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ABSTRACT

Burkholderia glumae is a rice pathogenic bacterium that causes bacterial panicle

blight. Some strains of this pathogen produce dark brown pigments when grown on the

casamino-acid peptone glucose (CPG) agar medium. A pigment-positive and highly

virulent strain of B. glumae, 411gr-6, was randomly mutagenized with mini-Tn5gus, and

the resulting mini-Tn5gus derivatives showing altered pigmentation phenotypes were

screened on CPG agar plates to identify the genetic elements governing the

pigmentation of B. glumae. In this study, several positive and negative regulators, for

the pigmentation of B. glumae were identified. During this study, a novel two-component

regulatory system (TCRS) composed of the PidS sensor histidine kinase and the PidR

response regulator was identified as an essential regulatory factor for pigmentation.

Notably, the PidS/PidR TCRS was also required for the elicitation of the hypersensitive

response in tobacco leaves, indicating the dependence of the hypersensitive response

and pathogenicity (Hrp) type III secretion system of B. glumae on this regulatory factor.

In addition, B. glumae mutants defective in the PidS/PidR TCRS showed less

production of the phytotoxin, toxoflavin, and less virulence on rice panicles and onion

bulbs relative to the parental strain, 411gr-6. In addition, the shikimate pathway genes

aroA and aroB are required for the pigmentation of B. glumae in the CPG medium. This

study revealed that aroA and aroB of B. glumae are also essential for virulence, growth

in M9 minimal medium and tolerance to UV light but not required for the production of

toxoflavin. Bacterial panicle blight and sheath blight of rice are the two most important

diseases of Louisiana, and most of rice cultivars grown here are susceptible to these

diseases. During this study, several rice lines showing superior phenotypes in disease
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resistance and agronomic traits were developed through plant breeding techniques. LB-

33, a recombinant inbred line derived from Bengal and LM-1, was superior to the

parents in terms of the disease resistance to bacterial panicle blight and sheath blight

as well as other important agronomic characters associated with high yield. In addition,

pre-treatment with non-pathogenic strains of B. glumae suppressed the development of

bacterial panicle blight and sheath blight disease.
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CHAPTER 1
GENERAL INTRODUCTION

1.1. Burkholderia glumae

Burkholderia glumae, formerly Pseudomonas glumae, was first described as a

bacterial pathogen causing grain rot, seedling rot and seedling blight diseases of rice

(Oryza sativa) in Japan (Goto and Ohata, 1956). Later, these disease symptoms were

collectively described as a bacterial panicle blight of rice, and now are reported from

major rice producing countries around the world (Nandakumar et al., 2009).

Burkholderia glumae belongs to the genus Burkholderia. Burkholderia spp. were

previously placed in the genus Pseudomonas based on phenotypic definitions. During

the early 1970s, rRNA-DNA hybridization analyses showed a lot of genetic diversity

among members of the genus Pseudomonas (Kersters et al., 1996). Five rRNA

homology groups were created based on  significant genetic diversities (Palleroni et al.,

1973). The genus Burkholderia created in 1992, belonged to the rRNA homology group

II of Pseudomonas and, containing seven different species (B. caryophylli, B. cepacia,

B. gladioli, B.mallei, B. pickettii, B. pseudomallei and B. solanacearum) (Yabuuchi et al.,

1992). Today, the genus Burkholderia contains about 60 valid species (Choudhary et

al., 2013) which are adapted to a wide range of ecological niches ranging from

contaminated soil to plant parts and; the respiratory tract of humans (Coenye and

Vandamme, 2003). There are eight different species of Burkholderia reported as plant

pathogenic species which include B. ambifaria, B. andropogonis, B. caryophlli, B.

cenocepaica, B. cepacia, B. glumae and B. plantarii (Karki, 2010). The genome size of

Burkholderia is about >8 Mbp, almost double the size of Escherichia coli and usually
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consists of two to three chromosomes with frequently occurring plasmids (Holden et al.,

2004b; Tumapa et al., 2008; Ussery et al., 2009). The important characteristic features

of the Burkholderia genomes are flexibility and plasticity that enables them to colonize in

diverse environmental conditions such as human, plant, soil, and other animal hosts

(Chain et al., 2006; Holden et al., 2004a; Nierman et al., 2004). Recently several strains

of B. glumae were sequenced; the whole genome of B. glumae BGR1 was first

sequenced in Korea in 2009 and consists of two chromosomes and four plasmids (Lim

et al., 2009). Chromosome 1 is 3,906,529 base pairs in size and has 3290 coding

sequences, 144 pseudogenes, 3 rRNA operons and 56 tRNAs while chromosome 2 is

2,827,355 base pairs in size and has 2079 coding sequences, 192 pseudogenes, 2

rRNA operons and 8 tRNAs (Lim et al., 2009).

Different plant pathogenic bacteria produce different types of phytotoxins that are

toxic to plant cells and support symptom development (Durbin, 1991). The bacterium B.

glumae produces a phytotoxin known as toxoflavin which is the most important

virulence factor for causing rice seedling rot, grain rot and wilting in many field crops

(Iiyama et al., 1994; Jeong et al., 2003). It was reported that toxoflavin reduces the

growth of leaves and roots of rice seedlings and induces chlorotic symptoms on the

panicle (Iiyama et al., 1995). Toxoflavin shows antibacterial, antifungal, herbicidal

activities and also toxic to mice (Nagamatsu, 2002). Toxoflavin UV spectrum has a

maximum absorbance at 262 and 393 in methanol (ε=21, 5000) and minimum at 400nm

(ε=5900) (Yoneyama et al., 1998). Toxoflavin is an active electron carrier between

NADH, and oxygen and hydrogen peroxide can be produced that may by-pass the

chytochrome system (Latuasan and Berends, 1961). As the level of hydrogen peroxide
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increases in rice seedlings, different proteins involved in cellular and metabolic

processes are down-regulated that play important roles in  cell defense and other

cellular activites related to photosynthesis and photorespiration, protein synthesis and

degradation, signal transduction, and carbohydrate/energy metabolism (Wan and Liu,

2008). Toxoflavin can hinder several cellular and metabolic processes in the plant, and

this could be the reason for toxoflavin being an important virulence factor of B. glumae.

Toxoflavin production phenotype of B. glumae can be observed as bright yellow

pigment in King’s B, Luria Broth and Potato dextrose media. The production of

toxoflavin is dependent upon the temperature in which maximum production is at 37°C,

and no detectable amount is produced below 25 °C (Matsuda and Sato, 1988). The

toxoflavin biosynthesis and transport depends on tox operons which is regulated by a

transcriptional activator toxJ and a LysR type regulator toxR (Figure 1[B]) (Kim et al.,

2004). ToxR requires toxoflavin as a co-inducer to activate toxoflavin biosynthesis and

the transport operon (Kim et al., 2004). The toxoflavin biosynthesis operon consists of

five genes (toxA, toxB, toxC, toxD and toxE) (Shingu and Yoneyama, 2004; Suzuki et

al., 2004) whereas the toxoflavin transport operon consists of four genes (toxF toxG,

toxH and toxI) (Figure 1[B]) (Kim et al., 2004).

The plant cell wall contains cellulose and hemicelluloses which act as a barrier

for the entrance of pathogens. Lipase is considered as a plant cell wall degrading

enzyme secreted by many bacterial and fungal pathogens. For fungal pathogens lipase

has been well reported as a virulence factor; however for bacterial plant pathogens it

has been reported only in a few cases (Rajeshwari et al., 2005).
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Figure 1.1. A schematic view of the global regulation of virulence by the quorum-
sensing (QS) system in B. glumae. This figure is adopted from (Chun et al., 2009;
Devescovi et al., 2007; Kim et al., 2007; Kim et al., 2004) A) QS in Burkholderia glumae
consists of N-acyl homoserin lactone (AHL) synthase TofI, a LuxI homologue and AHL
receptor TofR, a LuxR homologue. TofI synthesizes both N-hexanoyl homoserine
lactone (C6-HSL) and N-octanoyl homoserine lactone (C8-HSL) and TofR is the
cognate recepotor of C8-HSL. B) Toxoflavin biosynthesis circuit in B. glumae needs to
bind to the TofR protein by C8-HSL and in turn activates the expression of toxJ. Then,
ToxJ activates the expression of the LysR-type regulatory protein, ToxR as well as
activates the transcription of the toxoflavin biosynthesis operon toxABCDE and
toxoflavin transport operon toxFGHI in a cascade fashion. With a toxoflavin as a
coinducer, ToxR can activate both toxoflavin biosynthesis and transport operons. C) QS
system activates the expression of IclR-type transcriptional regulator, QsmR then it
activates the expression of flhDC genes and FlhDC activates the expression of flagella
biogenesis genes. D) QsmR activates the expression of the katG gene and QsmR is
activated by QS. E) QS directly activate the expression of the lipA gene which is
involved in lipase activity.
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For instance, in Fusarium graminearum, a fungal pathogen of wheat and maize,

secreted lipase is an important virulence factor for causing disease (Voigt et al., 2005).

In the rice blight pathogen, Xanthomonas oryzae pv. oryzae xylanase or lipase plays an

important role in its virulence (Rajeshwari et al., 2005). Similarly, secreted lipase is also

an important virulence factor of B. glumae since lipase defective mutants are non-

pathogenic to rice (Devescovi et al., 2007). Lipase is secreted from the outer membrane

into the extracellular medium through the type II secretion pathway (Rosenau and

Jaeger, 2000). In B. glumae the lipA mutant does not produce lipase (Devescovi et al.,

2007) so the lipA gene is necessary for the production of lipase (Figure1[E]). Lipase

production in B. glumae is enhanced by hexadecane and Tween 80 when

supplemented in growth media (BoekeMa et al., 2007).

There are mainly two types of flagellum-mediated motility, direct movement

through a liquid, called swimming (Moens and Vanderleyden, 1996), and over a surface

as a biofilm, called swarming (Harshey, 1994). Another type of motility called twitching

motility mediated by type IV pili, which is described as movement over a smooth surface

is also reported from some other bacteria (Mattick, 2002). Bacteria flagella are important

organelles for movement because it allows them to relocate at the infection sites of the

host. Because of this, flagella are considered as an important organelle for virulence in

plant pathogenic bacteria. The regulation system for flagellar biogenesis in bacteria can

be broadly categorized in two groups based on their master regulators to activate the

expression of flagellum genes. In general, bacteria belonging to the Enterobacteriaceae

family have peritrichous flagellum systems and are often regulated by a transcriptional

regulator FlhDC (Aldridge and Hughes, 2002; Soutourina and Bertin, 2003) while the
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Pseudomonadaceae and Vibrionaceae have polar flagellum systems and are regulated

by the sigma 54-dependent NtrC family of transcriptional activators (Arora et al., 1997).

However, unlike many members of the Pseudomonadaceae family, B. glumae’s

flagellum biogenesis genes are regulated by FlhDC (Kim et al., 2007). Briefly, in B.

glumae, an IclR-type transcriptional regulator called QsmR directly activates the

expression of flhDC, a regulator of flagella biogenesis genes and FlhDC activates the

expression of genes related to flagellum biosynthesis, motor functions and chemotaxis

(Figure 1[C]) (Kim et al., 2007). It was reported that qsmR, fliA and flhDC mutants of B.

glumae are non-motile and toxoflavin sufficient but importantly lost its pathogenicity

(Kim et al., 2007). So, toxoflavin production alone is not sufficient for B. glumae to

cause bacterial panicle blight and flagella dependent motility and chemotaxis are

required also for B. glumae to infect plant tissue efficiently (Kim et al., 2007).

It is believed that the toxic effect of toxoflavin is due to hydrogen peroxides (Chun

et al., 2009). Plants respond to this toxic effect by producing reactive oxygen species

(ROS), so it is important for the pathogen to survive under ROS (Levine et al., 1994).

Bacteria protect themselves from ROS with the help of superoxide dismutase (SOD),

catalases, and  alkyl hydro peroxide reductase (Farr and Kogoma, 1991). These

enzymes include SODs encoded by sodA and sodB, catalases encoded by katE and

katG, glutathione synthetase encoded by gshAB, and glutathione reductase encoded by

gor (Farr and Kogoma, 1991). In B. glumae, catalase activity is governed by the katG

gene whose expression is up-regulated by QsmR, a transcriptional activator for flagella-

gene expression (Figure1[D]) (Chun et al., 2009). The katG mutant of B. glumae

exhibits less disease severity than wild type indicating that catalase activity plays an
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important role in virulence of this pathogen by protecting the bacterial cells from visible

lights (Chun et al., 2009).

In addition to these major virulence factors, the hypersensitive response and

pathogenicity (Hrp) type III secretion system (Kang et al., 2008) and, PehA and PehB

polygalacturonases (Giuliano et al., 2008) were already investigated in respect to their

contribution to virulence of this pathogen. It was shown that Hrp type III secretion

system of B. glumae is required for the full virulence in rice as well as in the colonization

of host tissue (Kang et al., 2008). The hrp mutants of B. glumae still produced toxoflavin

so reduced pathogenicity is due to their impaired growth in plant tissues (Kang et al.,

2008). Burkholderia glumae secretes two very similar endo-polyygalacturonases, PehA

and PehB, however neither PehA nor PehB is directly involved in the initial stage of

pathogenicity (Giuliano et al., 2008). But the authors predicted that these enzymes

could play an important role in providing nutrients to bacterial populations by breaking

down the pectin layers of plant cell wall.

Bacteria have a signaling-molecule-mediated cell-cell communication system for

sensing and response pathways to control the expression of genes in a population,

growth stage dependent manner described as quorum sensing (QS). Many bacteria

coordinate their activities through this intercellular communication system in a

population dependent manner and the term intercellular communication system is given

based on signal molecules (auto-inducers) (Atkinson and Williams, 2009). In bacteria,

QS regulates many behaviors including, virulence, symbiosis, biofilm formation,

antibiotic production, and (Schauder and Bassler, 2001). Different bacteria utilize

different signal molecules for their respective QS system. However, N-acyl homoserine
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lactones (AHLs), oligopeptides and autoinducer-2 (AI-2) are the major group of signal

molecules utilized by bacteria. Mostly AHLs are utilized by Gram negative bacteria

(Agrobacterium, Burkholderia, Pseudomonas, Vibrio) (Aguilar et al., 2003; Fuqua et al.,

1994; Miller and Bassler, 2001; Quinones et al., 2004) and oligopeptides by Gram

positive bacteria (Bacillus subtilis, Staphylococcus aureus) (Grossman, 1995; Ji et al.,

1995) while AI-2 is utilized by both Gram negative and Gram positive bacteria (Surette

and Bassler, 1999). The principle behind quorum sensing or cell-cell communication is,

when a single bacterium releases signal molecules, its concentration is too low for

detection by other bacteria. As sufficient bacterial population are present, the signal

molecules concentration reaches a certain threshold level which allows bacteria to

sense a critical cell mass and thus bind and activate transcriptional activators that

induce the expression of certain genes. In general, the QS system relies on two major

components, diffusible signal molecule and a transcriptional activator protein which

accumulates in a population level dependent manner and activates the expression of

targeted genes. In the genus Burkholderia, QS system is well conserved and is

homologous to luxI and luxR QS of Vibrio fischer which is a major global regulator

system for the production of virulence factors. Particularly in B. glumae, QS is mediated

by AHL signal molecules and typically consists of tofI and tofR genetic elements that are

homologous to luxI and luxR that controls the production of most of the known

virulence factors such as toxoflavin (Kim et al., 2004), lipase (Devescovi et al., 2007),

flagella dependent motility (Kim et al., 2007) and catalase activity (Chun et al., 2009).

The gene tofI encodes AHL synthases for the production of N-hexanoyl-L-homoserine

lactone (C6-HSL) N-octanoyl-L-Homoserine lactone (C8-HSL) and tofR encodes an
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AHL synthase receptor where C8-HSL binds and forms a TofR-C8-HSL complex

(Figure 1[A]) (Kim et al., 2004). In the known toxoflavin production and transport

cascade, TofR-C8-HSL complex activates the expression of toxJ and ToxJ activates the

expression of toxR which in turns activates the expression of both toxoflavin

biosynthetic and transport operons (Figure 1[A and B]) (Kim et al., 2004)). Similarly, the

TofI/TofR QS system is required for the flagella dependent motility in B. glumae which is

crucial for its virulence. TofR-C8-HSL complex activates the expression of qsmR; QsmR

activates the expression of flhDC genes and FlhDC activates the expression of flagella

biogenesis genes (Figure 1[C]) (Kim et al., 2007). TofI/TofR QS is also involved in the

catalase activity of B. glumae by activating the expression of qsmR; QsmR up-regulates

the expression of a catalase gene, katG (Figure 1[D]) (Chun et al., 2009). Not much is

currently know about how QS regulates lipase activity in B. glumae; however it was

shown that TofI/TofR QS is involved in lipase activity through the expression of lipA

gene (Figure 1[E]) (Devescovi et al., 2007). Recently, it was reported that another gene

in the inter-genic region of tofI and tofR, named as tofM, positively regulates toxoflavin

production and is dependent upon the growth conditions of bacterium of the bacterium

(Chen et al., 2012). tofM is homologous to rasM, a negative regulator of AHL synthase

in Pseudomonas fuscovaginae (Mattiuzzo et al., 2011) and conserved among many

species of Burkholderia (Chen et al., 2012).

Burkholderia species are known for having versatile characteristics and variable

genomes which are adapted to diverse ecological niches (Coenye et al., 1999). Each

species of Burkholderia shows wide variation in genome structure within the strain level

and an extraordinary adaptability in colonizing both plant and animal hosts (Francis et
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al., 2013; Lessie et al., 1996). Recently, it was reported that significant phenotypic

variations exist among strains of B. glumae, including variation in virulence,

pigmentation and antifungal activities as well as genetic variations, and these were

detected from DNA fingerprinting analyses by repetitive element sequence-based PCR

(rep-PCR) (Karki et al., 2012b). Moreover, considerable amount of genome plasticity

and unique genome regions were observed between two genomes of B. glumae, 336gr-

1 and BGR1 which were isolated from two different environmental conditions and

geographical locations (Francis et al., 2013). Burkholderia glumae has been isolated

from many field crops such as eggplant, hot pepper, perilla, potato, tomato, sesame,

and sunflower and showed wilting symptoms of bacterial wilts that is usually caused by

Ralstonia solanacearum (Jeong et al., 2003). Similarly, the B. glumae strain isolated

from a human patient having chronic granulomatus disease retained the capability of

causing severe bacterial panicle blight in rice (Devescovi et al., 2007). These

observations indicate that B. glumae is not only a pathogen of rice, but also of many

non-traditional field crops and carries the possibility of being a human pathogen (Karki,

2010).

1.2. Bacterial panicle blight of rice

The disease caused by B. glumae was first described as a grain rooting, seedling

and grain blight of rice in Japan (Goto and Ohata, 1956). Later, the disease was

reported from other parts of the world including Asia, North America, Latin America and

Africa (Cottyn et al., 2001; Jeong et al., 2003; Shahjahan et al., 2000b; Zeigler and

Alvarez, 1989; Zhou, 2013). Louisiana has a long reported history of panicle blighting in

rice and this disease was considered to be attributed to abiotic factors such as high
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temperatures, water stress or toxic chemicals around plants (Groth et al., 1991).

However, during 1996/97 it was reported that panicle blighting of rice was caused by the

bacterium B. glumae (Shahjahan et al., 2000b). It was also reported that another

bacterium, B. gladioli, can cause bacterial panicle blight of rice producing similar

symptoms (Nandakumar et al., 2009). However, B. gladioli is less virulent and isolated

less frequently from plants in naturally infected fields than B. glumae (Nandakumar et

al., 2009). The bacterium, B. glumae is seed borne and can survive in seed storage for

three years under room temperature (Tsushima et al., 1989). Infected seed is

considered the major source of epidemics (Tsushima, 1996).

Bacterial seedling rot caused by B. glumae in young growing seedlings is due to

the excessive growth of bacteria in the epidermis of pummels (Hikichi, 1993). Once the

seedlings are transplanted into the paddy field, B. glumae colonizes the upper leaf

sheath containing the flag leaf and invades the panicles (Hikichi et al., 1994). After rapid

multiplication in the flag leaf, the pathogen forms a linear lesion which has a reddish

brown border and a necrotic and gray area in the middle of the flag leaf which then

extends to the leaf-blade collar (Hikichi et al., 1994). Afterwards, the developing seeds

become blighted, unfilled, aborted, and the panicle branches stay green after the

unaffected grain matures. The major visible symptoms of bacterial panicle blight of rice

in the field and under greenhouse conditions are spikelet sterility, upward panicles and

discoloration of the grains (Figure 1.2) (Nandakumar et al., 2009).

Burkholderia glumae lives on rice plants during the growing season, and the

pathogen on the leaf sheath serves as a primary source of inoculum for disease
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Figure 1.2. Bacterial panicle blight symptoms on rice. A) Grayish lesion developed in the
flag leaf sheath. B) Typical panicle blight symptoms with each panicle showing
discoloration. C) Secondary BPB infection in panicles. D) Typical symptoms of BPB, in
which severely infected panicles remain upright with grains unfilled.
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development (Tsushima et al., 1991) (Tsushima et al., 1991; Tsushima and Naito,

1991). Burkholderia glumae was isolated from the rice leaf blade only one day after

inoculation however was isolated from sheath blades irrespective of sampling time

(Tsushima et al., 1991). These findings suggest that B. glumae cannot live epiphytically

on the leaf blade surface but survives in the leaf sheath latently. Burkholderia glumae

moves from lower leaves to upper leaves as the rice plant develops (Tsushima et al.,

1991). Populations of B. glumae on individual leaf sheath were reported to vary from

one leaf sheath to another, showing a log normal distribution, and that the population on

the upper leaf sheath decreased drastically over time (Tsushima, 1996). It was

concluded that the B. glumae population in the flag leaf one week before heading is

important for disease development (Tsushima, 1996).

A bacterial panicle blight (BPB) epidemic is the collective result of host

susceptibility, virulent pathogen density and favorable environmental conditions. Rice is

the only host of B. glumae causing BPB and susceptibility changes with time. Most of

the rice cultivars grown in Louisiana and other southern states are susceptible to BPB;

however Jupiter and LM-1 showed some partial level of resistance (Groth et al., 2007;

Rush et al., 2007). Rice planted later in the season and fertilized with high nitrogen

rates tends to have more disease (Personal communication, Dr. Donald Groth). High

night temperatures and humidity is the major environmental factors that cause

epidemics of BPB. It was reported that the night temperature above 32 C will result in

outbreak of BPB (Nandakumar et al., 2009). Similarly, high relative humidity (RH) >90%

at the flowering stage is critical for disease development (Tsushima, 1996; Tsushima,

2011). The percentage of diseased spikelets increases if the rice plants are kept under
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high RH, and will be lower if kept under low RH. Moreover, the longer the incubation of

diseased panicles in a moist chamber the higher the population of B. glumae (Tsushima

and Naito, 1991). For the development of BPB, a high inoculum density of a virulent

isolate of B. glumae is required and disease incidence will increase with  an increase of

density (Tsushima et al., 1985). Burkholderia glumae was recovered <107 colony

forming units (cfu) from symptomless rice panicles and >109 cfu from visibly diseased

grains from one gram fresh weight of leaf sheath during flowering stage (Tsushima and

Naito, 1991). The stage of flowering of rice affects the development of BPB. The highest

level of disease occurred when the pathogen is inoculated at 0-3 days of flowering;

however, disease incidence became very low when the pathogen was inoculated 2 days

before or 4 days after flowering (Tsushima et al., 1995). This suggests that BPB has

very narrow window for development and that a high relative humidity at this stage is

crucial for the disease development. Severely infected panicles served as a source of

primary inoculum, and a higher disease severity developed closer to the source of

primary inoculum (Tsushima and Naito, 1991). The earlier occurrence of diseased

panicles and the higher disease severity of the panicles leads to the development of

larger foci (Tsushima and Naito, 1991).

Despite the huge economic importance of BPB in rice producing areas around

the world, few studies have been conducted to develop efficient control measures.

Oxolinic acid is used as a chemical for controlling seedling rot and grain rot of rice in

Japan; however, this chemical is not registered in US (Nandakumar et al., 2009). Pre-

treatment of seeds before sowing, and spraying during heading stage of rice with

oxolinic acid (OA) significantly reduced the population of B. glumae, and showed high
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efficacy for the control of seedling rot and grain rot of rice (Hikichi, 1993; Hikichi and

Egami, 1995). However, OA resistant B. glumae were isolated from OA treated fields

(Hikichi et al., 1998). The incidence of seedling rot disease caused by a virulent strain of

B. glumae was reduced by the pre-treatment of natural non-pathogenic strains of B.

glumae (Furuya et al., 1991). Recently, the use of bacteriophages to lyse B. glumae

cells and suppress the seedling rot disease of rice was reported in Japan (Adachi et al.,

2012). One bacteriophage (BGPP-Ar), was more effective than existing chemical control

method to control the seedling rot and seedling blight diseases of rice (Adachi et al.,

2012). Apart from these control measures, no other methods have been reported.
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CHAPTER 2
GENETIC BASIS OF DARK PIGMENTS PRODUCTION IN

BURKHOLDERIA GLUMAE

2.1. Introduction

The bacterial genus Burkholderia not only has the capability to adapt to diverse

ecological niches but also exhibits remarkable diversity and versatility in extracellular

products (Vial et al., 2007). Burkholderia spp secrete a wide range of enzymes with

proteolytic, lipolytic and hemolytic activities. Several species of Burkholderia also

produce strain specific toxins, antibiotics, antifungal compounds, siderophores, melanin

type pigments and dark pigments (Vial et al., 2007). There are some detail studies

regarding the production of melanin type pigment in Burkholderia and their role in

survival fitness against adverse environments (Zughaier et al., 1999). More specifically,

melanin-producing strains of B. cepacia that could attenuate the oxidative burst of the

human monocyte cell line MonoMac-6 (Zughaier et al., 1999) and melanin from B.

cenocepacia is responsible for protecting  the organism from oxidative stresses (Keith

et al., 2007). Melanin is not required for growth and development of the species,  but it

offers a survival advantage over non-producing strains in adverse conditions, such as

exposure to UV radiation, free radicals, and oxidants (Lopez-Serrano et al., 2004). In

most cases, the color of melanin is brown or black and it can be produced by a variety

of microorganisms, fungi and helminthes (Nosanchuk and Casadevall, 1997).

1

This chapter 2 (section 2.2) previously appeared as “[Karki, H. S., Barphagha, I. K., and
Ham, J. H. A conserved two-component regulatory system, PidS/PidR, globally
regulates pigmentation and virulence-related phenotypes of Burkholderia glumae. 2012.
Molecular Plant Pathology 13, 785-794. It is reprinted by permission of [John Wiley and
Sons—see the permission letter for proper acknowledgment phrase.]”

1



17

There are four classes of melanins, eumelanins, phaeomelanins, allomelanins, and

pyomelanins, and that are derived from diverse sources. Eumelanins are derived from

quinines and free radicals, phaeomelanins from tyrosine and cysteine, allomelanins

from nitrogen-free precursors, and pyomelanins from catabolism of tyrosine through p-

hydroxyphenylpyruvate and homogentistate (HGA) (Brandt and Warnock, 2003).

Several genera of bacteria including Aeromonas, Bacillus, Legionella Pseudomonas,

and Streptomyces can synthesize melanin, of which pyomelanin is the most common

class synthesized from HGA intermediates (Alviano et al., 2004; Blasi et al., 1995).

Similarly, homogentistate (HGA) is the essential precursor for the production of a

melanin-like brown pigment in B. cenocepacia. It was reported that 4-

hydroxyphenylpyruvic acid dioxygenase (hppD) activity, is encoded by the hppD gene,

is necessary for melanin biosynthesis. A hppD mutant was resistant to paraquat

challenge but sensitive to H2O2 (Keith et al., 2007). Synthesis of melanin is regulated by

several melanogenic proteins like tyrosinase and tyrosinase related proteins (TRP-1

and TRP-2) and their transcription factors (Jimenez et al., 1991). Tyrosinase is a key

enzyme of melanin biosynthesis. It catalyzes three different types of reaction; first is

hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA), second the oxidation of

DOPA to DOPA quinone, and finally oxidation of 5,6-dihydroxyindole (DHI) to indole-

quinone (Hearing and Tsukamoto, 1991).

Production of melanin is universal phenomenon for many micro-organisms to

adapt to variable environmental conditions (Plonka and Grabacka, 2006). Melanin is

reported as a virulence factor in several species of bacteria, and it is hypothesized that,

melanin production was an evolutionary achievement needed for the development of for
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free living bacteria. Vibrio spp. found in free living or parasitic contain both

pyomelanogenetic and eu/pheomelanogentic pathways. Sometimes both pathways are

active in one organism at the same time. The strains of V. cholera found in free living

state are generally amelanotic or produce pyomelanin (Kotob et al., 1995). Some of the

free living and pathogenic strains of P. aeruginosa, Hypomonas spp. and Shewanelia

colwelliana produce pyomelanin (Shivprasad and Page, 1989). Ligiolysin (LLy) is one of

the virulence factors of Legionella pneumophilia which causes legionnaire’s disease

(LD) and Pontiac fever, that is responsible for the fluorescent properties and pigment

production of the pathogen (Wintermeyer et al., 1991). Interestingly, this protein LLy, is

80% similar to HPPD which is key for melanin synthesis in Pseudomonas spp. (Steinert

et al., 2001) and Burkholderia cenocepacia (Keith et al., 2007). In B. cepacia, the

production of melanin is related to increased virulence. Burkholderia species are known

to produce large varieties of extracellular products that are correlated with an ecological

diversity (Vial et al., 2007).  Most of the studies have been done with members of the

Bcc complex, mainly B. cepacia. Few studies has been done on B. glumae and the

production of extracellular enzymes, toxin, antibacterial and antifungal compounds

secreted.

Recently, we reported that some strains of B. glumae produced dark pigments in

casamino acid-peptone-glucose (CPG) medium. The major objective of this study was

to understand the genetic basis of dark pigment production in B. glumae by using

transposon mutagenesis. Based on the above studies of what factors affect the

production of dark pigments, enzymes, toxins, antibacterial and antifungal compounds

of B. glumae that will provide a better understanding of whole genus Burkholderia.
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A list of enzymes, toxins, antibacterial and antifungal compounds produced by the

different species of Burkholderia are provided.

 Extracellular enzymes: Here are the lists of extracellular enzymes.

 Protease: A wide range of micro-organisms including the majority of Bcc isolates

secrete proteases. These are involved in pathogenicity, regulation of metabolism,

gene expression and enzyme modification (Rao et al., 1998).

 Lipase: Many Burkholderia spp. including B. glumae produce lipases that are

involved in the breakage of cell wall components and act as a virulence factor

(Devescovi et al., 2007).

 Polygalacturonase: Burkholderia caryophylli, B. cepacia, B. gladioli and B.

glumae secrete, pectin-degrading enzymes called polygalacturonase, that are

involved  in invading the pathogen inside host tissues (Goh et al., 2004).

 Phospholipase C (PLC): Burkholderia ambifaria, B. cenocepacia, B. multivorans,

and B. vietnamiensis isolates from cystic fibrosis (CF) patients secret

phospholipase (D'Allicourt Carvalho et al., 2007) that are involved in cleaving the

phosphodiester bond of phospholipids.

 Rhamnolipids: These are glycolipidic surface- active molecules produced by

several species of bacteria. Rhamnolipids also are secreted by Pseudomonas

aeruginosa, are involved in the swarming activity (Caiazza et al., 2005) and

virulence factors (Zulianello et al., 2006). Rhamnolipids were recently reported to

be secreted from a B. glumae strain BGR1 (Costa et al., 2011) but their role in

virulence has not been investigated.

 Toxins: Here are the lists of toxins.
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 Toxoflavin: Toxoflavin, a bright yellow pigment is a major virulence factor of B.

glumae and is absolutely necessary for causing diseases in rice and other field

crops (Jeong et al., 2003; Kim et al., 2004). Toxoflavin has antibacterial,

antifungal and herbicidal effect as well as anti-cancer activities (Goh et al., 2004).

 Tropolone: Tropolone is a phytotoxin, non-benzenoid aromatic compound.  It is

produced by Pseudomonas and Burkholderia spp. including B. glumae and B.

plantarii.

 Rhizobioxine: This is an enol-ether amino acid that is produced by the plant

pathogenic bacterium B. andropogonis (Yasuta et al., 1999). Cholorotic

symptoms produced by this pathogen are mainly due to the production of this

compound in planta.

 Rhizoxin: Burkholderia rhizoxina produces rhizoxin that is responsible for rice

seedling blight, and is also involved in the inhibition of mitosis and cell cycle

arrest (Partida-Martinez and Hertweck, 2007).

 Antifungal and antimicrobial compounds: Here are lists of antifungal and

antimicrobial compounds.

 Pyrrolnitrin: Pyrrolnitrin is a known antifungal as well as antibacterial compound

produced by B. cepacia (Hwang et al., 2002) and other species of Pseudomonas

(Burkhead et al., 1994). Biosynthesis of pyrrolnitrin originates from several steps

of the tryptophan synthesis pathway (Kirner et al., 1998).

 Xylocandin Complex: Xylocandin, also known as cepacidines A and B is

produced by B. pyrrocinia ATCC 39277(Bisacchi et al., 1987) and B. cepacia

AF2001 (Lee et al., 1994). These families of compounds showed antifungal
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activities against Pythium ultimum (Lee et al., 2000) and Sclerotium rolfsii (Kang

et al., 2004).

 Quinoline derivatives: Burkholderia cepacia PCII produces several quinoline

derivatives. Theses have promising antifungal activity against Phytophthora

capsici, the cause phytophthora blight of red pepper (Moon et al., 1996).

 Glidobactins: Burkholderia sp. K481-B101 and Burkholderia cepacia have shown

a wide range of inhibitory activities against fungi and yeast as well as antitumor

activities due to these enzymes (Shoji et al., 1990).

 CF661: Burkholderia cepacia CF66 produces this antifungal compound against

soil borne fungi such as Aspergillus flavus, Fusarium oxysporum and R. solani

(Quan et al., 2006).

 Altericidins: These compounds produced by B. cepacia inhibit the conidial

germination of Alternaria kikuchiana conindia KB-1(Kirinuki et al., 1984).

 Cepacins A and B: B. cepacia SC11 783 produces cepacins A and B that show

antibacterial activities against Staphylococci and other Gram negative

microorganisms (Parker et al., 1984).

 Hydrogen cyanide: Hydrogen cyanide is produced by several bacterial species

as an inhibitor of  cytochrome C oxidase (Blumer and Haas, 2000). The

Burkholderia sp. strain MSSP produces hydrogen cyanide but its role has not yet

been verified (Pandey et al., 2005).

 Phenazine: Phenazine, a secondary metabolite, is produced by several species

of Burkholderia, Pectobacterium and Pseudomonas etc. This metabolite

contributes to the ecological fitness as well as pathogenicity (Pierson and
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Pierson, 2010) and is known for antibacterial, anti-tumor and anti-parasitic

activities (Laursen and Nielsen, 2004).

 Phytohormones: Along with other genera (Acetobacter, Azospirrrillum, Bacillus

and Pseudomonas), Burkholderia belongs to the plant growth promoting

rhizobacteria (PGPR) group (Dobbelaere et al., 2003). This group of bacteria can

promote the growth of plants by synthesis of phyto-hormones, mineralization,

enhancing the uptake of nutrients, N2-fixation etc. Burkholderia vietnamiensis

was first reported as a N2 fixing bacteria from the genus Burkholderia (Gillis et al.,

1995).  After wards other spp. of Burkholderia were reported to be involved in N2

fixation (Burkhead et al., 1994). Several strains of B. cepacia and B.

vietnamiensis isolated from rhizosphere can produce auxins and enhance the

plant growth (Cornish and Page, 1995).

2.2. Materials and Methods

2.2.1. Bacterial culture and DNA manipulation

The bacterial strains and plasmids used this study are listed in Table 3.2

(Chapter 3). Escherichia coli and B. glumae strains were routinely grown in Luria

Bertani (LB) broth media (Sambrook and Russell, 2001) at 37 and 30°C. KB and CPG

agar media (Schaad et al., 2001) were used for testing toxoflavin and pigment

production by B. glumae, respectively. Antibiotics were included in the media as

necessary at the following concentration: ampicillin (100 μg/ml), gentamycin (20 μg/ml),

kanamycin (50 μg/ml), and nitrofurantoin (100 μg/ml). Standard protocols (Sambrook

and Russell, 2001) were used for general DNA manipulation procedures, including

extraction, restriction digestion, ligation, PCR, and agarose gel electrophoresis. DNA
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sequencing was performed by either the DNA sequencing facility (Gene lab) at the LSU

Veterinary School (Baton Rouge, Louisiana, USA) or Macrogen Inc. (Seoul, Korea).

Oligonucleotides for PCR and DNA sequencing were purchased from Bioneer Inc.

(Alameda, CA, USA). Transformation of bacterial cells with plasmid DNA was made by

either electroporation at 200 Ω/1.5 kV using a GenePulser (Bio-Rad Laboratories,

Hercules, CA, USA) or triparental mating (Figurski and Helinski, 1979).

2.2.2. Random mutation of B. glumae with mini-Tn5gus

Overnight cultures of B. glumae strain 411gr-6 and E. coli S17-1 λpir (pUT:::mini-

Tn5gus) were mixed in 3:1 ratio (v/v), and then 1 ml of the bacterial mixture was

centrifuged at 13000 rpm for 1 min  in a microcentrifuge tube. Following centrifugation,

the supernatant was discarded and the pellet was dissolved in 50 µl LB broth, spotted

on LB plates and incubated overnight at 30°C. The mated bacteria were then

resuspended in 1 ml of LB broth, and 100 µl aliquots of the bacterial suspension were

spread on CPG agar plates containing nitrofurantoin and kanamycin. After 2 days of

incubation at 30°C, pigment-deficient or over sufficient mutants were screened on the

basis of their pigmentation phenotypes on CPG agar medium.

2.2.3. Identification of genes disrupted by mini-Tn5gus

The Flanking sequences of mini-Tn5gus integrated into the mutant genomes were

amplified following the method developed by Kwon et al. (Kwon and Ricke, 2000).

Briefly, the Y-linker having cohesive end of NlaIII digestion was made by annealing two

oligonucleotides, 5’-

TTTCTGCTCGAATTCAAGCTTCTAACGATGTACGGGGACACATG-3’ and 5’-

TGTCCCCGTACATCGTTAGAACTACTCGTACCATCCACAT-3’. This Y-linker was then
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ligated to the genomic DNA of a mutant digested with NlaIII. The ligated DNA was

subjected to PCR with the Y-linker primer, 5’-CTGCTCGAATTCAAGCTTCT-3’, and the

Tn5 specific primer, 5’-GGCCAGATCTGATCAAGAGA-3’, under the following reaction

cycle: 95°C for 2 min followed by 30 cycles of 95°C for 30 s, 58°C for 1 min, and 70°C

for 1 min, and the final extension at 70°C for 5 min. A Y-linker for PstI digestion made

with two oligonucleotides, 5’-

TTTCTGCTCGAATTCAAGCTTCTAACGATGTACGGGGACACTGCA-3’ and 5’-

GTGTCCCCGTACATCGTTAGAACTACTCGTACCATCCACAT-3’ was used for

mutants that could not identified with NlaIII digestion scheme. The amplified PCR

products from this procedure were purified using a QuickClean 5M PCR Purification Kit

(GenScript, Piscataway, NJ, USA) and sequenced for identification of genes mutated by

min-Tn5gus insertion. To identify the mutated genes of the screened B. glumae

mutants, the flanking regions of  the inserted mini-Tn5gus were amplified using a

previously developed technique (Kwon and Ricke, 2000), sequenced, and then BLAST

searched against the genome sequence of the fully sequenced B. glumae strain, BGR1

(Lim et al., 2009).

2.3. Results

We used transposon mutagenesis to identify genetic elements required for the

pigmentation of B. glumae strain 411gr-6. Then the mutants showing altered

pigmentation on CPG agar medium plates were compared to the parental strain and

screened for further study. With this procedure, I screened about 30,000 mutants and

50 mutants showing no, less and over production of pigment were selected for further

study. All of the mutant derivatives showing altered pigment production phenotypes
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were confirmed at least twice in CPG agar plates. Disrupted genes were identified by

sequencing the flaking regions of mini-Tn5gus insertion sites in eighteen mutants (Table

2.1). Among these pigment-deficient mutant LSUPB112 and LSUPB115 were found to

be disrupted by insertion of mini-Tn5gus in an open reading frame (ORF) encoding a

putative sensor histidine kinase (SHK) (Table 2.1). The other mutants showing no

pigment production, LSUPB114 and LSUPB116, were found to have mini-Tn5gus

insertion in ORFs encoding a putative 3-phosphoshikimate 1-carboxyvinyltransferase

(EC 2.5.1.19) and a putative 3-dehydroquinate synthase (EC 4.2.3.4), respectively

(Table 2.1). Interestingly, five mutants showing no pigment production LSUPB464,

LSUPB465, LSUPB466, LSUPB468 and LSUPB470 had mini-Tn5gus inserted in the

open reading framing encoding a putative LuxR family sensor regulator homolog TofR,

a receptor of AHL signal molecules (Table 2.1). In addition, another mutant showing no

pigment production, LSUPB467, was found to have mini-Tn5gus insertion in ORFs

encoding a transcriptional regulator, AsnC family protein (Table 2.1). The mutant

showing reduced pigments production than the parental strain 411gr-6, LSUPB118 and

LSUPB119 and their disrupted ORFs were predicted to encode a quinoprotein glucose

dehydrogenase and a succinate dehydrogenase iron-sulfur subunit, respectively (Table

2.1). The other mutants LSUPB461 and LSUPB463 showed reduced pigment

production had the mini-Tn5gus inserted in the open reading framing encoding a

succinylarginine dihydrolase and glycosyl transferase respectively. Another group of

mutant showing over production of pigments compared to parental strain 411gr-6,

LSUPB121, LSUPB122, LSUPB123 and LSUPB462 had mini-Tn5gus inserted in the

ORFs encoding ATP-dependent Clp protease ATP-binding subunit clpA (Table 2.1).
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Table 2.1. Description of mutated genes in the mini-Tn5gus derivatives of B.
glumae 411gr-6 showing altered pigment production phenotypes.

Strain
name

Gene ID  of
mutated gene

Gene namea Putative product /
function

Pigment
production

LSUPB112
LSUPB115

bglu_1g00490 (Karki et al.,
2012a)

Sensor histidine kinase /
Signal perception and
transduction

No

LSUPB114 bglu_1g08780 aroA (Duncan
et al., 1984)

3-phosphoshikimate 1-
carboxyvinyltransferase /
Shikimic acid pathway

No

LSUPB116 bglu_1g03040 aroB (Millar
and Coggins,
1986b)

3-dehydroquinate
synthase / Shikimic acid
pathway

No

LSUPB118 bglu_2g12650 Gdh (Cleton-
Jansen et al.,
1988)

Quinoprotein glucose
dehydrogenase / Glucose
metabolism

Reduced

LSUPB119 bglu_2g08260 sdhB
(Darlison and
Guest, 1984)

Succinate
dehydrogenase iron-
sulfur subunit /
Tricarboxylic acid (TCA)
cycle

Reduced

LSUPB461 bglu_1g10140 astB
(Tocilj et al.,

2005)

Succinylarginine
dihydrolase/ Arginine
catabolism

Reduced

LSUPB462
LSUPB121
LSUPB122
LSUPB123

bglu_1g28810 clpA
(Gottesman
et al., 1990)

ATP-dependent Clp
protease
ATP-binding subunit clpA/
Degradation of unfolded
or abnormal proteins

Over

LSUPB463 bglu_1g06540 wbdN
(Hayashi et
al., 2001)

Glycosyl
transferase/Glycosidic
bond formation

Reduced

LSUPB467 bglu_1g00540 asnC (Kölling
et al., 1988)

Transcriptional regulator,
AsnC family/Cellular
metabolism

No
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(Table 2.1 continued)

Strain name Gene ID  of
mutated gene

Gene name a Putative product /
function

Pigment
production

LSUPB464
LSUPB465
LSUPB466
LSUPB468
LSUPB470

bglu_2g14470 tofR (Kim et
al., 2004)

LuxR family sensor
regulator/
Quorum sensing

No

a: All the listed gene names except pidS and tofR are from original studies with E. coli.

Figure 2.1. Pigmentation phenotypes of B. glumae strain 411gr-6 and its mutant
derivatives. The pigment production of mutants were compared with wild type 411gr-6
and classified as no pigment (LSUPB114 and LSUPB116), reduced pigment
(LSUPB118 and LSUPB119) and over production of pigment (LSUPB121). B. glumae
strains were streaked on CPG plates and incubated at 30 °C for 48 h.
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2.4. Discussion

Random transposon mutagenesis has been widely used to identify the genetic

elements underlying the virulence mechanisms of different plant pathogenic bacteria. In

this study, we used a mini-Tn5gus transposon to investigate the genetic basis of

pigment production by B. glumae strain 411gr-6. We predicted some obvious mini-

Tn5gus insertion bios during this study since five tofR and four clpA mutants were

found. However, ten genes were identified as being involved in the pigment production

phenotype of B. glumae strain 411gr-6. Among identified genes, some were already

known to be related to the pathogenesis of this pathogen. So, it is of interest to know

how pigment production and pathogenesis is related in B. glumae.

To identify the different genetic elements underlying the altered pigment production,

pigment production phenotypes were categorized in three groups: 1) no pigment

production 2) reduced pigment production and 3) over pigment production. In the

category of mutant showing no production of pigments, two mutants LSUPB112 and

LSUPB115 where mini-Tn5gus was inserted at two different locations within the ORF

encoding putative sensor kinase of two component regulatory systems (TCRSs). Based

on the initially observed pigment-deficient phenotypes of LSUPB112 and LSUPB115,

the putative genes for the SHK and the RR were named pidS (pigment-deficient SHK)

and pidR (pigment-deficient RR), respectively. In many prokaryotes, TCRSs play a

pivotal role in signal perception and transduction for a wide range of cellular functions

involved in metabolism, development, and pathogenesis (Laub and Goulian, 2007). This

is the first report of TCRSs composed of PidS histidine kinase and the PidR response

regulator being identified as essential regulatory systems for any type of phenotypes in
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B. glumae. Similarly, LSUPB114 and LSUPB116 with mini-Tn5gus insertions in ORFs

encoding two putative metabolic enzymes for the shikimate pathway (3-

phosphoshikimate 1-carboxyvinyltransferase and 3-dehydroquinate synthase

respectively), and these mutants were failed to produce pigments. Interestingly, both of

these enzymes are components of the shikimic acid pathway (Duncan et al., 1984;

Millar and Coggins, 1986a), suggesting that this metabolic pathway produces important

precursor(s) for pigment production in B. glumae. Biosynthesis of pyrrolnitrin originates

from several steps of the tryptophan synthesis pathway (Kirner et al., 1998). Two

pigment deficient mutants had transposon insertion in genes in the aromatic compound

synthesis pathway.

We identified five different pigment deficient mutants LSUPB464, LSUPB465,

LSUPB466, LSUPB468 and LSUPB470 and these mutants had mini-Tn5gus inserted in

the open reading framing encoding a putative LuxR family sensor regulator homolog

TofR. The tofR is a co-gene of quorum sensing system of B. glumae which functions as

a receptor for homoserine lactone. The quorum sensing system in B. glumae is a global

regulatory system that controls most of the known virulence factors such as toxoflavin

(Kim et al., 2004), lipase (Devescovi et al., 2007), flagella dependent motility (Kim et al.,

2007) and catalase activity (Chun et al., 2009). It is very interesting to know that

involvement QS in pigment production phenotype of B. glumae. In addition, another

mutant showing no pigment production, LSUPB467 was found to have mini-Tn5gus

insertion in ORFs encoding a transcriptional regulator, AsnC family protein. Proteins

belonging to the Lrp/AsnC are widely distributed in prokaryotes, including bacteria and

archaea (Charlier et al., 1997). Most of the genes that belong to the Lrp/AsnC regulon
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are widely involved in the transport, degradation and biosynthesis of amino acids while

few proteins also are involved in the production of porins, pili, sugar transporters and

nucleotide transhydrogenases (Newman and Lin, 1995). The mutant LSUPB467 was

also defective in toxoflavin production (data not shown). Based on this findings,

understanding how the transcriptional regulatory, AsnC family protein regulates both

toxoflavin and pigment production in B. glumae might be useful in developing novel

ways to control this pathogen.

Meanwhile, four mutants LSUPB118, LSU119, LSUPB461 and LSUPB463,

showed partial defects in pigmentation. LSUPB118 had a mini-Tn5gus insertion in a gdh

homolog encoding a quinoprotein glucose dehydrogenase, while LSUPB119 had a

sdhB homolog encoding a succninate dehydrogenase iron-sulfur subunit. Interestingly,

both quinoprotein glucose dehydrogenase and succinate dehydrogenase are involved in

electron transport for the oxidative phosphorylation producing ubiquitol by reducing

ubiqinone during their enzymatic reactions (Elias et al., 2001; Hagerhall, 1997). We

speculate that reduction power created by these oxidoreductases might contribute to

pigment production in B. glumae. Similarly, other mutants showing reduced pigment

phenotypes are LSUPB461 and LSUPB463 which had mini-Tn5gus insertion in astB

homolog encoding succinylarginine dihydrolase and wbdN homolog encoding glycosyl

transferase, respectively. Succinylarginine dihydrolase is the second enzyme of the

arginine succinyltransferase pathway leading to the synthesis of arginine (Tocilj et al.,

2005). Since arginine is an energy rich amino acid that can supply carbon, nitrogen and

energy to various bacteria in different environment, understanding how arginine

biosynthesis pathway is related to pigment production in B. glumae might help in better
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understanding of physiology of this bacterium. Another enzyme, glycosyl transferase, is

involved in biosynthesis of a variety of oligosaccharides, polysaccharides and

glycoconjugates and mediates wide range of functions from structure and storage to

signaling (Tarbouriech et al., 2001). Several QS and glycosyl transferase mutants are

deficient in pigment production. Interestingly, both of these enzymes are part of

signaling pathway in bacteria, so understanding of how QS and glycosyl transferase are

involved in pigment production might help understanding a virulence related phenotype

in B. glumae.

Another group of mutants, showing over production of pigments compared to the

parental strain 411gr-6 were LSUPB121, LSUPB122, LSUPB123 and LSUPB462.

These had a mini-Tn5gus inserted in the ORFs encoding ATP-dependent Clp protease

ATP-binding subunit clpA. Clp is a protease composed of two units, ClpA and ClpP, that

degrades casein and other proteins in the presence of ATP (Hwang et al., 1987;

Katayama-Fujimura et al., 1987). Two subunits ClpA and ClpP are functionally different

proteins and products of separate genes. Clp protease degrades protein into a large

number of acid soluble peptides in a process completely dependent of ATP (Gottesman

and Maurizi, 1992). Interestingly, our results showed that Clp protease is a negative

regulator of pigment production in B. glumae, so Clp protease is involved in degradation

of pigment, which might be useful for developing control measures.

In conclusion, I developed a lab protocol of transposon mutagenesis for B.

glumae based on pigment production phenotype. I also report a genome-wide

identification of genes related to pigment production this bacterium. I screened about

thirty thousand mutants and fifty mutants were selected for further study. I uncovered
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ten genes related to dark pigment production, of which most of them were previously

unknown in any distinguishable phenotypes of B. glumae. I hope this study provide a

new insight into the genetic determinants and regulation mechanisms of pigment

production in B. glumae.
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CHAPTER 3
ROLE OF TWO COMPONENT REGULATORY SYSTEM IN VIRULENCE

OF BURKHOLDERIA GLUMAE

3.1. Introduction

To survive against fluctuating environmental conditions, bacteria have to sense

and response to surrounding environments accordingly. They use their two-component

signal transduction systems to sense, respond, and adapt to a wide range of

environments, stressors, and growth conditions (Skerker et al., 2005). These systems

are well known and characterized as one of the key signaling modalities in the bacterial

kingdom, as well as being present in many other fungi, slime molds, and plants (Stock

et al., 2000). Two component regulatory systems (TCRSs) primarily consists of

membrane-integrated histidine kinases (HK) and a cytoplasmic response regulator

(RR). HK perceives a wide range of signals from environments that includes

temperature, nutrients, pH or presence of toxic compounds, sugars, peptides,

antibiotics, and quorum-sensing signals (Laub and Goulian, 2007; Stock et al., 2000).

HK also auto-phosphorylates on a conserved histidine residue (Laub and Goulian,

2007). The phosphoryl group is then transferred to a conserved aspartate residue of a

cognate response regulator. The RR phosphorylates within the receiver domain and

leads to the activation of an output domain that ensures the change of physiology of the

2

This chapter 3 (section 4.2, 4.3 and 4.4) previously appeared as “[Karki, H. S.,
Barphagha, I. K., and Ham, J. H. A conserved two-component regulatory system,
PidS/PidR, globally regulates pigmentation and virulence-related phenotypes
of Burkholderia glumae. 2012. Molecular Plant Pathology 13, 785-794. It is reprinted by
permission of [John Wiley and Sons—see the permission letter for proper
acknowledgment phrase.]”

2



34

bacterium by altering gene expressions (Laub and Goulian, 2007). The response

regulator has been reported to bind DNA and function as a transcription factor due to its

phosphorylation properties (Nikolskaya and Galperin, 2002). Interestingly, there are

other types of output domains also that enable their response regulators to mediate

protein–protein interactions or to perform enzymatic functions (Falke et al., 1997). Many

HKs are bi-functional and possess both phosphorylation and phosphatase activity of

their cognate RR. Phosphatase activity enables HK to dephosphorylate RRs (Lois et al.,

1993). The bi-functional HKs are commonly present in phospho-transfer pathways

where they need to shut down quickly. A variant of the two-component system is the

phospho-relay system where a hybrid HK auto-phosphorylates, transfers the phosphoryl

group to an internal receiver domain, instead to a separate RR protein. The histidine

phosphotransferase (HPT) receives the phosphoryl group and subsequently, transfer to

a terminal RR, which can induce the desired response (Hoch and Varughese, 2001;

Varughese, 2002). HKs of both prokaryotes and eukaryotes share similar types of basic

signaling components with diverse sensing domain and highly conserved kinase core

that has a unique fold, distinct from that of the Ser/Thr/Tyr kinase superfamily (Stock et

al., 2000). Input signals to sensing domain modulate the overall activities of kinase

domain. HKs undergo an ATP-dependent auto-phosphorylation in kinase core of

conserved His-residue. Then a phosphoryl group from the phospho-HK is transferred to

a conserved Asp-residue in its regulatory domain. So, the control of TCRs is largely

dependent upon the ability of HK to regulate the phosphorylation state of the

downstream RR. Generally, HK usually have an N-terminal ligand-binding (sensing)

domain and a C-terminal kinase domain. The ligand-binding domain varies from one HK
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to another in length and amino acid sequences, indicating a detection of different

environmental stimuli. The kinase domain shows higher sequence conservation and

contains invariant histidine residues with short stretches of conserved amino acids.

However, the larger HKs consist of five or six structurally and functionally unique

domains. Despite the diversity, HKs can be roughly divided into two classes: named

orthodox and hybrid kinases (Alex and Simon, 1994). Most of the orthodox HKs are

divided into a periplasmic N-terminal sensing domain and a cytoplasmic C-terminal

catalytic region that is designated as the kinase core which is best illustrated in E. coli

EnvZ protein (Khorchid et al., 2005). Hybrid kinases are found in some prokaryotic and

most all eukaryotic systems. Hybrid kinases contain multiple phosphodonor and

phosphoacceptor sites and use multistep phosphorelay schemes. E. coli ArcB is a well-

known representative of most hybrid kinases that is composed of two N-terminal trans-

membrane regions followed by a kinase core and a second His-containing region

termed as a His-containing phosphotransfer (HPt) domain (Ishige et al., 1994). A kinase

core is the characteristics feature of the HK family which is composed of a dimerization

domain and an ATP/ADP-binding phosphotransfer or catalytic domain (Stock, 1999).

The length of the kinase core is about 350 amino acids and it is responsible for binding

ATP and directing kinase transphosphorylation. The conserved His substrate is the

central feature of the H boxis that is the part of the dimerization domain. A small number

of two-component systems contain HPt domains. HPt domains are about 120 amino

acids in length and are part of hybrid kinases in prokaryotes, whereas in eukaryotes,

they are found as separate proteins. HPt domains contain a His residue which enable

them to participate in phosphoryl transfer reactions.
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In most of the prokaryotes, RRs are the terminal component of signal

transduction systems that catalyzes the phosphoryl transfer from the phospho-His of the

HK to a conserved Asp in its own regulatory domain. Many of the RRs consist of two or

more domains named as a conserved N-terminal regulatory domain and a variable C-

terminal effector domain. Most of the RRs act as transcription factors with DNA binding

effector domains. The regulatory domain of RRs has three activities: first to

phosphorylate HKs and transfer a phosphoryl group to Asp residue. Second, they

catalyze auto-dephosphorylation and the third is regulation of effector domains (West

and Stock, 2001). The regulatory domain often called a receiver domain also can be

found in hybrid HKs. In this case, it is neither physically connected with an effector

domain nor does have regulatory role in effector domain functions (West and Stock,

2001). The regulatory domain, of RR is well represented by chemotaxis protein CheY

of Salmonella typhimurium that contains a cluster of conserved Asp residues, which

bind to Mg2+ and form the active site for phosphoryl transfer (Sanders et al., 1989).

There is great diversity in the effector domain of RR in respect to both structure and

function. The majority of effector domains have DNA-binding activities that function as

an activator or repressor of specific genes. OmpR, is a well-characterized member of

the largest subfamily of RRs that functions as both an activator and repressor to

regulate differentially the expression of the ompC and ompF genes that encode outer

membrane porin proteins (Kenney, 2002; Pratt et al., 1996).

Interestingly, the number of TCRs differs greatly in different bacteria, in some

cases they may contribute ≈ 2.5% of the genome (Mizuno et al., 1996). The number of

TCRs in the prokaryote genome is positively correlated with the genome size and is
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roughly proportional to the square of the total number of genes (Ulrich et al., 2005).

Bacteria adopted for diverse environmental conditions and having diverse metabolic

activities encode more TCRs than microorganisms adopted for uniform habitat (Beier

and Gross, 2006). Till now, there have been more than 4,000 TCRs reported form 145

sequenced bacterial genome (Ulrich et al., 2005). There are a number of paralogous

gene families of HKs and RRs that share significant homology at both sequence and

structural level. These similarities between signaling proteins suggest the possibility of

cross-talk (communication between pathways) between different pathways. In general,

cross-talk between distinct pathways could be detrimental and should be kept minimal

in order to detect stimuli effectively. However, sometimes it is beneficial for organisms to

undergo cross-talk to detect diverse signals. Since, some bacteria can have up to as

many as 200 two component systems, they need tight regulation to prevent unwanted

cross-talk (Laub and Goulian, 2007). The availability of the complete genome sequence

of Burkholderia glumae strain BGR1 has allowed us to identify two component proteins

throughout the genome. In B. glumae, 11 HKs and 34 RRs are present (Wheeler et al.,

2001). While in eukaryotes, TCRs are limited in numbers. For example

Saccharomycens cerevisicae (yeast) contain only one phosphorelay system involved in

osmoregulation (Maeda et al., 1994). While the pathogenic fungus Candida albicans

contain at least  two HKs that are involved in osmo regulation and hyphal development

(Beier and Gross, 2006). Interestingly, TC proteins have been reported from plants such

as Arabidopsis thalianas (Chang et al., 1993) and tomato (Yen et al., 1995) where they

regulate ethylene-mediated fruit ripening.
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Many pathogenic bacteria encounter different micro-environments during their

infection cycles, and for successful infestation to the host, they need to cope with

changing environments. Their ability to cope with different niches inside and outside

hosts is meditated by TCRSs, which can therefore play important roles in virulence

mechanisms of bacteria (Groisman and Mouslim, 2006). Similarly, pathogenic bacteria

produce and secret virulence factors such as toxins, proteases, lipases and other

factors involved in motility, adherence, colonization, biofilm formation and survival. In

many cases, these virulence or virulence related factors are directly or indirectly under

the control of TCRSs. In many cases, the role of TCRSs in bacterial pathogenicity is

poorly understood. The role of TCRSs in bacteria may act as a regulatory to metabolic

activities rather than a change in the expression of specific virulence factors (Beier and

Gross, 2006). However, there are several well-studied TCRSs controlling pathogenicity

of phyto-pathogenic bacteria. For example, Erwinia carotovora subsp. carotovora

controls the virulence determinant with at least four different TCSs, named ExpS-ExpA

(Eriksson et al., 1998; Frederick et al., 1997), PehR-PehS (Flego et al., 2000), PmrA-

PmrB (Hyytiainen et al., 2003) and GacA-GacS (Cui et al., 2001). The ExpS-ExpA

TCRS is required for the activation of the gene responsible for secretion of cell wall

degrading enzymes. Similarly, PehR-PehS responds to extracytoplasmic levels of Ca

and Mg which is required for the transcriptional activation of the endopolygalacturonase

gene, as well as for virulence. PmrA-PmrB TCS is involved in controlling bacterial

response to external pH and iron as well as production of extracellular enzymes that are

crucial for bacterial virulence. GacA-GacS system controls the genes responsible for

extracellular enzymes and harpin through global regulatory rsmB RNA. VirA/VirG TCRs
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of Agrobacterium tumefaciens are involved in the expression of the vir region that is

necessary for T-DNA transfer to plants in response to phenolic compounds secreted by

wounded plants (Gelvin, 2006; Winans et al., 1994). In Xanthomonas campestris pv.

Campestris, RavS/RavR, TCRs co-regulate virulence genes expression with quorum

sensing (He et al., 2009). ColR/ColS, the two-component regulatory system of

Xanthomonas citri subsp. citri is necessary for the expression hrp genes and other

virulence factors such as, biofilm formation, catalase activity and LPS production (Yan

and Wang, 2011). Recently we published that PidS/PidR, TCRSs of B. glumae is

involved in attenuation of virulence by abolishing dark-pigments, reduction of toxoflavin

and hypersensitive related phenotypes. Some of the important TCRSs present in

bacteria are listed in Table 3.1.

The objective of this research is to study the role of a novel two-component

regulatory system (TCRS) composed of the PidS sensor histidine kinase (SHK) and the

PidR response regulator (RR) in pigmentation, hypersensitive response (HR) on

tobacco and other virulence related phenotypes of B. glumae.

3.2. Materials and Methods

3.2.1. Bacterial culture and DNA manipulation

The bacterial strains and plasmids used this study are listed in Table 3.2.

Escherichia coli and B. glumae strains were routinely grown in Luria Bertani broth (LB)

media (Sambrook and Russell, 2001) at 37 and 30°C. KB and CPG agar media

(Schaad et al., 2001) were used for testing toxoflavin and pigment production by B.

glumae, respectively. Antibiotics were included in the media as necessary at the

following concentrations: ampicillin (100 μg/ml), gentamycin (20 μg/ml),
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Table 3.1. Known two-component regulatory systems present in bacteria

Organism TCRS Regulation or effect of
inactivation

Reference

Escherichia coli BarA/UvrY Increased sensitivity to
H2O2

(Nagasawa et al., 1992)

Salmonella
enterica

BarA-SirA Reduced motility (Teplitski et al., 2003)

Erwinia
carotovora

ExpS-ExpA Pectate lyase,
polygalacturonase,
cellulase

(Eriksson et al., 1998)

Vibrio cholerae ArcA-ArcB Virulence regulator
gene toxT

(Sengupta et al., 2003)

Organism TCRS Regulation or effect of
inactivation

Reference

Pseudomonas
spp

GacS-GacA secondary metabolites
and extracellular
enzymes

(Heeb and Haas, 2001)

Pseudomonas
fluorescens
BL915

LemA/
GacA

Pyrrolnitrin, chitinase,
cyanide, 2-hexyl-5-
propyl-resorcinol,
exoprotease

(Gaffney et al., 1994)

Pseudomonas
viridiflava PJ-08-
6A and SF312A

RepA/RepB Pectate lyase,
exoprotease,
fluorescent
siderophores,
alginate

(Liao et al., 1994)

Salmonella
enterica

BarA/ SirA Reduction of swarming
motility, reduction of
gastroenteritis in bovine
model, loss of type III
secretion apparatus,
loss of invasion
endocytosis
of epithelial cells

(Johnston et al., 1996;
Mukhopadhyay et al.,
2000)

Xanthomonas
oryzae pv.
oryzae

RaxR/RaxH AvrXa21 activity (Burdman et al., 2004)

P. syringae CorS/CorR Synthesis of coronatine,
chlorosis

(Sreedharan et al.,
2006)

E. amylovora HrpX/HrpY Type III secretion
system

(Wei et al., 2000)
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kanamycin (50 μg/ml), and nitrofurantoin (100 μg/ml). Standard protocols (Sambrook

and Russell, 2001) were used for general DNA manipulation procedures, including

extraction, restriction digestion, ligation, PCR, and agarose gel electrophoresis. DNA

sequencing was performed by either the DNA sequencing facility at the LSU veterinary

school, (Baton Rouge, Louisiana, USA) or Macrogen Inc. (Seoul, Korea).

Oligonucleotides for PCR and DNA sequencing were purchased from Bioneer Inc.

(Alameda, CA, USA).

Table 3.2. Bacterial strains and plasmids used in this study.

Strain or plasmid Description Reference or
source

B. glumae

336gr-1 A virulent strain showing a pigment-deficient
phenotype, NitR

This study

411gr-6 A virulent strain showing a pigment-proficient
phenotype, NitR

This study

LSUPB112 A pidS::mini-Tn5gus derivative of 411gr-6, NitR, KmR This study

LSUPB115 A pidS::mini-Tn5gus derivative of 411gr-6, NitR, KmR This study

LSUPB133 A pidR::pKNOCKGm derivative of 411gr-6, NitR, GmR This study

LSUPB225 A pidR::pKNOCKKm derivative of 411gr-6, NitR, KmR This study

LSUPB302 A pidR deleted mutant derivative of 411gr-6,  NitR This study

Escherichia coli

DH5α SupE44 DlacU169 (f80 lacZDM15) hsdR17 recA1
endA1 gyrA96 thi-1 relA1

Life
Technologies
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Table 3.2 Continued

Strain or plasmid Description Reference or
source

XL1-Blue MR Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1
supE44 thi-1 recA1 gyrA96 relA1 lac

Stratagene

Plasmids
pUT::miniTn5gus A suicide vector carrying mini-Tn5gus, ApR, KmR (de Lorenzo

et al., 1990)
(Fouts et al.,
2002)

pKNOCKGm A suicide vector, R6K ori, GmR (Alexeyev,
1999)

pKNOCKKm A suicide vector, R6K ori, KmR (Alexeyev,
1999)

pBBR1MCS-5 A broad host range vector, GmR (Kovach et
al., 1995)

SuperCos1 A cosmid vector, ApR, KmR Stratagene

pSC-A-amp/kan A PCR cloning vector, ApR, KmR Stratagene

pCL126 A cosmid clone harboring the pidR/pidS locus, ApR This study

pPidi-1 A clone of pidR internal region in pKNOCKGm, GmR This study

pPidi-2 A clone of pidR internal region in pKNOCKKm, KmR This study

pPidRS-1 A subclone of pCL126 for the 3.9-kb HindIII/BglII
fragment harboring both pidR and pidS in
pBBR1MCS-5, GmR

This study

pPidRS-2 A subclone of pCL126 for the 3.9-kb HindIII/BglII
fragment harboring both pidR and pidS in
pBBR1MCS-2, KmR

This study

pPidS A pidS clone in pBBR1MCS-5 carrying the 3.3-kb
EcoRI/SpeI fragment from pPidRS-2, GmR

This study

pPidS-1 A derivative of pPidS added with the 0.5-kb
upstream region of pidR, GmR

This study
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Transformation of bacterial cells with plasmid DNA was made by either electroporation

at 200 Ω/1.5 kV using a GenePulser (Bio-Rad Laboratories, Hercules, CA, USA) or

triparental mating (Figurski and Helinski, 1979).

3.2.2. Generation of pidR::pKNOCK mutants (LSUPB133 and LSUPB225)

This work was done by Indergit Kaur and me. An internal region of pidR was

initially amplified using DNA primers RR-int-F and RR-int-R (Table 3.3) and following

PCR conditions (Table 3.4). The resultant PCR product was cloned into suicide vectors,

pKNOCKGm and pKNOCKKm (Alexeyev, 1999), generating pPidRi-1 and pPidRi-1.

Escherichia coli S17-1 λpir (Simon et al., 1983) was used for maintaining pKNOCK

vectors and pPidRi-1 and pPidRi-2. pPidRi-1 glumae 411gr-6 via triparental mating with

E. coli DH5α, which carries the helper plasmid, pRK2013 (Figurski and Helinski, 1979),

and pidR mutants were selected on Luria Bertani (LB) agar containing nitrofurantoin and

gentamycin (for LSUPB133) or nitrofurantoin and kanamycin (for LSUPB225). The

mutation of pidR in LSUPB133 and LSUPB225 was confirmed by diagnostic PCR.

3.2.3. Generation of pidR deletion mutant (LSUPB302)

About 500 bp upstream and downstream of pidR were amplified using the

primers (RR-UPF and RR-UPR and RR-DWNF and RR-DWNR respectively with

desired restriction site added (Table 3.3) and PCR condition listed on Table 3.4. The

PCR products were cloned into the PCR cloning vector, pSC-A-amp/kan, using a

StrataClone PCR Cloning Kit (Agilent Technologies, Santa Clara, CA, USA) following

the manufacture instructions resulting in pSC:: Upstream and pSC:: Downstream. First

pSC:: Upstream was cloned to pKNOCKGm (Alexeyev, 1999) with the digestion of

BamHI and SpeI generating  pKNOCKGm::Upstream. The pSC:: Downstream was
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digested with BamHI and SmaI and sub-cloned to the  pKNOCKGm::Upstream

generating pKNOCKGm::Upstream + Downstream. The fragment from

pKNOCKGm::Upstream + Downstream was digested with NotI and SpeI and cloned to

pKKSacB vector. Escherichia coli S17-1 λpir (Simon et al., 1983) was used for

maintaining pKKSacB vector. E. coli HB101, which carries the helper plasmid,

pRK2013 (Figurski and Helinski, 1979), was used for the triparental mating to introduce

pKNOCKGm::Upstream + Downstream to the virulent strain of B. glumae, 411gr-6. The

selected conjugant colonies (single cross over mutants) from LB/Km/Nitro medium were

inoculated into LB broth, and grown overnight at 30 °C. The overnight culture was then

spread on LB agar plates containing 35% sucrose and incubated at 30°C for about a

week. The colonies were picked and transferred to LB and LB/Km plates. Colonies that

grew on LB plate but not on LB/Km plate were selected as mutants. Genomic DNAs of

the mutants were extracted and the deleted region from the genome was confirmed by

PCR with primers RR-whole-F and RR-whole-R (Table 3.3) and PCR conditions (Table

3.4).

3.2.4. Quantification of toxoflavin

Extraction and quantification of toxoflavin was done following the previously

developed protocol (Iiyama et al., 1995) with some modifications. Briefly, an overnight

culture of B. glumae in LB was washed twice with an equal volume of fresh LB broth

and resuspended in 1/10 volume of LB broth. Then, 20 μl of the bacterial suspension

(ca. 5 X 108 cells) was spread on a KB agar plate with three replications followed by

incubation at 37°C for 48 h. Bacterial cells grown on the KB agar plates were then

removed by flooding with sterile H2O and the remaining KB agar media were cut into
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small pieces. Toxoflavin diffused in the chopped KB agar media was extracted with an

equal volume of chloroform. After the chloroform was completely evaporated under a

fume hood, the residues were dissolved in 1 ml of aqueous 80% methanol and diluted

five times in distilled water. Then absorbance was measured at 260 nm for each sample

using a spectrophotometer (Biomate 3, Thermo Scientific, Pittsburgh, PA, USA).

Table 3.3. Primers used in this study

Restriction sites are manually introduced in primers: ACTAGT (speI), GGATCC (BamHI)
and GCGGCCGC (NotI).

Primers
Name

Primer sequence (5’to 3’) Amplified
region

Purpose Reference

RR-UP-F ACTAGTACAAACCCGTAG Upstream
pidR

Deletion
mutation

This study

RR-UP-R GGATCCGAAACCTGCTTGTTC

RR-DWN-F GGATCCGCGATCGAAGTCTAC Downstre
am pidR

Deletion
mutation

This study

RR-DWN-R GCGGCCGCGTAGGCGTAATG

RR-whole-F CCGCTGTACAATCAGCAATG PidR Confirmed
deletion
mutation

This study

RR-whole-R TCGAACACGTAGGCGTAATG

HK-int-F GTTGTCCTCCACCACGATCT PidS Screening of
cosmid library

This study

HK-int-R CTGTCGAACCAGTTGCTGTC

RR-int-F AAGTGCGTCAGATGGTCT pidR Insertion
mutation

This study

RR-int-R AACTCGTGATCCTCGACCTG



46

Table 3.4. PCR and electrophoresis conditions for tests conducted in this study

Test PCR master-mix PCR condition Gel
electrophoresis

Upstream
of pidR
amplification

25 μL volume: 1 μl of
template DNA, 2.5 μl of
GeneAmp® 10X PCR
Buffer I, 1.0 μl each of
primers RR-UP-F and
RR-UP-R , 0.5 μl of dNTP
mix, 1 μl of Taq
polymerase

Initial denaturation at 95°C
for 2 min; 29 cycles of
denaturation at 94°C for 1
min , annealing at 50°C for
30 sec, and extension at 72
°C for 40 sec ; and final
extension at 72°C for 7
min.

0.8% agarose
gel

Downstream
of pidR
amplification

25 μL volume: 1 μl of
template DNA, 2.5 μl of
GeneAmp® 10X PCR
Buffer I, 1.0 μl each of
primers RR-DWN-F and
RR-DWN-R , 0.5 μl of
dNTP mix, 1 μl of Taq
polymerase

Initial denaturation at 95°C
for 2 min; 29 cycles of
denaturation at 94°C for 1
min , annealing at 55°C for
30 sec, and extension at 72
°C for 40 sec ; and final
extension at 72°C for 7
min.

0.8% agarose
gel

Whole pidR
amplification

25 μL volume: 1 μl of
template DNA, 2.5 μl of
GeneAmp® 10X PCR
Buffer I, 1.0 μl each of
primers RR-whole-F
and RR-whole-R, 0.5 μl of
dNTP mix, 1 μl of Taq
polymerase

Initial denaturation at 95°C
for 2 min; 29 cycles of
denaturation at 94°C for 1
min , annealing at 55°C for
30 sec, and extension at 72
°C for 2 min ; and final
extension at 72°C for 7
min.

0.8% agarose
gel

Internal pidS
amplification

25 μL volume: 1 μl of
template DNA, 2.5 μl of
GeneAmp® 10X PCR
Buffer I, 1.0 μl each of
primers HK-int-F and HK-
int-R, 0.5 μl of dNTP mix,
1 μl of Taq polymerase

Initial denaturation at 95°C
for 2 min; 29 cycles of
denaturation at 94°C for 1
min , annealing at 55°C for
30 sec, and extension at 72
°C for 40 sec ; and final
extension at 72°C for 7 min

0.8% agarose
gel

Internal
pidR
amplification

25 μL volume: 1 μl of
template DNA, 2.5 μl of
GeneAmp® 10X PCR
Buffer I, 1.0 μl each of
primers RR-int-F and RR-
int-R, 0.5 μl of dNTP mix,
1 μl of Taq polymerase

Initial denaturation at 95°C
for 2 min; 29 cycles of
denaturation at 94°C for 1
min , annealing at 50°C for
30 sec, and extension at 72
°C for 40 sec ; and final
extension at 72°C for 7 min

0.8% agarose
gel
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3.2.5. Hyper sensitive response (HR) elicitation

Burkholderia glumae cells grown on LB agar media overnight at 37°C were

resuspended in 10 mM MgCl2 and adjusted to an optical density at 600 nm (OD600) of

0.5 (ca. 2.5 X 108 colony forming units (cfu/ml). The bacterial suspension was infiltrated

with a needle-less syringe into the fully expanded leaves of 10 to 12 month-old tobacco

plants grown in a greenhouse. HR was observed at 18 h after infiltration.

3.2.6. Virulence assay with rice panicles

Bacterial suspensions for inoculation were prepared with the same method used

for HR tests except that the bacterial cells were resuspended in sterile tap water instead

of 10 mM MgCl2 and their concentrations were adjusted to OD600 = 0.1 (ca. 5 X 107

cfu/ml). The rice variety Trenasse was grown in a greenhouse and sprayed with the

bacterial suspensions at 20 – 30% heading stages. Two days after the first inoculation,

a second inoculation was made in the same way and disease severity was evaluated 10

days after inoculation. Disease severity on rice panicles was determined by the

following scale (Shahjahan et al., 2000a) with at least ten replications: No disease = 0,

1–10% symptomatic area = 1; 11–20% symptomatic area = 2, 21–30% symptomatic

area = 3; 31–40% symptomatic area = 4, 41–50% symptomatic area = 5; 51–60%

symptomatic area = 6, 61–70% symptomatic area = 7, 71–80% symptomatic area = 8,

>81% symptomatic area = 9.

3.2.7. Virulence assay with onion bulb scales

Virulence phenotypes of B. glumae strains were also determined with the onion

assay (Jacobs et al., 2008; Karki et al., 2012b). Briefly, scales of onion bulbs were cut

into pieces (ca. 10 cm2) with a sterile razorblade and placed in a wet chamber. Bacterial
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suspensions of B. glumae strains were prepared with the same method for HR tests

except that the bacterial concentrations were adjusted to OD600= 0.2 (ca. 1 X 108

cfu/ml). Five μl of the suspension containing c. 5 X 105 cells were applied to a 2 mm-slit

made on the center of each onion bulb scale with a micropipette tip, and the inoculated

onion scales were incubated at 30°C in incubator for 48 h. The virulence of each B.

glumae strain was determined by measuring the macerated area.

3.2.8. DNA constructs for genetic complementation tests

To generate pPidRS-1/pPidRS-2, a cosmid library of the genome of B. glumae

336gr-1, another highly virulent B. glumae strain, was screened by PCR using a pidS

specific primer set (Table 3.3) to identify cosmid clones containing pidS. One of the

screened cosmid clones, pCL126, was digested with HindIII and BglII to get the 3.9 kb

fragment that contains both pidR and pidS. This fragment was then subcloned into a

broad host range vector, pBBR1MCS-5 or pBBR1MCS-2 (Kovach et al., 1995),

generating pPidRS-1 or pPidRS-2, respectively (Table 3.2). To generate pPidS-1,

pPidRS-2 was digested with EcoRI and SpeI to obtain the 3.3-Kb fragment that includes

pidS but not pidR. This fragment was subcloned into pBBR1MCS-5 using the same

restriction sites, generating pPidS. To ensure the expression of pidS in pPidS, the cis

elements that may be required for the transcription of the predicted pidRS operon were

placed in front of pidS with the following procedure: the 507-bp upstream region of the

pidR coding sequence was amplified with the primer set (Table 3.3) and subsequently

cloned into pSC-A-amp/kan using a StrataClone PCR Cloning Kit (Stratagene). The

resultant PCR clone was digested with EcoRI and the EcoRI-cut fragment containing

the pidR upstream sequence was then ligated to the EcoRI-cut pPidS, generating
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pPidS-1. The right orientation of the pidR upstream region in front of pidS in pPidS-1

was confirmed by a series of diagnostic restriction digestion.

3.3. Results

3.3.1. Identification of genes involved in the pigmentation of B. glumae

The detail procedures and results for identification of genes involved in

production of pigment by B. glumae were described in the previous (Chapter 2). Two of

these pigment-deficient mutant derivatives, LSUPB112 and LSUPB115, were found to

be disrupted by the insertion of mini-Tn5gus in an open reading frame (ORF) encoding

a putative SHK (Figure 3.1).

3.3.2. Identification of a novel TCRS that controls the pigmentation of B. glumae

In LSUPB112 and LSUPB115, mini-Tn5gus was inserted at different genomic

locations within an ORF encoding a putative SHK gene, indicating that the two mini-Tn5

derivatives of B. glumae are two independent mutants of the same SHK gene (Figure

3.1). This identified SHK gene corresponds to ‘bglu_1g00490’ of the BGR1 genome and

forms a putative operon with the ORF located upstream which encodes a putative RR

(bglu_1g00500) (Figure 3.1). Based on the initially observed pigment-deficient

phenotypes of LSUPB112 and LSUPB115, the putative genes for the SHK and RR were

named pidS (pigment-deficient SHK) and pidR (pigment-deficient RR), respectively. To

determine the functionality of pidR, its ORF was disrupted through a single homologous

recombination with its internal region (Figure 3.1). The derivatives of 411gr-6 generated

from this procedure, LSUPB133 (Figure 3.1 and Table 3.2), also showed pigment-

deficient phenotypes, like LSUPB112 and LSUPB115 (Figure 3.2[A]).
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Figure 3.1. A physical map of the pidS and pidR genes as well as their clones, and the
pigment production phenotypes of pidS and pidR mutants. This cartoon is based on the
sequence information of the B. glumae BGR1 genome (GenBank: CP001503.2). ORFs
are symbolized by rectangles and arrows, and their corresponding locus tags. Black
triangles indicate the positions of mini-Tn5gus in the mutant strains, LSUPB112 and
LSUPB115. Restriction sites in the map are represented by Ba, BalI; H, HindIII; E,
EcoRI; P, PstI; N, NotI; M, MluI; S, SmaI: Bg, BglII; B, BamHI; and Sp, SpeI. Restriction
sites used for subcloning of pidS and pidR are shown in parentheses. pCL126 is a
cosmid clone harboring the pidR/pidS locus. The broad host range vectors for pPidRS-1
is pBBR1MCS-5 (GmR) (Kovach et al., 1994). Pigmentation phenotypes of virulent B.
glumae strain, 411gr-6, and pidS- (LSUPB112 and LSUPB115) and pidR- (LSUPB133)
derivatives of 411gr-6 as well as the complemented mutants with wild type pPidRS-1
clone (Mel1 on CPG agar plates.
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However, it cannot be ruled out that the pigment-deficient phenotypes of the pidR

mutants are caused by a polar effect of the pidR mutation on the downstream gene,

pidS. To determine whether pidR alone is required for pigment production, the pidR

mutant, LSUPB225, was tested for complementation with plasmids carrying either pidS

only (pPidS-1) or both pidR and pidS (pPidRS-1) (Figure 3.1).  Pigmentation of

LSUPB225 was restored by pPidRS-1, but not by pPidS-1, indicating that pidR is also

required for pigmentation, like pidS. pPidS-1 carries a functional copy of pidS because it

can restore pigmentation of the pidS mutants, LSUPB112 and LSUPB115. To further

validate this experiment a non-polar mutant of 411gr-6 (LSUPB302) was generated by

the precise deletion of pidR (Figure 3.3). A series of complementation assays showed

that pigment production is the bona fide function of pidR (Figure 3.3).

3.3.3. Role of the PidS/PidR TCRS in HR elicitation on tobacco leaves and in other
virulence-related phenotypes

To determine the role of this TCRS in bacterial virulence, the pidS mutants,

LSUPB112 and LSUPB115, were tested for several virulence-related phenotypes,

including toxoflavin production, lipase activity, flagelum-mediated motility, HR elicitation

in tobacco plants and virulence in rice. Remarkably, both LSUPB112 and LSUPB115

failed to elicit an HR on tobacco leaves and produced less toxoflavin (Figure 3.2) than

the parental strain. Moreover, these mutant strains were significantly less virulent than

the parental strain on rice panicles (Figure 3.2[C]). However, these mutants did not

show significant differences in lipase activity or flagellum mediated motility (data not

shown). Like the pidS mutants, the newly generated pidR strain, LSUPB133, could not

elicit an HR on tobacco leaves (Figure 3.2[D]).
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Figure 3.2. Phenotypes of Burkholderia glumae strains in toxoflavin production,
hypersensitive response and virulence in rice and onion. A) Symptoms on onion bulb
scales caused by B. glumae strains, 411gr-6, LSUPB112, LSUPB115, LSUPB112
(pPidRS-1) and LSUPB115 (pPidRS-1). Numeric values indicate the average
macerated area (mm2) from three replications. B) Toxoflavin production of B. glumae
strain, 411gr-6, LSUPB112 and LSUPB115, on King’s B agar plates: Each error bar
indicates the standard deviation from three replicates. C) Symptoms on rice panicles
caused by B. glumae strains, 411gr-6, LSUPB112 and LSUPB11: Numbers indicate
average scores of disease severity (DS) from ten replications evaluated using a 0-9
scale at 10 days post inoculation. Superscript letters indicate statistically significant
differences (P > 0.01) among disease ratings. D) HR elicitation phenotypes of B.
glumae strains, 411gr-1, LSUPB115, LSUPB115 (pPidRS-1) and LSUPB133 on a
tobacco leaf.
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3.3.4. Complementation of pidS and pidR mutant phenotypes

As described in the materials and method section, functional pidS and pidR/pidS

clones were constructed for genetic confirmation of the pigment-deficient phenotypes of

the pidS and pidR mutations (Figure 3.1). The recovery of virulence-related phenotypes,

including HR elicitation on tobacco leaves and virulence on onion bulb scales, was also

tested for pidR and pidS mutants complemented with a pidR/pidS clone. The

complemented strains were selected on Luria–Bertani (LB) agar containing

nitrofurantoin and gentamycin (for pPidRS-1) or kanamycin (for pPidRS-2), showed

restored functions in pigment production on CPG agar plates (Figure 3.1) and in HR

elicitation in tobacco (Figure 3.2[D]). In addition, complementation of the pidS and pidR

mutants with pPidRS-1 resulted in a substantial increase in virulence in onion bulb

assays (Figure 3.3[A]).

To further validate this experiment a non-polar mutant of 411gr-6, (LSUPB302)

was generated by the precise deletion of pidR (Figure 3.3). A series of complementation

assays showed that pigment production is the bona fide function of pidR (Figure 3.3).

The results of all the complementation tests conducted in this study clearly indicate that

the observed phenotypes of pidS and pidR mutants are bona fide.

3.4. Discussion

In this study, it was demonstrated that a newly found TCRS, PidS/PidR, is an

essential regulatory component of B. glumae for pigmentation in CPG medium, HR

elicitation in tobacco, and full virulence in rice and onion. At this time, little is known

about the pigments produced by B. glumae 411gr-6. All the pathways, regulatory
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Figure 3.3. Deletion mutations of pidR in the genome of B. glumae. A) The cartoon is
based on the physical location of pidR and PidS and the location of primers for
amplification of upstream and downstream regions of pidR. B) Final stage of cloning
upstream and downstream region of pidR into pKKSacB vector. C) Cartoon showing
deletion of pidR form genome. D) Gel picture confirming pidR is deleted from the
genome. 1; 411gr-6, 2, 3, 4 and 5 are pidR deleted mutant LSUPB302, 6,7 and 8;
mutants did  not show pigment deficient phenotypes. E) Non-polar mutant of pidR did
not show pigment production phenotypes on CPG media.
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Figure 3.4. An overview of the pidR and pidS loci and the DNA constructs used for
creation of the pidR deletion mutant and genetic complementation. This cartoon is
based on the sequence information of the B. glumae BGR1 genome (GenBank:
CP001503.2). ORFs are symbolized by rectangles and arrows, and their corresponding
locus tags in the GenBank feature file of CP001503.2 are indicated above each ORF.
The dark grey rectangles indicate the flanking regions cloned in pKKSacB for deletion of
pidR while the white rectangle indicates the deleted region from pidR. Small arrows
indicate the primers used for the amplification of each flanking region.. Restriction sites
in the map are represented by Ba, BalI; H, HindIII; E, EcoRI; P, PstI; N, NotI; M, MluI; S,
SmaI: Bg, BglII; B, BamHI; and Sp, SpeI. Restriction sites used for subcloning of pidS
and pidR are shown in parentheses. pCL126 is a cosmid clone harboring the pidR/pidS
locus. The 0.5-kb upstream region of pidR, which is predicted as the promoter region of
the putative pidRS operon, is indicated as light gray line. CA = catalytic and ATP
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binding domain; DHp = dimerization and histidine phosphotransfer domain; REC =
receiver domain.

systems and genes involved in pigment production phenotypes of B. glumae were

already discussed in previous chapter (Chapter 2).

HR elicitation by Gram-negative plant pathogenic bacteria in non-host plants,

such as tobacco, is a hallmark of functional T3SS (Alfano and Collmer, 2004). The loss

of ability to elicit HR in tobacco leaves caused by mutations in pidS and pidR indicates

that the PidS/PidR TCRS is absolutely required for the expression of functional T3SS in

B. glumae. In many plant pathogenic bacteria having narrow host ranges, such as

Pseudomonas spp. and Xanthomonas spp., T3SSs encoded by hrp (hypersensitive

response and pathogenicity) genes are essential for both HR elicitation in non-hosts or

resistant-hosts and pathogenicity in susceptible hosts (Alfano and Collmer, 2004).

However, T3SSs are frequently dispensable for bacterial infection and only contribute to

full virulence in certain types of plant pathogenic bacteria including Pectobacterium

spp., which have broad host ranges and utilize extracellular enzymes secreted via a

type II secretion system as primary virulence factors (Bauer et al., 1994; Holeva et al.,

2004; Rantakari et al., 2001). In this study, pidS and pidR mutants could not elicit an HR

in tobacco leaves but could produce symptoms in either rice panicles or onion bulbs

even though at significantly reduced levels compared with the parental strain. These

results indicate that the Hrp T3SS of B. glumae is not essential for pathogenicity even

though it is required for full virulence. This speculation is consistent with the previous

study by in which a T3SS-deficeint B. glumae mutant was still virulent although it

showed significantly less virulence than full virulence in certain types of plant

pathogenic bacteria including Pectobacterium spp., which have broad host ranges and
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utilize extracellular enzymes secreted via a type II secretion system as primary

virulence factors (Bauer et al., 1994; Holeva et al., 2004; Rantakari et al., 2001). In this

study, pidS and pidR mutants could not elicit an HR in tobacco leaves but could

produce symptoms in either rice panicles or onion bulbs even though at significantly

reduced levels compared with the parental strain. These results indicate that the Hrp

T3SS of B. glumae is not essential for pathogenicity even though it is required for full

virulence. This speculation is consistent with the previous study by in which a T3SS-

deficeint B. glumae mutant was still virulent although it showed significantly less

virulence than its parental strain (Kang et al., 2008). In this regard, it is noteworthy that

B. glumae also produces other more important virulence factors including the

phytotoxin, toxoflavin (Kim et al., 2004), and lipase (Devescovi et al., 2007). In B.

glumae, pathogenicity of T3SS-deficient mutants is retained probably because of these

other major virulence factors.

In prokaryotes, TCRSs play a pivotal role in signal perception and transduction

for a wide range of cellular functions involved in metabolism, development, and

pathogenesis (Laub and Goulian, 2007). In plant pathogenic bacteria, several TCRSs

are also known to have global effects on virulence. For example, GacS/GacA of

Pseudomonas syringae controls the production of every known virulence factor,

including coronatine, extracellular polysaccharides (EPS), and the T3SS and its

effectors, via positive regulation of the QS system (Mole et al., 2007). The HrpX/HrpY

TCRSs control the genes encoding T3SSs in plant pathogenic bacteria belonging to

Enterobacteriaeae including Erwinia amylovora (Wei et al., 2000) and Pantoea stewartii

(Merighi et al., 2003). RpfC/RpfG of Xanthomonas campestris is known to regulate
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multiple virulence factors, including extracellular enzymes and EPSs, via the

degradation of the signal molecule 3’,5’-cyclic diguanylic acid and the interconnection

with the cell-to-cell communication mediated by diffusible signal factor (DSF) (Ryan et

al., 2006). Recently, it was reported that the ColS/ColR TCRSs of X. campestris pv.

campestris (Zhang et al., 2008) and X. citri subsp. citri (Yan and Wang, 2011) play

important roles in tolerance to environmental stresses, T3SS and virulence (specifically

ColSXC1050/ColRXC1049 of X. campestris and ColSXAC3249/ColRXAC3250 of X. citri).

Interestingly, PidR shows more than 31% amino acid sequence identity with both ColR

response regulators of the two Xanthomonas spp., while PidS has less than 20%

identity with the corresponding ColS sensor kinases. The apparent similar functions

between PidS/PidR and ColS/ColR TCRSs in virulence and the significant sequence

homology between PidR and ColR response regulators strongly suggest that both

TCRSs act on common regulatory pathways for bacterial pathogenesis in different host

environments. Remarkably, it was found that orthologs of PidS and PidR are highly

conserved among many Burkholderia spp. B. gladioli, another bacterium causing BPB

in rice (Ham et al., 2011), contains PidR and PidS orthologs showing the highest

homology with PidR and PidS. Remarkably, amino acid sequences of PidR B. gladioli

and PidR B. glumae were identical to each other (Table 3.5). The next closest orthologs

of PidS were present in B. pseudomallei and B. mallei, and showed more than 84%

amino acid sequence identity to that of PidS. The first 200 amino acids from the N-

termini, which correspond to the signal input domain, showed higher homology to PidS

(> 92% identity) than to the remaining regions containing dimerization and histidine

phosphotransfer (DHp) and catalytic and ATP binding (CA) domains.
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Table 3.5. Comparison of the PidS/PidR two-component regulatory system with their
representative orthologs of Burkholderia spp. and other plant pathogenic bacteria.

PidS (YP_002909958.1: 517 aa) PidR (YP_002909959.1: 230 aa)

Protein ID Organism Amino acid
sequence

identity (%)a

Protein ID Organism Amino acid
sequence

identity (%)

YP_004358720.1 B. gladioli
BSR3

90.6 YP_004358721.
1

B. gladioli
BSR3

100

YP_001068298.1 B.
pseudomallei

1106a

84.3 YP_001068297.
1

B.
pseudomallei

1106a

99.6

YP_104430.1 B. mallei
ATCC23344

84.2 YP_104431.1 B. mallei
ATCC23344

99.6

ZP_02465317.1 B.
thailandensis

MSMB43

83.9 ZP_02465316.1 B.
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18.3 YP_242139.1
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(HrpX)
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(HrpY)

Erwinia
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19.1
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Similar patterns were also observed in other PidS orthologs of Burkholderia spp.

In general, N-terminal signal input domains of different SHKs tend to be more variable in

amino acid sequence because they are responsible for sensing different signals. Higher

amino acid sequence homology among PidS and its orthologs at the N-terminal signal

input domain strongly suggests that these SHKs recognize the same or similar signals

and, further, have similar biological functions in different species of Burkholderia.

Orthologs of PidR from other Burkholderia species showed even higher levels of

similarity to PidR. In particular, the PidR orthologs of B. pseudomallei and B. mallei

were almost identical (99.6% identity) to PidR. Other PidR orthologs of Burkholderia

spp. showed more than 96% identity, indicating that PidR and the PidR orthologs of

Burkholderia spp. may exert a common regulatory function. It would be very interesting

to investigate if the mutation of pidS or pidR orthologs would also result in impaired

T3SS function and reduced virulence in animal pathogenic Burkholderia spp. such as B.

mallei and B. pseudomallei. If the regulatory mechanisms and virulence function of PidS

and PidR proteins are conserved among pathogenic Burkholderia species, further in

depth research on the PidS/PidR TCRS of B. glumae would provide valuable

information for the study of animal/human pathogenic Burkholderia species, which is

often hindered by strict legal barriers and limitations.

Conclusively, we have demonstrated that the newly discovered PidS/PidR TCRS

is required for the pigmentation of B. glumae under a certain nutritional condition, grown

on CPG medium, and for HR elicitation on tobacco leaf by this bacterium. The

PidS/PidR TCRS was also shown to contribute to the virulence of B. glumae in

pathogenicity assays on rice panicles and onion bulbs. pidS and pidR orthologs are
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highly conserved among other Burkholderia species suggesting that they might play

similar roles in bacterial pathogenesis. Further studies on this new regulatory factor

would expand our knowledge on global regulatory systems of B. glumae and other

important Burkholderia species.
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CHAPTER 4
GROWTH, VIRULENCE AND PIGMENT PRODUCTION OF SHIKIMATE

PATHWAY MUTANTS OF BURKHOLDERIA GLUMAE STRAIN 411GR-6

4.1. Introduction

The bacterium, Burkholderia glumae causes bacterial panicle blight of rice as

well as the previously reported grain rotting and seedling blight in Japan (Goto and

Ohata, 1956). Now this pathogen been reported from the Southern United States

(Nandakumar et al., 2009), Latin America (Zeigler and Alvarez, 1989) and other Asian

countries (Cottyn et al., 2001; Jeong et al., 2003). A characteristic feature of pathogenic

strains of B. glumae is the production of bright yellow pigment, toxoflavin that is

essential for pathogenicity (Kim et al., 2004; Suzuki et al., 2004). Lipase, a cell wall

degrading enzyme produced by B. glumae is crucial for pathogenesis (Devescovi et al.,

2007) and also has several superior biotechnological values (BoekeMa et al., 2007).

Flagella driven motility is important for virulence in B. glumae because it allows the

bacteria to re-locate at the infection sites of the host (Kim et al., 2007). Toxoflavin,

lipase, flagella dependent motility are considered the primary virulence factors, and the

production of these pathogenic determinants are dependent on N-acyl homoserine

lactones (AHLs) mediated quorum sensing (Devescovi et al., 2007; Kim et al., 2007;

Kim et al., 2004). Some strains of B. glumae produce dark pigments on CPG media and

show diversity in pigmentation phenotypes (Karki et al., 2012b). In recent study, it was

shown that a two-component regulatory system (TCRS) composed of the PidS, sensor

histidine kinase and the PidR response regulator is essential for dark pigment

production, elicitation of HR in tobacco leaves and pathogenicity in rice panicles (Karki

et al., 2012a). Apart from these virulence factors, the development of bacterial panicle
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blight symptoms is largely dependent on prevailing weather conditions especially high

temperature and humidity (Nandakumar et al., 2009; Tsushima, 2011).

Microbes produce a variety of pigments, and these are the characteristics used in

the name of a species as well as provide important clues for diagnostics. Bacteria that

belong to the genus Xanthomonas produce a unique class of carotenoid-like pigments

(xanthomonadins) whose yellow color was recognized early as a major characteristic of

the genus (Starr and Stephens, 1964). The major pigment-producing microorganism are

Bacillus spp. - brown pigments, Pseudomonas spp.- yellow pigments, Streptomyces-

yellow, red and blue pigments. These pigments provide a number of useful functions to

these bacterial sp. such as protection against UV radiation (Romero-Martinez et al.,

2000), heat and cold (Paolo et al., 2006), oxidants (Liu et al., 2005) and antimicrobial

compounds (Van Duin et al., 2002). Pigmentation might also play a role in the virulence

of microbes by killing the host immune response or providing inflammatory damage to

cells and tissues (Liu and Nizet, 2009). Recently, it was shown that B. glumae strain

411gr-6 produces a purple and yellow-green pigments other than toxoflavin on CPG

agar plates (Karki et al., 2012b). However their role in pathogenesis is still not clear.

The shikimate acid pathway is present in bacteria, fungi, yeasts, algae, plants

and certain apicomplex parasites while absent in metazoans including humans. The

shikimate acid pathway consists of seven enzyme-mediated steps yielding chorismic

acid as a final product, which is the direct precursor for aromatic amino acids, folate,

ubiquinones, and other isoprenoid quinines (Knaggs, 2003). The shikimate pathway

mutant of Burkholderia pseudomallei was unable to grow in minimal media; however,

the growth of the mutant was restored with the exogenous application of tryptophan,
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tyrosine, phenylalanine, PABA, and 2,3-dihydroxybenzoate (Cuccui et al., 2007).

Several studies conducted have shown a disruption of genes in shikimate acid pathway

in a wide range of bacteria and this revealed the mode of infection (Günel-Özcan et al.,

1997; Simmons et al., 1997; Stritzker et al., 2004). In the plant pathogenic bacterium,

Xanthomonas oryzae pv. oryzae the shikimate acid pathway is associated with pigment

production and pathogenicity (Goel et al., 2001; Park et al., 2009). In this study we

investigate the role of shikimate acid pathway, a pathway for the production of aromatic

amino acid, in dark pigment and toxoflavin production as well as growth, and virulence

of B. glumae.

4.2. Materials and Methods

4.2.1. Bacterial strains and plasmids

All the bacterial strains and plasmids used in this study are listed in Table 4.1.

Burkholderia glumae 411gr-6, is a pigment producing highly virulent strain isolated from

the rice (Karki et al., 2012b) and was used for mutagenesis. E. coli DH10B, pKNOCKGm

(Alexeyev, 1999) and pBB1MCS-5 (Kovach et al., 1995) were used as a helper strain,

suicide vector  and broad host range vector, respectively. B. glumae and Escherichia

coli strains were routinely grown and maintained in the Luria Bertani (LB) broth and agar

media (Sambrook and Russell, 2001), minimal M9 media (Sambrook and Russell,

2001), King’s B and CPG agar media (Schaad et al., 2001) at 30 to 37°C unless

otherwise described and depending upon the experimental conditions. Antibiotics were

added at the following concentrations: ampicillin (Amp), 100 µg/ml; kanamycin (Km), 50

µg/ml; nitrofurantoin (Nit), 100 µg/ml; and gentamycin (Gm), 20 µg/ml.
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Table 4.1. Plasmids and Burkholderia glumae strains used in the study

Strain or
plasmid

Description Reference or
source

B. glumae
336gr-1 A virulent strain showing a pigment-deficient

phenotype, NitR
(Nandakumar
et al., 2009)

411gr-6 A virulent strain showing a pigment-proficient
phenotype, NitR

(Nandakumar
et al., 2009)

LSUPB114 A aroA::mini-Tn5gus derivative of 411gr-6, NitR, KmR (Karki et al.,
2012a)

LSUPB116 A aroB::mini-Tn5gus derivative of 411gr-6, NitR, KmR (Karki et al.,
2012a)

LSUPB303 A pidR::pKNOCKGm derivative of 411gr-6, NitR, GmR This study

LSUPB304 A pidR::pKNOCKKm derivative of 411gr-6, NitR, KmR This study

E. coli

DH5α SupE44 DlacU169 (f80 lacZDM15) hsdR17 recA1
endA1 gyrA96 thi-1 relA1

Life
Technologies

S17-1 λpir recA thi pro hsdR [res– mod+][RP4::2-Tc::Mu-Km::Tn7]
λ pir phage lysogen

(Simon et al.,
1983)

XL1-Blue
MR

Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44
thi-1 recA1 gyrA96 relA1 lac

Stratagene

Plasmids
pUT::miniT
n5gus

A suicide vector carrying mini-Tn5gus, ApR, KmR (de Lorenzo et
al., 1990)

pKNOCKG

m

A suicide vector, R6K ori, GmR (Alexeyev,
1999)

pBBR1MC
S-5

A broad host range vector, GmR (Kovach et al.,
1995)

SuperCos1 A cosmid vector, ApR, KmR Stratagene

pSC-A-
amp/kan

A PCR cloning vector, ApR, KmR Stratagene

pCL317 A cosmid clone harboring the aroL/aroB locus, ApR This study

pBBaroLB A subclone of pCL317 for the 2.5-kb SmaI fragment
harboring both aroL and aroB in pBBR1MCS-5, GmR

This study
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4.2.2. Recombinant DNA techniques

Procedures for routine DNA cloning and amplification were conducted as per

Sambrook and his colleagues (Sambrook and Russell, 2001).

4.2.3. Screening of mini-Tn5gus mutants and identification of genes

Screening mini-Tn5gus mutants and identification of genes were  performed as

described previously (Karki et al., 2012a) and in previous chapter 2.

4.2.4. Generation of 4-hydroxyphenylpyruvic acid dioxygenase (hppD) and
rhamnotransferase (rhlC) mutants

Internal regions of hppD (bglu_1g02320) and rhlC (bglu_2g05690) were

amplified using the primer set, 5’ GCATCTTCGACGAGAACGAG 3’ and 5’

CACAGCACGATCTGGATGAT 3’ and 5’GCATCTTCGACGAGAACGAG 3’ and

5’CACAGCACGATCTGGATGAT 3’, respectively. The amplified PCR products were

cloned into the PCR cloning vector, pSC-A-amp/kan, using a StrataClone PCR Cloning

Kit (Agilent Technologies, Santa Clara, CA, USA) following the manufacture’s

instruction. The insert of the resultant PCR clone, pSC::hppD and pSC:: rhlC were

digested with XhoI and PstI and ligated to the XhoI/PstI-cut pKNOCKGm (Alexeyev,

1999), generating pKNOCKGm::hppD and pKNOCKGm::rhlC, respectively. Escherichia

coli S17-1 λpir (Simon et al., 1983) was used for maintaining pKNOCK vectors and

pKNOCKGm::hppD and pKNOCKGm:: rhlC. E. coli HB101, which carries the helper

plasmid, pRK2013 (Figurski and Helinski, 1979) , was used for the triparental mating to

introduce pKNOCKGm::hppD and pKNOCKGm:: rhlC to the virulent strain of B. glumae,

411gr-6. hppD and rhlC mutants from homologous recombination were selected on LB

agar containing nitrofurantoin and gentamycin, and their phenotypes of pigment

production were checked on CPG agar plates.
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4.2.5. Genetic complementation of shikimate acid pathway mutant, LSUPB116

To generate a broad host range vector, pBBR1MCS-5 containing whole region of

3-dehydroquinate synthase (aroB), cosmid library of the genome of B. glumae 336gr-1,

was screened by using a aroB specific primer set, 5’-AGGTCGATACCGTGGTGCT-3’

and 5’-CCTCGATCCAGTCGAAGAAC -3’ to indentify cosmid clones containing the

aroB gene. One of the screened cosmid clones, pCL317 was digested with SmaI (New

Engald biolabs) to obtain a 2.5-kb fragment containing aroL (Shikimte kinase) and aroB.

This fragment was then sub-cloned into broad-host-range vector pBBR1MCS-5 (Kovach

et al., 1995), with the same restriction digestion as the cosmid clone, generating

pBBaroLB. For the complementation assay, pBBaroLB was introduced into LSUPB116,

aroB mutant through triparental mating as described previously (Karki et al., 2012a).

The complemented B. glumae strains were selected on LB agar plates containing

kanamycin (Km), 50 µg/ml; nitrofurantoin (Nit), 100 µg/ml; and gentamycin (Gm), 20

µg/ml as selection markers.

4.2.6. Toxoflavin production assay

Extraction and quantification of toxoflavin was done following the previously

developed  protocols (Iiyama et al., 1995) with some modifications. Briefly, B. glumae

strains were grown in 3 ml of LB broth overnight, washed twice with equal volumes of

the same media, and re-suspended in 100 µl of LB broth. Then, 20 µl of the bacterial

suspension was used as starter inoculum to grow in 15 ml of LB broth in a 250 ml flask

for 24 h at 37°C, and afterwards bacterial growth was measured. Toxoflavin was

extracted from 1 ml of LB broth media with an equal volume of chloroform. Then the

chloroform was evaporated under a fume hood, and the residues were dissolved in 1 ml
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of aqueous 80% methanol. Absorbance was measured at 393 nm using a

spectrophotometer (Biomate 3, Thermo Scientific, Pittsburgh, PA, USA). The final

toxoflavin value was calculated based on bacterial growth.

4.2.7. UV light sensitivity assay

Bacterial cells were streaked on CPG agar plates and incubated at 30°C for 48 h.

Bacterial colonies were dissolved in sterile water with cotton swab then OD600 was

adjusted to 0.1 and diluted 1/10 volume. 100 µl of diluted B. glumae cells were spread

on a CPG plate, which was subsequently exposed to the UV light from G15T8

germicidal fluorescent bulb,15W (General electric, USA) in laminar hood (EdgeGARD®

EG3252, The Baker Company, ME, USA) at the distance of 71.43 cm with 253.7nm

wave length for various time durations. Colonies obtained from the surviving cells were

counted following 48 h of incubation at 30°C. Data were transferred to percentage of

survival at different times of UV exposure.

4.2.8. Growth assay of shikimate pathway mutants

Burkholderia glumae strains were grown in LB broth overnight, washed twice with

equal volumes of fresh LB broth, and re-suspended in 1/10 volume of LB broth. Then,

25 μl of the bacterial suspension, having equal starter inoculums were cultured on LB

broth,  minimal M9 media (Sambrook and Russell, 2001).  Minimal M9 media consisted

of 0.1 g (each) of L-tryptophan, L-phenylalanine, and L-tyrosine/liter at 37°C on a  rotary

shaker at 180 rpm. The growth of B. glumae strains were observed by measuring the

OD600 at 12, 16, 20, 24 and 36 h intervals.
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4.2.9. Virulence assay with rice panicles

Detail procedure of virulence assay is described in Chapter 3 (Karki et al.,

2012a).

4.2.10. Virulence assay with onion bulb scales

Virulence phenotypes of B. glumae strains  on onion bulbs were determined as

previously developed method which is described in Chapter 3 (Karki et al., 2012a).

4.3. Results

4.3.1. Screening, characterization and identification of pigment deficient mutants

Two of the pigment deficient, shikimate acid pathway mutants, LSUPB114 and

LSUPB116 were investigated for their virulence related phenotypes. Previously, it was

shown that in the mutants, LSUPB114 and LSUPB116, a mini-Tn5gus transposon was

inserted in the ORFs and encoded a putative 3-phosphoshikimate 1-

carboxyvinyltransferase and a putative 3-dehydroquinate synthase, respectively (Figure

4.1[B]).

4.3.2. Role of the aroA and aroB genes in pigment production and virulence-
related phenotypes

To determine the role of aroA and aroB genes in pigment production phenotype,

mutant of respective genes LSUPB114 and LSUPB116 were grown on CPG agar plates

at 30 C. Both of the mutants failed to produce pigment, remarkably, the pigment

production of B. glumae strain 411gr-6 is dependent upon the temperature (Figure 4.2)

whose production is only visible at 30 C. Moreover, these mutant strains were

significantly less virulent than the parental strain on rice panicles (Figure 4.3[A]) and

onion scales (Figure 4.3[A]).
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Figure 4.1. The shikimate pathway and the aroA and aroB loci. A) A schematic
description of the shikimate pathway and the enzymes involved in each step of the
pathway adopted from  Tzin et al. and Baez-Viveros et al. (Baez-Viveros et al., 2007;
Tzin and Galili, 2010).The genes encoding the metabolic enzymes are indicated in
parentheses.  B) A physical map of aroA and aroB and their respective mutants
LSUPB114 and LSUPB116. This map is based on the sequence information of
Burkholderia glumae BGR1. The locus tag featured in gene bank for each gene is
indicated in parenthesis. Black inverted triangles indicate the site of miniTn5gus
insertion in each mutant. Restriction sites in the map are represented by: D, DraIII; B,
BamHI; S, SacI; P, PstI; N, NotI; and (S), SmaI.  SmaI was used for sub-cloning the 2.5
kb-fragment containing aroL and aroB from the cosmid, pCL317, into the broad host
range vector pBBR1MCS-5 (GmR), creating pBBaroLB.
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Figure 4.2. Dark pigment production of B. glumae strains. A) Pigmentation phenotypes
of wild type B. glumae strain, 411gr-6, shikimate acid pathway mutants, LSUPB114 and
LSUPB116 and complemented, LSUPB116(pBBaroLB) on CPG agar plates. Freshly
grown bacterial colonies were streaked on CPG agar plates, which were incubated at
30°C, and photographed 48h after inoculation. B) Wild-type strain, 411gr-6, incubated at
30°C (left) and 37°C (right) for 48 h after streaking on CPG agar plates.

4.3.3. Intact toxoflavin production by aroA and aroB mutants

To determine if near non-pathogenic phenotypes of LSUPB114 and LSUPB116

were caused by an impaired toxoflavin production, LSUPB114, LSUPB116 a parental

wild type 411gr-6 and a complemented  strain LSUPB116(pBBaroLB) were examined

their the ability to produce toxoflavin. There was no significant difference in toxoflavin

production among 411gr-6, LSUPB114, LSUPB116 and LSUPB116(pBBaroLB) (Figure

4.3 [C]).
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Figure 4.3. Virulence and toxoflavin production of B. glumae strains. A) Representative
bacterial panicle blight symptoms on rice panicles caused by the B. glumae strains,
411gr-6, LSUPB114 and LSUPB116. The number below each picture indicates the
average value of disease severity (DS) from ten replications evaluated using a 0-9 scale
at 10 days post inoculation. In this scale, 0 = no symptoms and 9= more than 90% of
the panicle is symptomatic. Superscript letters indicate statistically significant
differences (P > 0.01) among different strains.  B) Maceration symptoms on onion bulb
scales caused by the B. glumae strains, 411gr-6, LSUPB114, LSUPB116, and
LSUPB116(pBBaroLB).  Onion scales were inoculated with B. glumae strains and
incubated at 30° C for 48 h.  Numeric values indicate the average macerated area
(mm2) from six replications. The photograph was taken at the time of symptom
evaluation.  C) Toxoflavin production of B. glumae strains 411gr-6, LSUPB114,
LSUPB116 and LSUPB116 (pBBaroLB).  Each error bar indicates the standard
deviation from three replications.
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4.3.4. Growth defects of aroA and aroB mutants in M9 minimal medium

There was no significant difference between the mutants and the wild type in

growth rate in LB broth media at 12, 16, 20, 24 and 36 h after inoculation (Figure 4.3

[A]).  In contrast, LSUPB114 and LSUPB116 did not grow in M9 medium, while 411gr-6

and LSUPB116 (pBBaroLB), did (Figure 4.3 [B]). The growth defect of the aroA and

aroB mutants could be restored in M9 medium supplemented with the three aromatic

amino acids (phenylalanine, tryptophan and tyrosine) (Figure 4.3 [C]), but not with M9

media supplemented with only one of the three aromatic amino acids (data not shown).

4.3.5. Growth inhibition of B. glumae strains by glyphosate

Consistent with the requirement of the shikimate pathway genes aroA and aroB

for growth in M9 medium, the growth of B. glumae 411gr-6 was suppressed by the

herbicidal compound, glyphosate (Roundup®), which inhibits 5-enolpyruvylshikimate 3-

phosphate synthase (aroA) (Figure 4.3 [D]) (Steinrucken and Amrhein, 1980). The

growth of B. glumae strain 336gr-1, a non-pigmenting wild type, was also inhibited by

glyphosate in M9 minimal medium like B. glumae 411gr-6 (Figure 4.3[D]). However,

growth of B. glumae strain 336gr-1 was more inhibited by glyphosate than 411gr-6

(Figure 4.3[D]).

4.3.6. Impaired UV tolerance of aroA and aroB mutants

The wild type strain 411gr-6 and its pigment-deficient mutants, LSUPB114 and

LSUPB116, were tested for their tolerance to UV light along with the non-pigmenting

wild type strain 336gr-1. The pigment-deficient shikimate pathway mutants, LSUPB114

and LSUPB116, showed substantially reduced tolerance to UV light compared with the

pigment-producing wild type strain, 411gr-6 (Figure 4.4).  411gr-6 showed about 45%
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Figure 4.4. The growth of B. glumae strains on different media; A) LB, B) M9, C) M9
supplemented with aromatic amino acids, and D) M9 amended with glyphosate. Each
error bar indicates the standard deviation from three replications.
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average survival rate at 0.5-min UV exposure and survived a 3-min-UV exposure

(Figure 4.4).  In contrast, LSUPB114 and LSUPB116 showed only about 12% and 7%

average survival rates, respectively, at 0.5-min-UV exposure and could not survive a 3-

min-exposure (Figure 4.4). The non-pigmenting wild type strain, B. glumae 336gr-1,

also showed reduced tolerance to the UV light compared with B. glumae 411gr-6 like

LSU114 and LSUPB116 (Figure 4.4). B. glumae 336gr-1 seems to have a functional

shikimate pathway unlike LSUPB114 and LSUPB116 because it could grow well in M9

medium without any supplemented aromatic amino acid (Figure 4.3[D]).

Figure 4.5. Effects of UV radiation on the survival of B. glumae strains. The assay was
repeated at least three times independently and the representative results are shown.
Error bar indicates the standard deviation from three replications.
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4.3.7. Screening of B. glumae BGR1 genome for the presence of shikimate acid
pathway genes

The whole genome of B. glumae strain BGR1 form NCBI data base were

scanned for the presence of shikimate acid pathway genes. The first enzyme of the

shikimate pathway is 3-deoxyd-arabino-heptulosonate-7-phosphate synthase (DAHPS)

(converting PEP and E4-P into 3- dehydroquaianate. As we searched in the B. glumae

genome we found phospho-2-dehydro-3-deoxyheptonate aldolase with three genes ID

namely bglu_1g06220, bglu_2g20130 and bglu_2g11470 (Table 4.2.). The second

enzyme of the shikimate pathway is 3-dehydroquinate synthase (aroB), which converts

3-deoxy-d-arabino-heptulosonate-7-phosphate into 3-dehydroquinate the first cyclic

compound of this pathway as shown in Table 4.2. B. glumae has 3-dehydroquinate

synthase in the genome. The third and fourth enzymatic steps are catalyzed by 3-

dehydroquinatedehydratase (aroD) /shikimate 5-dehydrogenase (aroE), and are well

conserved in B. glumae genome leading to the formation of shikimate (Table 4.2).

Shikimate kinase (aroL) catalyzes the fifth enzymatic step of the shikimate pathway that

converts shikimate to shikimate 3-phosphate which is present in both chromosome of

BGR1 genome (Table 4.2). The sixth enzymatic step leads to the formation of

enolpyruvyl shikimate 3-phosphate which is catalyzed by 5-enolpyruvylshikimate 3-

phosphate synthase (aroM) and is reported in the second chromosome of BGR1

genome (Table 4.2).
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Table 4.2. The genes for the shikimate acid pathway found in the genome of
Burkholderia glumae BGR1.

Shikimate
pathway
step

Gene ID Gene
name

Gene product

1 bglu_1g06220
bglu_2g20130
bglu_2g11470

aroG phospho-2-dehydro-3-
deoxyheptonate aldolase

2 bglu_1g03040 aroB 3-dehydroquinate synthase

3
bglu_1g05080
bglu_2g03860

aroD 3-dehydroquinate dehydratase

4 bglu_1g05140
bglu_2g03870

aroE shikimate 5-dehydrogenase

5 bglu_1g03030
bglu_2g20020

aroL shikimate kinase

6 bglu_2g08950 aroM 5-enolpyruvylshikimate-3-
phosphate synthase

7 bglu_1g21620 aroC chorismate synthase

4.4. Discussion

In this study, we provide the first evidence that mutation in the genes involved in

shikimate acid pathway (aroA and aroB) of B. glumae strain 411gr-6 resulted in a lack of

pigment production, failed to grow in M9 medium and were almost non-pathogenic to

rice. Also, these mutants showed reduced tolerance to UV light. To the best of our

knowledge this represents the first report of involvement of shikimate acid pathway in

virulence related phenotypes of the plant pathogenic bacterium, B. glumae.
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B. glumae is primarily associated with seedling rot in rice nurseries and panicle blight

symptoms in rice (Goto and Ohata, 1956; Goto, 1987; Ham et al., 2011; Nandakumar et

al., 2009). Outbreaks of bacterial panicle blight and its pathogen (B. glumae) is

associated with warmer and dry environmental conditions because the optimal

temperature for the growth of B. glumae ranges from 35 to 40° C (Nandakumar et al.,

2009). Also higher relative humidity (≧95 is) absolutely required for the symptoms

development in spikelet (Tsushima, 2011).

Dark pigment production in B. glumae strain 411gr-6 is temperature dependent,

dark pigment production is only visible after incubation at 30° C, while incubation at 37°

C showed toxoflavin production. Similarly, the production of toxoflavin, the most

important virulence factor of this pathogen is hugely dependent upon temperature; the

maximum amount of toxoflavin is produced at 37° C while no detecTable amount is

produced 25-28° C (Matsuda and Sato, 1988). It wold be interesting to know how B.

glumae co-regulated toxoflavin and pigment production in a temperature dependent

manner.

The shikimate acid pathway is essential for the synthesis of aromatic compounds

in prokaryotes, fungi and plants (Knaggs, 2003). Metazoans including humans lack the

shikimate acid pathway, so need to obtain aromatic compounds from intake from food.

Feedback inhibition (an enzyme that is involved in catalysis of  the production of a

certain substance in the cell is inhibited when that substance has accumulated to a

certain level) is controlling the expression of shikimate acid pathway through

intermediates and downstream products (Krämer et al., 2003). This could be the reason

for the loss of pathway genes due to positive selection force, if exogenous availability of
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products and its component enzymes (Zucko et al., 2010). Previously, it was shown that

most of the tested free-living bacteria contained a complete shikimate acid  pathway or

were just missing one or two enzymes, while more than one quarter of the tested host-

associated bacteria having incomplete pathway or missing one or more enzymes

(Zucko et al., 2010). From this result, it was speculated that these host-associated

bacteria might obtain their essential aromatic compounds from the host. Many members

of the Burkholderia are free living bacteria; however, there is a lot of diversity among

them. Screening the whole genome sequence of B. glumae strain BGR1from NCBI data

base for the presence of previously described shimkimate acid pathway genes (Zucko

et al., 2010) revealed that the B. glumae genome contains complete sets of genes for

shikimate acid pathway. The first enzyme of the shikimate pathway is 3-deoxyd-arabino-

heptulosonate-7-phosphate synthase (DAHPS) which is synonymous with phospho-2-

dehydro-3-deoxyheptonate aldolase. In E. coli, there are three DAHP synthase

isoforms indicated by aroF, aroG and aroH while some bacteria like Mycobacterium

tuberculosis contain only one DAHP synthase (Parish and Stoker, 2002). B. glumae

genome has phospho-2-dehydro-3-deoxyheptonate aldolase with three genes ID

namely bglu_1g06220, bglu_2g20130 and bglu_2g11470. Accordingly, the second, third

and fourth steps of the pathway are catalyzed by 3-dehydroquinate synthase (aroB),

dehydroquinatedehydratase (aroD) and shikimate 5-dehydrogenase (aroE) respectively,

and these are well conserved in the BGR1 genome. The fifth step of pathway is

catalyzed by shikimate kinase which is present as two isoforms in E. coli as shikimate

kinase I encoded by the aroK gene and shikimate kinase II encoded by the aroL

(Whipp and Pittard, 1995). In B. glumae genome there are two shikimate kinases
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present in different chromosomes. The sixth and seventh steps are catalyzed by 5-

enolpyruvylshikimate 3-phosphate synthase (aroM) and chorismate synthase (aroC)

respectively leading to the production of chorismate and this step is also well conserved

in the BGR1 genome.

B. cenocepacia strain C5424 produces a brown melanin like pigment, and

disruption of the hppD gene resulted in a non-pigmented mutant (Keith et al., 2007).

Initially by observing the dark pigments phenotype of strain 411gr-6, we speculated that

these pigments might be melanin. After a series of biochemical analysis, we confirmed

that these dark pigments are not melanin (Karki et al., 2012b). Recently, we reported

that B. glumae strains produce diverse types of dark pigments and our preliminary

studies showed that 411gr-6 produces at least purple and yellow-green pigments (Karki

et al., 2012b). Similarly, we mutated the hppD gene of B. glumae and observed the

phenotype of pigment production. Our result showed that mutation of hppD gene did not

abolish pigment production (data not shown). Various types of pigments such as

melanin, scytonemin and carotenoids have been well studied for protection of micro-

organisms against UV light. The pigments accumulated in cell-surface of micro-

organism confer protection against UV by observing a wide range of wave length

(Cockell and Knowland, 1999). For instance, melanin pigment-producing mutant of

Vibrio cholera was more resistant to UV irradiation than the wild type V. cholerae

(Valeru et al., 2009). Similar with previous findings, our data show that the pigment

producing strain of B. glumae is more tolerant to UV light than pigment non-producing

strain. We found that pigment producing wild-type strain; 411gr-6 could survive after 3
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min of UV exposure while other non-pigment producing strains including 336gr-1,

LSUPB113 and LSUPB116 could not.

The aro mutants of Salmonella enterica showed reduced virulence due to the

inability to produce aromatic metabolites such as phenylalanine, tyrosine, and

tryptophan, and these mutants could not grow in minimal media unless aromatic amino

acids or their precursors were added (Sebkova et al., 2008). Previously, it was shown

that aro mutants of Salmonella grow like wild-type in nutrient rice BHI media, showing

that essential aromatic compounds can be supplied through culture media (O'Callaghan

et al., 1988). Similarly, our results showed that there is no significant difference in the

growth pattern between aro mutants and wild-type in nutrient rich, LB broth media. The

aroB mutant of Burkholderia pseudomallei was unable to grow in minimal media but

growth was restored with the addition of tryptophan, tyrosine, phenylalanine, PABA,

and 2,3-dihydroxybenzoate (Cuccui et al., 2007). Our results showed that in contrast,

with the wild-type and complemented strains, the shikimate acid pathway mutants could

not grow in minimal M9 media. This supports the fact that aro mutants of B. glumae

could not grow in minimal media .The minimal media supplemented with individual

aromatic amino acids separately could not restore the growth of the mutants (data not

shown) but, minimal media supplemented with all the three aromatic acids restored the

growth of mutants as the wild type. However, the growth of aro mutants was observed

to be less than the wild-type in minimal media supplemented with aromatic amino acids.

We believe that, increasing the amount of aromatic amino acids increases the growth of

mutants and mutants may have exhaust the exogenous supply of aromatic compounds.
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The genes involved in the shikimate acid pathway are associated with pigment

production and virulence in rice pathogenic bacteria Xanthomonas oryzae pv. oryzae

(Goel et al., 2001; Park et al., 2009). For instance, mutation of aroE gene (encodes

shikimate dehydrogenase) and aroK (encodes for shikimate kinase) in Xanthomonas

oryzae pv. oryzae affects xanthomonadin production and virulence (Goel et al., 2001;

Park et al., 2009). In this study, it was found that the shikimate pathway genes aroA and

aroB are essential for the pigment production, growth of B. glumae in M9 medium and

the virulence of this pathogen. It will be also an important future study to elucidate how

this temperature-dependent differential production of toxoflavin and the pigments is co-

regulated and plays a role in the parasitic fitness of B. glumae in nature.
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CHAPTER 5
BREEDING AND GENETIC STUDIES TO UNDERSTAND BACTERIAL

PANICLE BLIGHT AND SHEATH BLIGHT RESISTANCE IN RICE

5.1. Introduction

Rice is an important crop because it is a staple food for more than 50% of the

world’s population mostly in developing countries. The production and productivity of

rice has increased over time due to several traditional and molecular approaches.

Unfortunately, the demand of rice is ever increasing due to the rapid growth of

population mainly in rice feeding countries. To meet the global food demand, grain

production should be increased by 50% by 2025 (Khush, 2001). In the rice production,

about 37% rice yield is reduced due to several yield reducing factors, most importantly

rice diseases. Bacterial blight, blast, sheath blight, brown spot, stem rot and sheath rot

are some of the major rice diseases around the world although more than 40 rice

diseases were documented (Latif et al., 2011). It is very difficult for farmers to manage

these diseases one at a time. The best way to provide crop protection against these

diseases is through plant resistance. That’s why plant pathologists are working with

plant breeders to incorporate disease resistance genes. Besides, plant disease

resistance, many economically important characteristics, such as yield, height, salt

tolerance, heading date and cold tolerance are associated with quantitative inheritance.

Quantitative traits are controlled by few or many genes that interact with each other and

are affected by environment. Due to the development of genetic markers, it became

possible to draw marker saturated linkage maps and genotype of individuals in a

population and locate quantitative trait loci (QTL) in a chromosome contributing

phenotypes. To overcome the problems of classical breeding and to expedite the
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process, marker assisted selection has become an important tool in plant breeding for

moving genes from one varietal background to another, ultimately developing disease

resistant cultivars.

Molecular markers have changed the prospects of plant breeding. The efficiency

and effectiveness of breeding program has been greatly increased due to molecular

markers as compared to the conventional breeding program. Molecular markers that are

tightly linked to the characters are used for screening the phenotypes in marker assisted

selection. With the help of alleles of a DNA marker, plants having particular genes or

QTL governing certain characters can be identified based on their genotype rather than

their phenotype. There are tandem repeated mono to hexa nucleotide motifs abundantly

found in eukaryotic genomes known as simple sequence repeats (SSR) or

microsatellites. Due to their abundance and variability, SSRs are use as genetic

markers (Wang et al., 1994). SSR are abundant, occur frequently and randomly are

distributed in eukaryotic genome (Tautz and Renz, 1984). In different organisms, the

frequencies of SSR vary greatly (Wang et al., 1994). Dinucleotide repeats (AC)n and

(GA)n are the most common. The chloroplast DNA, also has microsatellites but their

frequency is low (Wang et al., 1994). Hybridization and PCR based categories have

been used to exploit microsatellites sequence for the study of DNA polymorphism. In a

hybridization based approach, genomic DNA is digested with individual restriction

enzymes and hybridized with radio labelled synthetic oligonucleotide probes,

complementary to SSR motifs (Weising et al, 1995) whereas in a PCR based approach,

DNA polymorphisms are detected by amplification of the flanking region of SSR (Tautz,

1989; Weber and May, 1989) or by using primers complementary to SSR motifs (Wu et
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al., 1994). SSR markers are technically efficient and have the multiple potential for high

throughput mapping, genetic analysis, and marker assisted crop improvement

strategies. The evaluation of genetic diversity in narrowly defined gene pool by using

other kinds of molecular markers such as amplified fragment length polymorphism

(AFLP), restriction fragment length polymorphism (RFLP) and random amplified

polymorphic DNA (RAPD) is not efficient due to the unavailability of polymorphism

(Powell et al., 1996). So, SSR markers could be a valuable tool for genetic variability

study in a narrowly defined gene pool. SSR markers are commonly used in fingerprint

accessions, diversity analysis, identifying introgressions in inter-specific crosses, trace

pedigrees, located genes, QTLs identification, and in marker assisted selection (Motley,

2004). These SSR markers are co-dominant, multi-allelic and can be used for Indica

and Japonica germplasm as well as wild germplasms (Motley, 2004). Publicly available

sequence data of the rice genome provides the basis for high throughput in silicon

identification of SSR loci. AT-rich microsatellites tend to show more variation than motifs

that are GC-rich, so these could be the best SSRs for rice (Akagi et al., 1996). But, later

it was reported that long SSRs are more polymorphic than shorter ones regardless of

the motifs, so the length of the SSR repeat unit is important for overall polymorphisms

between genotypes (Cho et al., 2000). Therefore, SSRs are classified into two groups

based on the length of repeated motifs. Class I (hyper variable markers) consists of ≥20

nt in length and class II (potential variable) consists of ≥12 nt and ≤20 nt in length

(McCouch et al., 2002). The comparison of relative frequency of SSRs in coding and

non-coding sequence based on rice ESTs showed that SSRs are abundant in coding

regions. The rice genome sequence also showed that the regions which are richer in
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expressed genes are also tending to be richer in SSR sequences. This has further

implications for SSRs as genetic markers. GC-rich tri-nucleotide SSRs concentrated in

coding region whereas AT di-nucleotide are scare in EST sequences but abundant in

inter-genic region (Cho et al, 2000). Monsanto Rice Genome (MRG) released 6655

SSR containing sequences in rice genome (McCouch et al., 2002). Now, 18,828 SSR

markers are publicly available in www.gramene.org. The frequency of most abundant

motifs of microsatellites in the rice genome are GA, AT and CCG, respectively

(McCouch et al., 2002).  Earlier, there were several reports that microsatellites are not

clustered in certain regions of the genome but are uniformly. But in the rice genome,

there is local clustering of SSR that are non-randomly distributed in GC rich genic

region, often with specific components or genes.

Scientists are able to find thousands of QTLs governing certain characteristics

but only a few of them are cloned and validated by functional analysis. Among them,

very few QTLs governing quantitative disease resistance have been cloned (St Clair,

2010). For example, quantitative resistant loci (QRLs) governing resistance for blast

resistance in rice (Fukuoka et al., 2009) and two other for slow rust resistance in wheat

(Fu et al., 2009) have been cloned.  But for other characteristics of plants, several QTLs

have been cloned and validated by function analysis such as fruit weight in tomato

(fw2.2) (Frary et al., 2000) and grain protein content in wheat (Gpc-B1) (Uauy et al.,

2006).  In rice, photo period response (Hd1) (Yano et al., 2000),  grain number  (Gn1a)

(Ashikari et al., 2005) , grain length and weight (GS3) (Fan et al., 2006), heading date

(Ehd1) (Doi et al., 2004), plant height (sd1), (Sasaki et al., 2002), salt tolerance (SKC1)

(Ren et al., 2005), cold tolerance qLTG3-1 (Fujino et al., 2004), submergence tolerance
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(Sub1A) (Xu et al., 2006) and seed shattering (sh4) (Li et al., 2006) have been cloned

and characterized.

Bacterial panicle blight (BPB) caused by Burkholderia glumae showed spikelet

sterility, discoloration of developing grains, panicles extending upward due to unfilled

grains (Karki, 2010), and discoloration in sheath in the case of severe infection (Jeong

et al., 2003). Environmental conditions such as high temperatures and humidity

occurring during the panicle initiation growth stage are favorable for disease

development, causing more than 40% yield reduction (Nandakumar et al., 2009).

Incidence of BPB around major rice producing areas of the world is increasing possibly

due to the current global warming and lack of control measures (Karki, 2010). Because

of high yield loss, BPB is the second most important rice disease of Louisiana after

sheath blight (Karki, 2010). In spite of its major economic impact and global emergence,

the pathogen has not been studied much with regards to its epidemiology, virulence

mechanisms and host-pathogen interaction (Ham et al., 2011). Out-breaks of the

disease depend upon the occurrence of favorable environmental conditions. There are

no reports of effective control measures for this pathogen so far in the United States.

Thus, the future prospect of controlling BPB relies on cultivating disease-resistant

cultivars. Currently, most of the rice varieties are susceptible to BPB and only few show

partial resistance. Three is a need to explore for BPB resistance related QTLs, genes,

and transcription factors to improve the control of BPB.

Sheath blight (SB) caused by Rhizoctonia solani is one of the major diseases in

rice producing countries around the world that affects both the quantity and quality (Wu

et al., 2012). The fungus, Rhizoctonia solani, has a broad host range that affect about
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200 species of weed and cultivated crops including carrot, cotton, rice, maize, potato,

soybean, tomato and wheat (Lehtonen et al., 2008). There are fungicides available in

the market to control this fungus, but problems associated with field scouting, proper

timing of application, fungicide resistance and cost associated with application hinder

the success of chemical control for sheath blight. So far, there are no reports of rice

germplasm that have immunity to this disease; however, only partial resistance has

been reported in a few varieties. Wide variation has been observed among rice varieties

for resistance to this disease (Groth and Nowick, 1992) possibly due to the lack of a

single gene resistance. However, there are several known resistance genes involved in

resistance to this disease. Most importantly, disease response is not consistent even

within plots, locations and time of replications. SB development largely depends upon

non-genetic factors, such as surrounding environment, temperatures and humidity, plant

density, tiller numbers, leaf angle and length, lodging, rate and time of inputs

application.

Despite the huge economic importance of BPB and SB in the rice production

system of Southern United States, not much is understood about the genetic basis of

resistance to these diseases. This study was designed to provide valuable information

concerning on the genetic basis of BPB and SB resistance in rice.

5.2. Materials and Methods

5.2.1. Selection of parents and rice population advancements

Out of several released rice varieties in Louisiana, partial resistance line LM-1

and susceptible varieties Trenasse and Bengal were chosen as respective parents for

developing mapping populations. Each mapping population was comprised of 300
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recombinant inbred lines (RILs) derived from a cross between Bengal and LM-1 and

Trenasse and LM-1. These mapping populations were maintained and developed each

year. However, for the final genetic study, and phenotyping only RILs developed from

Bengal and LM-1 were chosen.

5.2.2. Layout and experiment design

The RILs derived from LM-1 and Bengal were evaluated for BPB and SB severity

at the Rice Research Station, Crowley in 2012 and 2013. Experiments were design

each year with two replications of single-row plots consisting of about 15 plants per row

for sheath blight and about 25 plants for BPB. Purple rice was planted at 4-12 row

intervals for proper demarcation of RILs. Along with these, both parents LM-1 and

Bengal were included in each replication.

5.2.3. B. glumae inoculation and bacterial panicle blight assessment

Panicles of RILs were sprayed with B. glumae (OD600= 0.1) at 20 – 30% heading

stage in the field. Second, third and fourth inoculations were made at 3 days interval to

capture the appropriate stage of panicle initiation among RILs. BPB ratings were done

as explained on Chapter 3.

5.2.4. R. solani inoculation and disease assessment

RILs were sown at the Rice Research Station, Crowley during mid-March (done

by Dr. Donald Groth). One month after sowing, about 15 rice plants were maintained in

each row by thinning and transplanting. A virulent strain of R. solani, LR172, originally

isolated from LA was used to inoculate the rice plants at the panicle differentiation

stage, about 45 of planting. Inocula of R. solani were produced by using a moist,

autoclaved grain/hull mixture (1:2 vol/vol). The mixture with the initial fungal inocula was
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incubated at 30°C for 12 to 14 days and further propagated with 1:2 volumes of the

fungal mixture and grain/hull mixture and incubating at room temperature for 24 h.

Fungus inocula was evenly distributed in each row by hand. Each RIL was evaluated for

sheath blight severity approximately 2 weeks before ripening stage. Disease rating was

done based a on 0-9 scale, with 0 = no infection and 9 = plants were killed or collapsed

(Li et al., 1995a). For example, a rating of 5 indicated, 50% of the height of the plants

above water line was infected.

5.2.5. DNA extraction

Plant genomic DNA was extracted by using Cetyltrimethyl Ammonium Bromide

(CTAB) method (Clarke, 2009). Briefly, 200 mg of young growing leaves were collected

from 10 rice seedlings of about 1 month old and ground into a fine paste with the help of

liquid N2. The fine paste was dissolved in 500 μl of CTAB buffer, RNaseA (1 μl per ml)

and mixed. The CTAB/plant extracts mixture was incubated for about 15 min at 55°C in

a water bath. After incubation, CTAB/plant extract mixture was span down at 12000 g

for 5 min. The supernatant was transferred into a microfuge tube, and 250 μl of

chloroform: Isoamyl alcohol (24:1) was added. The solution was mixed by inversion

followed by centrifugation at 13000 rpm for 1 min. The upper aqueous phase was

transferred to a clean microfuge tube and 50 μl of 7.5 M ammonium acetate was added,

followed by 500 μl of ice-cold absolute ethanol. The tube was inverted several times to

precipitate the DNA and centrifuged for 1 min at 13000 rpm to precipitate the DNA. The

DNA pellet was washed twice with 70% ethanol and allowed to dry at room

temperature. The DNA was dissolved in 500 μl H2O.
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5.2.6. Phenotypic and agronomic data collection from RILs

The RILs were phenotyped for bacterial panicle blight (BPB) severity, sheath

blight (SB) severity, heading date, plant height, panicle length and flag leaf area. All the

data were collected from plants grown in the field at Rice Research Station, Crowley, LA

with standard cultivation practices. Heading date from each RIL was recorded when

about 50% of the plants in each row were headed. Flag leaf area was calculated by

measuring the length and width of each flag leaf about 1 week before the ripening

stage. Similarly, plant height and panicle length were measured during the maturity

stage. Each trait was taken from three replications.

5.2.7. Polymorphic marker survey between parents

SSR markers were selected from the list of available primers at random covering

all the regions of chromosomes form the web site http://www.gramene.org/markers/.

These selected primers were used for the polymorphism survey between parents.

5.2.8. Breeding of Lemont/LM-1

Both parents were grown and maintained at Rice Research Station, Crowley, LA.

However, about one week before heading they were brought to the green house and

male and female parents were grown separately in a pot. Emasculation of the female

parent “Lemont” was done by vacuum emasculator (Sha, 2013). Briefly, panicles which

had just emerged from the flag leaf sheath or before anthesis were selected for

emasculation. About one third of the selected spikelets were cut by scissors to expose

anthers, and all the anthers were completely removed with the vacuum emasculator.

Immediately after emasculation, the panicles were covered with glassine paper bags.

Fully developed panicles were selected from the male parent (LM-1), and hand
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pollination was performed from11 am to 1 pm.  At peak of blooming stage, the entire

part of the flowering panicle was cut and taken to the female plants. The top of the

glassine paper bag, which was used for protecting the emasculated spikelets was cut

and the male panicle was inserted inside and rotated vigorously to shed pollen on to the

emasculated female panicles. The glassine bag was resealed, and this process was

repeated another 2-3 times. After a week of pollination, the success of crossing was

evaluated by observing the seed set in the panicle. The mature seeds (F1 seeds) from

crosses were harvested after one month after pollination. The F1 seeds were planted

and crossing between two parents was confirmed by running PCR of two polymorphic

SSR primers.

5.3. Results

5.3.1. Screening of SSR markers

350 SSR markers were screened and this covered the whole region of

chromosome 2, 10, 11, and 12 among four rice lines namely Jupiter, Trenasse, LM-1

and. The polymorphic survey results showed only 63 polymorphic markers between LM-

1 and Bengal as well as 64 polymorphic markers between Jupiter and Trenasse

(Appendix A).

5.3.2. Advancement of mapping population

The partially resistant line LM-1 was crossed with the highly susceptible cultivars

Trenasse and Bengal to produce breeding and mapping populations. (done by Dr.

Xueyan Sha). After the F2 population, recombinant inbred lines (RILs) were generated

following the single seed descent method (Figure 5.1). RILs derived from Bengal and
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LM-1 were evaluated for two important rice diseases of Louisiana, bacterial panicle

blight and sheath blight, and other important agronomic characters in field every year

(since 2009) and harvested for continuation of generation advancements. However,

RILs derived from Trenasse and LM-1 were only grown for the generation

advancements. Currently 300 RILs exit from each cross at F6 generations.

Figure 5.1. A schematic view describing the rice inbred line generation advancement
and phenotyping.
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5.3.3. Bacterial panicle blight assessment in the mapping population

BPB evaluation is a difficult task due to the fact that susceptible lines may

escape infection by BPB, and be regarded as a resistance line. This happens since B.

glumae is highly sensitive to the temperature and humidity and infection taken place at

a certain stage of panicle initiation. So it is very important to design experiments having

enough replications and repetitions each year. During 2009, 2010 and 2011 we studied

BPB infection at the population level (Figure 5.3) The mean BPB ratings for parents

were 3.2 and ratings of 517 F2 segregating lines were 3.1 (Figure 5.3) in 2009.

Similarly, in 2010 the mean BPB ratings of 300 segregating lines and parents were 1.7

and 2.2 respectively, (Figure 5.3). In 2011, the average disease ratings of parents as

well as segregating lines were slightly increased compared to the previous years (3.7

for parents vs. 3.3 for segregation lines (Figure 5.3). During 2012 and 2013, BPB was

assessed for individual RILs with two replications. The average phenotypic distribution

of BPB ratings per year and each replication were shown in Figure 5.4. The parental

lines slightly differed for BPB response in years with LM-1 ranging from 2.1 to 3.1 and

Bengal ranging from 5 to 6.6 respectively, in 2013 and 2012 (Figures. 5.4 and 5.5) The

average BPB ratings of RILs were 3.8 and 3.58 during 2012 and 2013, respectively

(Figures 5.4, 5.5 and Appendix E). The results showed that some RILs are immune and

some are highly susceptible to BPB (Figures 5.4, 5.5 and Appendix E) during the 2 year

experiment.
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A

B

Figure 5.2. Diverse disease susceptibility/resistance phenotypes in the mapping
population for bacterial panicle blight (A) and sheath blight (B). Different levels of
infection were shown.
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Figure 5.3. The distributions of the segregating lines of the F2 (2009), F3 (2010) and F4
(2011) mapping populations for the cross between Bengal and LM-1 based o the
disease ratings for bacterial panicle blight.
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Figure 5.4. The distributions of the F5 recombinant inbred lines from the Bengal/LM-1
cross based on bacterial panicle blight ratings.
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Figure 5.5. The distributions of the F6 recombinant inbred lines from the Bengal/LM-1
cross based on bacterial panicle blight ratings.
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5.3.4. Sheath blight assessment in the mapping population

Sheath blight severity was evaluated during 2010, 2011 and 2012 at the Rice

Research Station, Crowley, LA. Equal numbers of plants and homogenous spacing

between plants were maintained. A sheath blight phenotype assessment was made in

each RIL in 2012 however, infection at the population level was studied during 2010 and

2011 (Figure 5.6 ).The mean SB ratings of parents were 3.5 and the mean rating for

300 F3 segregating lines was 1.18  in 2010 (Figure 5.6). Similarly, in 2011 the mean SB

ratings of 300 segregating lines and parents were 3.1 and 4.4, respectively (Figure 5.6).

In 2012, the mean disease ratings of RILs were increased compared to the previous

years, while the mean parent’s ratings did not change significantly over the years (4.3

for parents vs. 4.1 RILs) (Figure 5.7 and Appendix E).

5.3.5. Phenotypic characteristics

The phenotypic values of four traits plant height, heading date, panicle length

and flag leaf areas, were scored in 300 RILs along with both parents (Bengal and LM-1)

during 2012 and 2013. Considerable variations were detected among RILs phenotypes.

Heading date is an important character associated with BPB of rice. Mean heading date

of RILs was 113 and 93 days in 2013 and 2012, respectively (Appendix B ). In 2012,

LB_105 had the shortest (82 days) and LB_46 has the longest (100 days) heading date

as compared to LM-1(98 days) and Bengal (93 days) (Appendix B). The average

number of heading days for Bengal was 115 days and 120 days for LM-1. LB_58 (104

days) and LB_178 (100 days) were two RILs which had shortest and longest days for

heading, respectively in 2013 (Appendix B). Plant height is an important quantitative

character associated with sheath blight resistance; it was measured during the maturity
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Figure 5.6. The distributions of the segregating lines of the F3 (2010) and F4 (2011)
mapping populations for the cross between Bengal and LM-1 based o the disease
ratings for sheath blight.
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Figure 5.7. The distributions of the F6 recombinant inbred lines from the Bengal/LM-1
cross based on sheath blight ratings.
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stage. Between the two parents, Bengal was taller than LM-1 (89.6 cm for Bengal vs.

81.3 cm for LM-1). The tallest RIL was LB_253 (116 cm), the shortest was LB_71

(66.3cm) and the mean height was 93.6 (Appendix C). Panicle length and flag leaf area

are two important characters associated with yield. The average panicle length of RILs

was 20 cm. LM-1 had a slightly longer panicle than Bengal (19.3 cm for LM-1 vs. 18 cm

for Bengal) while LB_184 had the longest panicle (25.6 cm) and LB-55 had the shortest

panicle (15.6 cm) (Appendix C). The mean flag leaf area of RIL was 40.4 cm2. Bengal

and LM-1, had flag leaf areas of 43.7 and 38.4 cm2, respectively. LB_137 has the

largest flag leaf area (74.5 cm2) and LB-109 has the smallest area (20.9 cm2) among

the 300 RILs (Appendix D).

5.3.6. Crossing of LM-1 with Lemont and generation advancement

The cross pollination between two rice lines Lemont and its gamma ray mutant

derivatives LM-1 was made during 2012 (Figure5.8). About 550 F1 seeds were obtained

from the cross of those parents. 10 F1 plants were selected randomly from 20 F1 plants

grown in green the house and the crossing of Lemont/LM-1 was confirmed by

polymorphic markers in 5 plants. From those 5 F1 plants, about 500 F2 seeds were

harvested and preserved for generation advancement.

5.4. Discussion

Mapping populations have several uses, such as QTL identification, verification

and measurement of QTL effects, breeding values, and introgression of interesting

characters to an adopted genetic background. The line partially resistant to BPB and

SB, LM-1, was crossed to the susceptible cultivar Bengal to produce breeding and

mapping population at the Rice Research Station. 300 RILs derived from Bengal and
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LM-1 were evaluated for BPB and SB resistance and other important agronomic

characters in the field each year from 2009.

Figure 5.8. F1 seeds obtained from the cross between Lemont and its mutant derivative
LM-1.

We studied response of individual RIL to BPB in 2012 and 2013. We found that

BPB developed more profusely in 2012 than 2013 which was evident form the BPB

response of both parents and RILs in 2012 and 2013. Since development of BPB is

highly dependent upon existing weather conditions, we experienced considerably low

temperatures during rice growing season in 2013, and that might be the reason for low



104

occurrence of BPB. A day to head is an important trait of rice which plays significant

role in adaption to different cultivation areas and cropping seasons (Yamamoto et al.,

2000). Previous, study showed that days to heading is correlated with BPB severity and

the putative QTLs mapped for heading date is also mapped with QTLs for BPB

resistance (Pinson et al., 2010). It might be possible that late heading rice plants are

exposed to the cooler temperature which is not conducive for pathogen growth. We

scored heading date of each RILs during 2012 and 2013 and found that days to heading

in 2013 took considerably longer days than previous growing season. The rice growing

season was accompanied with relatively low temperature in 2013, so heading days

might take relatively longer days.

Previously, it was reported that, heading days, plant height  and panicle number

is associated with sheath blight resistance (Li et al., 1995b). Rice cultivars with late

heading days are more resistant to sheath blight  than those with early heading days

(Park et al., 2008). Most of the current US rice cultivars are high yielding and having

good agronomic characters but they are susceptible to SB (Zhu et al., 2000). The

results of the sheath blight severity assay of 300 RILs under the field condition during

multiple years showed a considerable amount of variation among RILs and some of

these lines could be useful for rice breeding program.

The other important agronomic characters, such as plant height panicle length

and flag leaf area were scored in the 300 RILs along with both parents (Bengal and LM-

1) during 2012 and 2013. There was considerable amount of variation in these

characters among RILs. Rice plant height is an important agronomic characteristic
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associated with yield that is regulated by quantitative genes (Wang and Li, 2005). Plant

height is also associated with sheath blight resistance (Zou et al., 2000).

Panicle length is an important yield component of rice which is highly influenced by

depth of flooding water, plant density, and weather conditions such as light and

temperature (Ahamadi et al., 2008) and fertilizer level.

Genetic diversity among crop cultivars is a possible solution for disease

management (Browning and Frey, 1969). Planting genetic diverse rice cultivars

provides a greater disease suppression than monoculture of uniform rice lines (Zhu et

al., 2000). SSR polymorphism study between four cultivars namely, Jupiter, Trenasse,

LM-1 showed that less polymorphism exit among those rice lines. All the above

mentioned rice varieties (parents) are well adapted US rice cultivars, since they have

narrow genetic base. Rice cultivars released after 1994 in the United States were

developed from crosses from older cultivars or breeding lines (Personal communication

Dr.Sha). That might be the excellent reason for the low polymorphic SSR markers

between our parents.

The most important and challenging tasks in rice breeding program is to combine

all agronomically important and disease resistance characteristics into a single cultivars

(Jia et al., 2012). This study identified rice lines that were resistance to BPB and SB

along with superior agronomic characteristics. These rice lines will be useful resource

for developing new cultivars as well as for studying the genetic basis of quantitative

disease resistance.
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CHAPTER 6
GENOTYPIC AND PHENOTYPIC CHARACTERIZATION OF LB-33,
A HIGH YIELDING RICE LINE WITH SHEATH BLIGHT AND

BACTERIAL PANICLE BLIGHT RESISTANCE

6.1. Introduction

Rice is one the most important cultivated crops in the world, since about 50% of

the total population depends on it for their calorie supply. The United States only

produces 2% of the world rice but is the fourth largest exporter only behind Thailand,

Vietnam and India. The major rice breeding effort in the United States is concentrated

on the further improvement of yield potential, quality, disease resistance, seedling vigor

and other agronomic characters. Bacterial panicle blight (BPB) caused by Burkholderia

glumae and sheath blight (SB) caused by Rhizoctonia solani are the major diseases of

rice in the Southern United States contributing significant yield loss. Under favorable

conditions for disease development, BPB can cause up to 70% yield reduction

(Nandakumar et al., 2009) and SB can cause up to 50% yield reduction (Marchetti and

Bollich, 1991) when highly susceptible cultivars are grown. Current commercial rice

cultivars grown in Louisiana are early-maturing, semi-dwarf, resistant to lodging, upright

plant type, high tillering and high yielding but they are susceptible or very susceptible to

BPB and SB (Groth et al., 2007; Rush et al., 2011; Rush et al., 2007). For the control of

BPB, no chemicals are registered in the United States. Some chemical control methods

are available for SB but this approach is associated with risk to environment and costs.

The best way to control diseases is incorporation of resistance genes into adapted

cultivars. The objective of this project was to develop BPB and SB resistance, early-

maturing, high yielding rice lines with potential for release a Southern US Cultivar.
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6.2. Materials and methods

6.2.1. Cross and generation selection

LB-33 was selected from a cross between Bengal (Linscombe et al., 1993) and

LM-1 (Groth et al., 2007) that was made by Dr. Xueyan Sha in 2008 at the Louisiana

State University Agricultural Center, Rice Research Station in Crowley, LA.  Bengal

was used as a female parent which is early maturing, high yielding, medium grain

cultivar,  developed at Rice Research Station at Crowley, LA in 1992  with the pedigree

of `MARS'//`M201'/MARS made at the Rice Research Station in 1983 (Linscombe et al.,

1993). LM-1 was used as a male parent, is a mutant germplasm line developed at the

Rice Research Station at Crowley, LA by irradiation of the US cultivar Lemont (Bollich et

al., 1985; Groth et al., 2007). LM-1 has general agronomic characteristics similar to

Lemont and improved disease resistance to sheath blight, bacterial panicle blight and

narrow brown leaf spot (Groth et al., 2007).

F1 seeds were planted in the greenhouse, and after close examination of

possible selfed plants, F1 plants were bulk-harvested in spring 2008. Then, F2

population of about 1500 plants was space planted in 100 rows each containing 15

plants. From that population, about 300 plants were selected representing each row and

panicles were harvested in 2008. Since then generation advancements were done at

the Rice Research Station, Crowley, LA in 2009, 2010, 2011 and 2012. Each year, one

plant was selected from a row containing about 15-20 plants, and seeds from a single

plant were planted in a row the next year. During 2012, LB-33 was identified as an

outstanding line that showed enhanced disease resistance to sheath blight and bacterial
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panicle blight as well as interesting agronomic traits associated with high yield. Advance

genotypic and phenotypic studies were conducted on LB-33 in 2013.

6.2.2. Methods for agronomic and botanical trait characterizations

LB-33 was characterized in comparison with its parents Bengal and LM-1 in two

different environments, i.e. in the greenhouse and field. For greenhouse experiments,

rice seeds were germinated in plastic pots (15 cm diameter by 20 cm height) containing

a soil mixture of clay, Jiffy MixH (Ferrry-Morse Seed Co, Fulton, KY, USA) and sand in a

3:2:1 ratio. After 24 days, four rice seedlings were transplanted in each pot. Then the

rice plants were fertilized with Nitrogen containing fertilizer (Urea) at tillering and 1 week

before heading stage. For field experiments at the Rice Research Station (Crowley,

Louisiana, USA), all the three rice lines were grown in rows (12 to 15 plants per row)

with ca. 30 cm intervals between rows. The characteristic features of soil at LSU

AgCenter Rice Research Station are silt loam soil (fine, mixed, thermic Typic

Albaqualfs) with 1.1% organic matter and pH 5.8 (Linscombe et al., 2004). Nitrogen (as

urea) was applied at 68 kg N per acre prior to permanent flooding. A permanent flood

was established about 4 weeks after seedling emergence and about ten cm water level

was throughout the season. In both experimental conditions, ten rice plants were

randomly chosen and phentoyped for, plant height, heading date at vegetative and

maturity stage, leaf area, flag leaf area and panicle length.  Plant height at vegetative

stage was measured when the plants reached to the 5th leaf growth stage, heading date

was recorded when about 50% of plants were headed and other characters were

recorded at maturity stage. Characters associated with seed and milling quality were

performed after harvest in the under laboratory.
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6.2.3. DNA extraction and genotyping with SSR polymorphic markers

About 30 representative seeds were planted in greenhouse selected from 30

different plants of LB-33 in F6 generation and one young leaf was collected from each

seedlings. Total DNA was extracted  from leaves by the CTAB method (Murray and

Thompson, 1980) and described in previous chapter 5.

The polymorphism survey between Bengal and LM-1 was conducted using

publicly available SSR markers of rice from www.gramene.org and some of the primers

were previously associated with sheath blight resistance. Then, 33 polymorphic SSR

markers were selected randomly (Table 6.1) and used for genotyping of LB-33 in the F6

generation.  PCR amplifications were performed in 25 μl reaction mixtures containing

1.0 μl (70 ng) DNA, 2.5 μl of 10X PCR buffer, 0.5 μl of 10 mM dNTPs, 1.25 μl of each

forward and reverse primers (10 pM of each primer), 0.2 μl of Paq 5000 DNA

polymerase (Agilent Technologies, Inc. CA, USA) and 18.4 μl H2O. PCR consisted of an

initial denaturation for 5 min at 95 °C; 34 cycles of 4 s at 95 °C, 45 s at 55 °C, and 1 min

at 72 °C; followed by a final extension for 5 min at 72 °C. PCR products were separated

by electrophoresis in 4 % Agarose SRFTM gel (AMRESCO LLC, OH, USA) at 180 V for 4

h.

6.2.4 Statistical analysis

Data were analyzed using SAS software, version 9.2 (SAS Institute). Analysis of

variance for grain yield, milling yield, plant height, leaf area, flag leaf area, panicle’s

characteristics, and days to 50% heading were performed separately for field and

greenhouse data with at ten replications.
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6.3. Results

6.3.1. Genotyping with polymorphic markers

Electrophoresis analysis of PCR products derived from genomic DNA of LM-1,

Bengal and LB-33 was performed, and homozygosity of LB-33 was confirmed by the

polymorphic primers between LM-1 and Bengal. The results from 33 polymorphic

primers showed that only six primers, (RM104, RM3870, RM20612, RM5414,

RM16459, and RM5961), corresponded to LM-1 and LB-33, while the rest of the

primers corresponded to LB-33 and Bengal (Table 6.1).

6.3.2. Grain description

Bengal has typical U.S. media grain rice characteristics (Linscombe et al., 1993).

LB-33 had the following seed dimensions: 8.6 mm length, 2.7 mm width, 1.9 mm

thickness and 28.43 mg weight of each seed. Seed length of LB-33 is intermediate

between the two parents i.e. shorter than LM-1 but longer than Bengal however they are

not statistically different with each other (Table 6.2). In terms of width, thickness and

weight LB-33 was statistically closely related to Bengal than LM-1 (Table 6.2).

6.3.3. Agronomic and botanical description

LB-33 possesses a height taller than both parents LM-1 and Bengal which are

considered to be semi-dwarf rice cultivars. During the vegetative growth stage, Bengal

was taller than LB-33, however, as the plants reached reproductive stage, Bengal was

overtaken by LB-33 under all experimental conditions. LB-33 had an erect flag leaf

orientation, and leaves are dark green. LB-33 had a longer and wider flag leaf than both

of the parents under both greenhouse and field growing conditions which are

significantly different from each other (Table 6.3). The mean flag leaf area of LB-33 was
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80.22 cm2 whereas it was 45.45 and 40.26 cm2 for LM-1 and Bengal, respectively. From

vegetative to reproductive stages, LB-33 had were bigger and wider leaves than its

parents.

Table 6.1. Polymorphic simple sequence repeat used for genotyping.

Markers LM-1 Bengal LB-33 Chr. References
RM5389 L U U 1 (McCouch et al., 2002)
RM104 L U L 1 (Akagi et al., 1996)
RM14304 U L L 2 (Matsumoto et al., 2005)
RM3838 U L L 5 (McCouch et al., 2002)
RM1237 L U U 5 (McCouch et al., 2002)
RM3870 L U L 5 (McCouch et al., 2002)
RM19387 L U U 6 (Matsumoto et al., 2005)
RM527 U L L 6 (Temnykh et al., 2001)
RM20216 L U U 6 (Matsumoto et al., 2005)
RM20612 U L U 6 (Matsumoto et al., 2005)
RM20774 U L L 6 (Matsumoto et al., 2005)
RM527 U L L 6 (Temnykh et al., 2001)
RM1093 U L L 7 (McCouch et al., 2002)
RM3710 U L L 8 (McCouch et al., 2002)
RM152 L U U 8 (Akagi et al., 1996)
RM22899 L U U 8 (Matsumoto et al., 2005)
RM3710 U L L 8 (McCouch et al., 2002)
RM152 L U U 8 (Akagi et al., 1996)
RM22899 L U U 8 (Matsumoto et al., 2005)
RM23959 U L L 9 (Matsumoto et al., 2005)
RM5414 L U L 9 (McCouch et al., 2002)
RM16459 L U L 9 (Matsumoto et al., 2005)
RM23982 U L L 9 (Matsumoto et al., 2005)
RM24779 L U U 9 (Matsumoto et al., 2005)
RM24702 U L L 9 (Matsumoto et al., 2005)
RM27080 L U U 9 (Matsumoto et al., 2005)
RM257 L U U 9 (Chen et al., 1997)
RM5961 L U L 11 (Chen et al., 1997)
RM27080 L U U 11 (Matsumoto et al., 2005)
RM28230 L U U 11 (Matsumoto et al., 2005)
RM202 L U U 11 (Chen et al., 1997)
RM167 L U U 11 (Wu and Tanksley, 1993)
RM224 U L L 11 (Chen et al., 1997)
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The leaf area of second leaf counting from the flag leaf in LB-33 was not

significantly different with its parents under greenhouse conditions; however it was

significantly different than both parents under field conditions (Table 6.3). The panicle

length of LB-33 was significantly longer than both parents under both greenhouse and

field conditions (Table 6.5). Panicle length for LM-1 and Bengal were not significantly

different from each other. The mean panicle length of LB-33 from the greenhouse and

field was 27.8 cm, compared to 21.6 and 22.2 cm for LM-1 and Bengal, respectively.

LB-33 had the highest number of secondary panicles in a panicle than both parents.

Under greenhouse, the number of secondary panicles per panicle of LB-33 was

statistically similar to Bengal but different than LM-1. However under field conditions,

LB-33 had statistically different number secondary panicles per panicles than both

parents. The average number of secondary panicles per panicle of LM-1, Bengal and

LB-33 were 12, 13 and 15, respectively (Table 6.5). The number of filled grains per

panicle of LB-33 was significantly higher than both parents under both growing

conditions. Under field conditions LM-1 and Bengal had statistically similar numbers of

seeds per panicle while in the greenhouse they had statistically different seeds number

per panicle (Table 6.5). Overall, LB-33 had average of 208.4 seeds per panicle while

LM-1 and Bengal had 147.47 and 174.40 seeds per panicle, respectively. The weight of

each panicle of LB-33 was significantly higher than both parents under both growing

conditions.
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Table 6.2. Grain dimensions and weights of LM-1, Bengal and LB-33.

Cultivar Length Width Thickness Length/Wi
dth ratio

Weight

mean ±SD(mm) mg
LM-1 8.69±0.29a 2.45±0.08b 1.92±0.11b 3.544 23.55±2.06b
Bengal 8.47±0.30a 2.96±0.11a 2.08±0.07a 2.862 28.65±3.27a
LB-33 8.66±0.28a 2.72±0.125a 1.99±0.9a 3.177 28.43±2.24a

Table 6.3. Leaf and flag leaf areas of LM-1, Bengal and LB-33.

Leaf area (cm2) Flag leaf area (cm2)
LM-1 Bengal LB-33 LM-1 Bengal LB-33

Green
house

50.48±10.48a 45.85±10.05a 47.17±14a 52.63±9.37c 39.89±9.44b 89.6±14.80a

Field 46.24±8.52b 40.71±5.96b 59.71±5.61a 38.18±4.34b 40.71±5.96b 70.71±9.63a
Mean 51.07 43.28 54.69 45.45 40.26 80.22

Table 6.4. Plant heights of LM-1, Bengal and LB-33 at the vegetative and reproductive stages

Height (cm) at vegetative stage Height (cm) at reproductive stage
LM-1 Bengal LB-33 LM-1 Bengal LB-33

Green house 49.65±2.89c 75.33±3.22a 68.58±6.47b 88.82±6.55c 91.69±4.97b 114.06±7.59a
Field 54.35±3.81c 80.26±4.8a 67.69±6.59b 79.2±1.93b 83±4.78b 103.1±5.27a
Mean 52 77.79 68.13 84.01 87.39 108.58
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Figure 6.1. Plant heights of LM-1, Bengal and LB-33 at the vegetative and reproductive
growth stages. A) Vegetative stage. B) Reproductive stage
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The average weights of each panicle of LM-1, Bengal and LB-33 were 3.066, 3.56 and

5.07 grams, respectively (Table 6.5). Consistent with weight of panicles, LB-33 had

significantly higher yield per panicle than both parents under the different growing

conditions. The average weights of seed from each panicle of LM-1, Bengal and LB-33

were 2.59, 3.04 and 4.58 g respectively (Table 6.5).

Table 6.5. The panicle associated characteristics of LM-1, Bengal and LB-33.

LM-1
Panicle L

(cm)
Secondary
panicle

Seed/panicle Wt/panicle
(gm)

Yield/panicle
(gm)

Greenhouse 23.5±2.05b 11.1±1.44b 137.9±22.28c 2.87±0.48c 2.46±0.48c
Field 19.8±1.22b 13.9±0.99b 157±18.80b 3.26±0.41b 2.724±0.59

b
Mean 21.65 12.5 147.45 3.065 2.592

Bengal
Panicle L

(cm)
Secondary
panicle

Seed/panicle Wt/panicle
(gm)

Yield/panicle
(gm)

Green
house

24.55±2.3b 13.2±1.39a 176.2±33.08b 3.59±0.61b 3.23±0.56b

Field 20±1.33b 14.5±2.27b 172.6±23.20b 3.53±0.76b 2.84±0.75b
Mean 22.28 13.85 174.40 3.56 3.04

LB-33
Panicle L

(cm)
Secondary

panicle
Seed/panicle Wt/panicle

(gm)
Yield/panicle

(gm)
Green
house

30.7±2.52a 14.3±1.7a 209.4±17.10a 5.1±0.66a 4.619±0.71a

Field 25±1.49a 16.9±1.19a 207.4±27.69a 5.04±0.71a 4.55±0.61a
Mean 27.85 15.6 208.4 5.07 4.5845
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The days to 50% heading were different for parent cultivars and LB-33. The days to

50% heading for LM-1, Bengal and LB-33 were 98, 93 and 96 days in 2012, and 120,

118 and 115 days in 2013, respectively, under field (Table 6.6). All the rice lines headed

early in under the green house with 89, 81, 86 and and for LM-1, Bengal and LB-33,

respectively (Table 6.6).

Table 6.6. The milling qualities and heading days of LM-1, Bengal and LB-33.

Rice Milling %* Days to 50%
heading

Days to 50%
heading

Days to 50%
heading

Head rice Total rice Field (2012) Field
(2013)

Greenhouse(201
3)

LM-1 56.2 66.75 98 120 89
Bengal 65.15 68.58 93 115 81
LB-33 64.61 67.09 96 118 86

* Measured by Dr. Donald Groth and his lab members

6.3.4. BPB and SB resistance and impacts on yield

Sheath blight and bacterial panicle blight resistance were evaluated in 2012 and

2013. LB-33 had mean SB ratings of 1.66 (Table 6.7). Parental lines LM-1 and Bengal

had sheath blight ratings 2.74 and 5.97 (Table 6.7). In regards to resistance to bacterial

panicle blight of rice, LB-33 rated 1.56 compared with 1.93 and 5.95 ratings for LM-1

and Bengal, respectively (Table 6.7).

Yield was compared among LB-33 and its parents (LM-1 and Bengal) that were

inoculated with B. glumae and R. solani and those non-inoculated. Both BPB and SB

impacted yield more reduction on Bengal than LB-33 and LM-1. No difference in yield

was detected between healthy and diseased plants for LB-33 (Figure 6.2).
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Figure 6.2. The effect of bacterial panicle blight and sheath blight infection on yield.
Rows of LB-33, LM-1 and Bengal were inoculated with B. glumae and R. solani,
harvested and percent yield reduction by BPB and SB was compared to non-inoculated
control. Small case letters indicate statistically significant differences (P > 0.01) among
treatments.

Table 6.7. The diseases ratings of LM-1, Bengal with LB-33.

Sheath blight Bacterial panicle blight
Year LM-1 Bengal LB-33 LM-1 Bengal LB-33
2012 3.37 5.62 2 2.5 6.62 1.5
2013 2.12 6.33 1.33 1.37 5.25 1.62
Mean 2.74 5.97 1.66 1.93 5.93 1.56
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6.4. Discussion

This study characterized an inbred rice line, LB-33 with bacterial panicle blight

and sheath blight resistance and high yield. To elucidate the superiority of LB-33 in

terms of BPB and SB resistance as well as other important agronomic characters

associated with high yield, a comparative study with its parents (Bengal and LM-1) was

performed under two different environmental conditions. The important result of this

study is that LB-33 achieved higher yield and showed resistant phenotypes to BPB and

SB compared to parents, LM-1 and Bengal. The high yield of LB-33 may be due to a

higher panicle length, number grains per panicle and larger flag leaf area.

LB-33 had significantly higher panicle length than both parents. Longer panicles have

more secondary panicles and grains, and this is a contributing factor for high yield. LB-

33 has the potential for producing high yield due to higher number grains per panicle.

Also, LB-33 produced significantly higher yield per panicle than both parents under two

different growing conditions.

Taller rice plants with a high degree of lodging resistance are important for forage

and biofuel production. Semi-dwarf lines sustained more than double yield and milling

qualities reduction than standard height plants (110-120 cm) due to the effect of SB

(Marchetti, 1983). In addition, tall plants create better air transmission, and reduced

relative humidity within plant canopy and this make the micro climate unfavorable for

sheath blight development (Xing et al., 2003). LB-33 was taller than both of the parents

which were considered as semi-dwarf rice. The average height of LB-33 was 108.6cm

which might be suitable height for reduction of sheath blight infection in the field. During

vegetative stage, Bengal was taller than LB-33, however, as the plants reached the
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reproductive stage, Bengal was overtaken by LB-33 under all experimental conditions.

LB-33 showed intermediate length in days to heading of the two parents under both

growing conditions. Delayed heading might contribute to decreased BPB infection in the

field by avoiding the favorable environment (high temperature and humidity) for

pathogen growth especially; BPB has such a narrow window for infecting the flowering

panicle.

Normally, plants grown under greenhouse are shorter and produce fewer yields

as compared to filed grown plants. However, in our test, greenhouse grown plants are

taller and produce more yields. An additional application of N2 fertilizer at 1 week before

heading and created soils with high organic matter than in the field might be the reason

for superior agronomic traits of LB-33 in greenhouse. LB-33 showed more response to

the extra dose of fertilizers, so LB-33 has more chance to increase yield by better crop

management.

Most of the rice cultivars grown in Louisiana are susceptible to sheath blight and

bacterial panicle blight, however, some rice cultivars shown partial resistance to

bacterial panicle blight of rice (Blanche et al., 2012). A significant difference in sheath

light and bacterial panicle blight was found among LM-1, Bengal and LB-33. Since

LB-33 showed almost an immune response to the most important rice diseases of

Louisiana, it might successfully incorporate resistance into the breeding program. BPB

alone can reduce yield up to 75% in rice under the heavy infection in highly susceptible

cultivars (Nandakumar et al., 2009). In case of severe infection, sheath blight can cause

yield reduction by 12  to 49% (Wu et al., 2013). It was shown that LB-33 had the least

and Bengal had the most yield reductions by BPB and SB. Interestingly there was no
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significant different between healthy and diseased plant’s yield of LB-33. Under field

conditions of Louisiana inoculation with R. solani increases the incidence and severity of

sheath blight and yield reduction ranged from 4% reduction in moderately susceptible

cv. Francis to 21% in very susceptible cv. Cocodrie (Groth and Bond, 2007). For

standard height rice plants, SB rating scales of 5 and 6 reduced the yield by 10 and

12% respectively (Marchetti, 1983). Bengal being a moderately SB susceptible cultivar,

the 27% yield reduction might primarily due to the effect of BPB.

This study showed that there are significant improvements of LB-33 over its

parents in terms of panicle length, number of grains per panicle, yield per panicle and

larger flag leaf area. The high yield of LB-33 over its parents is due to the improvement

of those yield attributing characters. Most importantly, LB-33 possesses high levels of

resistance to bacterial panicle blight and sheath blight. So this rice line can be used in

the future for the development of high yielding disease resistant rice cultivars.
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CHAPTER 7
CONCLUSION

Random transposon mutagenesis has been widely used to identify the genetic

elements underlying the virulence mechanism of different plant pathogenic bacteria. In

this study we used mini-Tn5gus transposon to investigate the genetic basis of pigment

production of B. glumae strain 411gr-6. We screened about 30,000 mutants and 50

mutants showing no, less and over production of pigment were selected for further

study. Among identified genes related to pigment production, some genes are already

known to be related with the pathogenesis of this pathogen. So it is interesting to know

how the pigment production and pathogenesis is related in B. glumae. We

demonstrated that a newly found TCRS, PidS/PidR, is an essential regulatory

component of B. glumae for pigmentation in CPG medium, HR elicitation in tobacco,

and full virulence in rice and onion. Remarkably, it was found that orthologs of PidS and

PidR are highly conserved in many Burkholderia spp. B. gladioli, another bacterium

causing BPB in rice (Ham et al., 2011), contains PidR and PidS orthologs showing

highest homology with PidR and PidS. In this study we also provided the evidence that

mutation in the genes involved in shikimate acid pathway (aroA and aroB) of B. glumae

strain 411gr-6 resulted in lack of pigment production, fail to grow in M9 medium and

almost non-pathogenic to rice. Also these mutants showed reduced tolerance to UV

light. To the best of our knowledge it is the first report of involvement of shikimate acid

pathway in virulence related phenotypes of plant pathogenic bacterium, B. glumae.

Mapping populations have several uses such as QTL identification, verifications

and measurement of QTL effects, breeding values and introgression of interesting
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characters to an adapted genetic background. The line partially resistant to BPB and

SB, LM-1, was crossed to susceptible cultivar Bengal to produce a breeding and

mapping population at the Rice Research Station, Crowley in 2008. 300 RILs derived

from Bengal and LM-1 were evaluated for BPB and SB resistance and other important

agronomic characters in the field from 2009. Several RILs showed enhanced BPB and

SB resistance as well as other superior yield attributing characteristics. BPB and SB

resistant line, LB-33 was characterized for resistance and also showed some promosing

agronomic traits. To elucidate the superiority of LB-33 and in terms of BPB and SB

resistance as well as other important agronomic characters associated with high yield, a

comparative study with its parents (Bengal and LM-1) was performed in two different

environmental conditions. A comprehensive study showed that there is significant

improvement of LB-33 over its parents in terms of panicle length, number of grains per

panicle, yield per panicle and larger flag leaf area. The high yield of LB-33 over its

parents is due to the improvement of those yield attributing characters. Most

importantly, LB-33 possesses high levels of resistance to bacterial panicle blight and

sheath blight. So this rice line can be used for future breeding for the development of

high yielding, disease resistance rice cultivars.

The role of non-pathogenic strains of B. glumae for the ability to suppress BPB

and SB blight of rice was investigated. Since BPB and SB did not offer many viable

options for their control, use of biological control agents can be alternative option. In a

previous study,  it was shown that some B. glumae strains isolated from the Southern

United States were non-pathogenic to rice and did not cause any significant yield

reduction when inoculated (Karki et al., 2012b). This study focuses on non-pathogenic
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strains of B. glumae that were isolated from the same ecological niches and already

verified that they cannot cause disease on rice. The naturally occurring non-pathogenic

strains could suppress the disease caused by virulent strains. The ability of nine

pathogenic and 11 non-pathogenic strains of B. glumae were tested for the ability to

restrict the growth of R. solani. Some of the naturally avirulent strains showed antifungal

activities in vitro that can be good candidates for biological control agents for controlling

sheath blight of rice. Field efficacy tests were evaluated for some of the selected strains

for the suppression of BPB and SB. All the tested strains reduced the severity of BPB

and SB symptoms when they were applied as a pretreatment 1 day prior to pathogen

inoculation. The results demonstrated that non-pathogenic B. glumae strains isolated

form rice field, particularly 257sh-1 and 396gr-2 for BPB and 257sh-1 for SB, can

suppress the diseases and prevent yield reduction.
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APPENDIX A. POLYMORPHIC MARKERS BETWEEN FOUR PARENTS
USED IN RICE BREEDING

Parents

S.N
Polymorphic

markers Trenasse Jupiter Bengal LM-1 Chromosome
1 RM 14133 L U U L 2
2 RM12533 L U A A 2
3 RM12977 L U A A 2
4 RM 12853 U L L L 2
5 RM 5607 L L L U 2
6 RM 13633 U U L U 2
7 RM 13433 U U U L 2
8 RM 12172 U L L L 2
9 RM 13893 U U U L 2

10 RM 5472 L L U L 2
11 RM13514 U L U U 2
12 RM 13114 U L L U 2
13 RM 12294 L U L U 2
14 RM 13553 L U L U 2
15 RM 7492 U L U L 10
16 RM24865 L U L U 10
17 RM 24944 L U L U 10
18 RM 25761 U L L U 10
19 RM 25898 U L L U 10
20 RM 25688 L U L U 10
21 RM 25626 L U U U 10
22 RM 25510 U L U L 10
23 RM 25292 U L L U 10
24 RM 25212 L U U L 10
25 RM 25164 U L L U 10
26 RM 25147 L U U L 10
27 RM 25330 L U L U 10
28 RM 25439 L U L U 10
29 RM 25535 L U U L 10
30 RM 6868 U L L L 10
31 RM 25571 U L U U 10
32 RM 5756 U L L L 10
33 RM 25658 L U L U 10
34 RM 25912 U L L U 10
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35 RM 25299 L U L U 10
36 RM 6824 L U L U 10
37 RM 25940 U L U L 10
38 RM 25824 U L L L 10
39 RM 25102 U A A L 10
40 RM 25147 U U U L 10
41 RM 25164 U L L U 10
42 RM7173 U U L U 11
43 RM4B L U L U 11
44 RM26045 L U L U 11
45 RM26203 L U L U 11
46 RM441 L U L U 11
47 RM26437 L U U U 11
48 RM26288 L L L U 11
49 RM26460 U L L U 11
50 RM536 L L L U 11
51 RM26487 U L U U 11
52 RM26596 U L L L 11
53 RM26646 U L L U 11
54 RM27069 U L L L 11
55 RM27080 U L U L 11
56 RM27248 U L L L 11
57 RM27273 U L U L 11
58 RM27290 U L U L 11
59 RM27206 U U U L 11
60 RM27234 L L U L 11
61 RM5961 L L U L 11
62 RM26544 U U U L 11
63 RM3323 L U U U 12
64 RM27491 U L L U 12
65 RM27508 U L L U 12
66 RM27663 L U L U 12
67 RM27792 U L U L 12
68 RM27805 L U L U 12
69 RM1261 L U L U 12
70 RM28230 U L U L 12
71 RM28261 L U L U 12
72 RM309 U L L U 12
73 RM28546 U L L U 12
74 RM1227 U L U L 12
75 RM28633 L U L L 12
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76 RM28828 L U U U 12
77 RM28438 L L U L 12
78 RM1103 U U L U 12
79 RM28294 L L L U 12

The abbreviation U, L and A refers to the PCR band size which is bigger, smaller and
no PCR product respectively.
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APPENDIX B. HEADING DATE OF RILS DURING 2013 AND 2012

HD
2013

HD
2012

S.N. RILs Rep I Rep II Mean Rep I Rep II Mean
1 LB_1 108 107 107.5 90 90 90
2 LB_2 112 112 112 90 90 90
3 LB_3 112 112 112 88 88 88
4 LB_4 113 113 113 87 87 87
5 LB_5 106 106 106 89 89 89
6 LB_6 114 114 114 89 89 89
7 LB_7 114 114 114 88 88 88
8 LB_8 115 115 115 88 88 88
9 LB_9 117 115 116 99 96 97.5

10 LB_10 111 111 111 91 93 92
11 LB_11 115 115 115 88 88 88
12 LB_12 115 115 115 93 93 93
13 LB_13 114 114 114 92 91 91.5
14 LB_14 114 114 114 98 91 94.5
15 LB_15 117 117 117 99 100 99.5
16 LB_16 116 116 116 98 93 95.5
17 LB_17 117 115 116 98 97 97.5
18 LB_18 113 114 113.5 97 95 96
19 LB_19 113 113 113 91 88 89.5
20 LB_20 112 112 112 87 86 86.5
21 LB_21 118 120 119 98 98 98
22 LB_22 116 116 116 94 95 94.5
23 LB_23 115 115 115 99 98 98.5
24 LB_24 110 110 110 96 93 94.5
25 LB_25 115 116 115.5 99 96 97.5
26 LB_26 111 111 111 97 91 94
27 LB_27 109 109 109 96 93 94.5
28 LB_28 110 110 110 98 98 98
29 LB_29 109 109 109 89 91 90
30 LB_30 115 114 114.5 97 93 95
31 LB_31 118 118 118 100 96 98
32 LB_32 118 115 116.5 97 94 95.5
33 LB_33 118 118 118 97 95 96
34 LB_34 115 115 115 96 94 95
35 LB_35 115 115 115 90 93 91.5
36 LB_36 118 118 118 98 99 98.5
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37 LB_37 108 108 108 91 92 91.5
38 LB_38 118 118 118 98 100 99
39 LB_39 112 113 112.5 97 97 97
40 LB_40 111 111 111 92 91 91.5
41 LB_41 112 112 112 93 91 92
42 LB_42 115 114 114.5 98 90 94
43 LB_43 120 118 119 86 86 86
44 LB_44 112 120 116 99 100 99.5
45 LB_45 113 113 113 92 97 94.5
46 LB_46 117 118 117.5 100 100 100
47 LB_47 114 114 114 100 100 100
48 LB_48 115 115 115 97 92 94.5
49 LB_49 113 113 113 98 95 96.5
50 LB_50 112 112 112 92 92 92
51 LB_51 112 112 112 93 92 92.5
52 LB_52 115 115 115 97 96 96.5
53 LB_53 116 115 115.5 93 93 93
54 LB_54 115 115 115 97 92 94.5
55 LB_55 117 118 117.5 99 98 98.5
56 LB_56 112 114 113 93 92 92.5
57 LB_57 114 114 114 92 96 94
58 LB_58 104 104 104 88 92 90
59 LB_59 113 113 113 97 93 95
60 LB_60 110 110 110 93 91 92
61 LB_61 110 110 110 93 93 93
62 LB_62 110 110 110 92 98 95
63 LB_63 109 109 109 91 89 90
64 LB_64 110 110 110 96 93 94.5
65 LB_65 112 112 112 96 93 94.5
66 LB_66 117 117 117 92 92 92
67 LB_67 110 110 110 97 92 94.5
68 LB_68 113 113 113 93 92 92.5
69 LB_69 115 115 115 100 100 100
70 LB_70 112 114 113 99 98 98.5
71 LB_71 110 110 110 97 93 95
72 LB_72 118 118 118 99 99 99
73 LB_73 109 109 109 86 86 86
74 LB_74 112 112 112 91 86 88.5
75 LB_75 109 109 109 91 91 91
76 LB_76 112 112 112 92 93 92.5
77 LB_77 114 114 114 92 91 91.5
78 LB_78 115 115 115 96 92 94
79 LB_79 112 112 112 93 93 93
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80 LB_80 116 116 116 93 93 93
81 LB_81 116 116 116 98 93 95.5
82 LB_82 116 116 116 98 97 97.5
83 LB_83 109 109 109 97 96 96.5
84 LB_84 118 118 118 97 98 97.5
85 LB_85 118 118 118 97 96 96.5
86 LB_86 113 113 113 97 93 95
87 LB_87 115 115 115 92 89 90.5
88 LB_88 109 109 109 93 88 90.5
89 LB_89 114 114 114 97 96 96.5
90 LB_90 111 113 112 85 86 85.5
91 LB_91 113 113 113 96 93 94.5
92 LB_92 116 116 116 91 93 92
93 LB_93 115 115 115 91 92 91.5
94 LB_94 116 116 116 92 93 92.5
95 LB_95 117 117 117 97 97 97
96 LB_96 117 117 117 91 91 91
97 LB_97 115 115 115 92 91 91.5
98 LB_98 114 114 114 88 92 90
99 LB_99 115 115 115 86 86 86

100 LB_100 116 116 116 93 93 93
101 LB_101 115 115 115 93 96 94.5
102 LB_102 116 115 115.5 91 95 93
103 LB_103 117 117 117 93 93 93
104 LB_104 114 114 114 88 86 87
105 LB_105 109 108 108.5 82 82 82
106 LB_106 111 111 111 96 96 96
107 LB_107 113 113 113 93 93 93
108 LB_108 116 116 116 98 97 97.5
109 LB_109 114 114 114 93 93 93
110 LB_110 117 117 117 92 93 92.5
111 LB_111 116 116 116 98 96 97
112 LB_112 115 115 115 91 92 91.5
113 LB_113 115 115 115 100 99 99.5
114 LB_114 113 114 113.5 98 92 95
115 LB_115 117 117 117 95 100 97.5
116 LB_116 115 115 115 97 94 95.5
117 LB_117 114 114 114 91 90 90.5
118 LB_118 111 111 111 98 98 98
119 LB_119 114 114 114 95 95 95
120 LB_120 112 112 112 92 93 92.5
121 LB_121 111 111 111 88 88 88
122 LB_122 118 118 118 96 91 93.5
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123 LB_123 115 115 115 96 91 93.5
124 LB_124 114 114 114 96 93 94.5
125 LB_125 113 113 113 97 93 95
126 LB_126 115 115 115 100 97 98.5
127 LB_127 118 118 118 88 93 90.5
128 LB_128 113 113 113 92 93 92.5
129 LB_129 109 109 109 92 89 90.5
130 LB_130 109 109 109 92 80 86
131 LB_131 115 115 115 92 92 92
132 LB_132 118 118 118 99 98 98.5
133 LB_133 116 116 116 97 96 96.5
134 LB_134 116 116 116 97 92 94.5
135 LB_135 111 111 111 93 98 95.5
136 LB_136 112 112 112 93 96 94.5
137 LB_137 115 115 115 93 93 93
138 LB_138 116 115 115.5 97 97 97
139 LB_139 116 116 116 97 97 97
140 LB_140 114 114 114 98 97 97.5
141 LB_141 115 114 114.5 88 96 92
142 LB_142 117 117 117 98 98 98
143 LB_143 109 109 109 88 90 89
144 LB_144 118 118 118 98 98 98
145 LB_145 116 116 116 98 98 98
146 LB_146 118 118 118 91 97 94
147 LB_147 110 110 110 94 90 92
148 LB_148 117 117 117 96 91 93.5
149 LB_149 111 111 111 93 93 93
150 LB_150 120 118 119 98 99 98.5
151 LB_151 112 112 112 93 95 94
152 LB_152 113 113 113 96 95 95.5
153 LB_153 109 109 109 93 93 93
154 LB_154 118 118 118 100 99 99.5
155 LB_155 115 115 115 92 92 92
156 LB_156 116 116 116 96 95 95.5
157 LB_157 118 117 117.5 96 93 94.5
158 LB_158 114 114 114 96 96 96
159 LB_159 114 114 114 96 92 94
160 LB_160 117 117 117 100 99 99.5
161 LB_161 114 114 114 96 91 93.5
162 LB_162 121 121 121 97 97 97
163 LB_163 118 118 118 96 93 94.5
164 LB_164 113 113 113 97 93 95
165 LB_165 118 118 118 100 100 100
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166 LB_166 118 118 118 93 96 94.5
167 LB_167 113 113 113 93 92 92.5
168 LB_168 113 113 113 93 96 94.5
169 LB_169 113 113 113 93 98 95.5
170 LB_170 116 116 116 93 96 94.5
171 LB_171 115 115 115 96 96 96
172 LB_172 116 116 116 97 97 97
173 LB_173 118 118 118 97 98 97.5
174 LB_174 115 115 115 98 98 98
175 LB_175 120 120 120 99 99 99
176 LB_176 119 119 119 100 99 99.5
177 LB_177 118 117 117.5 86 87 86.5
178 LB_178 110 110 110 99 99 99
179 LB_179 122 122 122 98 99 98.5
180 LB_180 113 113 113 93 93 93
181 LB_181 115 115 115 93 93 93
182 LB_182 115 115 115 95 93 94
183 LB_183 110 110 110 88 93 90.5
184 LB_184 115 115 115 88 88 88
185 LB_185 113 113 113 92 93 92.5
186 LB_186 115 115 115 86 86 86
187 LB_187 115 114 114.5 86 93 89.5
188 LB_188 110 110 110 86 93 89.5
189 LB_189 115 115 115 91 92 91.5
190 LB_190 115 115 115 90 91 90.5
191 LB_191 116 115 115.5 87 87 87
192 LB_192 116 116 116 97 93 95
193 LB_193 115 114 114.5 93 91 92
194 LB_194 113 113 113 96 93 94.5
195 LB_195 112 112 112 88 88 88
196 LB_196 112 112 112 93 93 93
197 LB_197 109 109 109 85 85 85
198 LB_198 108 108 108 89 93 91
199 LB_199 110 110 110 96 96 96
200 LB_200 115 115 115 94 96 95
201 LB_201 110 110 110 96 96 96
202 LB_202 115 115 115 93 94 93.5
203 LB_203 113 113 113 88 95 91.5
204 LB_204 112 112 112 93 88 90.5
205 LB_205 111 111 111 88 93 90.5
206 LB_206 107 107 107 98 97 97.5
207 LB_207 115 115 115 88 91 89.5
208 LB_208 110 110 110 91 88 89.5
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209 LB_209 111 111 111 86 91 88.5
210 LB_210 112 115 113.5 96 98 97
211 LB_211 116 116 116 97 95 96
212 LB_212 118 118 118 93 96 94.5
213 LB_213 118 118 118 98 98 98
214 LB_214 118 118 118 96 96 96
215 LB_215 112 112 112 96 98 97
216 LB_216 116 116 116 97 100 98.5
217 LB_217 112 112 112 93 93 93
218 LB_218 115 115 115 93 93 93
219 LB_219 111 111 111 91 91 91
220 LB_220 113 113 113 96 98 97
221 LB_221 120 120 120 100 100 100
222 LB_222 115 115 115 98 100 99
223 LB_223 115 115 115 93 96 94.5
224 LB_224 115 116 115.5 93 99 96
225 LB_225 115 115 115 94 97 95.5
226 LB_226 105 105 105 83 83 83
227 LB_227 110 110 110 96 98 97
228 LB_228 115 115 115 87 86 86.5
229 LB_229 111 111 111 94 98 96
230 LB_230 115 115 115 97 98 97.5
231 LB_231 117 117 117 93 100 96.5
232 LB_232 113 113 113 93 91 92
233 LB_233 118 118 118 97 100 98.5
234 LB_234 114 114 114 94 96 95
235 LB_235 110 110 110 85 85 85
236 LB_236 117 115 116 97 96 96.5
237 LB_237 114 114 114 93 93 93
238 LB_238 115 115 115 99 96 97.5
239 LB_239 115 115 115 97 97 97
240 LB_240 115 115 115 94 96 95
241 LB_241 118 118 118 84 84 84
242 LB_242 111 111 111 93 93 93
243 LB_243 115 115 115 96 96 96
244 LB_244 112 112 112 93 95 94
245 LB_245 114 114 114 94 96 95
246 LB_246 113 113 113 94 93 93.5
247 LB_247 115 115 115 96 95 95.5
248 LB_248 118 118 118 98 100 99
249 LB_249 116 116 116 91 93 92
250 LB_250 118 118 118 97 98 97.5
251 LB_251 110 110 110 93 98 95.5
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252 LB_252 118 118 118 100 98 99
253 LB_253 115 115 115 91 91 91
254 LB_254 115 115 115 94 96 95
255 LB_255 116 115 115.5 93 93 93
256 LB_256 120 120 120 94 97 95.5
257 LB_257 115 115 115 94 93 93.5
258 LB_258 110 110 110 93 96 94.5
259 LB_259 111 111 111 88 91 89.5
260 LB_260 111 111 111 92 93 92.5
261 LB_261 111 111 111 87 87 87
262 LB_262 116 115 115.5 96 95 95.5
263 LB_263 118 118 118 96 96 96
264 LB_264 104 105 104.5 85 85 85
265 LB_265 114 115 114.5 93 94 93.5
266 LB_266 115 115 115 92 93 92.5
267 LB_267 115 116 115.5 98 96 97
268 LB_268 116 116 116 96 96 96
269 LB_269 114 114 114 93 96 94.5
270 LB_270 106 106 106 88 86 87
271 LB_271 107 107 107 86 86 86
272 LB_272 110 110 110 91 96 93.5
273 LB_273 118 115 116.5 93 95 94
274 LB_274 115 112 113.5 88 88 88
275 LB_275 117 115 116 98 96 97
276 LB_276 114 114 114 91 87 89
277 LB_277 117 115 116 93 93 93
278 LB_278 119 119 119 96 96 96
279 LB_279 117 115 116 96 97 96.5
280 LB_280 115 115 115 91 93 92
281 LB_281 113 113 113 89 93 91
282 LB_282 114 114 114 89 88 88.5
283 LB_283 108 108 108 90 88 89
284 LB_284 108 108 108 89 88 88.5
285 LB_285 109 109 109 91 93 92
286 LB_286 115 115 115 92 96 94
287 LB_287 109 109 109 90 91 90.5
288 LB_288 109 109 109 89 88 88.5
289 LB_289 114 114 114 88 91 89.5
290 LB_290 115 115 115 94 96 95
291 LB_291 116 114 115 93 96 94.5
292 LB_292 115 115 115 97 93 95
293 LB_293 106 106 106 91 93 92
294 LB_294 113 113 113 93 88 90.5
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295 LB_295 112 112 112 91 95 93
296 LB_296 113 113 113 89 91 90
297 LB_297 114 114 114 93 93 93
298 LB_298 112 112 112 90 93 91.5
299 LB_299 115 115 115 95 95 95
300 LB_300 115 115 115 96 96 96
301 Bengal 115 115 115 93 93 93
302 LM-1 120 120 120 98 98 98
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APPENDIX C. PLANT HEIGHT AND PANICLE LENGTH MEASURED IN
RILS

S.N RILs
Plant
(H)

Plant
(H)

Plant
(H)

Mean
(H) SD

Panicle
(L)

Panicle
(L)

Panicle
(L)

Mean
(L) SD

1 LB_1 82 100 91 91.00 9.00 18 15.5 15 16.1 1.61
2 LB_2 90 102 93 95.00 6.24 25 21 20 22.00 2.65
3 LB_3 91 100 96 95.6 4.51 21.5 18 17.5 19.00 2.18
4 LB_4 90 90 88 89.33 1.15 19 19.5 20 19.50 0.50
5 LB_5 110 101 109 106.6 4.93 18.5 22.5 25 22.00 3.28
6 LB_6 80 91 84 85.00 5.57 26 18 19 21.00 4.36
7 LB_7 108 93 97 99.33 7.77 21 21.5 18 20.17 1.89
8 LB_8 95 97 94 95.33 1.53 25.5 23 21 23.17 2.25
9 LB_9 96 98 89 94.33 4.73 19 19 19.5 19.17 0.29

10 LB_10 105 93 93 97.00 6.93 20.5 22 20 20.83 1.04
11 LB_11 98 99 102 99.67 2.08 20.5 22 20 20.83 1.04
12 LB_12 99 101 98 99.33 1.53 19 21 18 19.33 1.53
13 LB_13 95 96 102 97.67 3.79 18.5 20 19.5 19.33 0.76
14 LB_14 96 100 99 98.33 2.08 24 23 21.5 22.83 1.26
15 LB_15 80 83 95 86.00 7.94 18 20 19.5 19.17 1.04
16 LB_16 93 90 94 92.33 2.08 19.5 15.5 20 18.33 2.47
17 LB_17 95 86 88 89.67 4.73 21 18.5 21.5 20.33 1.61
18 LB_18 102 103 109 104.6 3.79 24 23 23 23.33 0.58
19 LB_19 95 106 102 101.0 5.57 25 20 22 22.33 2.52
20 LB_20 86 91 93 90.00 3.61 20 21 22 21.00 1.00
21 LB_21 91 97 91 93.00 3.46 21 19 21 20.33 1.15
22 LB_22 91 90 88 89.67 1.53 20 19 17 18.67 1.53
23 LB_23 95 96 103 98.00 4.36 19.5 18 17 18.17 1.26
24 LB_24 100 101 102 101.0 1.00 21 19 21 20.33 1.15
25 LB_25 93 97 98 96.00 2.65 19 17 17.5 17.83 1.04
26 LB_26 90 100 98 96.00 5.29 22.5 25 21 22.83 2.02
27 LB_27 100 103 106 103.0 3.00 19.5 25 26 23.50 3.50
28 LB_28 100 100 107 102.3 4.04 21 20 19 20.00 1.00
29 LB_29 103 98 101 100.6 2.52 15 18 17 16.67 1.53
30 LB_30 88 92 94 91.33 3.06 21 20 23 21.33 1.53
31 LB_31 88 82 80 83.33 4.16 22 20 22 21.33 1.15
32 LB_32 90 95 108 97.67 9.29 15.5 23 20 19.50 3.77
33 LB_33 105 105 107 105.6 1.15 21 26 24 23.67 2.52
34 LB_34 96 100 100 98.67 2.31 24 25 23 24.00 1.00
35 LB_35 112 110 109 110.3 1.53 22 20 21 21.00 1.00
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36 LB_36 97 95 99 97.00 2.00 17 18 19 18.00 1.00
37 LB_37 83 84 91 86.00 4.36 18 17 15 16.67 1.53
38 LB_38 94 99 108 100.3 7.09 23 23 19 21.67 2.31
39 LB_39 82 92 90 88.00 5.29 20 21 20 20.33 0.58
40 LB_40 81 80 81 80.67 0.58 18 17 19.5 18.17 1.26
41 LB_41 85 96 100 93.67 7.77 21 19 24 21.33 2.52
42 LB_42 82 85 82 83.00 1.73 19 19 18.5 18.83 0.29
43 LB_43 80 86 81 82.33 3.21 17 15 18 16.67 1.53
44 LB_44 97 90 95 94.00 3.61 18 18.5 20 18.83 1.04
45 LB_45 102 96 96 98.00 3.46 22 19 21 20.67 1.53
46 LB_46 87 103 99 96.33 8.33 20 19 20 19.67 0.58
47 LB_47 96 100 98 98.00 2.00 20.5 20 18 19.50 1.32
48 LB_48 93 98 97 96.00 2.65 22.5 21 19.5 21.00 1.50
49 LB_49 102 96 96 98.00 3.46 22 21 19 20.67 1.53
50 LB_50 97 98 92 95.67 3.21 21 20 21 20.67 0.58
51 LB_51 95 102 96 97.67 3.79 23 23 21 22.33 1.15
52 LB_52 97 92 99 96.00 3.61 22 20 21 21.00 1.00
53 LB_53 94 109 102 101.6 7.51 20 23 23 22.00 1.73
54 LB_54 96 94 100 96.67 3.06 22 19.5 19 20.17 1.61
55 LB_55 81 82 83 82.00 1.00 16 15 16 15.67 0.58
56 LB_56 96 92 97 95.00 2.65 19 20 21 20.00 1.00
57 LB_57 98 105 110 104.3 6.03 22 22 19 21.00 1.73
58 LB_58 109 102 99 103.3 5.13 22.5 22.5 20 21.67 1.44
59 LB_59 88 94 93 91.67 3.21 17 17.5 20 18.17 1.61
60 LB_60 100 103 100 101.0 1.73 24 19.5 21 21.50 2.29
61 LB_61 92 94 94 93.33 1.15 16 15 16 15.67 0.58
62 LB_62 86 88 87 87.00 1.00 17 17 18.5 17.50 0.87
63 LB_63 95 103 99 99.00 4.00 20 23 22 21.67 1.53
64 LB_64 88 86 84 86.00 2.00 17 17.5 18 17.50 0.50
65 LB_65 84 87 82 84.33 2.52 19 17 19 18.33 1.15
66 LB_66 97 96 90 94.33 3.79 22 16.5 19 19.17 2.75
67 LB_67 79 75 80 78.00 2.65 21 18.5 15 18.17 3.01
68 LB_68 97 100 103 100.0 3.00 21 22 20 21.00 1.00
69 LB_69 96 93 96 95.00 1.73 22 21 21 21.33 0.58
70 LB_70 83 93 97 91.00 7.21 17 15 19 17.00 2.00
71 LB_71 89 10 100 66.33 49.1 17 18 19 18.00 1.00
72 LB_72 84 79 87 83.33 4.04 17 24 20 20.33 3.51
73 LB_73 89 93 90 90.67 2.08 19 18 17 18.00 1.00
74 LB_74 85 93 88 88.67 4.04 24 22 19.5 21.83 2.25
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75 LB_75 99 95 91 95.00 4.00 20 21 18 19.67 1.53
76 LB_76 97 90 87 91.33 5.13 20 19 19 19.33 0.58
77 LB_77 91 87 88 88.67 2.08 20 21 21 20.67 0.58
78 LB_78 89 95 93 92.33 3.06 18 21 20 19.67 1.53
79 LB_79 78 89 82 83.00 5.57 19 16 17 17.33 1.53
80 LB_80 92 91 86 89.67 3.21 21 17 19 19.00 2.00
81 LB_81 90 92 90 90.67 1.15 20 20.5 20 20.17 0.29
82 LB_82 97 95 92 94.67 2.52 21 19 19 19.67 1.15
83 LB_83 98 90 97 95.00 4.36 19 19.5 22 20.17 1.61
84 LB_84 98 99 99 98.67 0.58 24 22 24 23.33 1.15
85 LB_85 97 83 79 86.33 9.45 16 18 15 16.33 1.53
86 LB_86 85 96 94 91.67 5.86 20 21 20 20.33 0.58
87 LB_87 93 95 97 95.00 2.00 21 21 20 20.67 0.58
88 LB_88 96 95 87 92.67 4.93 19 21 17.5 19.17 1.76
89 LB_89 97 88 97 94.00 5.20 23 17.5 20 20.17 2.75
90 LB_90 91 102 86 93.00 8.19 20 17 18 18.33 1.53
91 LB_91 80 87 91 86.00 5.57 18 22 18 19.33 2.31
92 LB_92 107 95 106 102.6 6.66 25 20 23 22.67 2.52
93 LB_93 87 101 93 93.67 7.02 19 31 15 21.67 8.33
94 LB_94 90 93 97 93.33 3.51 15 17 19 17.00 2.00
95 LB_95 90 92 96 92.67 3.06 20 16 20 18.67 2.31
96 LB_96 78 84 84 82.00 3.46 12 23 22 19.00 6.08
97 LB_97 105 107 106 106.0 1.00 19 21 20 20.00 1.00
98 LB_98 103 91 95 96.33 6.11 21 19 20 20.00 1.00
99 LB_99 101 109 106 105.3 4.04 23 19 21 21.00 2.00

100 LB_100 102 106 102 103.3 2.31 20 21 23 21.33 1.53
101 LB_101 109 103 112 108.0 4.58 19 18 20 19.00 1.00
102 LB_102 85 82 85 84.00 1.73 18 16 19 17.67 1.53
103 LB_103 95 94 95 94.67 0.58 19 18 17 18.00 1.00
104 LB_104 82 83 86 83.67 2.08 20 20 18 19.33 1.15
105 LB_105 85 85 85 85.00 0.00 18 17 15 16.67 1.53
106 LB_106 96 94 95 95.00 1.00 26 26 23 25.00 1.73
107 LB_107 101 105 97 101.0 4.00 21 20 20 20.33 0.58
108 LB_108 82 82 90 84.67 4.62 14 17 19 16.67 2.52
109 LB_109 74 71 77 74.00 3.00 16 16 15 15.67 0.58
110 LB_110 80 85 85 83.33 2.89 16 21 19 18.67 2.52
111 LB_111 94 99 97 96.67 2.52 16 22 18 18.67 3.06
112 LB_112 83 94 93 90.00 6.08 10 18 22 16.67 6.11
113 LB_113 94 85 100 93.00 7.55 20 18 23 20.33 2.52
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114 LB_114 103 102 100 101.6 1.53 19 20 19 19.33 0.58
115 LB_115 89 85 83 85.67 3.06 21 12 17 16.67 4.51
116 LB_116 95 88 88 90.33 4.04 21 21 19 20.33 1.15
117 LB_117 96 101 97 98.00 2.65 21 20 20 20.33 0.58
118 LB_118 102 99 99 100.0 1.73 22 20 21 21.00 1.00
119 LB_119 98 95 98 97.00 1.73 20 20 21 20.33 0.58
120 LB_120 104 101 96 100.3 4.04 23 21 20 21.33 1.53
121 LB_121 98 96 97 97.00 1.00 22 19 17 19.33 2.52
122 LB_122 89 98 92 93.00 4.58 12 23 19 18.00 5.57
123 LB_123 91 97 100 96.00 4.58 23 22 20 21.67 1.53
124 LB_124 81 88 91 86.67 5.13 21 19 19 19.67 1.15
125 LB_125 82 86 88 85.33 3.06 18 18 18 18.00 0.00
126 LB_126 103 96 91 96.67 6.03 25 24 18 22.33 3.79
127 LB_127 102 81 78 87.00 13.08 24 21 17 20.67 3.51
128 LB_128 97 94 103 98.00 4.58 20 33 19 24.00 7.81
129 LB_129 83 89 92 88.00 4.58 22 21 19 20.67 1.53
130 LB_130 108 90 95 97.67 9.29 22 24 22 22.67 1.15
131 LB_131 89 87 83 86.33 3.06 18 22 20 20.00 2.00
132 LB_132 98 84 91 91.00 7.00 22 19 18 19.67 2.08
133 LB_133 98 100 90 96.00 5.29 22 17 20 19.67 2.52
134 LB_134 95 89 89 91.00 3.46 26 21 19 22.00 3.61
135 LB_135 95 93 99 95.67 3.06 22 17 29 22.67 6.03
136 LB_136 90 89 92 90.33 1.53 17 17 22 18.67 2.89
137 LB_137 95 108 100 101.0 6.56 18 27 21 22.00 4.58
138 LB_138 101 104 101 102.0 1.73 23 23 19 21.67 2.31
139 LB_139 93 91 93 92.33 1.15 21 17 19 19.00 2.00
140 LB_140 101 97 103 100.3 3.06 22 20 20 20.67 1.15
141 LB_141 96 98 93 95.67 2.52 22 19 21 20.67 1.53
142 LB_142 95 108 100 101.0 6.56 20 21 18 19.67 1.53
143 LB_143 111 107 96 104.6 7.77 25 26 20 23.67 3.21
144 LB_144 86 91 92 89.67 3.21 15 18 21 18.00 3.00
145 LB_145 95 98 103 98.67 4.04 20 22 22 21.33 1.15
146 LB_146 98 95 96 96.33 1.53 24 19 21 21.33 2.52
147 LB_147 87 79 80 82.00 4.36 17 16 17 16.67 0.58
148 LB_148 96 103 94 97.67 4.73 23 22 24 23.00 1.00
149 LB_149 85 88 81 84.67 3.51 19 22 17 19.33 2.52
150 LB_150 94 89 87 90.00 3.61 20 19 17 18.67 1.33
151 LB_151 89 86 95 90.00 4.58 22 17 19 19.33 2.52
152 LB_152 86 96 90 90.67 5.03 22 21 20 21.00 1.00
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153 LB_153 83 79 86 82.67 3.51 21 17 21 19.67 2.31
154 LB_154 92 87 87 88.67 2.89 18 18 18 18.00 0.00
155 LB_155 97 91 79 89.00 9.17 22 20 19 20.33 1.53
156 LB_156 98 92 92 94.00 3.46 24 22 22 22.67 1.15
157 LB_157 92 84 88 88.00 4.00 19 17 19 18.33 1.15
158 LB_158 88 82 88 86.00 3.46 21 19 21 20.33 1.15
159 LB_159 80 81 84 81.67 2.08 21 18 22 20.33 2.08
160 LB_160 105 92 94 97.00 7.00 22 18 23 21.00 2.65
161 LB_161 96 84 95 91.67 6.66 17 23 22 20.67 3.21
162 LB_162 87 87 88 87.33 0.58 21 19 18 19.33 1.53
163 LB_163 95 97 94 95.33 1.53 21 21 19 20.33 1.15
164 LB_164 98 88 89 91.67 5.51 16 18 21 18.33 2.52
165 LB_165 84 92 82 86.00 5.29 16 17 16 16.33 0.58
166 LB_166 95 101 99 98.33 3.06 20 19 22 20.33 1.53
167 LB_167 93 87 85 88.33 4.16 19 21 18 19.33 1.53
168 LB_168 94 87 93 91.33 3.79 19 19 20 19.33 0.58
169 LB_169 88 81 82 83.67 3.79 18 21 22 20.33 2.08
170 LB_170 94 87 89 90.00 3.61 19 16 22 19.00 3.00
171 LB_171 77 69 72 72.67 4.04 20 18 17 18.33 1.53
172 LB_172 96 92 101 96.33 4.51 20 15 17 17.33 2.52
173 LB_173 95 98 99 97.33 2.08 19 18 21 19.33 1.53
174 LB_174 85 88 90 87.67 2.52 24 23 20 22.33 2.08
175 LB_175 87 99 91 92.33 6.11 20 19 18 19.00 1.00
176 LB_176 100 100 95 98.33 2.89 21 20 19 20.00 1.00
177 LB_177 99 93 98 96.67 3.21 20 18 18 18.67 1.15
178 LB_178 101 99 98 99.33 1.53 18 21 18 19.00 1.73
179 LB_179 71 83 78 77.33 6.03 15 17 19 17.00 2.00
180 LB_180 81 87 95 87.67 7.02 19 26 20 21.67 3.79
181 LB_181 96 98 97 97.00 1.00 17 22 15 18.00 3.61
182 LB_182 101 109 106 105.3 4.04 20 20 21 20.33 0.58
183 LB_183 97 106 99 100.6 4.73 23 27 21 23.67 3.06
184 LB_184 104 108 113 108.3 4.51 25 27 25 25.67 1.15
185 LB_185 94 95 98 95.67 2.08 19 20 20 19.67 0.58
186 LB_186 107 110 111 109.3 2.08 27 23 25 25.00 2.00
187 LB_187 108 107 105 106.6 1.53 18 19 18 18.33 0.58
188 LB_188 98 97 96 97.00 1.00 21 19 19 19.67 1.15
189 LB_189 95 101 94 96.67 3.79 20 21 21 20.67 0.58
190 LB_190 99 101 106 102.0 3.61 20 16 21 19.00 2.65
191 LB_191 107 109 103 106.3 3.06 24 24 20 22.67 2.31
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192 LB_192 110 99 101 103.3 5.86 23 23 27 24.33 2.31
193 LB_193 104 104 97 101.6 4.04 20 22 19 20.33 1.53
194 LB_194 95 105 100 100.0 5.00 19 17 21 19.00 2.00
195 LB_195 94 92 91 92.33 1.53 19 24 21 21.33 2.52
196 LB_196 100 88 87 91.67 7.23 19 19 19 19.00 0.00
197 LB_197 102 100 101 101.0 1.00 23 21 21 21.67 1.15
198 LB_198 95 102 92 96.33 5.13 20 19 17 18.67 1.53
199 LB_199 105 103 110 106.0 3.61 22 22 21 21.67 0.58
200 LB_200 99 99 100 99.33 0.58 20 23 20 21.00 1.73
201 LB_201 84 86 84 84.67 1.15 16 14 18 16.00 2.00
202 LB_202 95 103 96 98.00 4.36 22 24 21 22.33 1.53
203 LB_203 109 112 109 110.0 1.73 21 23 19 21.00 2.00
204 LB_204 100 102 89 97.00 7.00 18 23 20 20.33 2.52
205 LB_205 94 95 95 94.67 0.58 19 20 21 20.00 1.00
206 LB_206 89 93 106 96.00 8.89 22 22 24 22.67 1.15
207 LB_207 97 99 104 100.0 3.61 18 22 23 21.00 2.65
208 LB_208 91 101 100 97.33 5.51 18 24 21 21.00 3.00
209 LB_209 93 95 89 92.33 3.06 18 19 18 18.33 0.58
210 LB_210 98 96 89 94.33 4.73 23 23 19 21.67 2.31
211 LB_211 89 97 97 94.33 4.62 21 22 22 21.67 0.58
212 LB_212 88 84 89 87.00 2.65 17 21 20 19.33 2.08
213 LB_213 89 96 92 92.33 3.51 17 24 18 19.67 3.79
214 LB_214 108 106 99 104.3 4.73 19 23 22 21.33 2.08
215 LB_215 94 92 97 94.33 2.52 21 22 24 22.33 1.53
216 LB_216 103 95 101 99.67 4.16 25 20 23 22.67 2.52
217 LB_217 94 90 87 90.33 3.51 19 18 17 18.00 1.00
218 LB_218 90 100 94 94.67 5.03 20 18 21 19.67 1.53
219 LB_219 94 94 96 94.67 1.15 21 18 19 19.33 1.53
220 LB_220 105 98 96 99.67 4.73 25 22 21 22.67 2.08
221 LB_221 84 78 78 80.00 3.46 15 15 18 16.00 1.73
222 LB_222 94 96 89 93.00 3.61 21 21 16 19.33 2.89
223 LB_223 84 103 103 96.67 10.97 11 24 22 19.00 7.00
224 LB_224 78 81 79 79.33 1.53 18 20 18 18.67 1.15
225 LB_225 107 110 111 109.3 2.08 22 22 20 21.33 1.15
226 LB_226 90 93 92 91.67 1.53 19 24 18 20.33 3.21
227 LB_227 101 98 101 100.0 1.73 23 22 23 22.67 0.58
228 LB_228 90 97 92 93.00 3.61 19 23 22 21.33 2.08
229 LB_229 97 104 96 99.00 4.36 23 23 20 22.00 1.73
230 LB_230 96 88 91 91.67 4.04 18 17 14 16.33 2.08
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231 LB_231 99 98 97 98.00 1.00 21 22 22 21.67 0.58
232 LB_232 94 91 91 92.00 1.73 22 22 22 22.00 0.00
233 LB_233 80 84 91 85.00 5.57 19 18 22 19.67 2.08
234 LB_234 99 104 102 101.6 2.52 22 21 23 22.00 1.00
235 LB_235 120 114 114 116.0 3.46 24 27 25 25.33 1.53
236 LB_236 98 101 101 100.0 1.73 22 23 22 22.33 0.58
237 LB_237 94 88 84 88.67 5.03 19 19 21 19.67 1.15
238 LB_238 95 106 95 98.67 6.35 20 20 19 19.67 0.58
239 LB_239 84 94 92 90.00 5.29 18 21 21 20.00 1.73
240 LB_240 76 79 84 79.67 4.04 25 28 18 23.67 5.13
241 LB_241 87 87 84 86.00 1.73 17 17 15 16.33 1.15
242 LB_242 78 83 75 78.67 4.04 12 20 16 16.00 4.00
243 LB_243 79 81 97 85.67 9.87 20 13 22 18.33 4.73
244 LB_244 88 92 85 88.33 3.51 18 17 19 18.00 1.00
245 LB_245 83 85 81 83.00 2.00 17 16 16 16.33 0.58
246 LB_246 104 85 89 92.67 10.02 21 16 22 19.67 3.21
247 LB_247 96 96 95 95.67 0.58 20 21 23 21.33 1.53
248 LB_248 87 92 98 92.33 5.51 18 18 21 19.00 1.73
249 LB_249 86 91 86 87.67 2.89 20 20 19 19.67 0.58
250 LB_250 85 89 91 88.33 3.06 17 20 20 19.00 1.73
251 LB_251 93 92 90 91.67 1.53 21 18 20 19.67 1.53
252 LB_252 90 95 96 93.67 3.21 21 24 20 21.67 2.08
253 LB_253 96 95 96 95.67 0.58 19 19 18 18.67 0.58
254 LB_254 82 76 83 80.33 3.79 17 16 20 17.67 2.08
255 LB_255 89 83 84 85.33 3.21 21 20 21 20.67 0.58
256 LB_256 85 88 94 89.00 4.58 18 22 20 20.00 2.00
257 LB_257 96 89 92 92.33 3.51 20 18 20 19.33 1.15
258 LB_258 95 100 89 94.67 5.51 19 18 19 18.67 0.58
259 LB_259 79 80 80 79.67 0.58 21 14 17 17.33 3.51
260 LB_260 82 88 78 82.67 5.03 20 23 17 20.00 3.00
261 LB_261 95 93 95 94.33 1.15 19 21 19 19.67 1.15
262 LB_262 95 92 91 92.67 2.08 18 17 14 16.33 2.08
263 LB_263 90 91 93 91.33 1.53 22 22 19 21.00 1.73
264 LB_264 89 84 87 86.67 2.52 16 17 20 17.67 2.08
265 LB_265 94 96 98 96.00 2.00 20 19 19 19.33 0.58
266 LB_266 87 84 101 90.67 9.07 17 19 20 18.67 1.53
267 LB_267 91 95 98 94.67 3.51 20 20 21 20.33 0.58
268 LB_268 92 96 91 93.00 2.65 24 23 23 23.33 0.58
269 LB_269 89 98 97 94.67 4.93 20 19 21 20.00 1.00
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270 LB_270 91 92 100 94.33 4.93 17 16 21 18.00 2.65
271 LB_271 105 101 95 100.3 5.03 19 18 17 18.00 1.00
272 LB_272 94 100 102 98.67 4.16 18 19 22 19.67 2.08
273 LB_273 93 98 99 96.67 3.21 20 20 21 20.33 0.58
274 LB_274 105 104 106 105.0 1.00 20 20 21 20.33 0.58
275 LB_275 99 100 105 101.3 3.21 25 23 20 22.67 2.52
276 LB_276 101 97 98 98.67 2.08 16 22 19 19.00 3.00
277 LB_277 92 92 91 91.67 0.58 17 15 16 16.00 1.00
278 LB_278 104 94 96 98.00 5.29 22 18 20 20.00 2.00
279 LB_279 107 105 102 104.6 2.52 19 19 21 19.67 1.15
280 LB_280 96 93 86 91.67 5.13 20 19 25 21.33 3.21
281 LB_281 90 89 88 89.00 1.00 19 17 29 21.67 6.43
282 LB_282 78 72 75 75.00 3.00 20 14 18 17.33 3.06
283 LB_283 102 103 104 103.0 1.00 21 20 22 21.00 1.00
284 LB_284 105 96 113 104.6 8.50 21 18 21 20.00 1.73
285 LB_285 85 96 91 90.67 5.51 22 18 20 20.00 2.00
286 LB_286 97 104 97 99.33 4.04 26 21 17 21.33 4.51
287 LB_287 85 91 94 90.00 4.58 19 17 28 21.33 5.86
288 LB_288 96 91 91 92.67 2.89 20 20 19 19.67 0.58
289 LB_289 81 95 91 89.00 7.21 19 22 16 19.00 3.00
290 LB_290 92 85 89 88.67 3.51 19 20 20 19.67 0.58
291 LB_291 91 89 98 92.67 4.73 21 20 24 21.67 2.08
292 LB_292 97 93 96 95.33 2.08 17 21 18 18.67 2.08
293 LB_293 105 99 112 105.3 6.51 23 22 24 23.00 1.00
294 LB_294 106 102 96 101.3 5.03 20 24 23 22.33 2.08
295 LB_295 102 102 105 103.0 1.73 22 23 20 21.67 1.53
296 LB_296 95 82 92 89.67 6.81 19 21 19 19.67 1.15
297 LB_297 99 92 94 95.00 3.61 22 19 16 19.00 3.00
298 LB_298 89 85 91 88.33 3.06 20 20 21 20.33 0.58
299 LB_299 82 86 95 87.67 6.66 16 19 24 19.67 4.04
300 LB_300 81 82 73 78.67 4.93 19 19 22 20.00 1.73
301 Bengal 92 87 90 89.67 2.52 17 20 17 18.00 1.73
302 LM-1 82 80 82 81.33 1.15 21 19 18 19.33 1.53
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APPENDIX D. FLAG LEAF AREA MEASURED IN RILS

Replication I Replication II

S.N RILs L B B B
M
(B) A L B B B

M
(B) A

1 LB_1 23.50 1.00 1.50 1.20 1.23 28.98 28.00 1.30 1.70 1.60 1.53 42.93

2 LB_2 23.00 1.00 1.20 1.00 1.07 24.53 28.50 1.00 1.30 1.00 1.10 31.35

3 LB_3 30.00 1.00 1.80 1.50 1.43 43.00 33.00 1.50 2.00 1.50 1.67 55.00

4 LB_4 24.50 1.00 1.10 0.90 1.00 24.50 25.00 1.00 1.20 0.90 1.03 25.83

5 LB_5 38.00 1.00 1.30 1.30 1.20 45.60 36.00 1.50 1.30 1.00 1.27 45.60

6 LB_6 27.50 1.20 1.50 1.20 1.30 35.75 31.50 1.60 1.40 1.50 1.50 47.25

7 LB_7 30.50 1.30 1.40 1.00 1.23 37.62 32.00 1.20 1.30 1.20 1.23 39.47

8 LB_8 29.00 1.40 1.60 1.50 1.50 43.50 23.00 1.40 1.50 1.30 1.40 32.20

9 LB_9 27.00 1.30 1.50 1.40 1.40 37.80 26.00 1.00 1.40 1.00 1.13 29.47

10 LB_10 23.00 1.40 1.40 1.50 1.43 32.97 25.00 1.50 1.60 1.50 1.53 38.33

11 LB_11 27.00 1.50 1.60 1.70 1.60 43.20 28.00 1.60 1.70 1.40 1.57 43.87

12 LB_12 28.00 1.30 1.50 1.20 1.33 37.33 25.50 1.10 1.50 1.40 1.33 34.00

13 LB_13 20.50 1.30 1.40 1.20 1.30 26.65 21.50 1.50 1.60 1.50 1.53 32.97

14 LB_14 34.00 1.50 1.80 1.60 1.63 55.53 32.50 1.70 1.70 1.50 1.63 53.08

15 LB_15 28.00 1.20 1.30 1.00 1.17 32.67 32.00 1.60 1.50 1.20 1.43 45.87

16 LB_16 28.50 1.00 1.50 1.30 1.27 36.10 24.00 1.20 1.60 1.70 1.50 36.00

17 LB_17 28.00 1.20 1.50 1.20 1.30 36.40 29.00 1.20 1.50 1.40 1.37 39.63

18 LB_18 36.00 1.00 1.50 1.60 1.37 49.20 37.00 1.20 1.60 1.50 1.43 53.03

19 LB_19 22.00 1.90 1.50 1.50 1.63 35.93 26.00 1.50 2.00 1.60 1.70 44.20

20 LB_20 29.00 1.40 1.50 1.50 1.47 42.53 29.00 1.50 1.50 1.30 1.43 41.57

21 LB_21 30.00 1.50 1.60 1.50 1.53 46.00 25.00 1.10 1.40 1.30 1.27 31.67

22 LB_22 27.00 1.30 1.50 1.20 1.33 36.00 29.00 1.30 1.50 1.20 1.33 38.67

23 LB_23 23.00 1.50 1.60 1.60 1.57 36.03 24.00 1.60 1.40 1.20 1.40 33.60

24 LB_24 24.00 1.50 1.70 1.50 1.57 37.60 30.00 1.50 1.70 1.50 1.57 47.00

25 LB_25 29.00 1.50 1.60 1.50 1.53 44.47 29.00 1.20 1.50 1.30 1.33 38.67

26 LB_26 25.00 1.50 1.70 1.20 1.47 36.67 31.50 1.50 1.60 1.50 1.53 48.30

27 LB_27 25.00 1.50 1.50 1.30 1.43 35.83 33.50 1.20 1.50 1.30 1.33 44.67

28 LB_28 39.00 1.30 1.60 1.60 1.50 58.50 36.00 1.20 1.50 1.60 1.43 51.60

29 LB_29 28.50 1.10 1.30 1.30 1.23 35.15 25.00 1.00 1.20 1.30 1.17 29.17

30 LB_30 31.50 1.10 1.20 1.40 1.23 38.85 20.00 1.00 1.20 1.25 1.15 23.00

31 LB_31 30.00 1.25 1.50 1.60 1.45 43.50 33.50 1.30 1.50 1.65 1.48 49.69

32 LB_32 28.50 1.20 1.40 1.60 1.40 39.90 26.50 1.50 1.70 1.70 1.63 43.28

33 LB_33 35.00 1.70 1.70 1.80 1.73 60.67 27.50 1.10 1.30 1.40 1.27 34.83

34 LB_34 37.00 1.15 1.40 1.50 1.35 49.95 39.00 1.50 1.55 1.50 1.52 59.15

35 LB_35 35.00 1.50 1.75 1.80 1.68 58.92 28.50 1.65 1.80 1.65 1.70 48.45

36 LB_36 34.00 1.30 1.40 1.45 1.38 47.03 31.00 1.30 1.50 1.75 1.52 47.02

37 LB_37 27.00 0.95 1.10 1.15 1.07 28.80 22.50 0.85 1.00 1.50 1.12 25.13
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38 LB_38 38.50 1.40 1.70 1.75 1.62 62.24 37.00 1.30 1.50 1.65 1.48 54.88

39 LB_39 29.00 1.20 1.30 1.50 1.33 38.67 28.50 1.10 1.25 1.30 1.22 34.68

40 LB_40 25.00 1.20 1.25 1.40 1.28 32.08 31.00 1.40 1.50 1.60 1.50 46.50

41 LB_41 25.50 1.40 1.60 1.50 1.50 38.25 29.50 1.20 1.35 1.40 1.32 38.84

42 LB_42 27.50 1.00 1.20 1.30 1.17 32.08 21.50 1.10 1.35 1.40 1.28 27.59

43 LB_43 21.00 1.20 1.45 1.60 1.42 29.75 26.00 1.40 1.50 1.65 1.52 39.43

44 LB_44 25.00 1.20 1.50 1.60 1.43 35.83 27.00 1.30 1.60 1.50 1.47 39.60

45 LB_45 32.50 1.40 1.40 1.40 1.40 45.50 30.00 1.15 1.40 1.45 4.78 40

46 LB_46 25.00 1.20 1.30 1.40 1.30 32.50 24.50 1.40 1.50 1.65 1.52 37.16

47 LB_47 26.50 1.25 1.40 1.50 1.38 36.66 31.50 1.20 1.50 1.60 1.43 45.15

48 LB_48 34.50 1.40 1.60 1.70 1.57 54.05 34.00 1.40 1.40 1.50 1.43 48.73

49 LB_49 25.50 1.50 1.50 1.60 1.53 39.10 24.00 1.20 1.30 1.60 1.37 32.80

50 LB_50 35.00 1.30 1.40 1.50 1.40 49.00 24.00 1.35 1.50 1.60 1.48 35.60

51 LB_51 35.00 1.40 1.60 1.65 1.55 54.25 30.50 1.35 1.45 1.30 1.37 41.68

52 LB_52 22.50 1.35 1.60 1.30 1.42 31.88 22.50 1.40 1.45 1.40 1.42 31.88

53 LB_53 33.00 1.35 1.50 1.60 1.48 48.95 26.00 1.10 1.30 1.35 1.25 32.50

54 LB_54 34.00 1.30 1.60 1.60 1.50 51.00 28.50 1.20 1.40 1.50 1.37 38.95

55 LB_55 20.50 1.20 1.30 1.50 1.33 27.33 24.50 1.30 1.40 1.45 1.38 33.89

56 LB_56 31.00 1.20 1.30 1.50 1.33 41.33 32.50 1.30 1.30 1.60 1.40 45.50

57 LB_57 32.50 1.20 1.50 1.50 1.40 45.50 27.00 1.15 1.45 1.60 1.40 37.80

58 LB_58 33.50 1.60 1.90 2.05 1.85 61.98 30.00 1.30 1.50 1.65 1.48 44.50

59 LB_59 27.00 1.30 1.40 1.50 1.40 37.80 22.00 1.20 1.20 1.20 1.20 26.40

60 LB_60 29.50 1.20 1.30 1.30 1.27 37.37 29.00 1.25 1.35 1.50 1.37 39.63

61 LB_61 24.00 1.20 1.40 1.50 1.37 32.80 22.50 1.20 1.30 1.40 1.30 29.25

62 LB_62 29.50 1.50 1.55 1.70 1.58 46.71 29.00 1.25 1.40 1.50 1.38 40.12

63 LB_63 30.00 1.30 1.60 1.65 1.52 45.50 36.00 1.40 1.60 1.90 1.63 58.80

64 LB_64 21.50 1.20 1.50 1.45 1.38 29.74 25.50 1.30 1.60 1.40 1.43 36.55

65 LB_65 34.50 1.40 1.30 1.40 1.37 47.15 25.50 1.30 1.50 1.50 1.43 36.55

66 LB_66 31.50 1.30 1.50 1.60 1.47 46.20 27.00 1.05 1.30 1.30 1.22 32.85

67 LB_67 28.50 1.30 1.45 1.50 1.42 40.38 26.00 1.20 1.40 1.35 1.32 34.23

68 LB_68 27.50 1.00 1.20 1.25 1.15 31.63 29.00 1.20 1.30 1.30 1.27 36.73

69 LB_69 29.00 1.40 1.50 1.50 1.47 42.53 32.00 1.30 1.50 1.40 1.40 44.80

70 LB_70 30.00 1.40 1.65 1.00 1.35 40.50 30.50 1.50 1.50 1.55 1.52 46.26

71 LB_71 32.00 1.50 1.60 1.70 1.60 51.20 25.00 1.60 1.90 1.50 1.67 41.67

72 LB_72 24.00 1.45 1.60 1.60 1.55 37.20 28.00 1.10 1.40 1.40 1.30 36.40

73 LB_73 30.50 1.20 1.40 1.40 1.33 40.67 32.00 1.00 1.30 1.30 1.20 38.40

74 LB_74 32.50 1.50 1.50 1.60 1.53 49.83 26.50 1.10 1.30 1.40 1.27 33.57

75 LB_75 32.00 1.50 1.70 1.70 1.63 52.27 26.50 1.15 1.30 1.40 1.28 34.01

76 LB_76 26.50 1.60 1.60 1.50 1.57 41.52 27.50 1.30 1.40 1.60 1.43 39.42

77 LB_77 28.50 1.00 1.20 1.20 1.13 32.30 26.50 1.20 1.40 1.50 1.37 36.22

78 LB_78 27.00 1.40 1.35 1.40 1.38 37.35 28.00 1.30 1.30 1.50 1.37 38.27
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79 LB_79 27.00 1.45 1.50 1.60 1.52 40.95 22.00 1.25 1.40 1.40 1.35 29.70

80 LB_80 26.00 1.20 1.40 1.40 1.33 34.67 25.00 1.20 1.40 1.30 1.30 32.50

81 LB_81 20.50 1.20 1.40 1.50 1.37 28.02 17.00 1.30 1.45 1.50 1.42 24.08

82 LB_82 28.00 1.30 1.55 1.65 1.50 42.00 28.00 1.60 1.70 1.65 1.65 46.20

83 LB_83 26.00 1.45 1.50 1.70 1.55 40.30 24.00 1.00 1.10 1.30 1.13 27.20

84 LB_84 32.50 1.40 1.50 1.70 1.53 49.83 24.00 1.50 1.70 1.80 1.67 40.00

85 LB_85 22.50 1.20 1.25 1.30 1.25 28.13 21.50 1.00 1.00 2.00 1.33 28.67

86 LB_86 32.00 1.40 1.50 1.60 1.50 48.00 30.00 1.20 1.30 1.60 1.37 41.00

87 LB_87 32.00 1.30 1.60 1.60 1.50 48.00 27.00 1.50 1.70 1.70 1.63 44.10

88 LB_88 20.50 1.10 1.40 1.45 1.32 26.99 24.50 1.10 1.30 1.40 1.27 31.03

89 LB_89 32.00 1.50 1.70 1.70 1.63 52.27 30.50 1.30 1.50 1.60 1.47 44.73

90 LB_90 31.50 1.30 1.40 1.50 1.40 44.10 26.00 1.20 1.30 1.40 1.30 33.80

91 LB_91 24.50 1.10 1.40 1.40 1.30 31.85 31.50 1.20 1.55 1.60 1.45 45.68

92 LB_92 23.00 1.30 1.70 1.60 1.53 35.27 24.50 1.10 1.50 1.40 1.33 32.67

93 LB_93 37.00 1.20 1.40 1.30 1.30 48.10 34.00 1.20 1.20 1.10 1.17 39.67

94 LB_94 27.00 1.50 1.60 1.40 1.50 40.50 34.00 1.10 1.50 1.40 1.33 45.33

95 LB_95 29.50 0.90 1.50 1.60 1.33 39.33 28.50 1.00 1.30 1.40 1.23 35.15

96 LB_96 33.00 1.10 1.40 1.40 1.30 42.90 32.00 1.10 1.40 1.40 1.30 41.60

97 LB_97 33.00 1.00 1.20 1.70 1.30 42.90 33.70 1.20 1.60 1.50 1.43 48.30

98 LB_98 20.50 0.90 1.20 1.30 1.13 23.23 30.00 1.10 1.50 1.20 1.27 38.00

99 LB_99 18.00 1.00 1.30 1.25 1.18 21.30 21.50 0.90 1.25 1.40 1.18 25.44

100 LB_100 31.50 1.00 1.70 1.65 1.45 45.68 30.00 1.30 1.70 1.90 1.63 49.00

101 LB_101 23.50 1.00 1.30 1.30 1.20 28.20 24.00 1.00 1.40 1.50 1.30 31.20

102 LB_102 22.50 1.20 1.50 1.40 1.37 30.75 27.50 1.00 1.40 1.40 1.27 34.83

103 LB_103 29.50 1.05 1.50 1.55 1.37 40.32 28.00 1.20 1.50 1.50 1.40 39.20

104 LB_104 30.00 1.10 1.50 1.50 1.37 41.00 28.00 1.30 1.50 1.50 1.43 40.13

105 LB_105 21.50 0.90 1.20 1.20 1.10 23.65 21.00 1.05 1.30 1.30 1.22 25.55

106 LB_106 33.00 0.90 1.65 1.65 1.40 46.20 26.50 1.25 1.50 1.50 1.42 37.54

107 LB_107 22.50 1.20 1.80 1.70 1.57 35.25 24.50 1.20 1.50 1.40 1.37 33.48

108 LB_108 24.50 1.10 1.30 1.30 1.23 30.22 29.50 1.00 1.30 1.20 1.17 34.42

109 LB_109 22.00 0.70 1.20 1.20 1.03 22.73 19.50 0.90 1.00 1.15 1.02 19.83

110 LB_110 32.00 1.10 1.40 1.40 1.30 41.60 30.00 1.00 1.40 1.40 1.27 38.00

111 LB_111 25.50 1.20 1.60 1.70 1.50 38.25 25.50 1.30 1.55 1.40 1.42 36.13

112 LB_112 31.00 0.80 1.55 1.60 1.32 40.82 31.00 1.00 1.40 1.40 1.27 39.27

113 LB_113 28.50 0.80 1.50 1.50 1.27 36.10 26.00 1.00 1.60 1.60 1.40 36.40

114 LB_114 32.50 0.90 1.45 1.50 1.28 41.71 24.00 1.00 1.20 1.20 1.13 27.20

115 LB_115 27.50 0.90 1.20 1.20 1.10 30.25 29.00 0.95 1.30 1.20 1.15 33.35

116 LB_116 28.50 1.00 1.30 1.25 1.18 33.73 29.50 0.90 1.30 1.20 1.13 33.43

117 LB_117 29.50 1.10 1.50 1.40 1.33 39.33 32.00 0.90 1.40 1.40 1.23 39.47

118 LB_118 26.50 1.30 1.65 1.50 1.48 39.31 29.00 1.10 1.40 1.50 1.33 38.67

119 LB_119 25.00 1.00 1.30 1.20 1.17 29.17 24.00 0.90 1.20 1.30 1.13 27.20
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120 LB_120 30.50 0.90 1.60 1.50 1.33 40.67 24.50 0.90 1.50 1.70 1.37 33.48

121 LB_121 29.50 0.90 1.30 1.40 1.20 35.40 26.00 0.90 1.30 1.50 1.23 32.07

122 LB_122 23.50 1.00 1.50 1.50 1.33 31.33 29.00 0.90 1.25 1.40 1.18 34.32

123 LB_123 25.00 0.95 1.20 1.30 1.15 28.75 30.00 0.90 1.50 1.60 1.33 40.00

124 LB_124 33.00 1.20 1.50 1.50 1.40 46.20 31.50 1.00 1.50 1.50 1.33 42.00

125 LB_125 23.00 0.95 1.40 1.40 1.25 28.75 25.00 1.10 1.50 1.60 1.40 35.00

126 LB_126 34.50 1.80 1.60 1.55 1.65 56.93 29.00 0.90 1.60 1.75 1.42 41.08

127 LB_127 27.00 1.00 1.30 1.45 1.25 33.75 28.00 0.90 1.40 1.30 1.20 33.60

128 LB_128 30.00 1.60 1.50 1.40 1.50 45.00 32.00 1.80 1.60 1.40 1.60 51.20

129 LB_129 34.00 1.50 1.60 1.20 1.43 48.73 31.00 1.30 1.60 1.20 1.37 42.37

130 LB_130 23.00 1.30 1.20 1.00 1.17 26.83 31.50 1.40 1.30 1.20 1.30 40.95

131 LB_131 26.00 1.30 1.50 1.20 1.33 34.67 28.50 1.20 1.50 1.40 1.37 38.95

132 LB_132 23.00 1.50 1.70 1.60 1.60 36.80 24.00 1.50 1.70 1.40 1.53 36.80

133 LB_133 29.00 1.90 1.70 1.40 1.67 48.33 21.50 1.70 2.00 1.50 1.73 37.27

134 LB_134 36.00 2.00 1.80 1.50 1.77 63.60 28.00 1.50 1.60 1.40 1.50 42.00

135 LB_135 36.00 1.50 1.20 1.20 1.30 46.80 36.00 1.50 1.70 1.40 1.53 55.20

136 LB_136 35.00 1.70 1.60 1.40 1.57 54.83 33.00 1.50 1.30 1.30 1.37 45.10

137 LB_137 44.00 2.20 2.00 1.80 2.00 88.00 39.00 1.80 1.70 1.50 1.67 65.00

138 LB_138 24.00 1.70 1.70 1.20 1.53 36.80 31.00 1.70 1.60 1.40 1.57 48.57

139 LB_139 33.00 1.50 1.40 1.40 1.43 47.30 24.00 1.70 1.50 1.30 1.50 36.00

140 LB_140 31.00 1.70 1.90 2.00 1.87 57.87 32.00 1.60 1.80 1.90 1.77 56.53

141 LB_141 32.00 1.60 1.60 1.60 1.60 51.20 33.00 1.60 1.60 1.40 1.53 50.60

142 LB_142 27.50 1.70 1.60 1.50 1.60 44.00 26.00 1.70 1.90 1.60 1.73 45.07

143 LB_143 31.00 2.00 1.80 1.50 1.77 54.77 29.00 1.70 1.70 1.40 1.60 46.40

144 LB_144 25.00 1.30 1.40 1.00 1.23 30.83 22.50 1.60 1.50 1.50 1.53 34.50

145 LB_145 34.00 1.80 1.90 1.80 1.83 62.33 30.00 1.70 1.80 1.70 1.73 52.00

146 LB_146 24.00 1.50 1.40 1.20 1.37 32.80 35.00 1.80 1.20 1.60 1.53 53.67

147 LB_147 29.00 1.40 1.30 1.20 1.30 37.70 31.00 1.60 1.50 2.20 1.77 54.77

148 LB_148 30.00 1.50 1.70 1.60 1.60 48.00 34.00 1.80 1.70 1.20 1.57 53.27

149 LB_149 23.00 1.60 1.60 1.30 1.50 34.50 32.00 1.60 1.80 1.70 1.70 54.40

150 LB_150 28.00 1.60 1.30 1.20 1.37 38.27 32.00 1.00 1.50 1.50 1.33 42.67

151 LB_151 27.00 1.60 1.60 1.30 1.50 40.50 22.50 1.70 1.50 1.20 1.47 33.00

152 LB_152 25.50 1.50 1.50 1.10 1.37 34.85 31.00 1.70 1.60 1.50 1.60 49.60

153 LB_153 19.50 1.30 1.20 1.00 1.17 22.75 20.00 1.20 1.00 1.50 1.23 24.67

154 LB_154 26.00 1.60 1.70 1.40 1.57 40.73 24.00 1.60 1.70 1.40 1.57 37.60

155 LB_155 27.00 1.50 1.40 1.40 1.43 38.70 26.00 1.50 1.50 1.60 1.53 39.87

156 LB_156 23.00 1.40 1.30 1.20 1.30 29.90 32.50 1.60 1.55 1.40 1.52 49.29

157 LB_157 23.00 1.40 1.40 1.20 1.33 30.67 30.00 1.40 1.50 1.40 1.43 43.00

158 LB_158 28.00 1.50 1.40 1.30 1.40 39.20 29.00 1.60 1.50 1.30 1.47 42.53

159 LB_159 25.00 1.60 1.50 1.70 1.60 40.00 24.50 1.40 1.50 1.20 1.37 33.48

160 LB_160 28.50 1.60 1.60 1.50 1.57 44.65 29.00 1.60 1.50 1.40 1.50 43.50
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161 LB_161 29.00 1.00 1.60 1.70 1.43 41.57 22.00 1.40 1.60 1.60 1.53 33.73

162 LB_162 26.50 1.10 1.30 1.40 1.27 33.57 26.00 1.10 1.30 1.40 1.27 32.93

163 LB_163 29.50 1.00 1.55 1.70 1.42 41.79 28.00 1.00 1.40 1.45 1.28 35.93

164 LB_164 30.50 0.95 1.40 1.40 1.25 38.13 29.00 1.20 1.40 1.30 1.30 37.70

165 LB_165 31.50 0.90 1.40 1.50 1.27 39.90 26.50 0.80 1.15 1.20 1.05 27.83

166 LB_166 24.50 1.10 1.50 1.60 1.40 34.30 23.00 1.20 1.40 1.40 1.33 30.67

167 LB_167 24.00 1.00 1.40 1.40 1.27 30.40 26.50 1.00 1.14 1.40 1.18 31.27

168 LB_168 27.00 1.00 1.40 1.35 1.25 33.75 28.50 1.00 1.30 1.20 1.17 33.25

169 LB_169 33.00 1.10 1.70 1.80 1.53 50.60 30.50 1.10 1.30 1.50 1.30 39.65

170 LB_170 25.00 0.95 1.30 1.30 1.18 29.58 31.00 1.80 1.30 1.30 1.47 45.47

171 LB_171 24.00 1.00 1.40 1.40 1.27 30.40 28.00 1.20 1.20 1.20 1.20 33.60

172 LB_172 21.50 1.00 1.25 1.35 1.20 25.80 25.50 1.00 1.30 1.30 1.20 30.60

173 LB_173 29.50 1.30 1.50 1.60 1.47 43.27 23.50 1.20 1.60 1.50 1.43 33.68

174 LB_174 31.00 1.30 1.60 1.55 1.48 45.98 27.00 1.00 1.30 1.40 1.23 33.30

175 LB_175 32.50 1.40 1.60 1.60 1.53 49.83 30.50 1.00 1.30 1.40 1.23 37.62

176 LB_176 27.50 1.10 1.40 1.40 1.30 35.75 26.50 0.90 1.20 1.30 1.13 30.03

177 LB_177 25.00 1.10 1.45 1.50 1.35 33.75 31.50 1.10 1.50 1.65 1.42 44.63

178 LB_178 27.00 0.90 1.20 1.20 1.10 29.70 23.00 0.80 1.10 1.25 1.05 24.15

179 LB_179 24.00 1.10 1.40 1.35 1.28 30.80 24.,5 0.90 1.25 1.30 1.15 35.42

180 LB_180 23.50 1.00 1.35 1.30 1.22 28.59 21.00 1.00 1.20 1.20 1.13 23.80

181 LB_181 27.00 1.40 1.50 1.20 1.37 36.90 26.50 1.50 1.80 1.60 1.63 43.28

182 LB_182 26.00 1.90 1.90 1.60 1.80 46.80 27.00 1.50 1.80 1.60 1.63 44.10

183 LB_183 30.00 1.40 1.40 1.20 1.33 40.00 29.00 1.60 1.50 1.40 1.50 43.50

184 LB_184 28.00 1.40 1.40 1.50 1.43 40.13 28.50 1.50 1.50 1.30 1.43 40.85

185 LB_185 27.50 1.60 1.70 1.40 1.57 43.08 28.00 1.50 1.60 1.30 1.47 41.07

186 LB_186 23.00 1.80 1.70 1.50 1.67 38.33 27.00 1.50 1.60 1.30 1.47 39.60

187 LB_187 27.50 1.80 1.80 1.50 1.70 46.75 31.00 1.80 1.50 2.00 1.77 54.77

188 LB_188 33.00 1.40 1.50 1.50 1.47 48.40 30.00 1.20 1.20 1.40 1.27 38.00

189 LB_189 35.00 1.60 1.90 1.70 1.73 60.67 39.00 1.40 1.60 1.60 1.53 59.80

190 LB_190 34.00 1.50 1.60 1.60 1.57 53.27 35.00 1.50 1.50 1.40 1.47 51.33

191 LB_191 31.00 1.40 1.30 1.10 1.27 39.27 31.00 1.40 1.40 1.40 1.40 43.40

192 LB_192 33.00 1.50 1.60 1.20 1.43 47.30 30.00 1.20 1.20 1.40 1.27 38.00

193 LB_193 37.00 1.20 1.40 1.40 1.33 49.33 32.00 1.60 1.50 1.40 1.50 48.00

194 LB_194 37.00 1.60 1.30 1.10 1.33 49.33 35.00 1.20 1.20 1.30 1.23 43.17

195 LB_195 29.00 1.60 1.50 1.40 1.50 43.50 32.00 1.40 1.40 1.30 1.37 43.73

196 LB_196 27.00 1.50 1.50 1.20 1.40 37.80 29.00 1.80 1.60 1.20 1.53 44.47

197 LB_197 28.00 1.70 1.50 1.20 1.47 41.07 34.00 1.60 1.40 1.40 1.47 49.87

198 LB_198 27.00 1.60 1.50 1.40 1.50 40.50 28.00 1.50 1.40 1.30 1.40 39.20

199 LB_199 37.00 1.70 1.50 1.50 1.57 57.97 34.00 1.60 1.40 1.20 1.40 47.60

200 LB_200 28.00 1.60 1.50 1.20 1.43 40.13 29.00 1.60 1.60 1.90 1.70 49.30

201 LB_201 22.00 1.40 1.20 1.00 1.20 26.40 21.00 1.40 1.20 1.20 1.27 26.60
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202 LB_202 23.00 1.40 1.30 1.20 1.30 29.90 25.00 1.40 1.40 1.20 1.33 33.33

203 LB_203 25.00 1.60 1.50 1.20 1.43 35.83 27.00 1.50 1.50 1.30 1.43 38.70

204 LB_204 31.00 1.50 1.50 1.20 1.40 43.40 30.00 1.40 1.00 1.40 1.27 38.00

205 LB_205 24.00 1.50 1.50 1.30 1.43 34.40 24.00 1.30 1.00 1.20 1.17 28.00

206 LB_206 35.00 1.30 1.50 1.40 1.40 49.00 32.00 1.70 1.50 1.40 1.53 49.07

207 LB_207 39.00 1.50 1.40 1.20 1.37 53.30 40.00 1.70 1.60 1.50 1.60 64.00

208 LB_208 29.50 1.30 1.20 1.20 1.23 36.38 26.00 1.50 1.20 1.20 1.30 33.80

209 LB_209 30.00 1.50 1.40 1.40 1.43 43.00 26.00 1.40 1.40 1.20 1.33 34.67

210 LB_210 31.00 1.70 1.50 1.20 1.47 45.47 32.50 1.60 1.60 1.20 1.47 47.67

211 LB_211 29.00 1.50 1.30 1.30 1.37 39.63 28.00 1.50 1.50 1.50 1.50 42.00

212 LB_212 34.00 1.70 1.60 1.50 1.60 54.40 32.00 1.60 1.50 1.30 1.47 46.93

213 LB_213 37.00 1.50 1.50 1.60 1.53 56.73 36.00 1.70 1.40 1.30 1.47 52.80

214 LB_214 39.00 2.00 1.70 1.20 1.63 63.70 34.50 1.70 1.60 1.30 1.53 52.90

215 LB_215 39.00 1.20 1.60 1.50 1.43 55.90 40.00 2.00 2.10 1.60 1.90 76.00

216 LB_216 34.00 1.50 1.70 1.65 1.62 54.97 41.00 1.30 1.50 1.40 1.40 57.40

217 LB_217 25.50 1.10 1.50 1.50 1.37 34.85 27.00 1.30 1.60 1.60 1.50 40.50

218 LB_218 29.00 1.60 1.50 1.30 1.47 42.53 37.50 1.30 1.60 1.60 1.50 56.25

219 LB_219 31.50 1.30 1.60 1.55 1.48 46.73 29.50 1.30 1.70 1.60 1.53 45.23

220 LB_220 35.00 1.50 1.80 1.80 1.70 59.50 36.50 1.20 1.60 1.60 1.47 53.53

221 LB_221 28.50 1.40 1.70 1.50 1.53 43.70 32.00 1.20 1.40 1.40 1.33 42.67

222 LB_222 31.50 1.40 1.50 1.40 1.43 45.15 29.00 1.40 1.60 1.50 1.50 43.50

223 LB_223 28.50 1.50 1.90 1.75 1.72 48.93 27.00 1.45 1.60 1.60 1.55 41.85

224 LB_224 32.00 1.20 1.30 1.30 1.27 40.53 30.50 1.20 1.30 1.30 1.27 38.63

225 LB_225 31.50 1.20 1.60 1.50 1.43 45.15 37.00 1.20 1.60 1.60 1.47 54.27

226 LB_226 34.00 1.00 1.20 1.10 1.10 37.40 24.50 1.20 1.20 1.20 1.20 29.40

227 LB_227 30.00 1.20 1.70 1.70 1.53 46.00 27.00 1.80 1.50 1.30 1.53 41.40

228 LB_228 27.50 1.00 1.50 1.60 1.37 37.58 26.50 1.20 1.30 1.35 1.28 34.01

229 LB_229 30.00 1.10 1.50 1.50 1.37 41.00 31.00 1.40 1.60 1.45 1.48 45.98

230 LB_230 26.00 1.10 1.40 1.50 1.33 34.67 32.50 1.40 1.60 1.60 1.53 49.83

231 LB_231 30.50 1.30 1.60 1.50 1.47 44.73 29.50 1.15 1.40 1.50 1.35 39.83

232 LB_232 30.00 1.20 1.50 1.40 1.37 41.00 28.00 1.30 1.50 1.55 1.45 40.60

233 LB_233 24.00 1.40 1.60 1.50 1.50 36.00 25.50 1.50 1.50 1.50 1.50 38.25

234 LB_234 30.50 1.10 1.50 1.50 1.37 41.68 32.00 0.80 1.00 1.20 1.00 32.00

235 LB_235 37.50 0.90 1.20 1.30 1.13 42.50 35.50 1.10 1.40 1.50 1.33 47.33

236 LB_236 38.00 1.20 1.60 1.50 1.43 54.47 28.50 1.00 1.50 1.60 1.37 38.95

237 LB_237 34.50 1.30 1.60 1.70 1.53 52.90 32.00 1.40 1.60 1.60 1.53 49.07

238 LB_238 36.50 1.20 1.60 1.50 1.43 52.32 31.00 1.00 1.50 1.70 1.40 43.40

239 LB_239 27.00 1.10 1.40 1.35 1.28 34.65 29.00 1.30 1.50 1.40 1.40 40.60

240 LB_240 29.50 1.40 1.60 1.60 1.53 45.23 25.00 1.40 1.50 1.40 1.43 35.83

241 LB_241 31.00 1.50 1.70 1.60 1.60 49.60 29.50 1.50 1.80 1.70 1.67 49.17

242 LB_242 30.00 1.00 1.50 1.50 1.33 40.00 34.50 1.00 1.50 1.60 1.37 47.15
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243 LB_243 25.00 1.40 1.70 1.60 1.57 39.17 25.50 1.50 1.70 1.60 1.60 40.80

244 LB_244 24.00 1.10 1.30 1.40 1.27 30.40 31.50 1.20 1.30 1.20 1.23 38.85

245 LB_245 21.50 1.10 1.50 1.50 1.37 29.38 37.50 1.30 1.50 1.65 1.48 55.63

246 LB_246 26.50 1.10 1.50 1.60 1.40 37.10 21.50 1.10 1.50 1.60 1.40 30.10

247 LB_247 27.50 1.10 1.30 1.30 1.23 33.92 27.50 1.10 1.30 1.35 1.25 34.38

248 LB_248 31.00 1.40 1.50 1.40 1.43 44.43 31.50 1.10 1.50 1.50 1.37 43.05

249 LB_249 25.00 1.30 1.50 1.50 1.43 35.83 25.00 1.30 1.60 1.50 1.47 36.67

250 LB_250 28.00 1.10 1.50 1.40 1.33 37.33 34.50 1.30 1.40 1.30 1.33 46.00

251 LB_251 31.00 1.20 1.40 1.30 1.30 40.30 28.50 1.10 1.30 1.20 1.20 34.20

252 LB_252 33.00 1.50 1.50 1.40 1.47 48.40 31.50 1.00 1.80 1.80 1.53 48.30

253 LB_253 28.50 1.20 1.40 1.30 1.30 37.05 29.50 1.20 1.50 1.50 1.40 41.30

254 LB_254 26.00 1.10 1.30 1.30 1.23 32.07 28.00 1.20 1.70 1.70 1.53 42.93

255 LB_255 28.50 1.10 1.40 1.50 1.33 38.00 26.50 1.00 1.40 1.50 1.30 34.45

256 LB_256 19.00 1.10 1.50 1.30 1.30 24.70 22.50 1.40 1.60 1.50 1.50 33.75

257 LB_257 34.00 1.00 1.50 1.50 1.33 45.33 26.00 1.10 1.50 1.60 1.40 36.40

258 LB_258 24.50 0.90 1.10 1.10 1.03 25.32 20.50 0.90 1.10 1.10 1.03 21.18

259 LB_259 30.50 1.20 1.30 1.50 1.33 40.67 32.00 1.20 1.50 1.50 1.40 44.80

260 LB_260 32.00 1.10 1.20 1.20 1.17 37.33 29.50 1.50 1.50 1.50 1.50 44.25

261 LB_261 37.50 1.20 1.60 1.70 1.50 56.25 32.50 1.40 1.50 1.60 1.50 48.75

262 LB_262 22.00 1.30 1.40 1.60 1.43 31.53 27.50 1.20 1.50 1.50 1.40 38.50

263 LB_263 25.50 1.20 1.30 1.40 1.30 33.15 31.00 1.00 1.30 1.40 1.23 38.23

264 LB_264 31.00 1.30 1.50 1.60 1.47 45.47 37.00 1.30 1.50 1.50 1.43 53.03

265 LB_265 25.50 1.50 1.70 1.80 1.67 42.50 28.00 1.40 1.60 1.10 1.37 38.27

266 LB_266 29.50 1.20 1.20 1.20 1.20 35.40 28.00 1.20 1.50 1.60 1.43 40.13

267 LB_267 26.50 1.20 1.40 1.50 1.37 36.22 27.00 1.10 1.40 1.60 1.37 36.90

268 LB_268 36.00 1.50 1.70 1.70 1.63 58.80 36.00 1.30 1.60 1.60 1.50 54.00

269 LB_269 27.00 1.20 1.60 1.50 1.43 38.70 33.00 1.30 1.50 1.50 1.43 47.30

270 LB_270 24.50 1.00 1.10 1.20 1.10 26.95 20.50 0.80 1.00 1.20 1.00 20.50

271 LB_271 31.00 1.00 1.30 1.30 1.20 37.20 32.00 1.00 1.20 1.30 1.17 37.33

272 LB_272 26.50 1.30 1.30 1.30 1.30 34.45 27.00 1.20 1.50 1.60 1.43 38.70

273 LB_273 27.00 1.10 1.50 1.50 1.37 36.90 28.50 1.10 1.50 1.60 1.40 39.90

274 LB_274 31.50 1.30 1.50 1.60 1.47 46.20 35.00 1.10 1.50 1.60 1.40 49.00

275 LB_275 36.00 1.40 1.50 1.40 1.43 51.60 31.00 1.40 1.60 1.60 1.53 47.53

276 LB_276 29.00 1.30 1.50 1.60 1.47 42.53 25.00 1.20 1.40 1.50 1.37 34.17

277 LB_277 26.50 1.20 1.35 1.45 1.33 35.33 31.00 1.30 1.60 1.50 1.47 45.47

278 LB_278 26.00 1.00 1.30 1.40 1.23 32.07 32.50 1.20 1.40 1.50 1.37 44.42

279 LB_279 28.00 1.10 1.30 1.50 1.30 36.40 28.00 1.10 1.50 1.60 1.40 39.20

280 LB_280 25.50 1.20 1.50 1.70 1.47 37.40 29.00 1.30 1.50 1.60 1.47 42.53

281 LB_281 29.50 1.40 1.50 1.60 1.50 44.25 26.00 1.30 1.50 1.60 1.47 38.13

282 LB_282 28.00 1.10 1.40 1.50 1.33 37.33 31.00 1.00 1.40 1.40 1.27 39.27

283 LB_283 24.00 1.00 1.20 1.20 1.13 27.20 26.00 1.00 1.10 1.20 1.10 28.60
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284 LB_284 25.50 1.00 1.20 1.30 1.17 29.75 30.00 0.90 1.10 1.30 1.10 33.00

285 LB_285 27.00 1.10 1.30 1.30 1.23 33.30 30.50 1.10 1.30 1.30 1.23 37.62

286 LB_286 29.00 1.30 1.40 1.40 1.37 39.63 26.00 1.20 1.50 1.60 1.43 37.27

287 LB_287 24.00 0.90 1.20 1.20 1.10 26.40 26.00 0.90 1.20 1.40 1.17 30.33

288 LB_288 22.00 1.10 1.30 1.40 1.27 27.87 25.50 1.00 1.20 1.20 1.13 28.90

289 LB_289 24.50 1.30 1.50 1.70 1.50 36.75 27.50 1.40 1.50 1.60 1.50 41.25

290 LB_290 26.00 1.20 1.40 1.40 1.33 34.67 27.00 1.00 1.20 1.40 1.20 32.40

291 LB_291 24.50 1.10 1.50 1.60 1.40 34.30 34.00 1.10 1.40 1.50 1.33 45.33

292 LB_292 24.00 1.15 1.40 1.20 1.25 30.00 30.00 1.10 1.40 1.60 1.37 41.00

293 LB_293 24.50 1.20 1.50 1.40 1.37 33.48 28.50 1.20 1.50 1.60 1.43 40.85

294 LB_294 30.00 1.20 1.50 1.40 1.37 41.00 31.00 1.00 1.40 1.50 1.30 40.30

295 LB_295 27.50 1.10 1.30 1.50 1.30 35.75 32.00 1.30 1.60 1.70 1.53 49.07

296 LB_296 29.00 0.95 1.30 1.40 1.22 35.28 23.00 0.90 1.30 1.40 1.20 27.60

297 LB_297 38.00 1.40 1.70 1.80 1.63 62.07 36.50 1.40 1.70 1.70 1.60 58.40

298 LB_298 29.00 1.40 1.60 1.70 1.57 45.43 30.00 1.20 1.45 1.40 1.35 40.50

299 LB_299 27.00 1.15 1.30 1.40 1.28 34.65 31.50 1.10 1.30 1.40 1.27 39.90

300 LB_300 24.00 1.20 1.35 1.50 1.35 32.40 21.50 1.10 1.30 1.40 1.27 27.23

301 Bengal 31.00 1.20 1.30 1.40 1.30 40.30 34.50 1.10 1.30 1.40 1.27 43.70

302 LM-1 30.50 1.30 1.50 1.70 1.50 45.75 28.50 1.10 1.30 1.30 1.23 35.15
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Replication III

S.N RILs L B B B
Mean

(B) A
Mean

(A) SD
1 LB_1 24.00 1.40 1.60 1.40 1.47 35.20 35.71 6.99
2 LB_2 26.00 1.00 1.20 1.00 1.07 27.73 27.87 3.41
3 LB_3 29.50 1.60 1.80 1.50 1.63 48.18 48.73 6.02
4 LB_4 27.00 1.40 1.20 1.00 1.20 32.40 27.58 4.23
5 LB_5 43.00 1.20 1.20 1.00 1.13 48.73 46.64 1.81
6 LB_6 28.00 1.00 1.50 1.30 1.27 35.47 39.49 6.72
7 LB_7 28.00 1.50 1.60 1.50 1.53 42.93 40.01 2.70
8 LB_8 23.50 1.40 1.50 1.35 1.42 33.29 36.33 6.23
9 LB_9 25.00 1.20 1.30 1.20 1.23 30.83 32.70 4.47
10 LB_10 27.50 1.40 1.60 1.40 1.47 40.33 37.21 3.81
11 LB_11 24.50 1.20 1.25 1.40 1.28 31.44 39.50 6.99
12 LB_12 25.50 1.60 1.40 1.20 1.40 35.70 35.68 1.67
13 LB_13 26.00 1.70 1.70 1.50 1.63 42.47 34.03 7.96
14 LB_14 32.00 1.60 1.40 1.50 1.50 48.00 52.21 3.84
15 LB_15 35.00 1.40 1.50 1.40 1.43 50.17 42.90 9.12
16 LB_16 29.00 1.60 1.50 1.20 1.43 41.57 37.89 3.19
17 LB_17 25.00 1.50 1.20 1.20 1.30 32.50 36.18 3.57
18 LB_18 37.00 1.40 1.50 1.50 1.47 54.27 52.17 2.64
19 LB_19 25.00 1.30 1.60 1.50 1.47 36.67 38.93 4.58
20 LB_20 32.50 1.00 1.50 1.30 1.27 41.17 41.76 0.70
21 LB_21 22.00 1.00 1.50 1.30 1.27 27.87 35.18 9.56
22 LB_22 25.00 1.50 1.30 1.40 1.40 35.00 36.56 1.90
23 LB_23 22.00 1.10 1.50 1.30 1.30 28.60 32.74 3.79
24 LB_24 25.50 1.30 1.40 1.40 1.37 34.85 39.82 6.37
25 LB_25 28.00 1.20 1.50 1.20 1.30 36.40 39.84 4.16
26 LB_26 30.00 1.30 1.50 1.30 1.37 41.00 41.99 5.88
27 LB_27 28.00 1.50 1.40 1.30 1.40 39.20 39.90 4.46
28 LB_28 29.00 1.60 1.70 1.70 1.67 48.33 52.81 5.19
29 LB_29 27.00 1.20 1.30 1.40 1.30 35.10 33.14 3.44
30 LB_30 29.50 1.30 1.40 1.30 1.33 39.33 33.73 9.29
31 LB_31 23.50 1.20 1.40 1.50 1.37 32.12 41.77 8.91
32 LB_32 29.00 1.30 1.50 1.60 1.47 42.53 41.91 1.78
33 LB_33 31.50 1.30 1.70 1.80 1.60 50.40 48.63 13.01
34 LB_34 3.70 1.40 1.45 1.50 1.45 5.37 38.16 28.77
35 LB_35 29.00 1.40 1.60 1.20 1.40 40.60 49.32 9.19
36 LB_36 27.00 1.20 1.30 1.40 1.30 35.10 43.05 6.88
37 LB_37 27.00 1.00 1.10 1.20 1.10 29.70 27.88 2.42
38 LB_38 29.50 1.25 1.50 1.60 1.45 42.78 53.30 9.83
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39 LB_39 32.00 1.20 1.45 1.45 1.37 43.73 39.03 4.54
40 LB_40 37.00 1.40 1.40 1.50 1.43 53.03 43.87 10.72
41 LB_41 26.50 1.20 1.40 1.45 1.35 35.78 37.62 1.63
42 LB_42 22.50 1.25 1.30 1.40 1.32 29.63 29.77 2.25
43 LB_43 25.00 1.50 1.70 1.70 1.63 40.83 36.67 6.04
44 LB_44 36.00 1.40 1.60 1.90 1.63 58.80 44.74 12.32
45 LB_45 29.00 1.10 1.20 1.20 1.17 39.78 74.28 5.84
46 LB_46 31.50 1.50 1.70 1.65 1.62 50.93 40.19 9.58
47 LB_47 24.00 1.10 1.30 1.40 1.27 30.40 37.40 7.40
48 LB_48 29.50 1.55 1.55 1.50 1.53 45.23 49.34 4.44
49 LB_49 21.00 1.00 1.30 1.50 1.27 26.60 32.83 6.25
50 LB_50 34.50 1.40 1.60 1.55 1.52 52.33 45.64 8.85
51 LB_51 30.50 1.40 1.60 1.60 1.53 46.77 47.57 6.32
52 LB_52 29.00 1.10 1.20 1.30 1.20 34.80 32.85 1.69
53 LB_53 28.00 1.20 1.30 1.30 1.27 35.47 38.97 8.77
54 LB_54 37.00 1.30 1.50 1.50 1.43 53.03 47.66 7.61
55 LB_55 22.00 1.20 1.35 1.40 1.32 28.97 30.06 3.41
56 LB_56 34.00 1.40 1.50 1.65 1.52 51.57 46.13 5.15
57 LB_57 25.00 1.40 1.50 1.60 1.50 37.50 40.27 4.53
58 LB_58 36.00 1.50 1.80 1.80 1.70 61.20 55.89 9.87
59 LB_59 24.00 1.45 1.45 2.00 1.63 39.20 34.47 7.02
60 LB_60 25.00 1.20 1.35 1.50 1.35 33.75 36.92 2.97
61 LB_61 22.50 1.50 1.50 1.50 1.50 33.75 31.93 2.37
62 LB_62 31.50 1.50 1.65 1.30 1.48 46.73 44.52 3.81
63 LB_63 35.00 1.00 1.40 1.45 1.28 44.92 49.74 7.85
64 LB_64 32.00 1.50 1.60 1.60 1.57 50.13 38.81 10.38
65 LB_65 28.00 1.25 1.30 1.40 1.32 36.87 40.19 6.03
66 LB_66 32.00 1.20 1.35 1.45 1.33 42.67 40.57 6.92
67 LB_67 30.50 1.35 1.50 1.60 1.48 45.24 39.95 5.52
68 LB_68 32.00 1.10 1.30 1.40 1.27 40.53 36.30 4.47
69 LB_69 32.00 1.20 1.40 1.40 1.33 42.67 43.33 1.27
70 LB_70 26.00 1.30 1.30 1.35 1.32 34.23 40.33 6.01
71 LB_71 25.50 1.40 1.50 1.50 1.47 37.40 43.42 7.07
72 LB_72 30.50 1.25 1.40 1.60 1.42 43.21 38.94 3.72
73 LB_73 27.50 1.10 1.15 1.30 1.18 32.54 37.20 4.19
74 LB_74 23.50 1.20 1.50 1.50 1.40 32.90 38.77 9.59
75 LB_75 32.00 1.25 1.40 1.50 1.38 44.27 43.51 9.15
76 LB_76 26.00 1.50 1.70 1.70 1.63 42.47 41.13 1.56
77 LB_77 30.50 1.30 1.50 1.60 1.47 44.73 37.75 6.36
78 LB_78 26.50 1.40 1.60 1.50 1.50 39.75 38.46 1.21
79 LB_79 28.50 1.30 1.50 1.50 1.43 40.85 37.17 6.47
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80 LB_80 23.50 1.20 1.30 1.40 1.30 30.55 32.57 2.06
81 LB_81 30.00 1.40 1.70 1.75 1.62 48.50 33.53 13.11
82 LB_82 23.00 1.20 1.50 1.70 1.47 33.73 40.64 6.34
83 LB_83 28.50 1.20 1.40 1.30 1.30 37.05 34.85 6.82
84 LB_84 36.00 1.50 1.70 1.90 1.70 61.20 50.34 10.61
85 LB_85 25.50 1.10 1.20 1.30 1.20 30.60 29.13 1.30
86 LB_86 29.00 1.20 1.40 1.40 1.33 38.67 42.56 4.86
87 LB_87 28.00 1.50 1.50 1.60 1.53 42.93 45.01 2.65
88 LB_88 35.00 1.50 1.65 1.60 1.58 55.42 37.81 15.38
89 LB_89 35.00 1.50 1.70 1.80 1.67 58.33 51.78 6.81
90 LB_90 29.00 1.30 1.60 1.80 1.57 45.43 41.11 6.37
91 LB_91 22.00 1.10 1.30 1.40 1.27 27.87 35.13 9.35
92 LB_92 19.50 1.60 1.40 1.20 1.40 27.30 31.74 4.06
93 LB_93 38.00 1.15 1.20 1.10 1.15 43.70 43.82 4.22
94 LB_94 29.00 1.30 1.45 1.50 1.42 41.08 42.31 2.64
95 LB_95 31.00 0.90 1.40 1.30 1.20 37.20 37.23 2.09
96 LB_96 29.00 1.10 1.40 1.40 1.30 37.70 40.73 2.71
97 LB_97 31.50 1.30 1.80 1.80 1.63 51.45 47.55 4.32
98 LB_98 30.50 1.00 1.35 1.00 1.12 34.06 31.76 7.65
99 LB_99 20.50 1.00 1.50 1.40 1.30 26.65 24.46 2.81
100 LB_100 29.00 1.40 1.70 1.60 1.57 45.43 46.70 1.99
101 LB_101 23.50 0.90 1.30 1.40 1.20 28.20 29.20 1.73
102 LB_102 26.00 1.10 1.40 1.40 1.30 33.80 33.13 2.12
103 LB_103 32.50 1.30 1.60 1.60 1.50 48.75 42.76 5.22
104 LB_104 29.00 1.20 1.40 1.60 1.40 40.60 40.58 0.43
105 LB_105 25.50 1.00 1.40 1.35 1.25 31.88 27.03 4.31
106 LB_106 28.50 1.10 1.40 1.40 1.30 37.05 40.26 5.15
107 LB_107 29.00 1.20 1.70 1.60 1.50 43.50 37.41 5.35
108 LB_108 26.50 1.05 1.30 1.20 1.18 31.36 32.00 2.17
109 LB_109 20.00 0.80 1.10 1.15 1.02 20.33 20.96 1.55
110 LB_110 29.00 1.00 1.30 1.30 1.20 34.80 38.13 3.40
111 LB_111 25.50 1.20 1.50 1.40 1.37 34.85 36.41 1.72
112 LB_112 29.00 0.90 1.40 1.50 1.27 36.73 38.94 2.06
113 LB_113 30.50 0.80 1.40 1.40 1.20 36.60 36.37 0.25
114 LB_114 27.50 1.20 1.40 1.60 1.40 38.50 35.80 7.62
115 LB_115 30.50 0.90 1.50 1.30 1.23 37.62 33.74 3.70
116 LB_116 30.50 0.95 1.20 1.40 1.18 36.09 34.42 1.46
117 LB_117 28.30 1.30 1.30 1.40 1.33 37.73 38.84 0.96
118 LB_118 29.00 1.10 1.30 1.30 1.23 35.77 37.91 1.89
119 LB_119 25.00 0.90 1.20 1.20 1.10 27.50 27.96 1.06
120 LB_120 30.00 1.10 1.50 1.60 1.40 42.00 38.72 4.58
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121 LB_121 22.50 1.10 1.50 1.40 1.33 30.00 32.49 2.72
122 LB_122 28.00 1.10 1.30 1.40 1.27 35.47 33.71 2.13
123 LB_123 32.00 0.90 1.30 1.20 1.13 36.27 35.01 5.73
124 LB_124 27.00 1.05 1.40 1.40 1.28 34.65 40.95 5.85
125 LB_125 23.50 1.00 1.40 1.50 1.30 30.55 31.43 3.22
126 LB_126 34.00 1.20 1.40 1.45 1.35 45.90 47.97 8.12
127 LB_127 29.00 1.00 1.20 1.30 1.17 33.83 33.73 0.12
128 LB_128 29.00 1.30 1.60 1.50 1.47 42.53 46.24 4.47
129 LB_129 30.50 1.50 1.40 1.00 1.30 39.65 43.58 4.66
130 LB_130 28.00 1.20 1.30 1.30 1.27 35.47 34.42 7.12
131 LB_131 27.00 1.20 1.40 1.20 1.27 34.20 35.94 2.62
132 LB_132 23.00 1.40 1.50 1.30 1.40 32.20 35.27 2.66
133 LB_133 27.00 1.70 1.60 1.40 1.57 42.30 42.63 5.54
134 LB_134 26.00 1.20 1.40 1.20 1.27 32.93 46.18 15.75
135 LB_135 36.00 1.50 1.50 1.00 1.33 48.00 50.00 4.54
136 LB_136 26.50 1.50 1.00 1.40 1.30 34.45 44.79 10.20
137 LB_137 40.00 1.80 2.00 1.50 1.77 70.67 74.56 11.98
138 LB_138 28.00 1.70 1.70 1.40 1.60 44.80 43.39 6.01
139 LB_139 24.00 1.50 1.50 1.30 1.43 34.40 39.23 7.03
140 LB_140 23.00 1.90 1.80 1.50 1.73 39.87 51.42 10.03
141 LB_141 30.50 1.50 1.60 1.40 1.50 45.75 49.18 2.99
142 LB_142 26.00 1.70 1.40 1.40 1.50 39.00 42.69 3.24
143 LB_143 31.00 1.70 1.60 1.40 1.57 48.57 49.91 4.34
144 LB_144 28.50 1.50 1.50 1.30 1.43 40.85 35.39 5.07
145 LB_145 30.00 1.60 1.80 1.80 1.73 52.00 55.44 5.97
146 LB_146 32.00 1.60 1.50 1.40 1.50 48.00 44.82 10.79
147 LB_147 32.00 1.50 1.60 1.50 1.53 49.07 47.18 8.69
148 LB_148 29.00 1.60 1.50 1.40 1.50 43.50 48.26 4.89
149 LB_149 28.00 1.80 1.50 1.00 1.43 40.13 43.01 10.26
150 LB_150 29.00 1.60 1.50 1.40 1.50 43.50 41.48 2.81
151 LB_151 27.00 1.60 1.50 1.40 1.50 40.50 38.00 4.33
152 LB_152 27.00 1.70 1.70 1.20 1.53 41.40 41.95 7.39
153 LB_153 18.00 1.40 1.20 1.20 1.27 22.80 23.41 1.09
154 LB_154 27.00 1.60 1.50 1.30 1.47 39.60 39.31 1.59
155 LB_155 30.50 1.60 1.40 1.20 1.40 42.70 40.42 2.06
156 LB_156 28.50 1.60 1.60 1.40 1.53 43.70 40.96 9.98
157 LB_157 31.50 1.00 1.20 1.30 1.17 36.75 36.81 6.17
158 LB_158 24.00 1.40 1.40 1.30 1.37 32.80 38.18 4.95
159 LB_159 30.50 1.40 1.40 1.50 1.43 43.72 39.07 5.18
160 LB_160 21.50 1.60 1.50 1.40 1.50 32.25 40.13 6.85
161 LB_161 25.00 1.30 1.50 1.40 1.40 35.00 36.77 4.20
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162 LB_162 24.50 1.10 1.30 1.30 1.23 30.22 32.24 1.78
163 LB_163 26.00 1.10 1.60 1.60 1.43 37.27 38.33 3.07
164 LB_164 35.00 1.20 1.40 1.50 1.37 47.83 41.22 5.73
165 LB_165 34.50 1.10 1.60 1.60 1.43 49.45 39.06 10.84
166 LB_166 23.50 1.10 1.40 1.50 1.33 31.33 32.10 1.93
167 LB_167 35.50 0.90 1.40 1.60 1.30 46.15 35.94 8.85
168 LB_168 32.50 1.20 1.30 1.25 1.25 40.63 35.88 4.12
169 LB_169 25.00 1.10 1.50 1.40 1.33 33.33 41.19 8.74
170 LB_170 33.50 0.90 1.30 1.35 1.18 39.64 38.23 8.04
171 LB_171 26.00 1.50 1.35 1.30 1.38 35.97 33.32 2.79
172 LB_172 25.00 1.50 1.40 1.50 1.47 36.67 31.02 5.45
173 LB_173 22.00 1.25 1.70 1.80 1.58 34.83 37.26 5.23
174 LB_174 29.00 1.05 1.30 1.40 1.25 36.25 38.51 6.64
175 LB_175 38.00 1.20 1.60 1.50 1.43 54.47 47.31 8.70
176 LB_176 24.00 1.10 1.35 1.30 1.25 30.00 31.93 3.31
177 LB_177 26.50 1.00 1.30 1.30 1.20 31.80 36.73 6.91
178 LB_178 26.50 0.80 1.00 1.05 0.95 25.18 26.34 2.95
179 LB_179 25.50 1.00 1.30 1.20 1.17 29.75 31.99 3.02
180 LB_180 18.00 1.00 1.20 1.25 1.15 20.70 24.36 3.98
181 LB_181 24.00 1.60 1.60 1.50 1.57 37.60 39.26 3.50
182 LB_182 27.00 1.60 1.80 1.50 1.63 44.10 45.00 1.56
183 LB_183 27.00 1.60 1.50 1.40 1.50 40.50 41.33 1.89
184 LB_184 32.00 1.60 1.80 1.60 1.67 53.33 44.77 7.42
185 LB_185 29.00 1.50 1.50 1.30 1.43 41.57 41.91 1.05
186 LB_186 29.00 1.50 1.70 1.40 1.53 44.47 40.80 3.24
187 LB_187 32.00 1.90 1.80 1.60 1.77 56.53 52.68 5.21
188 LB_188 24.00 1.40 1.50 1.20 1.37 32.80 39.73 7.94
189 LB_189 28.00 1.40 1.40 1.20 1.33 37.33 52.60 13.23
190 LB_190 34.00 0.90 1.20 1.10 1.07 36.27 46.96 9.31
191 LB_191 28.00 1.20 1.20 1.40 1.27 35.47 39.38 3.97
192 LB_192 30.00 1.40 1.40 1.50 1.43 43.00 42.77 4.65
193 LB_193 29.50 1.60 1.50 1.30 1.47 43.27 46.87 3.19
194 LB_194 35.00 1.70 1.60 1.60 1.63 57.17 49.89 7.02
195 LB_195 31.00 1.60 1.40 1.30 1.43 44.43 43.89 0.49
196 LB_196 31.00 1.80 1.70 1.40 1.63 50.63 44.30 6.42
197 LB_197 31.00 1.90 1.70 1.60 1.73 53.73 48.22 6.49
198 LB_198 30.00 1.60 1.50 1.40 1.50 45.00 41.57 3.04
199 LB_199 38.00 1.60 1.50 1.40 1.50 57.00 54.19 5.73
200 LB_200 29.00 1.50 1.50 1.60 1.53 44.47 44.63 4.59
201 LB_201 20.00 1.40 1.20 1.20 1.27 25.33 26.11 0.68
202 LB_202 21.00 1.20 1.20 1.50 1.30 27.30 30.18 3.03
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203 LB_203 31.00 1.30 1.30 1.20 1.27 39.27 37.93 1.84
204 LB_204 32.00 1.50 1.40 1.20 1.37 43.73 41.71 3.22
205 LB_205 28.00 1.50 1.40 1.30 1.40 39.20 33.87 5.62
206 LB_206 30.00 1.50 1.40 1.20 1.37 41.00 46.36 4.64
207 LB_207 34.00 1.50 1.50 1.40 1.47 49.87 55.72 7.37
208 LB_208 35.00 1.50 1.40 1.30 1.40 49.00 39.73 8.13
209 LB_209 27.00 1.40 1.40 1.20 1.33 36.00 37.89 4.48
210 LB_210 31.00 1.60 1.50 1.20 1.43 44.43 45.86 1.65
211 LB_211 29.00 2.20 1.40 1.20 1.60 46.40 42.68 3.43
212 LB_212 33.00 1.70 1.50 1.40 1.53 50.60 50.64 3.73
213 LB_213 32.00 1.40 1.30 1.30 1.33 42.67 50.73 7.26
214 LB_214 34.00 1.70 1.60 1.20 1.50 51.00 55.87 6.85
215 LB_215 37.00 1.10 1.50 1.50 1.37 50.57 60.82 13.41
216 LB_216 39.00 1.80 1.90 1.50 1.73 67.60 59.99 6.70
217 LB_217 34.50 1.50 1.60 1.65 1.58 54.63 43.33 10.19
218 LB_218 30.50 1.50 1.90 1.80 1.73 52.87 50.55 7.15
219 LB_219 35.50 1.20 1.50 1.40 1.37 48.52 46.83 1.64
220 LB_220 41.00 1.50 1.95 1.70 1.72 70.38 61.14 8.54
221 LB_221 32.00 1.40 1.60 1.50 1.50 48.00 44.79 2.83
222 LB_222 35.00 1.50 1.70 1.55 1.58 55.42 48.02 6.46
223 LB_223 33.00 1.40 1.70 1.70 1.60 52.80 47.86 5.55
224 LB_224 32.00 1.20 1.30 1.50 1.33 42.67 40.61 2.02
225 LB_225 30.00 1.10 1.40 1.60 1.37 41.00 46.81 6.79
226 LB_226 20.00 0.90 1.10 1.10 1.03 20.67 29.16 8.37
227 LB_227 22.00 1.30 1.60 1.70 1.53 33.73 40.38 6.20
228 LB_228 28.00 1.40 1.60 1.55 1.52 42.47 38.02 4.25
229 LB_229 32.00 1.25 1.50 1.55 1.43 45.87 44.28 2.84
230 LB_230 30.00 1.20 1.30 1.30 1.27 38.00 40.83 7.97
231 LB_231 26.50 1.30 1.60 1.50 1.47 38.87 41.14 3.15
232 LB_232 37.00 1.20 1.45 1.50 1.38 51.18 44.26 6.00
233 LB_233 24.00 1.10 1.20 1.30 1.20 28.80 34.35 4.94
234 LB_234 27.00 1.30 1.50 1.50 1.43 38.70 37.46 4.96
235 LB_235 37.50 1.10 1.30 1.40 1.27 47.50 45.78 2.84
236 LB_236 32.00 1.20 1.50 1.60 1.43 45.87 46.43 7.77
237 LB_237 35.50 1.20 1.70 1.60 1.50 53.25 51.74 2.32
238 LB_238 30.50 1.30 1.50 1.60 1.47 44.73 46.82 4.81
239 LB_239 30.00 1.10 1.50 1.40 1.33 40.00 38.42 3.28
240 LB_240 25.00 1.30 1.40 1.50 1.40 35.00 38.69 5.68
241 LB_241 35.00 1.50 1.90 1.80 1.73 60.67 53.14 6.52
242 LB_242 27.50 1.00 1.50 1.50 1.33 36.67 41.27 5.36
243 LB_243 26.00 1.20 1.60 1.60 1.47 38.13 39.37 1.34
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244 LB_244 24.50 1.00 1.30 1.30 1.20 29.40 32.88 5.19
245 LB_245 24.00 1.10 1.50 1.40 1.33 32.00 39.00 14.45
246 LB_246 22.00 1.10 1.50 1.50 1.37 30.07 32.42 4.05
247 LB_247 22.00 1.20 1.40 1.50 1.37 30.07 32.79 2.37
248 LB_248 30.50 1.20 1.40 1.20 1.27 38.63 42.04 3.03
249 LB_249 32.00 1.30 1.50 1.50 1.43 45.87 39.46 5.57
250 LB_250 27.50 1.20 1.50 1.45 1.38 38.04 40.46 4.81
251 LB_251 33.50 1.40 1.50 1.40 1.43 48.02 40.84 6.92
252 LB_252 32.00 1.60 1.70 1.70 1.67 53.33 50.01 2.88
253 LB_253 23.50 1.10 1.30 1.40 1.27 29.77 36.04 5.83
254 LB_254 24.00 1.20 1.60 1.60 1.47 35.20 36.73 5.59
255 LB_255 28.00 1.10 1.50 1.30 1.30 36.40 36.28 1.78
256 LB_256 25.00 1.10 1.50 1.50 1.37 34.17 30.87 5.35
257 LB_257 23.00 1.50 1.60 1.30 1.47 33.73 38.49 6.08
258 LB_258 24.50 1.00 1.20 1.10 1.10 26.95 24.48 2.97
259 LB_259 29.00 1.30 1.20 1.60 1.37 39.63 41.70 2.73
260 LB_260 29.50 1.20 1.50 1.40 1.37 40.32 40.63 3.47
261 LB_261 38.00 1.50 1.50 1.40 1.47 55.73 53.58 4.19
262 LB_262 26.50 1.10 1.40 1.40 1.30 34.45 34.83 3.50
263 LB_263 28.00 1.00 1.30 1.30 1.20 33.60 34.99 2.81
264 LB_264 35.50 1.20 1.90 1.70 1.60 56.80 51.77 5.77
265 LB_265 25.50 1.40 1.50 1.50 1.47 37.40 39.39 2.73
266 LB_266 29.00 1.00 1.40 1.50 1.30 37.70 37.74 2.37
267 LB_267 30.00 1.40 1.50 1.50 1.47 44.00 39.04 4.31
268 LB_268 29.50 1.30 1.60 1.60 1.50 44.25 52.35 7.41
269 LB_269 25.00 1.40 1.40 1.30 1.37 34.17 40.06 6.67
270 LB_270 24.50 0.80 1.10 1.30 1.07 26.13 24.53 3.51
271 LB_271 29.00 1.30 1.40 1.50 1.40 40.60 38.38 1.93
272 LB_272 27.50 1.30 1.30 1.50 1.37 37.58 36.91 2.20
273 LB_273 24.50 1.20 1.30 1.50 1.33 32.67 36.49 3.63
274 LB_274 34.00 1.50 1.60 1.60 1.57 53.27 49.49 3.56
275 LB_275 37.50 1.30 1.50 1.50 1.43 53.75 50.96 3.16
276 LB_276 29.50 1.40 1.40 1.50 1.43 42.28 39.66 4.76
277 LB_277 30.50 1.50 1.80 1.90 1.73 52.87 44.56 8.80
278 LB_278 26.50 1.30 1.60 1.60 1.50 39.75 38.74 6.24
279 LB_279 25.00 1.00 1.50 1.30 1.27 31.67 35.76 3.81
280 LB_280 25.00 1.10 1.40 1.40 1.30 32.50 37.48 5.02
281 LB_281 24.50 1.40 1.50 1.60 1.50 36.75 39.71 3.99
282 LB_282 29.00 1.20 1.50 1.50 1.40 40.60 39.07 1.64
283 LB_283 28.50 1.00 1.20 1.30 1.17 33.25 29.68 3.17
284 LB_284 31.00 1.00 1.00 1.20 1.07 33.07 31.94 1.90
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285 LB_285 37.50 1.20 1.40 1.50 1.37 51.25 40.72 9.37
286 LB_286 31.50 1.20 1.40 1.60 1.40 44.10 40.33 3.47
287 LB_287 23.50 1.00 1.30 1.10 1.13 26.63 27.79 2.21
288 LB_288 38.20 1.10 1.30 1.40 1.27 48.39 35.05 11.56
289 LB_289 28.00 1.30 1.50 1.60 1.47 41.07 39.69 2.55
290 LB_290 28.50 1.30 1.50 1.60 1.47 41.80 36.29 4.91
291 LB_291 30.50 1.20 1.50 1.60 1.43 43.72 41.12 5.96
292 LB_292 31.20 1.20 1.40 1.50 1.37 42.64 37.88 6.87
293 LB_293 20.50 1.30 1.50 1.50 1.43 29.38 34.57 5.81
294 LB_294 28.50 1.20 1.50 1.60 1.43 40.85 40.72 0.37
295 LB_295 28.00 1.70 1.80 1.90 1.80 50.40 45.07 8.10
296 LB_296 24.00 1.00 1.20 1.30 1.17 28.00 30.29 4.33
297 LB_297 27.00 1.50 1.70 1.70 1.63 44.10 54.86 9.49
298 LB_298 30.00 1.30 1.50 1.60 1.47 44.00 43.31 2.54
299 LB_299 28.00 1.30 1.40 1.40 1.37 38.27 37.61 2.69
300 LB_300 24.00 1.10 1.35 1.40 1.28 30.80 30.14 2.64
301 Bengal 33.00 1.60 1.30 1.40 1.43 47.30 43.77 3.50
302 LM-1 26.50 1.20 1.30 1.40 1.30 34.45 38.45 6.33
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APPENDIX E. BACTERIAL PANICLE BLIGHT AND SHEATH BLIGHT
RATING IN RILS

BPB 2012 BPB 2013 SB 2012
S.N RILs RepI RepII Mean RepI RepII Mean RepI RepII Mean

1 LB_1 7 7 7 3 3 3 4 3 3.5
2 LB_2 7 7 7 4 4 4 6 7 6.5
3 LB_3 2 2 2 5 5 5 3 4 3.5
4 LB_4 5 5 5 7 6 6.5 5 6 5.5
5 LB_5 4 5 4.5 6 7 6.5 5 5 5
6 LB_6 8 9 8.5 4 3 3.5 8 8 8
7 LB_7 3 3 3 4 3 3.5 4 3 3.5
8 LB_8 5 5 5 4 4 4 7 7 7
9 LB_9 4 4 4 4 5 4.5 3 2 2.5

10 LB_10 6 6 6 5 4 4.5 3 6 4.5
11 LB_11 3 4 3.5 3 3 3 4 4 4
12 LB_12 2 2 2 5 4 4.5 4 3 3.5
13 LB_13 3 3 3 7 5 6 3 5 4
14 LB_14 3 4 3.5 3 2 2.5 5 3 4
15 LB_15 2 2 2 4 3 3.5 3 3 3
16 LB_16 4 5 4.5 2 2 2 7 7 7
17 LB_17 3 3 3 4 5 4.5 6 6 6
18 LB_18 2 2 2 3 2 2.5 5 4 4.5
19 LB_19 2 3 2.5 5 4 4.5 5 4 4.5
20 LB_20 6 5 5.5 3 3 3 8 8 8
21 LB_21 3 3 3 1 1 1 6 5 5.5
22 LB_22 5 5 5 6 6 6 7 5 6
23 LB_23 4 4 4 2 3 2.5 8 7 7.5
24 LB_24 3 3 3 4 2 3 4 8 6
25 LB_25 3 2 2.5 4 5 4.5 2 2 2
26 LB_26 3 3 3 2 2 2 4 4 4
27 LB_27 2 3 2.5 5 4 4.5 3 4 3.5
28 LB_28 4 6 5 4 2 3 7 7 7
29 LB_29 5 4 4.5 5 4 4.5 5 6 5.5
30 LB_30 5 5 5 4 6 5 4 6 5
31 LB_31 5 5 5 1 1 1 8 7 7.5
32 LB_32 4 5 4.5 6 6 6 7 7 7
33 LB_33 2 1 1.5 2 2 2 2 2 2
34 LB_34 3 3 3 3 2 2.5 2 3 2.5
35 LB_35 2 2 2 3 2 2.5 2 2 2
36 LB_36 3 3 3 7 3.5 3 4 3.5
37 LB_37 7 5 6 5 5 5 9 9 9
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38 LB_38 5 3 4 2 4 3 4 4 4
39 LB_39 3 3 3 1 2 1.5 8 8 8
40 LB_40 6 5 5.5 3 4 3.5 9 9 9
41 LB_41 5 4 4.5 3 3 3 5 5 5
42 LB_42 5 7 6 7 7 7 4 7 5.5
43 LB_43 3 2 2.5 3 3 3 7 4 5.5
44 LB_44 6 6 6 5 5 5 9 4 6.5
45 LB_45 4 4 4 4 4 4 6 3 4.5
46 LB_46 5 5 5 4 6 5 6 6 6
47 LB_47 3 3 3 3 4 3.5 4 4 4
48 LB_48 2 2 2 3 2 2.5 6 4 5
49 LB_49 6 4 5 2 2 2 5 6 5.5
50 LB_50 3 4 3.5 6 5 5.5 7 5 6
51 LB_51 3 3 3 4 4 4 3 5 4
52 LB_52 2 2 2 3 2 2.5 2 2 2
53 LB_53 2 2 2 3 3 3 4 8 6
54 LB_54 4 3 3.5 5 4 4.5 8 6 7
55 LB_55 3 4 3.5 3 4 3.5 7 5 6
56 LB_56 4 6 5 4 4 4 8 8 8
57 LB_57 3 3 3 3 3 3 3 3 3
58 LB_58 8 5 6.5 3 4 3.5 2 8 5
59 LB_59 3 3 3 2 4 3 2 3 2.5
60 LB_60 2 5 3.5 6 7 6.5 3 6 4.5
61 LB_61 5 4 4.5 3 3 3 1 3 2
62 LB_62 6 5 5.5 4 5 4.5 3 2 2.5
63 LB_63 3 5 4 2 1 1.5 2 2 2
64 LB_64 5 5 5 2 2 2 3 4 3.5
65 LB_65 4 4 4 4 4 4 5 7 6
66 LB_66 6 6 6 2 3 2.5 2 2 2
67 LB_67 3 3 3 2 3 2.5 4 5 4.5
68 LB_68 2 2 2 2 2 2 8 7 7.5
69 LB_69 2 2 2 3 2 2.5 1 3 2
70 LB_70 6 6 6 3 3 3 4 1 2.5
71 LB_71 3 3 3 1 1 1 5 5 5
72 LB_72 5 5 5 2 2 2 5 5 5
73 LB_73 4 4 4 4 4 4 6 4 5
74 LB_74 3 3 3 3 2 2.5 4 6 5
75 LB_75 4 4 4 2 2 2 3 5 4
76 LB_76 1 2 1.5 2 2 2 4 3 3.5
77 LB_77 2 2 2 2 2 2 2 2 2
78 LB_78 2 3 2.5 4 3 3.5 9 6 7.5
79 LB_79 3 5 4 5 4 4.5 6 7 6.5
80 LB_80 6 5 5.5 4 4 4 3 4 3.5
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81 LB_81 3 3 3 2 3 2.5 1 3 2
82 LB_82 5 5 5 1 2 1.5 3 2 2.5
83 LB_83 3 2 2.5 4 4 4 2 2 2
84 LB_84 2 2 2 3 3 3 6 3 4.5
85 LB_85 7 6 6.5 4 4 4 3 6 4.5
86 LB_86 3 5 4 5 5 5 6 3 4.5
87 LB_87 4 3 3.5 4 3 3.5 8 5 6.5
88 LB_88 3 3 3 3 2 2.5 8 7 7.5
89 LB_89 3 4 3.5 2 5 3.5 6 5 5.5
90 LB_90 6 6 6 2 2 2 8 8 8
91 LB_91 5 5 5 4 4 4 5 7 6
92 LB_92 3 3 3 1 1 1 7 6 6.5
93 LB_93 3 5 4 4 4 4 5 5 5
94 LB_94 6 5 5.5 3 3 3 8 8 8
95 LB_95 5 6 5.5 5 6 5.5 8 7 7.5
96 LB_96 6 6 6 6 5 5.5 8 8 8
97 LB_97 3 3 3 3 2 2.5 4 6 5
98 LB_98 3 3 3 4 3 3.5 4 5 4.5
99 LB_99 2 3 2.5 5 4 4.5 3 4 3.5

100 LB_100 5 4 4.5 3 2 2.5 4 3 3.5
101 LB_101 2 2 2 1 1 1 3 3 3
102 LB_102 4 4 4 5 5 5 7 7 7
103 LB_103 3 3 3 2 2 2 4 4 4
104 LB_104 2 3 2.5 7 7 7 8 5 6.5
105 LB_105 8 8 8 9 9 9 9 9 9
106 LB_106 3 3 3 3 2 2.5 7 6 6.5
107 LB_107 1 2 1.5 1 2 1.5 3 2 2.5
108 LB_108 3 4 3.5 2 1 1.5 4 4 4
109 LB_109 6 6 6 6 6 6 8 6 7
110 LB_110 3 3 3 4 3 3.5 4 4 4
111 LB_111 4 3 3.5 2 1 1.5 2 2 2
112 LB_112 5 4 4.5 4 3 3.5 7 5 6
113 LB_113 3 3 3 2 1 1.5 3 4 3.5
114 LB_114 7 8 7.5 4 4 4 7 3 5
115 LB_115 2 4 3 1 1 1 4 5 4.5
116 LB_116 3 5 4 1 1 1 5 4 4.5
117 LB_117 2 3 2.5 3 2 2.5 4 6 5
118 LB_118 5 5 5 3 3 3 3 3 3
119 LB_119 1 2 1.5 3 2 2.5 5 4 4.5
120 LB_120 6 7 6.5 5 3 4 2 5 3.5
121 LB_121 4 5 4.5 6 5 5.5 4 5 4.5
122 LB_122 5 4 4.5 6 3 4.5 5 4 4.5
123 LB_123 6 6 6 5 4 4.5 5 7 6
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124 LB_124 4 4 4 4 3 3.5 7 7 7
125 LB_125 3 3 3 3 2 2.5 5 7 6
126 LB_126 2 2 2 2 1 1.5 1 1 1
127 LB_127 3 3 3 5 5 5 4 4 4
128 LB_128 4 3 3.5 3 3 3 2 3 2.5
129 LB_129 3 4 3.5 4 3 3.5 6 6 6
130 LB_130 3 4 3.5 4 4 4 2 5 3.5
131 LB_131 7 7 7 3 4 3.5 6 5 5.5
132 LB_132 2 2 2 4 2 3 2 2 2
133 LB_133 2 2 2 4 2 3 4 3 3.5
134 LB_134 4 4 4 5 3 4 5 4 4.5
135 LB_135 3 3 3 3 4 3.5 4 5 4.5
136 LB_136 2 3 2.5 3 4 3.5 7 7 7
137 LB_137 5 4 4.5 4 2 3 2 2 2
138 LB_138 3 4 3.5 3 2 2.5 3 3 3
139 LB_139 5 5 5 3 3 3 2 4 3
140 LB_140 3 3 3 3 1 2 5 3 4
141 LB_141 5 5 5 7 5 6 7 6 6.5
142 LB_142 2 2 2 3 1 2 3 2 2.5
143 LB_143 7 7 7 8 8 8 9 8 8.5
144 LB_144 3 3 3 2 1 1.5 6 5 5.5
145 LB_145 2 2 2 3 2 2.5 4 3 3.5
146 LB_146 3 4 3.5 2 2 2 5 5 5
147 LB_147 6 5 5.5 6 6 6 4 6 5
148 LB_148 4 3 3.5 2 2 2 6 6 6
149 LB_149 5 5 5 5 4 4.5 8 8 8
150 LB_150 2 2 2 4 4 4 3 4 3.5
151 LB_151 2 3 2.5 4 3 3.5 6 3 4.5
152 LB_152 7 7 7 4 5 4.5 6 4 5
153 LB_153 9 8 8.5 4 4 4 7 8 7.5
154 LB_154 3 3 3 7 6 6.5 2 2 2
155 LB_155 3 3 3 5 4 4.5 5 5 5
156 LB_156 2 3 2.5 4 5 4.5 5 5 5
157 LB_157 6 6 6 2 2 2 6 6 6
158 LB_158 2 4 3 3 3 3 3 4 3.5
159 LB_159 4 4 4 4 4 4 4 3 3.5
160 LB_160 3 3 3 2 2 2 3 1 2
161 LB_161 2 3 2.5 3 3 3 5 3 4
162 LB_162 3 4 3.5 7 4 5.5 3 5 4
163 LB_163 3 5 4 4 3 3.5 2 3 2.5
164 LB_164 4 5 4.5 6 4 5 5 4 4.5
165 LB_165 5 3 4 6 4 5 6 4 5
166 LB_166 3 2 2.5 3 3 3 4 3 3.5
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167 LB_167 4 6 5 4 3 3.5 3 3 3
168 LB_168 6 6 6 3 2 2.5 7 8 7.5
169 LB_169 7 6 6.5 2 3 2.5 5 7 6
170 LB_170 4 5 4.5 4 4 4 3 4 3.5
171 LB_171 4 4 4 3 2 2.5 7 5 6
172 LB_172 4 4 4 5 4 4.5 2 2 2
173 LB_173 2 2 2 5 3 4 5 4 4.5
174 LB_174 2 3 2.5 4 4 4 6 3 4.5
175 LB_175 2 2 2 4 3 3.5 4 2 3
176 LB_176 3 3 3 6 6 6 2 4 3
177 LB_177 4 4 4 3 2 2.5 6 4 5
178 LB_178 5 5 5 5 5 5 4 7 5.5
179 LB_179 2 2 2 1 1 1 3 3 3
180 LB_180 6 7 6.5 3 4 3.5 2 6 4
181 LB_181 4 4 4 2 3 2.5 5 5 5
182 LB_182 6 6 6 4 3 3.5 4 6 5
183 LB_183 3 2 2.5 3 3 3 5 4 4.5
184 LB_184 2 2 2 2 2 2 4 3 3.5
185 LB_185 5 5 5 6 6 6 6 6 6
186 LB_186 6 6 6 5 5 5 6 6 6
187 LB_187 3 5 4 4 3 3.5 5 5 5
188 LB_188 3 3 3 7 6 6.5 4 4 4
189 LB_189 3 3 3 3 3 3 6 4 5
190 LB_190 3 3 3 4 4 4 3 6 4.5
191 LB_191 2 2 2 3 3 3 2 3 2.5
192 LB_192 4 4 4 3 4 3.5 3 3 3
193 LB_193 1 2 1.5 2 2 2 3 3 3
194 LB_194 2 3 2.5 4 4 4 3 3 3
195 LB_195 3 3 3 2 2 2 4 4 4
196 LB_196 6 6 6 3 2 2.5 6 4 5
197 LB_197 4 4 4 5 6 5.5 6 6 6
198 LB_198 6 6 6 6 5 5.5 7 6 6.5
199 LB_199 3 3 3 3 3 3 3 3 3
200 LB_200 4 7 5.5 4 4 4 7 7 7
201 LB_201 2 4 3 3 3 3 6 5 5.5
202 LB_202 3 4 3.5 7 7 7 7 6 6.5
203 LB_203 4 3 3.5 2 2 2 5 6 5.5
204 LB_204 6 7 6.5 3 4 3.5 7 7 7
205 LB_205 7 6 6.5 5 5 5 9 8 8.5
206 LB_206 2 2 2 2 2 2 4 4 4
207 LB_207 7 7 7 6 6 6 7 7 7
208 LB_208 2 5 3.5 5 6 5.5 3 3 3
209 LB_209 3 3 3 5 4 4.5 9 5 7
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210 LB_210 2 2 2 1 2 1.5 3 3 3
211 LB_211 2 3 2.5 1 3 2 6 5 5.5
212 LB_212 5 4 4.5 4 4 4 6 7 6.5
213 LB_213 5 5 5 3 5 4 7 4 5.5
214 LB_214 2 2 2 1 1 1 3 3 3
215 LB_215 3 5 4 3 3 3 5 5 5
216 LB_216 2 2 2 2 3 2.5 4 3 3.5
217 LB_217 3 1 2 4 4 4 6 4 5
218 LB_218 3 4 3.5 3 1 2 3 5 4
219 LB_219 3 4 3.5 3 3 3 5 5 5
220 LB_220 2 2 2 3 3 3 3 3 3
221 LB_221 6 7 6.5 2 3 2.5 3 3 3
222 LB_222 5 5 5 2 3 2.5 6 3 4.5
223 LB_223 2 2 2 4 5 4.5 3 4 3.5
224 LB_224 4 4 4 3 4 3.5 5 4 4.5
225 LB_225 2 2 2 2 2 2 3 2 2.5
226 LB_226 7 7 7 8 8 8 10 10 10
227 LB_227 2 2 2 3 3 3 4 3 3.5
228 LB_228 2 2 2 4 4 4 3 4 3.5
229 LB_229 2 2 2 3 4 3.5 2 3 2.5
230 LB_230 4 5 4.5 4 3 3.5 3 5 4
231 LB_231 2 3 2.5 2 5 3.5 5 3 4
232 LB_232 4 5 4.5 1 1 1 5 6 5.5
233 LB_233 3 3 3 3 2 2.5 7 7 7
234 LB_234 3 2 2.5 5 5 5 3 3 3
235 LB_235 4 5 4.5 1 2 1.5 5 5 5
236 LB_236 2 2 2 2 2 2 4 3 3.5
237 LB_237 4 5 4.5 4 5 4.5 3 5 4
238 LB_238 3 2 2.5 2 2 2 0 1 0.5
239 LB_239 3 3 3 3 2 2.5 6 4 5
240 LB_240 2 3 2.5 4 4 4 7 6 6.5
241 LB_241 4 5 4.5 4 4 4 4 5 4.5
242 LB_242 5 5 5 5 4 4.5 4 5 4.5
243 LB_243 2 2 2 2 3 2.5 5 4 4.5
244 LB_244 3 2 2.5 3 3 3 4 4 4
245 LB_245 7 6 6.5 6 5 5.5 2 4 3
246 LB_246 3 4 3.5 4 4 4 3 2 2.5
247 LB_247 3 3 3 2 3 2.5 4 4 4
248 LB_248 4 3 3.5 3 4 3.5 3 3 3
249 LB_249 4 4 4 4 4 4 5 5 5
250 LB_250 3 2 2.5 3 4 3.5 2 4 3
251 LB_251 4 4 4 5 3 4 2 2 2
252 LB_252 3 3 3 4 4 4 0 0 0
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253 LB_253 6 6 6 5 5 5 7 7 7
254 LB_254 3 2 2.5 7 7 7 2 2 2
255 LB_255 6 6 6 4 4 4 6 7 6.5
256 LB_256 4 5 4.5 2 2 2 5 6 5.5
257 LB_257 2 2 2 3 3 3 2 3 2.5
258 LB_258 2 2 2 3 3 3 1 2 1.5
259 LB_259 7 7 7 2 2 2 7 7 7
260 LB_260 3 3 3 2 1 1.5 4 5 4.5
261 LB_261 5 4 4.5 5 4 4.5 4 7 5.5
262 LB_262 4 4 4 4 4 4 3 7 5
263 LB_263 3 3 3 3 4 3.5 5 5 5
264 LB_264 8 8 8 7 7 7 3 3 3
265 LB_265 5 4 4.5 4 2 3 6 6 6
266 LB_266 3 3 3 5 5 5 3 3 3
267 LB_267 2 2 2 4 4 4 3 4 3.5
268 LB_268 4 4 4 2 2 2 6 5 5.5
269 LB_269 4 4 4 2 2 2 7 7 7
270 LB_270 4 3 3.5 5 5 5 5 5 5
271 LB_271 4 3 3.5 3 4 3.5 7 6 6.5
272 LB_272 4 4 4 6 6 6 8 7 7.5
273 LB_273 5 5 5 4 2 3 8 8 8
274 LB_274 3 3 3 4 4 4 4 4 4
275 LB_275 2 2 2 4 4 4 3 5 4
276 LB_276 2 2 2 3 3 3 5 5 5
277 LB_277 4 4 4 4 3 3.5 3 5 4
278 LB_278 3 3 3 3 2 2.5 5 4 4.5
279 LB_279 3 3 3 6 6 6 5 3 4
280 LB_280 5 5 5 6 5 5.5 4 4 4
281 LB_281 4 3 3.5 4 6 5 4 3 3.5
282 LB_282 6 6 6 8 6 7 8 8 8
283 LB_283 6 6 6 4 4 4 8 6 7
284 LB_284 3 3 3 5 5 5 4 3 3.5
285 LB_285 2 3 2.5 5 5 5 3 4 3.5
286 LB_286 2 2 2 5 3 4 2 2 2
287 LB_287 2 3 2.5 4 4 4 5 5 5
288 LB_288 5 6 5.5 5 5 5 7 7 7
289 LB_289 3 3 3 2 2 2 4 2 3
290 LB_290 4 4 4 2 3 2.5 5 4 4.5
291 LB_291 3 3 3 3 3 3 4 4 4
292 LB_292 2 2 2 2 2 2 3 4 3.5
293 LB_293 9 7 8 4 4 4 5 7 6
294 LB_294 3 3 3 5 4 4.5 4 3 3.5
295 LB_295 3 3 3 4 5 4.5 5 4 4.5
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296 LB_296 5 4 4.5 5 6 5.5 6 6 6
297 LB_297 4 4 4 6 6 6 3 3 3
298 LB_298 8 8 8 4 2 3 5 5 5
299 LB_299 3 2 2.5 5 5 5 4 3 3.5
300 LB_300 3 3 3 3 2 2.5 4 4 4
301 LM-1 2 3 2.5 2 2.2 2.1 3 3.2 3.1
302 Bengal 3.7 3.5 6.6 2 3 5 3 2.5 5.6
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APPENDIX F. BACTERIAL PANICLE BLIGHT AND SHEATH BLIGHT
SYMPTOMS IN LB-33 AND ITS PARENTS



195

APPENDIX G. PHENOTYPIC VARIATIONS AMONG LB-33 AND
PARENTS
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APPENDIX H. BIOLOGICAL CONTROL OF BACTERIAL PANICLE
BLIGHT AND SHEATH BLIGHT OF RICE

Bacterial panicle blight (BPB) of rice, caused by Burkholderia glumae, is the

major disease of rice in the Southern United States. This disease may cause up-to 70%

loss when climatic conditions are optimal for disease development, particularly high

night temperature and relative humidity. Despite its huge economic importance in rice

producing areas around the world, not many studies have been conducted to develop

efficient control measures. Oxolinic acid is used as a chemical for controlling seedling

rot and grain rot of rice caused by B. glumae in Japan, however, this chemical is not

registered in US (Nandakumar et al., 2009). Pretreatment of seeds before sowing and

spraying during the heading stage of rice with oxolinic acid (OA) significantly reduced

the population of B. glumae and showed a high efficacy for the control of seedling rot

and grain rot of rice (Hikichi and Egami, 1995).

Sheath blight of rice caused by Rhizoctonia solani is another most important rice

disease of Louisiana that greatly reduces yield and grain quality. No rice cultivars grown

in the world are immune to this disease. Application of fungicides is always associated

with financial cost, environmental hazards and development of resistance by the

pathogen. Biological control of sheath blight is considered as an promising alternative to

chemical control (Wiwattanapatapee et al., 2007). Several species of Bacillus have

been widely studied for the control of sheath blight because of their broad range of anti-

microbial activity (Peng et al., 2013).

Bacteria belonging to the Burkholderia cepacia complex (Bcc), a group of

remarkably versatile bacteria, have been used frequently as antagonistic
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microorganisms to control diseases of agricultural importance (Parke and Gurian-

Sherman, 2001).  Bcc complex has the capacity to produce volatile and non-volatile

compounds, such as antibiotics, alkaloids and siderophores, which are involved in bio-

control activity (Roitman et al., 1990). Different strains of B. glumae (formerly

Pseudomonas glumae) collected from various locations in Japan were considerably

different in pathogenicity level, i.e. some strains maintained strong pathogenicity while

others are non-pathogenic (Furaya, 1991). The seedling rot caused by B. glumae was

suppressed by pre-treatment of non-pathogenic strains and the suppression of disease

was only observed with living avirulent cells, suggesting the mechanism of disease

suppression by non-pathogenic strains could be due to competition for infection sites

and nutrients (Furaya, 1991).

Previously, we reported genotypic and phenotypic diversity among B. glumae

strains. The objectives of this study were to evaluate the effect of non-pathogenic

strains of B. glumae for the in-vitro suppression of pathogenic B. glumae and R. solani

as well as suppression of bacterial panicle blight and sheath blight under field

conditions.
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APPENDIX I. MATERIAL AND METHODS FOR BIOLOGICAL CONTROL

Antifungal activity against R. solani

Antifungal activity of B. glumae strains against R. solani was determined

following a previously reported method (O'Grady et al., 2011) with some modifications.

Briefly, each B. glumae strain was grown overnight at 37°C. For inoculating potato

dextrose agar (PDA) plates, 1 ml of overnight culture was centrifuged, washed with

Luria Bertani (LB) broth twice and re-suspended in 100 µl of LB broth. 10 µl of aliquots

of a cell suspension was dropped in three corners of each plate and incubated at 37°C

overnight. Fungal inocula, 5 mm in diameter were cut from 1-week old culture plates

and placed in the center of the plate containing the bacterial colonies. Plates were

incubated at 25°C for 2 days, and the inhibition zone between R. solani and bacteria

colonies was measured.

Antibacterial activity against B. glumae

A bacterial suspension was prepared as described above. First, 50 µl aliquots of

a cell suspension of 336gr-1, a reference virulent strain of B. glumae, was uniformly

spread on LB agar plates then10 µl aliquots of cell suspension of the tested strains were

dropped in the center of each plate. The plates were incubated overnight at 37°C and

the inhibition zone was measured.

Pretreatments of non-pathogenic strains of B. glumae against BPB and SB

Highly susceptible rice cultivar Trenasse was grown in a rice field at the Rice

Research Station, Crowley, LA, in a row containing 25-30 plants with standard

agronomic practices. For sheath blight, plants at late tillering stage were inoculated with

four selected non-pathogenic strains of B. glumae at a concentration of OD600= 2



199

(≈20X108 cfu/ml) and water as a control, one day prior to inoculation with R. solani.

Visual sheath blight symptoms were evaluated about 1 month after the inoculation of R.

solani. For the bacterial panicle blight study, five non-pathogenic strains at a

concentration of OD600= 2 and water as a control were sprayed at the flowering stage.

Following the next day a reference virulent strain 336gr-1 was inoculated at a

concentration of OD600= 0.1 (≈1X108 cfu/ml). After 10 days, visual symptoms of BPB

were evaluated. In both, inoculated rice plants experiments plants were harvested at the

maturity and yield was compared with a non-inoculated water control. The experiment

was conducted in a row having about twenty five plants and each treatment was

repeated four times. Data were analyzed using SAS software, version 9.2 (SAS

Institute). Analysis of variance was performed at 95% confidence interval.



200

APPENDIX J. RESULTS FOR BIOLOGICAL CONTROL

B. glumae strains antifungal activity against R. solani

Nine pathogenic and eleven non-pathogenic strains of B. glumae varied in the

ability to restrict the growth of R. solani in vitro (Figure 7.1 [A] and [B]). The results

obtained by measuring the inhibition zone of R. solani grown on PDA plates showed

that highly virulent, toxoflavin and pigment producing strain, 411gr-6, showed maximum

antifungal activity which was significantly different at 95% confidence interval. Another

toxoflavin producing but dark pigment lacking strain, 117g1-7-a, also showed strong

antifungal activity. All the dark pigment producing but toxoflavin lacking, non-pathogenic

strains (237gr-5, 961149-4-4 and 257sh-1) showed distinct levels of inhibition to R.

solani (Figure 7.1[B]). All pigment producing (191sh-1, 201sh-1, 411gr-6, 11sh2-2-a,

189gr-8 and 261gr-9) and non-producing (336gr-1 and 117g1-7-a) virulent (toxoflavin

producing) strains showed some level of inhibition. All the pathogenic strains and seven

of the eleven non-pathogenic strains tested showed various levels of antifungal

activities against R. solani in the laboratory

B. glumae strains antibacterial activity against a pathogenic B. glumae strain

None of seven pathogenic and 11 non-pathogenic B. glumae strains caused a

zone of inhibition against virulent B. glumae strain, 336gr-1. These results indicate lack

of antibacterial activity against a pathogenic strain.

Suppression of the development of BPB and SB

Application of non-pathogenic strains of B. glumae that showed antifungal activity

against R. solani in vitro exhibited variable suppression of disease when applied to the

susceptible cultivar, Trenasse, 1 day prior to inoculation with R. solani and B. glumae.
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As consistent with the in vitro test of R. solani’s growth inhibition, all the tested strains

significantly reduced SB infection when plants were pretreated with those strains prior to

the pathogen inoculation. Plants pretreated with 257sh-1 and 396gr-2 were the best

strains for reducing BPB symptoms and were statistically similar to the non-inoculated

treatment. However, other treatments pretreated with 366gr-2 and 98gr-1 produced

more BPB symptoms which are statistically similar to the water pretreatment control.

For SB experiment, except pre-treatment with 961149-4-4, all the treatments reduced

SB symptoms in comparison to water control. Pretreatment with 257sh-1 and 396gr-1

produced considerably less disease symptoms which is statistically similar to the water

pretreatment control

The effect of pretreatment of non-pathogenic strains of B. glumae on rice yield

The effect on rice yield resulting from pretreatment of plants with non-pathogenic

strains of B. glumae for both BPB and SB diseases were determined on susceptible

cultivar Trenasse. BPB yield effects were consistent with disease rating, pre-treatments

of all the strains, had higher yield than the water pretreatment control. However,

pretreatment with 396gr-2, produced the higher yield that was significantly different than

the water pretreatment control Similarly, Pretreatment with 257sh-1 produced yield

similar to the non-inoculated control that was significantly different than the water

pretreatment control For SB, all the strains pretreatments produced higher yield than the

water pretreatment control but were not significantly different than the non-inoculated

water control However, yields obtained from inoculated and water pretreatment controls

were significantly different with each other
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A

B

The antifungal activities of Burkholderia glumae strains against Rhizoctonia solani. (A)
Images of antifungal activities on potato dextrose agar (PDA) plates. (B) Quantitative
data of antifungal activities shown by individual strains of B. glumae.
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The effect of pretreatment of with Burkholderia glumae strains on bacterial panicle blight
of rice. A) Suppression of BPB symptom development by pretreatment with B. glumae
strains. (B) Yields following subsequent inoculation of pathogenic strain of B. glumae.
The various treatments indicated on X-axis are: 366gr-1, 961149-4-4, 396gr-2, 98gr-1
and 237sh-1 are non-pathogenic B. glumae strains, No (nothing was inoculated) and
Water (Pretreatment with only followed by virulent B. glumae). Error bars indicates
standard deviations. Yield indicates the dry weight of rice seeds at 13% moisture level
after
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The effects of pretreatments with Burkholderia glumae strains on sheath blight of rice.
A) Suppression of SB symptom development resulting from the pretreatment with B.
glumae strains. (B) Yields following subsequent inoculation with R. solani. The various
treatments indicated on X-axis are: 366gr-1, 961149-4-4, 396gr-2, 98gr-1 and 237sh-1
are non-pathogenic B. glumae strains, No (nothing was inoculated) and water
(Pretreatment with only followed by virulent B. glumae). Error bars indicates standard
deviations. Yield indicates the dry weight of rice seeds at 13% moisture level after
harvest from a single row. The letter above the column indicate significantly differences
among the treatments (P<0.01).
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APPENDIX K. DISCUSSION FOR BIOLOGICAL CONTROL

This study focuses on non-pathogenic strains of B. glumae isolated from the

same ecological niches and already verified that they cannot cause disease on rice.

These naturally occurring, non-pathogenic strains might suppress disease caused by

virulent strains.

The ability of nine pathogenic and 11 non-pathogenic strains of B. glumae to

restrict the growth of R. solani in vitro and compared their antifungal activity The results

obtained by measuring the inhibition zone of R. solani showed that all the tested

pathogenic strains had some level of antifungal activity. Since all the tested pathogenic

strains produce toxoflavin (Karki et al., 2012b) and toxoflavin has antibacterial,

antifungal and herbicidal effects (Tomohisa, 2002). It is probable that the observed

antifungal activity by virulent strains is due to toxoflavin. The non-toxoflavin-producing

avirulent strains (237gr-5, 961149-4-4 and 257sh-1) showed distinct level of antifungal

activity, however, these strains produce other dark pigments different from toxoflavin,

and these pigments inhibit the growth of Collectotrichum orbiculare (Karki et al., 2012b).

From these observations, it is likely that toxoflavin and dark pigments are the some of

the compounds responsible for the anti-fungal activity against R. solani. However, one

avirulent strain, 379gr-1-b lacking toxoflavin and dark pigments production showed

inhibition that could be interesting for further study. These naturally occuring avirulent

strains showing antifungal activities can be good candidates biological control agents for

sheath blight of rice. Our results also showed none of the tested B. glumae strains were

capable of inhibiting B. glumae strains, in vitro, which indicates that these strains lack
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antibacterial activity. It might be possible that B. glumae has a well-adapted system to

protect cells from the toxic effect of toxoflavin and pigments.

Field efficacy tests were evaluated for some of the selected strains for the

suppression of BPB and SB. All the tested strains reduced BPB and SB symptoms to

some extent when they were applied as a pretreatment 1 day prior to pathogen

inoculation. For BPB, pretreatment with 257sh-1 and 396gr-2 produced the least BPB

symptoms which were statistically similar to non-inoculated treatment. In a previous

study, it was shown that seedling rot disease caused by pathogenic strains of B. glumae

was only suppressed by the living cells of non-pathogenic strains. The mechanism of

disease suppression by avirulent strains may be due to competition for infection sites

and nutrients. For SB except for 961149-4-4, pretreatment with, all the other strains

resulted less severe SB symptoms than the water control. Pretreatment with 257sh-1

and 396gr-2 produced considerably less disease symptoms which were statistically

similar with non-inoculated treatment. Contrary with the in vitro assay of growth

inhibition of R. solani, it would be interesting to understand the reason behind

suppression of SB by the B. glumae strain 396gr-1. SB suppression could be either

experimental error or induction of plant defense system by 396gr-2.

BPB and SB can both significantly reduce rice yield. This study determined that

pretreatment with selected non-pathogenic strains of B. glumae can reduce yield loss

associated with both BPB and SB. For BPB, as consistent with disease rating all the

strains pre-treatments had higher yield than the water pretreatment control.

Pretreatment with 396gr-2 and 257sh-1, produced the highest yield which was

significantly different than the water control treatment For SB, all the strains
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pretreatment treatments produced a higher yield than the water control but was not

significantly different from non-inoculated control. In conclusion, this study

demonstrated that non-pathogenic B. glumae strains isolated from rice particularly

257sh-1 and 396gr-2 for BPB and 257sh-1 for SB, can suppress disease and prevent

the yield reduction caused by these diseases. Because these B. glumae strains isolated

from rice plants are naturally non-pathogenic and defective in multiple virulence factors

and key regulatory systems including the quorum-sensing system (Karki, 2010), it would

be safe to use these strains in the environment for sustainable agriculture production.
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