheath blight, plant height, were recorded for all experiments. 

1. Days to 50% heading was recorded in each row of two replications in 2012 and 

2013 as the number of days from planting until 50% of the plants in each row 

have fully visible panicles. 

2. BPB symptoms on panicles were observed and recorded 10 days after last 

inoculation. Disease scores were rated visually identifying the percentage of 

discoloration of panicles on a 0 to 9 scale; 0 means no symptoms and 9 means 

more than 90% of panicles area were infected with BPB (Shahjahan et al., 2000).  

3. The symptoms for sheath blight were observed and recorded during the milk stage 

of rice. Disease scores were rated visually identifying the percentage of leaf 

sheath showing sheath blight symptoms. Disease scores were rated from 0 to 9 

scale (IRRI, 1996). 

4. Plant heights for RILs were taken during maturity on randomly selected three 

plants in each row measuring from the base of the plant to the tip of panicle. 

2.4 DATA ANALYSIS 

Means of the traits for individual parents and populations in individual year as well as 

across years were calculated. Analysis of variance and broad sense heritability were calculated 

using PROC GLM and SAS procedures, respectively, in SAS 9.4 (Holland et al., 2003; SAS 
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Institute, 2013). Furthermore, correlations among the phenotypic traits were calculated using 

Pearson’s correlation coefficients for each of the individual year. Broad sense heritability of each 

trait for single year was calculated by using the formula: 

Broad sense heritability (h2) = 
σ2g

σ2g + σ
2e
r

 

 

Similarly, estimation of heritability of each trait for multiple years with several 

replications per year was calculated by using the formula: 

Broad sense heritability (h2) = 
σ2g

σ2g + σ
2ge
n  + σ

2e
(n × r)

 

where, ‘σ2
g’ is the genotypic variance, ‘σ2

ge’ is the genotype × environment variance, 

‘σ2
e’ is the error variance, and ‘n’ and ‘r’ are the number of years and replications, respectively 

(Holland et al., 2003). 

Heritability is defined as the proportion of observed phenotypic variations due to genetic 

differences. Higher heritability value in a population suggests that selection will be effective on 

an individual basis while low heritability in a population suggests that selection on an individual 

basis will not be effective. Hence, heritability values will be useful to determine the probable 

success of transferring trait of interest among varieties. 

2.5 RESULTS 

2.5.1 Days to heading!

A long-grain cultivar, Trenasse, showed earlier heading than the medium-grain cultivar 

Jupiter in both years. However, both cultivars had earlier heading in 2012 than in 2013 (Table 
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2.1, Figure 2.1 [a, b]). Average days to 50% heading of Trenasse and Jupiter across years were 

94 days and 102 days, respectively, whereas RILs population took 104 days for heading across 

years. In 2012, average heading days of RILs was higher than both of the parents, and in between 

two parents in the year of 2013. Significant differences were obtained in the number of days to 

50% heading from seeding day in RILs population in both years. Genotype by environment 

interactions was highly significant for this trait (Table 2.2). Heritability for days to heading was 

higher, 0.89, 0.84, and 0.71 in 2012, 2013, and across years respectively (Table 2.2). 

!

Table 2.1 Mean days to 50% heading of Trenasse, Jupiter, and RILs, derived from Trenasse × 
Jupiter, taken in 2012, 2013, and across years. 

 
2012 2013 Across years 

(Mean) Trenasse 79 109 94 
(Mean) Jupiter 89 114 102 
(Mean) RILs 81.79 112.4 97.12 
Range 74-102 105-124 74-124 
Standard deviation 4.79 3.33 15.87 

 

 

Table 2.2 Sources of variation and their F values, and heritability estimates for days to 50% 
heading of RILs, generated from Trenasse × Jupiter, taken in 2012, 2013, and across years. 

   2012 2013 Across years 
Replication 1.60*a 5.14* 3.06* 
Genotype (RILs) 9.79** 6.45** 13.03** 
Environment (Years) - - 77745.1** 
Genotype (RILs) x environment (Years) 
interaction - - 3.79** 

Broad sense heritability 0.89 0.84 0.71 
 a * and ** = Significant at the 0.05 and 0.01 level, respectively 
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Figure 2.1 Frequency distribution of RIL population for days to 50% heading in the Rice 
Research Station, Crowley in 2012 (a) and in 2013 (b). Arrows indicate mean values for the 
parental cultivars, Trenasse and Jupiter. 
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2.5.2 Disease score for bacterial panicle blight 

 Trenasse had higher BPB score than Jupiter in 2012, 2013, and across years. Average 

BPB score of RILs was 6.71 in 2012, 5.43 in 2013, and 6.07 in across years, which was in 

between disease scores of two parental cultivars (Table 2.3 and Figure 2.2 [a, b]). Significant 

variation was observed between the genotypes in 2012, 2013, and across years. Significant effect 

of genotype by environment on BPB score was observed (Table 2.4). Heritability estimates was 

medium, 0.57, in 2012, higher, 0.84 in 2013 and lower, 0.25 in across years (Table 2.4). 

 
Table 2.3 Mean bacterial panicle blight score on Trenasse, Jupiter, and RILs, derived from 
Trenasse × Jupiter, taken in 2012, 2013, and across years. 

 
2012 2013 Across years 

(Mean) Trenasse 8.75 8.7 8.65 
(Mean) Jupiter 4.4 1.9 3.15 
(Mean) RILs 6.71 5.43 6.07 
Range 4-9 0-9 0-9 
Standard deviation 1.38 1.85 1.75 

 

 

 
Table 2.4 Sources of variation and their F values, and heritability estimates for bacterial panicle 
blight score on RILs, generated from Trenasse × Jupiter, taken in 2012, 2013, and across years. 

!! 2012 2013 Across years 
Replication 5.43*a 18.89** 11.50** 
Genotype (RILs) 2.31** 6.29** 4.68** 
Environment (Years) - - 473.23** 
Genotype (RILs) x environment 
(Years) interaction - - 3.52** 

Broad sense heritability 0.57 0.84 0.25 
a * and ** = Significant at the 0.05 and 0.01 level, respectively 
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Figure 2.2 Frequency distribution of RIL population for bacterial panicle blight score at Rice 
Research Station, Crowley, in 2012 (a) and in 2013 (b). Disease score 0 to 9 were taken 10 days 
after B. glumae 336gr-1 inoculations. Inoculation of B. glumae inoculum (~1X 108 cfu/ml @ 
OD600 = 0.1) was done at ~30% heading stage of rice plants. Arrows indicate mean values for 
parental cultivars Jupiter and Trenasse. 
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2.5.3 Disease score for sheath blight 

 Sheath blight disease score was higher in Trenasse than in Jupiter in 2012 and 2014 

(Table 2.5 and Figure 2.3 [a, b]). Sheath blight score in the RILs were skewed in both years 

(Figure 2.3 [a, b]). Average sheath blight disease score of RILs was between the score of 

parental lines in both years (Table 2.5). Significant variation among the RILs was observed in 

both years and across years (Table 2.6). Similarly, significant effect of genotype by environment 

interaction was observed. Heritability was higher 0.91, in 2012 and medium 0.63, in 2014, but 

lower 0.48 in across years (Table 2.6). 

 
Table 2.5 Mean sheath blight score on Trenasse, Jupiter, and RILs, derived from Trenasse × 
Jupiter, taken in 2012, 2013, and across years. 

 
2012 2014 Across years 

(Mean) Trenasse 9.00 8.00 8.45 
(Mean) Jupiter 2.00 3.00 2.30 
(Mean) RILs 5.98 6.64 6.31 
Range 0-9 0-9 0-9 
Standard deviation 2.52 1.76 2.2 

 

 

 
Table 2.6 Sources of variation and their F values, and heritability estimates for sheath blight 
score on RILs, generated from Trenasse × Jupiter, taken in 2012, 2013, and across years. 

!! 2012 2014 Across years 
Replication 58.63**a 2.00* 23.43** 
Genotype (RILs) 11.30** 2.67** 7.81** 
Environment (Years) - - 94.91** 
Genotype (RILs) x environment 
(Years) interaction - - 4.07** 

Broad sense heritability 0.91 0.63 0.48 
a * and ** = Significant at the 0.05 and 0.01 level, respectively 
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Figure 2.3 Frequency distribution of RIL population for sheath blight score at Rice Research 
Station, Crowley, in 2012 (a) and in2014 (b). Disease score 0 to 9 were taken during dough stage 
of rice plants. Inoculation was done with R. solani inoculum at active tillering stage of rice. 
Arrows indicate mean values for parental cultivars Jupiter and Trenasse. 
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2.5.4 Plant height 

 Jupiter grew taller than Trenasse in 2013 and 2014, but in 2012 it grew shorter (Table 2.7 

and Figure 2.4 [a, b]). Average plant height of RILs was 96, 94, and 102 cm in 2012, 2013 and 

2014, respectively. There was a significant difference in plant height among the populations in 

all three years and across years. Gentoype by environment interaction was significant for plant 

height (Table 2.8). Estimation of heritability for plant height was medium in all three years, but 

low in across years (Table 2.8). 

 

Table 2.7 Mean plant height of Trenasse, Jupiter, and RILs, derived from Trenasse × Jupiter, 
taken in 2012, 2013, 2014 and across years. 

Plant height 2012 2013 2014 Across years 
(Mean) Trenasse 97.67 93 94 94.89 
(Mean) Jupiter 88.33 95 98 93.78 
(Mean) RILs 96.06 93.6 101.5 97 
Range 70-120 70-115 80-125 70-125 
Standard deviation 7.53 7.28 8.11 8.32 

 

 

Table 2.8 Sources of variation and their F values, and heritability estimates for plant height of 
RILs, generated from Trenasse × Jupiter, taken in 2012, 2013, 2014 and across years. 

  2012 2013 2014 Across years 
Replication 4.14*a 3.42* 2.28* 3.4** 
Genotype (RILs) 7.72** 9.71** 14.45** 20.24** 
Environment (Years) - - - 954.55** 
Genotype (RILs) x environment 
(Years) interaction - - - 5.04** 

Broad-sense heritability 0.69 0.74 0.82 0.75 
a * and ** = Significant at the 0.05 and 0.01 level, respectively 

!
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Figure 2.4 Frequency distribution of RIL population for plant height at Rice Research Station, 
Crowley, in 2012 (a) and in 2014 (b). Plant height was taken during maturity. Arrows indicate 
mean values for parental cultivars Jupiter and Trenasse. 

0 

5 

10 

15 

20 

25 

30 

35 

40 

80
 

82
 

84
 

86
 

88
 

90
 

92
 

94
 

96
 

98
 

10
0 

10
2 

10
4 

10
6 

10
8 

11
0 

11
2 

11
4 

11
6 

11
8 

12
0 

12
2 

12
4 

R
IL

s f
re

qu
en

cy
 

Plant height (cm) 

(b) Plant height, 2014 

Jupiter 
Trenasse 

0 

5 

10 

15 

20 

25 

30 

35 

40 
70

 
72

 
74

 
76

 
78

 
80

 
82

 
84

 
86

 
88

 
90

 
92

 
94

 
96

 
98

 
10

0 
10

2 
10

4 
10

6 
10

8 
11

0 
11

2 
11

4 
11

6 
11

8 
12

0 

R
IL

s f
re

qu
en

cy
  

Plant height (cm) 

(a) Plant height, 2012 

Jupiter 

Trenasse 



! 34 

2.5.5 Correlation among the traits 

 Pearson correlation coefficient was used to calculate correlation between the traits in 

individual years. In 2012, days to 50% heading was significantly negatively correlated with BPB 

disease score (r = -0.24) and sheath blight (r = -0.77). Similarly, trait for plant height was 

significantly negatively correlated with BPB and sheath blight score (r = -0.18) and (r = -0.21), 

respectively. Disease score of BPB and sheath blight was positively correlated (r = 0.31) to each 

other at α = 0.001 (Table 2.7). 

Similarly, in 2013, days to 50% heading was significantly negatively correlated with BPB 

score (r = -0.48). Correlation was negative, between plant height, and bacterial panicle blight 

score (r = -0.095), but was not significantly correlated (Table 2.7). Furthermore, plant height of 

RILs was significantly negatively correlated with sheath blight disease score (r = -0.15) in 2014 

(Table 2.7). 

!

Table 2.7 Pearson correlation coefficients among phenotypic traits for RILs developed from 
Trenasse and Jupiter cross in 2012 

Year  
Days to 50% 

heading (days) 
BPB score 

(0-9) 
Plant height 

(cm) 
SB score 

(0-9) 
2012 

 
        

  Days to heading (days) 1       
  BPB score (0-9) -0.24**a 1     
  Plant height (cm) 0.18** -0.18** 1   
  SB score (0-9) -0.77** 0.31** -0.21** 1 

2013           
  Days to heading (days) 1       
  BPB score (0-9) -0.48** 1     
  Plant height (cm) -0.12* -0.095 1   

2014           
  Plant height (cm)     1   
  SB score (0-9)     -0.15** 1 

a * and ** = Significant at the 0.05 and 0.01 level, respectively 
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2.6 DISCUSSION 

In this study a medium-grained rice cultivar, Jupiter, which is partially resistant to BPB 

was crossed with a long-grain rice cultivar, Trenasse, which is very susceptible to BPB and 

sheath blight, and 300 RILs were generated at Rice Research Station, Crowley, Louisiana. 

Phenotypic evaluation including, disease scoring for BPB was done for each generation (data not 

shown). In 2012, 2013 and 2014, observation was taken on four phenotypic traits (BPB disease 

score, disease score for sheath blight, plant height and days to 50% heading) and statistical 

analysis was conducted.  

Significant variations among the RILs for all four traits were observed in each year 

suggesting the presence of genetic variability within the population. Broad-sense of heritability 

estimates for days to 50% heading were high in 2012 and 2013. Similarly, heritability for the 

plant height was also high in 2012, 2013, and 2014. Higher heritability indicated higher genetic 

variance contributing toward phenotypic expression and less influence of environment. On the 

other hand, BPB and sheath blight score in rice was significantly negatively correlated with plant 

height and days to 50% heading. Although the correlations were not strong, resistant cultivars for 

BPB and sheath blight could be selected among late-matured and short cultivars. It was reported 

that QTLs for heading days in rice is associated with the BPB resistance (Pinson et al., 2010). 

Similarly, it is known that QTLs for sheath blight coincides with the QTLs of plant height and 

heading time, so plants with late heading days showed higher level of resistance than the plants 

with early heading dates (Nelson et al., 2012; Park et al., 2008; Sharma et al., 2009).  

Since heritability estimate is an important parameter for any breeder for the selection of 

plants to use in any breeding programs, the traits including plant height and days to heading with 

high heritability estimates could be used in the selection process. These traits can be used as 
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indirect selection criteria to reduce the disease incidence for both BPB and sheath blight. Narrow 

window period for artificial inoculation of bacterial inoculum for BPB disease assay made us 

difficult to obtain proper disease development. In this situation, indirect selection of those traits 

with high heritability values and significantly negatively correlated with disease ratings could 

solve the problem.  

During the estimation of heritability of disease ratings for BPB and sheath blight, we 

were unable to obtain consistent values. Estimation of heritability of disease rating for BPB was 

medium (0.57) in 2012, and high in 2013 (0.84), similarly, heritability estimates for sheath blight 

disease was high in 2012 (0.91), and medium in 2014 (0.63). These variations in heritability 

estimates might be due to the variability in the environment in two different years. In 2013, the 

environment was not favorable for BPB development thus reducing the occurrence of BPB 

symptoms. Similarly, there was poor growth of the lines due to the poor field condition in 2014. 

Poor stand of RILs reduced the chance of occurring sheath blight in rice.  Aung (1990) described 

similar result, where heritability estimates for sheath blight were observed higher due to 

inconsistency of environmental conditions. 

In conclusion, traits with higher heritability having correlation with the BPB and sheath 

blight resistance can be used for selecting germplasm in future breeding programs. 
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CHAPTER III: COMPARATIVE ANALYSIS OF GENOMIC CHARACTERISTICS OF 
FIVE RICE CULTIVARS COMMERCIALLY GROWN IN LOUISIANA 

3.1 INTRODUCTION 

Rice is one the major staples around the world because it contributed 35-60 % of total 

calorie in intake. Two major types of rice, Oryza sativa japonica and O. sativa indica are grown 

for food. Various types of external stresses restrict the grain quality and yield of rice. In order to 

provide food security for the overgrowing population, it is essential to improve the rice yield and 

its quality. Various innovative researches have been continuously conducted to improve rice 

productivity. Recent advances in the next generation sequencing technology increased new 

opportunities to understand and tackle the problems in crop improvement.  Genome sequencing 

of economically important cereal crops has provided a thorough analysis of the genetic elements, 

and also led to correlate to corresponding phenotypic traits. Analysis of genome sequence of 

cereals including corn and rice has been carried out since 1990 to identify genes related to yield, 

biotic and abiotic stress tolerance, plant height, and days to heading, which are agronomically 

important (Sasaki et al., 2008). 

Rice has compact and small genome among cereals. Also, wide genetic diversity and 

abundant genomic resources made it a model plant for the study of other important cereals. With 

innovative efforts of various nations, whole genome sequences have generated for O. sativa 

japonica and O. sativa indica (Goff et al., 2002; International Rice Genome Sequencing Project, 

2005; Yu et al., 2002). Comprehensive studies on whole genome genotyping and genome-wide 

association studies on rice have been possible with the availability of high-quality reference 

genome sequences of rice (Caicedo et al., 2007; McNally et al., 2006; McNally et al., 2009). 

Whole genome resequencing provides genome-wide genetic polymorphisms, and facilitates the 

identification of structural and functional variation. Origin of cultivated rice, genome-wide 
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association studies of several agronomically important traits, and study on relatedness between 

wild and domesticated rice varieties have been conducted based on whole genome resequencing 

of more than 1500 wild and domesticated modern rice varieties (Huang et al., 2012; Huang et al., 

2010; McNally et al., 2009; Xu et al., 2012).  

Genetic polymorphisms including, single nucleotide polymorphism (SNP), insertions, 

and deletions (indels) are key factors for expression of a trait in an individual. Those genetic 

variations are the basis for developing DNA-based markers for genotyping and genetic mapping 

study. However, types of markers have been evolved with the progressive development in 

molecular biology. In recent years, SNPs have been widely used as molecular markers for 

genotyping complex-traits and genome-wide association studies because of its abundance and 

easier detection in the genome compared to other molecular markers (Huang et al., 2009; Lee et 

al., 2008; Rafalski, 2002). McNally et al., (2009), developed OryzaSNP project, and discovered 

genetic variations and relationships within 20 rice varieties and landraces using 160, 000 SNPs 

within 100 Mb of reference genome. They also found the shared SNPs in some regions were 

associated with agronomic traits. Similarly, insertions and deletions, which contribute to genetic 

variation, are being for alternative molecular marker development (Väli et al., 2008). In 

Arabidopsis, array of insertions and deletions has been used for mapping recessive mutations 

(Salathia et al., 2007). A large number of databases for the rice variants have been developed 

already. However, those information is being used mainly for the study of traits including yield 

and yield attributing traits. Thus it is imperative to genotype rice varieties by resequencing for 

genome-wide association mapping studies and gene-trait relationships of other important 

quantitative traits such as disease resistance.  
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In the southern United States, most of the commercially available cultivars are 

susceptible to major rice diseases, including bacterial panicle blight and sheath blight. These 

diseases cause 30 to 40 % yield reduction (Marchetti, 1983; Nandakumar et al., 2005; 

Nandakumar et al., 2009; Shahjahan et al., 2000). Completely resistant rice cultivars for those 

diseases are not known. In addition, use of chemical control measures for the bacterial disease is 

not available in the US, but some fungicides are available for the management of sheath blight 

(Groth, 2005; Nandakumar et al., 2009). However, a medium-grain cultivar, Jupiter, and a 

mutant line, LM-1, showed partial resistance to both diseases (Groth et al., 2007; Sha et al., 

2006). Defense mechanisms for the diseases resistance between the two cultivar/line are still 

unknown. In addition, Jupiter was developed from conventional breeding approach where as 

LM-1 is a mutant germplasm developed form gamma radiation of the semi-dwarf, long-grain 

cultivar, Lemont. Along with Lemont, other commercial cultivars, Trenasse and Bengal are 

susceptible to bacterial panicle blight and sheath blight. Trenasse and Lemont are long-grain, and 

Bengal is a medium-grain cultivar (Linscombe et al., 1993; Linscombe et al., 2006). 

In this study, we sequenced those five japonica rice genotypes to study genomic 

variations through comprehensive identification of genome-wide DNA polymorphisms that will 

provide useful information for understanding the genetic basis underlying partial disease 

resistance for bacterial panicle blight and sheath blight.!

3.2 OBJECTIVES 

1. To compare the whole genome sequences of the five rice genotypes 

2. To identify variants including SNPs, insertions, and deletions among the genomes of five 

rice genotypes 
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3.3 MATERIALS AND METHODS 

3.3.1 Rice genotypes and genomic DNA extractions 

 The five rice genotypes including Jupiter (Bengal/Rico 1/3/Bengal//Mercury/Rico 1) (Sha 

et al., 2006), Trenasse (Cypress//L-202/Tebonnet/3/LSBR-5) (Linscombe et al., 2006), Bengal 

(MARS//M-201/MARS) (Linscombe et al., 1993), Lemont (Lebonnet//CI9881/PI331581) 

(Bollich et al., 1985), and LM-1 (Mutant-derivative of Lemont generated by gamma radiation 

(250 Gy) from 60Co) (Groth et al., 2007) used in this study were developed in the US and widely 

used for cultivation. One-week old rice seedlings of those five rice genotypes were used to 

isolate genomic DNA following manufacturer’s instructions using DNeasy Plant Mini Kit, 

Qiagen, Valencia, CA 91355. The concentration of the DNA samples of Jupiter, Trenasse, 

Bengal, Lemont, and LM-1 was measured using Nano Spectrophotometer (Nano Drop, 

Wilmington, DE) and then the DNA samples were sent to Virginia Bioinformatics Institute 

(VBI) Genomics Lab at Virginia-Tech for DNA sequencing. The Nextera method was used to 

develop genomic DNA libraries and processed for paired-end sequencing to generate 100-base 

long reads. 

3.3.2 Mapping and variants identification 

Reads obtained for all five cultivars were aligned to the pseudomolecules version 7 of the 

reference genome of japonica rice cultivar, Nipponbare using Bowtie 2 with default parameters 

and their individual insert sizes (Langmead & Salzberg, 2012). Sequence Alignment/Map (SAM) 

files for individual genome obtained from Bowtie 2 procedure were used for genome wide 

variants discovery including single nucleotide polymorphism (SNP), and insertion and deletion 

(indel) using SAMtools (Li et al., 2009). Genome wide variations between the five rice 
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genotypes and reference genome were estimated using SnpEff v3.5e (Cingolani et al., 2012) with 

default parameters relative to pseudomolecules version 7 of the japonica reference genome. 

3.3.3 Pairwise comparison with the medium-grain partially resistant cultivar Jupiter 

In order to compare and find variations among five rice genotypes, including Jupiter, 

Trenasse, Bengal, Lemont, and LM-1, pairwise comparisons were performed using vcftools 

(Danecek et al., 2011) with vcf files from SnpEff, containing variants, including SNPs, and 

indels. Briefly, each vcf file of four rice genotypes was compared with Jupiter using vcftools. 

The output file from vcftools from each comparison was filtered for the common variants that 

were identified earlier with the Nipponbare reference genome. Each of the vcf files of four 

genotypes was merged with the vcf file of Jupiter, and created a new merged-vcf file. The 

merged-vcf file and the vcftools output file were used to create a new vcf file containing only the 

variants information between Jupiter and each of the other four rice genotypes. Those variants 

were again annotated using SnpEff v3.5e and the estimated variants were classified based on 

their effect on various regions in the genome and their functional type. 

3.3.4 Population structure analyses 

Genetic relatedness of five rice genotypes with various other rice cultivars including 

temperate and tropical japonica, aromatic and indica were observed by using FRAPPE (Tang et 

al., 2005). SNP data of 50 rice accessions from the study by Xu et al. (2012) and the five rice 

genotypes from this study were used to prepare population structure with different K values. 

3.4 RESULTS 

More than 40 million high quality paired-end reads with an average of 20X coverage of 

raw data was obtained from the Illumina GAIIx sequencer. An average of more than 92% and 

9% of paired-end raw sequences were mapped with chromosomal and organelle genome of the 
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reference genome, respectively. Bengal and Lemont have gotten the highest and lowest 

alignment of 99.33% and 83.94% of chromosomal sequence, respectively, whereas Jupiter and 

LM-1 have the highest and the lowest alignment of 13.21% and 5.69% of organelle genome, 

respectively (Table 3.1). 

 

Table 3.1 Coverage of mapped reads with reference to the Nipponbare chromosomal genome 
IRGSP pseudomolecule version 7 

 Jupiter Trenasse Bengal Lemont LM-1 
Total reads  
(paired-end) 78,862,636 84,341,650 49,980,244 131,158,886 75,743,584 

Coverage 18X 19X 12X 30X 18X 

Mapped with 
chromosomal 
genome (%) 

95.78 91.02 96.33 83.94 94.81 

Mapped with 
organelle genome 
(%) 

13.21 11.05 9.43 9.21 5.69 

 

3.4.1 Detection of variants, including SNPs, insertions and deletions, among the five 
genotypes and the reference genome sequence of Nipponbare 

 Various ranges in the variants including SNPs, insertions and deletions were identified 

genome sequences of five rice genotypes when compared with the reference genome, 

Nipponbare. Trenasse and Jupiter had the highest and the lowest with more than 2.1 millions and 

817K of SNPs. Lemont, LM-1 and Bengal had more than 1 million SNPs (Table 3.2). 

Chromosome 10 in Jupiter, chromosome 11 in Trenasse and Bengal, and chromosome 1 in 

Lemont and LM-1 had the higher number of SNPs than other chromosome in each of the genome 

(Table 3.2). Similarly, chromosome 9, 2, and 3 of Jupiter, Trenasse, and Bengal, respectively, 

and chromosome 9 of Lemont and LM-1 has lower SNPs. Furthermore, chromosome 10 and 3 in 

Jupiter and Trenasse, respectively, and chromosome 1 in Bengal, Lemont and LM-1 had more 
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insertions and deletions, and chromosome 9 of Jupiter, Bengal, Lemont and LM-1 and 

chromosome 7 of Trenasse has less insertions and deletions among all chromosome of each 

genome (Table 3.2).  

The frequency of variants discovered in every 100 Kb interval was calculated to observe 

the distribution of variants between the reference genome and the genomes of the five rice 

genotypes. Variations within the genome were observed from SNP frequency data in which 

higher density of variations found in chromosome 10 and lower density were found in 

chromosome 2. Among the five genomes, Trenasse had the highest SNP frequency in all 

chromosomes. Chromosome 11 and 8 of Trenasse had approximately 1000 and 800 SNPs 

densities per 100 Kb, respectively. Besides, chromosome 10 in Jupiter and chromosome 4, 10 

and 11 in Bengal, Jupiter and Bengal had the lowest SNP frequency among all genotypes. 

Chromosomes 3, 9 and 12 had the lowest SNPs densities, less than 200 per 100 Kb, in both 

Jupiter and Bengal. Higher SNPs frequencies were found in chromosome 10 in all of the five 

genomes compared to other chromosomes. Lemont and LM-1 had the similar pattern of 

distribution of SNP frequencies (Figure 3.1a). 

Distribution of insertion and deletion frequencies in the genome of each cultivar/line was 

similar (Figure 3.1 [b, c]). Trenasse had the highest insertions and deletion densities among all 

the five genomes. Within Trenasse, chromosomes 3, 8 and 11 had higher insertions and deletions 

frequencies, with more than 30 insertions or deletions per 100 Kb size, compared to other 

chromosome (Figure 3.1 [b, c]). Similar to SNPs variants, chromosome 3, 9 and 12 of Jupiter 

and Bengal had the lowest frequency of insertions and deletions (Figure 3.1 [b, c]). Similar to 

SNP frequency, Lemont and LM-1 had similar pattern of insertions and deletions distribution in 

the genome. Frequency of insertions and deletions were approximately similar throughout the 
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genome of the five genotypes. Insertion frequencies were higher than deletions except in 

chromosome 4, 5 and 9 of Jupiter, and chromosome 5, 6 and 9 of Trenasse (Figure 3.1 [b, c]). 

3.4.2 Distribution of SNPs, insertions and deletions in the genomes of the five rice 
genotypes 

  The distribution of variants within individual chromosome showed significant variations 

in several regions. Trenasse, Lemont and LM-1 had higher variant frequencies distribution than 

Jupiter and Bengal. Among five rice genotypes, Jupiter and Bengal had the similar distribution 

pattern of the variants frequencies, Lemont and LM-1 have the similar distribution pattern, and 

Trenasse had different distribution pattern of the variants within the individual chromosome 

(Figures 3.2, 3.3, and 3.4). For SNPs, there were some ranges of regions within individual 

chromosomes in which more SNPs were identified. Particularly, the major regions containing 

higher SNPs densities were; 15 to 17 Mb and 18 to 22 Mb on chromosome 3, 1 to 5 Mb and 7 to 

15 Mb on chromosome 4, 5 to 8 Mb and 15 to 17 Mb on chromosome 5, 1 to 3 Mb and 9 to 13 

Mb on chromosome 6, 17 to 24 Mb on chromosome 7, 9 to 14 Mb and 15 to 25 Mb on 

chromosome 8, 1 to 13 Mb in chromosome 9, 1 to 13 Mb in chromosome 10, 9 to 19 Mb (for 

Trenasse and Bengal) on chromosome 11, and 11 to 20 Mb region in chromosome 12 (Figure 

3.2). Similarly, distribution of insertions and deletions frequencies varied within the individual 

chromosome. Distribution of insertions and deletions were found to be similar with the 

distribution pattern of SNPs (Figures 3.2, 3.3, and 3.4). 

3.4.3 Annotation of the SNPs, insertions and deletions identified between five rice 
genotypes and the reference genome, Nipponbare 

Figure 3.5 shows the frequency of variants in different genomic regions, including 

upstream and downstream regions, untranslated 5’ and 3’ regions, exon, intron, and intergenic 

regions, of five rice genotypes. Upstream and downstream regions of genes by the SnpEff, a  
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Table 3.2 Number of SNPs, insertions, and deletions, on individual chromosome identified 
between the reference genome, Nipponbare and the five rice genotypes 

  Jupiter  Trenasse Bengal Lemont LM-1 
SNPs           
Chromosome 1 88,362 171,060 135,180 192,199 179,793 
Chromosome 2 73,313 118,974 78,248 99,451 91,454 
Chromosome 3 39,733 186,792 41,286 124,820 115,626 
Chromosome 4 98,462 202,335 147,305 156,189 142,943 
Chromosome 5 62,823 152,115 52,613 134,000 126,457 
Chromosome 6 57,508 153,493 68,284 118,993 111,417 
Chromosome 7 70,094 128,665 65,303 107,851 99,801 
Chromosome 8 62,114 226,527 63,626 152,692 141,889 
Chromosome 9 16,854 167,467 27,344 97,367 90,075 
Chromosome 10 135,193 165,413 130,505 177,872 168,225 
Chromosome 11 68,711 283,002 150,632 181,171 163,973 
Chromosome 12 44,717 184,048 46,968 181,450 165,381 

Total 817,884 2,139,891 1,007,294 1,724,055 1,597,034 
Insertions           
Chromosome 1 5,765 10,276 8,630 12,374 11,449 
Chromosome 2 4,428 6,409 4,552 5,905 5,508 
Chromosome 3 2,414 11,991 2,733 6,765 6,362 
Chromosome 4 4,823 7,186 5,763 6,574 6,006 
Chromosome 5 3,611 7,178 2,475 6,718 6,238 
Chromosome 6 3,104 7,395 3,082 6,089 5,552 
Chromosome 7 3,766 5,927 3,227 5,316 4,922 
Chromosome 8 3,157 9,976 2,903 6,842 6,370 
Chromosome 9 514 6,428 1,026 4,157 3,852 
Chromosome 10 6,080 6,206 5,367 7,582 6,937 
Chromosome 11 3,353 11,700 6,033 8,121 7,377 
Chromosome 12 2,288 6,601 2,158 6,840 6,147 

Total 43,303 97,273 47,949 83,283 76,720 
Deletions           
Chromosome 1 5,636 9,661 8,448 11,385 10,795 
Chromosome 2 4,275 6,193 4,302 5,738 5,409 
Chromosome 3 2,339 11,070 2,594 6,519 6,145 
Chromosome 4 4,824 6,943 5,678 6,314 5,804 
Chromosome 5 3,629 6,881 2,594 6,478 6,062 
Chromosome 6 3,088 7,138 3,085 5,798 5,355 
Chromosome 7 3,749 5,776 3,192 5,261 4,843 
Chromosome 8 3,063 9,319 2,743 6,273 5,768 
Chromosome 9 537 6,016 1,081 3,987 3,671 
Chromosome 10 5,681 6,081 5,153 7,232 6,723 
Chromosome 11 3,056 10,476 5,863 7,187 6,542 
Chromosome 12 2,241 6,169 2,146 6,219 5,664 

Total 42,118 91,723 46,879 78,391 72,781 
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Figure 3.1 Frequency of variants on individual chromosome identified between the reference 
genome and the five rice genotypes, (a) SNPs densities, (b) insertions densities, and (c) deletions 
densities. 
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Figure 3.2 Distribution of single nucleotide polymorphisms (SNPs) between the reference 
genome, Nipponbare and five-rice genotypes in 12 chromosomes. X-axis represents the physical 
distance of each chromosome in Mb, and Y-axis represents the number of SNPs. Chromosome 
number and the size of each chromosome are given on the side of the graph. 
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Figure 3.3 Distribution of insertions between the reference genome, Nipponbare and five-rice 
genotypes in 12 chromosomes. X-axis represents the physical distance of each chromosome in 
Mb, and Y-axis represents the number of deletions. Chromosome number and the size of each 
chromosome are given on the side of the graph. 
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Figure 3.4 Distribution of deletions between the reference genome, Nipponbare and five-rice 
genotypes in 12 chromosomes. X-axis represents the physical distance of each chromosome in 
Mb, and Y-axis represents the number of deletions. Chromosome number and the size of each 
chromosome are given on the side of the graph. 
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program which was used for annotation of vcf files of the genome sequences, count variants that 

occur up to 5 Kb upstream and downstream of each gene. Similarly exon includes various types 

of variants including frameshift, exon, non-synonymous and synonymous coding, codon 

insertion and codon deletion, codon change plus codon insertion, codon change plus codon 

deletion, premature stop codon gained, and stop lost. Insertion and/or deletion generate 

frameshift variation.  Variant that differs the amino acid product of codon is non-synonymous 

coding variant, and variant that changes the bases, but does not have any effect on the amino acid 

product, is synonymous coding variant. So, non-synonymous coding variants are more important 

to study than synonymous coding variants. Codon insertion and codon deletion type variants 

generated by the insertion and/or deletion of one or more codon which will generate inframe 

insertion and deletion, respectively, whereas codon change plus codon insertion and codon 

change plus codon deletion occur by the insertion or deletion within the codon there by 

generating disruptive inframe insertion and deletion, respectively.  

Jupiter and Bengal had the lowest and Trenasse had the highest frequency of variants per 

100 Kb each of the different regions among the five genomes. Lemont and LM-1 had similar 

frequency level of variants throughout all seven different regions, and had higher variant 

frequency than Jupiter and Bengal, and lower than Trenasse. The upstream, UTR5’, intron and 

downstream regions had similar frequency of variants, whereas exon region had got higher 

variants frequency. On the other hand, the lowest frequency level of variants was observed in 

UTR3’ and intergenic regions have the (Figure 3.5). SNPs that change codons of a genome 

resulting in altered amino acid are known as non-synonymous SNPs. A total number of SNPs in 

CDS regions ranged from 181, 000 to 469, 000. Among these, 96, 000 to 249, 000 of SNPs were 

identified as non-synonymous, and 85, 000 to 220, 000 were identified as synonymous SNPs in 



! 53 

all five rice genotypes. Similarly, 2000 to 5000 of insertions and deletions were identified in 

CDS regions, and similar number of insertions and deletions were found to cause frameshift in 

the five rice genomes (Appendix 14). 

 

Table 3.3 Annotation of variants at various genomic regions identified in five rice genotypes 
compared to the reference genome 

  Jupiter Trenasse  Bengal Lemont LM-1 
Upstream 815,677 2,104,611 980,273 1,689,888 1,556,965 
UTR5' 13,429 30,666 14,811 24,820 23,476 
Exon 189,479 489,598 228,698 406,990 378,445 
Intron 165,791 434,003 207,332 347,026 325,436 
UTR3' 19,321 46,448 22,728 35,407 34,030 
Downstream 783,570 2,014,522 942,653 1,631,064 1,504,889 
Intergenic 570,761 1,472,704 696,195 1,189,336 1,095,206 

 

 

Nucleotide substitutions are the major reasons for the development of SNP variants. 

Based on the nucleotide substitutions, the SNPs identified between the reference genome and the 

genomes of five rice genotypes were classified into transitions (C/T and G/A) and transversions 

(C/G, T/A, A/C, and G/T). Nucleotide substitutions through transitions are higher than 

transversions in all five rice genotypes (Table 3.4). Within the transitions, the substitution of C/T 

is slightly higher than A/G substitutions in four rice genotypes including Jupiter, Trenasse, 

Lemont, and LM-1. However, A/G substitutions were higher in Bengal. Similarly, T/A 

substitutions were relatively higher in all five rice genotypes compared to other transversions 

including C/G, A/C, and G/T. The ratio of transitions to transversions was greater than 2.4 in all 

five rice genotypes. 
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Figure 3.5 Frequency of variants at 100 Kb interval on various genomic regions identified 
between the reference genome and the five rice genotypes. 
 

 

Table 3.4 Classification of nucleotide substitutions in SNPs: Nucleotide substitutions identified 
between the reference genome and five rice genotypes 

  Reference (rice7) vs 
 Jupiter Trenasse Bengal Lemont  LM-1 

Transitions (Ts)      
C/T 290,775 767,627 358,738 616,433 571,423 
A/G 290,473 767,190 358,746 615,814 570,833 

Total 581,248 1,534,817 717,484 1,232,247 1,142,256 
Transversions (Tv)      
C/G 44,696 112,560 54,631 92,490 84,881 
T/A 69,829 179,926 85,768 146,855 136,043 
A/C 61,043 156,584 75,121 126,458 117,100 
G/T 61,068 156,004 74,290 126,005 116,754 

Total 236,636 605,074 289,810 491,808 454,778 
Ts/Tv ratio 2.46 2.54 2.48 2.51 2.51 
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3.4.4 Pairwise comparisons between the partially resistant medium-grain cultivar, Jupiter, 
and each of four rice genotypes!

Based on the variants obtained from the comparison with the reference genome, 

comparison among the five rice genotypes were conducted. Jupiter, a medium-grain partially 

resistant cultivar for BPB, was use to perform pairwise comparisons with the other four 

genotypes. Trenasse had the highest and Bengal had the lowest number of number of SNPs, 

insertions and deletions among the four genotypes. Lemont and LM-1 had relatively similar 

number of variants and were in between Trenasse and Bengal (Table 3.5). At an individual level, 

chromosome 11 of Trenasse and Bengal and chromosome12 of Lemont and LM-1 had higher 

number of SNPs. However, chromosome 2 of Trenasse, Lemont and LM-1, and chromosome 12 

of Bengal had lower number of SNPs. Similarly, chromosome 3 of Trenasse and chromosome 1 

of Bengal, Lemont, and LM-1 had higher number of insertions and deletions. However, 

chromosome 11 had higher densities of insertion and deletion per 100 Kb in Trenasse (Figure 

3.6b). Lowest number of insertions and deletions was identified within the genome of Trenasse 

in chromosome 2 and 7, respectively. In chromosome12 of Bengal and chromosome 7 of Lemont 

and LM-1, lower number of insertions and deletions were identified (Table 3.5). However, 

Bengal chromosome 8 and 12 had the lowest densities of insertions and deletions after 

normalization (Figure 3.6 [b, c]).  

 Within the individual chromosome, frequency of variants was differentially distributed. 

Several regions where the variant densities were higher for Trenasse had lower variants rate in 

the same regions for other genotypes including Bengal. Fifteen to twenty five Mb on 

chromosome 3, 1 to 5 Mb and 7 to 12 Mb on chromosome 4, 15 to 17 Mb on chromosome 5, 7 to 

12 Mb and 15 to 17 Mb on chromosome 6, 9 to 24 Mb on chromosome 8, 1 to 11 Mb on 

chromosome 9 and 7 to 11 Mb on chromosome 10, 7 to 17 Mb on chromosome 11, and 11 to 20 
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Mb on chromosome 12 were the regions where higher SNPs frequencies were identified 

compared to Jupiter. The longest regions having higher SNPs frequencies for Lemont, LM-1 and 

Trenasse were in the region between 11 to 20 Mb on chromosome 12. For Trenasse, 

chromosome 8, 9, 10 and 12 had the longest regions of higher SNPs densities, whereas, for 

Bengal, only in the regions between 7 to 13 Mb on chromosome 4 and 10 to 17 Mb on 

chromosome 11 have higher SNP densities (Figure 3.11). Similar distribution patterns were also 

observed in insertions and deletions (Figures 3.12 and 3.13) 

3.4.5 Annotations of the variants identified on individual genome of four rice genotypes 
when compared with Jupiter 

 Pairwise comparisons of the variants between Jupiter and each of four rice genotypes 

showed differential degree of variations. Trenasse showed higher number of variants in various 

regions of genomes, including upstream, downstream, exon, intron, UTR5’, UTR3’, and 

intergenic regions. Bengal had the lowest number of variants among the four rice genotypes. 

Exon tend to have the highest variants densities, and the UTR3’ had the lowest variants densities 

in all four genomes when compared to Jupiter (Table 3.6 and Figure 3.7). Lemont and LM-1 had 

similar level of variants with Jupiter in all seven genomic regions.  

Variants on each of the seven regions were important for further study, however, variants 

occurred in non-synonymously in CDS region were the most important due to change in amino 

acid product. SNPs in CDS regions in all four rice genotypes were ranged from 179, 000 to 440, 

000 in which Trenasse had the highest and Bengal had the lowest number of SNPs. Within CDS, 

the number of non-synonymous SNPs were ranged from 92, 000 – 231, 000 (Appendix 15). 

Similarly, number of synonymous SNPs identified in four genotypes ranged from 87,000 to 

208,000.  In addition, number of variants due to insertions and deletions in CDS regions ranged 
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from 1800 to 4500. Frameshift variations due to insertions and deletions were found in the 

ranges between 2000 and 5200 in four rice genotypes (Appendix 15). 

Total number of genes affected by several variants, such as non-synonymous SNPs, 

insertions and deletions, and frameshift was analyzed. Large number of genes was affected by 

non-synonymous SNPs followed by frameshift, insertions, and deletions. (Table 3.7 and Figure 

3.8). Similarly, among the individual genotypes, the largest number of genes affected by nsSNPs 

was found in Trenasse and followed by Lemont, LM-1 and Bengal with 13, 696; 10, 460; 10, 

153; and 6, 057 genes, respectively (Table 3.7). 

Since, Jupiter is partial resistant cultivar and Trenasse is susceptible cultivar for BPB, 

genes with non-synonymous SNPs found between these two genotypes were of great interest. So, 

gene ontology (GO) analysis of those genes affected by non-synonymous SNPs was performed 

to understand their functions using a web-based tool, agriGO (Du et al., 2010). A total of 21, 491 

transcripts ID were assigned for GO analysis, however, only 8, 805 transcripts ID were found to 

be annotated in agriGO, and used as query list. Those transcripts ID were classified into 18 

different GO terms. However, the results obtained did not have high level of gene enrichment in 

any GO terms.  

GO terms, including signal transduction, response to stress, and protein modification, 

which were categorized in biological process have greater number of transcripts. Similarly, 

greater number of transcripts ID was grouped in nucleotide binding and kinase activity under 

molecular function (Figure 3.9). 

 

 

 



! 58 

Table 3.5 Number of SNPs, insertions, and deletions, on individual chromosome identified 
between the Jupiter and the four rice genotypes 

 Trenasse Bengal Lemont LM-1 
SNPs     
Chromosome 1 155,199 100,099 169,186 158,744 
Chromosome 2 90,748 45,183 71,352 64,418 
Chromosome 3 192,799 44,731 109,543 101,111 
Chromosome 4 173,417 117,846 120,662 110,157 
Chromosome 5 123,230 45,510 98,604 91,281 
Chromosome 6 145,550 62,332 114,225 106,938 
Chromosome 7 95,086 52,068 79,282 72,226 
Chromosome 8 216,367 34,359 145,715 135,740 
Chromosome 9 167,313 31,846 95,043 87,963 
Chromosome 10 150,008 51,131 140,010 131,721 
Chromosome 11 272,063 125,128 161,460 146,798 
Chromosome 12 190,753 29,083 185,469 170,175 

Total 1,972,533 739,316 1,490,551 1,377,272 
Insertions     
Chromosome 1 9,354 6,693 11,035 10,341 
Chromosome 2 4,690 2,692 4,078 3,880 
Chromosome 3 12,167 2,472 5,729 5,400 
Chromosome 4 5,637 4,709 4,461 4,108 
Chromosome 5 5,304 2,218 4,414 4,070 
Chromosome 6 6,866 2,799 5,820 5,434 
Chromosome 7 4,026 2,522 3,743 3,404 
Chromosome 8 9,563 1,038 6,659 6,246 
Chromosome 9 6,470 1,227 4,015 3,729 
Chromosome 10 5,619 2,195 5,457 5,040 
Chromosome 11 11,659 5,040 7,456 6,865 
Chromosome 12 7,140 961 7,202 6,581 

Total 88,495 34,566 70,069 65,098 
Deletions     
Chromosome 1 8,593 6,225 9,772 9,351 
Chromosome 2 4,217 2,392 3,702 3,481 
Chromosome 3 11,195 2,296 5,431 5,197 
Chromosome 4 5,254 4,441 4,047 3,804 
Chromosome 5 4,846 2,053 3,880 3,684 
Chromosome 6 6,662 2,695 5,512 5,283 
Chromosome 7 3,761 2,452 3,528 3,286 
Chromosome 8 9,128 920 6,015 5,622 
Chromosome 9 6,054 1,288 3,859 3,548 
Chromosome 10 5,364 1,669 5,097 4,834 
Chromosome 11 10,423 4,821 6,520 6,078 
Chromosome 12 6,670 790 6,512 6,028 

Total 82,167 32,042 63,875 60,196 
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Figure 3.6 Frequency of variants on individual chromosome identified between the Jupiter and 
the four rice genotypes, (a) SNP densities, (b) insertion densities, and (c) deletion densities per 
100 Kb. 
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Table 3.6 Annotation of variants at various genomic regions identified between the genome of 
Jupiter and other four rice genotypes 

 Jupiter vs 
  Trenasse  Bengal Lemont LM-1 

Upstream 5Kb 1,920,546 704,179 1,430,861 1,317,866 
UTR5' 26,468 9,585 18,913 18,128 
Exon 459,404 186,446 361,671 335,915 
Intron 393,156 143,872 291,187 272,108 
UTR3' 39,254 13,330 26,980 25,963 
Downstream 5Kb 1,837,883 679,579 1,388,568 1,280,934 
Intergenic 1,347,790 494,130 1,016,557 935,565 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7 Frequency of variants at 100 Kb interval on various genomic regions identified 
between the genome of Jupiter and the genome of four rice genotypes. 
 

Table 3.7 Total number of genes affected by non-synonymous SNPs, insertions, deletions and 
frameshift 

 
Non-synonymous 

SNPs Insertions Deletions Frameshift 

Jupiter vs Trenasse 13,696 1,432 1,267 2,007 
Jupier vs Bengal 6,057 571 518 834 
Jupiter vs Lemont 10,460 1,106 943 1,612 
Jupiter vs LM-1 10,153 1,024 919 1,454 
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Figure 3.8 Percentage of genes affected by different variants including non-synonymous SNPs, 
insertions, deletions, and frameshift in Jupiter compared to four other rice genotypes 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Grouping of genes in Trenasse with non-synonymous SNPs identified between 
Trenasse and Jupiter based on gene ontology using agriGO. agriGO divides the genes into 18 
different groups.  
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Two types of nucleotide substitutions, including transitions (C/T and A/G), and 

transversions (C/G, T/A, A/C, and G/T), were observed in four rice genotypes. Transitions were 

occurred more than transversion in all four genotypes. Within transitions, number of C/T was 

higher than A/G in Trenasse, Bengal and Lemont; however, A/G was higher than C/T in LM-1. 

The highest and the lowest transitions occurred in Trenasse and Bengal, respectively. Similarly, 

in tranversions, T/A was the highest and C/G was the lowest in all four rice genotypes. 

Transitions to transversions ratios for all four genotypes were found to be 2.55, 2.50, 2.52 and 

2.53 in Trenasse, Bengal, Lemont and LM-1, respectively (Table 3.8). 

 
Table 3.8 Classification of nucleotide substitutions in SNPs: Nucleotide substitutions identified 
between the Jupiter genome and four rice genotypes 

  Jupiter vs 
 Trenasse Bengal Lemont  LM-1 

Transitions (Ts)    
C/T 708,909 264,152 534,104 493,517 
A/G 708,530 264,109 533,468 493,669 

Total 1,417,439 528,261 1,067,572 987,186 
Transversions (Tv)    
C/G 102,800 38,989 78,629 72,144 
T/A 167,197 64,324 129,017 119,032 
A/C 142,652 54,174 107,867 99,721 
G/T 142,445 53,568 107,466 99,189 

Total 555,094 211,055 422,979 390,086 
Ts/Tv ratio 2.55 2.50 2.52 2.53 

 

 There was a variation in length among the total identified insertions and deletions either 

in comparison with the reference genome, Nipponbare or with the Jupiter. The length ranged 

from 1 to 18 bases for both insertions and deletions (Figure 3.10 [a, b]). Majority of insertions 

and deletions were mononucleotide, and followed by 2 bases, and 3 bases (Figure 3.10 [a, b]). 
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Figure 3.10 Distribution of insertions and deletions (indels) variants based on their length in, (a) 
five rice genotypes when compared with the reference genome, Nipponbare, and (b) four rice 
genotypes when compared with Jupiter. The x-axis shows the number deletions (red) and 
insertions (blue). The y-axis shows number of insertions and deletions. 
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Figure 3.11 Distribution of single nucleotide polymorphisms (SNPs) between the Jupiter and 
four rice genotypes in 12 chromosomes. X-axis represents the physical distance of each 
chromosome in Mb, and Y-axis represents the number of SNPs. Chromosome number and the 
size of each chromosome are given on the side of the graph. 
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Figure 3.12 Distribution of insertions between the Jupiter and four rice genotypes in 12 
chromosomes. X-axis represents the physical distance of each chromosome in Mb, and Y-axis 
represents the number of deletions. Chromosome number and the size of each chromosome are 
given on the side of the graph. 
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Figure 3.13 Distribution of deletions between the Jupiter and four rice genotypes in 12 
chromosomes. X-axis represents the physical distance of each chromosome in Mb, and Y-axis 
represents the number of deletions. Chromosome number and the size of each chromosome are 
given on the side of the graph. 
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3.4.6 Population structure analysis 

 Population structure analysis using FRAPPE showed the five rice genotypes used in this 

study were located at the same place within tropical japonica group. Among five rice genotypes 

Trenasse and Lemont were located in the tropical japonica accession with some ancestry sharing 

of indica accessions in Trenasse. LM-1, a mutant derivative of Lemont is located close to 

Lemont. In contrast, Jupiter and Bengal have some admixture of tropical and temperate japonica 

ancestry (Figure 3.14). 

 
Figure 3.14 The five rice genotypes sequenced in this study (shown in the dashed box) in 
comparison with 50 rice accessions whose SNP data were publicly available (Xu et al., 2012). 
Total 1,188,460 non-ambiguous, biallelic SNPs were used for population structure analysis (K = 
3 to 7, 10000 iterations).  Five rice genotypes used in this study are clustered within tropical 
japonica. The 50 rice accessions were labeled as in Xu et al., 2012.  TRJ, Tropical Japonica; TEJ, 
Temperate Japonica; ARO, Aromatic rice; AUS, aus rice; IND, Indica; N, O. nivara; R. 
O.rufipogon. Each accession is represented vertically and proportion of the ancestral populations 
contributions is represented by color segment in each vertical line.!
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3.5 DISCUSSION 

 Comprehensive identification of genome-wide DNA polymorphisms was performed from 

the whole genome sequence data of the commercially grown japonica rice genotypes at 

Louisiana. In-silico mapping of the paired-end sequences of each five genotypes covered about 

92% of the reference genome, Nipponbare, unambiguously. We identified more than 400 SNPs 

per 100 Kb in Trenasse, Lemont and LM-1, but lower in Jupiter and Bengal which was only 200 

SNPs per 100 Kb were detected (Figure 3.1a). The SNPs density found, in previous study, 

between Omachi and the reference genome, Nipponbare was higher than the SNP density 

between Nipponbare and two rice genotypes Jupiter and Bengal of this study, but lower than the 

SNP density found between the Nipponbare and remaining three rice genotypes Trenasse, 

Lemont and LM-1 used in this study (Arai-Kichise et al., 2011). However, SNP density found 

between six indica inbreds and the Nipponbare was higher than the SNP density found between 

Nipponbare and five rice genotypes used in this study (Subbaiyan et al., 2012). Moreover, 

pairwise comparison between a medium-grain cultivar, Jupiter and other four rice genotypes 

showed that higher SNP density was observed in Trenasse and the lowest in Bengal, suggesting 

that Bengal cultivar is closer to Jupiter (Figure 3.6a). Since Bengal is in pedigree of Jupiter, it is 

obvious that Jupiter to be closer with Bengal (Sha et al., 2006). These SNPs results was also 

supported by the population structure analysis of five rice genotypes in which Jupiter and Bengal 

are closer to temperate japonica where the reference genome Nipponbare is located  (Figure 

3.14). Distribution of insertions and deletions density per 100 Kb on five rice genotypes was 

observed like SNP density (Figures 3.1 [b, c], 3.3b and 3.6c). Higher variant density in three of 

the five rice genotypes used in this study suggested that higher genetic diversity might be present 

in those three rice genotypes compared to Jupiter and Bengal (Tenaillon et al., 2001). 
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Uneven distribution of SNP as well as insertions and deletions density within the 

chromosomes was observed. The same regions within the chromosome were found to have 

higher variants densities for some genotypes and have lower densities for other genotypes when 

compared with Nipponbare or with Jupiter. Higher densities of variants were detected in 11 Mb 

to 20 Mb of chromosome 12, 5 to 17 Mb of chromosome 11, 1 to 9 Mb of chromosome 9.Lower 

densities of variants also detected in several region within individual chromosome, including, 27 

Mb to 33 Mb of chromosome 2, 22 Mb to 29 Mb of chromosome 3, 11 Mb to 22 Mb of 

chromosome 6, and 4 Mb to 14 Mb of chromosome 7 (Figures 3.2, 3.3, 3.4). These types of 

differences in the distribution of variants within the chromosomes have been described in 

previous studies of rice, wheat, and Arabidopsis (Arai-Kichise et al., 2011; Nordborg et al., 

2005; Somers et al., 2006; Subbaiyan et al., 2012).  

About 59% of total SNPs detected were located in the intergenic region and only ~21% 

were located in coding region of the genome of each of the five genotypes. Within the coding 

regions, ~47% were synonymous and ~53% were non-synonymous SNPs. Similarly, in the case 

of pairwise comparisons with Jupiter, ~59% of total SNPs were located in intergenic region and 

~22% of total SNPs were located in coding regions. Among the SNPs in coding region, ~48% 

were synonymous and ~52% were non-synonymous SNPs. On average, ratio of non-

synonymous to synonymous SNPs ranged from 1.06 in Jupiter/Bengal comparison to 1.15 in 

Nipponbare/Bengal mapping (Appendices 14 and 15). Similar ratio was observed in other 

species of rice including indica and tropical and temperate japonica (Xu et al., 2012). 

Furthermore, about ~66% of indels were located in intergenic region, ~2.5% of were located in 

coding region, and ~2.6% of indels were found to cause frameshift substitution when five rice 

genomes were mapped with Nipponbare and similar trends were observed in pairwise 
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comparison between Jupiter and four rice genotypes (Appendices 14 and 15). It has been 

reported that gene families with essential functions have lower non-synonymous to synonymous 

SNP ratio, and gene families involved in signal transduction and regulatory process have higher 

ratio (McNally et al., 2009; Xu et al., 2012). Higher number of variants towards 5 Kb upstream 

and 5 Kb downstream region were detected (Tables 3.3 and 3.5). Such a large number of variants 

in the upstream and downstream region of genes have role in altering regulation of gene 

expression resulting in alter phenotypic traits (Thumma et al., 2009; Zhang et al., 2011). 

Large number of genes was found to be affect with non-synonymous SNPs between 

Jupiter and Trennase. Gene ontology enrichment analysis of those affected genes revealed the 

greatest number of genes was found to be involve in signal transduction, response to stress, 

protein modification process, nucleotide binding, and kinase activity. The nucleotide binding and 

kinase activity related genes were reported to be involved in resistance to several rice diseases, 

including rice blast, bacterial blight of rice(Wang et al., 1999; Xiang et al., 2006). 

Furthermore, the ratio of transitions to transversions in five rice genotypes was observed. 

This phenomenon is known as transition bias, and occurs in the nature during evolution. This 

transition bias helped us to understand the DNA-sequence evolution. The ratio of transistions to 

transversions in this study was about 2.5 in all five rice genotypes, which is higher than the ratio 

obtained in previous study of rice (Jain et al., 2014; Subbaiyan et al., 2012; Wakeley, 1996). 

Higher transitions to transversions ratio indicate higher frequency of transitions mutation 

occurred compared to transversions. Tranistions mutation were favored more, and had an 

important role in conserving the protein structure than transversions mutation in nature 

(Wakeley, 1996). Within transitions C/T substitution was higher in most of the genome except in 

Bengal and LM-1 when compared to Nipponbare and Jupiter respectively (Tables 3.4 and 3.7). 
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Similarly, among transversions, T/A substitution was found in large numbers (Tables 3.4 and 

3.7). 

The analysis of population structure of five rice genotypes showed that all of the five rice 

genotypes were clustered within tropical japonica. It was found that Bengal and Lemont were 

tropical japonica, and rice accessions that were used to develop Jupiter (Sha et al., 2006) and 

Trenasse (Linscombe et al., 2006) were also tropical japonica (Lu et al., 2005).  Furthermore, 

Trenasse, a long-grain cultivar contained the admixture of indica accessions and tropical 

japonica. It was reported that one of the accessions in pedigree of Trenasse contains semidwarf 

gene from either IR-8 or Taichung Native 1 (Tseng et al., 1984). This might be the reason that 

Trensasse have large number of variants when mapped with the Nipponbare, which is a 

temperate japonica. Jupiter and Bengal were clustered in the border of tropical and temperate 

japonica showing some admixture of both groups. Since, Bengal which is a tropical japonica 

contains a temperate japonica accesseion, M-201 (Lu et al., 2005), in its pedigree, the portion of 

temperate japonica, in our study, in Jupiter and Bengal might have come from M-201 

(Linscombe et al., 1993; Sha et al., 2006). LM-1, resulting from gamma radiation mutation was 

located closer to Lemont in tropical japonica group (Figure 3.14). The population structure 

analysis correlated with the known characteristics of the five rice genotypes and helped to 

understand the proportion of different ancestry accession in those rice genotypes. 

In this study, genome-wide polymorphism in five rice genotypes commercially grown in 

southern region of the United States was identified. The identified SNPs and insertions and 

deletions will be potential assets for molecular marker development for genetic studies. In 

addition, the variants identified in this study will help to expand resources of DNA 
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polymorphisms that can be used along with available variants resources for high density QTL-

mapping, association mapping, and comparative study of rice. 
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CHAPTER IV: POLYMORPHIC MOLECULAR MARKERS SURVEY FOR 
GENOTYPING RECOMBINANT INBRED LINES DEVELOPED FROM THE CROSS 

BETWEEN JUPITER AND TRENASSE!

4.1 INTRODUCTION 

Bacterial panicle blight (BPB), caused by Burkholderia glumae and B. gladioli, is one of 

the major rice diseases in the rice-producing areas of the southern United States (Nandakumar, R 

et al., 2007; Nandakumar et al., 2005; Nandakumar et al., 2009). A typical BPB symptom in rice 

is shown in Figure 1.1. BPB reduces rice yield by as much as 40% in heavily infested fields 

(Nandakumar et al., 2009). Despite the importance of the disease, no effective control measure is 

available for BPB. In addition, no completely resistant rice cultivars were available. However, 

Jupiter, a medium-grain cultivar shows partial resistance to this disease (Nandakumar, R. et al., 

2007; Sha et al., 2006). On the other hand, a commercially grown long-grain cultivar, Trenasse, 

is susceptible to BPB (Figure 1.1) (Linscombe et al., 2006).   

Molecular basis for the quantitative traits, such as disease resistance, can be unravelled 

by genetic mapping. Genetic polymorphisms including, single nucleotide polymorphism (SNP), 

insertions and deletions are helpful to map genes responsible for quantitative trait variations. 

Those genetic variations are the basis for developing molecular markers for genotyping and 

genetic mapping study. Molecular markers, including amplified fragment length polymorphism 

(AFLP), restriction fragment length polymorphism (RFLP), and simple sequence repeats (SSRs) 

are powerful tools for association studies, quantitative trail loci (QTL) mapping, marker-assisted 

selection, and variety identification (Sharma et al., 2008). Among the available molecular 

markers, SSR were widely used due to better reproducibility and high polymorphism. Rice has a 

number of databases for SSR markers that has been used for QTL mapping and association 

studies for various traits (McCouch et al., 1988; McCouch et al., 2002; Price et al., 2000; Sato et 

al., 2006; Sharma et al., 2009; Wada et al., 2008). SNPs are becoming popular as molecular 
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markers for genotyping complex-traits and genome-wide association studies because of its 

abundance availability, and easier detection in the genome compared to other molecular markers 

(Huang et al., 2009; Lee et al., 2008; Rafalski, 2002). However, only few reports were available 

for QTL mapping for partial resistance to BPB and bacterial grain rot in rice caused by B. 

glumae (Mizobuchi, Ritsuko et al., 2013; Mizobuchi, R. et al., 2013; Pinson et al., 2010). 

Development of high-throughput sequencing technologies in recent years provides useful 

genome sequence data from large number of samples in short period of time with low cost (Craig 

et al., 2008). Those data are being used for genetic studies of the individual organisms at genome 

level. High-throughput sequence data from rice enhance our understanding about genes and their 

roles on important agronomic traits, and genetic relatedness among the rice accessions. 

Comparative study of whole genome sequences of various rice cultivars will be helpful in 

identifying variations among them at genome level.  

In our study, SSR markers available in the Gramene database, (www.gramene.org), were 

used for polymorphism survey. In addition, identification of SSR motifs and single nucleotide 

polymorphisms (SNPs) from high-throughput sequence data provided an alternative way to 

develop additional molecular markers (Kumar et al., 2012). In this study, identification and 

development of SSR and SNPs markers were done by comparative analysis of whole genome 

sequences between two cultivars. These molecular markers can be used for future QTL mapping 

studies for partial resistance to BPB. 

4.2 OBJECTIVES 

i. To identify polymorphic SSR markers between Trenasse and Jupiter from the available 

SSR markers databases 
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ii. To compare high-throughput sequence data of two rice cultivars, Jupiter and Trenasse, 

and identify SSR motifs and SNPs between them. 

4.3 MATERIALS AND METHODS 

4.3.1 Plant material and genomic DNA isolation 

Genomic DNA from parent plants was isolated using CTAB method (Clarke, 2009). 

Briefly, 4 g of freshly emerging leaf tissues grown in the greenhouse were ground to fine powder 

in liquid nitrogen with mortar and pestle. The powder was mixed with 10 ml of CTAB buffer 

(2% CTAB) in a 50 ml of centrifuge tube. The tube with the mixture was incubated at 55°C for 

about 15 min in a recirculation water bath. The tube with plant tissue mixture was centrifuged at 

12000g for 5 min to spin down cell debris after incubation, and the supernatant was transferred 

to a clean tube. Five ml of chloroform: isoamyl alcohol (24:1) was added to the supernatant and 

mixed properly. The mixture was centrifuged for 1 min at 13000 rpm. The upper aqueous phase 

after centrifugation was transferred carefully to a new clean tube. Transferred aqueous solution 

was mixed with 1 ml of 7.5M ammonium acetate followed by 10 ml of ice-cold absolute ethanol. 

The mixture was mixed properly and stored at -20°C for an hour to precipitate the genomic 

DNA. After an hour of incubation, the tube was centrifuged for 1 min at 13000 rpm, which 

helped to form a pellet at the bottom of the tube. Supernatant was removed from the tube and the 

DNA pellet was washed with 70% ice-cold ethanol for two times by centrifuging at 13000 rpm 

for 1 min. After washing, ethanol was discarded, the pellet was dried in the tube and resuspend in 

1 ml of sterilized ddH2O. The resuspended DNA was treated with 10 µg/ml of RNaseA. After 

resuspension, the DNA was incubated at 65°C for 20 min and stored at -20°C for further use. 
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4.3.2 Survey of molecular marker for polymorphism between Trenasse and Jupiter 

 In this experiment, SSR markers used were primarily selected from the Gramene 

database (www.gramene.org) (McCouch et al., 2002). About 1091 SSR markers representing all 

12 chromosomes of rice were selected to detect polymorphism between Trenasse and Jupiter. 

Primers were obtained from Bioneer, Inc.(Alameda, CA). PCR amplification using selected SSR 

markers and genomic DNA of Trenasse and Jupiter was conducted in C1000TM Thermal Cycler 

from BioRad (Hercules, CA). 

Each PCR reaction contained 1 µl of genomic DNA (~ 50 ng/µl), 2.5 µl of 10X PCR 

buffer, 1.25 µl of 50mM MgCl2, 0.5 µl of 10mM dNTP mix, 1.0 µl of homemade Taq 

polymerase (~ 1.0U/µl), 1.25 µl of 10 µM forward and reverse primers, and 15.25 µl of sterilized 

ddH2O in a total volume of 25 µl. The PCR program consisted of the initial denaturation at 95°C 

for 5 min; 35 cycles of 95°C for 45 sec, 55°C for 45 sec and 72°C for 1 min, and the final 

extension at 72°C for 5 min. After amplification, PCR products were electrophoresed in 4.5% 

Agarose SFRTM (Superfine Resolution Agarose) gel, (AMRESCO) at 180V for 4.5 hours, stained 

with (10 mg/µl) ethidium bromide, and visualized with a Kodak Gel Logic 1500 imaging system 

(Rochester, New York, USA). 

4.3.3 Whole genome sequencing and reference-based assembly  

One-week young leaves of Jupiter and Trenasse were used for genomic DNA extraction 

using DNeasy Plant Mini Kit, Qiagen (Valencia, CA). DNA was sent to the sequencing facility 

at Virginia Bioinformatics Institute, Virginia-Tech, for sequencing. 100 bp paired-end sequences 

reads obtained from the Illumina GAIIx platform was assembled using the reference sequence, 

Nipponbare, IRGSP pseudomolecules (Build 4.0), with reference-guided genome alignment 

option in SeqMan Ngen (DNASTAR). 
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4.3.4 SNPs identification, primer design and validation 

Assembled sequences of Trenasse and Jupiter from the SeqMan Ngen were used in 

ArrayStar (DNASTAR) to identify variants, including SNPs, insertions and deletions between 

the two cultivars, and the reference. In the mean time, pairwise comparison between Trenasse 

and Jupiter was also performed. The identified SNPs between Trenasse and Jupiter, from 

pairwise comparison, were filtered based on their genotype (homozygous or heterozygous) and 

classification (synonymous or non-synonymos). To improve stringency of the identified SNPs, 

further filtering was performed based on the reads depth (≥ 8) and Q value (≥ 20). 

Allele-specific primers were designed from identified SNPs and its flanking sequences. 

Primer length and PCR product length were optimized and designed with the help of a web-

based primer designing tool, WebSNAPER (Drenkard et al., 2000). Those primers were tested 

for the validation of SNPs between Jupiter and Trenasse by PCR. Each PCR reaction contained 

18 µl of sterilized ddH2O, 2.5 µl of 10X PCR buffer, 0.75 µl of 50mM MgCl2, 0.5 µl of 10mM 

dNTP mix, 1 µl of home-made Taq polymerase (~1.0U/µl), 1.25 µl of 10 µM forward and 

reverse primers, and 1 µl of ~50 ng/µl of genomic DNA in a total volume of 25 µl. The PCR 

program consisted of the initial denaturation at 95°C for 3 min, and 33 cycles of 95°C for 20 sec, 

70°C for 20 sec and 72°C for 20 sec; and the final extension at 72°C for 3 min. PCR products 

were later visualized in 2% agarose gel electrophoresis with 170V for 3 hours.  

The flow chart for identification of SNPs, development and validation of allele-specific 

primers is shown in Figure 4.1. 
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Figure 4.1: Flow chart of allele-specific, non-synonymous SNP marker development 

4.3.5 SSR motifs identification, development of polymorphic markers between Trenasse 
and Jupiter and validation 

 The consensus sequences for Jupiter and Trenasse obtained from SeqMan Pro 

(DNASTAR) were used to identify SSR motifs using MIcroSAtellite (MISA) identification tool 

(Thiel et al., 2003). Search for perfect SSR repeats in both genomes were performed with 10, 7, 

6, 5, 4, and 4 repeat units of mono-nucleotide repeats, di-nucleotide repeats, tri-nucleotide 

repeats, tetra-nucleotide repeats, penta nucleotide repeats and hexa-nucleotide repeats, 

respectively. Perfect SSR motifs obtained from consensus sequences of both Jupiter and 

Trenasse using MISA were compared based on the reference coordinates manually for the 

Genomic DNA extraction from  
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Identified SNPs were filtered based on their genotype (homozygous variant),  
classification (non-synonymous), reads depth (≥ 8) and quality (Q value of ≥ 20) 
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conducted PCR using genomic DNA from Jupiter and Trenasse as template  
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difference in repeat number of motifs. Primer3 was used to design primers using flanking 

sequences of 300 bases including those motifs with differences in number of repeats (Rozen & 

Skaletsky, 1999). Those primers were tested for the validation of polymorphisms between Jupiter 

and Trenasse by PCR. Each PCR reaction contained 1 µl of genomic DNA (~ 50 ng/µl), 2.5 µl of 

10X PCR buffer, 1.25 µl of 50mM MgCl2, 0.5 µl of 10mM dNTP mix, 1.0 µl of homemade Taq 

polymerase (~ 1.0U/µl), 1.25 µl of 10 µM forward and reverse primers, and 15.25 µl of sterilized 

ddH2O in a total volume of 25 µl. The PCR program consisted of the initial denaturation at 95°C 

for 5 min; 35 cycles of 95°C for 45 sec, 55°C for 45 sec and 72°C for 1 min; and the final 

extension at 72°C for 5 min. After amplification, PCR products were electrophoresed in 4.5% 

Agarose SFRTM (Superfine Resolution Agarose) gel, (AMRESCO) at 180V for 4.5 hours, stained 

with (10 mg/µl) ethidium bromide, and visualized with a Kodak Gel Logic 1500 imaging system 

(Rochester, New York, USA). 

4.4 RESULTS 

4.4.1 Survey of polymorphic markers from Gramene database 

 Out of 1091 SSR markers selected, only 28 usable polymorphic markers were identified 

between Trenasse and Jupiter (Appendix 16). These were not enough for representing all 12 

chromosomes of rice, which will be required for further study of QTL mapping and association 

mapping.!

4.4.2 Sequence alignment and SNP identification 

 About 40 millions of paired-end reads generated from each cultivars Jupiter and Trenasse 

were aligned with the help of reference genome, Nipponbare. The aligned reads of Jupiter and 

Trenasse covered an average of 94.72 and 91.21%, respectively, of the reference genome   

(Table 4.1). Comparative analysis between assembled sequences and the reference genome using 
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ArrayStar (DNASTAR) identified more than 1 million SNPs in each cultivar. Furthermore, 

pairwise comparison between Jupiter and Trenasse sequences detected more than 700,000 SNPs. 

Chromosome 8 had the highest SNP density of 28.77 SNPs per 10 Kb, and chromosome 7 had 

the lowest of 10.13 SNPs per 10 Kb (Figure 4.2) among two cultivars.!

 
Table 4.1 Coverage of mapped reads with the reference genome Nipponbare 

Accession Chromosome Reference genome coverage (%) 
   Jupiter Trenasse 
NC_008394 1 94.45 92.55 
NC_008395 2 95.91 95.10 
NC_008396 3 96.66 94.63 
NC_008397 4 93.85 91.63 
NC_008398 5 97.46 95.95 
NC_008399 6 94.64 92.33 
NC_008400 7 95.11 93.89 
NC_008401 8 97.24 91.88 
NC_008402 9 95.62 88.55 
NC_008403 10 89.94 90.56 
NC_008404 11 87.79 79.14 
NC_008405 12 97.92 88.35 
 Average 94.72 91.21 

!

!
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 SNPs densities per 10 Kb on individual chromosome identified between Jupiter and 
Trenasse. The x-axis and y-axis represent the chromosomes and the number of SNPs per 10 Kb, 
respectively. 
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4.4.3 SNP primer design and validation by PCR 

 Out of 700, 000 SNPs detected between Jupiter and Trenasse, 685 homozygous, non-

synonymous SNPs were selected for primer design. More than 250 allele-specific SNP primer 

sets were designed from selected nsSNPs along with their flanking sequence. Forward primers 

were allele-specific, but reverse primers are not allele-specific. In addition, forward primers have 

2 to 3 bases mismatch at the 3’ end of the primer sequence to improve the allele-specificity 

during PCR amplification (Hayashi et al., 2004).  

 Sixty-two of 250 primer sets were randomly selected for validation by PCR amplification 

from which 27 primer sets were found to be polymorphic, 14 primer sets did not show 

polymorphic, and 21 primer sets did not amplified on both DNA samples (Appendix 17). A 

representative picture of allele-specific amplification was shown in Figure 4.3.  

!

!
!
!
!
!
!
!
!
!
!
 
Figure 4.3 Analysis of PCR amplification of representative nsSNP primer pairs developed by 
using WebSNAPER. Jupiter-specific primer pairs Os02g0245800_J and Os02g0582150_J 
amplified genomic DNA from Jupiter only, and Trenasse-specific primer pairs Os02g0245800_T 
and Os02g0582150_T amplified genomic DNA from Trenasse only. PCR products were run in 
2% agarose gel electrophoresis at 100 V for 2 hours. J indicates Jupiter and T indicates Trenasse. !
 

 

 

Os02g0245800_J Os02g0245800_T Os02g0582150_J Os02g0582150_T 

J T J T J T J T 

Jupiter-specific Jupiter-specific Trenasse-specific Trenasse-specific 
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Figure 4.4 Frequency of different SSR motifs detected in the genome of Trenasse and Jupiter 

 

4.4.4 SSR motifs detection, primer design and validation 

Equal number of SSR motifs was observed between Trenasse and Jupiter. 

Mononucleotide type motifs were found in large number compared to other types (Figure 4.4). 

More than 50,000 perfect SSR motifs from each of the consensus sequences of both Trenasse 

and Jupiter were compared based on the reference coordinates manually for the difference in 

number of repeats in motifs. At least 12 base differences between motifs of two cultivars were 

filtered and selected for designing primers. Seven hundred and three SSR motifs that had with 

difference in repeat numbers between Trenasse and Jupiter from all 12 chromosomes were 

selected. A bioinformatics tool, SAMtools, was used to obtain about 300 bases of flanking 

sequence for all 703 SSR motifs. Those flanking sequences were used to design primers using 

primer design software, Primer3.  
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Thirty-seven of 703 primer pairs were randomly selected from chromosomes 1, 2 and 8. 

Out of 37, 14 primer pairs were found to be polymorphic between Trenasse and Jupiter 

(Appendix 18). 

4.5 DISCUSSION 

 BPB in rice, caused by a bacterial pathogen B. glumae, is an economically important 

disease, but control measures for this disease have not been developed so far. Only a few 

partially resistant rice cultivars, such as Jupiter, are available. So, it is essential to identify the 

resistant genes to control bacterial disease. Only a few reports were available on genetic mapping 

for partial resistant traits in rice (Mizobuchi, Ritsuko et al., 2013; Pinson et al., 2010). Further 

study of QTL mapping for BPB resistance will be beneficial to increase the pool of loci that can 

be used in future breeding programs for developing BPB resistant cultivars. Molecular markers 

are now commonly used for genetic studies, study of genetic diversity, association and QTL 

mapping for an economically important traits. 

 So, while preparing database for polymorphic molecular makers between two rice 

cultivars, Jupiter (partially resistant cultivar for BPB) and Trenasse (very susceptible cultivar for 

BPB), survey of SSR markers available in Gramene database was the first choice because of its 

ready availability. Survey of SSR markers selected from Gramene database, however, showed 

very low percentage of usable polymorphic markers (28 of 1091 SSR markers) between two 

cultivars (Appendix 16). These 28 SSR markers were not enough to represent all 12 

chromosomes of rice. Jupiter and Trenasse were developed by LSUAgCenter at Rice Research 

Station, Crowley, and rice accessions used to develop these two cultivars are in tropical japonica 

group (Linscombe et al., 2006; Lu et al., 2005; Sha et al., 2006). This might be one of the reasons 

of obtaining low level of polymorphism. In previous studies of genetic mapping for bacterial 
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panicle blight, rice blast and sheath blight diseases of rice, population generated from the crosses 

between japonica and indica with RFLP markers were used (Channamallikarjuna et al., 2010; 

Liu et al., 2009; Pinson et al., 2010; Tabien et al., 2000), however, only few studies were 

reported to identify QTLs for disease resistance with using population from the crosses between 

japonica and japonica group. SSR markers were used for genotyping the population where 18 to 

44 percent of markers were polymorphic in F2:3 and double haploid populations, respectively 

(Nelson et al., 2012; Sharma et al., 2009). Compared to these results of polymorphism, level of 

polymorphism between the parents, Trenasse and Jupiter, were lower. 

 Another approach of obtaining molecular markers is by analysis of whole genome 

sequences of two cultivars. In this approach, we identified genome-wide DNA polymorphism 

between two rice cultivars, Trenasse and Jupiter, using high-throughput sequence data from next-

generation sequencing technology. Only, homozygous, non-synonymous SNPs were selected for 

primer design, because non-synonymous SNP alters the amino acid sequence in protein resulting 

in alter phenotype. Allele-specific SNP primer sets were developed from the identified SNPs 

using WebSNAPER. In allele-specific SNP primers, forward primer sequences are allele-specific 

to Jupiter and Trenasse, whereas reverse primers are not allele-specific. It has been reported that 

transversions (T and G, and C and A) mismatch at the third base from 3’ end of forward primer 

sequence, and/or transversions (A and T) and transitions (A and G) mismatches will enhance the 

allele-specificity during PCR amplification (Hayashi et al., 2004; Hirotsu et al., 2010). SSR 

markers were also developed using the whole genome sequence, however, these markers resulted 

in few polymorphism. Close observations on the alignment sequence of two cultivars showed 

that there were several mismatches of bases in the SSR motifs during sequencing which restrict 
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precise estimation of repeats in the sequence. Validation of SNP markers suggested that more 

than 44% of SNP primers from this study could be used as molecular markers for genetic studies. 

In conclusion, high-throughput sequence data is a good source to identify polymorphism 

between closely related rice cultivars like Jupiter and Trenasse where the molecular markers 

available in databases are not sufficient to get enough polymorphism for QTL mapping.  
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CHAPTER V: AN NAC4-LIKE TRANSCRIPTION FACTOR IS RESPONSIVE TO 
EXOGENOUS APPLICATION OF BURKHOLDERIA GLUMAE, AND CHEMICAL 

ELICITORS, JASMONIC ACID AND ASCORBIC ACID!

5.1 INTRODUCTION 

Bacterial panicle blight (BPB) in rice, caused by Burkholderia glume and B. gladioli, is 

one of the major rice diseases in southern regions of the United States. BPB becomes prevalent 

when the flowering stage of rice coincides with hot and humid environment. No completely 

resistant rice cultivars have been found for BPB. It has been reported that most of the 

commercially grown rice cultivars are susceptible to this disease (Shahjahan et al., 2000). 

Jupiter, a medium-grain cultivar, and LM-1, a mutant-derivative of a long-grain cultivar, 

Lemont, show partial resistance to BPB (Groth et al., 2007; Nandakumar et al., 2007).  

In an attempt to study the molecular mechanism of the partial disease resistance to BPB 

in Jupiter in comparison with Trenasse, gene expression analysis in response to B. glumae was 

previously conducted by Dr. Chuck Rush’s group using a microarray technique. In that study, 

several genes related to defense, signal transduction, and seed development, were significantly 

upregulated in Jupiter compared to Trenasse in response to B. glumae (Nandakumar & Rush, 

2008). For the further validation of the microarray results, reverse transcription PCR (RT-PCR) 

was conducted to investigate the expression of several promising genes encoding defensin, 

NAC4-like transcription factor, and prolamin. Among the selected genes, BPR1 (bacterial 

panicle blight response gene 1) gene (Os01g0393100) encoding an NAC4-like transcription 

factor, was specifically expressed only in Jupiter but not in Trenasse upon inoculation with B. 

glumae 336gr-1, as well as its two mutant derivatives, one with deficient in toxoflavin 

production and the other one with deficient in toxoflavin production and functional type III 

secretion system (Shrestha, 2011). Transcription factors play a role in regulating expression of 

downstream genes, some of which are involved in plant defense system. NAC is derived from 
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three genes: NAM (no apical meristem), ATAF1/2 (Arabidopsis transcription activation factor) 

and CUC2 (cup-shaped cotyledon) (Aida et al., 1997; Souer et al., 1996). NAC is involved in 

various developmental processes, including embryo development, shoot apical meristem 

formation, and seed development (Kim et al., 2007; Sperotto et al., 2009). NAC transcription 

factors is also involved in regulating various biotic stress responses in potato (Collinge & Boller, 

2001) and rice (Nakashima et al., 2007). In the rice genome, about 151 genes belong to the NAC 

family. These genes play vital roles in regulating physiology of plants (Nuruzzaman et al., 2010). 

In this work, expression of Os01g0393100, encoding an NAC4-like transcription factor 

(will be used as BPR1 onward) in different growth stages of Jupiter, and responsiveness of BPR1 

to B. glumae and some of the chemical elicitors, including salicylic acid, jasmonic acid, ascorbic 

acid and ethephon was studied.    

5.2 MATERIALS AND METHODS 

5.2.1 Plant materials, bacterial inoculum and chemical elicitors 

 Rice varieties, Jupiter and Trenasse, were grown in pots in the greenhouse. A virulent 

pathogen of bacterial panicle blight (BPB) disease, B. glumae 336-gr1, and its two mutant 

derivatives deficient in toxoflavin production (tox-), and deficient in both toxoflavin production 

and functional type III secretion system (tox-hrp-) were used in this experiment. Bacterial 

inoculum was prepared at the concentration of 1 X 108 CFU/ml (OD600 = 0.1) in deionized water. 

Chemical elicitors such as salicylic acid (SA), jasmonic acid (JA), and ethephon known to be 

involve in inducing systemic acquired resistance in several plants, These chemicals, were 

sprayed on the rice panicles. Concentration of each elicitor was 100 µM.  
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5.2.2 Bacterial inoculation at different rice growth stages 

 Jupiter was inoculated with freshly prepared bacterial inoculum of B. glumae 336 gr-1 

and its two mutant derivatives in two different growth stages, including seedling and tillering 

stages, and samples were collected at different time points; 0, 48, and 96 h after spraying. 

Similarly, at 30% heading stage, several chemical elicitors, including SA, JA, ASA and 

ethephon, and the B. glumae tox- mutant deficient in toxoflavin production were sprayed on the 

panicles of both Trenasse and Jupiter. Water was used as control in both conditions. Each 

treatment was conducted with 3 replications. All applications of chemicals and bacteria were 

performed using hand sprayer. 

5.2.3 Disease scoring and sample collection 

 Jupiter inoculated during seedling (15 days after planting) and tillering stages were 

scored 10 days after inoculation by using the standard scale of 0 to 9, where, 0 means no 

symptoms on the panicles, and 9 means more than 80 percentage of panicles showed BPB 

symptoms (Nandakumar et al., 2007).  

 Whole plants were collected for the samples in which treatments were done during 

seedling stages. Leaf samples were collected from plants in which treatments were done during 

tillering stage of rice. Samples were collected at different time point; 0 hours, 48 hours, and 4 

days after the bacterial inoculation. Collected samples were flash-frozen in liquid nitrogen and 

stored at -70°C. Similarly, plants treated during 30% heading stages were collected at different 

time points, 0, 6, 12, 24, and 48 h after the treatment of different chemical elicitors and the 

toxoflavin deficient mutant. All samples were flash-frozen in liquid nitrogen and stored at -70°C.  
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5.2.4 Total RNA extraction and cDNA synthesis 

 Samples stored at -70°C were used for total RNA extraction using TRIzolR Reagent 

(Invitrogen) (Moy, 2004). Briefly, 100 mg samples were ground in liquid nitrogen with 

autoclaved mortar and pestle. Each ground sample was transferred to a clean microcentrifuge 

tube and mixed with 700 µl of Trizol. Then the tube was gently shaked at least 5 min in order to 

mix the sample properly. Two hundred and ten µl of chloroform was added and mixed 

vigorously. The sample was incubated at room temperature for 2 to 3 minutes. Three distinct 

layers of RNA, DNA, carbohydrates, proteins and other cellular debris could be observed. After 

incubation, sample was centrifuged for 15 min at 12000 rpm at 4°C. Upper aqueous phase was 

transferred carefully to a new sterile tube to which 0.7X volume of isopropanol was added and 

mixed with transferred aqueous solution. The sample was incubated at -20°C for an hour 

followed by gentle agitation for about 10 min. and centrifugion at 12000 rpm for 10 min at 4°C. 

Supernatant was discarded and pellet formed at the bottom of micro-centrifuge tube was washed 

two times with 1 ml of icecold 75% ethanol. After washing, supernatant was removed carefully 

and pellet was dried for 15 min. Approximately, 100 µl of RNase-free water was used to 

resuspend the dried pellet. After resuspension, sample was incubated at 42°C for 15 min.  

 DNase treatment was performed using DNA-freeTM Kit (Applied Biosystems, Grand 

Island, NY) following the manufacture instructions. After DNase treatment, concentration of 

total RNA in samples was measured and adjusted to 300 ng/µl, using a Nano Drop 

Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). 
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5.2.5 Reverse transcription (RT) -PCR 

 cDNA synthesis from total RNA samples was performed using ProtoScriptR M-MuLV 

First Strand cDNA Synthesis Kit (NEB #E6300S, New England BioLabs Inc., Ipswich, MA) 

following manufacturer’s protocol. After cDNA synthesis, PCR for the amplification of BPR1 

was performed using the primers NAC-likeF (5’ CCTGACCTGCCTCCGGGCTT 3’) and NAC-

likeR (5’ TTGTCGCCCTTGGGAGCCCT 3’) (Shrestha, 2011). Primers ActinF (5’ 

TCCATCTTGGCATCTCTCAG 3’) and ActinR (5’ GTACCCGCATCAGGCATCTG 3’) 

(Fukuoka et al., 2009) were used for the actin gene (X16280), which was used as an internal 

control. Each reaction of PCR contained 2-5 µl of cDNA (~ 50-100 ng/µl), 2.5 µl of 10X PCR 

buffer, 0.5 µl of 10mM dNTP mix, 0.2 µl (5.0U/µl), 1 µl of 10 µM forward and reverse primers, 

and 14.8 µl of sterilized ddH2O in a total volume of 25 µl.  

Two separate PCR programs were used for two different primers sets for BPR1 and Actin 

gene amplification, due to different annealing temperature. The PCR program for the 

amplification of BPR1 consisted of the initial denaturation at 95°C for 1 min; 35 cycles of 95°C 

for 30 sec, 45°C for 30 sec and 72°C for 30 sec; and the final extension at 72°C for 10 min. For 

Actin, a PCR program of 95°C for 1 min; 35 cycles of 95°C for 30 sec, 60°C for 30 sec and 72°C 

for 30 sec; and the final extension at 72°C for 10 min was used. The PCR products were 

electrophoresed in 1% agarose gel with 100V for 1 hour, and visualized with the help of KODAK 

Gel Logic 1500 Imaging System (Molecular Imaging Systems, Carestream Health, Inc., Rochester, 

NY). 
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5.3 RESULTS 

5.3.1 Disease symptoms 

 BPB symptoms were evaluated in the seedling stage and tillering stage of Jupiter 10 days 

after bacterial inoculation, however, obvious BPB symptoms were not observed in any 

treatments. 

5.3.2 Expression of BPR1 gene in different growth stages of Jupiter 

 In Figure 5.1, expression of BPR1 and Actin gene was shown in two different growth 

stages of Jupiter at 0 and 48 h time points. Lanes 1, 2, 3, and 4 in each figure represent four 

different treatments, including water control, B. glumae 336 gr-1, B. glumae 336gr-1 tox-
 and B. 

glumae 336gr-1 tox-hrp-, respectively. RT-PCR results showed that the Actin gene was expressed 

in all treatments in both growth stages at different time points; however, BPR1 gene was not 

expressed in any treatments at both growth stages at any time point (Figure 5.1). Expression of 

BPR1 was not observed 4 days after treatment (data not shown). 

   

 

 

 

 

 
Figure 5.1 Expression patterns of Actin and BPR1 genes in Jupiter after inoculation with B. 
glumae and its derivatives or water (control), analyzed by RT-PCR. Lane 1= cDNA samples 
from water treated rice samples, lane 2= cDNA from B. glumae 336gr-1 treated samples, lane 3= 
cDNA from B. glumae tox- treated samples, lane 4= cDNA from B. glumae tox-hrp-treated 
samples. (A) Actin and BPR1 expression at seedling stage of Jupiter, (B) Actin and BPR1 
expression at tillering stage of Jupiter. HAI= hours after inoculation 
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5.3.3 Expression of BPR1 gene during heading stage in response to various chemical 
elicitors 

 In the figure 5.2 expressions of BPR1 and Actin genes in Trenasse and Jupiter after 

treatments of various elicitors, and toxoflavin deficient mutants were shown. RT-PCR results 

showed that Actin gene was expressed constitutively in all the treatments of both cultivars at any 

time points (Figure 5.2). Interestingly, BPR1 gene was expressed in Jupiter treated with B. 

glumae 336gr-1 tox-, jasmonic acid and ascorbic acid at 0 hour time point. But BPR1 gene was 

not expressed in any treatments in Jupiter at any time points. In contrast, in Trenasse, BPR1 gene 

was not expressed in any treatments (Figure 5.2). BPR1 was not expressed after 48 hours also 

(data not shown). 

 

 

  

  

 

 

 
 
 

Figure 5.2 Expression patterns of BPR1 and Actin genes in Trenasse and Jupiter at 0, 12 and 24 
hours after inoculation with toxoflavin deficient B. glumae 336gr-1, salicylic acid, jasmonic acid, 
ascorbic acid, and ethephon, analyzed by RT-PCR. M= 1 Kb plus DNA ladder, lane 1= cDNA 
samples from water treated rice panicles, lane 2= cDNA from B. glumae 336gr-1 tox- treated 
panicles, lane 3= cDNA from salicylic acid treated panicles, lane 4= cDNA from jasmonic acid 
treated panicles, lane 5= cDNA from ascorbic acid treated panicles, lane 6= cDNA from 
ethephon treated panicles. First, second and third row of gel picture has expression of the genes 
BPR1 and Actin at 0, 12, and 24 hours after the treatment, respectively. HAI indicates hours after 
inoculation. 
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5.4 DISCUSSION 

NAC-like transcription factors are structurally distinct and functionally diverse 

transcription factors found in plants only which contain conserved N-terminal binding domain 

(Olsen et al., 2005). NAC proteins plays an important role in growth and development of plants, 

incuding leaf senescence, flowering, cell wall biosynthesis (Ricachenevsky et al., 2013), it is also 

involved in plant defense responses against various pathogens. StNAC gene was induced upon 

the pathogen attack in potato (Collinge & Boller, 2001). It was reported previously that various 

NAC genes, OsNAC6, OsNAC4, were involved in regulating hypersensitive responses, and 

disease resistance in rice against Magnaporthe oryzae and Rice dwarf virus (Kaneda et al., 2009; 

Nakashima et al., 2007; Yoshii et al., 2009). In this study pathogen-responsive BPR1 (bacterial 

panicle blight response gene 1) gene encoding NAC4-like transcription factor was identified as 

biotic and abiotic stresses-responsive. 

BPB symptom in the seedling and tillering stage of Jupiter were not observed. Expression 

patterns of NAC transcription factors were reported to be tissue-specific in previous studies (Lin 

et al., 2007; Meng et al., 2009; Xia et al., 2010). In this study BPR1 gene was not expressed in 

seedling and tillering stages of rice. However, differential expression of BPR1 gene was found in 

Jupiter during heading stage when treated with B. glumae 336 gr-1 and its mutant derivatives 48 

h after inoculation (Shrestha, 2011) (Figure 5.3). Similarly, BPR1 gene was expressed during 

heading stage in previous microarray study two days after bacterial inoculation (Nandakumar & 

Rush, 2008).  
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Figure 5.3 Expression patterns of BPR1 and Actin genes in Jupiter and Trenasse 48 hours after 
inoculation with B. glumae and its mutant derivatives or water (control), shown by RT-PCR. 
Each lane represent cDNA sample from different treatments. M= 1 kb plus DNA ladder, lane 1= 
water treated, lane 2= B. glumae 336gr-1 treated, lane 3= B. glumae tox-, lane 4= B. glumae tox-

hrp-, lane 5= genomic DNA from Jupiter and Trenasse used as a positive control.  

In previous studies, early responses of NAC genes to biotic (Huang et al., 2012) and 

abiotic (Yun et al., 2010) stresses were reported. In our study also, treatment with toxoflavin 

deficient mutant of B. glumae enhanced the expression of BPR1 gene in Jupiter at 0 hour (less 

than 15 mintues) after inoculation, but no expression of BPR1 was observed in Trenasse. Various 

fungal elicitors and bacterial pathogen infection were reported to enhance the expression of NAC 

genes (Jensen et al., 2008; Wang et al., 2009). It was reported that several microbe-associated 

molecular pattern (MAMP) molecules that are found on the surface of bacterial cells, including 

lipopolysaccharides, peptidoglycan and flagellin are recognized by pattern-recognition receptors 

of the host innate immune system (Nürnberger & Kemmerling, 2006; Song et al., 1995). 

Perception of these MAMPs has shown to trigger signaling cascades, which activate the innate 

defense response in the host (Felix et al., 1999; Gomez-Gomez, 2004; Gómez-Gómez & Boller, 

2000, 2002). So, recognition of MAMPs molecules in bacterial inoculum by the rice plants might 

have occurred resulting in rapid expression of BPR1 gene. 

Furthermore, BPR1 gene was responsive to the treatment of jasmonic acid and ascorbic 

acid (Figure 5.2). A stress responsive NAC gene, RD26, in Arabidopsis was responsive to 

jasmonic acid and was induced by exogenous application of jasmonic acid, hydrogen peroxide, 

and pathongens (Fujita et al., 2006; Zimmermann et al., 2004). Many stress responsive NAC 
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genes in rice were also responsive to jasmonic acid (Nuruzzaman et al., 2013). In addition, these 

type of NAC genes were involved in regulating disease resistance pathways in rice (Nuruzzaman 

et al., 2013). Several NAC genes were reported to respond to exogenous application of chemical 

elicitors, including ethephon, salicylic acid, jasmonic acid in rice, and wheat (Nuruzzaman et al., 

2012; Xia et al., 2010; Yoshii et al., 2010). Responsiveness of the BPR1 gene to B. glumae 

infection and exogenous application of chemicals, including jasmonic acid and ascorbic acid, 

suggest there might be involvement of this gene in defense response against B. glumae infection. 

Therefore, further study is required for functional characterization of BPR1 gene for disease 

resistance, and to understand molecular mechanisms underlying regulation of defense responses 

against the pathogen. 
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CHAPTER VI: ISOLATION AND CHARACTERIZATION OF RICE-ASSOCIATED 
BACILLUS SPP. SHOWING ANTAGONISTIC ACTIVITIES AGAINST THE RICE 

PATHOGENS BURKHOLDERIA GLUMAE AND RHIZOCTONIA SOLANI!

6.2 INTRODUCTION 

A diverse range of microorganisms dwell in various parts of a plant, causing detrimental, 

neutral, or beneficial effects on plant health (Bashar et al., 2010; Bashi & Fokkema, 1977; 

Williamson & Fokkema, 1985). Some of these microorganisms can suppress plant diseases 

through competition, predation, antagonism against plant pathogens, or through induction of 

plant defense systems (Compant et al., 2005; Niranjan et al., 2006). Antagonistic bacteria 

isolated from plant surface, soil, and rhizosphere have been extensively used to control major 

crop diseases caused by various fungal and bacterial diseases (Kanjanamaneesathian et al., 1998; 

Kazempour, 2004). Those microorganisms can be used alone or in combination with other 

chemical or biological control agents for various crop diseases (Bashar et al., 2010; Bashi & 

Fokkema, 1977; Datnoff et al., 1995; Duffy & Weller, 1995; Kanjanamaneesathian et al., 1998; 

Paulitz et al., 1992; Shahjahan et al., 2001; Williamson & Fokkema, 1985). 

Sheath blight (SB) is one of the most economically important rice diseases worldwide, 

which is caused by the fungal pathogen Rhizoctonia solani. This disease is characterized by oval 

to irregular lesions on rice sheath and leaf blades. R. solani is a soilborne pathogen having a 

broad host range including rice and soybean. Epidemics of sheath blight occur throughout 

temperate and tropical rice-growing regions. High nitrogen rates and plant density provide 

favorable microclimates for the development of sheath blight during early heading and grain-

filling stages (Lee & Rush, 1983). Common practices for the management of sheath blight 

include crop rotation, fertilizer management, planting disease-tolerant varieties, and fungicide 

application. However, rice cultivars having vertical (or complete) resistance to the disease are 

not available, and crop rotation will not assure effective management of the disease because the 
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fungus can survive for a long period of time in the form of sclerotia, a primary source of 

inoculum that overwinters in soil and plant debris. Various fungicides are being used to control 

the disease (Araki & Yabutani, 1993; Groth, 2005; Miah et al., 1994). However, fungicide 

application increases the cost of cultivation and the risk of the emergence of fungicide-resistant 

pathogens (Bennett, 2012). 

Bacterial panicle blight (BPB is caused by the Gram-negative bacterial pathogens 

Burkholderia glumae and B. gladioli is another important rice disease in many rice-growing 

regions around the world (Goto et al., 1987; Ham et al., 2011; Nandakumar et al., 2009; 

Shahjhan et al., 2000). The major symptoms of this disease include panicle discoloration, grain 

rot, and sterile florets. Prolonged high night-temperatures during the heading and flowering 

stages favor the outbreaks of BPB (Nandakumar et al., 2009; Trung et al., 1993; Tsushima, 

1996). B. glumae, the chief causal organism of BPB (Ham et al., 2011), is a seed-borne 

bacterium and produces the yellow-colored phytotoxin, toxoflavin, as a major virulence factor 

(Sato et al., 1989). Despite the economic importance of BPB, there are few control measures for 

this disease. There is no known complete resistance for this disease and only a few partially 

resistant varieties are commercially available. Oxolinic acid is the only known commercial 

chemical for controlling this disease (Hikichi, 1993). However, this chemical is not registered for 

agricultural purpose in the United States (Nandakumar et al., 2009), and natural occurrence of 

oxolinic acid-resistant strains limits the use of this chemical (Hikichi et al., 2001). 

Application of epiphytic and endophytic microbial antagonists as biological control 

agents will be an alternative control method for rice diseases (Mew et al., 2004). Dermococcus 

nishinomiyaensis, Aspergillus niger, Trichoderma strains and fluorescent pseudomondas 

including Pseudomonas fluorescens have been reported as biocontrol agents to suppress the 
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disease severity and lesion length caused by sheath blight in rice (De Costa et al., 2008; Devi et 

al., 1989; Gnanamanickam et al., 1992; Naeimi et al., 2010). Also, rhizosphere fungal strain 

Chaetomium aureum and its metabolites, and hyphae-colonizing Burkholderia vietnamiensis 

have been used to control sheath blight in rice (Cuong et al., 2011; Wang et al., 2013). Similarly, 

it has been reported that genetically engineered strain of Burkholderia sp. can be used as a 

bicontrol agent to reduce seedling rot in rice in situ caused by B. glumae (Cho et al., 2007). 

In this study, rice-associated bacteria (RAB) were isolated from rice plants grown in the 

field and tested for their antagonistic activities against the SB pathogen, R. solani, and the BPB 

pathogen, B. glumae, as well as their efficacies for controlling SB and BPB. In addition, all the 

RABs tested were identified based on their 16S rDNA sequences and clustered based on other 

genotypes determined by 16S-23S intergenic transcribed spacer (ITS)-PCR, tDNA-intergenic 

spacer region (tDNA)-PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and 

BOX-PCR analyses.  

6.3 MATERIALS AND METHODS 

6.3.1 Isolation of RABs 

Leaves of rice plants at the 30% heading stage were collected from the rice field in the 

LSU AgCenter Rice Research Station at Crowley, Louisiana. The collected leaves were cut into 

~4 cm-long pieces, and subsequently washed by stirring in 500 ml of sterilized ddH2O for 10 

min or in 500 ml of 10% bleach for 5 min. The bleach-sterilized leaf pieces were then stirred in 

sterilized ddH2O for 10 min to remove the remaining bleach. The washed leaf pieces were placed 

on potato dextrose agar (PDA) plates, making the adaxial side contact to the medium, and 

incubated at room temperature for 72 h. Bacterial colonies grown out from the leaf samples were 

transferred to new PDA plates for isolation of RABs.  
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6.3.2 Measurement of RABs’ antimicrobial activities against R. solani and B. glumae 

A mycelial plug of R. solani was taken from one-week-old culture of R. solani on PDA 

using a cork borer (5 mm in diameter) and placed on the center of a fresh PDA plate. Each RAB 

was cultured overnight in Luria-Bertani (LB) broth (10 g tryptone, 10 g NaCl and 5 g yeast 

extract per L) in a shaking incubator at 37°C at 190 rpm. Fifteen hundred microliters of each 

culture was then washed twice with fresh LB and resuspended in 100 µl of LB. Ten microliters 

of the bacterial suspension was spotted on three locations around the mycelial plug on PDA. 

Observation of antifungal activities and measurement of inhibition zones were conducted 72 h 

after incubation at 25°C. 

B. glumae strain 336gr-1 was cultured overnight in LB at 37°C and the overnight culture 

was washed twice with fresh LB. One hundred microliters of the bacterial suspension adjusted to 

OD600 = 0.1 (ca. 1×108 CFU/ml) was spread on a PDA plate. Bacterial suspensions of RABs 

were prepared as described above and 10 µl of each sample was spotted on three locations of a 

PDA plate previously spread with B. glumae. Observation of antibacterial activities and 

measurement of inhibition zones were conducted 72 h after incubation at 25°C. 

6.3.3 Evaluation of RABs’ inhibitory activities on sclerotial germination of R. solani  

The effects of RABs on sclerotial germination of R. solani were observed following a 

previous method (Kazempour, 2004) with some modifications. Briefly, young and fresh sclerotia 

collected from mycelia of R. solani grown on PDA were surface-sterilized with 2% sodium 

hypochlorite solution for 2 min and washed with sterilized ddH2O for 10 min. The surface-

sterilized sclerotia were put in the overnight-grown cultures of RABs and further incubated in a 

shaking incubator for 24 h at 25°C at 200 rpm. The sclerotia incubated in a RAB culture were 
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gently taken out and placed on fresh PDA plates. Germination rate of sclerotia was determined 

72 h after incubation at 25°C. 

6.3.4 Evaluation of the RABs’ inhibitory activities on the lesion development by R. solani 
on detached rice leaves 

The detached leaf assay to examine the inhibition of SB lesion development by each 

RAB was performed following a previous method (Guleria et al., 2007) with minor 

modifications. Briefly, the second leaf from the base was taken from a two-month-old rice plant 

of the disease susceptible cultivar, Bengal, and cut into ~6 cm-long pieces. The leaf pieces were 

surface-sterilized with 1% sodium hypochlorite solution for 1 min and washed with sterilized 

ddH2O.  The sterilized leaf pieces were then placed on petri plates containing a wet filter paper, 

and were pressed with sterilized glass slides to keep the leaves flat during the experiment. 

Overnight grown RAB culture in LB broth in a shaking incubator at 25°C at 200 rpm was 

washed two times in a fresh LB broth, and resuspended in sterilized ddH2O adjusting the RAB 

inoculum to ~6×108 CFU/ml. Each RAB inoculum was sprayed in each petri plates with leaf 

pieces until the leaf pieces got wet. A sclerotium collected from the one-week-old mycelia of R. 

solani was placed on the center of each leaf piece. Three leaf pieces were treated with each RAB 

for three replications. Leaf pieces without any RAB treatment and those treated with sterilized 

ddH2O were also included as controls. The petri dishes containing rice leaf pieces placed with a 

screlotium were incubated at 25°C for 7 days with 12 h-light period per day. The relative lesion 

length on a detached leaf piece was calculated the following way (Kumar, K. V. K. et al., 2009): 

Relative lesion length = [(Lesion length) / (Leaf length)] × 100  
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6.3.5 Evaluation of the RABs’ biocontrol activities on SB and BPB 

6.3.5.1 Treatment of rice plants with RABs 

The medium-grain and disease susceptible cultivar, Bengal, was grown in the field at the 

Rice Research Station (Crowley, Louisiana) in 2012. Six rows each with ~ 1.2 meters for each of 

seven treatments including five RABs, one water-control and one non-inoculated treatment, were 

set up for each disease. Overnight cultures of RAB grown on LB agar were resuspended in 

deionized water and the bacterial suspension OD600 = 0.1 (~2×106 CFU/ml) of each RAB was 

sprayed to rice plants until it flows down. 

6.3.5.2 Inoculation of rice plants with R. solani 

The inoculum of R. solani was prepared in a mixture of rice husk and grain. Briefly, 600 

gm of the mixture containing 2 parts of rice husk and 1 part of rice grain with 500 ml of water 

was sterilized at 121°C for 20 min. The sterilized mixture in a flask was inoculated with ~16 cm2 

of PDA plugs containing 7 days old R. solani mycelia, and incubated at 25°C for 10 days. After 

10 days of incubation, the prepared inoculum was mixed with larger volume of the sterilized 

mixture of rice husk and grain at 1:2 ratio of prepared inoculum and sterilized mixture to 

increase the inoculum volume. After mixing properly the mixture was spread uniformly on a 

clean brown paper sheet and covered with a clean plastic sheet at room temperature. After 24 h 

of incubation at room temperature, the prepared R. solani inoculum was applied to each row of 

rice plants at the tillering stage at 24 h post treatment of RAB. The symptoms were observed 

during milk stage of rice. Disease severity was rated based on relative lesion height with the 

scale ranges from 0 to 9 (IRRI, 1996). 
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6.3.5.4 Inoculation of rice plants with B. glumae 

B. glumae 336gr-1 was grown overnight on King’s B agar at 37°C and the bacterial cells 

were resuspended in deionized water, with a concentration of ~1×108CFU/ml. The bacterial 

suspension was sprayed to rice plants at the 30% heading stage at 24 h post treatment of each 

RAB. The symptoms were observed 10 days after inoculation. Disease severity was rated based 

on discolored area and sterility of panicles with the scale ranges from 0 to 9 in which 0 indicated 

no BPB symptoms and 9 indicated more than 90 % of panicle discoloration and sterility. 

(Nandakumar et al., 2007) . 

6.3.6 Identification of the antagonistic RABs 

The 3% KOH test (Ryu, 1940; Suslow et al., 1982) was performed to initially categorize 

RABs into Gram-positive or Gram-negative bacteria. B. glumae and Bacillus subtilis were used 

as a control representing Gram-negative and Gram-positive bacteria, respectively.  For 

identification by 16S rDNA sequencing, genomic DNA of each RAB was extracted using a 

previously described method (Pospiech & Neumann, 1995) and 16S rDNA sequence was 

amplified using the primers fD1 

(5’CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG3’) and rD1 

(5’CCCGGGATCCAAGCTTAAGGAGGTGATCCAGCC3’) (Weisburg et al., 1991). Each 

reaction of PCR contained 3 µl of genomic DNA (~ 100 ng/µl), 2.5 µl of 10X PCR buffer, 0.75 

µl of 50mM MgCl2, 0.5 µl of 10mM dNTP mix, 1.0 µl of homemade Taq polymerase 

(~1.0U/µl), 1 µl of 10 µM forward (fD1) and reverse (rD1) primers, and 15.25 µl of sterilized 

ddH2O in a total volume of 25 µl. The PCR program consisted of the initial denaturation at 95°C 

for 1 min; 35 cycles of 95°C for 2 min, 42°C for 30 sec and 72°C for 4 min; and the final 

extension at 72°C for 20 min. PCR products of 16S rDNA were purified using a QuickClean 5M 
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PCR Purification Kit (GenScript, Piscataway, NJ). Purified PCR products were sent to Macrogen 

Inc. (Seoul, Korea) for sequencing. The sequence data were searched against the National Center 

for Biotechnology Information (NCBI) database to identify the corresponding or homologous 

sequences, using BLAST. 

6.3.7 16S-23S intergenic transcribed spacer (ITS)-PCR, tDNA-intergenic spacer region 
(tDNA)-PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and BOX-PCR 
for DNA fingerprinting analyses 

PCRs for ITS and tDNA regions were performed using the primer sets L1 

(5’CAAGGCATCCACCGT3’) and G1 (5’GAAGTCGTAACAAGG3’) (Jensen et al., 1993), 

and T5A (5’AGTCCGGTGCTCTAACCAACTGAG3’) and T3B 

(5’AGGTCGCGGGTTCGAATCC3’) (Welsh & McClelland, 1991), respectively. Components 

of the 25 µl PCR reaction mixture for amplification of ITS and tDNA were: 1.0 µl of template 

DNA, 2.5 µl of 10X PCR buffer, 0.4 µl of 10 mg/ml bovine serum albumin (BSA), 0.5 µl of 

dimethyl sulfoxide (DMSO), 0.5 µl of 10 mM dNTPs, 1.0 µl each of the primers at 10 µM (L1 

and G1 for ITS, and T5A and T3B for tDNA), 0.4 µl of Paq5000 (Agilent Technologies, 

California, USA), and 17.7 µl of sterile ddH2O.  The PCR condition for ITS- and tDNA-PCR 

was same as that used in a previous study (Freitas et al., 2008): the initial denaturation at 94°C 

for 10 min; 30 cycles of 94°C for 30 sec, 50°C for 30 sec and 72°C for 1 min; and the final 

extension at 72°C for 10 min.  

Rep-PCR including enterobacterial repetitive intergenic consensus (ERIC)- and BOX-

PCR was performed to study the phylogenetic relationships and genetic diversity of the RABs. 

The primer set of ERIC1R (5’ ATGTAAGCTCCTGGGGATTCAC3’) and ERIC2 (5’ 

AAGTAAGTGATGGGGTGAGCG3’) (Versalovic et al., 1991) was used for ERIC-PCR, while 

BOXA1R (5’CATACGGCAAGGCGACGCT 3’) (Versalovic et al., 1994) was used for BOX-

PCR. ERIC- and BOX-PCRs were performed following a previous study (Rademaker et al., 
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2004) with some modifications. In brief, each reaction mixture (25 µl) for ERIC-PCR contained 

1.0 µl of template DNA, 5.0 µl of 5X Gitschier-buffer (Rademaker et al., 2004), 0.4 µl of bovine 

serum albumin (BSA) at 10 mg/ml, 2.5 µl of DMSO, 1.25 µl of 100 mM dNTPs, 5.0 µl each of 

ERIC1R and ERIC2 at 10 µM, 0.4 µl of Paq5000TM DNA polymerase (Agilent Technologies, 

California, USA), and 4.45 µl of sterile ddH2O. Composition of a reaction mixture for BOX-PCR 

was similar to that of ERIC-PCR, except that 9.45 µl of sterile ddH2O and 5.0 µl of only one 

primer (BOXA1R at 10 µM) were added to a 25 µl reaction mixture. The thermal cycle condition 

for both ERIC- and BOX-PCRs was same as that used in a previous study (Freitas et al., 2008): 

the initial denaturation at 94°C for 5 min; 30 cycles of 94°C for 1 min, 52°C for 1 min and 72°C 

for 3 min; and the final extension of 72°C for 10 min. PCR products were separated by gel 

electrophoresis in 2% agarose at 50V for 14 h in 1X TBE buffer (10X TBE buffer contains:108 g 

of Tris base, 55 g of Boric acid, 9.3 g of (Ethylenediaminetetraacetic acid) EDTA in 1 L of 

ddH2O) (Sambrook & Russell, 2001) and visualized with a Kodak Gel Logic 1500 imaging 

system (Rochester, New York, USA). The experiments were repeated three times and obtained 

similar fingerprints in all experiments. 

6.3.8 Cluster analysis 

DNA fingerprints generated by ITS-, tDNA-, ERIC-, and BOX-PCR were converted into 

binary matrix “1” or “0” which represent presence or absence, respectively, of a DNA band in 

the gel. Phylogenetic analyses were performed with the unweighted pair group mean averages 

(UPGMA) algorithm using MEGA5 (Tamura et al., 2011). 

!

!

!
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6.4 RESULTS 

6.4.1 Isolation of RAB strains showing antimicrobial activities against R. solani and B. 
glumae 

Twenty-nine RAB strains out of the total 127 RAB strains tested were initially screened 

based on their antagonistic activities against both R. solani and B. glumae. In the repeated 

experiments, 26 of the 29 RAB strains were confirmed to have antagonistic activities, but the rest 

three RAB strains (RAB1, RAB5 and RAB12) did not show any activity against R. solani or B. 

glumae (Figures 6.1, 6.2 and 6.3). According to the sizes of the inhibition zones generated by the 

RAB strains, the antibacterial activities of the 26 active RAB strains were overall less variable 

than their antifungal activities (Figures 6.2 and 6.3). RAB3 showed the lowest antibacterial 

activity, while RAB2S and RAB23S showed the highest antibacterial activities against B. glumae 

(Figure 6.2). In terms of the antifungal activities against R. solani, RAB2S, RAB3, RAB8, 

RAB13, RAB17R and RAB19 showed relatively lower antifungal activities, while RAB6, RAB9 

and RAB17S showed higher antifungal activities against R. solani than other RAB strains 

(Figure 6.3). 

Figure 6.1 Invitro dual culture for antibacterial and antifungal activities of RABs. RABs 
inoculum was spotted after B. glumae inoculum was spreaded, and mycelial plug was placed in 
the center of the PDA media plate. Plates are incubated at 25°C for 72 hrs. (A) Antibacterial 
activities against B. glumae in PDA media. (B) Antifungal activities of RABs against R. solani in 
PDA media. 
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Figure 6.2 Differential antibacterial activities of RAB against B.  glumae. RAB1, RAB5, and 
RAB12 did not show antibacterial activities, and RAB3 has the lowest activity and RAB23S has 
the highest inhibition activities. Antibacterial activities of RABs with different alphabets on the 
top are significantly different at α=0.05, p= <0.0001 from tukey’s test. Each error bar indicates 
standard error from three replicates. 
 
 

 
Figure 6.3 Differential antifungal activities of RAB against R. solani. RAB1, RAB5 and RAB12 
did not show antifungal activities, and RAB3, RAB8 and RAB17R showed the lowest activities 
amonog the RABs. Antifungal activities of RABs with different alphabets on the top are 
significantly different at α=0.05, from tukey’s test. Each error bar indicates standard error from 
three replicates. 
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6.4.2 In vitro inhibition of sclerotial germination, and suppression of sheath blight lesion 
development on detached-leaf assay 

In vitro germination of sclerotia was completely inhibited by five selected RABs (RAB6, 

RAB9, RAB16, RAB17S, and RAB18) (Figure 6.4). These selected RABs showed prominent 

antifungal and antibacterial activities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4 Invitro inhibition of sclerotial germination by RABs. Overnight cultured sclerotia with 
RAB inoculum in test tube were grown on PDA media and incubated at 25°C for 3 days. 
Sclerotia were placed at three spots on the PDA media. 

On detached leaf assays, five selected RABs restrict the sheath blight lesion development. 

As compared to the RABs untreated leaves, RAB treated leaves showed lower disease severity 

(Figures 6.5 and 6.6). Disease score was ranged from 0-4 in which 0= no symptoms; 1= 1-10%; 

2=11-25%; 3=26-50% and 4= >50% leaf area affected (Kumar, K Vijay Krishna et al., 2009). 

Among five RABs, RAB17S showed the maximum restriction of lesion development (Figure 

6.6). Five-selected RAB were used in this experiment. 
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Figure 6.5 Reduction of sheath blight lesion was exhibited due to the pretreatment of RABs in 
detached-leaf assay. Detached-leaves in petri-dishes, lined with sterilized moist paper towel, 
were pretreated with RABs inoculum, sclerotia of R. solani was kept on the leaf at the center. 
Petri-dishes were incubated at 25°C with 12 h of light for 7 days. Leaf pieces were observed for 
sheath blight lesion after 7 days. Higher lesion was observed in the leaf pretreated with water 
only. 

Figure 6.6 Suppression of sheath blight lesion in detached-leaf assay was observed by the 
pretreatment of RABs inoculum. All the selected RABs reduced equal amount of lesion, but 
more sheath blight lesion was observed on leaf in which only water was used. No lesion was 
observed on non-inoculated leaf. Each treatment was replicated for three times. Observations 
with different alphabets on the top are significantly different at α=0.05, from LSD. 
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6.4.3 Assessment of biological control activities of the antagonistic RABs  

All of the five isolates that were used for pretreatment in the field in 2012 showed 

reduction in the symptoms of sheath blight in susceptible cultivar Bengal (Figure 6.7). Two of 

the isolates, RAB6 and RAB9 reduced the disease severity significantly with the score of 3.8 ± 

0.33 and 3.0 ± 0.32, respectively (Figure 6.7). Other three isolates also inhibited the disease 

severity significantly, but had higher disease score than RAB6 and RAB9. Water-pretreated 

treatment has the highest disease severity of 6.95 ± 0.49 (Figure 6.7). Sheath blight symptoms 

were not developed in the treatment with no inoculation. 

 

Figure 6.7 RABs suppressed sheath blight symptoms in rice in the field. Disease rating on the 
sheath of Bengal plant was done at milk stage of rice. R. solani inoculum was inoculated 24 after 
the inoculation of RABs inoculum at tillering stage of rice plants. Only water was used to spray 
rice plants as a control. No inoculation of R. solani was used as a negative control, which did not 
show any sheath blight lesions. Disease rating was done based on relative lesion height with the 
scale ranges from (0-9) (IRRI, 1996). Observations with different alphabets on the top are 
significantly different, between the treatments, at α=0.05, from LSD. Each error bar indicates 
standard error from three replications.  
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Similarly, pre-inoculation of the selected isolates 24 hours prior to the inoculation of B. 

glumae 336gr-1 suppressed the BPB symptoms on rice plants. RAB9 and RAB17S showed 

suppression of BPB symptoms significantly compared to water pretreated control. Other three 

isolates also suppressed the BPB symptoms, but did not suppress as much as RAB9 and 

RAB17S. RAB9 and RAB17S were the two of the selected five isolates with lower disease 

severity of 3.38 ± 0.61 and 3.33 ± 0.92, respectively. Water control has the highest disease 

severity of 6.38 ± 0.86 (Figure 6.8). RAB9 suppressed sheath blight and BPB symptoms with the 

lowest disease severity (Figures 6.7 and 6.8). 

Figure 6.8 Suppression of BPB symptoms in rice was observed after pretreatment of RABs in the 
field. Disease rating on the panicles of Bengal plant was done at 10 days after inoculation of B. 
glumae 336gr-1. 1×108 CFU/ml of bacterial inoculum was inoculated 24 hrs. post-inoculation of  
various RABs inoculum at 30% heading stage. Only water was used to spray rice panicles as a 
control. No inoculation of B. glumae 336gr-1 inoculum was used as a negative control,which did 
not show any BPB symptoms. Disease rating was done using standard scale (0-9). Observations 
with different alphabets on the top are significantly different, between the treatments, at α=0.05, 
from LSD. Each error bar indicates standard error from three replications.  
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6.4.4 Identification of RAB isolates 

During the 3% KOH test, B.glumae cell formed mucous thread of DNA, which indicated 

Gram-negative, however B. subtilis and 29 other RAB isolates did not form any thread-like 

structure of DNA which indicates that all the isolates belong to Gram-positive bacteria (Table 

6.2). Moreover, 16S rDNA sequence analysis was performed from 29 RAB isolates. All 16S 

rDNA sequences were given in Appendix 19. A BLAST search of these sequences against NCBI 

database showed the highest sequence identity to Bacillus species (Table 6.2). 

Table 6.2 3% KOH test and the closest species in Gene bank database with partial 16S rDNA 
sequence 

Strains 
Closest Gene Bank species 

with partial 16S rRNA 
sequence 

Query 
coverage 

(%) 

Identity 
(%) 

E-
value 

Gram 
reaction 
based on 
3% KOH 

test 
RAB1 Lysinibacillus sphaericus  100 100 0.0 Gram + 
RAB2R Bacillus amyloliquefaciens  100 99 0.0 Gram + 
RAB2S Bacillus amyloliquefaciens  100  99 0.0 Gram + 
RAB3 Bacillus methylotrophicus  100 99 0.0 Gram + 
RAB4R Bacillus amyloliquefaciens  100 100 0.0 Gram + 
RAB4S Bacillus amyloliquefaciens  100 99 0.0 Gram + 
RAB5 Bacillus sp. 100 96 0.0 Gram + 
RAB6 Bacillus amyloliquefaciens  100 99 0.0 Gram + 
RAB7 Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB8 Bacillus amyloliquefaciens 100 100 0.0 Gram + 
RAB9 Bacillus amyloliquefaciens  100 100 0.0 Gram + 
RAB10 Bacillus sp. 100 99 0.0 Gram + 
RAB11R Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB11S Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB12 Lysinibacillus sphaericus 99 99 0.0 Gram + 
RAB13 Bacillus subtilis 100 100 0.0 Gram + 
RAB14R Bacillus amyloliquefaciens  100 100 0.0 Gram + 
RAB14S Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB15 Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB16 Bacillus amyloliquefaciens 100 100 0.0 Gram + 
RAB17R Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB17S Bacillus amyloliquefaciens 100 99 0.0 Gram + 

!
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(Table 6.2 continued) 

Strains 
Closest Gene Bank species 

with partial 16S rRNA 
sequence 

Query 
coverage 

(%) 

Identity 
(%) 

E-
value 

Gram 
reaction 
based on 
3% KOH 

test 
RAB18 Bacillus amyloliquefaciens 100 100 0.0 Gram + 
RAB19 Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB20 Bacillus amyloliquefaciens 100 100 0.0 Gram + 
RAB23R Bacillus subtilis 99 100 0.0 Gram + 
RAB23S Bacillus amyloliquefaciens 100 100 0.0 Gram + 
RAB24 Bacillus amyloliquefaciens 100 99 0.0 Gram + 
RAB25 Bacillus amyloliquefaciens 97 99 0.0 Gram + 
Bacillus subtilis 
(as control) 

Bacillus subtilis  98 99 0.0 Gram + 

Burkholderia 
glumae 336gr-1 
(as control) 

    Gram - 

 

6.4.5 16S rDNA phylogenetic analysis 

 Phylogenetic analysis with the partial sequence information of 16S rDNA grouped the 

RABs into two major clusters (Figure 6.9). Twenty-six of 29 RABs were clustered in a one 

group and are close to B. amyloliquefaciens ATCC 23842 (EU689157) and B. subtilis subsp. 

spizizenii ATCC 6633 (AB018486) (Figure 6.9). These 26 RABs have shown various levels of 

antibacterial and antifungal activities, invitro. However, RAB1, RAB5 and RAB12, which did 

not show antibacterial and antifungal activities, invitro, to the cell growth of B. glumae 336gr-1, 

and mycelial growth of R. solani respectively, were clustered as a different group and kept 

separately from other RABs (Figures 6.2, 6.3 and 6.9). Phylogenetic tree was prepared by using 

neighbor-joining method and genetic distances based on 16S rDNA sequences of Bacillus 

species were calculated using Kimura 2-parameter method. B. anthracis ATCC 14578 

(AB190217), which is the etiological agent of anthrax was separated from our RABs group 

suggesting that our RABs were not related to B. anthracis. 
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Figure 6.9 Phylogenetic tree, using neighbor-joining method, and genetic distances were 
calculated using Kimura 2-parameter method, based on 16S rDNA sequences of 29 RABs and 
randomly selected other species of Bacillus including, Bacillus amyloliquefaciens ATCC23842, 
B. subtilis subsp. spizizenni ATCC6633, B. licheniformis ATCC14580, B. pumilus ATCC7061, 
B. megaterium, B. anthracis ATCC14578, B. mycoides ATCC6462, and B. cereus ATCC14579. 
Burkholderia glumae 336gr-1 was used as an out-group. 16S rDNA sequences of randomly 
selected Bacillus and B. glumae 336gr-1 were obtained from NCBI database. Numbers at nodes 
indicate percentage of occurrence in 1000 bootstrap replicates. Gene bank accessions numbers 
were given in parenthesis. 
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6.4.6 ITS-, tDNA- and rep-PCR, and DNA fingerprinting 

 Eleven different banding classes were found in ITS-PCR, ranging from 200 bp to 1650 

bp, and 15 band classes in tDNA-PCR, ranging from 100 bp to 650 bp (Figures 6.10 and 6.12, 

respectively), based on three independent PCRs. B. subtilis, which was used as a reference strain 

had unique profile compared to RABs in ITS-PCR, however it has similar profiles with most of 

the RABs profiles in tDNA-PCR (Figures 6.10 and 6.12). RABs were divided into two major 

groups and five sub-groups based on ITS- and tDNA-PCR fingerprinting and unweighted-pair 

group method with arithmetic mean (UPGMA) cluster analysis (Figures 6.11 and 6.13). RAB3, 

RAB1, RAB5 and RAB12 were separated into different group from rest of the other RABs in 

both ITS- and tDNA-PCR.  

 

 

 

 

 

 

 

 
 
 
Figure 6.10 ITS-PCR fingerprinting patterns from 29 isolates of rice-associated bacteria isolated 
from healthy rice leaves in 2% agarose gel. B. glumae, and sterile ddH2O were used as controls, 
and B. subtilis was used as a reference strain. 1 Kb plus DNA ladder was used as marker. 
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Figure 6.11 Phylogram constructed based on ITS-PCR fingerprinting shown in Figure 6.10. 
Phylogram tree was obtained from UPGMA analysis with 1000 bootstrap replications using 
MEGA5 tool. Numbers at nodes indicate percentage of occurrence in 1000 bootstrap replicates. 
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Figure 6.12 tDNA-PCR fingerprinting patterns from 29 isolates of rice-associated bacteria 
isolated from healthy rice leaves in 2% agarose gel. B. glumae, and sterile ddH2O were used as 
controls, and B. subtilis was used as a reference strain. 1 Kb plus DNA ladder was used as 
marker. 
 

 Among these four RABs, RAB1, RAB5, and RAB12 did not show any antibacterial and 

antifungal activities against invitro B. glumae cell growth and R. solani mycelial growth, 

respectively, whereas RAB3 has the lowest antibacterial and antifungal activities against B. 

glumae and R. solani (Figures 6.2 and 6.3). Bacillus subtilis, which was used as a positive 

control, was grouped along with RABs that has shown both antibacterial and antifungal activities 

(Figures 6.11, and 6.13). However, in the phylogeny tree based on ITS-PCR fingerprinting B. 

subtilis was separated to a different sub-group (Figure 6.11). 

 Similarly, rep-PCR, including ERIC-, (GTG)5-,  and BOX-PCRs divided RABs into two 

major groups and several sub-groups. Twenty-eight and 30 classes of band were observed in 

ERIC- and BOX-PCR, ranging from 400 bp to 4000 bp and 200 bp to 1650 bp (Figures 6.14 and 

6.15), respectively, based on three independent PCRs. Negative results were observed in RAB3 

in both ERIC- and BOX-PCR whereas all of the tested RABs showed negative results for 

(GTG)5 (data not shown). 
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Figure 6.13 Phylogram constructed based on tDNA-PCR fingerprinting shown in Figure 6.12. 
Phylogram tree was obtained from UPGMA analysis with 1000 bootstrap replications using 
MEGA5 tool. Numbers at nodes indicate percentage of occurrence in 1000 bootstrap replicates. 
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Figure 6.14 ERIC-PCR fingerprinting patterns from 29 isolates of rice-associated bacteria 
isolated from healthy rice leaves in 2% agarose gel. B. glumae, and sterile ddH2O were used as 
controls, and B. subtilis was used as a reference strain. 1 Kb plus DNA ladder was used as 
marker. 
 
 

 

 

 

 

 

 

 
 
 
 
 
Figure 6.15 BOX-PCR fingerprinting patterns from 29 isolates of rice-associated bacteria 
isolated from healthy rice leaves in 2% agarose gel. B. glumae, and sterile ddH2O were used as 
controls, and B. subtilis was used as a reference strain. 1 Kb plus DNA ladder was used as 
marker. 
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Figure 6.16 Phylogram constructed based on ERIC-PCR fingerprinting shown in Figure 6.14. 
Phylogram tree was obtained from UPGMA analysis with 1000 bootstrap replications using 
MEGA5 tool. Numbers at nodes indicate percentage of occurrence in 1000 bootstrap replicates. 
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Figure 6.17 Phylogram constructed based on BOX-PCR fingerprinting shown in Figure 6.15. 
Phylogram tree was obtained from UPGMA analysis with 1000 bootstrap replications using 
MEGA5 tool. Numbers at nodes indicate percentage of occurrence in 1000 bootstrap replicates. 
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 In UPGMA cluster analysis, RAB1, RAB5, and RAB12 were classified into same group, 

however, unlike ITS- and tDNA-PCR, B. subtilis classified into the same group with RAB1, 

RAB5 and RAB12 (Figures 6.16 and 6.17) that did not show any antibacterial and antifungal 

activities against invitro B. glumae cell growth and R. solani mycelial growth, respectively. All 

other remaining RABs were classified into separate group that have shown antibacterial and 

antifungal activities in dual culture assay (Figures 6.16 and 6.17). 

6.5 DISCUSSION 

In this study, 26 RABs having various antifungal and antibacterial activities against R. 

solani and B. glumae, respectively, were isolated from rice plants and all of them were identified 

as Bacillus spp. based on their 16S rDNA sequences. Regarding their antagonistic activities 

against the fungal and bacterial rice pathogens, these RABs can be potential biological agents for 

sheath blight and bacterial panicle blight and possibly other plant diseases caused by fungal and 

bacterial pathogens. Indeed, five RABs showing highest antimicrobial activities (RAB6, RAB9, 

RAB16, RAB17S and RAB18) were effective in suppressing the development of SB and BPB 

when sprayed to rice plants prior to pathogen inoculation. At this point, the mechanism of the 

biological control by the RABs remains unknown. Various mechanisms, including competition 

with pathogens for space, secretion of chemical compounds, which not only prevent pathogen 

growth and development on the plant surface, but also helps to induce systemic resistance in the 

plant systems, were involved in the suppression of disease symptoms (Niranjan et al., 2006). 

Several structural changes on plant system have been reported including callose deposition, and 

lignification at the pathogen infection sites. In addition, colonization of pathogens were reduced 

and/or restricted only on the outer side of epidermis in the plants treated with biocontrol agents 

(Kloepper, 1992; Mpiga et al., 1997).  
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Unlike the field and greenhouse experiments, detached leaf bioassay is a quicker method 

for pathogenicity tests because due to controlled-environments (temperature and moisture), and 

involvement of less space and time (Guleria et al., 2007; Kotamraju, 2010; Singh et al., 2002). In 

vitro experiments, including sclerotial germination and detached-leaf assay for R. solani, showed 

complete inhibition of sclerotial germination and mycelial growth of R. solani as well as 

reduction in lesion development on detached leaves (Figures 5.4 and 5.5). In earlier studies, 

various rhizobacteria including Bacillus, Paenibacillus, and Arthorobacter spp. also showed 

antagonistic activities against sheath blight lesion development in detached-leaf assays, sclerotia 

germination, and mycelial growth of R. solani in dual culture (Kotamraju, 2010; Kumar, K. V. 

K. et al., 2009). It has been reported that several secondary metabolites and enzymes including 

chitinase, β-1, 3-glucanase, siderophores, salicylic acid, and hydrogen cyanide were produced by 

several endophytic and epiphytic isolates, including Pseudomonas florescens, which inhibited 

mycelial growth in dual culture, sclerotial germination of R. solani invitro (Devi et al., 1989; 

Kazempour, 2004; Nagarajkumar et al., 2004). 

All of the antagonistic RABs were identified to be Gram-positive bacteria by 3% KOH 

tests (Ryu, 1940) and Bacillus spp. by 16S rDNA sequence analyses (Janda & Abbott, 2007). 

However, 16S rDNA sequence analysis alone is not sufficient for the phylogenic or taxonomic 

studies of bacteria (Fox et al., 1992) because it has poor resolution for the identification at 

species level, and sometimes even at genus level (Janda & Abbott, 2007). DNA fingerprinting 

PCR methods, ITS-, tDNA-, ERIC, and BOX-PCR, were also used to characterize the variability 

among the isolated bacteria although 16S rDNA sequences were analyzed. ITS-, and tDNA-PCR 

were not sufficient to give better resolution to differentiate among the RABs. However, both 

methods divided RABs into two major groups (Figures 6.10, 6.11, 6.12, and 6.13). One of the 



131 
!

groups was antagonistic to B. glumae and R. solani. However, RAB3 which had small inhibition 

effect to both pathogens, but grouped along with RAB1, RAB5 and RAB12 that did not exhibit 

any antagonistic effect against B. glumae and R. solani. B. subtilis, which did not exhibit any 

activities, was grouped in the same clade with other RABs that showed antibacterial and 

antifungal activities, but has different branch (Figures 6.2, 6.3, 6.11, and 6.13). Rep-PCR, 

including ERIC- and BOX-PCR, on the other hand, has divided RABs into two major clades. 

Moreover, those two rep-PCRs have separated RABs into various sub-groups within the major 

clades. RAB16, RAB17S, and RAB18 that exhibited higher antagonistic activity against 

mycelial growth and growth of bacterial cell were grouped in one clade in both ERIC- and BOX-

PCR (Figures 6.16 and 6.17). In these rep-PCRs also RAB3 was grouped along with the group 

that did not show any antagonistic effects on both pathogens. In contrast B. subtilis that did not 

exhibit any antagonistic effect to bacterial and mycelial growth was grouped with non-

antagonistic RABs. It seems that DNA fingerprinting from ERIC- and BOX-PCR separated 

isolates according to their antagonistic characteristic against B. glumae and R. solani (Figures 

6.2, 6.3, 6.16 and 6.17). These results from ERIC- and BOX- PCR showed variation among the 

RABs that may be helpful in commercializing the isolates. 

In conclusion, RABs examined in this study were Gram-positive and showed differential 

levels of antagonistic activities to the growth and development of B. glumae and R. solani. 

Preinoculation of those selected RABs suppressed the disease symptoms caused by both 

pathogens in rice. So, these RABs can be used as a biocontrol agent for controlling bacterial 

panicle blight and sheath blight of rice. Various biological products from these beneficial 

microorganisms can be developed, commercially with minimal impact on enviroment. Bacillus 

subtilis was used in Germany in 1990s for seed dressing purpose in potatoes (Kilian et al., 2000). 
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Various strains of Bacillus species have been used alone or mixed with fungicides and chemical 

elicitors to suppress various crop diseases caused by several pathogens including Aspergillus 

carbonarius in table grapes (Jiang et al., 2014), Streptomyces sp. in potato and radish (Meng et 

al., 2013), Colletotrichum orbiculare in cucumber (Park et al., 2013a), Ralstonia solanacearum 

and Phytophthora infestans in tomato (Kabir et al., 2013; Tan et al., 2013), Curtobacterium 

flaccumfaciens pv. flaccumfaciens in common bean (Martins et al., 2013), Pectobacterium 

carotovorum SCC1 in tobacco (Park et al., 2013b), Fusarium graminearum in wheat (Moussa et 

al., 2013), Pythium torulosum (Shang et al., 1999), Fusarium verticillioides in maize root 

(Cavaglieri et al., 2005), Xanthomonas oryzae pv. oryzae in rice (Chithrashree et al., 2011), 

Xanthomonas axonopodis pv. citri (Huang et al., 2012) as well as soil-borne disease caused by R. 

solani and Fusarium spp. (Niranjan et al., 2006). Further research on the antagonistic activities 

of these RABs against other fungal and bacterial pathogens should be explored because these 

RABs have potential to develop commercial formulations for biological control of several 

bacterial and fungal diseases of several crops in an environmentally friendly manner. 
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CHAPTER VII: CONCLUSIONS 

Bacterial panicle blight (BPB) and sheath blight (SB) are two major rice diseases in the 

southern rice growing states of United States. These diseases reduce about 30-70% of total rice 

yield in severely infected field. Despite of its economic importance, no effective control 

measures are available for BPB and SB. In addition, no completely resistant rice cultivars for 

both diseases have been developed. However, a medium-grain cultivar and a long-grain line, 

Jupiter and LM-1, respectively, showed partial resistance to the diseases. In order to understand 

the mechanisms of rice resistance against BPB and SB, genetics and genomics studies of rice 

have been conducted. Recombinant inbred line (RIL) population was generated from a cross 

between a very susceptible cultivar, Trenasse and a partially resistant cultivar, Jupiter. 

Evaluation of phenotypic traits including days to 50% heading, BPB and SB disease ratings, and 

plant height of 300 RILs and their parents were performed in replicated trials for two years. 

Trenasse showed earlier heading than Jupiter in 2012 and 2013. It took more days for 

heading in 2013 for both parents and RILs than in 2012 because of unfavorable environment for 

the growth and development of rice plant in 2013. The susceptible parent Trenasse had 

consistent BPB disease ratings of 8.75 and 8.70 in 2012 and 2013, and resistant parent Jupiter 

had 4.40 and 1.90 in 2012 and 2013. Mean BPB disease ratings for RILs were found in between 

the means of two parents in both years. Average BPB disease ratings of RILs were higher in 

2012 than in 2013 suggesting that favorable environment was present for BPB development in 

2012. Similarly, Trenasse had mean score of 9 and 8, and Jupiter had mean score of 2 and 3 for 

SB disease ratings in 2012 and 2014, respectively. Mean SB disease ratings for RILs were also 

found in between the mean scores of parents in both years. SB disease ratings for RILs were 

skewed towards higher disease score in 2012 and 2014. Furthermore, Trenasse grew taller than 

Jupiter in 2012, but shorter in 2013 and 2014. 
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Broad-sense heritability and correlations were calculated for the four traits in the RIL 

population. Traits including, days to 50% heading and plant height had high heritability 

indicating that these traits were not influenced by environmental variations. These traits were 

also negatively correlated with BPB and SB disease ratings. Heritability estimates for BPB 

disease ratings were 0.57, and 0.84 in 2012 and 2013, respectively, and for SB disease ratings 

were 0.91 and 0.63 in 2012 and 2014, respectively. These heritability results suggested that BPB 

and SB ratings were very much influenced by environmental variations. So, traits such as days to 

heading and plant height with higher heritability can be used for indirect selection method. 

Comparative study of genomic characteristics of rice genotypes including Jupiter, 

Trenasse, Bengal, Lemont and LM-1 using whole genome sequence data was performed. 

Genome-wide DNA polymorphisms were identified among five rice genomes. Population 

structure analysis of these five rice genomes along with 50 rice accessions from the study by Xu 

et al., (2012) revealed that all the five rice genotypes were tropical japonica. Among five 

genotypes, Jupiter and Bengal had admixture of tropical and temperate japonica, whereas 

Trenasse showed some shared ancestry with indica rice accessions. The results from population 

structure analysis were congruent to the phenotypic characteristics, and the pedigree of 

individual rice genotypes. Pairwise comparisons between Jupiter and four other rice genotypes 

identified that Trenasse had higher number of variants, including SNPs and indels, whereas 

Bengal had lower number of variants. Lemont and LM-1 had similar degree of genome-wide 

DNA polymorphisms with Jupiter. The results from pair-wise comparisons were also supported 

the results obtained from population structure analysis. 

Higher variants densities were found in exon and followed by intron, upstream and 

downstream regions of the genome of five rice cultivars. Variants in these regions of genomes 
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are very essential to study. For instance, variants detected in upstream regions of genes might 

have effect on the regulatory processes resulting in altering regulation of gene expressions. 

Those variations in regulatory and coding regions found in this study will be a base for the future 

study of the genomic basis of economically important traits such as disease resistance. Several 

high-impact variants, including, non-synonymous SNPs, insertions, deletions, and frameshift 

were also observed. Variations occurred due to non-synonymous SNPs cause missense mutation 

thereby resulting in different amino acid product. In this study, non-synonymous SNPs were 

found in greater number of genes in all genomes. Gene ontology analysis of the genes containing 

non-synonymous SNPs found between Trenasse and Jupiter showed that larger number of genes 

was found to be involved in signal transduction, response to stress, kinase activity and nucleotide 

binding activities. Further analysis of those genes involved in stress responses, kinase activities, 

and nucleotide binding is essential to understand genetic elements responsible for various 

phenotypic traits. This will help to enhance the genetic studies of US rice cultivars, and to 

develop elite lines. 

Molecular markers are essential tools for the genetic mapping studies of quantitative 

traits like disease resistance. In an attempt to develop a polymorphic marker database for genetic 

mapping studies, simple sequence repeat (SSR) markers representing 12 chromosomes of rice 

from the database available in Gramene webpage were selected and screened for polymorphism 

between Trenasse and Jupiter. In this study very low percentage of usable polymorphic markers 

(28 of 1091 SSR) were identified between two parents. In order to increase the number of 

polymorphic markers between Trenasse and Jupiter, whole genome sequence data of the two 

cultivars were used. Allele-specific SNPs and microsatellite markers were developed and found 

that more than 44% and 38% of SNPs and microsatellites marker, respectively, developed in this 
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study can be used in genetic studies of mapping populations generated from the cross between 

Trenasse and Jupiter. These results suggested that whole genome sequencing is a useful source to 

identify polymorphism between the rice cultivars such as Trenasse and Jupiter where the 

molecular marker available in the databases are not sufficient to provide enough polymorphisms. 

In the mean time, study of rice defense responses against B. glumae was conducted. 

Previous microarray studies, at Dr. Chuck Rush lab, showed that the gene encoding a NAC4-like 

transcription factor (Os01g0393100) named as bacterial panicle blight response gene 1 (BPR1) 

was highly up-regulated in Jupiter, but slightly up-regulated in Trenasse upon B. glumae 

infection. Expression of the BPR1 gene at seedling and tillering stages of rice under different 

treatments of B. glumae and its mutant derivatives was not detected. However, BPR1 gene 

showed rapid responses in Jupiter, but not in Trenasse when treated with B. glumae tox- or 

chemicals, including jasmonic acid and ascorbic acid during heading stage. These results 

suggested that BPR1 gene is tissue-specific and might be involved in defense response against B. 

gluame in rice. So, further study is required for functional characterization of BPR1 gene to 

understand molecular mechanisms for defense responses against the pathogen.  

Several rice-associated bacteria (RAB) isolated from healthy rice plants were tested for 

their ability to suppress BPB and SB in rice. All the RAB isolates were identified to be Gram-

positive by 3% KOH test, and 16S rDNA sequence analysis identified RAB isolates as 

Lysinibacillus and Bacillus spp. Phylogenic tree using 16S rDNA sequences divided those 

isolates into two groups. One of the groups consists of RAB isolates, which showed 

antimicrobial activities against B. glumae, and R. solani in in vitro assays, and another group 

consists of RAB isolates, which did not show any activities against those rice pathogens. In 

addition, DNA fingerprintings generated by 16S-23S intergenic transcribed spacer (ITS)-PCR, 
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tDNA-intergenic spacer region (tDNA)-PCR, enterobacterial repetitive intergenic consensus 

(ERIC)-PCR and BOX-PCR were analyzed, which also divided RAB isolates into two major 

groups. The results from DNA fingerprinting and 16S rDNA sequence analyses showed similar 

grouping of RABs except for RAB3, which was grouped with the isolates that did not show any 

antimicrobial activities, in DNA fingerprinting analysis. These results showed that RABs, which 

had shown antimicrobial activities in in vitro assays, also suppressed BPB and SB symptoms in 

the field assays suggesting that these RABs are potential biocontrol agents for BPB and SB 

diseases. 
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APPENDICES 

APPENDIX 1: ANALYSIS OF VARIANCE FOR DAYS TO 50% HEADING IN THE 
RILS OF F5 GENERATION OF THE CROSS TRENASSE × JUPITER, 2012 

Source of variation df Mean square F value Pr > F 

RILs 299 41.69356 9.79 0.0001 

Replications 1 6.82667 1.60 0.2064 

Error 299 4.25810   

Corrected Total 599    
  Coeff. of var. = 2.52 

 

APPENDIX 2: ANALYSIS OF VARIANCE FOR BACTERIAL PANICLE BLIGHT 
RATING FOR THE RILS OF F5 GENERATION OF THE CROSS TRENASSE × 
JUPITER, 2012 

Source of variation df Mean square F value Pr > F 

RILs 299 2.6330602 2.31 0.0001 

Replication 1 6.2016667 5.43 0.0204 

Error 299 1.141466   

Corrected Total 599    
! ! Coeff. of var. = 15.93 

 

APPENDIX 3: ANALYSIS OF VARIANCE FOR SHEATH BLIGHT RATING FOR THE 
RILS OF F5 GENERATION OF THE CROSS TRENASSE × JUPITER, 2012 

Source of variation df Mean square F value Pr > F 

RILs 299 11.594760 11.30 0.0001 

Replication 1 60.166667 58.63 0.0001 

Error 299 1.026198   

Corrected Total 599    
  Coeff. of var. = 16.93 
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APPENDIX 4: ANALYSIS OF VARIANCE FOR PLANT HEIGHT IN THE RILS OF F5 
GENERATION OF THE CROSS TRENASSE × JUPITER, 2012 

Source of variation df Mean square F value Pr > F 

RILs 299 135.22081 7.72 0.0001 

Replications 2 72.56083 4.14 0.0164 

Error 598 17.52349   

Corrected Total 899    
  Coeff. of var. = 4.35 

 

APPENDIX 5: ANALYSIS OF VARIANCE FOR DAYS TO 50% HEADING IN THE 
RILS OF F6 GENERATION OF THE CROSS TRENASSE × JUPITER, 2013 

Source of variation df Mean square F value Pr > F 

RIL 299 19.272887 6.45 0.0001 

Rep 1 15.360000 5.14 0.0241 

Error 299 2.988763   

Corrected Total 599    
  Coeff. of var. = 1.53 

 

APPENDIX 6: ANALYSIS OF VARIANCE FOR BACTERIAL PANICLE BLIGHT 
RATING FOR THE RILS OF F6 GENERATION OF THE CROSS TRENASSE × 
JUPITER, 2013 

Source of variation df Mean square F value Pr > F 

RIL 299 5.883361 6.29 0.0001 

Replication 1 17.681667 18.89 0.0001 

Error 299 0.935847   

Corrected Total 599    
  Coeff. of var. = 17.83 
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APPENDIX 7: ANALYSIS OF VARIANCE FOR PLANT HEIGHT IN THE RILS OF F6 
GENERATION OF THE CROSS TRENASSE × JUPITER, 2013 

Source of variation df Mean square F value Pr > F 

RIL 299 132.16028 9.71 0.0001 

Replication 2 46.58333 3.42 0.0332 

Error 598 13.60452   

Corrected Total 899    
  Coeff. of var. = 3.94 

 

APPENDIX 8: ANALYSIS OF VARIANCE FOR DAYS TO 50% HEADING IN THE 
RILS OF THE CROSS TRENASSE × JUPITER, ACROSS YEARS (2012 AND 2013) 

Source of variation df Mean square F value Pr > F 

RIL 299 47.2162 13.03 0.0001 

YEAR 1 281704.1633 77745.1 0.0001 

Rep(YEAR) 2 11.0933 3.06 0.0475 

RIL*YEAR 299 13.7503 3.79 0.0001 

Error 598 3.6234   

Corrected Total 1199    
Coeff. of var. = 1.96 

 

APPENDIX 9: ANALYSIS OF VARIANCE FOR BACTERIAL PANICLE BLIGHT 
RATING FOR THE RILS OF THE CROSS TRENASSE × JUPITER, ACROSS YEARS 
(2012 AND 2013) 

Source of variation df Mean square F value Pr > F 

RIL 299 4.864314 4.68 0.0001 

YEAR 1 491.520000 473.23 0.0001 

Rep(YEAR) 2 11.941667 11.50 0.0001 

RIL*YEAR 299 3.652107 3.52 0.0001 

Error 598 1.038657   

Corrected Total 1199    
  Coeff. of var. = 16.80 
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APPENDIX 10: ANALYSIS OF VARIANCE FOR PLANT HEIGHT IN THE RILS OF F7 
GENERATION OF THE CROSS TRENASSE × JUPITER, 2014 

Source of variation df Mean square F value Pr > F 

RIL 299 168.38486 14.47 0.0001 

Replication 2 26.54914 2.28 0.1031 

Error 566 11.64058   

Corrected Total 867    
  Coeff. of var. = 3.36 

 

APPENDIX 11: ANALYSIS OF VARIANCE FOR SHEATH BLIGHT RATING FOR 
THE RILS OF F7 GENERATION OF THE CROSS TRENASSE × JUPITER, 2014 

Source of variation df Mean square F value Pr > F 

RIL 299 4.505078 2.67 0.0001 

Replication 1 3.375000 2.00 0.1582 

Error 299 1.686037   

Corrected Total 599    
  Coeff. of var. = 19.56 

 

APPENDIX 12: ANALYSIS OF VARIANCE FOR PLANT HEIGHT IN THE RILS OF 
THE CROSS TRENASSE × JUPITER, ACROSS YEARS (2012, 2013, AND 2014) 

Source of variation df Mean square F value Pr > F 

RIL 299 289.45921 20.24 0.0001 

YEAR 1 13653.65406 954.55 0.0001 

Rep(YEAR) 4 48.56443 3.40 0.0025 

RIL*YEAR 299 72.06776 5.04 0.0001 

Error! 1164 14.3037   

Corrected Total! 1767    
Coeff. of var. = 3.89 
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APPENDIX 13: ANALYSIS OF VARIANCE FOR SHEATH BLIGHT RATING FOR 
THE RILS OF THE CROSS TRENASSE × JUPITER, ACROSS YEARS (2012 AND 2014) 

Source of variation df Mean square F value Pr > F 

RIL 299 10.584646 7.81 0.0001 

YEAR 1 128.707500 94.91 0.0001 

Rep(YEAR) 2 31.770833 23.43 0.0001 

RIL*YEAR 299 5.515192 4.07 0.0001 

Error 598 1.356118   

Corrected Total 1199    
Coeff. of var. = 18.45 

 

 

APPENDIX 14: ANNOTATION OF SNPS, INSERTIONS, AND DELETIONS IN 
DIFFERENT GENOMIC REGIONS OF FIVE RICE CULTIVARS WHEN COMPARED 
WITH THE REFERENCE GENOME, NIPPONBARE 

  Jupiter Trenasse Bengal Lemont LM-1 
SNPs      

Intergenic 507,464 1,332,703 626,575 1,067,972 983,897 
Genic 350,129 914,205 431,178 740,566 693,746 

Intron 144,032 385,457 182,841 305,047 286,661 
UTRs 24,950 59,639 29,236 45,958 44,224 
CDS 181,147 469,109 219,101 389,561 362,861 

Synonymous 85,078 220,282 101,782 182,892 171,881 
Non-synonymous 96,069 248,827 117,319 206,669 190,980 

Indels      
Intergenic 63,297 140,001 69,620 121,364 111,309 
Genic 30,591 67,869 33,772 57,886 53,502 

Intron 21,759 48,546 24,491 41,979 38,775 
UTRs 6,465 14,344 6,829 11,677 10,855 
CDS 2,367 4,979 2,452 4,230 3,872 
Frame shift 2,426 5,509 2,685 4,907 4,389 
Intragenic 39 68 34 66 52 

 

!
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APPENDIX 15: ANNOTATION OF SNPS, INSERTIONS, AND DELETIONS IN 
DIFFERENT GENOMIC REGIONS OF FOUR RICE CULTIVARS WHEN 
COMPARED WITH THE JUPITER 

 Trenasse Bengal Lemont LM-1 
SNPs         
    Intergenic 1,220,425 444,725 915,373 841,583 
    Genic 840,151 322,767 637,625 595,298 
       Intron 349,935 126,642 256,966 240,123 
       UTRs 50,647 17,144 34,754 33,523 
       CDS 439,569 178,981 345,905 321,652 
           Synonymous 208,179 86,709 164,986 154,415 
           Non synonymous 231,390 92,272 180,919 167,237 
Indels         
     Intergenic 127,365 49,405 101,184 93,982 
     Genic 59,990 23,795 46,911 43,932 
         Intron 43,221 17,230 34,221 31,985 
         UTRs 12,314 4,790 9,154 8,666 
         CDS 4,455 1,775 3,536 3,281 
         Frame shift 5,212 2,069 4,323 3,895 
     Intragenic 54 22 57 44 
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APPENDIX 16: USABLE POLYMORPHIC SSR MARKERS IN CHROMOSOMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, AND 12, 
BETWEEN TRENASSE AND JUPITER, FROM GRAMENE DATABASE (McCouch et al., 2002) 

Primer 
name Chr. Motif No. of 

repeats Forward primer Reverse primer Position in chromosome 
(bp) 

      SSR start SSR end 
RM10198 1 AGG 8 CTCCACACAAGGACACACATGC GCCTCAAAGGTAGGTTTGCTTCC  3,873,028   3,873,051  
RM14133 2 AG 21 CGACAAATAATTGGAGCTGACAGTGG CAGTTAGCAATGCCATGAGACAGG  34,306,280  34,306,321  
RM14918 3 AAG 7 CTCGACATGCTGAGCTTTCTACC GCTATTGCGCTTCACTGTCTCC  12,777,151  12,777,171  
RM16459 4 AAT 16 TCCAGGAGTTTGCCTTGTAGTGC TAGCGAAGTCAGGATGGCATAGG  5,178,652   5,178,699  
RM16506 4 AC 10 GCAGTAGACCTCGTGCTGAATGC CCACACCGCCGCAATATAAACC  6,888,967   6,888,986  
RM16554 4 AG 11 GCAACCAAAGTTGGTAACGAGAGC CCGGCGCAATCTATTAGACACC  8,639,749   8,639,770  
RM18360 5 AG 19 TCGAGACTGATCGGAGTTTAGGC CGCTCCTCCCTAACACCTCTACG  14,031,926  14,031,963  
RM18398 5 AG 12 CCCTTTGCTCTGAATCTGATTACC GGCTCAAAGTAGTGCTCCATCC  14,873,521  14,873,544  
RM18751 5 AC 16 CCGTGTGTTGGCTTAGAATCAAGG GCCACTTTCCAAACATCAGAAAGC  21,107,767  21,107,798  
RM19235 6 AAG 9 CTCAATACGGTAGACTTGAGCAATCC CCACGATCCATACGCCTTTACC  246,387   246,413  
RM8121 6 AG 16 CATTGTCCCGCCGTATCTAGC CCTTCTGGCTCATTTATGCTTGG  381,774   381,805  
RM527 6 AG 17 CGGTTTGTACGTAAGTAGCATCAGG TCCAATGCCAACAGCTATACTCG  9,874,150   9,874,183  
RM20216 6 AATC 7 CGAGCTCATTTCACACAAACAGC CGAAATGGAAAGGGTTTGACTCG  20,553,195  20,553,222  
RM20535 6 AG 10 TGCAAGCTGTACAGTTCATGTGG GGCCCATTACGGCTACAAAGG  26,781,109  26,781,128  
RM20612 6 AG 13 TGTCTCTCGATACCTCCCATACC GCCCACCTCTCTTGTCCTATCC  27,916,793  27,916,818  
RM20852 7 AAG 11 GTAGCTCCATGCCAGTTTGTGG AACCTTCTTGATTGGCCATCTCC  902,070   902,102  
RM3710 8 AG 15 AGCAGCAGCCGCTTCTTGTCG CGATTGTTTCCTCCGCCATTCC  370,263   370,292  
RM152 8 CCG 10 AAGGAGAAGTTCTTCGCCCAGTGC GCCCATTAGTGACTGCTCCTAGTCG  677,702   677,731  
RM22899 8 AG 11 TTGCTGTAATGCTGTTCCATCC CGAAGGCGACCTTTCTAGTCG  14,758,520  14,758,541  
RM149 8 AT 10 GGAAGCCTTTCCTCGTAACACG GAACCTAGGCCGTGTTCTTTGC  24,716,913  24,716,932  
RM6760 8 ATC 8 AGTGATGGACCATGATGATGACG CCTCCCTTTCTCCTTGTCTCTCG  27,495,915  27,495,938  
RM3533 9 AG 12 CCTTCATTTCCCTTCCCTCTCC CTTTCCAACCTGTCAGGGAATCG  17,833,841  17,833,864  
RM23668 9 ACG 10 TGCATAGCATATCAACTAGCCCTACC GCTGAAACAGAATGAAAGCACAGC  600,998   601,027  
RM23959 9 AG 10 TGCCAAAGCTAGCTACACACTCC TGCATCATCTTCATCTCTCCATCC  7,945,032   7,945,051  
RM26646 11 ACC 7 GTTCATCGGATTCTCGGTTCAGG GCGGAGGAACAAGACACGAAGC  14,832,719  14,832,739  
RM27080 11 GGC 7 ACTCGGCCCAGTAAGCGTCAGC GGGCCGCAATGTGTAAGAGAGG  23,246,740  23,246,760  
RM27663 12 AC 12 TAGCTAGGATCGGATGAAAGATCTCC GGAGAGAATGTGCGTGCTTGC  4,542,510   4,542,533  
RM28261 12 AAC 7 GACATTTCGAATCCACATCTGACC TTCAGAACAGGGAGGATGTCACC  19,188,093  19,188,113  
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APPENDIX 17: VALIDATING SOME RANDOMLY SELECTED NSSNP-MARKERS DEVELOPED WITH 
WEBSNAPPER USING WHOLE GENOME SEQUENCE DATA OF TRENASSE AND JUPITER. PRIMERS NAME 
ENDING WITH ‘J’ AND ‘T’ ARE SPECIFIC FORWARD PRIMES FOR JUPITER AND TRENASSE, RESPECTIVELY. 
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Os01g0118400 
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) Os01g0118400_J GCCACCACGACGCCACGTTTA Ja 

NAc 65 Os01g0118400_T AGCCACCACGACGCCACGTTAG Tb 

Os01g0118400_R1 GGCGGTGTCGCACAAGGTGC  

Os01g0140400 

(A
/G

) Os01g0140400_J GCCGGGGAACCACAGCTACAAGA J 
Yd 70 Os01g0140400_T GCCGGGGAACCACAGCTACAATG T 

Os01g0140400_R1 GTAGACGGAGAAGAGGCGGAGGTAGTAGC  

Os01g0149350 

(C
/A

) Os01g0149350_J TCTCTGAAAATGTCCTTATTAATTGTCTTAAAGCTC J 
Ne 70 Os01g0149350_T TCTCTGAAAATGTCCTTATTAATTGTCTTAAAGGTA T 

Os01g0149350_R1 GAATGAATCTTCTGCAGCCAAAACCAGA  

Os01g0167750 

(A
/G

) Os01g0167750_J GAGAGGCGGCGGGGGCAATA J 
NA 65 Os01g0167750_T GAGAGGCGGCGGGGGCTAGG T 

Os01g0167750_R1 GCGTGGCCCTCTACCTCCGC  

Os01g0168200 

(T
/C

) Os01g0168200_J ATTCTACAAGTTACTTACAATTTTCCCATCCTTGAT J 
NA 65 Os01g0168200_T ATTCTACAAGTTACTTACAATTTTCCCATCCTTGAC T 

Os01g0168200_R1 ATGGGGTCCTGTGTGGGAAAGGTC  

Os01g0174700 

(G
/A

) Os01g0174700_J TCCTGCCGCTCCTTCTTGCTCATAG J 
NA 65 Os01g0174700_T CCTGCCGCTCCTTCTTGCTCATTA T 

Os01g0174700_R1 TCATCAACATCATCAAGCAGCCGG   
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2 

Os02g0202300 

(T
/C

) Os02g0202300_J CTTGTAGGCAGCTGTTTGCATAATACGTTCAT J 

Y 70 Os02g0202300_T TTGTAGGCAGCTGTTTGCATAATACGTTCAC T 

Os02g0202300_R1 AAACATGCTCATTGCATGCTTTCATTGTT  

Os02g0218200 

(T
/G

) 

Os02g0218200_J TGAAGCAGAGCATCGAGAGAGTGGGT J 

Y 70 
Os02g0218200_R1 GCATCTATCAAACTGACATAACCTGGAGAAACTG  
Os02g0218200_T GGTGAAGCAGAGCATCGAGAGAGTGAAG T 
Os02g0218200_R2 ACCTGGAGAAACTGGTCCATAGATGCAAG  

Os02g0245800 

(C
/A

) Os02g0245800_J CAAGTAAATGGCTGGGGTATGTTACATAATGC J 

Y 70 Os02g0245800_T GCAAGTAAATGGCTGGGGTATGTTACATAGAGA T 

Os02g0245800_R1 CCAATTTAGTTCAGACATGAAATTTCACTAAGGCTT  

Os02g0582150 

(A
/T

) Os02g0582150_J TTTTCGGATGGTTGGACTTCTGAAGGA J 

Y 70 Os02g0582150_T CTTTTCGGATGGTTGGACTTCTGAGGAT T 
Os02g0582150_R1 CAGGTTTCCACAAATGACTGCAATGATG  

Os02g0601000 

(G
/A

) Os02g0601000_J GGCAGGGGCCTGGTTCGCTG J 
Y 65 Os02g0601000_T GGCAGGGGCCTGGTTCGCTA T 

Os02g0601000_R1 GAACACCATGGTCGGCTGGAACA  

 3 Os03g0103400 

(T
/G

) Os03g0103400_J GCACGACCTCCTCCTCAAGCTCATCT J 

NA 65 Os03g0103400_T GACCTCCTCCTCAAGCTCGCCG T 

Os03g0103400_R1 GTGGAGAGGGTGTCGTGGATGAGC  
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3 

Os03g0265700 

(A
/G

) Os03g0265700_J CTGATAATGTCGAGTCTCTTGATTCGGA J 

Y 70 Os03g0265700_T CTGATAATGTCGAGTCTCTTGATTCGGG T 

Os03g0265700_R1 TTTCATGCTTAGAAAGATGCATTCCCCA  

Os03g0320400 

(C
/T

) Os03g0320400_J CAATGGAAAGTAACCAACACAAAGCAAC J 
Y 70 Os03g0320400_T CAATGGAAAGTAACCAACACAAAGCGTT T 

Os03g0320400_R1 TGTCACATGATTGGGTAGTCTTCCTCTC  

Os03g0383800 

(T
/A

) Os03g0383800_J GCCGCTGGCGGAGGATGT J 
NA 65 Os03g0383800_T CCGCTGGCGGAGGAGCA T 

Os03g0383800_R2 GTCCCAACGTCTGGAGGGAGTACTCTG  

Os03g0758550 

(C
/G

) 

Os03g0758550_J CAGGAAAACTGCACGGTTTTTTTTCTCC J 

Y 65 Os03g0758550_R1 CTGCCTCTTGAGGTCAACCTGGGAC  
Os03g0758550_T AGGAAAACTGCACGGTTTTTTTTCGTG T 
Os03g0758550_R2 AAAAATCCTGCCTCTTGAGGTCAACCTG  

Os03g0788300 

(T
/C

) Os03g0788300-b_J GCCACAGTCAGAGGGCACAACGT J 
N 70 Os03g0788300-b_T GCCACAGTCAGAGGGCACAATCC T 

Os03g0788300-b_R1 TGAGGAAGCCCCCGCTCCA  

 
4 Os04g0578200 

(T
/C

) Os04g0578200_J CCCTCCCCGCAGCGAATCAGT J 

Y 70 Os04g0578200_T CCTCCCCGCAGCGAATCTCC T 

Os04g0578200_R1 CTGAGGCTCCGACGCTGCTTCTT  



154 
!

(APPENDIX 17: continued)!
C

hr
om

os
om

e 

Gene 

(J
up

ite
r/T

re
na

ss
e)

 
SN

Ps
 

 Primers name Primer sequence 

A
lle

le
 

Po
ly

m
or

ph
is

m
 

A
nn

ea
lin

g 
te

m
pe

ra
tu

re
 (°

C
) 

!
!
4!

Os04g0622600 

(C
/T

) Os04g0622600_J CCTCTTCCTGTGACGAATTCACCTGAAC J 
N 65 Os04g0622600_T CCTCTTCCTGTGACGAATTCACCTGGTT T 

Os04g0622600_R1 CGCAACTGGTCTGCAAAGATCTGGTAA !!

Os04g0636500 

(G
/A

) Os04g0636500_J GGAACGGCATCGCCACGG J 
NA 65 

Os04g0636500_T GATGTGGAACGGCATCGCCACTA T 
Os04g0636500_R1 GATCTCCTCCAGGAGCGCCCTCT !!   !!

5 

Os05g0473900 

(A
/G

) Os05g0473900_J GGTGAGGCTACCGGCCGTCA J 
Y 70 Os05g0473900_T GGTGAGGCTACCGGCCAGCG T 

Os05g0473900_R1 CAGCTTCTTGCTAGGCCGCTTGG !!

Os05g0493500 

(T
/G

) Os05g0493500_J ACGCCTACTCGCGGCAGCCT J 
Y 65 Os05g0493500_T GCCTACTCGCGGCAGCGG T 

Os05g0493500_R1 CTCCTTCAGCGCCATCTCAGAGAAGA !!

6 

Os06g0101000 

(G
/A

) Os06g0101000_J GGGGTGGAAACCCAAATGGTACTGG J 
NA 65 Os06g0101000_T GGGGTGGAAACCCAAATGGTAGTGA T 

Os06g0101000_R1 GGCAAGCTCGCGCTTCATGG !!

Os06g0102100 

(A
/C

) Os06g0102100_J CGCTGCTGGAGACCATCAACGA J 
NA 65 Os06g0102100_T CGCTGCTGGAGACCATCATGGC T 

Os06g0102100_R1 TCTTTTCTACTGGAGCACTGGAGCTGGA !!
!
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Os06g0111600 

(G
/A

) Os06g0111600_J AGGGCATACCTGGTGCTTAAGAGTAGAG J 

Y 70 Os06g0111600_T AGGGCATACCTGGTGCTTAAGAGTAGAA T 

Os06g0111600_R1 TTTCAGTTTCAGTTTCACAGGACTCCAA   

Os06g0120200 

(C
/G

) Os06g0120200_J TCGACCTCGGCCTCGCCAC J 
N 65 Os06g0120200_T TCGACCTCGGCCTCGCAGG T 

Os06g0120200_R1 TGGTAGTACTCGGCCAGGAAGTTCACC   

Os06g0210400 

(C
/T

) Os06g0210400_J AACGAGACGAGACGACGATCACCAC J 
Y 70 Os06g0210400_T ACGAGACGAGACGACGATCACGGT T 

Os06g0210400_R1 GGGCCTCCTATCCGGTCTCCACTAA   

Os06g0612950 

(G
/A

) Os06g0612950_J CGCCGTACGGCTTCCCGG J 

NA 65 Os06g0612950_T CATCCGCCGTACGGCTTCCCTA T 

Os06g0612950_R1 CGTCGGAGTTCGACTGGGCG   

7 

Os07g0103500 

(A
/G

) Os07g0103500_J CACCATCGTGCACCAGCAGCAGTA J 

N 70 Os07g0103500_T CCATCGTGCACCAGCAGCAGTG T 

Os07g0103500_R1 CCTGTACTCGCCGAAGGTGAAGCTC   

Os07g0159700 

(A
/T

) Os07g0159700_J GCAATTTTAACTGCTCCCTACACAGACA J 

NA 65 Os07g0103500_T CCATCGTGCACCAGCAGCAGTG T 
Os07g0103500_R1 CCTGTACTCGCCGAAGGTGAAGCTC   

!
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Os07g0184633 
(A

/G
) Os07g0184633_J GCGATGCGGAGAGGGCTCGTTATA J 

N 70 Os07g0184633_T GATGCGGAGAGGGCTCGTTCAG T 
Os07g0184633_R1 CTTCGGCTGCCTCCACGGG   

Os07g0204400 

(C
/T

) Os07g0204400_J TCCCCTCTCAGGAGGCTCTGGGTAC J 
NA 65 Os07g0204400_T CCCCTCTCAGGAGGCTCTGGGATT T 

Os07g0204400_R1 GGACATGAACATCCTCATCCTGGCA   

Os07g0623300 

(G
/A

) Os07g0623300_J GTCCATATCTATCTCTACTCCGACCCCG J 
Y 70 Os07g0623300_T GTCCATATCTATCTCTACTCCGACCCCA T 

Os07g0623300_R1 AACTTTTATTGTTGGTGTTGTTGCCTCT   

8 

Os08g0189700 

(G
/A

) Os08g0189700_J AACAAGGGTGATGTATTCGTATTCCCGG J 
Y 65 Os08g0189700_T AACAAGGGTGATGTATTCGTATTCCACA T 

Os08g0189700_R1 GTCCGTAAGCGGACAATATTTAGGACAA   

Os08g0233900 

(T
/C

) Os08g0233900_J GGTTGAAGCAGCTATCGCCAAATCACT J 
N 65 Os08g0233900_T GGTTGAAGCAGCTATCGCCAAATCATC T 

Os08g0233900_R1 CATTGCCAGCTGCCGTTGGTTT   

Os08g0305300 

(A
/G

) Os08g0305300_J AAAATATCAGATGTTGACCTTGCACCAACATAAA J 
NA 65 Os08g0305300_T AAAATATCAGATGTTGACCTTGCACCAACATTAG T 

Os08g0305300_R1 ATGATGATGAAGAAATAGTTTTCAAGCCTCCAGT   

Os08g0442000 

(A
/T

) Os08g0442000_J GATGCCTGCAGTGGCAGTTTGTGA J   
Os08g0442000_T AATAGATGCCTGCAGTGGCAGTTTGAAT T Y 70 
Os08g0442000_R1 GCAGCTGCACGATACTTTTCCACACA    

!
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Os08g0551500 
(T

/C
) Os08g0551500_J CACAGCAACTAGTGGTTCCCAAGATGAT J 

Y 65 Os08g0551500_T CACAGCAACTAGTGGTTCCCAAGATGAC T 
Os08g0551500_R1 CAAAGATTGGCAGATCCTTTAAAAGGCG !!

Os09g0101800 

(C
/T

) Os09g0101800_J TCCTGCAAACTACACGATACTACTGGGC J 
NA 65 Os09g0101800_T TCCTGCAAACTACACGATACTACTGGGT T 

Os09g0101800_R1 TGAATGTGGGAAATGCTAGAATAACATG !!

9 

Os09g0110200 

(A
/G

) Os09g0110200_J CCAGTTTACGGAGGCTCTCACTGTCATA J 
Y 70 Os09g0110200_T CAGTTTACGGAGGCTCTCACTGTCAGG T 

Os09g0110200_R1 TCATGATATGTGGACTGTGCAAGCGAG !!

Os09g0127800 

(T
/G

) Os09g0127800_J CATCAGAGCAAATCAGGACGGCATCT J 
N 65 Os09g0127800_T CAGAGCAAATCAGGACGGCATCG T 

Os09g0127800_R1 TCTTGCTGCCCACCCTGAGATGA !!

Os09g0131150 

(T
/G

) 

Os09g0131150_J CAAGGGTCCCTCTCACTCTGGCTCAT J!
NA 65 

Os09g0131150_R1 TTTCCTGCGCTCCAATCAAACGAC ! 
Os09g0131150_T AAGGGTCCCTCTCACTCTGGCTCAG T 
Os09g0131150_R2 ATCCGATTCCTATGTTTTTCCTGCGCT !!

Os09g0332360 

(A
/G

) Os09g0332360_J CGATAATTGCAATGAGTGTCTTTAGCCA J 
Y 70 Os09g0332360_T CGATAATTGCAATGAGTGTCTTTACCCG T 

Os09g0332360_R1 GGAGTCTTAATGATCCATGATGGCAAGG 
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Os10g0104500 
(C

/A
) Os10g0104500_J GTGGTCTCCTTCGGGACTGACAAGC J 

Y 70 Os10g0104500_T TGGTCTCCTTCGGGACTGACGAGA T 
Os10g0104500_R1 GTAGCAGTTGCGTTTGTTATGGGCTTTG !!

Os10g0110600 

(G
/C

) Os10g0110600_J CGACGCCGATGCGCTGAAG J 
Y 70 Os10g0110600_T GACGCCGATGCGCTGCTC T 

Os10g0110600_R1 CTCAAGATGCTGCTCCGGGTGTTC !!

Os10g0112700 

(G
/A

) Os10g0112700_J CGCCTCTTCGAAACCCTCAAGCG J 
N 70 Os10g0112700_T AAACGCCTCTTCGAAACCCTCAAGAA T 

Os10g0112700_R1 CATCACACCGCTCATGGCGAAA !!

Os10g0141900 

(T
/C

) Os10g0141900_J CCCGTGATCTCCTTGCATCCCTGT J 
NA 65 Os10g0141900_T TCCCGTGATCTCCTTGCATCCCTAC T 

Os10g0141900_R1 ACCAGCTGCGGCTATGAGGATATGATC !!

Os10g0334500 

(C
/T

) Os10g0334500_J AGGGCAACCACACTCCACAGCAC J 
NA 65 Os10g0334500_T AGGGCAACCACACTCCACAGGGT T 

Os10g0334500_R1 CGATGGGAAACAGTCATAGCACCCT !!

Os10g0500500 

(G
/T

) Os10g0500500_J AACTCTAGCAGCATCTTGGCTGAATTAG J 
N 65 Os10g0500500_T AACTCTAGCAGCATCTTGGCTGAAATGT T 

Os10g0500500_R1 CTCACAAATTTACCGCTGAGTTCCAGAA !!
!
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11 

 
 
 

 

Os11g0105600 
(G

/A
) Os11g0105600_J CGGCTTCAGGCACGCGAAGTAG J 

Y 70 Os11g0105600_T CGGCTTCAGGCACGCGAAGTTA T 
Os11g0105600_R1 CTGATATGTCATATGCCCAGGCCCAG  

Os11g0182100 

(A
/G

) Os11g0182100_J TCCTCCGGAGCAACGGGAGAA J 
NA 65 Os11g0182100_T TCCTCCGGAGCAACGGGAGAG T 

Os11g0182100_R1 CTGCCTCCCTGCATGACGTCG  

Os11g0225300 

(A
/G

) Os11g0225300_J CCTGACCTCATTGTTCTCTCAATGCAAA J 
Y 70 Os11g0225300_T CTGACCTCATTGTTCTCTCAATGCACG T 

Os11g0225300_R1 TCCAATTCGAACAGCAATCTTCTTGAGG  

Os11g0242700 

(G
/T

) Os11g0242700_J GAAGACTTGGAGCTTCTTGGAACGTCG J 
Y 70 Os11g0242700_T GGAAGACTTGGAGCTTCTTGGAACGTCT T 

Os11g0242700_R1 TCACATTATGTCCATGTAACCATGACAA  

Os11g0305400 

(A
/G

) Os11g0305400_J ATGCCTCGAATTCCTAGCTTCTTCACTA J 
NA 65 Os11g0305400_T GCCTCGAATTCCTAGCTTCTTCACCG T 

Os11g0305400_R1 TCACCATTGGAGTGACCAGGATTGC  

Os11g0485900 

(C
/T

) Os11g0485900_J AAGTAACCGGCTGTATGGTGCTAGGAAC J 
N 70 Os11g0485900_T AAGTAACCGGCTGTATGGTGCTAGGAAT T 

Os11g0485900_R1 TTTCCATTTGTCTCGAATTGTCCTCCAA  

Os11g0606600 

(G
/A

) Os11g0606600_J GGAAGTTGCAGAAGACAACTTCAATGCG J 
N 65 Os11g0606600_T GGAAGTTGCAGAAGACAACTTCAATGGA T 

Os11g0606600_R1 TCTCCAACACAGTCAAAGATCGGACATG  
!
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12 

Os12g0102400 
(G

/T
) Os12g0102400_J TCACCATATGTCCATTTCCCTAACACCG J 

N 70 Os12g0102400_T TCACCATATGTCCATTTCCCTAACATTT T 
Os12g0102400_R1 CAATTCTCACTGCACCAACTGCTCCA  

Os12g0119000 

(G
/T

) 

Os12g0119000_J CAATTGCTGGATTCTCCTCATCTCCG J 

N 70 
Os12g0119000_R1 GTAGTCTCCCTCTTCTCTCACACACACA  
Os12g0119000_T GCCAATTGCTGGATTCTCCTCATCACTT T 
Os12g0119000_R2 AGTCTCCCTCTTCTCTCACACACACACC  

Os12g0151000 

(G
/T

) Os12g0151000_J CCAACCCGGCTTGCAACAAGAAAG J 
Y 70 Os12g0151000_T CAACCCGGCTTGCAACAAGAGGT T 

Os12g0151000_R1 TGAGGTGTGTGTTTCTTTGTACGAATGC  

Os12g0225300 

(C
/T

) Os12g0225300_J GAAGGGGAACCCGAGCCAGC J 
NA 65 Os12g0225300_T GAAGGGGAACCCGAGCCGCT T 

Os12g0225300_R1 ACCAACTCCCGCTCTTGCCAGAA  

Os12g0613200 

(A
/G

) Os12g0613200_J TTAACAGGGGCCATTTTCTTATTCTACA J 
Y 70 Os12g0613200_T TTAACAGGGGCCATTTTCTTATTCTCGG T 

Os12g0613200_R1 GGCGGGTCTATGCTGCATCAGAATT  
a = Jupiter specific allele, b =  Trenasse specific allele, c = Not amplified, d = Polymorphic, e = Non-polymorphic 
!
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APPENDIX 18: POLYMORPHIC SSR MARKERS IDENTIFIED BETWEEN TRENASSE AND JUPITER, IN 
CHROMOSOMES 1, 2, AND 8, DEVELOPED BY USING WHOLE GENOME SEQUENCE DATA  

Primer 
name Chr. Motif No. of 

repeats Forward primer Reverse primer Position in chromosome 
(bp) 

      
SSR Start SSR End 

Chr1TJ001 1 AT 11 GATGTTTGATCCAGCAGCCT ATCCAGCGAACTTGAGCAAT  82,261   82,282  
Chr1TJ013 1 GA 16 AACAGCGAAAACGCAAACTT GAGACAGCAAGAAATCCCGA  4,851,731   4,851,762  
Chr1TJ024 1 CTT 19 TCGAATTTGCATCCATTTGA ACGAACTAGAGCATGGGCAC  9,611,474   9,611,530  
Chr1TJ030 1 TC 20 AAGAAACTCTCCGCTCCTCC CCTGAGAGACAAACGCATCA  11,906,704   11,906,743  
Chr1TJ032 1 CT 12 GATGGCTGGTGTTGTTGTTG CAACAGCCCTTGAAGTGTCA  12,451,430   12,451,453  
Chr1TJ039 1 TA 15 CGGAAGAGAAGCTCAACACC GAACTTTGCGGAATAGCGAG  20,319,310   20,319,339  
Chr1TJ049 1 AG 12 CCCATCGGATTTATTCTCCA GGCCATTTTAAAACAAGCACA  24,347,616   24,347,639  
Chr1TJ053 1 CGG 8 AGGGTGAGGAGAAAACCCAT AAAGCAACGAGAGATCCGAA  25,823,698   25,823,721  
Chr1TJ088 1 TA 20 CACTGTCACCACAAAGCTGA CACGAAGCCAAACGTAGTTG  43,133,416   43,133,455  
Chr2TJ001 2 TAA 16 GCATGCACTGCAGATACCAA TTTGCAGCAGAGCAGAAAAA  427,164   427,211  
Chr2TJ032 2 TG 17 GACAAGGTGGATACCGGAGA GACACAGTTGTTCGACCCCT  19,770,679   19,770,712  
Chr2TJ045 2 GCT 11 ATTCCACCTCAACTTGCACC GAGGAGGAGGAGGAGCACTT  26,157,146   26,157,178  
Chr8TJ033 8 GAA 27 CAAATGCACAGTTGCGAATC ACGGAGTACATACCAAGGCG  19,845,666   19,845,746  
Chr8TJ045 8 AG 13 TGACCTCACTTCACTTCCCC CGATGAGCTCTCCACATCAA  22,481,799   22,481,824  



162 
!

APPENDIX 19: PARTIAL SEQUENCE OF 16S RDNA OF RICE-ASSOCIATED 
BACTERIA !

>RAB1 
GTGCCTAATACATGCAAGTCGAGCGAACAGAGAAGGAGCTTGCTCCTTTGACGTTAGCG
GCGGACGGGTGAGTAACACGTTGGGATAACTCCGGGAAACCGGGGCTAATACCGAATAA
TCTGTTTCACCTCATGGTGAAATATTGAAAGACGGTTTCGGCGCGGCGCATTAGCTAGT
TGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGC
CACAAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCACAATGGGCGAAAGCCTGAT
GGAGCAACGCCGCGTGAGTGAAGAACTGTTGTAAGGGAAGAACAAGTACAGTAGTAACT
GGCTGTACCTTGACGGTACCTTATTAGAAAGCCACGGCTAACTACGCGTAGGTGGCAAG
CGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGA
AAGCCCACTTGGAAACTGGGAGACTTGAGTGCAGAAGAGGATAGTGGAATTCCAAGTGT
AGCGGTGAAATGCGTAGAGATTTGGAGGATATCTGGTCTGTAACTGACACTGAGGCGCG
AAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAGGGGGTTTC
CGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAG
ACTGAAACTCAAACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCT
TACCAGGTCTTGACATCCCGTTGACCACTGTAGGGGCAACGGTGACAGGTGGTGCATGG
TTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACATTTA
GTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAA
ATCATCATGCCCCTTACTACAATGGACGATACAAACGGTTGCCAACTCGCGAGAGGGAG
CTAATCCGATAAAGTCGTTCTCAGTTCGGATTGTAGGGCCGGAATCGCTAGTAATCGCG
GATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAA
GTCGGTGAGGTAACCTTTTGGAGCCAGCCGCCGAAGGTGGGATAGATGA 
 
 
 
>RAB2R 
CCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTGTTTG
AACCGCATGGTTCAGACATAATTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAG
GTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGCTGAGACACGGCCCAGA
CTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAA
CGCCCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGGC
ACCTTGACGGTACCTAACCAGAAAGGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGT
CCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTAACCCGGGGAGGG
TCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGG
TGAAATGCCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGC
GTGGGGAGCGAACAGGATTAGATACCCTGTGAGTGCTAAGTGTTAGGGGGTTTCCGCCC
CTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGGAGTACGGTCAATTGACGG
GGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACC
AGGTCTTGACATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCG
TCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCATCTTAGTTGCCAGCATTCAGTTGGG
CACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATGGGC
TACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATC
CCACAAATCTGTTCTCACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAG
CATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACC 
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>RAB2S 
GATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTG
CCTGTAAGACTGGGATAACTCCGGATGGTTGTTTGAACCGCATGGTTCAGACATAAAAG
GTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTACTCACCAAGGCGACGAT
GCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC
TACGTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTC
GGATCGTAAAGCTCTGTTGTTAGGGTAGGGCGGCACCTTGACGGTACCTAACCAGAAAG
CCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAGGCGTAAAGGGCT
CGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTG
GAAACTGGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAAC
ACCAGTGGCGAAGGCGACTCTCTGGTCTGAAGCGTGGGGAGCGAACAGGATTAGATACC
CTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCGCATTAAG
CACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCG
CACAAGCGGTGGGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTA
GAGATAGGACGTCCCCTTCGGGGGCAGAGTGACCAGCTCGTGTCGTGAGATGTTGGGTT
AAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAACAAA
CCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC
GTGCTACAATGGACAGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCG
CAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTACGCGGTGAATACGTTCCCGGGC
CTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAC
GAAGGTGGGAGCCAGCCGC 
 
 
 
 
 
 
>RAB3 
GCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGG
TAACCTGCCTGTAAGACTGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAGAC
ATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGGTAACGGCTCACCAAGG
CGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCC
AGACGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGA
AGGTTTTCGGATCGTAAAGCTCTGTCGTTCAAATAGGGCGGCACCTTGACGGTACCTAA
CCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAATTATTGGGCGT
AAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAG
GGTCATTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGT
GGAGGAACACCAGTGGCGAAGGCGACTCTAGGAGCGAAAGCGTGGGGAGCGAACAGGAT
TAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGCAGCTAAC
GCATTAAGCACTCCGCCTGGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGAC
GGGGGCCCGCACTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG
ACAATCCTAGAGATAGGACGTCCCCTTCGGGGGGGTTGTCGTCAGCTCGTGTCGTGAGA
TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCCTGCC
GGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGG
GCTACACACGTGCTACGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAG
TTCGGATCGCAGTTTGCAACTCGACTGCGTGAAGCTGTCAGCATGCCGCGGTGAATACG
TTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCG
CCAGCCGCCGAAGGTAGGA 
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>RAB4R 
CTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTGTTTGA
ACCGCATGGTTCAGACATAAATACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGG
TAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGTGAGACACGGCCCAGAC
TCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAAC
GCCGGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGGCA
CCTTGACGGTACCTAACCAGAAAGCCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTC
CGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGACCGGGGAGGGTC
ATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTG
AAATGCGTGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGT
GGGGAGCGAACAGGATTAGATACCCTGGTAGTGCTAAGTGTTAGGGGGTTTCCGCCCCT
TAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCATGACGGGGG
CCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGG
TCTTGACATCCTACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCA
GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCTTAGTTGCCAGCATTCAGTTGGGCAC
TCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCAGCTAC
ACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCA
CAAATCTGTTCTCAGTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCGGATCAGCAT
GCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAG 
 
 
 
 
 
 
>RAB4S 
AGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGG
GTAACCTGCCTGTAAGACTGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTCAGA
CATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGGTAACGGCTCACCAAG
GCGACGATGCGTAGCCGAACTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCC
CAGAAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATG
AAGGTTTTCGGATCGTAAAGCTCTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTA
ACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGGAATTATTGGGCG
TAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGA
GGGTCATTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATG
TGGAGGAACACCAGTGGCGAAGGCGACTCGAGGAGCGAAAGCGTGGGGAGCGAACAGGA
TTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGTGCAGCTAA
CGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGAC
GGGGGCCCGCACTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG
ACAATCCTAGAGATAGGACGTCCCCTTCGGGGGGGTTGTCGTCAGCTCGTGTCGTGAGA
TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCCTGCC
GGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGG
GCTACACACGTGCTACGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAG
TTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGTCAGCATGCCGCGGTGAATACG
TTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCG
CCAGCCGCCGAAGGTGGGA 
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>RAB5 
CGAGCGAACAGAAAAGGAGCTTGCTCCTTTGACGTTAGCGGCGGACGGGTGAGTAACAC
GTGGGCAACCTACCCTATAGTCCGGGGCTAATACCGAATAATCTCTTTTGCTTCATGGC
AAGAGACTGAAAGACGGCTTCTCCTGTTCCTTATAGAAGGGCTGGGAAGGAACCGCCCC
CCCAAGGCAACAATCCTTACCCAACCTGAAAGGGGGACCGGCCCCCCGGGAACTAAAAC
CCGGACCATTAGGAAACCTTCCCCAAGGGGCAAAACCCTGAGGAGCCACCCCCCCGGGA
TTAAAAAAGGTTTTCGAATCTTAAACAAGTCCAGTAGTAACTGGCTGTACCTTGACGGT
ACCCTTATTAAAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTTGTCCGGAATTAT
TGGGCGTAAAGCGCGCGCAGGCGGTCCTTTAAGTCTGATGTGAAAGCCCACGGCTCAAC
CGTGGAGGTTGAGTGCAGAAGAGGAAAGTGGAATTCCAAGTGTAGCGGTGAAATGCGTA
GAGATTTGGAGGAACACCAGTGGCGAAGGGACGCTGAGGCGCGAAAGCGTGGGGAGCAA
ACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTTAGTGCTGC
AGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGA
ATTGACGGGGGCGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACAT
CCCGTTGACCACTGTAGAGATATAGTTTCCCCTTGGTGCATGGTTGTCGTCAGCTCGTG
TCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCTAAGG
TGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTA
TGACCTGGGCTACACAAAACGGTTGCCAACTCGCGAGAGGGAGCTAATCCGATAAAGTC
GTTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACAATCGCGGATCAGCATGCCGCGG
TGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACT
TTTGGAGCCAGCCGCCGAAGGTGGGATAGATGATT 
 
 
 
 
 
 
>RAB6 
GCGTGCCTAATACATGCAAGTCGAGCGGGACGATGGGAGCTTGCTCCCTTGAGTTAGCG
GCGGACGGGTGAGTAACACGTTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGG
TTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCGGCGCGGCGCATTAGCTAGT
TGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGC
CACAAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGAC
GGAGCAACGCCGCGTGAGTGATGAACTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATA
GGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACACGTAGGTGGCAA
GCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTG
AAAGCCCCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTG
TAGCGGTGAAATGCGTAGAGATGTGGAGGCTCTCTGGTCTGTAACTGACGCTGAGGAGC
GAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAGGGGGTTT
CCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAA
GACTGAAACTCACACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACC
TTACCAGGTCTTGACATCCTCTGACAATCCTAGGGGCAGAGTGACAGGTGGTGCATGGT
TGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCTTCAG
TTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAA
TCATCATGCCCCTTATTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGC
CAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCCTGGAATCGCTAGTAATCGCGG
ATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACG
TCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGG 
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>RAB7 
GGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAA
ACCGGGGCTAATACCGGATGGAGACATAAAAGGTGGCTTCGGCTACCACTTACAGATGG
ACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCACCTGAGAGGGTGATCGG
CCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTC
CGCAGCAACGCCGCCTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGA
AGAACAAGTGCCGTTCAAATAGGGCCCAGAAAGCCACGGCTAACTACGTGCCAGCAGCC
GCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTATTAAGTCTGATGT
GAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAG
AGGAGAGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGT
CTGTAACTGACGCTGAGGAGCGAAAGCGTTACCCTGGTAGTCCACGCCGTAAACGATGA
GTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTACGGTCGCA
AGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAA
TTCGAAGCAACGTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCA
GAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCAAGTCCCGCAACGAGCGCAACCCTTG
ATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACGTCAA
ATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACAGAACAAAGGGC
AGCGAAACCGCGAGGTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGC
TGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAA 
 
 
 
 
 
 
 
>RAB8 
GGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGA
CATAAAAGGTGGCTTCGGCTAGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAG
GCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTACTCCTACGGGAGGCAG
CAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATG
AAGGGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTA
ACCAGAAAGCCACGGCTAACTACGTGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCG
TAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGTGGAAACTGGGGA
ACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATG
TGGAGGAACTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGA
TTAGATACCCTGGTAGTCCACGCCGTAAAGGGGTTTCCGCCCCTTAGTGCTGCAGCTAA
CGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAACAAGCGGTG
GAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTG
ACAATCCTAGAGGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGA
TGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCAGTTGGGCACTCTAAGGTGACTGCC
GGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACAATG
GACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAG
TTCGGATCGCAGTCTGGGAATCGCTAGTAATCGCGGATCAGCATGCCGCGGTGAATACG
TTCCCGGGCCTTGTACACACCGCCCGTCACACC 
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>RAB9 
GGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGC
GGCGGACGGGTGAGTAACACGCTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATG
GTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCGGCGCGGCGCATTAGCTAG
TTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGG
CCACCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGA
CGGAGCAACGCCGCGTGAGTGATGATCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAAT
AGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTATACGTAGGTGGCA
AGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGT
GAAAGCCCCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGT
GTAGCGGTGAAATGCGTAGAGATGTGGAGACTCTCTGGTCTGTAACTGACGCTGAGGAG
CGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTTAGGGGGTT
TCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCA
AGACTGAAACTCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAAC
CTTACCAGGTCTTGACATCCTCTGACAATCCTAGGGGCAGAGTGACAGGTGGTGCATGG
TTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACATTCA
GTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAA
ATCATCATGCCCCTTACTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAAG
CCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTGCTGGAATCGCTAGTAATCGCG
GATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAA
GTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATGATTGGGGTGA
AGTCGTAACAAGGTAGCC 
 
 
 
 
>RAB10 
CGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGA
TGTTAGCGGCGGACGGGTGAGTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATA
CCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGATGGACCCGCGGCGCAT
TAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGG
TGATCACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAA
AGTCTGACGGAGCAACGCCGCGTGAGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCG
TTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGGCGGTAATACGTA
GGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT
CTGATGTGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAA
TTCCACGTGTAGCGGTGAAATGCGTAGAGCGAAGGCGACTCTCTGGTCTGTAACTGACG
CTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCTAAGTGTT
AGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTA
CGGTCGCAAGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACG
CGAAGAACCTTACCAGGTCTTGACATCCTCTGACCCCTTCGGGGGCAGAGTGACAGGTG
GTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGTTGCC
AGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGAT
GACGTCAAATCATCATCACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCG
AGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGTGCGTGAAGCTGGAATCGCTAG
TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGA
CACCCGAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGGACAGATGAT
TGGGGTGAAGTCGTAACAAGGTAGCC 
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>RAB11R 
GATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTG
CCTGTAAGACTGGGATAACTCCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAG
GTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTACTCACCAAGGCGACGAT
GCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC
TACGTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTT
CGGATCGTAAAGCTCTGTTGTTAGGATAGGGCGGCACCTTGACGGTACCTAACCAGAAA
GCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCGGGCGTAAAGGGC
TCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATT
GGAAACTGGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAA
CACCAGTGGCGAAGGCGACTCTCTGGTCTAAAGCGTGGGGAGCGAACAGGATTAGATAC
CCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCACGCATTAA
GCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCC
GCACAAGCGGTGAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCT
AGAGATAGGACGTCCCCTTCGGGGGCAGAGTGATCAGCTCGTGTCGTGAGATGTTGGGT
TAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCGACAA
ACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACA
CGTGCTACAATGGACAGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATC
GCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTCCGCGGTGAATACGTTCCCGGG
CCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTA
ACCTTT 
 
 
 
 
 
 
>RAB11S 
GATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACCGTGGTAACCTG
CCTGTAAGACTGGGATAACTCCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAG
GTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTACTCACCAAGGCGACGAT
GCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC
TACGTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTT
CGGATCGTAAAGCTCTGTTGTTAGGATAGGGCGGCACCTTGACGGTACCTAACCAGAAA
GCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCGGGCGTAAAGGGC
TCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATT
GGAAACTGGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAA
CACCAGTGGCGAAGGCGACTCTCTGGTCTAAAGCGTGGGGAGCGAACAGGATTAGATAC
CCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCACGCATTAA
GCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCC
GCACAAGCGGTGAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCT
AGAGATAGGACGTCCCCTTCGGGGGCAGAGTGATCAGCTCGTGTCGTGAGATGTTGGGT
TAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCGACAA
ACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACA
CGTGCTACAATGGACAGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATC
GCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTCCGCGGTGAATACGTTCCCGGG
CCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTC
CGAAGGTGGGACAGATGATTG 
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>RAB12 
TCGAGCGAACAGAGAAGGAGCTTGCTCCTTTGACGTTAGCGGCGGACGGGTGAGTAACA
CGTGGGCAACCTACCTTTATAACCGGGGCTAATACCGAATAATCTGTTTCACCTCATGG
TGAAATATTGAAAGACGGTTTCGGCTGTCGCTATAGGATGGGTGGTGAGGTAACGGCTC
ACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGAC
ACGGAGCAGTAGGGAATGTTCCACAATGGGCGAAAGCCTGATGGAGCAACGCCGCGTGA
GTGAAGAAGGATTTCGGTTCGTAAACAAGTACAGTAGTAACTGGCTGTACCTTGACGGT
ACCTTATTAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAGTCCGGAATTATT
GGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACC
GTGGAGGGTGAGTGCAGAAGAGGATAGTGGAATTCCAAGTGTAGCGGTGAAATGCGTAG
AGATTTGGAGGAACACCAGTGGCGAAGGCACACTGAGGCGCGAAAGCGTGGGGAGCAAA
CAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGAGTGCTGCA
GCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAA
TTGACGGGGGCCTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATC
CCGTTGACCACTGTAGAGATATGGTTTCCCCTTGGTGCATGGTTGTCGTCAGCTCGTGT
CGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAAGGT
GACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTAT
GACCTGGGCTACACACAACGGTTGCCAACTCGCGAGAGGGAGCTAATCCGATAAAGTCG
TTCTCAGTTCGGATTGTAGGCTGCAACTCGCCTACATTCGCGGATCAGCATGCCGCGGT
GAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCT
TTGGAGCCAGCCGCCGAAGGTGGGATAGATGATTGT 
 
 
 
 
 
 
>RAB13 
GGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTT
AGCGGCGGACGGGTGAGTAACAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGG
ATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTACCCGCGGCGCATTAGC
TAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGAT
CGGCGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTC
TGACGGAGCAACGCCGCGTGAGTGAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCA
AATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAATAATACGTAGGTG
GCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGA
TGTGAAAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCA
CGTGTAGCGGTGAAATGCGTAGAGATGTGGCGACTCTCTGGTCTGTAACTGACGCTGAG
GAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCTGTTAGGGG
GTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTC
GCAAGACTGAAACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAG
AACCTTACCAGGTCTTGACATCCTCTGACAATCTCGGGGGCAGAGTGACAGGTGGTGCA
TGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAGCAT
TCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGT
CAAATCATCATGCCCCGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTT
AAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCGAAGCTGGAATCGCTAGTAATC
GCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACAC
GAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGGACAGATGAT 
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>RAB14R 
GCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGAT
GTTAGCGGCGGACGGGTGAGTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATAC
CGGATGGTTGTTTGAACCGCATGGTTCAGACATAAAAGGTGGTGGACCCGCGGCGCATT
AGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGT
GATCACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAA
GTCTGACGGAGCAACGCCGCGTGAGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGT
TCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCCGGTAATACGTAG
GTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTC
TGATGTGAGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATT
CCACGTGTAGCGGTGAAATGCGTAGAGATAAGGCGACTCTCTGGTCTGTAACTGACGCT
GAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCAAAGTGTTAG
GGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACG
GTCGCAAGACTGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCG
AAGAACCTTACCAGGTCTTGACATCCTCTGACACCTTCGGGGGCAGAGTGACAGGTGGT
GCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGGCCAG
CATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGA
CGTCAAATCATCATGCCACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAG
GTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGTGAAGCTGGAATCGCTAGTA
ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCA
CCCGAAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATGATTG
GGGTGAAGTCGTAACAAGG 
 
 
 
 
>RAB14S 
GGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGC
GGCGGACGGGTGAGTAACACGCTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATG
GTTGTTTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCGGCGCGGCGCATTAGCTAG
TTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTACCCGACCTGAGAGGGTGATCGG
CCACCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGA
CGGAGCAACGCCGCGTGAGTGATGATCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAAT
AGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTATACGTAGGTGGCA
AGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGT
GAAAGCCCCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGT
GTAGCGGTGAAATGCGTAGAGATGTGGAGACTCTCTGGTCTGTAACTGACGCTGAGGAG
CGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTTAGGGGGTT
TCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCA
AGACTGAAACTCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAAC
CTTACCAGGTCTTGACATCCTCTGACAATCCTAGGGGCAGAGTGACAGGTGGTGCATGG
TTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAAGCGCAACATTC
AGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCA
AATCATCATGCCCCTTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTAA
GCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGAGCTGGAATCGCTAGTAATCGC
GGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCA
AGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGG 
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>RAB15 
ATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGC
CTGTAAGACTGGGATAACTCCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGG
TGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGTCACCAAGGCGAGGATG
CGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCT
ACGGTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTC
GGATCGTAAAGCTCTGTTGTTAGGGTAGGGCGGCACCTTGACGGTACCTAACCAGAAAG
CCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAGGCGTAAAGGGCT
CGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTG
GAAACTGGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAAC
ACCAGTGGCGAAGGCGACTCTCTGGTCTGAAGCGTGGGGAGCGAACAGGATTAGATACC
CTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCGCATTAAG
CACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCG
CACAAGCGGTGGGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTA
GAGATAGGACGTCCCCTTCGGGGGCAGAGTGACCAGCTCGTGTCGTGAGATGTTGGGTT
AAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCAACAAA
CCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACAC
GTGCTACAATGGACAGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCG
CAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTACGCGGTGAATACGTTCCCGGGC
CTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAC
GAAGGTGGGACAGATGATTG 
 
 
 
 
 
>RAB16 
GCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTA
GCGGCGGACGGGTGAGTAACAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGA
TGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCCCCGCGGCGCATTAGCT
AGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATC
GGCCCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCT
GACGGAGCAACGCCGCGTGAGTGATGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAA
ATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACAATACGTAGGTGG
CAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGAT
GTGAAAGCGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCAC
GTGTAGCGGTGAAATGCGTAGAGATGTGGCGACTCTCTGGTCTGTAACTGACGCTGAGG
AGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTTAGGGGG
TTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCG
CAAGACTGAAACCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGA
ACCTTACCAGGTCTTGACATCCTCTGACAATCCCGGGGGCAGAGTGACAGGTGGTGCAT
GGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAGCATT
CAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTC
AAATCATCATGCCCCTTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGTTA
AGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAAAGCTGGAATCGCTAGTAATCG
CGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACG
AAGTCGGTGAGGTAACCTTTTAGGAGCCAGCCGCCGAAGGTGGGACAGATGATTGGGGT
GAAGTCGTAACAAG 
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>RAB17R 
TCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACG
TGGGTAACCTGCCTGTAAGACGGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTC
AGACATAAAAGGTGGGCTCGGCTACCACTTACAGATGGACCCTGAGGTAACGGCTCACC
AAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACG
GCCCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTG
ATGAAGGTTTTTCGGATCGTAAAGCAGTGCCGTTCAAATAGGGCGGCACCTTGACGGTA
CCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATCCGGAATTATTG
GGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCG
GGGAGGGTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGA
GATGTGGAGGAACACCAGTGGCGAAGGCGCGCTGAGGAGCGAAAGCGTGGGGAGCGAAC
AGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTGTGCTGCAG
CTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAAT
TGACGGGGGCCCGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCC
TCTGACAATCCTAGAGATAGGACGTCCCCTTCGGCATGGTTGTCGTCAGCTCGTGTCGT
GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCGTGAC
TGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGAC
CTGGGCTACACACGTGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTC
TCAGTTCGGATCGCAGTTTGCAACTCGACTGCGGGAACGGATCAGCATGCCGCGGTGAA
TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAA
GGAGCCAGCCGCCGAAGGTGGGACAGATGATT 
 
 
 
 
 
>RAB17S 
GAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGT
AAGACTGGGATAACTCCGGGAGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGC
TTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGCAAGGCGACGATGCGTA
GCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGG
GAGGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGAT
CGTAAAGCTCTGTTGTTAGGGAAGAGCGGCACCTTGACGGTACCTAACCAGAAAGCCAC
GGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTAAAGGGCTCGCA
GGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAA
CTGGGGAAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCA
GTGGCGAAGGCGACTCTCTGGTCTGTAACGTGGGGAGCGAACAGGATTAGATACCCTGG
TAGTCCACGCCGTATACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAAGCACT
CCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACA
AGCGGTGGAGCACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGA
TAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTTCGTGTCGTGAGATGTTGGGTTAAGT
CCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTACCGG
AGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGC
TACAATGGACAGAACAGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGT
CTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAAGTGAATACGTTCCCGGGCCTTG
TACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTG
GTGGGACAGATGATTCGAA 
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>RAB18 
CGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGA
TGTTAGCGGCGGACGGGTGAGTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATA
CCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGATGGACCCGCGGCGCAT
TAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGG
TGATCACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAA
AGTCTGACGGAGCAACGCCGCGTGAGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCG
TTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGGCGGTAATACGTA
GGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGT
CTGATGTGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAAT
TCCACGTGTAGCGGTGAAATGCGTAGAGAGAAGGCGACTCTCTGGTCTGTAACTGACGC
TGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCTAAGTGTTA
GGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTAC
GGTCGCAAGACTGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGC
GAAGAACCTTACCAGGTCTTGACATCCTCTGACCCCTTCGGGGGCAGAGTGACAGGTGG
TGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGATGCCA
GCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATG
ACGTCAAATCATCATGACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGA
GGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGAGCGTGAAGCTGGAATCGCTAGT
AATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC
ACCCGAAGTCGGTGAGGTAACCTTTATGGAGCCAGCCGCCGAAGGTGGGACAGATGATT
GGGGTGAAGTCGTAACAAG 
 
 
 
 
>RAB19 
AGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCT
GCCTGTAAGACTGGGATAACTCCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAA
GGGGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTGCTCACCAAGGGCACGA
TGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTC
CTACCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTT
TCGGATCGTAAAGCTCTGTTGTTAGAATAGGGCGGCACCTTGACGGTACCTAACCAGAA
AGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGTGGGCGTAAAGGG
CTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCAT
TGGAAACTAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGA
ACACCAGTGGCGAAGGCGACTCTCTGGTCGAAAGCGTGGGGAGCGAACAGGATTAGATA
CCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCAACGCATTA
AGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCC
CGCACAAGCGGTGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATC
CTACAGATAGGACGTCCCCTTCGGGGGCAGAGTCGTCAGCTCGTGTCGTGAGATGTTGG
GTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGTGAC
AAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACA
CACGTGCTACAATGGACCACGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGA
TCGCAGTGTGCAACTCGACTGCGTGAAGCTGGAATCGTGCCGCGGTGAATACGTTCCCC
GGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGC
GCCGAAGGTGGGAGCCAGC 
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>RAB20 
AGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTA
AGACTGGGATAACTCCGGGAAGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCT
TCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTAAGGCGACGATGCGTAG
CCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG
AGGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATC
GTAAAGCTCTGTTGTTAGGGAAGAACGGCACCTTGACGGTACCTAACCAGAAAGCCACG
GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTAAAGGGCTCGCAG
GCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAAC
TGGGGAACTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAG
TGGCGAAGGCGACTCTCTGGTCTGTAACTTGGGGAGCGAACAGGATTAGATACCCTGGT
AGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAAGCACTC
CGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA
GCGGTGGAGCATGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGAT
AGGACGTCCCTTCGGGGGCAGAGTGACAGGTGGGTGTCGTGAGATGTTGGGTTAAGTCC
CGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAACGGAG
GAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTA
CAATGGACAGAACAAATAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCT
GCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGAATACGTTCCCGGGCCTTGTA
CACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTT
GGACAGATGATTCCGAAGG 
 
 
 
 
 
>RAB23R 
TCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACG
TGGGTAACCTGCCTGTAAGACGGGGCTAATACCGGATGGTTGTTTGAACCGCATGGTTC
AGACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCTGAGGTAACGGCTCACC
AAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACG
GCCCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTG
ATGAAGGTTTTCGGATCGTAAAGCTGTGCCGTTCAAATAGGGCGGCACCTTGACGGTAC
CTAACCAGAAAGCCACGGCTAAACTACGTGCCAGCAGCCGCGGTAATCCGGAATTATTG
GGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCG
GGGAGGGTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGA
GATGTGGAGGAACACCAGTGGCGAAGGCGCGCTGAGGAGCGAAAGCGTGGGGAGCGAAC
AGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTGTGCTGCAG
CTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAAT
TGACGGGGGCCCGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCC
TCTGACAATCCTAGAGATAGGACGTCCCCTTCGGCATGGTTGTCGTCAGCTCGTGTCGT
GAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCGTGAC
TGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGAC
CTGGGCTACACACGTGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTC
TCAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAACGGATCAGCATGCCGCGGTGAA
TACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAA
GGAGCCAGCCGCCGAAGGTGGGACAGATGATTG 
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>RAB23S 
GATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTG
CCTGTAAGACTGGGATAACTCCGGATGGTTGTTTGAACCGCATGGTTCAGACATAAAAG
GTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTACTCACCAAGGCGACGAT
GCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCC
TACGTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTT
CGGATCGTAAAGCTCTGTTGTTAGGATAGGGCGGCACCTTGACGGTACCTAACCAGAAA
GCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCGGGCGTAAAGGGC
TCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATT
GGAAACTGGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAA
CACCAGTGGCGAAGGCGACTCTCTGGTCTAAAGCGTGGGGAGCGAACAGGATTAGATAC
CCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCACGCATTAA
GCACTCCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCC
GCACAAGCGGTGAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCT
AGAGATAGGACGTCCCCTTCGGGGGCAGAGTGATCAGCTCGTGTCGTGAGATGTTGGGT
TAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCGACAA
ACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACA
CGTGCTACAATGGACAGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATC
GCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTCCGCGGTGAATACGTTCCCGGG
CCTTGTACACACCGCCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTC
CGAAGGTGGACAGATGATG 
 
 
 
 
 
>RAB24 
AGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTGTA
AGACTGGGATAACTCCGGGAAGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCT
TCGGCTACCACTTACAGATGGACCCGCGGCGCATTAACTAGTAAGGCGACGATGCGTAG
CCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG
AGGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATC
GTAAAGCTCTGTTGTTAGGGAAGAACGGCACCTTGACGGTACCTAACCAGAAAGCCACG
GCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTAAAGGGCTCGCAG
GCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAAC
TGGGGAACTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAG
TGGCGAAGGCGACTCTCTGGTCTGTAACTTGGGGAGCGAACAGGATTAGATACCCTGGT
AGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAAGCACTC
CGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA
GCGGTGGAGCATGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCCTAGAGAT
AGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGCGTGTCGTGAGATGTTGGGTTAAGTC
CCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCACTCTACCGGA
GGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCT
ACAATGGACAGAACAATTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTC
TGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATTGAATACGTTCCCGGGCCTTGT
ACACACCGCCCGTCACACCCCGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTT
A 
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>RAB25 
GATCCACTCCCTTAAGCTTGGATCCCCGGGATCGAGCGGACAGATGGGAGCTTGCTCCC
TGATGTTAGCGGCGGACGGGTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTA
ATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGCAGATGGACCCGCGGCG
CATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGA
GGGTAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGAC
GAAAGTCTGACGGAGCAACGCCGCGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTG
CCGTTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCAGCCGCGGTAATAC
GTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTA
AGTCTGATCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGG
AATTCCACGTGTAGCGGTGAAATGCGTAGGGCGAAGGCGACTCTCTGGTCTGTAACTGA
CGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTGCTAAGTG
TTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAG
TACGGTCGCAAGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAA
CGCGAAGAACCTTACAGGTCTTGACATCCTCTGTCCCTTCGGGGGCAGAGTGACAGGTG
GTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGTTGCC
AGCATTCATTGGGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATG
ACGTCAAATCATATGCACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGA
GGTTAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATGCGTGAAGCTGGAATCGCTAG
TAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGA
CACCCGAAGTCGGTGAGGTAACCTTTA 
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