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ABSTRACT   
Experiments were conducted to evaluate soybean, Glycine max (L.) Merr., responses to 

indigenous isolates of the reniform nematode (Rotylenchulus reniformis) in Louisiana and to 
understand the genetic variability of these native isolates. Microplot and greenhouse experiments 
were conducted to evaluate the comparative reproduction and pathogenicity of single egg-mass 
populations of R. reniformis isolated from West Carroll (WC), Rapides, Tensas and Morehouse 
(MOR) parishes of Louisiana. Data from full-season microplot trials, displayed significant 
differences in reproduction and pathogenicity of the nematode with the commercial soybean 
cultivars REV 56R63, Pioneer P54T94R, and Dyna-Gro 39RY57. Significantly low population 
density was observed in the isolate from the MOR parish compared to that of the least 
reproducing WC isolate. The MOR isolate was also the most pathogenic and resulted in 
significantly less soybean plant and pod weights compared to the control. In 60 day greenhouse 
trials, susceptible cultivar Progeny P4930LL and the resistant germplasm lines PI 90763 and PI 
548316 were added together with the same cultivars used in the microplot trials. Similar to the 
microplot trials, the MOR isolate had the least level of reproduction compared to that of WC and 
presented the greatest level of pathogenicity. In both microplot and greenhouse trials, the 
soybean cultivar REV 56R63 had a significant reduction in reniform numbers compared to 
cultivars Pioneer P54T94R and Dyna-Gro 39RY57. The second set of experiments were 
conducted to understand the amount of genetic variability present in the 13 reniform nematode 
isolates from Louisiana, Mississippi, Arkansas, South Carolina and Georgia with the use of 
Single Nucleotide Polymorphism (SNP) analysis. Thirty one chosen SNPs were tested against 
the reniform nematode isolates using kompetitive allele-specific PCR genotyping assay. Out of 
the 31 SNPs tested, 26 SNPs amplified genomic DNA of the reniform nematode isolates. Four 
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SNPs out of all tested were able to distinguish genetic differences between and among tested 
geographic isolates of reniform nematode from Louisiana, Mississippi, and Arkansas. Even with 
limited numbers of samples, a genetic variability was observed with 3 SNPs between South 
Carolina, and Georgia isolates. The results obtained in this study might be extremely useful in 
resistance breeding programs as well as providing soybean cultivar recommendations for 
growers in different geographical locations. 
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CHAPTER 1. INTRODUCTION 
1.1 Soybeans 

Soybean, Glycine max (L.) Merr., is a major crop in the United States. It was first 
introduced from China to the U.S. in 1765 (Hartman et al., 1999).  In 2014, soybeans were 
planted on 117 million hectares worldwide with a production of 275 million metric tons 
(FAOSTAT, 2017). According to Anonymous, 2017a, there were about 34.8 million hectares 
planted to soybean for the year 2016 in the U.S. The top soybean producing states are Illinois, 
Iowa, Minnesota, North Dakota and Indiana (Anonymous, 2017a; b). To date, the United States 
is the largest soybean producer in the world producing about 32% of the world’s soybean supply, 
followed by Brazil and Argentina, which produces 28% and 21% of world’s soybeans 
respectively (Anonymous, 2017b). Soybean seeds are rich in oil (20%) and protein (40%). 
Processed soybeans are the world's largest source of animal protein feed and the second largest 
source of vegetable oil (Anonymous, 2017c). Soybean oil is mainly used for human 
consumption, but also used for production of adhesives, coatings and printing inks, lubricants, 
plastics and specialty products (Anonymous, 2017d). In 2015, the United States alone had a 
revenue of 34.5 billion U.S. dollars in the industry (Anonymous, 2017e). In the year 2016 about 
8 million hectares of land in the southern United States were devoted to soybeans and were 
produced about 24.3 million metric tons of beans. Out of the 16 southern states, Louisiana was 
able to produce an average of 3261.68 kg/ha of soybeans in 2016 (Allen et al., 2017).  
1.2 Soybean growth and development 

Optimal soil temperature for the germination of the soybean seeds falls between 12.7 oC 
and 15.5 oC. Plants need at least a soil temperature of 20 oC and 635 mm of water during the five 
month growing season for the best performance and yield. Soybeans are classified into maturity 
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groups based on the days from emergence to maturity. These plants need a specific length of 
dark period for flowering to occur (Hartwig, 1973). Based on this response to photoperiod, they 
are classified into thirteen maturity groups. These 13 maturity groups range from 000 to X. The 
cultivars needing the shortest dark period are classified in group 000 and are adapted to grow in 
higher latitudes. Groups IX and X are primarily grown in subtropical to tropical areas. Soybeans 
can be divided into two categories according to their growth pattern. The two types consists 
either determinate or indeterminate growth. Varieties grown in the North are known as 
indeterminate. They continue main stem growth indefinitely after first flowering and include the 
maturity groups from 0 up to 4.9. Whereas determinate soybeans which predominantly are 
grown in the Southern U.S., terminate main stem growth shortly after first flowering and 
maturity groups 5 to 8 are included in this category. (Paderson, 2004; Anonymous, 2017f). 
Soybean plant’s life cycle is divided into two categories which includes the vegetative and the 
reproductive period. Vegetative period occurs from the emergence until first flowering, whereas 
the reproductive period extends from first flowering until maturity. Vegetative period begin from 
V1 stage and lasts until the beginning of the reproductive period. Reproductive period are 
designated using the letter “R”. The classification of the Reproductive period ranges from R1 to 
R7, from first flowering to the end of seed filling respectively (Fehr et al., 1971).                                                                                                                                                       
1.3 Nematode damage to soybeans   

There are a number of diseases damaging to soybeans. According to the annual report of 
the Southern Soybean Disease Workers, in the southern U.S. only, around 2.43 million metric 
tons were lost due to diseases in soybeans (Allen et al., 2017). Out of these disease causing 
pathogens in soybeans, nematodes play a major role. Several nematode species are known to 
damaging to soybeans in the United States. These include soybean cyst (Heterodera glycines), 
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root-knot (Meloidogyne spp.), lesion (Pratylenchus scribneri), sting (Belonolaimus 
longicaudatus), reniform (Rotylenchulus reniformis), and Columbia lance (Hoplolaimus 
Columbus) nematodes (Padgett, 2011). These nematodes cause a large economic impact to the 
industry and cause significant reductions in yields. According to the literature, the largest 
soybean yield losses from 2006 to 2009 in the U.S. soybean production states were due to the 
damage caused by the soybean cyst nematode (SCN) (Koenning and Wrather, 2010).  The loss in 
2016, in the southern soybean producing region due to the SCN was around 0.5 million metric 
tons. This represents 21% out of the total losses due to all diseases combined. This trend has 
been observed to be consistent across the years. Therefore, these data provide valuable 
information about the relative importance of nematodes as a pest of soybeans.  
1.4 Reniform nematode  

In the southern United States, reniform nematode has become the more prominent 
nematode species damaging to both soybeans and cotton. Reniform nematode belongs to the 
genus Rotylenchulus, which includes 11 recognized species. Out of the nine, Rotylenchulus 
reniformis, or the reniform nematode, is by far the most damaging and causes the largest 
economic losses to a variety of economically important crops (Robinson et al., 1997). It was first 
described as a plant parasitic nematode in Hawaii by Linford and Oliveira in 1940. A reniform 
nematode problem was first reported in the United States by Smith and Taylor in 1941. This 
nematode is considered a tropical/subtropical pest and has a wide host range (Koenning et al., 
2004; Robinson et al., 1997). Reniform nematode can survive in soil for long periods without the 
presence of the host. This is due to its ability to enter an anhydrobiotic state. This state of 
reduced metabolism provides higher survivability for the nematode. Additionally, high 
reproductive rate and ability to migrate deep in soil allows the nematode to survive and 
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repopulate the “cultivation” layer of soil when conditions are unfavorable (Koenning et al., 
2004). During the past 15 -20 years, reniform nematode has become the dominant nematode 
species in a number of states, including Louisiana, together with a large decline in soybean cyst 
nematode problems (Gazaway, 2005; Overstreet and  McGawley, 1996; 1998; 2000; Overstreet, 
2006; 2015). At present, the nematode has a wide distribution in the cotton producing area of the 
southern U.S. (Bagwell et al., 2006). Due to the shift in commodity prices, farmers are now 
switching from cotton to more profitable crops such as soybean and corn. Problems arise when 
these cotton lands previously infested with the reniform nematode are now being used for these 
new crops. Due to this recent switch, very little research has been conducted to understand the 
effects of this nematode on the damage to soybeans. Symptoms caused by Rotylenchulus 
reniformis are similar to that of other nematodes. That is, plants become stunted, develop poorly 
with low yields, and lack of vigor (Overstreet and Wolcott, 2007). Detection of reniform 
nematode damage is very difficult to diagnose because they do not produce distinctive galling 
symptoms like root-knot nematode (Overstreet and Wolcott, 2007). Over the past several 
decades, reniform nematode has become much more widely distributed and losses have 
increased dramatically in most of southern states including Louisiana. A survey during 1994-
1995 showed that reniform nematodes have spread widely through the state and estimated 
acreage infected was about 510,000 (Overstreet and McGawley, 1996). In the year 2016, 
reniform nematode alone caused about 92,000 metric tons lost in southern soybean production. 
Out of the 16 southern soybean producing states, Mississippi, Louisiana, South Carolina, 
Alabama and Georgia had considerably higher damage due to the reniform nematode (Allen et 
al., 2017).  

 



 

5 
 

1.5 Reniform nematode management 
There are a number of different techniques that have been employed for the control of 

reniform nematodes. Some common strategies include the use of resistant cultivars, crop 
rotation, biological control, nematicide application, and the use of precision agriculture 
(Koenning et al., 2004). Out of the several available management practices, use of resistant 
cultivars, crop rotation and use of nematicide are frequently employed practices in Louisiana 
(Overstreet et al., 2014).  

Crop rotation is one of the main management practices used for the control of the 
reniform nematode. For this, rotation is done with a resistant or a poor host crop such as corn, 
milo, resistant soybean, peanut and sugarcane (Overstreet, 2015). According to literature, a two 
year rotation with a non-host crop can significantly reduce high populations of reniform 
nematodes to a more manageable levels (Overstreet et al., 2014). Crop rotation is a preferable 
management practice within Louisiana producers due to the favorable pricing of grain crops.  

The use of nematicide goes as far back as the 1800’s. During the time period chemical 
known as carbon bisulphide was tested as a nematicide against both sugerbeet nematode 
(Heterodera schachtii) and root-knot nematode (Taylor, 2003). With the use of modern 
technology, nematicides that are more efficient are now available in the market. There are 
number of nematicide listed for the use in Louisiana against a variety of nematode species on 
soybean. Most of the modern nematicides are available as seed treatments. Common seed 
treatment nematicides available in Louisiana are Poncho VoTivo, ILeVO, and Avicta Complete 
Bean. Telone II, is a widely used recommended nematicide that’s been used as a preplant 
nematicide for heavy nematode infestation (Hollier et al, 2017). 
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The use of resistant cultivars is the best option as it is more economical and 
environmentally friendly (Stetina et al., 2014; Robbins et al., 2014; Overstreet, 2015). In the USA, 
soybeans have demonstrated resistance against reniform nematode, and some resistent cultivars 
have been developed. This resistance is mainly transferred from soybean varieties such as 
Peking, PI 437654 and PI 90763 which were resistant to soybean cyst nematode (Heterodera 
glucines) (Robbins et al., 1994a,b; 2014; Davis et al., 1996; Robbins and Rakes, 1996). The 
mechanism of resistance was studied by Rebois et al. (1975) while observing the physiological 
changes that occur during syncytium development.  According to Rebois et al., 1975 susceptible 
plants under go two phases which involve partial cell wall lysis and separation followed by an 
anabolic phase which involves organelle proliferation and secondary wall deposition. In the 
resistant plants, the first step is increased leading to accelerated cell lysis. There are about six 
resistant soybean varieties recommended for Louisiana for the year 2015. The recommended 
varieties Armor A4450, Asgrow AG5535 GENRR2Y, Delta Grow DG4940RR, Delta Grow 
DG5230 GENRR2Y, Dyna–Grow S52RY75, and MPG 5214NRR,  have shown some level of 
resistance in trials conducted in both Arkansas and Louisisna. With our preliminary studies, 
soybean cultivars DEL 4940 and Univ. Missouri S11-20356 have showed some level of resistant 
against two reniform isolates in Louisiana under greenhouse and field conditions. 
1.6 Diversity among Rotylenchulus reniformis species 
 In the literature, there have been reports showing differences in reproduction and 
pathogenicity within the species of Rotylenchulus reniformis. This difference is mainly due to the 
geography of the isolates. McGawley et al. (2010, 2011) have demonstrated the variability in 
pathogenicity and reproduction using six reniform nematode isolates on both cotton and soybean. 
According to their results, the different isolates had significantly affected both nematode counts 
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and plant measurements in their 120 day microplots experiments. Until recently, very little was 
known about the genetic variability within reniform nematode populations. This variability is a 
major factor that affects the use and the durability of using crop resistance as a management tool. 
In a recent study on cotton, using four different reniform isolates from Texas, Louisiana, 
Mississippi and Georgia revealed a strong genetic variability within the populations, and also 
found pathogenetic difference (Arias et al., 2009). This study additionally revealed that the 
samples tested within the state of Mississippi also showed genetic variability in reniform 
populations. Similar results were observed in the study conducted by Leach et al (2012a) using 
isolates from southern United States, Colombia and Japan. A recent study found that even the 
crop rotation can have an effect on the genetics of the population by expressing variability with 
different rotation schemas (Leach et al., 2012b). This genetic diversity is very important for 
management practices because the varieties considered as resistant in one location might not 
hold the resistance in another geographical location. Therefore, the knowledge of the genetic 
variability of the populations is critical to give proper recommendations for selecting suitable 
soybean varieties. 
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CHAPTER 2. PATHOGENICITY AND REPRODUCTION OF ISOLATES OF 
RENIFORM NEMATODE, ROTYLENCHULUS RENIFORMIS, FROM LOUISIANA ON 

SOYBEAN 
2.1 Introduction 

Soybean is a major crop that has an enormous impact on the economy of the United 
States. There were about 83 million ha of soybean planted in 2016 throughout the country 
(Anonymous, 2017). In 2016, about 8 million ha in the southern United States were devoted to 
soybean and produced about 24.3 million metric tons of soybeans with yield in Louisiana at 1.7 
million metric tons (Allen et al., 2017). 

In the United States, several nematode species including Rotylenchulus reniformis are 
known to damage soybeans (Noel and Schroeder, 2015). Even though the soybean cyst nematode 
(SCN) is more prevalent in soybeans in the mid-west, the reniform nematode is more widespread 
and damaging to soybean in the South (McGawley and Overstreet, 2015). Reniform nematode 
belongs to the genus Rotylenchulus, which includes 11 recognized species (Robinson et al., 
1997; Berg et al., 2016). Of these, R. reniformis causes the greatest economic loss (Robinson et 
al., 1997). Rotylenchulus reniformis was identified in Hawaii in 1940 (Linford and Oliveira), and 
reported in Louisiana, USA in 1941 (Smith and Taylor). Over the past 2 decades, this nematode 
has become the dominant nematode species in several southern states, including Louisiana 
(Gazaway, 2005; Overstreet and  McGawley, 1998; 2000; Overstreet, 2006; 2015).  

Currently, R. reniformis is distributed throughout the 16 cotton producing states of south-
east and mid-south of the U.S. (Bagwell et al., 2006). In this region, many producers have 
recently switched their cropping preference from cotton to the more profitable soybean. This 
change in cropping preference had produced immediate challenges to soybean growers due to the 
widespread occurrence of R. reniformis and the host-suitability of many soybean cultivars. In 
this region in 2016, reniform nematode caused losses in soybean yield estimated at 92,000 metric 
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tons (Allen et al., 2017). Mississippi and Louisiana report the greatest yield losses and plant 
damage to this nematode (Allen et al., 2017).  

Management strategies for reniform nematode include resistant cultivars, crop rotation, 
biological control, nematicide application, and precision agriculture (Koenning et al., 2004). 
Resistant cultivars are the most desirable but least frequently used management option. This is 
due to lack of more profitable traits than those available in some cultivars classified as 
susceptible (Stetina et al., 2014; Robbins et al., 2015; Overstreet, 2015).  
 There are reports describing differences in reproduction and pathogenicity among 
geographic isolates of R. reniformis on both cotton and soybean (McGawley et al., 2010; 2011; 
Xavier et al., 2014; Bhandari et al., 2015; Arias et al., 2009). Moreover, the study by McGawley 
et al in 2011 showed that the nematode was actually more damaging to soybean than to cotton. 
Isolates of the nematode from Louisiana and Mississippi had significantly greater rates of 
reproduction and were more virulent than the isolates from Alabama, Arkansas, Hawaii, and 
Texas. Stetina et al. (2014) speculated that the geographic origin of isolates of the nematode may 
have an impact on resistance to R. reniformis in soybean.   
  Variability in the reproduction and pathogenicity among reniform nematode populations 
has a major impact on management options including breeding, cultivar selection and nematicide 
and rotation recommendations. For example, soybean cultivar recommendations for Louisiana 
are made on the basis of reproduction data for isolates of the nematode present in Arkansas 
(Robbins et al., 2015). To date, no studies have been conducted to evaluate reproductive and 
pathogenic variation in indigenous isolates of R. reniformis on cultivars of soybean produced in 
Louisiana. A better understanding of R. reniformis within Louisiana will enhance nematode 
management recommendations and assist plant breeders and seed companies in producing or 
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selecting cultivars with resistance. To date, cultivars with resistance to the reniform nematode 
have primarily been derived almost exclusively from germplasm sources containing resistance to 
the SCN. Therefore, the objectives of this work were to evaluate the host status and susceptibility 
of soybean cultivars popular in Louisiana and germplasm lines of PI 90763 and PI 548316 
hereafter referred to as PI90, and PI54, respectively, which have known resistance to SCN and 
reniform nematode, to isolates of R. reniformis present in Louisiana. 
2.2 Materials and methods 
2.2.1 General procedures  

Isolates of reniform nematode were collected from Rapides (RAP), Tensas (TEN), 
Morehouse (MOR) and West Carroll (WC) parishes, confirmed morphologically as R. reniformis 
and used to establish single egg mass (SEM) cultures. These cultures were maintained under 
greenhouse conditions on tomato (Solanum lycopersicum L. cultivar Rutgers PS, Seedway; Hall, 
New York 14463) and employed in greenhouse and microplot experiments with the soybean 
cultivars REV 56R63, Pioneer P54T94R, Progeny P4930LL and Dyna-Gro 39RY57 which will 
be abbreviated as RV56, Pp54, Pr49, and DG39, respectively hereafter. Details of greenhouse 
and microplot experiments are presented below under the appropriate subheadings.  

Pots for all experiments as well as a soil mixture consisting of one part sand and three 
parts commerce silt loam soil (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic 
endoaquepts) utilized in all experiments was heat sterilized for 5 hrs. at 135°C prior to use. In 
each test, two soybean seeds were planted to a depth of 2.5 cm and thinned to one per pot after 
germination. Soil was infested by pipetting aqueous suspensions of vermiform individuals of R. 
reniformis into three depressions arranged into a triangular pattern, 0.5-cm diam. × 5- to 7.5-cm 
deep, surrounding a 10-day-old seedling. Inoculum for all tests contained a mixture of juveniles, 
pre-adult females, and males at a level, irrespective of pot size, of 6 per gram of soil. Therefore, 
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inoculum density was 5,500 per pot in greenhouse tests and 50,000 per pot in microplot tests. 
Half of the inoculum was added to soil in microplots at 10 days after planting and the remainder 
at 21 days.  

In all cases, nematode population density was estimated by extracting a 250g subsample 
of soil from each pot using a semi-automatic elutriator (Byrd et al., 1976) and the 
centrifugal/sugar flotation technique (Jenkins, 1964). Vermiform life-stages were enumerated 
using a dissecting microscope at 40X. All experiments were repeated once. Standard 
fertilization, weeding and insect management practices were employed in all trials. 
2.2.2 Analysis of data   
 Each experiment employed a factorial treatment structure and was established as 
randomized block design with five replications. Data obtained from all studies were analyzed 
using SAS JMP version 12.0 (SAS Institute, Cary, NC) analysis of variance (ANOVA) and 
Fisher’s LSD mean separation technique (P<0.05). Analysis was conducted using the “Fit 
Model” module of SAS JMP, version 12.0. Analysis of variance was conducted using test as a 
fixed effect and there were no significant test by treatment interaction in any of the tests 
described herein. Therefore data from all like trials was combined for analysis.  
2.2.3 Greenhouse experiments with 4 reniform isolates, 4 soybean cultivars and 2 germplasm 
lines 

This study involved six soybean genotypes: four cultivars of soybeans widely planted in 
Louisiana and one resistant PI90 and one moderately resistant PI54 germplasm line. Terra cotta 
pots having a top diameter of 15cm and containing 1.6 kg of soil mixture were used. A total of 
150 pots were established to evaluate the 6 genotypes, 4 isolates of reniform nematode, a non-
inoculated control for each cultivar and 5 replications. The experiments were terminated after 60 
days and nematode life stages in soil were quantified as described above. Eggs were extracted 
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from entire root system. Root samples were agitated in 0.6% NaOCl for 10 min to dislodge eggs 
from egg masses (Hussey and Barker, 1973). Eggs of reniform nematode were stained using the 
red-food coloring technique (Thies et al., 2002) and numbers present on the whole root system 
were enumerated at 40X magnification using a dissecting microscope. Fresh shoot and root 
materials were dried at 30-35°C for two weeks and weighed. Average greenhouse temperature 
was maintained at 80-85°C. Supplemental lighting was added above the experimental area to 
give a 16 hrs light period.  
2.2.4 Microplot experiments with 4 reniform isolates and 3 soybean cultivars  
 Terra cotta pots having top diameters of 35.6 cm were used as microplots. Microplots 
were placed in depressions in soil so that only the rim was exposed. Each microplot was filled 
with 13.6 kg of soil mixture. The entire microplot area was bounded by an aluminum Quonset 
hut skeletal frame open at both ends. The skeletal frame was covered with polyethylene (6 mm) 
film and one layer of 20% reflective foilcloth to protect plants from excessive rainfall and to 
maintain near-ambient air and soil temperatures. A total of 75 microplots were established to 
evaluate 3 cultivars RV56, Pp54, and DG39, 4 isolates of the nematode, a non-inoculated control 
for each cultivar and 5 replications. Establishment of plants, inoculation with nematodes, and 
processing of plant and nematode materials after 125 days were as described above. Additional 
plant data collected included: numbers of pods per plant, pod weight per plant, weight of 100 
seeds, total seed weight per plant and plant dry weight. All plant materials were dried at 30-35°C 
for two weeks before measuring the weights.   
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2.3 Results 
2.3.1 Greenhouse experiments with 4 reniform isolates, 4 soybean cultivars and 2 germplasm 
lines 

Data from greenhouse experiments are summarized as Table 2.1. Across genotypes of 
soybean and isolates of the nematode, there were significant main and interactive effects that 
impacted both nematode and plant parameters. Significant soybean main effects influenced both 
vermiform nematode stages in soil and eggs per root system as well as final dry root weight. 
Main effects of reniform isolate as well as interactive effects of soybean and isolate significantly 
influenced only the nematode.  

Individual treatment means across the 6 soybean genotypes and geographic parish of 
origin of each of the 4 isolates of R. reniformis are presented as Figure 2.1. Soil populations of 
the WC isolate of the nematode recovered from RV56, which averaged 40.9 thousand per 
500cm3 of soil, were significantly greater than the 17.7 and 15.0 thousand recovered from this 
genotype with the TEN and MOR isolates, respectively. Similarly, soil populations of the isolate 
from WC recovered from Pp54, 111.2 thousand, were significantly greater than the 87.9, 75.7 
and 56.0 thousand for the RAP, TEN and MOR isolates, respectively. Of the 4 isolates, 
reproduction by the ones from RAP and TEN parishes on DG39 was very similar, averaging 76.3 
and 75.8 thousand per 500cm3 of soil, and were significantly greater than the 50.5 and 48.2 
averages for the isolates from WC and MOR parishes. Reproduction by all 4 isolates of the 
nematode was similar and not significantly different on Pr49, averaging respectively 36.4, 39.9, 
42.3 and 29.3 thousand per 500 cm3 of soil for WC, RAP, TEN and MOR parishes. 
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Figure. 2.1. Vermiform life stages of Rotylenchulus reniformis per 500cm3 of soil, after 60 days in a greenhouse environment from  
           soybean genotypes REV 56R63 (RV56), Pioneer P54T94R (Pp54), Dyna-Gro 39RY57 (DG39), Progeny P4930LL (Pr49),  
      PI 90763 (PI90) and PI 548316 (PI54). Data are means of 10 replications averaged over two trials. *indicates the mean  
          value (West Carroll; 200, Rapides; 240, Tensas; 250, and Morehouse; 160) for vermiform life stages per 500cm3 soil of R.  

reniformis with the germplasm line PI 90763. Bars with common letters are not significantly different based on Fisher's 
LSD test (P ≤ 0.05)
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Table 2.1. Main and interaction effects (P values) of four isolates of Rotylenchulus reniformis 
endemic in Louisiana on six genotypes of soybean in a greenhouse environmentx. 

Source DF 
Vermiform life 

stages 
Eggs per root 

system 
Shoot 
weight 

Root 
weight 

Soybean (S)y  5 <0.0001** <0.0001** 0.260 <0.0001** 
Isolate (I)z  4 <0.0001** <0.0001** 0.930 0.999 
S × I  20 <0.0001** <0.0001** 1.000 0.973 
xData were combined over two 60-day trials and are means of ten replications. Plant material was 
dried at 30-35 °C. Data were analyzed as a 6 × 5 factorial with ANOVA (P ≤ 0.05); ** indicates 
P values significant at the 0.01% level. 
ySoybean were the cultivars REV 56R63, Pioneer P54T94R, Dyna-Gro 39RY57, and Progeny 
P4930LL, and the germplasm lines PI 90763 and PI 548316. 
zIsolates were derived from single egg mass from roots of soybean from West Carroll, Rapides, 
Morehouse and Tensas parishes. 
 
Also with PI54, reproduction by the 4 isolates was similar and not significantly different, with 
population density values of 28.4 thousand for MOR, 34.1 thousand for RAP, 32.5 thousand for 
TEN and 29.4 thousand for the MOR isolate. Lastly, population levels of the nematode in soil for 
each of the isolates on PI90 actually fell below the initial infestation level averaging about 0.2 
thousand per root system for each of the 4 isolates of the nematode.  

The overall pattern of Figure 2.2 mirrors closely that of Figure 2.1 for soil stages of the 
nematode and visualizes the production of eggs by females of the 4 isolates of R. reniformis on 
the 6 soybean genotypes. Data are expressed as thousands of eggs per isolate extracted from the 
entire root system of each genotype. From RV56, 4.5, 4.7, 4.0 and 2.7 thousand eggs per plant, 
with no significant differences among the 4 isolates, were recovered for the WC, RAP, TEN and 
MOR isolates. As with juveniles from the WC isolate in soil for Pp54, the 30 thousand eggs per 
plant from this genotype was significantly greater than the numbers recovered from roots of the 
other 3 isolates.
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Figure. 2.2. Egg stages of Rotylenchulus reniformis from whole root systems of soybean genotypes REV 56R63 (RV56), Pioneer  
      P54T94R (Pp54), Dyna-Gro 39RY57 (DG39), Progeny P4930LL (Pr49), PI 90763 (PI90) and PI 548316 (PI54) after 60  
      days in a greenhouse environment. Data are means of 10 replications averaged over two trials. *indicates the mean value  
      (West Carroll; 2, Rapides; 0, Tensas; 0, and Morehouse; 4) for eggs per root system for R. reniformis with the germplasm     
      line PI 90763. Bars with common letters are not significantly different based on Fisher's LSD test (P ≤ 0.05).
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Root systems of DG39 yielded a significantly greater number of eggs, 14.9 thousand, with the 
RAP isolate with the other 3 isolates; 16.5 for TEN, 14.9 for WC and 12.6 for MOR. With Pr49 
there was almost significantly declining stair-step effect in egg numbers per root system across 
the 4 isolates of the nematode: eggs densities averaging 21.6 thousand for the WC isolate, 15.9 
for RAP, 7.5 for TEN and 6.5 for MOR. From roots of PI54 the number of eggs of the RAP 
isolate recovered averaged 10.9 thousand and was significantly greater than the 4.7 thousand for 
the WC isolate and the 5.0 and 3.4 for the TEN and MOR isolates, respectively. Very few to no 
eggs of the 4 nematode isolates were recovered from PI90.  
2.3.2 Microplot experiments with 4 reniform isolates and 3 soybean cultivars  
 In the microplot environment, there were significant main effects of cultivar and isolate 
but no cultivar by isolate interactions (Table 2.2).  

Table 2.2 Main and interaction effects (P values) of four isolates of Rotylenchulus reniformis 
endemic in Louisiana on three soybean cultivars in a microplot environmentx.  

Source DF 
Vermiform life 

stages 
Number of 

pods 
Pod 

weight 
100 seed 
weight 

Seed weight 
per plant 

Plant 
weight 

Cultivar (C)y 2 0.001** 0.255 0.908 <0.0001** 0.062 0.672 
Isolate (I)z 4 <0.0001** 0.141 0.0003** 0.940 0.956 0.035** 
C × I 8 0.069 0.474 0.226 0.323 0.167 0.436 
xData were combined over two full season trials and are means of ten replications. Plant material 
was dried at 30-35 °C. Data were analyzed as a 3 × 5 factorial with ANOVA (P ≤ 0.05); ** 
indicate P values significant at the 0.01% level. 
yCultivars were REV 56R63, Pioneer P54T94R, and Dyna-Gro 39RY57 that were recommended 
for use in Louisiana in 2015. 
zIsolates were derived from single egg masses from roots of soybean from West Carroll, 
Rapides, Morehouse and Tensas parishes. 
 
The influence of cultivar significantly impacted reniform nematode juvenile stages in soil and 
hundred seed weight. The influence of isolate was significant for life stages of reniform 
nematode in soil and weights of soybean pods and plants. In the microplot environment, there 
were significant main effects of cultivar and isolate but no cultivar by isolate interactions. The 
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influence of cultivar significantly impacted reniform juvenile stages in soil and hundred seed 
weight (Table 2.3). The influence of isolate was significant for life stages of reniform nematode 
in soil and weights of soybean pods and plants (Table 2.4). Across the 4 isolates of R. reniformis, 
soil populations from RV56 were significantly lower in number, averaging 61.5 thousand per 
500cm3 of soil, than those recovered from soil with the cultivars Pp54 or DG39 that averaged 
111.6 and 103.7 thousand vermiform life stages, respectively (Table 2.3).  

Table 2.3. Main effect of three cultivars of soybean on vermiform life stages and seed weight 
across four isolates of Rotylenchulus reniformis in a full season microplot environmentx. 

Cultivarsy 
Vermiform life stages per 
500cm3 of soil (1000's)z 

100 seed 
weight (g) 

REV 56R63 61.5 b 12.4 b 
Pioneer P54T94R 111.6 a 11.4 c 

Dyna-Gro 39RY57 103.7 a 15.2 a 
xData were combined over two full season trials and are means of ten replications. Seeds were 
dried at 30-35 °C for two weeks. 
yCultivars were recommended for use in Louisiana in 2015. 
zData were analyzed with ANOVA and Fisher's LSD test (P ≤ 0.05). Within columns, means 
followed by a common letter are not significantly different.  
 
Seed weights averaged 15.2 g for DG39, significantly less, 12.4 g, for RV56 and even less, 11.4 
grams for Pp54. The lowest soil population levels of the nematode, 76.3 thousand, were from the 
MOR isolate (Table 2.4.) Populations of the other 3 isolates were significantly greater, averaging 
143.3 for WC, 125.0 for RAP and 117.0 for TEN. Reproductive values reflected these population 
densities in soil. However, while exhibiting the lowest level of reproduction of the 4 isolates, the 
MOR isolate was the most damaging. Weights for pods and were reduced significantly in 
comparison to those of both non-inoculated controls and other isolates. Weights of plants were 
reduced significantly by isolates from RAP and MOR, which averaged 114.2 and 99.6g, 
respectively compared to the non-inoculated control. 
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Table 2.4. Main effect of isolate of Rotylenchulus reniformis on vermiform life stages, pods 
weight, and plants weight across three cultivars of soybean in a full season microplot 
environmentw. 
Isolatex 

Vermiform life stages per 
500 cm3 of soil (1000's)y 

Reproductive 
valuez 

Pod 
Weight (g) 

Plant 
Weight (g) 

Control 0 c 0 110.9 a 141.9 a 
WC 143.3 a 77.9 99.4 ab 127.2 ab 
RAP 125.0 a 67.9 88.7 b 114.2 bc 
MOR 76.3 b 41.5 61.5 c 99.6 c 
TEN 117.0 a 63.6 89.3 b 115.0 abc 

wData were combined over two full season trials and are means of ten replications. Plant material 
was dried at 30-35 °C. Cultivars of soybean were REV 56R63, Pioneer P54T94R, and Dyna-Gro 
39RY57. 
xReniform nematode isolates were each derived from single egg masses isolated from roots of 
soybean from West Carroll (WC), Rapides (RAP), Morehouse (MOR) and Tensas (TEN) 
parishes.  
yData were analyzed with ANOVA and Fisher's LSD test (P ≤ 0.05). Within columns, means 
followed by a common letter are not significantly different.  
zReproductive values were calculated by dividing the estimated numbers of vermiform stages per 
microplot (13.6 kg of soil) by the infestation level of 50,000 vermiform life stages. 
 
2.4 Discussion 

The nematological literature documents variability in the pathogenicity and reproduction 
within species of many plant parasitic nematodes. Variation in soybean cyst nematode (SCN) 
populations was described as far back as the 1970’s (Golden et al., 1970). Since then, many 
studies have confirmed the existence of variability in populations of SCN (Niblack et al., 2002; 
Colgrove et al., 2002). Similarly, variability has been described in major root-knot nematode 
species. The host differential assay of Hartman and Sasser, 1985, which differentiated 4 major 
races of root-knot nematode M. incognita, is currently valid and used. The literature also 
describes variation in virulence within populations of Meloidogyne incognita on different crop 
species (Cevantes-Flores et al., 2002; Anwar and McKenry, 2007). Anwar and McKenry (2007) 
found that virulent populations of Meloidogyne incognita were associated with physiological 
changes both in the plant and in the nematode with the development of larger galls and giant cell 
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and improvement in success of juveniles transitioning into reproducing adults, compared to less 
virulent populations. Nematologists have been documenting the incidence of distinct races of R. 
reniformis nematode outside of North America since the 1970’s (Dasgupta and Seshadri, 1971). 
Their host differential assay employing cowpea, castor and cotton distinguished two races of the 
nematode. Another study by Nakasono in 1983 was translated and published in English in 2004. 
His work involved isolates of R. reniformis from Japan, Hawaii and Texas and identified 
polymorphism between populations. Nakasono found three morphologically distinct groups of 
the nematode based on physiological and ecological characteristics. To date, there is only limited 
information on the variability in reniform nematode in the southern United States (McGawley 
and Overstreet, 1995; Aguedelo et al., 2005; McGawley et al., 2010; McGawley et al., 2011). 
Other research conducted by nematologists in Louisiana has evaluated variability in reproduction 
and pathogenicity of isolates of the nematode within the state (McGawley and Shankaralingam, 
1994; Xavier et al., 2014; and Bhandari et al., 2015). In all of these studies, which involved both 
cotton and soybean, and isolates of the nematode from multiple states or just Louisiana, the 
isolate of the nematode that caused the most damage was the one that reached the highest 
population level. Data reported herein is in contrast to that since the reniform nematode isolate 
from MOR parish is the one that reproduced least yet caused statistically the greatest reduction in 
weight of pods and numerically the greatest reduction in weight of plants. Somewhat similar 
observation was made by both Noe (1992) and Baimey et al. (2009) with three Scutellonema 
bradys isolates on seven yam cultivars have reported that the isolate form Toui in the northern 
Guinea savannah, having the lowest level of reproduction compared to other two tested isolates, 
was able to cause the greatest yield reductions. The research conducted by Noe (1992) had used 
cultivars of peanut, soybean, tomato, tobacco and peppers with 9 Meloidogyne arenaria race 1 
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populations from Georgia, and one each from Alabama, Florida and North Carolina. In his 
research Noe has reported that top dry weight of the peanut cultivar “Florunner” and the pepper 
cultivar “Carolina Cayenne” were significantly reduced by an isolate from Georgia having 
significantly lower reproduction level.  
 Parallel research conducted by a fellow nematology student here at LSU, Mr. Curamani. 
Khanal, employs the same populations of reniform nematode discussed in this current research, 
but uses cotton as the host plant. Data from his research also shows differences in reproduction 
and pathology of the nematode on soybean. A major difference in results from these two parallel 
lines of research involve the level of reproduction of MOR isolate on two different hosts. Across 
cotton genotypes, the MOR isolate exhibited the greatest level of reproduction and caused the 
greatest level of damage. Conversely, with soybean, the MOR isolate exhibited the lowest level 
of reproduction, but caused the greatest amount of damage. 

Across all soybean genotypes, respectively, MOR isolate reduced plant dry weight by 
29.8% and 54.8% relative to those of the non-inoculated controls. This difference in 
pathogenicity of MOR isolate on soybean and cotton is possibly a function of host. Averaged 
across four isolates of R. reniformis endemic in Louisiana, the reduction in harvest dry weight of 
plants relative to non-inoculated control was 19.6% for soybean and 27.5% for cotton. Research 
by McGawley et al. (2010, 2011) with isolates of R. reniformis from Alabama, Arkansas, 
Hawaii, Louisiana, Mississippi, and Texas showed that across isolates representing each of these 
states a negative impact of R. reniformis on plant growth and yield was greater on soybean than 
cotton. Averaged across the six geographic isolates, the reduction in harvest dry weight of plants 
relative to non-inoculated control was 27.4% for soybean and 19.7% for cotton. However, data 
for the Louisiana isolate of R. reniformis used in that research, which originated from Avoyelles 
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parish, showed that the isolate from Louisiana was actually more damaging on cotton than 
soybean. Data presented herein is in agreement with this previous observation as, across endemic 
isolates, the reniform nematode was more damaging on cotton than soybean. 

This difference in reproduction could be attributing to phenotypic polymorphism or 
genetic variability within this isolate of reniform nematodes as described by Aguedelo et al., 
2005. To further clarify this finding, studies should be conducted using molecular techniques and 
morphometric characterization of reniform isolates from various locations in Louisiana on a 
range soybean lines. Germplasm lines PI54 and PI90 had moderate resistance and resistance 
levels respectively, against the tested Louisiana isolates and are similar to that of previously 
tested Mississippi isolates (Stetina et al., 2014). The host status of the commercial cultivars used 
in the microplot trials were reported by Robbins et al. (2012, 2013, 2014, 2015). The cultivar 
RV56 was reported to have lower reproduction of reniform nematode than more susceptible 
cultivars by Robbins et al. (2015). This research found a similar pattern of reproduction among 
the different isolates of the nematode. The data from these studies provide enough evidence for 
the variability in resistance of commercial cultivars tested against native reniform isolates. 
Therefore, this information will be valuable for growers in selecting soybean cultivars suitable 
for their locations with the consideration of reniform nematode pressure within their 
geographical locations.  

This research yielded information beneficial to the development of management 
strategies for nematodes and also provides an impetus for further investigations with R. 
reniformis. Notable conclusions from this research include i) there is significant variation among 
isolates of R. reniformis associated with soybean within Louisiana; ii) reniform isolates showed 
greater variation in reproduction on moderately and susceptible than on resistant cultivars and 
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germplasm lines; iii) additional studies are justified with commercial soybean cultivars and 
additional isolates of the nematode. 
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CHAPTER 3. UTILITY OF SINGLE NUCLEOTIDE POLYMORPHISM (SNP) 
ANALYSIS TO ELUCIDATE GENETIC VARIABILITY IN ROTYLENCHULUS 

RENIFORMIS 
3.1 Introduction 

Plant parasitic nematodes are a major problem in commercial crops such as soybean and 
cotton in the United States (Stetina and Young, 2006; Robinson, 2007; Arias et al., 2009; Leach 
et al).  In the southern United States, reniform nematode (Rotylenchulus reniformis Linford and 
Oliveira) is considered as a major pest due to its devastating impacts on soybean (Allen et al., 
2017). In 2016, soybean yield losses due to reniform nematode was estimated to be around 5% of 
the total soybean yields in the southern United States. Out of the 16 soybean producing states in 
the south, Louisiana, Alabama, and Mississippi had the greatest yield losses due to R. reniformis 
damage (Allen et al., 2017).  
 Out of several management practices, crop rotation, use of nematicides, and the use of 
resistant soybean cultivars are widely employed. Crop rotation using non-host crops or resistant 
soybean cultivars are valid management practices that are currently in use. However, reniform 
nematode populations can easily resurge to an economic threshold level when a susceptible crop 
is planted (Robinson et al., 2007). Even though the use of nematicides as a management strategy 
is more effective against reniform nematode, it is not the most preferred method due to its 
negative impacts on human health and the environment (Agudelo et al, 2005). Of the 
management strategies available for the reniform nematode, the use of resistant cultivars is 
considered to be more durable and economical. To date, there are several soybean germplasm 
lines and cultivars that have been reported to be resistant to reniform nematode (Robbins et al., 
2012; 2013; 2014; 2015; Stetina et al., 2014). Research has shown that durable host plant 
resistance is proportionate to the amount of variability present in a pathogen (Niblack et al., 
2002; Noe, 1992; Riggs et al., 1981; Van der Beek et al., 1999). Research has also revealed that 
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moderate to high levels of resistance in soybean cultivars and some cotton breeding lines may not 
be consistent with different geographical isolates of this pathogen (Yik and Birchfield, 1984; 
Robinson et al., 1997; Robinson et al., 2004; Weaver et al., 2007). This inconsistency in 
performance of resistant cultivars/breeding lines could be determined by the existence of 
physiological and genetic variability in geographic isolates of reniform nematode. Utilizing 
novel molecular techniques to understand this variability would aid in developing durable 
reniform nematode resistant cultivars. Over the last few decades researchers have been using 
molecular techniques such as restriction fragment length polymorphism (RFLP), random 
amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), inter-
simple sequence repeats (ISSR), simple sequence repeat (SSR), and single nucleotide 
polymorphisms (SNPs) to understand genetic variation and to characterize multiple organisms 
(Grover and Sharma, 2016).  

RFLP known as the first generation of molecular markers, are currently not much in use 
for assaying genetic variability due to complexity, cost effectiveness, and elucidation of lower 
rate of polymorphism (Gao et al., 2016; Yang et al., 2017). The second generation of genomic 
markers, such as microsatellites (SSR), are easy to obtain at lower costs and have a higher 
polymorphism rate (Gao et al., 2016). The few drawback of using SSR markers are that they 
often considered as tedious in high throughput genotyping protocols and lack an even 
distribution in the genome (Salem et al., 2012). The third generation of markers known as the 
SNPs, and with the utility of  next generation sequencing (NGS) technology has gained 
popularity in recent years to study genetic variability in organism (Gao et al., 2016). Use of 
SNPs are considered to be a reliable tool for developing a rapid, and high-throughput assay to 
detect genetic differences between species (Yang et al., 2017). SNP analysis has been used in 
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analyzing variability of many species of  fungi, bacteria, virus, nematode, plants, and animals 
(Yang et al., 2017; Gao et al., 2016; Linlokken et al., 2017; Ojeda et al., 2014; Lu et al., 2013; 
Rattei, et al., 2007; Morais et al., 2006; Faga et al., 2001; Figueiredo et al., 2013; Samson-
Himmelstjerna et al., 2007).  

Evidence of morphometric, physiological, and genetic variabilities of R. reniformis 
populations have been documented in many parts of the world including Japan (Nakasono, 
2004), India (Dasgupta and Seshadri, 1971), Africa (Germani, 1978), Brazil (Rosa et al., 2003; 
Soares et al., 2003, 2004), and the United States (Agudelo et al., 2005; Tilahun et al. 2008, Arias 
et al., 2009, McGawley and Overstreet, 1995; McGawley et al., 2010; McGawley et al., 2011). 
There are contradicting results found in the literature regarding the existence of genetic 
variability among geographic populations of R. reniformis. A study conducted by Agudelo et al. 
(2005) using a collection of reniform nematodes samples from ten different states in the United 
States showed no variation in the first internal transcribed spacer (ITS1) region of the pathogen. 
Agudelo et al. (2005) suggested that microsatellite markers would provide a more reliable 
alternative to analyze the variability in reniform nematode populations. Tilahun et al. (2008) 
showed contradictory results to Agudelo et al. (2005) by finding fairly substantial variation in 
ITS1 as well as in the 18S regions of the reniform nematode populations from Alabama. 
Research utilizing microsatellite markers in the literature have shown promising results of 
detecting genetic variability in geographic isolates of reniform nematode (Arias et al., 2009; 
Leach et al., 2012). Use of novel technologies such as the next generation sequencing (NGS) 
together with SNP analysis would enable analysis of whole genomic DNA of reniform nematode 
in a more detailed, accurate and reliable way. This approach would be beneficial in determining 
genetic variability of the nematode R. reniformis. To date no published reports are available on 
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the use of SNP molecular marker analysis to distinguish genetic variability of the reniform 
nematode. Therefore the main objective of this research was to design and identify SNP 
molecular markers for the evaluation of genetic variability on endemic populations of reniform 
nematode. 
3.2 Methodology 
3.2.1 Reniform nematode isolation and extraction  
Geographic populations of R. reniformis used in this research are as follows; two from 
Louisiana, six from Mississippi, three from Arkansas, and one each from South Carolina, and 
Georgia (Table 3.1). 
Table 3.1. Sample ID, origin of samples, population type, and sources of reniform nematode 
populations used for SNP analysis. 
Sample ID Origin of samplex Isolatey Sourcez 

LA1 West Carroll, Louisiana Single egg mass Nematode advisory service, LSU 
LA2 Tensas, Louisiana Single egg mass Nematode advisory service, LSU 
MS1 Stoneville, Mississippi Single egg mass Salliana Stetina 
MS2 Stoneville, Mississippi Single egg mass Salliana Stetina 
MS3 Stoneville, Mississippi Single egg mass Salliana Stetina 
MS4 Washington, Mississippi Single egg mass Salliana Stetina 
MS5 Washington, Mississippi Single egg mass Salliana Stetina 
MS6 Sunflower, Mississippi Single egg mass Salliana Stetina 
AR1 Hawkins, Arkansas Single egg mass Robert Robbins 
AR2 Hawkins, Arkansas Single egg mass Robert Robbins 
AR3 Kibler, Arkansas Single egg mass Robert Robbins 
SC1 Clemson, South Carolina Single egg mass Paula Agudelo 
GA1 Tifton, Georgia Single egg mass Richard Davis 

xOrigin of the reniform nematode populations employed in this research 
yReniform nematode populations were maintained on tomato under a greenhouse environment 
zPersons or lab that that provided the initial reniform nematode samples 
 

Reniform nematode populations, with exception of Mississippi, Arkansas, South Carolina and 
Georgia, were derived from a single egg mass (SEM) before increasing and maintaining SEM 
populations on tomato (Solanum lycopersicum L. cultivar Rutgers PS, Seedway; Hall, New York 
14463) in a greenhouse environment. Approximately 300 to 400 gravid reniform nematode 
females from each population were handpicked with the use of a dissecting microscope and 
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laboratory utensils from tomato roots and were placed in petri plates containing distilled water 
before transferred to 2 ml centrifuge tubes.  
3.2.2 Extraction of genomic DNA from gravid R. reniformis  
 DNA was extracted from the reniform isolates from Louisiana using a Maxwell 16 
(Promega, Madison, WI, USA) automated DNA isolation machine. Five hundred µl of CTAB 
buffer, 30 µl of Proteinase K (20 mg/µl), 2 µl of RNase A (10 mg/ml, catalog No. EN0531), and 
2 µl of lysozyme (500 ng/µl) were added to the 2 ml Eppendorf tubes containing 300 to 400 
gravid reniform nematode females. The tubes were vortexed briefly, then gently shaken at 350 
rpm while incubating 2 hours at 60 °C. At the end of the incubation process, tubes were vortexed 
for 5 seconds to mix the solution before processing using the Maxwell 16 FFS Nucleic Acid 
Extraction System (Catalog No. X9431). At the end of process, the supernatant containing the 
genomic DNA was collected and transferred to labelled 1.5 ml Eppendorf tubes. A microplate 
spectrophotometer (Synergy H1Bio-tek, Winooski, VT, USA) was used to quantify the genomic 
DNA at a UV absorption of 260 nm. After isolating DNA from the SEM reniform nematode 
sample, DNA was amplified using whole genome amplified as described in Arias et al., 2009. 
DNA was extracted and amplifications for the reniform isolates from Mississippi, Arkansas, 
South Carolina and Georgia were conducted following the protocols in Arias et al., 2009 and 
Arias et al., 2011.  
3.2.3 Quantitative increase of genomic DNA using whole genome amplification 

Whole genome amplification (WGA) technology was used for the molecular analysis of 
minute quantities of DNA derived from individual nematodes, thereby enabling the analysis of 
genetic diversity among and within nematode populations. Genomic DNA for each reniform 
nematode population was amplified using the WGA process employing GenomePlex® Complete 
Whole Genome Amplification kits based on the instructions from the manufacturer (Sigma-
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Aldrich, St. Louis, MO; Cat. No. WGA2). This step was conducted due to the need of having 
larger amount of genomic DNA for the multiple SNP analysis. The DNA template for WGA was 
derived from the genomic DNA isolations that was extracted using the Maxwell 16 FFS Nucleic 
Acid Extraction System. The whole genome amplification process consisted of fragmentation, 
library preparation and amplifications steps. For the step of fragmentation, 1 µl of 10X 
fragmentation buffer and 10 µl of DNA (1 ng/µl) were pipetted in a 200 µl PCR tube. The tube 
was placed in a PTC-200 thermal cycler (MJ Research, Waltham, MA) at 95°C for 4 minutes. 
Immediately the sample was cooled by placing the tube on ice for 2 minutes followed by a brief 
centrifugation to combine the contents. Library preparation step is as followes; to the tube, 2 µl 
of 1X library preparation buffer, 1 µl of library stabilization solution were added and thoroughly 
vortexed. The tube was consolidated by centrifugation and placing in a PTC-200 thermal cycler 
(MJ Research, Waltham, MA) at 95°C for 2 minutes. The sample was cooled by placing the tube 
on ice for 2 minutes, then combining by centrifugation and returning to ice. To the tube, 1 µl of 
library preparation enzyme was added, thoroughly vortexed and briefly centrifuged. The tube 
was placed in a PTC-200 thermal cycler and incubated with following conditions: 16°C for 20 
minutes, 24°C for 20 minutes, 37°C for 20 minutes, and 75°C for 5 minutes. Tubes were 
removed from the thermal cycler and briefly centrifuged. For the amplification process: 15 µl of 
the library preparation was used for the subsequent amplification process by adding 7.5 µl of 
10X Amplification Master Mix, 47.5 µl of water (molecular biology grade), and 5 µl of WGA 
DNA polymerase for a total volume of 75 µl. The tube was thoroughly vortexed, briefly 
centrifuged, and placed in a PTC-200 thermal cycler for amplification. The thermal cycler was 
setup as follows: an initial denaturation at 95°C for 3 minutes; followed by 28 cycles of 
denaturation at 94°C for 15 seconds, and annealing/extension at 65°C for 5 minutes. A 5 µl of 
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the final product, WGA amplified DNA, was resolved on a 1.5% Agarose gel to confirm the 
procedure was successful. The remaining volume of WGA DNA was purified using a 
GenElute™ PCR Clean-Up Kit from Sigma-Aldrich (Catalog Number NA1020). The WGA 
amplified DNA was quantified using Synergy H1 (Bio-Tek®, Winooski, VT, USA) microplate 
spectrophotometer and stored at -20°C. In order to obtain enough DNA for the subsequent SNP 
analyses, all WGA DNA samples were re-amplified following manufacturer’s instructions using 
the GenomePlex WGA Re-amplification Kit (Sigma-Aldrich, Catalog Number WGA3). Re-
amplified DNA samples were purified using the GenElute kits and concentrations were 
determined using the microplate spectrophotometer. 
3.2.4 Identification of single nucleotide polymorphism (SNP) for R. reniformis 
 Putative SNPs were derived from reniform genomic DNA analysis in a previous study 
using nextRAD (Nextera-tagmented Reductivity-Amplifed DNA; SNPsaurus, Eugene, OR USA) 
technology (Dr. Jeffery D. Ray, USDA-ARS, unpublished data). Flanking sequences of 162 
putative sequences are shown in Appendixes 1 and 2.  From this list, 31 putative SNPs were 
selected for testing in the current study (Appendix 1). SNPs were selected specifically to be at 
different genomic locations (i.e. on different genomic contigs) as previously reported for the 
reniform nematode genome (RREN 1.0) at NCBI 
(https://www.ncbi.nlm.nih.gov/assembly/GCA_001026735.1/). The flanking sequences of the 31 
selected SNPs (Table 3.2) were sent to LGC Genomics (Teddington, UK) where KASP 
(kompetitive allele-specific PCR) genotyping assays were designed for each SNP.   
3.2.5 Kompetitive Allele Specific PCR (KASP) genotyping assay  

Single base change in the genome or SNP can be detected by designing primers that 
amplify that particular base change.  The letters [A/G] in parenthesis in the middle of the 
sequence as shown below gives an illustration of a SNP:   
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 ACGCCCCGGGGGAAGGATAGAGGG[A/G]ATTCCCACTCTCCCCAGGGAAGC 
The primers are designed in such a way as to specifically amplify one base or the other, in this 
case “A” or “G”.  KASP assays with dual emission fluorescent reactions are designed as where 
different wavelengths represent one or the other allele (i.e. “A” or “G” in the above case).  
Specific fluorescent emissions are read on a fluorimeter after a PCR amplification of the assay, 
and analyzed to determine which allele (or both alleles) are present in the sample.  In this 
research, the LightCycler 480 real-time PCR equipment (Rouche Diagnostics Corporation, 
Indianapolis, IN, USA) was used to determine the fluorescent emissions and Rouche 
LightCycler® 480 software (ver.  1.5.1.62SP3) used to call alleles. Alleles were denoted as X or 
Y based on emission wavelengths. Mixtures of both alleles were denoted as “H or XY” for 
heterozygotes. 
 Of the 17 samples analyzed in this experiment, 4 were no-template controls and the 
remaining 13 were reniform nematode samples described earlier (Table 3.1). The Amplification 
Reaction Mix preparation provided each reaction with 10 µl of 1X KASP Master Mix, and 0.4 µl 
of 1X KASP Assay Mix (containing the allele specific primers unique to each SNP), and 9.6 µl 
of WGA DNA (at a concentration of 12.5 ng µl-1). The PCR reactions were assembled in 96-well 
semi-skirted PCR plates with white wells and clear frames (4ti-0951, 4titude Ltd., Wotton, 
Surrey UK) using a Janus robot (Perkin Elmer, Shelton, CT). The plate was sealed with QPCR 
adhesive seals (9095-10055, KBio, Beverly, MA) and placed in a PTC-200 thermocycler (MJ 
Research, Waltham, MA). Thereafter the PCR reaction was conducted as follows: an initial 
denaturation at 94oC for 15 minutes; followed by 10 cycles of denaturation at 94oC for 20 
seconds, and annealing/extension at 65oC for 1 minute with a temperature reduction of -0.8 oC 
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per cycle; and subsequent 26 cycles of denaturation at 94oC for 20 seconds, and 
annealing/extension at 57oC for 1 minute.  
3.3 Results 
Sufficient quantities and quality of DNA was obtained for SNP analysis using WGA and WGA 
re-amplification processes. In an ongoing project conduced at the USDA-ARS, Stoneville, MS, 
162 putative reniform nematode specific SNPs (Appendix 1 and 2) that were not reported 
elsewhere were identified (Jeffery D. Ray, USDA-ARS, Stoneville, MS; personal 
communication). Nevertheless, none of these putative SNPs have been assessed to conclude their 
performance against reniform nematode populations. Of the 162 identified putative reniform 
nematode specific SNPs, 31 SNPs were designed and manufactured to function as dual emission 
fluorescent KASP (kompetitive allele-specific PCR) primers (Table 3.2). These KASP primers 
permitted the bi-allelic scoring of SNPs at specific loci including those in complex genomes. The 
31 KASP SNP primer sets were tested on 13 reniform nematode isolates in this research. The 13 
reniform nematode isolates tested in this research were collected from Louisiana, Mississippi, 
Arkansas, South Carolina, and Georgia (Table 3.1). Twenty six of the 31 SNPs tested, were able 
to amplify genomic DNA of reniform nematode isolates from different geographic locations with 
a success rate around 84%. Five SNPs failed to successfully amplify. Results from KASP 
genotyping assay are summarized in Table 3.3.    
 For the SNP analysis of the reniform nematode isolates from Louisiana, 25 SNPs were 
able to amplify, whereas 6 SNPs were unsuccessful in amplification. Of the 25 functioning 
SNPs, a total of 10 appeared to identify only one allele (four for allele X and six for allele Y), 
while seven identified both alleles only (heterozygous DNA). The remaining eight SNPs 
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identified allelic variants (i.e. genetic differences) among the Louisiana reniform nematode 
isolates.   

SNP analysis of the samples from Mississippi revealed that seven SNPs were 
monomorphic while three identified only heterozygous loci out of the 26 amplified SNPs. Of the 
26 SNPs, five failed to amplify and the results of one SNP assay could not be determined after 
amplification. The other remaining 15 SNPs identified genetic differences among the reniform 
nematode isolates from Mississippi. 
 Of the 31 SNPs tested on samples from Arkansas, only two did not amplify. Six SNPs out 
of the remaining 29 SNPs were monomorphic for the Y allele while the other four detected 
heterozygous loci in the tested samples. The remaining 19 SNPs were able to detect allelic 
variants in reniform nematode isolates from Arkansas. 

Due to the limitations of samples, only a single isolate of reniform nematode were tested 
from South Carolina, and Georgia during this research. For the two samples each from South 
Carolina, and Georgia, four SNPs failed to successfully amplify genomic DNA. Of the remaining 
27 SNPs that amplified, 9 SNPs identified allelic differences among samples from these isolates. 
Of the remaining assays, 12 were monomorphic and another five detected heterozygous loci in 
the tested samples.  

The results from multiple isolates of reniform nematode from Louisiana, Mississippi, and 
Arkansas provided evidence for the existence of genetic differences between and among the 
geographic isolates. The 26 SNPs that, for the most part, amplified genomic DNA of reniform 
nematode isolates from different geographic locations, four (RREN_4410_3972, 
RREN_4834_4618, RREN_5033_5267, and RREN_269_9935) were able to distinguish genetic 
differences between and among isolates of reniform nematode from Louisiana, Mississippi, and 
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Arkansas. Even with limited numbers of samples, a genetic difference was observed with three 
SNPs between South Carolina, and Georgia isolates. Unfortunately, due to the limited number of 
isolates coupled with the limited number of SNPs tested, the degree of genetic differences among 
these isolates could not be properly elucidated. 
3.4 Discussion 
 This research was conducted using the SNP analysis to evaluate the genetic diversity of 
R. reniformis from different geographical locations in Louisiana, Mississippi, Arkansas, South 
Carolina, and Georgia. There is evidence in the literature to provide information on the existence 
of genetic variability in variety of nematode species using first and second generation marker 
technology. Research using first and second generation marker technology to evaluate genetic 
variability was done on Caenorhabditis elegans and various plant parasitic nematodes including 
cyst nematodes (Caswell-Chen et al., 1992; Folkertsma et al., 1994; Kalinski and Huettel, 1988; 
Silva et al., 2000), root-knot nematode (Guirao et al., 1995; Semblat et al., 1999; Tigano et al., 
2010; Khanal et al., 2016), rice white tip nematode (Figueiredo et al., 2013), and reniform 
nematode (Agudelo et al., 2005; Tilahun et al., 2008; Arias et al., 2009). Even though several 
attempts were made to understand the genetic variability of the reniform nematode in the past, 
this research will be the first to report genetic variability in geographic isolates of reniform 
nematode with the use of SNP analysis.  
 Out of 162 putative SNPs identified, a total of 31 putative reniform nematode specific 
SNPs that were not reported elsewhere and selected from the reniform nematode genome, based 
on previous research ( Dr. Jeffery D. Ray, personal communication) were used to confirm their 
functionality in this research (Appendix 1 and 2). 
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RREN_4410_3972 4,410 3,972 T C 54.5 57.1 61.9 1140749440
RREN_1572_36933 1,572 36,933 T C 45.8 52 59.1 1140749445
RREN_4410_3979 4,410 3,979 A G 56 59.1 73.7 1140749464
RREN_43396_315 43,396 315 T G 44 50 59.1 1140749374
RREN_523_19992 523 19,992 A C 42.3 45.8 48 1140749391
RREN_367_3958 367 3,958 T G 52.2 54.5 39.3 1140749398
RREN_4834_4618 4,834 4,618 A G 42.3 45.8 48 1140749415
RREN_5033_5267 5,033 5,267 T C 42.3 44 59.1 1140749422
RREN_845_36717 845 36,717 A G 35.7 38.5 48 1140749439
RREN_3215_15723 3,215 15,723 T C 42.3 44 37.9 1140749446
RREN_1660_513 1,660 513 T C 30 35.7 33.3 216484048
RREN_4410_3946 4,410 3,946 A G 65 68.4 59.1 216484047
RREN_7711_4758 7,711 4,758 T C 42.3 45.8 48 216484024
RREN_514_63176 514 63,176 A G 54.5 57.1 59.1 216484023
RREN_925_39379 925 39,379 C G 33.3 31 48 216484000
RREN_514_63173 514 63,173 T G 59.1 65 54.2 216483999
RREN_91287_201 91,287 201 A C 44 45.8 33.3 216483976
RREN_91287_193 91,287 193 T C 44 45.8 37.9 216484070
RREN_43396_339 43,396 339 A C 29 30 59.1 216484049
RREN_1990_6847 1,990 6,847 A G 37 44 46.2 216484046
RREN_20709_1089 20,709 1,089 A C 33.3 37 37.9 216484025
RREN_258_12977 258 12,977 A G 52 52.2 48 216484022
RREN_269_9935 269 9,935 A G 24.2 30 46.2 216484001
RREN_456_104249 456 104,249 T G 34.5 37 48 216483998
RREN_43396_325 43,396 325 T G 37 40.7 59.1 216483977
RREN_901_49990 901 49,990 A G 30 31 37.9 216484069
RREN_1886_12077 1,886 12,077 C G 37 37 48 216484050
RREN_16875_158 16,875 158 T C 24.2 30 73.7 216484045
RREN_251_23034 251 23,034 T C 52.2 54.5 50 216484026
RREN_1895_31360 1,895 31,360 A T 44 44 33.3 216484021
RREN_9137_320 9,137 320 T C 35.7 42.3 37.9 216484002

LGC GenomicszSNP IDw Contig Sequence 
Position

Allele 
FAMx

Allele 
HEXy

GC% 
FAM

GC% 
HEX

GC% 
Common

Table 3.2. Summary of SNP ID, contig, sequence position, fluorescence label for each SNP, GC 
content, and LGC Genomics reference number for the SNP-specific primers employed in this 
research.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wSNPs were assigned and chosen across the reniform nematode genome so that each SNP is not  
clustered together with the others 
xEnd of primers were labelled with FAM and HEX fluorescence dyes which generate specific 
fluorescence signals which is detected and identified by LightCycler 480 software 
yPercentage of Guanine and Cytosine in a SNP sequence 
zLGC Genomics reference number for each SNP-specific primers used in this research 
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Table 3.3. Likely alleles as designated by LightCycler 480 software after the reaction of  31 single 
nucleotide polymorphism (SNP) analysis on isolates from Louisiana, Mississippi, Arkansas, South 
Carolina, and Georgia. 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
xSNPs were assigned and chosen across the reniform nematode genome so that each SNP is not clustered 
together with the others 
ySamples were collected from different locations in Louisiana (LA), Mississippi (MS), Arkansas (AR), 
South Carolina (SC), and Georgia (GA) and propagated/maintained in tomato 
zX, Y, and H represent LightCycler 480 calls for FAM, HEX, and both fluorescent labels, respectively. 
“UNK” indicates LightCycler 480 could not distinguish the fluorescence while “-” indicates the failure of 
SNP on that particular isolate  

SNP IDx LA1y LA2 MS1 MS2 MS3 MS4 MS5 MS6 AR1 AR2 AR3 SC1 GA1
RREN_4410_3972 H H H X X UNK Y H H X UNK UNK H
RREN_1572_36933 H Y H H H H H Y - - Y UNK H
RREN_4410_3979 X X X X H X X X H H X X X
RREN_43396_315 - - - - X - - - H H X - -
RREN_523_19992 H H H H H H H H H H H H H
RREN_367_3958 Y UNK Y Y Y X UNK X Y UNK Y X Y
RREN_4834_4618 X H H H - X Y X Y Y Y X X
RREN_5033_5267 X Y H H - X Y H UNK UNK H UNK X
RREN_845_36717 H H H H H H H H H H H H H
RREN_3215_15723 X H UNK UNK - X X H H H UNK Y UNK
RREN_1660_513 H H H H - H H H Y X Y H H
RREN_4410_3946 Y Y Y Y Y Y Y Y Y Y Y Y Y
RREN_7711_4758 Y Y Y Y X Y Y Y H H Y Y Y
RREN_514_63176 Y Y Y Y Y Y Y Y Y Y Y Y Y
RREN_925_39379 H H H H H Y Y H - - H H H
RREN_514_63173 Y H Y Y Y Y Y Y Y Y Y Y Y
RREN_91287_201 - - - - Y - - - Y Y Y Y -
RREN_91287_193 - - - - H - - - H H H - -
RREN_43396_339 - - Y Y Y Y Y Y Y Y Y Y Y
RREN_1990_6847 X X X X X X Y X H UNK X UNK X
RREN_20709_1089 H X UNK UNK UNK UNK UNK UNK Y UNK Y UNK X
RREN_258_12977 X X X X X X X X Y X X X X
RREN_269_9935 Y H H H H Y UNK X Y Y X H Y
RREN_456_104249 X X X X X X X X H X X X X
RREN_43396_325 - - - - Y - - - Y Y H - -
RREN_901_49990 Y Y X X X Y X H H H Y X X
RREN_1886_12077 X X X X X X X X Y X X X X
RREN_16875_158 - - - - Y - - - Y Y Y - -
RREN_251_23034 X X Y Y UNK UNK Y H Y Y X X H
RREN_1895_31360 H H H H H H Y Y H H H H H
RREN_9137_320 H H H H H Y UNK Y UNK Y - Y Y



 

44 
 

 These selected SNPs were used to design bi-allelic KASP genotyping assays and tested 
on genomic DNA of 13 reniform nematode isolates obtained from Louisiana, Mississippi, 
Arkansas, South Carolina, and Georgia to detect genetic differences among the isolates (Table 
3.2).  
 In this research, 26 out of the 31 tested SNPs were able to amplify genomic DNA with a 
success rate of 84%. This high level of success rate in the SNPs tested in this research was 
comparable to similar studies conducted in plants with similar success rates of 78.5% to 88.4% 
(Cockram et al., 2012; Saxena et al., 2012; Semagn et al., 2014; Graves et al., 2016). With the 
success rate we obtained from the 31 SNPs used in this study, we could assume a similar success 
rate for the 131 putative SNPs that were not tested during this study (Appendix 2). After testing 
all 162 putative SNPs, information about the SNPs for identification of genetic variability of the 
reniform nematode will be available to the science community. The sequence information 
documented for the tested 31 SNPs in this study using KASP assays shown for each SNP can be 
utilized to prepare reniform nematode specific SNP assays together with the LGC Genomics 
Reference number shown in Table 3.2. As mentioned in the Results, five out of the 31 SNPs had 
very poor amplification and did not function properly. Optimizing PCR conditions might be 
useful to achieve better amplification of these failed SNPs. Results revealed that in many 
instances, the SNPs that were used in this research recognized the two SNP alleles as well as the 
heterozygous state (Table 3.3). Nevertheless, some SNPs only identified one allele or the other 
and most only identified heterozygous alleles (Table 3.3). Lack of genetic diversity at that 
genomic location probably indicates a monophorphic SNP whereas heterozygotes likely indicate 
the genetic variation within the samples. In future studies, increasing the number of different 
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isolates used is an approach to overcome this problem and thereby likely increase the detection 
frequency of all alleles. 

Chapter 2 in this dissertation described difference in reproduction and pathogenicity 
among the reniform nematode isolates from 4 geographical locations in Louisiana with the use of 
greenhouse and microplot experiments using soybean genotypes. Those experiments conducted 
in both greenhouses and the microplots environments, revealed differences in reproduction and 
pathogenicity among the tested reniform isolates. According to results from those experiments 
the isolate from Morehouse parish designated as MOR had the least reproduction and the greatest 
pathogenicity compared to the isolate from West Carroll (WC) parish. The isolate from Tensas 
(TEN) and Rapides (RAP) parishes had moderate levels of reproduction and pathogenicity with 
slight dissimilarities among soybean genotypes. Therefore it was evident from those experiments 
that there are occurrences of variability among geographic isolates of reniform nematodes in 
Louisiana. Similarly to Chapter 2 in this dissertation a parallel research conducted by C. Khanal, 
have found significant differences in reproduction and pathogenicity with his greenhouse and 
microplot experiments using cotton as the host. Among the same isolates of reniform nematode 
from Louisiana, he has reported that Morehouse isolate (MOR) having the greatest reproduction 
and pathogenicity on cotton whereas Rapides isolate (RAP) having the least. He has stated that 
the isolate from Tensas (TEN) and West Carroll (WC) parishes had moderate levels of 
reproduction and pathogenicity (C. Khanal, personal communication). These findings from 
greenhouse and microplot research could be supported with similar research conducted by 
McGawley et al., 2010:2011 using soybean and cotton. All of this research indicates the 
presence of variability in reproduction and pathogenicity of geographical isolates of the reniform 
nematode. 
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In the current research we found that eight SNPs of the 26 assays were able to identify 
non-heterozygous differences among the reniform nematode isolates from WC and TEN in 
Louisiana. Therefore this indicates the occurrence of molecular variability in isolates of reniform 
nematode from Louisiana. Due to the fact that common reniform nematode isolates used in both 
studies discussed above had different levels of reproduction and pathogenicity together with 
genetic differences in SNP analysis, we could make an assumption that these tested SNPs might 
have an association with biological functions in reniform nematode. This assumption could be 
further strengthen by the findings from Salem et al. (2012) stating that some SNPs are associated 
with biological functions in an organism. Therefore more emphasis should be given to explore 
the association of SNPs with biological functions in future experiments. When the available 
reference sequence for reniform nematode (RREN 1.0 assembly at NCBI) becomes more 
complete and fully annotated, genes in the areas around the SNPs that identified genetic 
differences in this study can be examined for potential biological functions. When considering 
the geographic origin of the reniform nematodes used in this study, most of the SNPs tested were 
polymorphic among and within the reniform nematodes from different locations. When further 
analyzing these polymorphisms, it was evident that SNPs polymorphic for reniform nematodes 
isolate in one geographic location would not be polymorphic in an isolates from another location 
(Table 3.3). Therefore this was enough to provide evidence for the presence of genetic variability 
within and among different locations. Therefore, the use of SNP assays could be a valid 
technique to identify genetic variability of reniform nematodes present in diverse geographical 
locations. Having a large number of SNPs spread throughout the reniform nematode genome 
would be beneficial to pin point the reniform nematode isolate having the greatest level of 
genetic diversity.  
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Studies conducted in the past to understand the amount of genetic variability in 
geographic isolates of reniform nematode either had contradicting results (Agudelo et al. 2005; 
Tilahun et al. 2008) or used markers that lack wide range distribution in the genome (Arias et al., 
2009; Leach et al., 2012). Therefore, SNP markers are much more efficient and powerful (Salem 
et al., 2012) for detecting genetic diversity of R. reniformis compared to those previously 
published techniques in the literature. To further understand and to confirm the existence of 
genetic variability of R. reniformis observed in this research, extensive research should be 
conducted. This could be achieved by using larger number of reniform nematode isolates 
collected from wider geographical locations in multiple states of the USA and samples around 
the world. When the future research enable to link SNPs association with reproduction and 
pathogenicity functions by understanding the specific location of SNP in a gene and subsequent 
gene function, these markers will be beneficial for the breeders to develop high yielding crops 
resistent to R. reniformis. 
3.5 Literature cited   
Agudelo, P., R. T. Robbins, J. M. Stewart, and A. L. Szalanski. 2005. Intraspecific variability of 

Rotylenchulus reniformis from cotton-growing regions in the United States. Journal of 
Nematology 37:105-114. 

 
Allen, T. W., C. A. Bradley, J.P  Damicone, N. S. Dufault, T. R. Faske, C. A. Hollier, T. Isakeit, 

R. C. , Kemerait, N. M. Kleczewski, R. J. Kratochvil, H. L. Mehl, J. D. Mueller, C. 
Overstreet, P. P. Price, E. J. Sikora, T. N. Spurlock, L. Thiessen, W. J. Wiebold, and H. 
Young. 2017. Southern United States soybean disease loss estimates for 2017. 
Proceeding of the 44th Southern Soybean Disease Workers meeting, Pensacola, FL p. 3-8. 

 
Arias, R. S., S. R. Stetina, J. L. Tonos, L. A. Scheffler, and B. E. Scheffler. 2009. Microsatellites 

reveal genetic diversity in Rotylenchulus reniformis populations. Journal of Nematology 
41:146-156. 

 
Arias, R. S., S. R. Stetina, and B. E. Scheffler. 2011. Comparison of whole-genome 

amplifications for microsatellite genotyping of Rotylenchulus reniformis. Electronic 
Journal of Biotechnology 14:14-14. ISSN 0717-3458.  

 



 

48 
 

Caswell-Chen, E. P., V. M. Williamson, and F. F. Wu. 1992. Random amplified polymorphic 
DNA analysis of Heterodera cruciferae and H. schachtii populations. Journal of 
Nematology 24:343-351. 

 
Cockram, J., H. Jones, C. Norris, and D.M. O’Sullivan. 2012. Evaluation of diagnostic molecular 

markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. 
vulgare L.). Theoritical and Applied Genetics 125:1735-1749. 

 
Dasgupta, D. R., and A. R. Seshadri. 1971. Races of the reniform nematode, Rotylenchulus 

reniformis Lindford and Oliveira, 1940. Indian Journal of Nematology 1:21-24. 
 
Faga, B. W. Maury, D. A. Bruckner, and C. Grose. 2001. Identification and mapping of single 

nucleotide polymorphisms in the varicella-zoster virus genome. Virology 280:1-6. 
 
Figueiredo, J., M. J. Simoes, P. Gomes, C. Barroso, D. Pinho, L. Conceicao, L. Fonseca, I. 

Abrantes, M. Pinheiro, and C. Egas. 2013. Assessment of the geographic origins of 
pinewood nematode isolates via single nucleotide polymorphism in effector genes. Plos 
One 8:e83542. 

 
Folkertsma, R. T., J. N. A. M. R. Van Der Voort, M. P. E. Van Gent-Pelzer, K. E. Groot, W. J. 

Van Den Bos, A. Schots, J. Bakker, and F. J. Gommers. 1994. Inter- and intraspecific 
variation between populations of Globodera rostochiensis and G. pallida revealed by 
random amplified polymorphic DNA. Phytopathology 84:807-811. 

 
Gao, L., J. Jia, and X. Kong. 2016. A SNP-based molecular barcode for characterization of 

common wheat. PLoS ONE 11: e0150947. 
 
Germani, G. 1978. Caracte`res morpho-biome´triques de trois espe`-cies oust-africanes de 

Rotylenchulus Linford & Oliveirs 1940 (Nematoda: Tylenchida). Revue de Ne´matologie 
1:241-250. 

 
Graves, H., A. L. Rayburn, J. L. Gonzalez-Hernandez, G. Nah, Do-Soon Kim, and D. K. Lee. 

2016. Frontiers in Plant Science doi: 10.3389/fpls.2015.01271 
 
Grover, A., and P. C. Sharma. 2014. Development and use of molecular markers: past and 

present. Critical Reviews in Biotechnology 36: 290-302. 
 
Guirao, P., A. Moya, and J. L. Cenis. 1995. Optimal use of random amplified polymorphic DNA 

in estimating the genetic relationship of four major Meloidogyne spp. Phytopathology 
85:547-551. 

 
Kalinski, A. and R. N. Huettel. 1988. DNA restriction fragment length polymorphism in races of 

the soybean cyst nematode, Heterodera glycines. Journal of Nematology 20:532-538. 
 



 

49 
 

Khanal, C., R. T. Robbins, T. R. Faske, A. L. Szalanski, E. C. McGawley, and C. Overstreet. 
2016. Identification and haplotype designation of Meloidogyne spp. of Arkansas using 
molecular diagnostics. Nematropica 46:261-270. 

 
Lawrence, K., A. Hagan, R. Norton, T. Faske, R. Hutmacher, J. Mueller, D. Wright, I. Small, B.  

Kemerait, C. Overstreet, P. Price, G. Lawrence, T. Allen, S. Atwell, A. Jones, S. Thomas, 
N. Goldberg, R. Boman, J. Goodson, H. Kelly, J. Woodward, and H. L. Mehl. 2017. 
Cotton disease loss estimate committee report, 2016. Pp. 150-152 in: Proceedings of the 
2017 Beltwide Cotton Conferences, Dallas, TX. Cordova: National Cotton Council. 
 

Leach, M., P. Agudelo, and A. Lawton-Rauh. 2012. Genetic variability of Rotylenchulus 
reniformis. Plant Disease 96:30-36. 

 
Linlokken, A. N., T. O. Haugen, M. P. Kent, S. Lien. 2017. Genetic differences between wild 

and hatchery-bred brown trout (Salmo trutta L.) in single nucleotide polymorphisms 
linked to selective traits. Ecology and Evolution 7:4963-4972. 

 
Lu, S., M. C. Edwards, and T. L. Friesen. 2013. Genetic variation of single nucleotide 

polymorphisms identified at the mating type locus correlates with form-specific disease 
phenotype in the barley net blotch fungus Pyrenophora teres. European Journal of Plant 
Pathology 135:49-65. 

 
Tigano, M., K. de Siqueira, P. Castagnone-Sereno, K. Mulet, P. Queiroz, M. dos Santos, C. 

Teixeira, M. Almeida, J. Silva, and R. Carneiro. 2010. Genetic diversity of the root-knot 
nematode Meloidogyne enterolobii and development of a SCAR marker for this guava-
damaging species. Plant Pathology 59:1054-1061. 

 
McGawley, E. C., and C. Overstreet. 1995. Reproduction and pathological variation in 

populations of Rotylenchulus reniformis. Journal of Nematology 27:508 (abstract). 
 
McGawley, E. C., C. Overstreet, and M. J. Pontif. 2011. Variation in reproduction and 

pathogenicity of geographic isolates of Rotylenchulus reniformis on soybean.  
Nematropica 41:12-22. 

 
McGawley, E. C., M. J. Pontif, and C. Overstreet. 2010. Variation in reproduction and 

pathogenicity of geographic Isolates of Rotylenchulus reniformis on cotton. Nematropica 
40:275-288. 

 
Morais, S., R. Marco-Moles, R. Puchades, and A. Maquieira. 2006. DNA microarraying on 

compact disc surfaces. Application to the analysis of single nucleotide polymorphisms in 
Plum pox virus. Chemical Communications 0:2368-2370.  

 
Nakasono, K. 2004. Studies on morphological and physio-ecological variations of the reniform 

nematode, Rotylenchulus reniformis Lindford and Oliveira, 1940 with an emphasis on 
differential geographical distribution of amphimictic and parthenogenetic populations in 
Japan. Journal of Nematology 36:356-420. 



 

50 
 

Niblack, T. L., P. R. Arelli, G. R. Noel, C. H. Opperman, J. H. Orf , D. P. Schmitt, J. G.  
Shannon, and G. L Tylka. 2002. A revised classification scheme for genetically diverse 
populations of Heterodera glycines. Journal of Nematology 34:279-282. 

 
Noe, J. P. 1992. Variability among populations of Meloidogyne arenaria. Journal of Nematology 

24:404-414. 
 
Ojeda, D. I., B. Dhillon, C. K. M. Tsui, and R. C. Hamelin. 2014. Single-nucleotide 

polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-
associated symbiotic fungus, using whole-genome resequencing. Molecular Ecology 
Resources 14:401-410. 

 
Rattei, T., S. Ott, M. Gutacker, J. Rupp, M. Maass, S. Schreiber, W. Solbach, T. Wirth, and J. 

Gieffers. 2007. Genetic diversity of the obligate intracellular bacterium Chlamydophila 
pneumoniae by genome-wide analysis of single nucleotide polymorphisms: evidence for 
highly clonal population structure. BMC Genomics 8:355. Doi: 10.1186/1471-2164-8-
355. 

 
Riggs, R. D., M. L., Hamblen, and L. Rakes. 1981. Infra-species variation in reactions to hosts in 

Heterodera glycines populations. Journal of Nematology 13:171-179. 
 
Robinson, A. F. 2007. Reniform in U.S. cotton: when, where, why, and some remedies. Annual 

Review of Phytopathology 45:263-88. 
    
Robinson, A. F., A. A. Bell, N. Dighe, M. A. Menz, R. L. Nichols, and D. M. Stelly. 2007. 

Introgression of resistance to nematode Rotylenchulus reniformis into upland cotton 
(Gossypium hirsutum) from G. longicalyx. Crop Science 47:1865-1877. 

 
Robinson, A. F., A. C. Bridges, and A. E. Percival. 2004. New sources of resistance to the 

reniform (Rotylenchulus reniformis) and root-knot (Meloidogyne incognita) nematode in 
upland (Gossypium hirsutum L.) and sea island (G. barbadense L.) cotton. Journal of 
Cotton Science 8:191-197. 

 
Robinson, A. F., R. N. Inserra, E. P. Caswell-Chen, N. Vovlas, and A. Troccoli. 1997. 

Rotylenchulus species: Identification, distribution, host ranges, and crop plant resistance. 
Nematropica 27:127-180. 

 
Rosa, R. C. T., R. M. Moura, E. M. R. Pedrosa, and A. Chaves. 2003. Ocorreˆncia de 

Rotylenchulus reniformis em Cana de acxu´car no Brasil. Nematologia Brasileira 
27:9395. 

 
Salem, M., R. L. Vallejo, T. D. Leeds, Y. Palti, S. Liu, A. Sabbagh, C. E. Rexroad III, and J. 

Yao. 2012. RNA-Seq identifies SNP markers for growth traits in rainbow trout. 
PLoSONE 7:e36264. 

 



 

51 
 

Samson-Himmelstjerna, G. V., W. J. Blackhall1, J. S. Mccarthy, and P. J. Skuce. Single 
nucleotide polymorphism (SNP) markers for benzimidazole resistance in veterinary 
nematodes. Parasitology 134:1077-1086. 

 
Saxena, R. K., R. V. Penmetsa, H. D. Upadhyaya, A. Kumar, N. Carrasquilla-Garcia, J. A. 

Schlueter, A. Farmer, A. M. Whaley, B. K. Sarma, G. D. May, D. R. Cook, and R. K. 
Varshney. 2012. Large-scale development of cost-effective single-nucleotide 
polymorphism marker assays for genetic mapping in pigeon pea and comparative 
mapping in legumes. DNA Research 19:449-461. 

 
Semagn, K., R. Babu, S. Hearne, and M. Olsen. 2014. Single nucleotide polymorphism 

genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology 
and its application in crop improvement. Molecular Breeding 33:1-14. 

  
Semblat, J. P., M. Bongiovanni, E. Wajnberg, A. Dalmasso, P. Abad, and P. Castagnone-Sereno. 

1999. Virulence and molecular diversity of parthenogenetic root-knot nematodes, 
Meloidogyne spp. Heredity 84:81-89. 

 
Silva A. T. D., J. C. V. Penna, Goulart L. R., M. A. D. Santos, and N. E. Arantes. 2000. Genetic 

variability among and within races of Heterodera glycines Ichinohe assessed by RAPD 
markers.  Genetics and Molecular Biology 23:323-329. 

 
Soares, P. L. M., J. M. dos Santos, and A. S. Ferraudo. 2004. Estudo morfome´trico comparativo 

de 58 populacxo˜es Brasileiras de Rotylenchulus reniformis (Nemata: Rotylenchulinae). 
Fitopatologia Brasileira 29:419-424. 

 
Soares, P. L. M., J. M. dos Santos, and P. S. Lehman. 2003. Estudo morfome´trico comparative 

de populacxo˜es de Rotylenchulus reniformis (Nemata: Rotylenchulinae) do Brasil. 
Fitopatologia Brasileira 28:292-297. 

 
Stetina, S. R., and L. D. Young. 2006. Comparisons of female and egg assays to identify 

Rotylenchulus reniformis resistance in cotton. Journal of Nematology 38:326-332.  
 
Stetina, S. R., J. R. Smith, and J. D. Ray. 2014. Identification of Rotylenchulus reniformis  

resistant Glycine lines. Journal of Nematology 46(1):1-7. 
 
Tilahun, M., K. Soliman, K. S. Lawrence, L. J. Cseke, and J. W. Ochieng. 2008. Nuclear 

ribosomal DNA diversity of a cotton pest (Rotylenchulus reniformis) in the United States. 
African Journal of Biotechnology 7:3217-3224. 

 
Van der Beek, J. G., P. W. Th. Maas, G. J. W. Janssen, C. Zijlstra, and C. H. Van Silfhout. 1999. 

A pathotype system to describe intraspecific variation in pathogenicity of Meloidogyne 
chitwoodi. Journal of Nematology 31:386-392. 

 
Weaver, D. B., K. S. Lawrence, and E. Van Santen. 2007. Reniform nematode resistance in 

upland cotton germplasm. Crop Science 47:19-24. 



 

52 
 

Yang, C. H., K. C. Wu, H. U. Dahms, L. Y. Chuang, and H. W. Chang. 2017. Single nucleotide  
polymorphism barcoding of cytochrome c oxidase I sequences for discriminating 17 
species of Columbidae by decision tree algorithm. Ecology and Evolution 7:4717-4725. 

 
Yik, Choi-Pheng, and Birchfield, W. 1984. Resistant germplasm in Gossypium species and 

related plants to Rotylenchulus reniformis. Journal of Nematology 16:146-153. 
 
 
 
 
 
 
  



 

53 
 

CHAPTER 4. SUMMARY AND CONCLUSION 
 In many locations in the southern United States including Louisiana, resistance found in 
soybean and cotton cultivars/breeding lines are not consistent in their response to different 
geographical isolates of the reniform nematode Rotylenchulus reniformis (Xavier et al., 2014; 
Bhandari et al., 2015C. Overstreet, personal communications). Therefore the experiments 
described in this dissertation were conducted to address this phenomenon. To understand the 
pathogenicity and reproduction of the reniform nematode, responses of commercial cultivars and 
resistant germplasm lines of soybean were evaluated on indigenous isolates of the reniform 
nematode in Louisiana under microplot and greenhouse environments. These experiments were 
conducted during 2016 and 2017 with single egg-mass populations of R. reniformis isolated from 
West Carroll (WC), Rapides (RAP), Tensas (TEN) and Morehouse (MOR) parishes of 
Louisiana. Data from both full-season microplot trials and 60 day greenhouse trials, averaged 
over 2 trials, displayed significant differences in reproduction and pathogenicity of the nematode 
with the commercial cultivars of soybean, REV 56R63, Pioneer P54T94R, and Dyna-Gro 
39RY57. In the microplot experiments, there was a significantly reduced population density 
(46.8%) in the isolate from the MOR parish compared to the isolate from the WC parish. The 
isolate from MOR was also the most pathogenic and resulted in significant reductions in soybean 
plant and pod weights compared to that of the control, 29.8% and 44.6%, respectively. Similar 
trend in reproduction and pathogenicity of R. reniformis had been documented by McGawley et 
al., 2011. In the greenhouse trials the susceptible cultivar Progeny P4930LL and the resistant 
germplasm lines PI 90763 and PI 548316 were tested together with the same cultivars used in the 
microplot trials. Similar to the microplot trials, the MOR isolate had the least level of 
reproduction with a 33% reduction compared to that of WC, the isolate with the greatest level of 
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reproduction. In both microplot and greenhouse trials, the soybean cultivar REV 56R63 had a 
significant reduction in reniform numbers compared to cultivars Pioneer P54T94R and Dyna-
Gro 39RY57. The cultivar REV 56R63 demonstrated a resistant level similar to that of the 
moderately resistant germplasm line PI 548316 with all tested isolates. This resistance found in 
the cultivars REV 56R63 was previously reported by Robbins et al., 2015. In the greenhouse 
trials the resistant germplasm line PI 90763 was able to hold its resistance compared to tested 
cultivars and germplasm lines against all reniform nematode isolates.  

In the past, literature have shown the occurrence of morphometric, physiological, and 
genetic variabilities within R. reniformis populations with the use of morphometric data, and first 
and second generation marker technologies (Nakasono, 2004; Dasgupta and Seshadri, 1971; 
Germani, 1978; Rosa et al., 2003; Soares et al., 2003, 2004; Agudelo et al., 2005; Tilahun et al. 
2008; Arias et al., 2009, McGawley and Overstreet, 1995; McGawley et al., 2010; McGawley et 
al., 2011). The experiments discussed in chapter three with the utility of single nucleotide 
polymorphism (SNP) analysis, were conducted to understand the genetic variability among 13 
geographic isolates of R. reniformis from Louisiana, Mississippi, Arkansas, South Carolina, and 
Georgia using third generation molecular maker technology (Gao et al., 2016). After going 
through the extraction of genomic DNA from gravid female nematodes for each reniform 
nematode population, DNA was increased quantitatively using the process of whole genome 
amplification to obtain a sufficient amount of genomic DNA. Thirty one putative SNPs were 
chosen from the previously assembled genomic DNA of the reniform nematode and were tested 
using kompetitive allele-specific PCR (KASP) genotyping assay. Out of the 31 tested SNPs, 26 
SNPs, with a success rate of 83.9%, were able to amplify genomic DNA of reniform nematode 
isolates from all locations while the remaining SNPs failed to amplify for the most part. 
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Repeating the experiments multiple times while optimizing the PCR conditions would be useful 
to achieve a better amplification of these failed SNPs. Altogether from the SNPs that were able 
to amplify genomic DNA, four SNPs identified as SNP_515, SNP_521, SNP_522, and SNP_537 
were able to detect genetic differences between and among isolates of reniform nematode from 
Louisiana, Mississippi, and Arkansas. Even though there are several reports indicating genetic 
variability in R. reniformis (Arias et al., 2009; Leach et al., 2012), this research will be the first to 
report genetic variability in genomic DNA among R. reniformis using SNPs in kompetitive 
allele-specific PCR genotyping assay. Further studies should be conducted together with more 
SNPs and more reniform nematode isolates across diverse geographical locations to fully 
understand SNP polymorphism and its association with biological function in this pathogen. 
Findings described in this dissertation would be beneficial in resistance breeding programs to 
develop high yielding crops resistant to reniform nematode as well as in the evaluation of the 
genetic diversity of the nematode Rotylenchulus reniformis. This findings might also be 
beneficial for providing soybean cultivar recommendations for growers in different geographical 
locations.  
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APPENDIX 1: SEQUENCES OF SNPS EMPLOYED IN THIS RESEARCH   
Flanking sequence information for SNP assays tested in this study. The "SNP ID" givers information on organism abbreviation 
"RREN" Rotylenchulus reniformis (nematodes), the reference assembly contig (first number) and the sequence location (second 
number) of the SNP position. 
S.N. SNP ID SNP Surrounding Sequence (approximately 100 bp each side) 

1 RREN_4410_3972 [T/C] 
AAGCAGACAGCGAAAAAGCCCCACTCGTGACCGCGTAGAGGGATAGCGAGGAA
GGGATGGGGAGGCGACGAGCGAAAAAGACGCCCCGGGGGAAGGA[T/C]AGAGG
GAATTCCCACTCTCCCCAGGGAAGCAAGTACGGGGAAACCACTCAGATGCGATG
AGAACGAAGGGTTTTCGCTTAGGAAAAGGCAATGCGAGAGGAT 

2 RREN_1572_36933 [T/C] 
TTTTGGACATCTTTCGCTTCTCCTGGACAATTTTCTATCTTTCGAATATTTTGGAC
TTTTTTGGACACCTTATGATTGACCATTTACAGCCCCATCC[T/C]GCTGGCCAAGC
GGTCTCCTACTCGGCCCAGCAGAAGAACCTGTTGATGTGGGCGGTGGCCGTCGG
CTCCATGCTCGGCACTTTCCCCTTCGCCTGGCTCTAC 

3 RREN_4410_3979 [A/G] 
CAGCGAAAAAGCCCCACTCGTGACCGCGTAGAGGGATAGCGAGGAAGGGATGG
GGAGGCGACGAGCGAAAAAGACGCCCCGGGGGAAGGATAGAGGG[A/G]ATTCC
CACTCTCCCCAGGGAAGCAAGTACGGGGAAACCACTCAGATGCGATGAGAACG
AAGGGTTTTCGCTTAGGAAAAGGCAATGCGAGAGGATTCGCTGT 

4 RREN_43396_315 [T/G] 
ACTGTAAACAGGAATTCGCATATTCTGAGACCACCATCGTGTAGAGCATGGTCG
ATAATAATAAGGAAGTGACATCCTTTTTTGGCACAAACCCCTG[T/G]TTAAATTT
TGAGTGAATTTTTAAAATATTTTTTCCACGTGCTTCAAGCACGGGTCATCGGTGC
TAAAAATGTCTTTTGGTCAACAAAGCTCAATAAGTTAAA 

5 
RREN_523_19992 [A/C] 

CGGTAACCGAACGGCAGCGTTTCCATCCCCGGTCTTATACGACCCTTCTCGTAGT
GAGGTCTATAATTTTTGTGTGCCTCATAGATGTAAAGATCGG[A/C]CAGCGGGGT
GCGTCCAATGTGGGGAAAGGGCACATGAATGGTTGAGTCATTTCCCGGGAACAC
GAACACGTCATCAGCTCCATCAGCACCGGCTCCATCATT 

Appendix 1 Continued. 
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6 RREN_367_3958 [T/G] 
AAAGATCCATTGAAGACTATGACAGCGACGATCTTGAAGGAGAGGAGGAGGAT
GACAGTTTGCCAAGAGTTTGGACTGTTTTCCATCGCTATGAGGA[T/G]TTCTATGC
GCTAGAGGACAGGCTCCGGGAGCAGTACGGGAACACGCTGAGGATGAGCACAC
TGCCGGACCGGAGACCAACTCTACAACTGCTACAATTGGGC 

7 RREN_4834_4618 [A/G] 
CCATATTTTTGGGGTTGGTTGGTGGTCATGGATTATGTTTTGGGGTTGGTTGGTG
GTCATGGATTATGTTTTTGGGGATGTTTTATGGTCATGGACA[A/G]TGTTTTTGGG
GATAGTTGGTGGTGATGGACCAAGTTTTTGTGGATAGTTAGTGGTCATGGACAG
TGTTTTGGGGATGGTTGGTGGTTGGTATTATTTCGTCT 

8 RREN_5033_5267 [T/C] 
ACTTCCATCTCCAAGTTGTTTATAGAGATGTTTGCCGAGTTCAGTGGGATTCGTG
ATATTCGAAGGGGGCACTGTTACACGCACCTCCTGCCCTGTT[T/C]GCCATACAA
CTCGCATATATTGCTGTTCCATAGTTCCCAAGGATGGCCATGAATGGGGATAAA
CCATCACTGCAAGCCCCACATACCAATCTGAATTGAATT 

9 RREN_845_36717 [A/G] 
GACTTTCTGCATGGCTTTGAGGAGTAAAATTCTTGCCTAAAATTACAATCTTGTT
TTATTAGTTTTTTATTCAAAAAAATAGCTTACAGCAGAGGTC[A/G]TGAACAATG
AGATGATGATGTTGGAGCACGCGTGCTCCTCGACCTGAATTATGAAAAAGTTTA
TTTTTCTCGAATAAAAATATCTAATTTATAAAAACATAC 

10 RREN_3215_15723 [T/C] 
TTTTTCATGAGCACTCTTTTCGTTTTCTTCAACACTTTTTCCTGAGCAATCTCTCG
TTTCAACGAACACTTTTTTTATGGGGGTAAACCGTACAATA[T/C]AAGAGCCGAC
TTATTTTGTACAGCGTACACTCTACACTGTATTGCAAAATAGAATTAAAAAATAA
AAATAGTCTGGTACTTAGGTATATAGTTTACGTGACC 

11 RREN_1660_513 [T/C] 
GGGTGCGGTAGTCGGTTCGGCTTATGGCGTAGAGCTGATCAGTGAGAACCAGAT
CCCGTCCGCACTCCAAGACATATTCCAAATTGGTGATGCTTAA[T/C]GAAAATGT
TTGATCTTCTGACATGAACCAATCATCAAACATGGTTCCTTTCATTTCCTGCATC
AACACGTACCGGCATTGTGTGTCCGCTTTGGGGCGGTTC 

Appendix 1 Continued. 
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12 RREN_4410_3946 [A/G] 
GGAAAGTGTCGCTCTCGACGAAAAGGAAGCAGACAGCGAAAAAGCCCCACTCG
TGACCGCGTAGAGGGATAGCGAGGAAGGGATGGGGAGGCGACGA[A/G]CGAAA
AAGACGCCCCGGGGGAAGGATAGAGGGAATTCCCACTCTCCCCAGGGAAGCAA
GTACGGGGAAACCACTCAGATGCGATGAGAACGAAGGGTTTTCG 

13 RREN_7711_4758 [T/C] 
GGAGGTGAGAGAGTGTAGAGTGGTGAAGTGGAGGTGAGAGAGTACGGTATGTG
AGAGAGTACGGTATGTGACAGTACCGTGTTGTCCACGACCACGA[T/C]ACACTCT
TTGTTGGTTGCCTTCACAACTCGGCAAACGGCCTCAATATCGATGACTTTCAGCA
ATGGGTTGGACGGTGTTTCGAACCAGACCATCTATGGATG 

14 RREN_514_63176 [A/G] 
TGCCTCCAAATCCTCGGATTTTTCAGAAATTCGTCAAAATTTTATTGGCATTTTTT
CTGTGTAGAGAGTTTATTGGAAGTCGGGAGGTGTGGCTGAA[A/G]AGCATCTCCA
ACCTGTTGCCGCGGCACATCCTCAAGGCCTCATTGGCACTGCAGTCGGTGGTGC
ACCAGTACGAGCCGGACGCCATGATGCCAATCCCGTCA 

15 RREN_925_39379 [C/G] 
GAGGCAAGAGGCATCGAACAAATGGATCAATCTGTCCCTACTTCCGGAAGCCAG
CAAATGAAGCTGATCTGGTGCTAAATTTAACCTTATGTATTCA[C/G]TTGGAAAT
AGCAAAAATTGATAAAATGAAAAAATGGACTAACCAGCCGAAGGATAGTTGTA
TTCCAGACACAACACCTCGCTGTCATGTGCCTCTAATTCGA 

16 RREN_514_63173 [T/G] 
TTTTGCCTCCAAATCCTCGGATTTTTCAGAAATTCGTCAAAATTTTATTGGCATTT
TTTCTGTGTAGAGAGTTTATTGGAAGTCGGGAGGTGTGGCT[T/G]AAGAGCATCT
CCAACCTGTTGCCGCGGCACATCCTCAAGGCCTCATTGGCACTGCAGTCGGTGG
TGCACCAGTACGAGCCGGACGCCATGATGCCAATCCCG 

17 RREN_91287_201 [A/C] 
CTCTGAATTCCTCGTATTATGAAAATGAGTACAGCTATTCGCAAGTCTTACCATA
CATATATTCTAATTAATAGTTTTCCTTCTACCGATGTTCCTC[A/C]CTCTCTGAATT
CCTCGTATTATGAAAATGAGTACAGCTATTCGCAAGTCTTACCATACATATATTC
TAATTAATAGTTTTCCTTCTACCGATGTTCCTCCGC 
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18 RREN_91287_193 [T/C] 
CTCTGAATTCCTCGTATTATGAAAATGAGTACAGCTATTCGCAAGTCTTACCATA
CATATATTCTAATTAATAGTTTTCCTTCTACCGATGTTCCTC[T/C]GTATTCACCTC
TCTGAATTCCTCGTATTATGAAAATGAGTACAGCTATTCGCAAGTCTTACCATAC
ATATATTCTAATTAATAGTTTTCCTTCTACCGATGT 

19 RREN_43396_339 [A/C] 
CTGAGACCACCATCGTGTAGAGCATGGTCGATAATAATAAGGAAGTGACATCCT
TTTTTGGCACAAACCCCTGGTTAAATTTTGAGTGAATTTTTAA[A/C]ATATTTTTT
CCACGTGCTTCAAGCACGGGTCATCGGTGCTAAAAATGTCTTTTGGTCAACAAA
GCTCAATAAGTTAAAATTAAATAAAGAAAAAAAATGCAG 

20 RREN_1990_6847 [A/G] 
TAGGTGCTCGATTTCCCGACCATCCATTATGTCCGCCGTTCCTTTTCCGCTCGAGT
GCTAGCCGGATGCTATATATTGTCCGGACTGTGTAGAGTAT[A/G]GCCAAGAAGA
TTGTGAGCAGAATGGCCAGATAGCAGAAAAGATGAGTCCAGATGCTGTTCCCCA
AGTTTTTGCAAAGATAGGCAAGCGGGTTGTGCGGCTCA 

21 RREN_20709_1089 [A/C] 
AATAGGCCAATGCCTTTTTTTCTGCTCATATGAAATTCGACATTTTTGCCTTTTTG
GTGGAGTTGGGGTGTATTCAGAAGAGCTTGATTTTTGATCG[A/C]CTTAAATAAA
GGATATTTACAAATTTAGAACATATTTTCTTACCATTTCCCTGTTCGGATTCATCG
GAACTCTCGGATTCGCCTTCTCCATCTGACGACACT 

22 RREN_258_12977 [A/G] 
AGTGTTCTGTTAGACAGTATAGGCAATTAGTTAGTATTTTCACCATTTGCTCTGC
ATCACCGTTCGGCTAATGGCTAGATGAAGGGATATGCTCCCC[A/G]CGGGCTTGA 
ATATATGTCTGCACGGCGGTGGGATTCGAACCCACGTCCCGGGATTTAGCGGTC
CCGTGTGATAGACCACTACACCACGCCGCCGACTCTACA 

23 RREN_269_9935 [A/G] 
GAGCCTTGCAATAGTGAACTATGTATCAAGGGAATCAAAGAACTAAAAAATTGG
TTGAAAAAATTTTAGCAATGGAAAAAAACTTGAATAAATTGCA[A/G]AGAGAAT
CAGCTAAGATCTGGTCGGGATAAGAGTTGACAACATCTTAAATAGTAACGATTT
TTTGTCATTAGAAAGAAAATAATCACTTGTTATAAAAGTAA 
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24 RREN_456_104249 [T/G] 
TTTAACCGTCCCATTAAATTTTTAGCCGTCCCATCACAGTTTAACCGTCCCATCA
AATTTTTAACAGTCCAACCAGCTTCAATTTCCGACAAAATTA[T/G]TTTGTCAACA
GAATAGAAATATATAATCGCGGAACATGTTGAACCGGGAAGTACGATTGTGTCG
GATGGATGGCGCTCTTATGGCGGTATTAGAGCTCTACA 

25 RREN_43396_325 [T/G] 
GGAATTCGCATATTCTGAGACCACCATCGTGTAGAGCATGGTCGATAATAATAA
GGAAGTGACATCCTTTTTTGGCACAAACCCCTGGTTAAATTTT[T/G]AGTGAATTT
TTAAAATATTTTTTCCACGTGCTTCAAGCACGGGTCATCGGTGCTAAAAATGTCT
TTTGGTCAACAAAGCTCAATAAGTTAAAATTAAATAAA 

26 RREN_901_49990 [A/G] 
AATTCGCATATTCTGACAACACCATCGTGTAGAGAGCAATAAGTAGTAAGGAAG
TGATATCCTTTTTTGGCATAAACCCCTGCTGGTTAAAATATTA[A/G]TGAATTTTC
AAACCAAATTTTCCACATGCCTTAAGCGCGGGTCATCGGTGGGTCACAGGCCAT
TATGGTCAGCCAAATTTCAAAAAACAAACTAGAGTAAAC 

27 RREN_1886_12077 [C/G] 
GTCCAATGTGTGGAAAGGGTACATGGATGGTGGAGTCATTTCCCGGGAACACGA
ACACGTCATCAGCTCCACCAGCATCACCACCATCATTGTACAG[C/G]ATGGGATC
GCTAACAAAGAAAATTTCCTAGATTTAACTAAAGGTAAAAAGACTCACGCTTCT
CCATCAATATCATAATGTTCCAAGACGAGGGCCTTCACCG 

28 RREN_16875_158 [T/C] 
CAGTAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTTAACACCGC
CGGGTCCAACAACTGCGCCAGCCACCGGGGACATTCGAGCCA[T/C]ATGTTCAAT
TTGTTCATTCATACCATCTATTTCAACTGCTCAAAGCAGTAACATCAACTCTCTT
CTCTCCGTTCGCCTCCTCCTGCCGCCTTAACACCGCCG 

29 RREN_251_23034 [T/C] 
CGGCGGTTCCGCCAGCTTTGCCTGCCAAAAAATCGGCAAAATGGTCGATGGACA
CAGATGGATGCAGGCATTCGATGGGTTTGGTGTAGAGCGCCGG[T/C]CTAACACA
TTTCAGGGCGCCAGGGCAAGAGCAGTTCACCTGCTCAATCCATTGCAGAAAGGT
AGGGGAGGGGGCCATTTTTTCAGAATTGGAAGTGTAATGG 
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30 RREN_1895_31360 [A/T] 
GTAGAGAGCAAAAAGAGATTAATTAAAACCTAAATTTGTCCATGCCCGACTGAG
TTGAAAAAGAAAATTTATAGACACGAATAGTTGTAGATGAGGG[A/T]TAGAAGA
AATGGTGTAGTATTTTGAGGAAAAGATCGAAAGAAAACGTGAGACAAAGGGAA
ATTTTAGTTTCGAATACTTTTCTAACATCAATCAAAGGCTCT 

31 RREN_9137_320 [T/C] 
ACGGATAGACCCATATCTATCCAAGGTCCATATTTGGATTTCAACAGACATTCCC
ACCCATATACGGATAGACCCATATCTATCCAAGGTCCATATT[T/C]GGATTTCAA
CAGGTATTCACATCCATATACGGATAGACCAATTTTCCCGCCTCTACCCCCATCC
CAAGCCTCATGCACACCCATCAAGTTCGAGCAGTACAA 
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APPENDIX 2: 131 PUTATIVE SEQUENCES OF SNPS NOT USED IN THIS RESEARCH 
Flanking sequence information for untested SNP. The "SNP ID" provides a common name including organism abbreviation 
"RREN" Rotylenchulus reniformis, the reference assembly contig (first number), and the sequence location (second number) of the 
SNP position. 
S.N. SNP ID SNP Surrounding Sequence (approximately 100 bp each side) 

1 RREN_8_16622 [T/C] GGCGCTCTACGACCTGTACACCCAGCCGGCCACCAAGTGCGGCCCCTTCCTCGT
CGGCCTCCTGCTCGGCGTGTTCACCCTCCGTCCTCCTCCTTCCGCT[T/C]CCTCCTC
CCCGTCTTCCGCTTCCTCCGCCTCCTCCCTACTCTTCTGGATCGGCTTCCTCCTTG
CGCTGGGCACCATCTACGGCATTCTGCCGGAGTATTG 

2 RREN_8_16659 [T/G] TGCGGCCCCTTCCTCGTCGGCCTCCTGCTCGGCGTGTTCACCCTCCGTCCTCCTCC
TTCCGCTCCCTCCTCCCCGTCTTCCGCTTCCTCCGCCTCCTCCC[T/G]ACTCTTCTG
GATCGGCTTCCTCCTTGCGCTGGGCACCATCTACGGCATTCTGCCGGAGTATTGG
CACCCGGACCAGGGGGTCACCCTCTACAACACCCTC 

3 RREN_12_209115 [A/C] TGCGCTCCATTGCACATTCTAAAATAGCGAAAATGGGATGTTGTTGATGCCCTAT
AAGATGGAAATTGTGTTAAATTGACCCACAACCCATGCTTTTAAG[A/C]TCTCAG
TTCTAGTTACCGGTTTTAAATGGAAAATATGTAAATTATTACATTACCATCGCTA
TTTATGGCAACACAAGTGCCAATCTTATTGCGAAGATAC 

4 RREN_24_69296 [A/G] GGACGCGTAGAGGTCATCGACGCACGAGGGTGAGTCATTTGCATATTGTATGAC
GGATTAAAATGAAAATTGGGCACTGATTAACCAGCTTGGAACCATC[A/G]TGAA
TATGAAGCGAATTCCTTATTATAGAATGTTACGGGAAGAGTGAATGAACAGAGA
AAAAGAAGTCAAACAACAATATATTTTTAACCCAGGGTTCTC 

5 RREN_24_69332 [C/G] ATTTGCATATTGTATGACGGATTAAAATGAAAATTGGGCACTGATTAACCAGCTT
GGAACCATCGTGAATATGAAGCGAATTCCTTATTATAGAATGTTA[C/G]GGGAAG
AGTGAATGAACAGAGAAAAAGAAGTCAAACAACAATATATTTTTAACCCAGGG
TTCTCATCGAAAAATTTAAAAAATCAGGACATCATGACCAA 

6 RREN_32_65082 [A/C] AGCATTATTTTCTGTATATTTTTGCTTCTTACAGGTCTACCCTGACAAGGTTTCTA
AATTTGGCTGATCAAAGTCGCGGTTGACCCACCGATGACACGTG[A/C]TTAAAGC
ACGTGGAAAAAATATTTTAAAAATTCACTAATATTTTAGCAAGGGGTTTGTGCC
AAAAACGGATGTCACTTCTTTATTATTATCGACCATGCT 

7 RREN_61_242003 [A/T] TGTAGAGCACCCTCACAAAGCATCGTATATTTTTGGCTTTTTTGGCCCGCTAACA
TAGTGAGGGGTTGAAAAATCGGTTTCAATTTTAAATGAACGGTCG[A/T]TCATCC
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ACGCGAATGACCTGTCCATTGGATGACATCCACCTTTCAATGTAAAATAATATTT
AAACATGATTATTTTTTGCTTTATATTCATCAAATTATC 

8 RREN_61_242024 [T/C] ATCGTATATTTTTGGCTTTTTTGGCCCGCTAACATAGTGAGGGGTTGAAAAATCG
GTTTCAATTTTAAATGAACGGTCGTTCATCCACGCGAATGACCTG[T/C]CCATTG
GATGACATCCACCTTTCAATGTAAAATAATATTTAAACATGATTATTTTTTGCTTT
ATATTCATCAAATTATCATATAAAATAATTCCCGGACA 

9 RREN_125_72000 [T/C] GCCGATGCCGAGAGCACTGGGCGCAAAGCCAATCAACGAAGGGAACAACCAAC
CAGGAGGCCAAATACAAAACGTACTACACCAGCACCCGCAACAACGA[T/C]CAC
TACCACAGTGGCAACCCCCACAGCAACCACTACCAAAGCTCCGGAAACCCCGAG
CACTGTCACAACTCGCCCTCAAACTCTCACCACAGTCACAACT 

10 RREN_125_72023 [A/G] CAAAGCCAATCAACGAAGGGAACAACCAACCAGGAGGCCAAATACAAAACGTA
CTACACCAGCACCCGCAACAACGACCACTACCACAGTGGCAACCCCC[A/G]CAG
CAACCACTACCAAAGCTCCGGAAACCCCGAGCACTGTCACAACTCGCCCTCAAA
CTCTCACCACAGTCACAACTACAAAACCACCGATAACCCCAGG 

11 RREN_125_72052 [A/C] CCAGGAGGCCAAATACAAAACGTACTACACCAGCACCCGCAACAACGACCACT
ACCACAGTGGCAACCCCCACAGCAACCACTACCAAAGCTCCGGAAAC[A/C]CCG
AGCACTGTCACAACTCGCCCTCAAACTCTCACCACAGTCACAACTACAAAACCA
CCGATAACCCCAGGCATCTCTACAGTCAGTCCACCAGTTGTGA 

12 RREN_128_40796 [A/G] TCAATTTTTCAAGCAACAATTTACGAAATTTATTTCTTATTTGGAATTTTTTGATT
GATTTTCGCCATTTTCGTCACCTCTGCAGAATTCTTTGAGTTCA[A/G]CGCTAAAT
TTCAGTTCCTCTACACGAGACAAAGGGTTGCGAAATGGTTCTTGGACCAGCCGG
AACCAGCCGGAAACCGGAACCAGCCAGACACATTCCAT 

13 RREN_159_85688 [A/T] CCAATTCACTCCTCTCTCTCCCTATCCTCTCTGTTCTTTCTGGTCACTCTAAATTTC
TCTTTCTCCCCCTCCGCTACATATCTATCCTTCTCTCCATCCT[A/T]TACCACACTC
TCTCGTCCTCTTTCCGGTCATTCTCAATGTGTTTCTCCCCATTTTCCCCACTCTCTC
AACCCTCCTCTGCATCTCTACCCGATCTCTCCA 

14 RREN_190_41184 [T/C] ACGGATGATCCGCGTGGGTGAACGACCGTTCGTTTGTTTTTGAAACCGATTTTTC
TACCCTTCACTTCCTGTGCGGGCCAAAAAAGCCAAAAATATACGA[T/C]GCAATG
TGAGGGTGCTCTACAAGATAGGATGGGTTAAATTATGATCTGAATACTCACACC
TCGGTATGTTCCCTTGTTAGGTAATTTATAGAGGGTATAG 
 

15 RREN_190_43474 [A/G] GAAGAGCGACGACTATCCCCTTTGTAAAGAAGATTCGTTTCGAAATATTCTACT
GACTAACTTGTAAGAAAGTGGCGAAAGCATAAATTATATTCCCAAG[A/G]CCGA
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GTAAGTTCACGTATGCTCATTTTACTTATTAGTACATATGATTCATGATTGGGAT
TACAGTATGCCATTATCTATATCCTGGACAAGCTCTAAGGT 

16 RREN_190_43475 [T/C] AAGAGCGACGACTATCCCCTTTGTAAAGAAGATTCGTTTCGAAATATTCTACTG
ACTAACTTGTAAGAAAGTGGCGAAAGCATAAATTATATTCCCAAGA[T/C]CGAGT
AAGTTCACGTATGCTCATTTTACTTATTAGTACATATGATTCATGATTGGGATTA
CAGTATGCCATTATCTATATCCTGGACAAGCTCTAAGGTG 

17 RREN_202_14786 [A/G] AACTTAATCAAGAGCATCAACGGTGCAGAGCCACCAAAGAACAACAGTCCGCT
GATCTTCAATGGTGTACCGTGCCTAGACAACAGCAAGTGTGCCAACA[A/G]GCTG
AATGCCTTGTTCCACCAACGACCAACCGGCAAACCTGTCAATACTGGCCGGGCC
GCCAAACGACTAATCACCGCACAGGCCAAAGCCGCGGAGCAC 

18 RREN_208_6302 [A/C] GCACCCTCATATTCCATCGTATATTTTTGGCTTTTTCTCCCCGCTCAGGAAGTGA
AGGGTAGAAAAATCGATTTTAAAAATGATCGGTCGTTCATCCACA[A/C]GGACC
ATCCACCTATTGGATGAAATCCACCTTACTATGTATATAATAATGATTAATCATG
ACTGTTTTCTGGCTTATATTCATCCTTTTAGCTTAGCAAT 

19 RREN_228_25614 [A/G] GCATGGTACGACCGACGCCATTCCAAAGGGTGTGTGGATTTGCGTGGATGAACG
ACCGTTTATTTTTAAAATCAAAATTTCTACCCTTCACTATTTGAGC[A/G]GGCCAA
AAAAGCCAAAAATATACGATGCAATGTGAGGGTGTTCTACAAAATAGGATGGG
TTAAATTTCGATCTGAGTGGTGACAGCTCGATATGTTCCCT 

20 RREN_228_25645 [T/C] GTGTGGATTTGCGTGGATGAACGACCGTTTATTTTTAAAATCAAAATTTCTACCC
TTCACTATTTGAGCAGGCCAAAAAAGCCAAAAATATACGATGCAA[T/C]GTGAG
GGTGTTCTACAAAATAGGATGGGTTAAATTTCGATCTGAGTGGTGACAGCTCGA
TATGTTCCCTTGTGAATTTTTTAAAGGAGGTGCTTAGTTGC 

21 RREN_242_77265 [T/C] CGGAACTCACCAGCGAAGAGTACGAAGAAAAGTCAATATATAAAGGACGAAGA
AAGCCCCAAAAACCATCACGTGTAGAGCGGAGCAGACTCAGTTTTAT[T/C]ACAT
TTGTGAACAACATAACTGCGCCAACAACCCGCAGTGAACAAGGGTATTCCTTGA
CACAGTTTTTTTATGTTTTCATTTGATTTGTGGAAATTTGGA 
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22 RREN_242_77303 [A/G] TATAAAGGACGAAGAAAGCCCCAAAAACCATCACGTGTAGAGCGGAGCAGACT
CAGTTTTATTACATTTGTGAACAACATAACTGCGCCAACAACCCGCA[A/G]TGAA
CAAGGGTATTCCTTGACACAGTTTTTTTATGTTTTCATTTGATTTGTGGAAATTTG
GATAATTATAATAAGAAAATATTCACCGATTATTTCTAAT 

23 RREN_269_61835 [A/T] TGTTCCTGCAGCCCATGGATTCCGATGAACAGTTTGTAGAGCCAGGCGCCGATC
AGAGCCCCGAGGAAGGGAATAGCCATTGGGATCCAGAAGTAGAAGT[A/T]GTTG
TTGCTGGGGAAGGATAAGTACAGTATAGCAAGAGAGTATGTACAGTATGCAAG
GTCAATAGTCCCAATGGAACCTAAACACTTCCCAGCCAAGTCC 

24 RREN_295_80337 [A/G] CGTGGGTAAACGACCGTTCGTTTGTTTTTGAAACCAATTTTTCTACCCTTCACTAT
CTGTGCGGGCCAAAAAAGCCAAAAATATACGATGAAATGTGAGG[A/G]TGCTCT
ACAAGATAGGGTGCGTTAAATTTAGATCTGAGTGGTCACACCTCGGTATGTTCC
CTTGTCAGTACTAAAAACACTGAAAAACTACTGTACTGAT 

25 RREN_297_7718 [T/G] CCCGGTCCCAGGAGCTTGCCTCGTTGGGCATCCCCGGACAAGACCCGCAGTCCA
TGGTGGTCTCTGCCGAGCGGATCATGTACCAGCACGCGATTGATCT[T/G]TGCCA
GTCGGCCGCTTTGGATGAGCTCTTTGGCAACCCGCAGTTGTGCCCCAAACGCTAC
CAGACCGCACACATGATGCTGCACACGCTGCTCTACACGG 

26 RREN_301_61722 [T/C] GGTGATGTGGTCGTGGCATTGGCACCGTCAGTTCCAGATGGGGAAGGCGGCGTA
GAGGTGGAAGTGGTGGCAGAGGTGGTAGGGGGCACCGAAGTGGTGG[T/C]ATTG
AGGCATTCGCCCAACGGAATCCCTTCGTTGTCTGTCTGGTTGACCAAAACACGG
ATCCCATTCTGAAAAAGCAAAAATCCATTGAGTTAGGGTCAC 

27 RREN_308_72119 [A/T] AATATTTCATCGATGATGTAGAGCATTGGATGTCCGATGGGGTATTGCGTTATAA
AATTGATGAAAGGGTAGAGGCTGGTGACGTCGTAGTAGGAGATTT[A/T]CTCTCC
TAACCGCAAAGCATGGAAAAGTTTAAGCGGTCCCGTTCGGCCTGAAAAATTCAA
AAGGATTTTTTAAATATTACTTTAAAAATCTCACCTCCCA 

28 RREN_336_82853 [T/C] CCCCGGTAGAGAAATAGAGAAAGATTTGAGGGATTTATTTGTTCGTGTCGAAAA
ACCGCCGATGAACGCGCGGACGACGAGTGCCACCGGCGTGGAAAAG[T/C]TGAA
AATTTGCGTGTCATGGGTTTTGTTGAAAAAACAAATGTTTTGTATGGGAATTTGT
GCTTTATTCATCTTATTATTAGTATGGATTATTTGTATTCT 
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29 RREN_349_16421 [T/C] CACTCCGTAGAGCTGTGTCCAGTCAGCCTCCCATCAGCCAGCCAGCACATACCA
ACGGGGAGTATTAGCCTCGTCAGTCCTTCTCCCCCAGCAGCCTGTC[T/C]TGCCTC
TGCATCCGCCTTTTGTTGCGCCTCGGATCGACCGAAATGAATTGAACGCGTGTCC
GTGTACTTTTCCAAAGCAGCATGAACAGAGAAAGAGAAA 

30 RREN_371_58464 [T/C] GACTCATAAATGGCTTGCGAATTTTGCGTTTGTACCCCTAGCTGTGGCTGCTGAA
TGTATGTTTGGCTTCGGGGTTGCTGCTGAATAATTCGCTGCGCTC[T/C]CGCCTGC
CTCACTACATGTTGCTGGGCTATTGGTTGCTGCACAACACCAGCCCTTGCTTGCC
GGCTCCTACCCATGTTATGCCCCAACATATCATTCGCT 

31 RREN_431_1809 [A/G] AGAGTGCCAACCTTAGAGTCCCAAGTTGAAAACTCATGTTTTTAGTGATTTTTGA
GCTTAGGTTTCTGTTACAAAAATGTAGAGCGTATGGAAAAACATG[A/G]TGTGAT
AACAAAAAATTTTAGGCTTAGGTTAGGCCTAAGAAATTTTTTTGGGAAATTTCTA
AAATTTCCGGGACACTAAGTGGGCCTAAGGCATTTGTGC 

32 RREN_432_101500 [A/G] TACATATTCATTGGCTAAAGCTGGTGCGTTTATTCAAGATTATTATTATTTTTCTG
TTTTATAAGATAATTTGATAAAATACTCACTTTGGTGTAGAGCA[A/G]AGGGAAC
ACAACACCAAAAAAGCGTTCGATGGTCAACGAAACAATGGCCATGCAACTGAT
GTAGACGGGGGTGTTGAAGAGGTACTCGGTGAGGAGGCAG 

33 RREN_514_63263 [A/G] AGGTGTGGCTGAAGAGCATCTCCAACCTGTTGCCGCGGCACATCCTCAAGGCCT
CATTGGCACTGCAGTCGGTGGTGCACCAGTACGAGCCGGACGCCAT[A/G]ATGC
CAATCCCGTCATGGCAATGGGTGGACAGGTAGGGGGGCCAAGAAAATTCGCCA
AATTCGGAAGAAAAATTAGACCAATTTTCCCATAAAATCGGGA 

34 RREN_521_25222 [A/C] GCTATTCTGTCCCTGCCAACTCTGGTTTGGCACCCATCGGCTCCCTTGGGGGCGC
ATTCCTCCTTGCTCACCCTCTCTTTCTCTCTGTTCCCATTCTCTT[A/C]TCTTCTCTT
CACCATCTTTCTTTTTCATTTCTCGCGAAATTGCGTTTATTTCTGCTCTCATTTCCT
CCATCTCCACACGAGCGATCACCTCCGTCTCCAA 

35 RREN_523_12130 [T/C] TTCCATCTCCAAGTTGTTTATAGAGATGTTTGCCGAGTTCAGTGGGATTCGTGAT
ATTCGAAGGGGGCACTGTTACACGCACCTCCTGCCCTGTTCGCCA[T/C]ACAACT
CGCATATATTGCTGTTCCATTGTTCCCAGGGAAGGCCACGAATGGGGATAAACC
ATCACTGCAAGCCCCACATACCAATCTGAATTGAATTGCA 
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36 RREN_523_13494 [T/C] TGACTTCTTTCTGATGTTTTTTGCCTCCGTTAACAACGGGCTGACACTGGTAAAT
GCTACTGGTGAATGTATATCCTTGTAGAGACGCTCCAATAGACGC[T/C]TTATGG
ATGCCTTCATTGCACGTTACCGCCACAATGATGGTTTAAAAGAAAAACTGTTACT
CACTACTCGACTTTTGGTTACGTTTTTGTTCACCTTTTT 

37 RREN_526_81331 [A/C] TCTGCTGTAAGCTATATTATCATTTTAACTCATAAAATTAATTTTCAACCGTTTTT
ATGGACCATTAGATTTTAGTGTTTTTGCATGGTACGACCGACGC[A/C]ATTCCAA
AGGGTGTGTGGATTTGCGTGGATGAACGACCGTTTATTTTTAAAATCAAATTTTC
TACCCTTCATTATTTGAGCGGGCCAAAAAGGCCAAAAA 

38 RREN_526_81371 [T/C] ATTTTCAACCGTTTTTATGGACCATTAGATTTTAGTGTTTTTGCATGGTACGACCG
ACGCAATTCCAAAGGGTGTGTGGATTTGCGTGGATGAACGACCG[T/C]TTATTTT
TAAAATCAAATTTTCTACCCTTCATTATTTGAGCGGGCCAAAAAGGCCAAAAAC
ATACGATGCAATGTGGGGGTGCTCTACAAGATAGGATGG 

39 RREN_526_81423 [A/G] ACCGACGCAATTCCAAAGGGTGTGTGGATTTGCGTGGATGAACGACCGTTTATT
TTTAAAATCAAATTTTCTACCCTTCATTATTTGAGCGGGCCAAAAA[A/G]GCCAA
AAACATACGATGCAATGTGGGGGTGCTCTACAAGATAGGATGGGTTTAATTTCG
ATCTGAGTGGTGACAGCTCGATATGTTCCCTTGTAAGAACT 

40 RREN_526_81432 [T/C] ATTCCAAAGGGTGTGTGGATTTGCGTGGATGAACGACCGTTTATTTTTAAAATCA
AATTTTCTACCCTTCATTATTTGAGCGGGCCAAAAAGGCCAAAAA[T/C]ATACGA
TGCAATGTGGGGGTGCTCTACAAGATAGGATGGGTTTAATTTCGATCTGAGTGG
TGACAGCTCGATATGTTCCCTTGTAAGAACTTTATTTTCT 

41 RREN_526_81448 [A/G] GGATTTGCGTGGATGAACGACCGTTTATTTTTAAAATCAAATTTTCTACCCTTCA
TTATTTGAGCGGGCCAAAAAGGCCAAAAACATACGATGCAATGTG[A/G]GGGTG
CTCTACAAGATAGGATGGGTTTAATTTCGATCTGAGTGGTGACAGCTCGATATGT
TCCCTTGTAAGAACTTTATTTTCTCTAATACTCAAAAATC 

42 RREN_558_68223 [T/C] ATTCTGTCATTTCTTATGCAATTCCCTCCTCATTTGTCAACTATATAAGCAATGCA
TTTTCAATCATTTGTCACTTCCATTCCCATTCCAGCTCCCATTT[T/C]CCTTATTCC
AATTCATCTATTGTCCTATATTGTCTTCAATAAATTCTTCACGAGGACACAACAA
TTTGGCGCAGTCACGAAAACGACTCTACGCAATGCC 
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43 RREN_590_31647 [T/C] TCTTACAATCAAAATCTGCCCTTGGGAGCTTTTTATGGAAATTTTTTCAAGGAAA
ATCATGAAACTGGACAATAAGATTAAAACTCTGCCAGAACCACCA[T/C]CTGGCC
AAGTTTGCGCTGCGGCGTCGTGACGGCGACTTTTTGTCCATCGAAGCAGCATTGT
TCTTGGCCGAACAGGGCGCCGCTGTGGTGGTGGAACATC 

44 RREN_625_19284 [T/C] ACATCTGCATTTGGGGAAGGGGGCGAATTTTGTAATAATAGGCAAAAATCGAAG
GTGAACAAGGGGGGTAGGAGATGGATGTTTTTCATCATCCATTACA[T/C]CCAAC
ACATCCAATTCTGAAAAATGGCCCCTTCCCCAACTTTTCTGCAGTGGATCGAACA
GCTGAATTGCTCATGCCCTGATGGTCTGAAGTGTGTTCGA 

45 RREN_718_5249 [A/G] ACAAGGCATGTAGAGGACGACGCAGAAGGGACCAATTGTACAGAATATTGATG
ATCAAAGCCCCTAGCACGCCACCCTCCGAACCAGCAGGACCCACCTC[A/G]GGC
TGAACAAAAGGATTAGAGTAAATAAAGAACTGGAATGAGTGTAATAATACCAT
GTAGGGAACAAAAACGGCACTGGCCAAATATCCGCCAATTCCGG 

46 RREN_721_22152 [A/G] AAACTTTCGTATCGGATTCTCCTGCTGCTGTCCGTCAATTCCTGAACGACCCAAA
AATTGAAGTGGACTTTATAGAACAACTAAACGAGGAATGCGTCCT[A/G]ATCCG
ATACACACCACTAAAAGAATGGATCGAGGAGCACAACTGTTCAAACATTGTGCT
CTCTCTATGGACAACGGCGGCGGCACGACTACATCTCCTCA 

47 RREN_721_22224 [A/G] TAGAACAACTAAACGAGGAATGCGTCCTAATCCGATACACACCACTAAAAGAAT
GGATCGAGGAGCACAACTGTTCAAACATTGTGCTCTCTCTATGGAC[A/G]ACGGC
GGCGGCACGACTACATCTCCTCAAGCTAATGCAAAAAGTGGCGTCCACTCCCAA
CTGTGTACTCCTCTACACGGACACGGACAGTTTGATTTTCG 

48 RREN_780_29960 [A/G] TCCACACAATATAAGCACTTGGCCAAGGTCAAAATTTTCATTTTTACTCTAAATT
TTTTTCTGACAATTTTTAACCCTTCAGCTTCTCGCCCCTCCTTCC[A/G]CCCACAG
CGAACCATTGATGTGCCACGTCCTTTCCATGTCCATTTGTGCGATTCATGCCGCG
CTTTGTGCTCTTTTGGAGTTGTCCATGTCCGAGTCCGC 

49 RREN_800_50912 [T/C] ACAAGGGAAGGACAAAACATGTTAATCGTGGATCAATTCGAGACCCGTATAATA
TTAGAGCATCCGCAACTTCCGTCTTAAATTTTAATATTAGCTGCCC[T/C]CGTCCA
CAAGAAAAAAAAGTTATGAATATTTATTTCATAATCCGCGATCCGCGCGGGTCA
AGGGAGTGACATACCTATTCAGATTTCTAAAAATTACGTC 
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50 RREN_929_9795 [A/C] CGGAGGCGCGAGTTTGGGCTAGTACCGTAAAAATGGGAAAAAAATAGAGTTTA
CGTTCCGAAAATAAATTGGGCCAAATTATATACCATAGTGTAGAGCT[A/C]GACG
AGCTGAGTACGAATATGTAATTATTTTTTGGCGCAAACCACTTTAAACCGGTTTT
TGAACCCTTTCAAGTTCTTATCCAAAAATGCAAAACACTTG 

51 RREN_981_25656 [T/C] CATCCAGCGGTTTGTTCGGAGCGTAAATCCGTATTCCTTCGCGACTTGTGCACCT
GGACACGGATGTGTAGAGTTGTCCATGAGCGAAAGGTTCTTCGCT[T/C]AGGTCG
ATCCCCAGCCTTTCGATGGTCTGACCTTGGGCCTTCGCGAATGTCATCGCGAAGG
CTACCCGTACCGGGAACTGGAATCGTTCAAAGGGCACAT 

52 RREN_1012_21981 [T/C] AACTTTTCTCTCAAATCAGCAAAAATCAAAAAACATGGCAAAAAGCATGGCAAA
TTTTAAAAAACATGGCATTTGCCATGTATACATGGTAATTTGGCCT[T/C]CCTGTT
CAAAAATCCGATATAAAAGTGACCCCTTCTTCCGAAAATAATTCATTTCTTCGCG
GGCATCTTCGTTGTTTCTACTTCTACATCTCTACACAAC 

53 RREN_1120_48434 [C/G] TTTTACTACTTTTTCTTTTGATTTTATGCATTTTTGCAAAAGTGTGCAAGTGAAAT
TGCACAGAATTTAAAAGGGTTCAAAAACCGGTTTAAAGTGGTTG[C/G]CGCCAA
AAAATATTTATATATTCGTGCTCAGCTCGACGAGCTCTACACGATGGTATATAAT
TTTGGTCAGTTTGACTTCCGGAACATAAACTGCATTTTT 

54 RREN_1123_57666 [A/C] NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTGGG
AAGGTAAGCGGAAGGGTTTGGGAAGGTAAGCGGAAGGGTCTGGGAAGGA[A/C]
GCGGAAGGGTTTGGGAAGGTAAGCGGAAGGGTCTGGGAAGGCTGTGTGGACGA
ATTTTGGTAGCGCCGAAAGTCTGGATCTCCCTAAAAAAGAACGGACC 

55 RREN_1175_25864 [T/G] TACCAATTTTTCGATAATTTAACAAAAATGCTGTCATTTTTGATATGCATGCATG
TGTATGCGCGTAGAGTGCGCGCGTGTGTGACAAGGGTATGCGCGT[T/G]ACAAA
GAAGTACAAATTCACCATGTTAGTTGGTCAGTATCTTGGCTAAGTTGGTCTCGTC
CTTGGTTAAATGCATCATCGTCGTCGTCTGAATTTTCCCT 

56 RREN_1187_12082 [A/C] TATTATCTCTTATAAATTAATTGCCAAACATTTTTATGACATTTCACATTAAAGTG
TTTATGCATGGTACAATCGACGTCATCCCAAAGGGCGAATGATC[A/C]GCGTGGA
TGAACGACCGTTCATTTTTAAAACCGATTTTTCGACCCCTCACTATCTGAGCGGG
CAGAAAAAGCCAAAAATATACGATGTAATGTGAGGATG 
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57 RREN_1187_25663 [A/G] GTGCCAAAGACGGCCGTACCAGCAAACGAGACCATTGTGCCTCCGCCCGCATCC
GATCCCTCTTCTTCTTCCATTGCGACAGTGCAATCCGCTGGAACAC[A/G]CTGGC
ACCCATCACGACCTTCACCAACCTCGGCCCTTTCCGCTCTGCACTCGGCCTTCCC
ATCCGATACACAGTGACTGGCATCGCTTCCACGCCCAATT 

58 RREN_1215_1686 [A/C] TCGAATTCAATTTAAGATTCAATAAATTAGAATACCAAAAAACCTCTAGAAACT
TTCATAAAGCTAATTATAAGCAGATAAACAATATATTCAAAAATAC[A/C]GACTG
GAATACTCTCTTTTCAAATAGTATAGAAATTGATCATCTATATCAAACATTTAGC
CACAATATCCATAAAACCATCGAAGATCATATTCCTATCA 

59 RREN_1572_36973 [A/C] TCTTTCGAATATTTTGGACTTTTTTGGACACCTTATGATTGACCATTTACAGCCCC
ATCCCGCTGGCCAAGCGGTCTCCTACTCGGCCCAGCAGAAGAAC[A/C]TGTTGAT
GTGGGCGGTGGCCGTCGGCTCCATGCTCGGCACTTTCCCCTTCGCCTGGCTCTAC
ACCCGGCACGGTGCCCGCTGGGTTCTGTTCGGTGCCGG 

60 RREN_1660_519 [A/T] TGCGGTAGTCGGTTCGGCTTATGGCGTAGAGCTGATCAGTGAGAACCAGATCCC
GTCCGCACTCCAAGACATATTCCAAATTGGTGATGCTTAATGAAAA[A/T]GTTTG
ATCTTCTGACATGAACCAATCATCAAACATGGTTCCTTTCATTTCCTGCATCAAC
ACGTACCGGCATTGTGTGTCCGCTTTGGGGCGGTTCCATA 

61 RREN_1695_18038 [A/C] AAAAAGTAATATTGTGCTGAATTTTATGCTCTATCTTCTGGGATTTATAATTCGG
CCAAAAAATTGGAAATATCCCCTAAAACCTTATTTTTCAGAGTAA[A/C]TTTTTG
GTAGAATTTAAATAAATAATAGAAGATTCTGCACAATGGCTTTTTATAGTTTTTG
GCCCTAGCACCGATCAACCCTCTACACGGTATACCATTT 

62 RREN_1695_18063 [A/C] ATGCTCTATCTTCTGGGATTTATAATTCGGCCAAAAAATTGGAAATATCCCCTAA
AACCTTATTTTTCAGAGTAACTTTTTGGTAGAATTTAAATAAATA[A/C]TAGAAG
ATTCTGCACAATGGCTTTTTATAGTTTTTGGCCCTAGCACCGATCAACCCTCTAC
ACGGTATACCATTTTAGTGGCGGACCAATTAATTGTGGT 

63 RREN_1721_18343 [T/C] GGCCCCCAAATGTTCCTGAATATGTACACGCCTCTCTCAATTTATAGTTTAGGTG
TACCCTCGCGATTAAATTGTAAATACGCCCATGGCCACCGTCCTC[T/C]CTTTTCC
TACACACATCTTGATAGAATATTTTCAATAGCTCTATTTTCAAAGTTGTGATAAA
TAATCAACATTATTTCCCTATGATCAATATTCTCACTC 
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64 RREN_1741_30669 [T/C] TCCCATTCCTGCACTTTTTTTTATATTTTCTGTTCCTCAATTACTTTTCTTCGCAAT
CCAAATCCGTATTTAAGGGTGTTTCAATTTCTCTTTTTGCTCA[T/C]TTAAACTTG
GACTTATCTTCACTGTCCCTCACCCAATTTACTAATTCGCCGTCCCAGCTCTACA
CTATTCACTTTTGGTGGGTACACATCCCATTTCGAT 

65 RREN_1874_61680 [A/G] CTATTGATTTTAAGCATTTTTGGTTGTGTGCCAGTGAAATTTGCGTGGAACTAAA
GGGGTTCAAAAACCGGTTTAAAGTGGTTTGCGCCAAAATATAATT[A/G]CATATT
CGTACTCAGCTCGACGAGCTCTACACGATGGTATATAATTTGGGCCCGATTTATT
TTCGGAACGTAAACTGCATTTTTACCCAGAATTTTATGC 

66 RREN_1886_8608 [T/C] TAATTTGTAAGGCTCCCGCAGGATTTCGCATCAAAACAAGATAATGCGAATTAT
TTCGTGCGACCTTCAATTCTTTCGTGAACAGATGCTGAGTGACTAA[T/C]ACCAC
ACTCATACCCCAATTGTGGGAACCCCGAGTGAAAACTGTGTCTAAAAATTGCTG
ACGCATCCCGACCATCAAATCATCCAATACAACCAGCAGAT 

67 RREN_1886_12029 [T/C] GTCTATAATTTTTATGGGCCTCATAGGTGTAGAGATCGGCCAGCGGATTGCGTCC
AATGTGTGGAAAGGGTACATGGATGGTGGAGTCATTTCCCGGGAA[T/C]ACGAA
CACGTCATCAGCTCCACCAGCATCACCACCATCATTGTACAGCATGGGATCGCT
AACAAAGAAAATTTCCTAGATTTAACTAAAGGTAAAAAGAC 

68 RREN_1915_307 [T/C] CGTCTAGAGACTCAATCGTGGAGACTCAATCGTGGAGACTCAATCGTAGAGACT
CAATCGACCCCCACCGGATAAACGACGCTCTTCATCTTTTGCCAAC[T/C]CAAAT
GTGAAAGATAAGCAGAAACTGAGAGAAACAAAACGGTAGAGAAAAGAGTATG
AGAGAGAACATAAACGATAAAGAAAGAGTTCGTTTCGGAGGCT 

69 RREN_1928_25815 [T/G] CCATAGGTTATTTTTCGTTCTCTATTTTAAATTTTATTAATCACCCATTGCCTTATT
ATTCAAATTTTACATTTTCTAAATACAAAAAAATTAAAGATGG[T/G]TTTCCGCTC
TAAATTGTGCAATTTTTTATTATGTGAAATTTATCCGCGCTTCAATATTCATCATC
TAAGGCATTTCCTCTACACATCCTCTCCAACCACA 

70 RREN_1930_18838 [A/T] ATTTTGTGCATTTTTGGAAAAGTGTACCAGTGAAATTGTACAGAACTTAAAAGG
GTTCAAACCCAGGTTTAAAGTGGTTGCCGCCAAAAAATATTTACAT[A/T]TTCGT
GCTCAGCTCGACGATCTCTACACGTTGGCAGATAATTTTGCCCAGTTTGGCTTCC
GGAACATAAACTGCATTTTTTCCAAAAACAAAACATCCTT 
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71 RREN_2082_17935 [A/C] CATTCTTTACAACTATCACAAAAATGGTGTCTATTGAACATTATTAAGAATTCGA
CTAAGGGTATCGACACAGGATAAGCACCGCTTAAACCGGTGAATG[A/C]CCATTT
TTTCGTTATACGGTATCGATTTAATGCATGGTACAGTAACCAATTCAATACCACA
ATTTTTGTAACGTAACTTCTCTACACTATCCCCAATGAC 

72 RREN_2082_17995 [T/C] GGTATCGACACAGGATAAGCACCGCTTAAACCGGTGAATGCCCATTTTTTCGTT
ATACGGTATCGATTTAATGCATGGTACAGTAACCAATTCAATACCA[T/C]AATTT
TTGTAACGTAACTTCTCTACACTATCCCCAATGACCTTCTACCGTATGCTCCTTTT
ATCGTGTCGTTTAGGATGACTGCATACCATATTCCAGCT 

73 RREN_2193_23293 [C/G] ATTGGCGACAGAGAAGAAGGCAGCGACTGTGGGGAGTTCGGCGACAGAGAAAA
AACCAGCGACAATGACAGAGAAGCTTCTGGAGAAGAAGAATGGATTC[C/G]AGA
CACAGCTTTAAGTAGTAAGAATGGTGCCACATAAATCATGCATAAAAAACCGGT
ATCGGGGCAACCGAATAGTGGTCATGGACACCAAGAAATATGA 

74 RREN_2229_14581 [A/G] ATGAGGTGAGTCATAAAAGTTTTAACGATGGGTTGATTGGGTGTTATTGGACAC
CATCAGAGGTAAAGGAGGACACGTGTACAGCCAACGCTATGTCGCA[A/G]AGAA
ACCGGATGTCCCACCCAAGGATGTGTATCAGCTATCGGTATGGAATAAGAGGTG
GAGATGAATGGATCAAAGATCTATTTGGACCGGAAGAACAGC 

75 RREN_2245_19256 [A/G] ATTCCGGTGCCCCCACGGAAGAAGTTATTCAAAGACAGCCCAAACCCGCACTGG
TCATCCTTGATGATCTCCTTTATTCCATCGATCTCAAGTTTCTGGC[A/G]GATCTC
TACACCAAGAAGAGTCACCATGGTAATTTTGGAATCGTTATGCTCACTCAGGAT
TTGTTTGATCGTAAGATGAAGGTGGTTAGGCAAAATTCAA 

76 RREN_2295_24784 [A/G] TGCCTATCCACGTGTCCAAGCAGCTACTGCGGCTTTGGAAGCAATCCTTGAATG
GCTGACCAACAACCCACAGTCTTCTGCGGTTGAAAAGATCACACTT[A/G]TGGTC
TCTAATCCAAATGACCAAGGCCTCTACAAAGATCTACTTCAACGGGCTAAGCGT
CAAATTGTAGGCTCCAGAACAGCAAGTCGCGCATCTTCCAG 

77 RREN_2301_5490 [A/G] TTGAATGCAAGAAACAATAGACAATGGCGAGCTGGGATGATAGCCAACTGCCA
AGAATGAGGGAAAATCACTAGCTTATATACATGCAGGCGTGAAGGAA[A/G]GGG
AAGGAAGAAAGAGAGAAAACAATACAATAGCGACAGACAAATGTGAAAGGGA
ACATAATGCCAAACAAATACGAATGAACAATACATTTGAATCACA 
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78 RREN_2380_20166 [T/C] ACGGCAAGGTCTCCATTCCCGGTCTTATCCGCCCTTTCTCATAGTGTGGTCTATA
ATTTTTGTGGGCCTGATAGGTGTAGAGATCAGACACTGGAGTTCG[T/C]CCGATC
TGTGGAAACGGAACATTGATGGAAGAGTCGTTGCCCGCAAATACAAACACATCA
TCATCCGCGTTAAAATTGTCCAGAGCAGGATCGCTAAATT 

79 RREN_2380_20294 [A/C] GAAGAGTCGTTGCCCGCAAATACAAACACATCATCATCCGCGTTAAAATTGTCC
AGAGCAGGATCGCTAAATTGGTCACGAAATTTTATACCCAGAATAT[A/C]TACAC
CCACATTTGACCATCGATGTCATAATGTTCCAAGACAATCGCTTTCACTGTTTCG
AAATTGAGCAATTGATGGTTGGCATAGGAGAGGCGAAAGC 

80 RREN_2496_36896 [T/G] ATCACATTGCATCGTATATTTTTGGCTTTTTTGTCTCGCACAGATAGTGAAGAGT
AGAAAAATCGGTTTTAAAAATAAACGAATGGTCGTTTACCCACGC[T/G]GATCAT
CCGTCCGTTGAATGATAGCTATCTTACAATGAATAAAATTTTTTAACAATGACTA
TTTTCTGGTTTTATATTCATCATTATATCATATAGAATA 

81 RREN_2611_11791 [A/T] AAAATTGTAGAGCGTGTGTCAAAACATAAAGTATGATCAAAAAATTTTGAGGTT
AGGTTAGGCCTAAGAAAAATTTTCGGGAAATTTTCGAAAAATTTTC[A/T]GGTTT
ATTGGAGGCCTAATAGAAATGTGGTTTGTAATTGATATTTTGAGCTGATTTTTTG
TACTCAGGGGTTTTCGAGGGTGCTGAATCCGAATATGACA 

82 RREN_2644_249 [T/C] CATTCTCCGACTTGAAGGGAACGGGCGCGTTTGTCGGTATGTGGCCATCGAACC
TAAAAATAATTTATACTAAATAAGTATAGTATTTTAATCCAAAAGA[T/C]GAACC
TAAAAATAATTTATACTAAATAAGTATAGTATTTTAATCCAAAAGAAAGCTAAC
CGAATGTTGACATACCTATCCTGAAGCCGCCAAAAACCCTG 

83 RREN_3007_13959 [A/G] TTTCGGTTTTAGGGCCAAAAACACTGATTTTCGGTTTTTAAAATTTGACGGCAGC
GTGGTGTAGTGGTCTATCACACAGGACACAAATTCTGGGACGTGG[A/G]TTCGAA
TCCCACCGCTGTGTTGGTCATATACTCAAGCCCGTGGGGAGCATATCCCTTCACG
TAGCCATTAGCCGAGCGGTGATGCAAAGCAAATGGTGAA 

84 RREN_3315_26470 [A/C] GAGACTGCGGATGAGGAAGAGGGTGTGGAGGATGGAGCTGGGGGTGATGTACT
GCTTGGAGATGATGGATTTGAAGAATTTAATGGTGCAGAGGAAGATG[A/C]GGA
GGTGGAATTGGAAGGGATGGAAGATGAGGGGGAGGAAGATGAAGAGGAGGAT
GAAGACACGTTTGACGCTGGCAGCGAGCTGGAGTCCAGGGCCCAG 
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85 RREN_3415_20865 [T/C] GCATGGGTCTCTGGAGGTGTAGAGCGTCAAAGCGGCCGCGTTTTTTATGGAAAT
TGTTGAAAAAAGGTTTTTTCCGCGCGAATTTAAATGTGAATCTTTT[T/C]TGATTA
GGGACAATGCGACACGTATGGCATTGATTAGGAAGTATATCAATCCCGGTACCA
CTATTCATTCTGATTGTTAGAAAGCGTATGCAAACATGGA 

86 RREN_3722_17382 [A/C] CTCGCGTAACTCGTTCCGGCATCCGAGCATTATAAATAGTGAAAGGTGGCATAT
CCAACGGACGACATGATGAAGCATGGGTTTGCCTTACCCATCTGAT[A/C]ACCTA
GAGAAGGTTAAAAGGGAAAGGATATATTAGAGGAAAAGTTGAAAACTTACATT
TTCTAAACCCTCTTCCGAGTCGGGAATTGTCATTTCGAAAGC 

87 RREN_3853_3705 [A/G] AACACTTTGCGAGCCTCTATCCACAAACGCTGTACTCCAGCAAAAGCTGATGGG
GATTTTGGGTCATTGTAGAGTCGATCCAAGGTAGCCTTCACTGTGG[A/G]CCTAG
AATTATAAAGTAATTCAAGGTTATTTTTCTCGAATGAAAAAATACCTAAATTTAT
TTCAGTAAATTAAGGTTAGCTTTTTCTAAAGAAAAATCTT 

88 RREN_4099_6882 [A/T] TTGGGTGTACGGGGGGATGTAGAGGTGCAGGCTGACGGCCGGATCGGCGTGGG
AAGGGTTTTCCATCCGGTGCAGGCCGATCTTGTCTGTGAGATCAAAG[A/T]TCAG
TGATCAATATCAGCCGGCCTTTTTTCTCATTACCTATTTATATTCTGTGGGGATAT
GACTTTTATTTAAATATTATTTAAAGCGGATACCAAAGTA 

89 RREN_4280_20028 [T/C] CACGTAGAGCTGTGTGTGAATTCGGGATTGAGCTAGTCGGGATTTCGGGATTTC
GAGATTTCGGAATTTTGCCATTGTTGATCTCTAACCTCGACTATTT[T/C]GATTTG
GAAACTGCGGAATTTCCCCAATTAAAAATATGACAATTTTTGAGGCATATAGGT
AGTAGTGTGGAGTGAGTGAAGTAGGCTTCCTCACGATGCT 

90 RREN_4396_2332 [T/C] AACTAGATTAAGAAAATAGTGGGGTAGAGAAAAAAGAGAGACGAAATAATAGG
TAGAGAAACTAGAGTAAGAAAATAGTGGGGTAGAGAAAACAGAGGGA[T/C]GA
AATAATAGGTAGAGAATAGAGAAAACAGAAGACAGCGAAAGAAACAAATATA
GATTAACGAGAGAAAGCAGAGAAAAAATATAGCCTTAGGCATGTAC 

91 RREN_4396_2346 [A/G] AATAGTGGGGTAGAGAAAAAAGAGAGACGAAATAATAGGTAGAGAAACTAGA
GTAAGAAAATAGTGGGGTAGAGAAAACAGAGGGACGAAATAATAGGTA[A/G]A
GAATAGAGAAAACAGAAGACAGCGAAAGAAACAAATATAGATTAACGAGAGA
AAGCAGAGAAAAAATATAGCCTTAGGCATGTACAATGACCACCAACC 

Appendix 2 Continued. 



 

77 
 

92 RREN_4491_8860 [A/T] GACGAAACACCTAATTTGAAATGTTAAACCTTTTATTGTATTAAAGTTGCTGGGC
AACCTTGCATAACTTGATGCAATTTTATTAATTACGTGTTTTTTT[A/T]ACTTCATT
TTACTGCGTTTTCTATTGATTTTATGCATTTTTGGTTATTTTTTCAGTGAAATTTGC
GTAAAGTAAATGGGTTCAAAAACCGGTTTAAAGTG 

93 RREN_4741_9023 [C/G] AGCTCTTCGGGAATAGACAAAACCCGAAAACGTAAATATGACACCGAAGAAGT
CAATGGGATGCCAAATGACGAGGGTCCATGGCTCAGCAAAGCGGGTG[C/G]TGG
AGTGAACAAAAAGCTGCTTTGGATGCTTTGCAAAAACAAGTATCAACTCGGATT
CGATTTGTGCACCGACTGCAATCAGGCCCTCTACAAGAAGAAG 

94 RREN_4834_4812 [A/G] ATTTCGTCTCTCTTTTTTCTCTACCCCACTTATTTCTTACTCTAGTTTCTCTACCTC
TTATTTCGTCTCTTTTTTCGCTAACCCAGTATATTCTTACTCT[A/G]GTTCTCTACC
TATTATTTCATCTCTCCGTTTTCTCTGTCCCACTATTTTCTTACTCTAGCTTCTCTA
CCCCACTATTTTCTTTCTCTAGTTTCTCTACCT 

95 RREN_4834_7584 [T/C] GTGCACTTTGGCACCTTAACTCTGCGTTTGGTTCATCCCACATCGCCAGTTCTGC
TTACCAAAAATGGCCCACTTGGAGCTTCAGCATTCAATGCCTGGG[T/C]TCACAG
AGAGTCAAGCAACCCTGGCTTCATACCCATTTAGAGTTTGAGAATAGGTTAAGG
ACATTTCGTCCCCAAGTCCTCTAATCATTCGCTTTACCGA 

96 RREN_4985_4041 [A/T] TCCAAAAAACATGAAAATAATAAATGTAATAATTAAAAGAAAAAAAATATGTA
CACATAGGCTGACGGGGACAATTACACAATCGGATTTTTGTACAAGA[A/T]AATA
CCCAAGCATTTGGACAAGTATAATTTGAATATCGGTTTGGACAATAACCAAGAA
TTTGGCCTGAAGTTGCAAGGCGATGAGTGGTGGAATAAAACT 

97 RREN_5033_11813 [A/G] GTGGAAAGGGCACATGGATGCTCGAGTCATTTCCCGGAAACACGAATACATCAT
CAGCTCCACCAGCATCACCACCATCATTGTACAGCATGGGATCGCT[A/G]ACAAA
GAAAATTTCCTAGATTTAACTAAAGGTAACAAACTCACGCTTCTCCATCAATATC
ATAATGTGCCAAGACGAGGGCCTTCACCGTTTCAAAATTC 

98 RREN_5033_11816 [A/G] GAAAGGGCACATGGATGCTCGAGTCATTTCCCGGAAACACGAATACATCATCAG
CTCCACCAGCATCACCACCATCATTGTACAGCATGGGATCGCTGAC[A/G]AAGAA
AATTTCCTAGATTTAACTAAAGGTAACAAACTCACGCTTCTCCATCAATATCATA
ATGTGCCAAGACGAGGGCCTTCACCGTTTCAAAATTCAAC 
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99 RREN_5385_4749 [A/G] CTGTAACATGTTACCTTGCGTGCTGACAAGGGAACATACCGAGGTGTGACCACT
CAGATCTTAATTTAACCCATTCTATCTTGTAGAGCACCCTCACATT[A/G]CATCGT
ATATTTTTGGCTTTTTTGGCCCGCACAGATAGTGAAGGGTAGAAAAATCGGTTTC
AAAAATAAACGGTCGTTCATCCACGCGGATCATTCGCCC 

100 RREN_5385_4848 [A/C] TGCATCGTATATTTTTGGCTTTTTTGGCCCGCACAGATAGTGAAGGGTAGAAAAA
TCGGTTTCAAAAATAAACGGTCGTTCATCCACGCGGATCATTCGC[A/C]CTTTGG
AATGGCGTCGATCGTACCATGCATAAACACAAAAATGTAATTCTCCATAATTTG
GGTTGGAAATTATTCTATATGATATAACGATGAATATAAA 

101 RREN_5497_2602 [A/G] TGTCGGCTTGTCCCCTGCTCAATCGCTGCTACCGGCGAATAATTCCGTGTAGAGG
GGCGGAAAGGCACTGAGCACATTTTGCGGATGAAAATTCTGTAAG[A/G]AAGTG
TAAAAACAAATTGAATTTCGAAGCTTTGGATATATTCAAAAAAATTTAAACTAA
TAACTTATCAGAACAAAGACGAGGAAAATGAAGAATGAAAT 

102 RREN_5940_3890 [T/G] AGACTGTAGAGACCGAAGAGGAGGCAGAGGAGAGAGTGGCAGAGCAGGTAGG
CGAACTTGTGGCTGATCATTATCTTTTTGTGTCTGAAGGGGACAATCA[T/G]CGA
AGATATTCTGGACAAGGACAAGACAGAACAGACTGGAAGGGCAATGCAACTGC
AAGAAGCCGATCAGCGGCGGCACTGAACAACGCCATCATGTTGG 

103 RREN_5940_3923 [A/T] GAGTGGCAGAGCAGGTAGGCGAACTTGTGGCTGATCATTATCTTTTTGTGTCTGA
AGGGGACAATCAGCGAAGATATTCTGGACAAGGACAAGACAGAAC[A/T]GACTG
GAAGGGCAATGCAACTGCAAGAAGCCGATCAGCGGCGGCACTGAACAACGCCA
TCATGTTGGCATTGGCACTGAACAGCATAGGCTGAAGGAGGG 

104 RREN_6983_4756 [A/G] GACAAGGGAACATACCGAGGTGTGACTATTCAGATCATAATTTAACCCATCCTA
TCTTGTAGAGCACCCTCACATTGCATCGTATATTTTTGGCTTTTTT[A/G]GCCCGC
ACAAATAGTGAAGGGTAGAAAATTCGTTTTTAAAAATAAACGGTCGTTCATCCA
CGCGGATCATTCGCCCTTTGGAATGGCGTCGATCGTACCA 

105 RREN_7324_5103 [T/C] GCAGTGTGGCAACCAGGTGTTCTCTCCAAAGAGACAGAGAAGCAGATAATTATC
GATTTTTTCCGAGGGTCAGAGACGCAGAAAGGACGCCAACTTTTGG[T/C]GGGA
AAAGCGGCGTCACCTTTCCTGCCAGCCACCTCTCTACACTCTCTGTAAGACAGAG
AGCGAAATTTATCGATTGATTTTGGGTTAGAGACGCAGAGG 
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106 RREN_7711_4765 [T/C] GTGAGAGAGTGTAGAGTGGTGAAGTGGAGGTGAGAGAGTACGGTATGTGAGAG
AGTACGGTATGTGACAGTACCGTGTTGTCCACGACCACGACACACTC[T/C]TTGT
TGGTTGCCTTCACAACTCGGCAAACGGCCTCAATATCGATGACTTTCAGCAATG
GGTTGGACGGTGTTTCGAACCAGACCATCTATGGATGATTAT 

107 RREN_7711_4768 [A/G] AGAGAGTGTAGAGTGGTGAAGTGGAGGTGAGAGAGTACGGTATGTGAGAGAGT
ACGGTATGTGACAGTACCGTGTTGTCCACGACCACGACACACTCTTT[A/G]TTGG
TTGCCTTCACAACTCGGCAAACGGCCTCAATATCGATGACTTTCAGCAATGGGTT
GGACGGTGTTTCGAACCAGACCATCTATGGATGATTATGTA 

108 RREN_8907_4239 [A/G] GTGAACAGAACTTTAAATATGGCGGAGATCGAGTTGACAAAGAAACGCTTAAA
AAACTTGACAAAATGCTCAGGAAACACCATCCTTTGGCAAAAGAATT[A/G]ATG
AATTTCCACACACAATACCAGCGGGAATTAGCTCTAAACGGACCTGATGCCGTT
GCAAACTACCGTTTCACGATTCTCGAGGCACGTGATGCACCGA 

109 RREN_9458_2923 [T/C] GGAATGGACAGCAGAAAGTTGGATGGCGGAAATGGACGGGAGAGAAAGTGAA
GAGCAGAGGTGGACGGCGGACATGAGCGGCGGATTTAAACGGCGGAAG[T/C]G
AACGGCAGGTGTCGGTGGCTGACGGCGGATAAGTGAACAGCGGAAATAGACGG
TGGAGGGTTGACGGTGGAGCTTGACGGCGGACGTGGACAGGACGGA 

110 RREN_10201_2603 [A/T] AATGTTCGAAACAATAGGGAATGGATCTCACGATCCCTCGACTTTGAAGGGTAC
TTTGGTCAGGGGACCAGGGATTAGCCCCTATTTAAAGCCGCTCCAA[A/T]AATGA
GAGAGGCATGTTCTGTTCAATTCATTCATTCCAACTGCTCAAAGCAGCAACATCA
ACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTTAACA 

111 RREN_10854_3216 [T/C] ACCACCTACACAACGAGAGCCTTATGCTTCCAGTCAAGGAGCACAACTACATGC
TCAGCAAGCAGTTCCTGGCCAAATGCCGCCATCCACTTCATCCAAA[T/C]TTCCT
CGCCACAAACAACGTCCCAGCCAGGCTCATGAAGCAGACCCTTCCGTCCAAGTT
TTGGAAGGAAGTCGACCAAGCTCTACAGGCCGCGGACAACG 

112 RREN_10854_3286 [A/G] GGCCAAATGCCGCCATCCACTTCATCCAAACTTCCTCGCCACAAACAACGTCCC
AGCCAGGCTCATGAAGCAGACCCTTCCGTCCAAGTTTTGGAAGGAA[A/G]TCGA
CCAAGCTCTACAGGCCGCGGACAACGACCACAACAAATGCAGCGCCAACATCC
ACACAACCACAGTCCAAACGGCCAAGCAGCGACAAAGGAGCAC 
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113 RREN_16875_122 [T/C] AAGCAGTAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTTAACAC
CGCCGGGTCCAACAACTGCGCCAGCCACCGGGGACATTCGAGCCA[T/C]AGCCC
CTATTTAAGCCGCTCCAACAATGAGAGAGGCATGTTCAATTTGTTCATTCATACC
ATCTATTTCAACTGCTCAAAGCAGTAACATCAACTCTCTT 

114 RREN_16875_146 [T/C] AAGCAGTAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTTAACAC
CGCCGGGTCCAACAACTGCGCCAGCCACCGGGGACATTCGAGCCA[T/C]AATGA
GAGAGGCATGTTCAATTTGTTCATTCATACCATCTATTTCAACTGCTCAAAGCAG
TAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCG 

115 RREN_16875_190 [T/C] AAGCAGTAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTTAACAC
CGCCGGGTCCAACAACTGCGCCAGCCACCGGGGACATTCGAGCCA[T/C]CAACT
GCTCAAAGCAGTAACATCAACTCTCTTCTCTCCGTTCGCCTCCTCCTGCCGCCTT
AACACCGCCGGGTCCAACAACTGCGCCAGCCACCGGGGAC 

116 RREN_23053_791 [T/C] GCAAAGGTCGTTTTGGCATTCTTCACAATAAAATTTACCGTTAAATGCGTCTAAG
CAATAATTGCAAATGGTTAAATGATGACGAAAATCATAGTTCCAT[T/C]TTAAAT
TATTGCAGAAGCCGCGCTCTCTACAATCCCACTGAATATCAATAAACCATGATC
CCTTTGTCACTGAAAATAAAGACTGTAGGAAATTTATGAT 

117 RREN_23053_809 [T/C] TTCTTCACAATAAAATTTACCGTTAAATGCGTCTAAGCAATAATTGCAAATGGTT
AAATGATGACGAAAATCATAGTTCCATTTTAAATTATTGCAGAAG[T/C]CGCGCT
CTCTACAATCCCACTGAATATCAATAAACCATGATCCCTTTGTCACTGAAAATAA
AGACTGTAGGAAATTTATGATGCTGAGATTGTGGCTCCC 

118 RREN_28983_551 [T/C] ACATGTTTTTTCTTCGTTTTACTGCGTTTTCTATTGATTTTATGCATTTTTGTTAAG
TGTACCATCGAAATTTGCGTGATAACTAAAGGGGTTCAAAAAC[T/C]GGTTTAAA
GTGGTTTCCCCCAAAAAATAATTACATATTCGTACTCAGCTCGACGAGCTCTACA
CGATGGTATAAATTCTACTCGATTTGTCTTCCGGTAC 

119 RREN_36168_664 [A/C] GAATTTAATTTGTTCAGCGCAACTCTCAAGCAAAATGCGGTGAATGTTCTGCGC
AGGCGGAACTATAAAAGGGTGTTGATTTCGCACCGTAACCACCACC[A/C]GCCAT
CACTCGCTCTACACGCAACAAACACGCACTCAACTCTCCGCGTTCCCAGCAGCC
GCTTCAACAACACAACACTGTTCGTCGACCCTCTGGACAAG 
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120 RREN_37161_217 [A/G] CCGAAATACTAAAAACACGTAAAAACTTCGAAGGATCATAACTCTGCTACAGCA
TATCCATGCAAGACGAGCAATATACCAATCAATAGAGTAACATGTC[A/G]CGTA
AAAACTTCGAAGGATCATAACTCTGCTACAGCATATCCATGCAAGACGAGCAAT
ATACCAATCAATAGAGTAACATGTCCTCCACTAATCCCAGAA 

121 RREN_37161_226 [C/G] CCGAAATACTAAAAACACGTAAAAACTTCGAAGGATCATAACTCTGCTACAGCA
TATCCATGCAAGACGAGCAATATACCAATCAATAGAGTAACATGTC[C/G]TTCGA
AGGATCATAACTCTGCTACAGCATATCCATGCAAGACGAGCAATATACCAATCA
ATAGAGTAACATGTCCTCCACTAATCCCAGAAAAGAACATG 

122 RREN_43396_312 [T/C] TTTTCTACTGTAAACAGGAATTCGCATATTCTGAGACCACCATCGTGTAGAGCAT
GGTCGATAATAATAAGGAAGTGACATCCTTTTTTGGCACAAACCC[T/C]TGGTTA
AATTTTGAGTGAATTTTTAAAATATTTTTTCCACGTGCTTCAAGCACGGGTCATC
GGTGCTAAAAATGTCTTTTGGTCAACAAAGCTCAATAAG 

123 RREN_47097_473 [C/G] CATTGTTTTGTATGCTTGTATTTGTATTGTTTTCCCTCTTTCTTCCTTCCCTTTCCTT
CACGCCTGCATGTATATAAGCTAGTGATTTTCCCTCATTCTT[C/G]GCAGTTGGTT
GTCACCCCAGCTCGCCATTGTTTATTGTCTATTGTATCTTCAATAAACACTTCTTC
TCGGGTTCGGACTTCACTTTGGGGTTGTCCTTAC 

124 RREN_47097_533 [T/C] CGCCTGCATGTATATAAGCTAGTGATTTTCCCTCATTCTTCGCAGTTGGTTGTCA
CCCCAGCTCGCCATTGTTTATTGTCTATTGTATCTTCAATAAACA[T/C]TTCTTCTC
GGGTTCGGACTTCACTTTGGGGTTGTCCTTACTCCTAAACTATCAATCTTCATTG
GGCAGTGGCTGTCCTACATTTTTCTCCGATTATTACT 

125 RREN_47097_539 [A/C] CATGTATATAAGCTAGTGATTTTCCCTCATTCTTCGCAGTTGGTTGTCACCCCAG
CTCGCCATTGTTTATTGTCTATTGTATCTTCAATAAACACTTCTT[A/C]TCGGGTTC
GGACTTCACTTTGGGGTTGTCCTTACTCCTAAACTATCAATCTTCATTGGGCAGT
GGCTGTCCTACATTTTTCTCCGATTATTACTTGGTAG 

126 RREN_53141_284 [A/T] GACACCACCATCGGAATCAGCATCTACGAAAACCCTCGAGTACTAAAAATTGGC
TCAAAATATCAATAATAAACAACATTTCCATTAGGCCCCCAAAAAA[A/T]TTAGG
CCCCCAAAAAACCTGAAATTTTTTCGAAAATTTCCCCAAAAATTTTCTTAGGCCT
AACCTAAGGTCAAAATTTTTTGACTAATTTTATGTTTTCG 
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127 RREN_53141_365 [T/G] AATAATAAACAACATTTCCATTAGGCCCCCAAAAAACCTGAAATTTTTTCGAAA
ATTTCCCCAAAAATTTTCTTAGGCCTAACCTAAGGTCAAAATTTTT[T/G]GACTAA
TTTTATGTTTTCGCACATGCTCTACAACTTTAAAAAATAAACCATGCCTCTAAAC
CCCTTATAAACACTTCAAATAGTCCTGTCACGTATGATT 

128 RREN_53845_394 [T/G] ACGCTTATGGTAGAGGGGATACGATAACGCACTTACTGTAGAGGGAATGCCGCA
ACACATTTAGGGTAGAAGGGATACGGTAACACACTTAAGGGAGGGG[T/G]AGGA
TACGGTACCACAATACGTTAACACAATTGATGTGATACGGTACCACACCTTAAG
TAGAGGGATACGGTAACACACTTATGGTAGAGGAAATACGAG 

129 RREN_57146_374 [T/C] TGCTGATTTGGGGATCCTTTGTCCGTCGGCCTTTTGTCCACAATCCGATGTCATA
TTCGGATTCAGCAGCCTCGATAACCCCCGAGTACCAAAAATCAGC[T/C]CAAAAT
ATCAATTACAAATAGCATTTCCATTAGGCCTCCAAAAAACCTGAAATTTTTTTGA
AAATTTCCCGAAAATTTTTCTTAGGCCCAACCTAAGGTC 

130 RREN_86325_225 [A/G] CTCTCTAACTCTCCCTCGTCGTCTATACTCTCTCCCCAAACCACACTATCTTATAT
TTTTTATGCAATATTCCATCCCCTCTTCACGCTTTTCCAATCAC[A/G]TACTCTCTC
CCCAAACCACACTATCTTATATTTTTTATGCAATATTCCATCCCCTCTTCACGCTT
TTCCAATCACTCCCCCATCGCTTACGACCATACCG 

131 RREN_90419_227 [A/G] TGAATAAGTGTGCCAGTGAAATTTGCAGTAACTAAAAGGGTTCAAAAACCGGTT
TAAAGTGGTTTCCCCCAAAAAATAATTACATATTCGTACTCAGCTC[A/G]GTAAC
TAAAAGGGTTCAAAAACCGGTTTAAAGTGGTTTCCCCCAAAAAATAATTACATA
TTCGTACTCAGCTCGACGAGCTCTACACGATGGTATATAAT 
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APPENDIX 3: LETTER REQUESTING PERMISSION TO USE COMMON 
METHODOLOGY IN CHAPTER 3  
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APPENDIX 4: LETTER OF PERMISSION TO USE COMMON METHODOLOGY IN 
CHAPTER 3 
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