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ABSTRACT 

 
Cercospora leaf blight (CLB) caused by Cercospora kikuchii, has become a troublesome 

disease in the southern United States. C. kikuchii produces a non-hostspecific phytotoxin and a 

pathogenicity factor known as cercosporin during infection of soybean. A quantitative real-time 

PCR assay was developed for detection and quantification of C. kikuchii. The sensitivity of 

detection is 1 pg of genomic DNA. The assay detected the presence of C. kikuchii in soybean 

leaves long before the appearance of disease symptoms. C. kikuchii DNA levels in soybean 

leaves increased slowly during early soybean development, followed by a quick increase at late 

reproductive stages. Results from three year field studies of soybean plants with various 

fungicide treatments showed that multiple fungicide applications beginning from late vegetative 

stages until late reproductive stages can reduce C. kikuchii growth and CLB symptom 

development. However, different fungicides vary in their effectiveness.  

In order to identify genes involved in cercosporin biosynthesis, proteins were isolated 

from C. kikuchii and compared between cultures grown under light (promotes toxin production 

up to 6 fold) and dark conditions through proteomics. Six proteins were up-regulated and two 

were down-regulated in C. kikuchii grown under light. Two of the up-regulated proteins 

[hydroxynaphthalene reductase (HNR) and adenosylhomocysteinase (AHCY)] were further 

studied through gene disruption. The resulting mutants showed reduced cercosporin production 

in vitro and virulence on soybean leaves.  

C. kikuchii secreted proteins from culture were also examined to identify proteins 

involved in the infection of soybean. Two of them showed high homology to glucan beta 1,3-

glucosidase and EAP30 family proteins and identity of several proteins remains unknown. The 

function of these proteins in infecting soybean remains to be determined. 
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Two small portions of AHCY gene also were inserted into a Bean Pod Mottle Virus 

(BPMV) derived vectors and introduced into soybean to explore the possibility of using host-

induced gene silencing (HIGS) in controlling C. kikuchii infection of soybean, The target gene 

expression was reduced by 3.5 to 6.6-fold, and C. kikuchii growth was reduced by 16 to18-fold 

in the HIGS treated soybean compared to vector control plants, indicating a possible new 

approach to control CLB in soybean. 

.
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CHAPTER: 1. INTRODUCTION 

 
1.1 Justification 

Soybean is the second among economic crops grown in the United States with annual 

production of 261 million tons (FAOSTAT data, 2010). Cercospora kikuchii (T. Matsumoto & 

Tomoy.) M. W. Gardner causes purple seed stain (PSS) and cercospora leaf blight (CLB) in 

soybeans. In 2006, the estimated yield loss caused by C. kikuchii in 16 southern states was 

estimated to be 2.14 million bushels, out of which Louisiana accounts for 0.43 million bushels 

(Southern Soybean Disease Workers report, 2006).  Purple seed stain was first reported in Korea 

in 1921 (Suzuki 1921) and later observed in the US in 1924 (Gardner 1926). PSS is now 

distributed worldwide. Typical symptoms of CLB are observed at the beginning of seed filling 

(R5) until the end of seed filling (R6) and maturity (R7) (Walters et al. 1980). Varying degrees 

of resistance to CLB and PSS have been observed in different soybean cultivars, which are 

highly dependent on favorable weather conditions for disease development, and there is no 

strong correlation between incidence of CLB and PSS (Orth and Schuh 1994). There has been an 

increase in number of soybean cultivars susceptible to CLB in field. In 2002, 59 out of 62 

cultivars were susceptible to CLB in standardized cultivar trials (Schneider et al. 2003), whereas 

in 2005, all 285 entries were susceptible (R. W. Schneider, unpublished).  

Currently, fungicide application is the only solution to manage CLB under field 

conditions as most of the soybean cultivars are susceptible to this disease. Different fungicides 

were evaluated (Schneider and Whitam 2002, Schneider et al. 2005) to manage CLB but none of 

them were effective when applied alone. When two different fungicides were applied together 

during reproductive stage, they were slightly effective. Fungicides like pyraclostrobin were only 

effective when applied more than once during late vegetative stages (Chanda et al. 2009; 
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Robertson et al. 2011), which is not economically feasible for soybean growers. Earlier studies 

found that C. kikuchii and many other fungi often cause latent infections in soybeans 

(Cerkauskas and Sinclair 1980; Hartman et al. 1999; Orth and Schuh 1992; Sinclair 1991). 

Traditional methods involving bioassays, histological and serological assays to detect latent 

infections in soybeans are often time consuming and not sensitive. Without knowing when 

infection occurs, producers do not know when to initiate fungicide applications.  

Conventional polymerase chain reaction (PCR) has made it possible to detect plant 

pathogens based on primers designed for a specific part of their genome sequence. However, 

conventional PCR involves separation of reaction products on an agarose gel and is not suitable 

for automation when there is a need to screen a large number of samples. The development of 

high throughput real-time PCR technology, which uses primers and a fluorogenic probe to 

amplify a specific target sequence, allows monitoring the PCR amplification process in real time 

and the quantification of target sequence by measuring fluorescence signal without the need for 

post PCR gel analysis. After the first successful application of real-time PCR for detecting 

Phytophthora strains in their host plants (Böhm et al. 1999), it has been successfully employed in 

detecting various plant pathogens including fungi (Li et al. 2008; Oliver et al. 2008; Pico et al. 

2008), bacteria (De Bellis et al. 2007; Vandroemme et al. 2008), and viruses (Kokkinos and 

Clark 2006; Stewart et al. 2007). It also has been used to quantify growth of pathogens based on 

quantification of pathogen DNA (Guo et al. 2006; Qi and Yang 2002). Therefore, there is a 

strong need to develop an assay for detection and quantification of C. kikuchii using real-time 

PCR primers and probes. 

C. kikuchii produces a non-hostspecific phytotoxin known as cercosporin (Kuyama and 

Tamura 1957). The biosynthesis of cercosporin is induced by light, and cercosporin itself is 
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photo-activated by blue-wavelength light. Light-activated cercosporin catalyzes the production 

of singlet oxygen and superoxide ions, which in turn can cause membrane lipid peroxidation 

resulting in host cell damage (Daub 1987). Cercosporin has been shown to be the crucial 

pathogenicity factor for C. kikuchii (soybean), C. nicotianae (tobacco), and C. zeae-maydis 

(maize). Mutants lacking the ability to produce cercosporin did not cause lesions or produced 

only few lesions when inoculated on respective host plants (Choquer et al. 2005; Shim and 

Dunkle 2003; Upchurch et al. 1991).  

The chemical characteristics of cercosporin are well established, but the biosynthetic 

pathway in C. kikuchii remains uncharacterized. Ehrenshaft and Upchurch (1991) successfully 

isolated six light enhanced cDNAs of C. kikuchii by subtracting the cDNA library of C. kikuchii 

grown under dark from that grown under light. The transcript accumulation of these cDNAs was 

positively correlated with light, suggesting the role of light in cercosporin production in addition 

to media composition in some isolates. There are several studies that have shown that the level of 

gene expression does not necessarily correlate with the protein levels in a cell (Gygi et al. 1999). 

One approach to identify additional cercosporin biosynthesis pathway genes is to use proteomics. 

Proteomics is a study of all proteins, including their relative abundance, distribution, post-

translational modification, functions and interactions with other macromolecules in a given cell 

or tissue. The identification of genes involved in the cercosporin biosynthetic pathway may be 

essential for developing resistance in soybean cultivars and other crops susceptible to diseases 

caused by cercosporin-producing species of this fungal genus by using modern strategies like 

host-induced gene silencing (Helber et al. 2011; Nowara et al. 2010; Stärkel 2011; Yin et al. 

2011). This approach may also allow the identification of the genes used by C. kikuchii to confer 

self-resistance to cercosporin. Genetic engineering can be used to incorporate these toxin 



4 
 

resistance genes in crops to protect from the damage caused by the phytotoxin cercosporin. We 

can analyze proteins isolated from C. kikuchii using 2-D gel electrophoresis (2-DGE) and 

compare the resulting protein profile differences between different conditions like cercosporin 

production favorable (light) and non-favorable conditions (dark) to identify possible proteins 

involved in cercosporin biosynthesis and/or protein involved in resistance to cercosporin. In 

addition to proteins involved in cercosporin biosynthesis that can be used to manipulate/enhance 

host resistance to this pathogen, studying fungal secreted proteins, which often contain virulence 

factors/effectors to either suppress host defense response or breach host defense 

mechanism/breach host physical barrier to gain access to host nutrients, is another approach to 

understand host-pathogen interaction and to enhance soybean resistance to C. kikuchii infection 

in soybean. 

1.2 Objectives 

1) To develop a real-time PCR assay specific for detection of Cercospora kikuchii 

2) To quantify Cercospora kikuchii directly from naturally infected soybean tissues 

3) To compare DNA content of Cercospora kikuchii in infected plants subjected to different 

fungicide treatments to dertermine the efficacy of various treatments 

4) To identify differentially expressed proteins from light and dark-grown Cercospora 

kikuchii through proteomics approach 

5) To characterize roles of light-induced HNR and AHCY genes identified through 

proteomics approach in Cercospora kikuchii infection of soybean. 

6) To identify secreted proteins from Cercospora kikuchii 

7) To evaluate whether host-induced gene silencing strategy can be used to control CLB 

using AHCY gene 



5 
 

 

CHAPTER 2: REVIEW OF LITERATURE 

 
2.1 Soybean 

  
Soybean, Glycine max (L.) Merr., was cited as one of the five sacred grains in China as early as 

2838 B.C.  Soybean was introduced into the United States in 1765 when soybean seed from 

China was planted by a colonist in the British colony of Georgia (Hartman et al. 1999). In 2010, 

soybeans were planted on 102 million ha worldwide with a production of 261 million metric tons 

(FAOSTAT, 2010). Soybean is the second most important crop in the United States next to corn, 

and is planted on 31 million ha with a total production of 91 million tons in 2010. The top five 

countries that produced more than 94% of the world soybeans include the United States (35%), 

Brazil (26%), Argentina (20%), China (9.5%), and India (3.7%) (FAOSTAT, 2010). Soybean 

seeds are rich in oil (20%) and protein (40%). Soybean meal is mainly used as animal feed and a 

small proportion is used for human consumption. Soybean oil is mainly used for human 

consumption (83%) and also for making adhesives, coatings and printing inks, lubricants, 

plastics and specialty products (United Soybean Board, http://www.unitedsoybean.org/). 

2.2 Soybean Growth and Development 

Soybeans have two growth habits, determinate and indeterminate growth. The main 

distinguishing feature is that the indeterminate soybeans continue main stem growth indefinitely 

after first flowering, whereas determinate soybeans terminate main stem growth shortly after first 

flowering.  Indeterminate varieties generally are classified as early maturing soybeans (maturity 

group IV or lower), whereas determinate soybeans are generally in the late maturing groups 

(maturity groups V through VIII) (Louisiana Soybean, 1996, Louisiana Cooperative Extension 

Service publication). The maturity classification of soybeans is based on the days from 

emergence to maturity for a specific maturity group in the area of adaptation and when planted at 
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the optimal planting date.  Traditionally late maturing determinate soybeans have been grown in 

Louisiana and the rest of the southeastern U.S., and early maturing indeterminate varieties are 

grown in midwestern and northeastern U.S.  

Soybean is a quantitative short day plant, which means day-length must be at a critical 

level or less for rapid profuse flowering to occur. Soybean cultivars require a specific length of 

dark period to flower (Hartwig 1973), and based on their response to photoperiod, they are 

divided into 13 maturity groups designated 000, 00, 0 and I to X. Those cultivars with the 

shortest dark period requirements (group 000) are adapted to highest latitudes, whereas groups 

IX and X are used primarily in semitropical or tropical production areas. Most cultivars within 

maturity groups are adapted for full-season growth in a band of latitude no wider than 160 to 240 

km (Hartman et al. 1999). 

The lifecycle of soybean is divided into two general categories, vegetative period and the 

reproductive period. The vegetative period extends from emergence until first flowering, 

whereas the reproductive period lasts from first flowering until maturity. Fehr et al. (1971) 

developed a well-defined system for describing different stages of soybean development. 

Vegetative stages are named for the appearance of leaves, and begin with the V1 stage until the 

beginning of the reproductive stage. Reproductive stages are defined by the letter R. First 

flowering is R1. Full flowering, pod initiation, pod elongation, the start of seed filling and the 

end of seed filling are designated as R2, R3, R4, R5, R6, and R7, respectively. 

2.3 Yield Loss Caused by Cercospora kikuchii 

Soybean production can be affected by a variety of pathogens, including fungi, bacteria, 

viruses and nematodes resulting in significant yield losses. In 2005, 6.9 million tons (9%) of 

soybeans were lost because of different diseases in the U.S. (Wrather and Kenning 2006) out of 
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77.3 million tons total production. Among disease caused by fungi, Cercospora leaf blight (CLB) 

and purple seed stain (PSS) diseases are caused by Cercospora kikuchii (T. Matsumoto & 

Tomoy.) M. W. Gardner (Matsumoto and Tomoyasu 1925; Suzuki 1921; Walters 1980). In 2006, 

the estimated yield loss caused by C. kikuchii in 16 southern states was estimated to be 2.14 

million bushels, out of which Louisiana accounts for 0.43 million bushels (Southern Soybean 

Disease Workers report, 2006). 

2.4 Cercospora kikuchii  

2.4.1 Cercospora kikuchii and Latent Infection of Soybeans 

Cercospora kikuchii growth on artificial media is uniformly dense, with deep folds 

radiating from the center. Colonies are white at the edges and light grayish olive toward the 

centers (Hartman et al. 1999). The medium beneath the colony varies in color but is often dark 

purple to red in color (Hartman et al. 1999; Murakishi 1951; Roy 1982). Condiophores form in 

fascicles, and they are medium dark brown, multiseptate and geniculate, unbranched and 45-220 

x 4-6 μm (Fig. 1.1A and B). Conidia are hyaline, acicular, indistinctly multiseptate (2-49), 

straight to curved, base truncate with thickened hilum (Fig. 1.1B) and 50-375 x 2.5-5 μm (Chupp 

1954; Hartman et al. 1999). Young hyphae in culture are hyaline, septate, 2-4 μm thick, whereas 

old hyphae are pale brown, 3-5 μm thick, and closely septate (Hartman et al. 1999). C. kikuchii 

sporulates profusely under high humidity and temperatures of 23-27°C on infected plant tissues 

and excised seed coats. But, for sporulation on artificial media, addition of senescent soybean 

leaf powder and incubation under light (Chen 1979; El-Gholl et al. 1981; Vathakos and Walters 

1979; Yeh and Sinclair 1980) are essential requirements. C. kikuchii can survive on infected 

seeds and surface debris in the field for extended periods (Jones 1968; Kilpatrick 1956). Cai and 

Schneider (2005) analyzed the vegetative compatibility groups (VCGs) in C. kikuchii and found 
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that some VCGs are specific to isolates from either leaf or seed. However, randomly amplified 

DNA polymorphism (RAPD) and microsatellite-primed PCR (MP-PCR) based clustering of 

these isolates was different from VCG grouping, indicating that VCG is not an indicator of 

evolutionary lineage and could be possible due to cryptic sexual reproduction (Cai and Schneider 

2008). 

Purple stained seeds and crop debris on the soil surface may serve as primary inoculum 

during the growing season (Jones 1968; Kilpatrick 1956; Orth and Schuh 1994). Orth and Schuh 

(1992) observed latent infection of C. kikuchii resulting from active penetration of the host 

epidermal cell wall followed by subsequent colonization of one to a few cells during soybean 

growth stage V2-R4. They based their conclusions on a procedure in which they either 

desiccated asymptomatic leaves for 48 hours or dipped the leaves in 11.64% paraquat solution. 

Latent infecting hyphae resumed growth and sporulation during the senescent phase, and these 

conidia may serve as secondary inoculum for sustaining an epidemic. Spore trapping 

experiments revealed two peaks in aerial spore concentration, one at the beginning of the 

growing season and the other at the beginning of the seed set. The second sporulation peak, in 

the absence of visible symptoms or crop residues from the previous season, resulted from latent 

infections on leaves (Hartman et al. 1999). 
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Figure 1.1. Cercospora kikuchii characteristics and symptoms on soybean. A, C. kikuchii 

conidiophores developed on a soybean leaf showing typical CLB symptoms after incubating in a 

moist chamber for 48 hours. B, Fascicle of conidiophores (A). Conidia (B), Original in: Hsieh, 

W.H. & Goh, T.K. 1990, Cercospora and similar fungi from Taiwan. Published 1990 by Maw 

Chang Book Co. in Taipei, Taiwan. Image source: 

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=252873. C, Typical purple seed stain 

(PSS) symptoms on soybean seeds. (Image source:  

http://www.omafra.gov.on.ca/english/crops/pub811/14soybean.htm). D, Typical cercospora leaf 

blight (CLB) symptoms on soybean leaves. (Image source: Dr. Zhi-Yuan Chen). 
 

2.4.2 Purple Seed Stain (PSS) 

Purple seed stain was first reported in Korea (Suzuki 1921) and later observed in the U.S. 

(Gardner 1926) and Japan (Kikuchi 1924) in 1924. PSS is now a worldwide disease of soybean. 

PSS symptoms are characterized by irregular blotches varying from light pink to dark purple and 

ranging from a tiny spot to the entire area of the seed coat (Murakishi 1951) (Fig. 1.1C) PSS 

does not affect soybean yield but reduces the quality of soybean seeds. Purple stained seeds have 

poor germination and produce weak seedlings (Lehman 1950; Murakishi 1951; Pathan and 

Sinclair 1989; Wilcox and Abney 1973). Cercospora kikuchii causes symptoms on hypocotyls, 

leaves, stems, petioles as well as on pods and seeds (Jones 1968; Kilpatrick 1956; Lehman 1950; 

Matsumoto and Tomoyasu 1925; Murakishi 1951). 

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=252873
http://www.omafra.gov.on.ca/english/crops/pub811/14soybean.htm
http://www.ipm.iastate.edu/ipm/icm/2005/10-10/tillage.html
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2.4.3 Cercospora Leaf Blight (CLB) 

Typical symptoms of CLB are observed at the beginning of seed filling (R5) until the end 

of seed filling (R6) and maturity (R7). Reddish purple, angular-to-irregular lesions occur on 

upper leaves exposed to sunlight (Fig. 1.1D). Numerous infections cause rapid chlorosis and 

necrosis of leaf tissue, resulting in defoliation. The most obvious symptom is the premature 

blighting of the younger, upper leaves over large areas, even entire fields (Walters et al. 1980).  

CLB is an economically important disease and can cause substantial yield loss in many countries 

(Wrather et al. 1997, 2001). In Louisiana, CLB became more severe beginning in 1999 (Moore 

and Walcott 2000). Originally CLB was limited to the southern United States, but the disease has 

been slowly moving as far north as Iowa and Ohio in the past few years. Currently, CLB is the 

top soybean disease in Louisiana causing great concern to soybean growers in the state 

(Raymond Schneider, personal communication).  

2.4.4 Resistance to PSS and CLB 

Varying degrees of resistance to leaf blight and purple seed stain have been observed in 

different soybean cultivars. However, there is no strong correlation between incidence of CLB 

and PSS and both diseases are highly dependent on favorable weather conditions for 

development (Orth and Schuh1994). Two studies (Ploper et al. 1992; Roy and Abney 1976) 

indicated that soybean line PI 80837 is resistant to PSS. Using a F2 population derived from a 

cross between cultivars Agripro 350 (AP 350) and PI 80837 and simple sequence repeat (SSR) 

markers, Jackson et al. (2006, 2008) showed that resistance to PSS in PI 80837 was controlled by 

a single dominant gene, Rpss1, and mapped between Sat_308 (6.6 cM) and Satt594 (11.6 cM) on 

soybean molecular linkage group G. Walters (1980) screened 10 soybean cultivars for resistance 

to C. kikuchii. Based on greenhouse inoculations, he reported that all cultivars were susceptible 
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to leaf blight, but cultivars Davis and Lee74 were moderately susceptible, and cultivar Tracy was 

slightly susceptible. There has been an increase in the number of soybean cultivars susceptible to 

CLB in the field. In 2002, 59 out of 62 cultivars were susceptible to CLB in standardized cultivar 

trials (Schneider et al. 2003), whereas in 2005, all 285 entries were susceptible (Raymond 

Schneider, personal communication). This forced soybean growers in Louisiana to shift to plant 

early maturing cultivars in part to avoid CLB and other late-season diseases (Moore and Bouquet 

2008). Cai et al. (2009) screened 11 varieties under greenhouse and field conditions for 

resistance to CLB and found only 2 varieties, AG5701 and TV59R85, with a moderate level of 

resistance to CLB. 

 2.4.5 Management of Cercospora Leaf Blight 

 Currently, fungicide application is the only solution to manage CLB under field 

conditions as most of the soybean cultivars are susceptible to this disease. Different fungicides 

were evaluated (Schneider and Whitam 2002; Schneider et al. 2005) to manage CLB but none of 

them were effective when applied alone. However, when two different fungicides were applied 

together during reproductive stages, they were slightly effective. Fungicides like pyraclostrobin 

were only effective when applied more than once during late vegetative stages (Chanda et al. 

2009, Robertson et al. 2011) but multiple applications are not economically feasible option for 

soybean growers.  

As the symptoms of CLB are not visible until late reproductive stages (R5 and later), it is 

very difficult to know when the initial infection occurred. The successful use of fungicide 

application strategy requires early detection of C. kikuchii in soybean tissues. Earlier studies 

found that C. kikuchii and many other fungi often cause latent infections in soybeans (Hartman et 

al. 1999; Orth and Schuh 1992; Sinclair 1991). As a result disease symptoms, such as chlorosis 
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and necrosis, only become visible long after initial infection and usually at late growth stages 

when plants are under stress or there is a sudden change in nutritional or environmental 

conditions (Cerkauskas and Sinclair 1980; Hartman et al. 1999; Orth and Schuh 1994). 

Fungicide applications at these late growth stages are usually ineffective (Robertson et al. 2011).  

2.5 Cercosporin 

2.5.1 Cercosporin and Mode of Action 

Kuyama and Tamura (1957) isolated a deep red pigment from dried mycelia of C. 

kikuchii. Further study showed that the pigment can be dissolved in aqueous alkali and in 

reduced state, had a bright yellow color with intense green fluorescence. Because of the presence 

of a chromophoric system in the pigment that differed remarkably from pigments isolated from 

other fungi and lichens at that time, they named this toxin as cercosporin. Kuyama (1962) 

described the nature of aromatic ring of cercosporin. The chemical structure of cercosporin (Fig. 

1.2) was elucidated independently by Lousberg et al. (1971) and Yamazaki and Ogawa (1972) to 

be 1,12-bis(2-hydroxypropyl)-2,11-dimethoxy-6,7-methylenedioxy-4,9-dihydroxyperylene-3,10-

quinone (C29H26O10). Yamazaki et al. (1975) demonstrated the requirement for both light and 

oxygen and the photodynamic properties of cercosporin on mice and bacteria. Similar effects 

also were observed with suspension-cultures of tobacco cells (Daub 1982) and plant tissues 

(Macri and Vianello 1979), with a linear relationship between cell death and light intensity. The 

action spectrum of the cell killing response agreed with the absorption spectrum of cercosporin. 

Cercosporin is a photosensitizer that absorbs light energy and is converted to an 

energetically activated triplet state (
3
S). 

3
S reacts by an electron transfer reaction (type I reaction) 

through a reducing substrate (R) to generate a reduced sensitizer (S
-.
), which in turn reacts with 

molecular oxygen to generate superoxide ions (O2
-.
). Alternatively, 

3
S may react directly with 
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oxygen by an energy transfer process to generate singlet oxygen (
1
O2) (type II reaction). 

Evidence suggests that 
1
O2 formation is the major mechanism by which cercosporin exerts its 

toxicity (reviewed in Daub and Ehrenshaft 1997). The production of 
1
O2 from cercosporin in 

 

Figure 1.2. Chemical structure of cercosporin. Source: 

http://www.apsnet.org/publications/apsnetfeatures/Pages/Cercosporin.aspx 

 

vitro has been measured directly (phosphorescence at 1270 nm) and also by chemical reactions 

(Daub and Hangarter 1983; Dobrowolsky and Foote 1983; Hartman et al. 1988; Leisman and 

Daub 1992). Cercosporin with photosensitizing activity can cause peroxidation of membrane 

lipids, leading to membrane breakdown and cell death (Daub and Briggs 1983). Membrane 

damage may allow leakage of nutrients thus allowing growth and sporulation of intracellularly 

growing fungal hyphae. 

2.5.2 Role of Cercosporin in Plant Diseases 

Cercosporin plays a critical role in disease development by Cercospora species that 

synthesize this toxin. Light intensity and day length were strongly correlated with disease 

severity caused by Cercospora species in coffee (reviewed in Daub and Ehrenshaft 1997), 

banana (Calpouzos and Stalknecht 1966), and sugar beet (Calpouzos and Stalknecht 1967). 

http://www.apsnet.org/publications/apsnetfeatures/Pages/Cercosporin.aspx
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Treatment of sugar beet leaves with pure cercosporin reproduced the necrotic symptoms that are 

both consistent with the known mode of action of cercosporin and similar to the disease 

symptoms caused by C. beticola (Steinkamp et al. 1979, 1981). In addition, cercosporin has been 

isolated from necrotic lesions of several infected plant hosts (Fajola 1978; Kuyama and Tamura 

1957; Venkataramani 1967). Cercosporin has been shown to be the crucial pathogenicity factor 

for C. kikuchii (soybean), C. nicotianae (tobacco), and C. zeae-maydis (maize). C. kikuchii 

mutants disrupted for the CFP transporter gene had reduced ability to produce cercosporin and 

reduced virulence on soybeans and increased sensitivity to exogenously applied cercosporin 

(Upchurch et al. 1991). C. zeae-maydis mutants disrupted for CZK3 MAP kinase kinase kinase 

(MAPKKK) have lost capability to produce cercosporin, and conidia and produced only 

chlorotic lesions compared to necrotic lesions that are produced by the wild type (Shim and 

Dunkle 2003). Choquer et al. (2005) disrupted the CTB1 gene coding for polyketide synthase in 

C. nicotianae and mutants for CTB1 gene did not produce cercosporin and produced fewer 

lesions but not necrotic lesions that are typical of wild type C. nicotianae.  

2.5.3 Cercosporin Biosynthesis 

Once the chemical structure and photodynamic characteristics of cercosporin were 

understood, research focused on understanding cercosporin biosynthesis. Japanese researchers 

(Okubo et al. 1975; Yamazaki and Ogawa 1972) conducted substrate feeding experiments in 

which C. kikuchii was incubated in the presence of 
14

C
 
and 

13
C incorporated acetate and formate 

compounds. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) data indicated that 

cercosporin produced from these cultures was synthesized by condensation of acetate and 

malonate via a polyketide pathway (Fig. 1.3). Ehrenshaft and Upchurch (1991), using subtractive 

hybridization, found several mRNA transcripts that are accumulated at higher levels in C. 
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kikuchii that was grown in light as compared to dark. Rollins et al. (1993) performed two-

dimensional gel electrophoresis (2-DGE) of both extracted proteins and in vitro translation 

products of wild type C. kikuchii and found polypeptides and poly (A)+ RNAs that were 

positively regulated by light, but they did not identify any related proteins. One cDNA, LE6 from 

Ehrenshaft and Upchurch (1991), was sequenced and identified as cercosporin facilitator protein 

(CFP). CFP has 14 transmembrane (TM) domains with high homology to membrane facilitator 

superfamily (MFS) drug resistance transporter proteins (Callahan et al. 1999). C. kikuchii 

mutants disrupted for CFP produced very low levels of cercosporin, were sensitive to 

exogenously applied cercosporin and also exhibited greatly reduced virulence to soybeans. Shim 

and Dunkle (2002) constructed a suppression subtractive hybridization (SSH) library of C. zeae-

maydis by subtracting  poly (A)+ RNA isolated from cercosporin-suppressing medium from poly 

(A)+ RNA isolated from cercosporin- inducing medium and identified nearly 197 cDNAs. Based 

on the predicted functions of the proteins encoded by these cDNAs, the genes were grouped into 

nine categories. Northern blot analysis of seven selected clones showed high expression under 

cercosporin-inducing conditions and genes were predicted to be involved in fatty acid 

metabolism (fatty acid synthase, oleate ∆-12 desaturase, and linolate diol synthase), secondary 

metabolism (cytochrome P450 oxidoreductase, cytochrome P450 monooxygenase, 

dihydrogeodin phenol oxidase), and coproporphyrinogen oxidase. However, none of these genes 

was characterized by generating loss-of-function mutants. Further analysis of the cDNA library 

revealed the presence of a MAPKKK (mitogen-activated protein kinase kinase kinase) gene that 

plays a key role in many signal transduction pathways (Shim and Dunkle 2003). Targeted 

disruption of CZK3 MAPKKK abolished cercosporin production, conidiation, and also mutants 

were less virulent on maize leaves. Bluhm et al. (2008) constructed an extensive expressed 
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sequence tag (EST) library of C. zeae-maydis and evaluated expression of selected genes during 

vegetative, infectious, and reproductive growth. They also identified several genes potentially 

involved in growth regulation, development, and pathogenesis in C. zeae-maydis. 

Much of the understanding about cercosporin biosynthesis comes from research done on 

C. nicotianae. Chung et al. (2003c) used restriction enzyme-mediated integration (REMI) and 

generated several C. nicotianae mutants that were deficient in cercosporin production. 

Sequencing one of the rescued plasmids (pCTB1) from one of the toxin deficient mutants 

revealed the presence of a polyketide synthase (PKS) gene which they named CTB1 (cercosporin 

toxin biosynthesis 1). Disruption of CTB1 completely abolished cercosporin production and 

mutants disrupted for CTB1 caused only few necrotic lesions compared to wild type C. 

nicotianae. Expression of CTB1 transcript was also highly up-regulated by light and nutrient 

media that favor cercosporin production. Dekkers et al. (2007) found another gene, CTB3, 

adjacent to CTB1, which encodes two putative domains i.e., an O- methyltransferase domain in 

the N-terminus and a flavin adenine dinucleotide (FAD)-dependent monooxygenase domain in 

the C-terminus and demonstrated that CTB3 is also required for cercosporin biosynthesis and 

also hypothesized that cercosporin toxin biosynthesis genes in C. nicotianae may be arranged as 

a gene cluster. Genes involved in the biosynthesis of many secondary metabolites are often 

arranged in clusters, for example, afaltoxin by Aspergillus species (Brown et al. 1996, 1999; Yu 

et al. 2004a), fumonisin and trichothecene in Fusarium (Gibberella) species (Hohn et al. 1993; 

Proctor et al. 2003; Seo et al. 2001), sirodesmin in Leptosphaeria maculans (Gardiner et al. 

2004), compactin in Penicillium citrinum (Abe et al. 2002), gibberellin in Gibberella fujikuroi 

(Tudzynski and Hölter 1998), alkaloids in Claviceps purpurea (Tudzynski et al. 1999) and 

Neotyphodium uncinatum (Speiring et al. 2005), AK toxin in Alternaria alternata (Tanaka and 
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Tsuge 2000) and HC toxin in Cochliobolus carbonum (Ahn and Walton 1996). CTB3 disruption 

mutants produced yellow/brown pigment and also were less virulent on tobacco leaves. 

Sequencing of the 34 kb region identified presence of 10 additional open reading frames (ORFs) 

that might be part of the gene cluster. Choquer et al. (2007) identified a CTB4 gene downstream 

of CTB1 and CTB4 has similarity to MFS transporter genes with 12 TM domains. Mutants 

disrupted for CTB4 produced less cercosporin and did not secrete cercosporin into the medium, 

suggesting that CTB4 is involved in secretion and accumulation of cercosporin. Chen et al. 

(2007a) reported that CTB5 and CTB7 (FMN/FAD-dependent oxidoreductases), and CTB6 

(NADPH-dependent oxidoreductase) genes also were involved in cercosporin biosynthesis. Chen 

et al. (2007b) characterized a Zinc finger transcription factor encoding gene CTB8 and putative 

CTB2 gene (O-methyltransferase) involvement in cercosporin biosynthesis. Disruption of CTB8 

abolished the accumulation of transcripts CTB1 through CTB7 indicating that CTB8 acts a 

regulatory switch to control the cercosporin biosynthetic pathway. Based on observations from 

CTB1-CTB8 genes, Chen et al. (2007b) proposed a possible biosynthetic pathway for cercosporin 

in C. nicotianae (Fig. 1.3). Production of cercosporin is regulated by signaling network interplay 

between Ca
2+

/calmodulin and a MAP kinase pathway (Chung 2003; Shim and Dunkle 2003). 

Chung et al. (2003a and 2003b) also characterized a CRG1 protein containing a Cys6Zn2 

binuclear cluster DNA-binding motif with homology to various fungal regulatory proteins, 

indicating that CRG1 may function as a transcription activator. CRG1 disruption mutants were 

partially sensitive to cercosporin and also produced low levels of cercosporin, indicating that 

CRG1 is involved in the activation of genes associated with cercosporin resistance and 

production in the fungus C. nicotianae. Amnuaykanjanasin and Daub (2009) identified ATR1 and 

CnCFP genes in C. nicotianae from a subtractive library between the wild type (WT) and a crg1 
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mutant. ATR1 is an ATP-binding cassette (ABC) transporter gene and disruption resulted in 

lower cercosporin and increased sensitivity to exogenously applied cercosporin. Constitutive 

expression of ATR1 in the crg1 mutant restored cercosporin biosynthesis and moderately 

increased resistance to cercosporin. 

The chemical characteristics of cercosporin are well established, but the biosynthetic 

pathway in C. kikuchii remains uncharacterized. The elucidation of this cercosporin biosynthetic 

pathway may be essential for developing resistance in soybean cultivars and other crops 

susceptible to diseases caused by cercosporin-producing species of this fungal genus. One 

approach to identify additional cercosporin biosynthesis pathway genes is to separate proteins 

isolated from C. kikuchii isolates using two dimensional gel electrophoresis (2-DGE) and to 

compare the resulting protein profile differences between different conditions such as 

cercosporin production favoring (light) and suppressive conditions (dark). 

2.5.4 Resistance to Cercosporin 

Apart from cercosporin biosynthesis, research on Cercospora species has also focused on 

understanding self-resistance to cercosporin, the knowledge of which can be utilized to 

genetically engineer important crops to protect them from the damage caused by cercosporin. 

The CFP gene in C. kikuchii was shown to be involved in resistance to cercosporin (Callahan 

1999). Upchurch et al. (2002) transformed the cercosporin sensitive fungus, Cochliobolus 

heterostrophus, with CFP and demonstrated enhanced resistance to cercosporin. Certain bacteria 

such as Xanthomonas campestris pv. zinniae and X. campestris pv. pruni can degrade 

cercosporin (Mitchell et al. 2002) into a non-toxic compound, xanosporic acid. A putative 

oxidoreductase was involved in this degradation process (Taylor et al. 2006). Studies C. 

nicotianae mutants sensitive to cercosporin identified several genes that confer resistance to 
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Figure 1.3. Speculated biosynthetic pathway leading to the formation of cercosporin, showing 

hypothesized functions of the CTB gene products in Cercospora nicotianae (Chen et al. 2007b). 

 

cercosporin (reviewed in Daub et al. 2005). In addition, the PDX1 gene involved in vitamin B6 

biosynthesis also plays an essential role in resistance to cercosporin (Ehrenshaft et al. 1998, 

1999). CRG1 is also involved in the activation of genes associated with cercosporin resistance 

and production in C. nicotianae (Chung et al. 2003b). Reductive detoxification can also provide 

resistance to cercosporin, in which toxin is maintained in a reduced state in hyphae in 
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Cercospora species and emits green fluorescence. Upon excretion by fungal cells, this reduced 

form of cercosporin was oxidized and regained photodynamic activity (Daub et al. 1992). 

2.5.5 Factors Affecting Cercosporin Production 

Cercosporin biosynthesis is affected by diverse factors such as light, temperature, nutrient 

conditions, pH, source of carbon and nitrogen, and carbon : nitrogen ratio. Higher cercosporin 

was accumulated at 20°C compared to 30°C in two media by different C. kikuchii isolates. C. 

kikuchii ATCC 86864 produced more cercosporin on malt media while C. kikuchii IN (isolated 

from soybeans in Indiana) produced more on PDA, indicating there is isolate/media specificity 

for cercosporin production. Peak cercosporin accumulation occurred at C:N ratios of 500:1 in C. 

kikuchii PR (isolated from soybeans in Puerto Rico), 150:1 in C. kikuchii IL (isolated from 

soybeans in Illinois), 50:1 in C. beticola, and 10:1 in C. nicotianae (Jenns et al. 1989). Depletion 

of nitrogen in the medium had little effect on cercosporin production whereas depletion of 

carbon drastically reduced cercosporin production in C. nicotianae (You et al. 2008). Unlike the 

above factors, light is a universally required cue for cercosporin production by all Cercospora 

isolates tested. Light is required for both production and activation of cercosporin. C. kikuchii 

isolates grown in continuous light accumulated 100-fold more cercosporin than dark-grown 

cultures (Ehrenshaft and Upchurch 1991, Fajola 1978). Lynch and Geoghegan (1979) 

demonstrated using spectral analysis that cercosporin production was stimulated by wavelengths 

of 450-490 nm in C. beticola. 

2.6 Real-Time Polymerase Chain Reaction (Real-time PCR) 

2.6.1 Available Real-Time PCR Technologies 

Invention of the polymerase chain reaction by Kary Mullis in 1984 (Mullis and Faloona 

1987) was a major breakthrough in science and has accelerated scientific discoveries. Soon after 
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this invention, researchers were interested in quantifying PCR to determine the concentration of 

nucleic acids for gene quantification and pathogen detection. This has led to development of 

real-time PCR, in which PCR amplification was monitored from cycle to cycle using detectors, 

rather than end point detection by electrophoretic gel separation in conventional PCR.  

Real-time PCR technology has gained momentum with the use of fluorescent dyes for 

detection of amplicons. Early detection techniques used intercalating dyes such as SYBR
®
 Green 

for detecting amplification. SYBR
®
 Green was very useful and can be used with any gene/primer 

combinations. However, as it can bind to both specific and non-specific amplification products, 

the reaction needs proper optimization. A SYBR
®
 Green assay should always be accompanied by 

a melting curve analysis to confirm the amplification of a single target region and also SYBR
®

 

Green assays do not allow multiplexing.  

The potential problem of detecting non-specific amplicons has led to development of new 

techniques that involve the use of labeled oligonucleotides that bind specifically to target 

sequence. This technology uses probes labeled with two different fluorochromes and is based on 

Fluorescence Resonance Energy Transfer (FRET). This energy transfer only occurs if the two 

molecules are in close proximity to each other (a few nanometers). Depending on the proximity 

to the second fluorochrome, the first one may either emit light or transfer its energy to the 

second, which in turn fluoresces. Thus, bringing the two fluorochromes in close proximity to 

each other results in the fluorescence quenching of the first one, and fluorescence emission of the 

second one. As the fluorescence from the emitting fluorochrome increases proportionally with 

the amount of newly synthesized DNA, both effects can be recorded to follow the amplification 

of the target DNA. However FRET was not popular in plant sciences owing to the use of four 

oligonucleotides and was only limited to studies that required very high level of specificity.  
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FRET was followed by development of the quenching system such as the Taqman® 

assay which is based on the 5′  3′ exonuclease activity of Taq DNA polymerase. In the 

Taqman® assay, in addition to gene-specific forward and reverse primers, oligonucleotide 

probes also are included which have a fluorescent reporter dye [e.g. 6-carboxy-fluorescein 

(FAM)] at the 5′ end and a fluorescent quencher [e.g. 6-carboxy-tetramethylrhodamine 

(TAMRA)] at the 3′ end with a blocked phosphate group to prevent PCR-driven elongation. 

Once the PCR is in progress, primers and probe will bind to complementary regions. As the 

forward primer is extended during the extension step, the 5′ end of the probe is cleaved because 

of the 5′  3′ exonuclease activity of Taq DNA polymerase which releases the fluorescent 

reporter dye. Once the reporter dye is cleaved and away from the quencher, an increase in 

fluorescence is detected. As more and more amplicon is produced exponentially during the 

subsequent cycles, fluorescence will also increase exponentially. By plotting the increase in 

fluorescence (ΔRn) versus the PCR threshold cycle number (Ct), the system produces plots that 

provide a more complete picture of the PCR process. The higher the starting copy number of the 

nucleic acid target, the sooner a significant increase in fluorescence is observed. Finally, the use 

of an internal positive control (e.g. 18S rRNA or other housekeeping gene) in parallel reactions 

to the target reactions allows the normalization of DNA/RNA extraction variations between 

samples (AppliedBiosystems, Foster City, CA). Taqman® probes were followed by the 

development of Molecular beacons (Tyagi and Kramer 1996) and Scorpion
TM

 probes (Thelwell 

et al. 2000).  

2.6.2 Application of Real-Time PCR to Study Plant Pathogens 

 Since its first application in the detection of Phytophthora strains in their host plants 

(Böhm et al. 1999), real-time quantitative PCR (qPCR) has proven to be a very simple and 
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reliable way to detect numerous plant pathogens such as fungi (Filion et al. 2003; Gachon and 

Saindrenan 2004; Gao et al. 2004; Li et al. 2008; Oliver et al. 2008; Pico et al. 2008), bacteria 

(De Bellis et al. 2007; Weller et al. 2000; Randhawa et al. 2001; Schaad et al. 1999; 

Vandroemme et al. 2008; Weller and Stead 2002), viruses (Kokkinos and Clark 2006; Stewart et 

al. 2007), and nematodes (Cao et al. 2005; Madani et al. 2005; Francois et al. 2007). Compared 

to other classical diagnostic methods, real-time PCR-based assays are rapid, sensitive, specific 

and best suited to discriminate between slightly different levels of infection (Winton et al. 2003). 

Moreover, since their specificity relies on primer/probe sequences, such assays are easy to 

develop and they can be transposed to virtually every pathosystem. Real-time PCR also has been 

extensively used in clinical microbiology, food microbiology, and clinical oncology for detection 

and quantification of various infectious agents (Klein 2002). Real-time PCR is not only useful 

for detection but also quantification of plant pathogens in host tissues (Guo et al. 2006; Qi and 

Yang 2002). 

Evaluation of host disease resistance was often based on lesion diameter measurement or 

on the proportion of inoculated leaves exhibiting spreading necrosis (Nandi et al. 2003). Direct 

assessment of fungal development on inoculated leaves might be an alternative to those 

techniques and provide more robust results. With the advent of real-time quantitative polymerase 

chain reaction, researchers possess the unprecedented ability to accurately quantify a specific 

pathogen within a host plant. By comparing the amplification pattern of an unknown sample 

against that of known standards, the quantity of target DNA in the unknown sample can be 

accurately determined (Heid et al. 1996). Strausbaugh et al. (2005) found significant correlations 

between percent infected root area and Fusarium DNA quantities in F. culmorum-inoculated 

plants. Gachon and Saindrenan (2004) developed a real-time PCR-based assay to follow disease 
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progression on Arabidopsis plants infected with the fungi Alternaria brassicicola and Botrytis 

cinerea. It was based on the relative quantification of plant and fungal DNA in infected tissues 

by performing two real-time PCR reactions targeted at fungal and plant sequences on inoculated 

samples. The study allowed quantitative monitoring of the growth of the fungi A. brassicicola 

and B. cinerea. This method was very robust and was able to differentiate between lines 

displaying slightly different levels of resistance. Similarly, a better and more sensitive real time 

PCR based method was developed by Hogg et al. (2007) to replace the traditional methods for 

evaluating Fusarium crown rot (FCR). Disease severity scores (DSS) and Fusarium DNA 

quantities were positively correlated for all three cultivars. The traditional methods involved 

scoring of mature wheat tillers using a subjective scale that was based on the intensity and 

distance brown discoloration extended up the tillers. They were labor intensive, time consuming, 

and often varied greatly from evaluator to evaluator. 

  Ma and Michailides (2004) designed a real-time PCR assay to detect azoxystrobin-

resistant populations of Alternaria from pistachio groves in California, based on a single point 

mutation (G143A) in mitochondrial cytochrome b (cyt b) gene in resistant populations. Real-time 

PCR based pathogen quantification showed a very good correlation to visual methods of disease 

assessment in many fungal diseases of wheat (Guo et al. 2007; Fraaije 2001).  

2.7 Proteomics 

2.7.1 Introduction and Advantages 

Plant pathogenic fungi cause significant yield losses in crops worldwide and millions of 

dollars are invested in fungicides in the U.S. every year to control plant diseases. Understanding 

molecular mechanisms underlying the interaction of fungi with their host plants and virulence 

mechanisms are essential to devise effective disease management strategies. The availability of 
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fast and efficient DNA sequencing technologies has led to a genomics era with whole genome 

sequencing of many plant pathogenic fungi. Once the genome sequences became available, 

several reverse genetics approaches, such as targeted gene disruption/replacement (knock-out) 

(Schumacher et al. 2008), gene silencing (knock-down) (Ajiro et al. 2010), insertional 

mutagenesis (Chi et al. 2009), or targeting induced local lesions in genomes (TILLING) (Lamour 

et al. 2006) were developed as part of functional genomics research. Transcriptomics, the global 

analysis of gene expression at the mRNA level has also become an attractive method for 

analyzing the molecular basis of fungal-plant interactions and pathogenesis (Bhadauria et al. 

2007; Oh et al. 2008; Takahara et al. 2009; Wise et al. 2007), and includes differential display 

(DD) (Venkatesh et al. 2005), cDNA-Amplified Fragment Length Polymorphism (cDNA-

AFLP) (Wang et al. 2009b), suppression subtractive hybridization (SSH) (Fekete et al. 2009), 

serial analysis of gene expression (SAGE) (Venu et al. 2007), expressed sequence tags (ESTs) 

(Yin et al. 2009), and DNA microarrays (Venu et al. 2007), or RNA-Seq (RNA sequencing) 

using next generation sequencing technologies (Wang et al. 2009a). However mRNA expression 

based studies have some limitations: (i) highly expressed mRNAs do not necessarily correlate 

with protein expression (Gygi et al. 1999, Tsai-Morris et al. 2004) (ii) spliced variants of genes 

are known to code for different types of proteins (Blencowe and Khanna 2007, Cheah et al. 

2007), and (iii) post-translational modifications (PTMs) of a single protein may lead to multiple 

functions (Davison 2002, de la Cadena et al. 2007). All these limitations can be overcome by a 

complementary proteomics approach. 

The term proteomics was coined by Marc Wilkins to simply refer to “PROTEin 

complement of a genOME” (Wilkins et al. 1995). In the broadest sense, the proteome can be 

defined as being the total set of protein species present in a biological unit (organelle, cell, tissue, 
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organ, individual, species, and ecosystem) at any developmental stage and under specific 

environmental conditions. Proteomics helps us understand how, where, and when the several 

hundred thousands of individual protein species are produced in a living organism, and how they 

interact with one another. Proteomics can include several areas such as (i) descriptive 

proteomics, including intracellular and subcellular proteomics, (ii) differential expression 

proteomics, (iii) post-translational modifications, (iv) interactomics, (v) proteinomics (targeted or 

hypothesis-driven proteomics), and (vi) secretomics (fungal effectors and virulence factors) 

(González-Fernández et al. 2010). 

2.7.2 2-Dimensional Electrophoresis 

The original two-dimensional electrophoresis (2-DE) based proteomics technique, 

developed in the 1970s (O’Farrell 1975), suffered from problems of poor resolution and 

reproducibility. The development of immobilized pH gradient (IPG) strips, technical 

advancement in improving quality and reproducibility of 2-DE gels, non-gel based high-

throughput separation of proteins using liquid chromatography (LC), and mass spectrometry 

(MS) have led to accelerated use of proteomics in various scientific disciplines including plant 

biology (Chen and Harmon 2006; Domon and Aebersold 2006). 2-DE involves separation of 

proteins in the first dimension according to their isoelectric point (pI), by isoelectric focusing, 

and in the second dimension, according to their molecular weight (MW), by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (Görg et al. 2004). 2-DE gels can 

resolve thousands of protein spots and provide information about MW, pI, quantity and post-

translational modifications (Görg et al. 2004, Whittmann-Liebold et al. 2006). 
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2.7.3 Different Staining Techniques 

Protein spots separated on 2-DE gels can be visualized by several staining techniques 

with varying sensitivities that include Coomassie Brilliant Blue (CBB), silver, and fluorescent 

SYPRO
®
 dyes (Miller et al. 2006).  Under acidic conditions, CBB sticks to the amino groups of 

proteins by electrostatic and hydrophobic interactions (Westermeier and Marouga 2005). CBB 

R-250 has very low sensitivity requiring 100-500 ng of protein per spot for detection (Candiano 

et al. 2004). However, by using colloidal Coomassie G-250, the detection limit up to 1 ng per 

spot can be achieved (Candino et al. 2004) and G-250 staining is also compatible with 

downstream MS applications. Silver stain is very sensitive with detection limits up to 0.1 ng per 

spot but it interferes with downstream MS applications (Syrovy and Hodny 1991). Jin et al. 

(2008) developed a modified silver staining method that is compatible with MS. Fluorescent 

dyes show very wide dynamic ranges, over four orders of magnitude. Among SYPRO
® 

dyes 

(Orange, Red, Tangerine and Ruby) SYPRO
®

 Ruby has very high sensitivity with detection limit 

less than 1 ng per spot (Berggren et al. 2002). Deep Purple
TM

 dye containing fluorophore 

“epicocconone” can detect a few hundred picograms of proteins (Mackintosh et al. 2003). 

Fluorescent dyes offer high sensitivity of detection with reliable quantification over a wide linear 

dynamic range. However, the high cost of dyes and requirement of specialized scanners to 

document gel images limit the use of fluorescent dyes in many proteomics studies. In addition to 

staining all the proteins in the gel, glycosylated proteins can be stained specifically with Pro-Q
®

 

Emerald dye (Hart et al. 2003) and phosphorylated proteins with Pro-Q
®
 Diamond dye 

(Steinberg et al. 2003). However, all these staining techniques only allow visualization on the 

gels, but if the objective is to find differentially up- or down-regulated proteins between different 

treatments, the gel-to-gel variation of biological and technical repeats poses a problem in 
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accurate quantification of protein expression. To solve this problem, difference gel 

electrophoresis (DIGE) was developed by Unlu et al. (1997), which employs the use of size and 

charge matched cyanine dyes (CyDye
TM 

DIGE flours Cy3, Cy2, and Cy5) with different 

excitation and emission wavelengths as proteins labels for different samples. DIGE allows 

multiplexing of samples and use of an internal standard, which is created by using one of the 

labels (Cy2) for a pooled mixture of all samples in a given experiment (Westermeier and 

Marouga 2005). Thus, the DIGE method gives highly accurate qualitative and quantitative 

results, because of elimination of gel-to-gel variation. 

2.7.4 Application of Proteomics to Study Plant Pathogenic Fungi 

Fernandez-Acero et al. (2006) used two-dimensional electrophoresis coupled with MS   

to generate a partial proteome map for Botrytis cinerea and detected 400 spots in Coomassie-

stained 2-DE gels. Out of 60 spots subjected to MS analysis, twenty-two spots were identified 

using matrix assisted laser desorption/ionization time of flight (MALDI-TOF) or electrospray 

ionization ion trap tandem mass spectrometry (ESI IT MS/MS), with some proteins 

corresponding to variants of malate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, 

and cyclophilin. Comparative proteome analysis of two B. cinerea strains with different 

virulence and toxin production characteristics also revealed the presence of qualitative and 

quantitative differences in the 2-DE protein profile (Fernandez-Acero et al. 2007). Yajima and 

Kav (2006) identified 18 secreted proteins and 95 mycelial proteins in Sclerotinia sclerotiorum 

using 2-DE and MS/MS and found many cell wall-degrading enzymes in the secreted proteins 

that were previously identified as pathogenicity or virulence factors of S. sclerotiorum. One-

dimensional electrophoresis and 2-DE was also used by Xu et al. (2007) to analyze the protein 

profile of six isolates of Curvularia lunata, a pathogen of maize, and correlation was observed 
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between the band or spot pattern and virulence. Out of 423 spots resolved by 2-DE, 29 spots 

were isolate-specific and 39 showed quantitative differences. Sulc et al. (2009) built a mass 

spectral database with twenty-four Aspergillus strains by profiling spores followed by MALDI-

TOF MS. These mass fingerprints generated by MS can be used for genotyping and 

characterizing different Aspergillus strains and also finding new biomarkers in host-pathogen 

interactions. Biotrophic fungi such as downy mildews (Oomycota), powdery mildews 

(Ascomycota), and rust fungi (Basidiomycota) are some of the most destructive plant pathogens 

and in vitro studies of these biotrophs is difficult as they cannot survive outside of their host. 

Godfrey et al. (2009) reported a technique to isolate the fungal haustoria from barley plants, 

infected with Blumeria graminis f.sp. hordei (Bgh), the powdery mildew pathogen, and analyzed 

haustorial proteins using liquid chromatography tandem mass spectrometry (LC-MS/MS). The 

resulting MS/MS data were searched against the Bgh EST sequence database and the NCBInr 

fungal protein database. They identified 204 haustorial proteins. Apart from whole cell 

proteomes, subcellular proteomes such as mitochondrial proteins of Trichoderma harzianum 

were studied by Grinyer et al. (2004). A reference proteome map of the dimorphic maize 

pathogen, Ustilago maydis, was developed by Böhmer et al. (2007) using 2-DE coupled with 

MALDI-TOF MS and ESI-MS/MS. In its haploid phase, this fungus is unicellular and multiplies 

vegetatively by budding.  It then undergoes a dimorphic transition to infective filamentous 

growth. They observed 13 protein spots accumulated in high abundance in the filamentous form 

as compared to the budding form. 

Cooper et al. (2007) used multidimensional protein identification technology to survey 

proteins in germinating asexual urediniospores of the bean rust pathogen, Uromyces 

appendiculatus, and compared the data to proteins discovered in an inactive spore. There were 
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few changes in amounts of accumulated proteins involved in glycolysis, acetyl Co-A 

metabolism, citric acid cycle, ATP-coupled proton transport, or gluconeogenesis. Germlings 

contained a greater amount of proteins involved in mitochondrial ADP:ATP translocation 

(indicative of increased energy production) and more histone proteins, pointing to the 

reorganization of the nuclei that occurs after germination prior to appresorium formation. These 

changes are indicative of metabolic transition from dormancy to germination and are supported 

by cytological and developmental models of germling growth. Noir et al. (2009) used 2-DE and 

MALDI TOF MS to generate an annotated proteome map of nongerminated conidiospores of the 

ascomycete barley powdery mildew pathogen, Blumeria graminis f.sp. hordei, in which they 

identified 123 distinct fungal gene products. Most of the identified proteins have a predicted 

function in carbohydrate, lipid or protein metabolism, indicating that the spore is equipped for 

the catabolism of storage compounds as well as for protein biosynthesis and folding on 

germination. Luster et al. (2010) applied 2-DE and MS to identify predominantly soluble 

proteins present during the germination phase of Phakopsora pachyrhizi urediniospores that are 

involved in early infection and interaction with host legumes. They identified 117 fungal proteins 

with demonstrated roles in cell biosynthesis, metabolism, regulatory, signaling, stress responses 

and infection. 

2.7.5 Application of Proteomics to Study Secreted Proteins from Plant Pathogenic Fungi 

 The combination of native secreted proteins and the cell machinery involved in their 

secretion is defined as the “secretome” (Tjalsma et al. 2000). Many plant pathogenic fungi 

secrete a large number of degradative enzymes and other proteins, which have diverse functions 

in colonization, nutrient acquisition, and ecological interactions (de Vries 2003; Freimoser et al. 

2003; Walton 1994). Many extracellular enzymes such as polygalacturonase, pectate lyase, 
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xylanase, and lipase, were shown or proposed to be required for virulence in plant pathogenic 

fungi (Brito et al. 2006; Deising et al. 1992; Isshiki et al. 2001; Oeser et al. 2002; ten Have et al. 

1998; Voigt et al. 2005; Yakoby et al. 2001). 

 The ability of Aspergillus flavus and A. parasiticus to degrade the flavonoid, rutin 

(quercetin 3-O-glycoside), secondary metabolite produced by plants in response to invading 

microorganisms, was studied by Medina et al. (2004). The secreted proteins were analyzed by 2-

DE and MALDI-TOF MS and 15 rutin-induced proteins and 7 non-induced proteins and 

glycosidases were identified. In the second study, the growth media including glucose and potato 

dextrose broth were used to identify differentially expressed secreted proteins by 1- and 2-DE 

and MS/MS (Medina et al. 2005). Among identified proteins, ten were unique to rutin-, five to 

glucose-, and one to potato dextrose-grown A. flavus and sixteen proteins were common to all 

three media. An investigation of the exoproteome of Fusarium graminearum, found a greater 

quantity and diversity of proteins when the fungus was grown on hop cell wall than when grown 

on glucose (Phalip et al. 2005). Using 1- and 2-DE followed by LC-MS/MS, they identified 84 

proteins unique to cell-wall grown fungal exoproteome and most were enzymes involved in 

carbohydrate metabolism, including cellobiohydrolase, which can act as a sensor of the extra 

cellular environment. These results indicated that fungal metabolism becomes oriented towards 

the synthesis and secretion of an arsenal of enzymes able to digest almost the complete plant cell 

wall. 

 Lim et al. (2001) extracted and separated 220 cell envelope associated proteins from 

Trichoderma reesei mycelia with great variation in quantities secreted. The most abundant 

protein identified in both conditions was HEX1, the major woronin body protein, which is 

unique to fungal mycelia. The extracellular proteome secreted by T. harzianum in the presence of 
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fungal cell walls (Pythium ultimatum, B. cinerea, R. solani) and chitin as a nutrient source was 

studied by Suarez et al. (2005). They found abundant expression of aspartic protease (P6281) 

under all conditions, which showed homology to polyporopesin from the basidiomycete Irpex 

lacteus, and they speculated upon the putative role of protease P6281 in mycoparasitism. Tseng 

et al. (2008) studied the biocontrol mechanism of T. harzianum in response to R. solani by 

analyzing the secretome. Seven cell-wall degrading enzymes, chitinase, cellulase, xylanase, β-

1,3-glucanase, β-1,6-glucanase, mannanase, and protease, were revealed by activity assay, in-gel 

activity stain, 2-DE, and LC-MS/MS analysis, and the production of these enzymes increased in 

response to R. solani. Meijer et al. (2006) studied cell wall associated proteins of the oomycete, 

Phytophthora ramorum, the causal agent of sudden oak death. Based on LC-MS/MS, they 

identified 17 secreted proteins with homology to mucin or mucin-like proteins, putative 

glycoside hydrolases, transgluataminases, annexin-like protein and kazal-type protease inhibitor. 

Yajima and Kav (2006) studied the secreted proteins from Sclerotinia sclerotiorum and 

identified 18 secreted proteins by MS/MS, which include mainly cell wall degrading enzymes 

that were previously identified as pathogenicity or virulence factors of S. sclerotiorum. This 

study also identified an alpha-L-arabinofuranosidase, which was not present in earlier 

comprehensive EST studies (Li et al. 2004; Sexton et al. 2006).  Liang et al. (2010) studied the 

proteins present in the liquid sclerotial exudates of S. sclerotiorum using 1- and 2-DE followed 

by LC-MS/MS and identified 56 proteins that included five glucanases, GPI anchor protein, 

glucoamylase, arabinifuranosidase, tyrosinase etc.  

 Paper et al. (2007) used high-throughput MS/MS to identify secreted proteins of F. 

graminearum in vitro (grown on 13 different media) and in planta (infection of wheat heads). A 

total of 289 proteins (229 in vitro and 120 in planta) were identified with high statistical 
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confidence. They identified 49 unique proteins in planta, which were absent in in vitro 

conditions. Compared to in planta proteins (56%), the majority of in vitro proteins had predicted 

signal peptides. Some of the non-secreted proteins found in planta included single-copy 

housekeeping enzymes such as enolase, triose phosphate isomerase, phosphoglucomutase, 

calmodulin, aconitase, and malate dehydrogenase, which indicated the occurrence of significant 

fungal lysis during pathogenesis. Several of the proteins lacking signal peptides that were found 

in planta have been reported to be potent immunogens secreted by animal pathogenic fungi, 

indicating their importance in interactions between F. graminearum and its host plants. A 

comprehensive proteomic-level comparison of Pyrenophora tritici-repentis avirulent race 4 and 

virulent race 5 by 2-DE followed by MS/MS, identified 29 differentially abundant proteins in the 

secretome and included the secreted enzymes α-mannosidase and exo-β-1,3-glucanase, heat-

shock and BiP (binding imunoglobulin protein) proteins, and various metabolic enzymes (Cao et 

al. 2009). The proteome-level differences suggested that reduced pathogenic ability in race 4 of 

P. tritici-repentis may reflect its adaptation to a saprophytic habit. 

Several studies examined the secretome of Botrytis cinerea, an important necrotrophic 

pathogen of nursery plants, vegetables, ornamental, field, orchard crops, as well as stored and 

transported agricultural products, causing significant economic losses. Shah et al. (2009a) used 

1-DE and LC-MS/MS to identify 89 secreted proteins from B. cinerea grown on a solid substrate 

of a cellophane membrane appressed to the nutrient medium, which was supplemented with an 

extract from full red tomato, ripened strawberry or Arabidopsis leaf extract. Sixty proteins were 

predicted to contain signal motif indicating extracellular localization. Botrytis cinerea increased 

secreted protein production in the presence of favorable food sources such as full red tomato and 

ripe strawberry extract compared to Arabidopsis leaf extract. The identified secreted proteins 
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include transport proteins, proteins involved in carbohydrate metabolism, peptidases, and 

pathogenicity factors that provide important insight into how B. cinerea may use secreted 

proteins for infection and colonization of hosts. Shah et al. (2009b) also identified 126 proteins 

secreted by B. cinerea by growing the fungus on highly or partially esterified pectin, or on 

sucrose in liquid culture. They identified 13 proteins related to pectin degradation in both pectin 

growth conditions indicating that it is unlikely that the activation of B. cinerea from the dormant 

state to active infection is solely dependent on the changes in degree of esterification of the 

pectin component of the plant cell wall. Fernandez-Acero et al. (2010) studied the secretion of 

discrete sets of proteins by B. cinerea grown on culture media supplemented with different 

carbon sources [glucose, carboxymethylcellulose (CMC), starch, pectin] and plant-based elicitors 

[tomato cell walls (TCW)]. A total of 78 spots were identified by MALDI-TOF/TOF MS/MS 

analysis, corresponding to 56 unique proteins and 45 identified proteins contained secretion 

signal peptides for both classical and nonclassical secretory pathways. The use of different 

carbon sources and plant-based elicitors resulted in different degrees of complexity of fungal 

response, moving from a state of constitutive fungal growth and a simple secretome (by using 

glucose as a nutrient) toward a more complex and possibly pathogenic secretory behavior 

(induced by TCW). The corresponding 2-DE profiles showed an increasing number and variety 

of spots when CMC or TCW were used. Some of the identified proteins are involved in the 

pathogenicity process (e.g. pectin methylesterases, xylanases, and proteases). Espino et al. 

(2010) studied the early secreted proteome of B. cinerea grown in conditions that resemble the 

plant environment (a synthetic medium enriched with low molecular weight plant compounds, in 

a dialysis bag that contained 50% tomato, strawberry, or kiwifruit extracts) by collecting proteins 

secreted during first 16 hours of conidial germination. Using 2-DE coupled with MALDI TOF 
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and 1-DE coupled with LC-MS/MS, they identified a total of 121 proteins. One interesting 

conclusion from this study was that the secreted proteome did not differ significantly during the 

first 16 h of growth by B. cinerea on media with and without plant extracts. Proteasomes 

dominated the early secretome indicating their role in degradation of plant cell wall proteins to 

promote fungal hyphal penetration and to suppress plant defense proteins to increase the chances 

for a successful infection. The first most abundant proteins secreted and detected in all 

conditions was the BcAP8 (asparatic protease) followed by BcPG1 (endopolygalacturonase), 

which is also shown to be required for B. cinerea virulence (Espino et al. 2010). 
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CHAPTER 3: LATENT INFECTION BY CERCOSPORA KIKUCHII, 

CAUSAL AGENT OF CERCOSPORA LEAF BLIGHT IN SOYBEAN 
 

3.1 Introduction 

Cercospora kikuchii (T. Matsumoto & Tomoy.) M.W. Gardner is the causal agent of 

Cercospora leaf blight (CLB) and purple seed stain (PSS) of soybean (Orth and Schuh 1994). 

This pathogen can affect all aerial parts of the plant including leaves, petioles, stems, pods, and 

seeds (Matsumoto and Tomoyasu 1925; Suzuki 1921; Walters 1980). PSS is widely distributed 

in all soybean growing regions of the world and primarily affects seed germination leading to 

reduced stands and poor seed quality (Lehman 1950; Wilcox and Abney 1973). Until recently, 

CLB was a minor disease in the southern U.S., but it has become a serious concern to soybean 

producers in recent years (Moore and Wolcott 2000).  CLB has been reported in other major 

soybean producing states such as Iowa.  The disease is capable of causing substantial yield 

losses, and it is associated with a disorder known as green stem in which stems remain green 

while pods and seeds are mature (Hartman et al. 1999; Leonard et al. 2011; Schneider et al. 

2003; Wrather et al. 1997, 2001). 

Several attempts have been made to identify soybean cultivars with resistance to CLB. 

Moderate levels of resistance were found in some soybean lines, but there was no relationship 

between resistance to CLB and PSS in that soybean cultivars resistant to CLB were susceptible 

to PSS and vice versa (Orth and Schuh 1994; Walters 1980). Development of CLB symptoms 

depends upon environmental conditions. Warm and humid conditions favor the spread of 

disease, especially at the end of the growing season, while hot dry conditions at the end of the 

season lead to severe blight symptoms (Raymond Schneider, Personal communication). Some 

growers have resorted to early planting to avoid favorable conditions for development of CLB 
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later in the season because most commercial cultivars lack complete resistance to C. kikuchii 

(Moore and Boquet 2008; Schneider et al. 2003).  In addition, the pathogen is extremely diverse, 

and there are significant location and time interactions with respect to susceptibility (Cai and 

Schneider 2005, 2008; Cai et al. 2009). 

Another viable alternative to the use of resistant cultivars or early planting for CLB 

management is fungicide applications. However, the successful use of this strategy requires early 

detection of the pathogen as demonstrated for sheath blight in rice (Sayler and Yang 2007). 

Earlier studies showed that C. kikuchii and many other fungi often cause latent infections in 

soybeans (Hartman et al. 1999; Sinclair 1991). As a result disease symptoms, such as chlorosis 

and necrosis, only become visible long after initial infection and usually at late growth stages 

when plants are under stress or there is a sudden change in nutritional or environmental 

conditions (Cerkauskas and Sinclair 1980; Hartman et al. 1999). Fungicide applications at these 

late growth stages are usually ineffective (Robertson et al. 2011). However, traditional methods 

involving bioassays, histological and serological assays to detect latent infections in soybeans are 

often time consuming and not sensitive. Without knowing when infection occurs, producers do 

not know when to initiate fungicide applications.  

The advent of traditional polymerase chain reaction (PCR), made it possible to detect 

plant pathogens based on primers designed for a specific part of their genomic sequence. 

However, traditional PCR involves separation of reaction products on an agarose gel for 

visualization and qualitative analysis, which are not suitable for automation when there is a need 

to screen a large number of samples. The development of high throughput real-time PCR 

technology, which uses primers and a fluorogenic probe to amplify a specific target sequence, 

allows monitoring the PCR amplification process in real time and the quantification of target 
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sequence by measuring fluorescence signal without the need for post PCR gel analysis. After the 

first successful application of real-time quantitative PCR (qPCR) for detecting Phytophthora 

strains in their host plants, it has been successfully employed in detecting various plant 

pathogens including fungi (Bohm et al. 1999, Li et al. 2008, Oliver et al. 2008, Pico et al. 2008), 

bacteria (De Bellis et al. 2007, Vandroemme et al. 2008), and viruses (Kokkinos and Clark 2006, 

Stewart et al. 2007). It also has been used to quantify progression of pathogens based on absolute 

quantification of pathogen DNA (Kuhne and Oschmann 2002).  

In this study, we report (i) the development of a real-time PCR assay for the detection of 

DNA of C. kikuchii, (ii) quantification of C. kikuchii DNA directly from infected soybean leaves 

during different plant growth stages, and (iii) comparisons of DNA content of C. kikuchii in 

infected plants subjected to different fungicide treatments to determine the efficacy of various 

fungicide treatements. Preliminary reports of this work were published (Chanda et al. 2009). 

3.2 Materials and Methods 

3.2.1 Cercospora Species 

  The Cercospora species used in this study are listed in Table 3.1. Isolates of C. kikuchii 

were recovered from infected soybean plants collected from fields in different locations in 

Louisiana in 2001(Cai and Schneider 2005),  and C. sojina isolate RWS1, causal agent of frog 

eye leaf spot in soybean, was recovered from a soybean field near Baton Rouge, LA in 2007.  All 

isolates were single-spored and stored on slants of potato dextrose agar at 5°C in the dark. 

Samples of genomic DNA for C. sojina isolate CS223, C. zeae-maydis, C. zeina, and C. beticola 

were kindly provided by Dr. Burton Bluhm (University of Arkansas, Fayetteville, AR). 
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Table 3.1. Cercospora species tested for the specificity of the real-time PCR primers and probe 

developed in this study. 

y
, See reference Cai and Schneider (2005) 

z
, Yes indicates significant amplification in real-time PCR and No indicates no amplification 

 

3.2.2 Development of Specific Real-time PCR Primers and Probe for C. kikuchii 

Because of limited genome sequence information available for C. kikuchii, 14 sets of 

PCR primers (Table 3.2) specific for eight cercosporin toxin biosynthesis (CTB) pathway genes 

and four adjacent open reading frames (ORFs) in C. nicotianae were designed based upon 

known sequences (Chen et al. 2007b). These primers were used to amplify their corresponding 

genes and ORFs from C. kikuchii. PCR was performed on genomic DNAs from C. kikuchii and 

C. sojina. The CNCTB6 primer pair, which targeted the NADPH-dependent oxidoreductase gene 

(CTB6) from C. nicotianae (GenBank accession DQ991508), produced a specific amplification 

product from C. kikuchii but not from C. sojina. The PCR fragment amplified from C. kikuchii 

was confirmed to be the CTB6 gene by direct sequencing (data not shown). The real-time PCR 

primers (CKCTB6-2F: 5'-CACCATGCTAGATGTGACGACA-3', CKCTB6-2R: 5'-

GGTCCTGGAGGCAGCCA-3') and the fluorescent probe (CKCTB6-PRB: 5'-FAM-

CTCGTCGCACAGTCCCGCTTCG-TAMRA-3'), which was specific to the C. kikuchii CTB6 

gene, were designed using Primer Express 2.0 (Applied Biosystems, Foster City, CA) based on 

Cercospora 

Species 

Isolate Host Source Detection
z
 

C. kikuchii MRL 6020-2B
y
 Soybean Leaf Yes 

C. kikuchii DLL 6013-1B
y
 Soybean Leaf Yes 

C. kikuchii DLL 50908-1B
y
 Soybean Leaf Yes 

C. kikuchii MRS 6020-2B
y
 Soybean Seed Yes 

C. kikuchii MRS 5012-1A
y
 Soybean Seed Yes 

C. sojina RWS1 Soybean Leaf No 

C. sojina CS223 Soybean Leaf No 

C. zeae-maydis SCOH1-5 Maize Leaf No 

C. zeina DYPA Maize Leaf No 

C. beticola S1 Sugarbeet Leaf No 
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the region of CTB6 DNA sequences of C. kikuchii that are different from C. nicotianae, and they 

were custom synthesized by IDT DNA, Inc. (Coralville, IA). 

3.2.3 Real-Time PCR Assay and Quantification of DNA of C. kikuchii in Field Samples 

 Real-time PCR was performed with MicroAmp optical 8-tube strips and optical 8-cap 

strips (Applied Biosystems, Foster City, CA) in the ABI 7000 sequence detection system 

(Applied Biosystems) under standard conditions. Each reaction contained 7.5 µl 2X TaqMan
®

 

Universal PCR Master Mix (Applied Biosystems), 1 µl of 10 µM for each primer (final 

concentration 666 nM each primer), 0.6 µl of 10 µM (final concentration of 400 nM) probe and 1 

µl of 10 ng or 100 ng template DNA. HPLC pure water was added to adjust the final reaction 

volume to 15 µl. For standard curves, triplicates of 1 µl of serial dilutions of DNA of C. kikuchii 

(1 pg/µl to 1000 pg/µl) in 10 ng/µl of healthy soybean DNA in order to simulate field samples 

were used as template. DNA from healthy soybean leaves was obtained from greenhouse-grown 

plants.  In addition, each real-time PCR run of field samples also included C. kikuchii standards 

in triplicate as references and DNA from C. sojina isolate RWS1 to ensure specificity. DNA 

concentrations of C. kikuchii in each field sample were calculated as pg of C. kikuchii DNA/ng 

soybean DNA. For soybean samples with less than 1 pg of DNA of  C. kikuchii in 10 ng soybean 

DNA (Ct value > 37.75), a 100 ng DNA template was used in a second real-time PCR reaction 

and the resulting Ct value was converted to pg of pathogen DNA/ng soybean DNA. The absolute 

quantity of DNA of C. kikuchii in field samples, which was used to determine the level of 

infection by C. kikuchii, was calculated by using the Ct value of each sample and the regression 

equation obtained with DNA standards. 
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Table 3.2. Primer pairs, based upon the CTB gene cluster in Cercospora nicotianae, used for amplification in Cercospora kikuchii. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer name Forward sequence (5' - 3') Reverse  sequence (5' - 3') 

Target gene from C. 

nicotianae (GenBank 

accession number) 

CNCTB1A CAGCGAGCAACAAGAAGAGAC AGCGAACGCCATCAAATGC CTB1 (AY649543) 

CNCTB1B CAGCGAGCAACAAGAAGAGAC GACCAGAGGCAGCAAGGATA CTB1 (AY649543) 

CNCTB1C GCCCACAAGTAAACAGCCAC TGAGCAGAACACGACGCTT CTB1 (AY649543) 

CNCTB1D CAGACCTTTGCGTCCATCAAT ATGCTCGCTCTCCACAACT CTB1 (AY649543) 

CNCTB2 AGCCCGTAGCATCACTGTT CCGTTGACACCATTAGCCTG CTB2 (DQ991505) 

CNCTB3 ACAACTGCGATGCTCAAACTC ATCCTCTTGCTGCCAACCTC CTB3 (DQ355149) 

CNCTB4 TCGTGACTGCTTGACTGGAG TTCATCGGGCTCAGCATCA CTB4 (DQ991506) 

CNCTB5 AGCCTGGGCAAGAACTCAGT ACCACTCACGCTCCATCTCA CTB5 (DQ991507) 

CNCTB6 ATACTTCTTCCTACGCCGTCG TTTGACAACCCGCTCTTGC CTB6 (DQ991508) 

CNCTB7 CCCAAGCAGTGTGAACATCA CATCAATCCAGCCCACCAAA CTB7 (DQ991509) 

CNCTB8 TGCGTGAAGGAACATCGTTTG TGGGTAGCACATCAGAAGGC CTB8 (DQ991510) 

CNORF9 CGATAGTCGCCTGGTTGGAA ACCTTGCTACAATCCACTCCC ORF9 (DQ993249) 

CNORF10 GAGTGGGCATACATCAGCAG TTACGCCTACCTCGCTTCTC ORF10 (DQ993250) 

CNORF11 CCTTGGGTAGAAAGTTGCGAG TGCTTCGTCCGTCTTTACCA ORF11(DQ993251) 

CNORF12 CGATACGAGCGACCTCAGTT TGCCATTACAGCGTGTCCA ORF12 (DQ993252) 
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3.2.4 Plant Materials, Sampling Details, and Fungicide Sprays 

Field studies to determine when soybean plants became infected with C. kikuchii using 

real-time PCR were conducted in 2007, 2009, and 2010. Field experiments in each year were 

arranged in randomized complete blocks.  Each treatment in the experiments described in Table 

3.3 consisted of three plots (replications) with each plot comprised of four rows on 76 cm centers 

by 12 m long.  Plants were maintained according to standard practices (Levy et al. 2011). Leaf 

samples were collected from plants in each plot for each treatment, i.e., treated with fungicide or 

not treated. If plants were sprayed with fungicides on a sampling date, samples were collected 

before spraying. Each sample consisted of 30 randomly collected uppermost fully developed 

leaves from the middle two rows in each plot. Uppermost leaves were used because CLB 

symptoms first appear on upper leaves that are exposed to sun light (Hartman et al. 1999). Leaf 

samples were frozen in liquid nitrogen and stored at -80°C until further processing. 

3.2.5 DNA Extraction 

All 30 leaves from each sample were ground to a fine powder in liquid nitrogen with a 

pre-chilled mortar and pestle. Three subsamples of 100 mg each were transferred to 2.0 ml 

microcentrifuge tubes, and DNA was extracted with a GenElute
TM

 Plant Genomic DNA 

Miniprep Kit (Sigma-Aldrich, St Louis, MO) according to the manufacturer’s instructions. DNA 

of C. kikuchii and C. sojina was extracted with the same kit using 100 mg of lyophilized ground 

mycelial powder.  Mycelia were collected by filtration from 5-day-old cultures grown in potato 

dextrose broth on rotary shakers in the dark.  Mycelia were washed three times with sterile 

distilled water before being lyophilized, ground with a mortar and pestle and stored at -80°C 

until further processing. All DNA samples were diluted to 10 ng/µl based on DNA quantification 

by measuring absorbance at 260 nm using a NanoDrop ND-1000 Spectrophotometer (Thermo  
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Table 3.3.  Experimental details for field studies related to Cercospora leaf blight of soybean. 

Exper

iment 

Year Cultivar Planting 

date 

Growth 

stages at 

sampling
a
 

Sampling date  

(DAP)
b
 

Fungicide 

application  

(DAP)
 

Fungicide treatments  

(ml/ha ai)
c 

A 2007 CP 5892 22 May R2 – R6 58, 78, 85, 107 62, 78 pyraclostrobin (322) plus 

metconazole  (548) 

B 2007 DP 5634 22 May R2 – R6 58, 78, 85, 107 62, 78 pyraclostrobin (322) plus 

metconazole  (548) 

C 2007 CP 5892 5 June V8 – R6 44, 64, 71, 93 64 pyraclostrobin (322) plus 

metconazole  (548) 

D 2007 DP 5634 5 June V8 – R6 44, 64, 71, 93 64 pyraclostrobin (322) plus 

metconazole  (548) 

E 2007 CP 5892 27 June V3 – R5 22, 42, 57, 71 42 pyraclostrobin (322) plus 

metconazole  (548) 

F 2007 DP 5634 27 June V3 – R5 22, 42, 57, 71 42 pyraclostrobin (322) plus 

metconazole  (548) 

G 2009 DP 5808RR 15 May V4 – R7 35, 52, 59, 70, 76, 

85, 97, 109, 116, 

124 

48, 55, 74, 90, 103 pyraclostrobin (877) 

H  2010 95Y20 26 May V5 – R5 33, 44, 58, 100 30 flutriafol (512) 

I  2010 95Y20 26 May V5 – R5 33, 44, 58, 100 30, 51, 77 flutriafol (512) 

J  2010 95Y20 26 May V5 – R5 33, 44, 58, 100 30, 51, 77, 99, 113 flutriafol (512) 
a 
: See Fehr et al. 1971 for description of different soybean growth stages. 

b
 : DAP: days after planting. 

c
 : Materials were applied in a spray volume of 187 liters/ha, ai = active ingredient 
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Fisher Scientific Inc., Wilmington, DE). The uniformity of diluted genomic DNA was verified 

using real-time PCR assays with primers specific for plant 18S rRNA (Zm18s1F: 5’-

GAGAAACGGCTACCACATCCA-3’ and Zm18s1R: 5’-ACGCGCCCGGTATTGTTAT-3’) 

and SYBR
®

 Green dye chemistry on eight randomly chosen leaf samples, all of  which yielded 

similar threshold cycle (Ct) values with a mean 14.95 ± 0.2 standard deviations. 

3.2.6 Cercospora Leaf Blight Disease Severity Ratings 

CLB does not lend itself to quantitative estimates of disease severity, e.g. percent leaf 

area affected, because symptoms begin as small brick red necrotic lesions on petioles and 

progress ultimately to the classic leathery purple discoloration of leaves exposed to direct 

sunlight.  Therefore, the following semiquantitative scale was used:  1 = no symptoms; 2 = few 

symptoms on petioles (up to 10% of petioles that had symptoms); 3 = as above plus up to 5% 

affected leaves including leaf veins; 4 =  as above plus up to 10% affected leaves; 5 = as above 

with about 50% petioles and up to 30% of leaves with symptoms; 6 = up to 100% of petioles 

affected  but leaves do not have reddish cast and are not chlorotic; 7 = up to 20% of upper leaves 

becoming reddened or chlorotic; 8 = moderate chlorosis, reddening and necrosis on up to 50% of 

upper leaves; 9 = as above but symptoms are severe plus defoliation.  The 1 to 9 scale was 

converted to 0 to 100% disease severity for statistical analysis using ANOVA. At least 20 plants 

were examined in the center two rows, and a composite value was assigned to each plot.  Disease 

incidence was 100%.  

3.2.7 Data Analysis 

 Analysis of variance (ANOVA) using the mixed procedure (PROC MIXED) of SAS 

(version 9.1, SAS Institute, Cary, NC) was performed on data from the fungicide-sprayed and 

non-sprayed plants.   Means were compared by Tukey’s Honestly Significant Difference (HSD) 
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at P < 0.05 with Kramer adjustment for unbalanced design (Kramer 1956). 

3.3 Results  

3.3.1 Developing Real-Time PCR Primers Specific to C. kikuchii 

CNCTB6F and CNCTB6R primers (Table 3.2) amplified a 1.14 kb PCR product only in 

the presence of genomic DNA from C. kikuchii but not from C. sojina (Fig. 3.1). When field 

samples were tested, these primers produced a specific product from soybean leaves either with 

CLB symptoms or from purple stained seeds but not from healthy leaves collected from 

greenhouse-grown plants (Fig. 3.1).  These results indicated that the CTB6 gene can be used to 

differentiate between C. kikuchii and C. sojina and that the primers can detect C. kikuchii in 

soybean leaves. Homology analysis of the sequenced PCR product (GenBank accession 

JF830016, this study) showed that the CTB6 gene shared 97% sequence identity between C. 

kikuchii and C. nicotianae (data not shown). The DNA region containing the most sequence 

differences between C. kikuchii and C. nicotianae was used to design real-time PCR primers and 

probe (Fig. 3.2). The specificity of real-time PCR primers CKCTB6-2F, CKCTB6-2R and 

fluorescent probe CKCTB6-PRB was tested by performing real-time PCR with genomic DNA 

from C. kikuchii, C. sojina, C. zeae-maydis, C. zeina, C. beticola, greenhouse-grown healthy 

soybean leaves (negative control), and the no-template control (NTC). Amplification was 

detected only in the presence of C. kikuchii genomic DNA as assessed by changes in 

fluorescence intensity. No significant fluorescence was detected in real-time PCR reactions 

containing genomic DNA from the other Cercospora species, healthy soybean or NTC. 
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Figure 3.1. CNCTB6F/CNCTB6R primer pair showing specificity to Cercospora kikuchii pure 

culture or C. kikuchii infected soybean leaves. Lane 1, C. kikuchii isolate MRL 6020-2B; lane 2, 

C. sojina isolate RWS1; lane 3, healthy greenhouse-grown soybean cultivar CP 5892; lane 4, 

healthy greenhouse-grown soybean cultivar 1001M; lane 5, greenhouse-grown soybean cultivar 

1001M grown from purple stained seed; lanes 6 and 7, naturally infected field grown soybean 

cultivar DP 5634 at R5 stage (71 DAP), showing typical CLB symptoms. 

 

Figure 3.2. Partial DNA sequence of CTB6 gene from Cercospora kikuchii (CK). Open boxes 

indicate the variable nucleotides between CK and C. nicotianae (CN). Arrows indicate location 

of real-time PCR primers (CKCTB6-2F and CKCTB6-2R) and probe (CKCTB6-PRB) used in 

real-time PCR detection of C. kikuchii in soybean samples. 
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3.3.2 Standard Curves and Sensitivity of Real-Time PCR Assays 

Quantification of serial diluted DNA of C. kikuchii showed a linear relationship (Fig. 

3.3A) between the amount of genomic DNA (x) and Ct values (y) (y = -1.434ln(x) + 37.913) 

with a R
2
 value of 0.9984 and a slope of 3.3, indicating nearly 100% amplification efficiency 

(Fig. 3.3B). Mean Ct values for C. kikuchii DNA ranged from 27.87 for 1000 pg to 37.75 for 1 

pg, which was reliably detected in all samples. Therefore, the lowest detection limit of our assay 

for DNA of C. kikuchii was 1 pg in 10 or 100 ng of soybean DNA. The addition of as much as 1 

ng of DNA of C. sojina per 10 ng of soybean DNA still produced a negative result (Ct ≥ 40), 

which confirmed the high specificity of this assay.  

3.3.3 Visual Rating of Disease Severity and Quantification of C. kikuchii DNA in Soybean 

Leaf Samples Using Real-Time PCR 

For the first and second plantings in the 2007 (Experiments A, B, C and D, Table 3.3), 

CLB symptoms were more severe in the non-sprayed DP 5634 plants compared to sprayed plants 

(Fig. 3.4A), whereas there was no difference in disease severity between fungicide-sprayed and 

non-sprayed CP 5892 plants. No symptoms were observed for leaf samples collected from the 

third planting (Experiments E and F, Table 3.3) for either cultivar by the last sampling time (R5 

stage). 

C. kikuchii DNA was detected in all samples of all three plantings from V3 through R6. 

In general, the fungal DNA levels were lower in sprayed lines compared to non-sprayed controls. 

In the first planting, the amount of C. kikuchii DNA in soybean leaves collected from non-

sprayed plants from R2 to R4 significantly increased from 0.02 to 1.32 pg and 0.11 to 1.86 pg in  



48 
 

 

 

Figure 3.3. Real-time PCR amplification plots and standard curves for serial dilutions of DNA of 

Cercospora kikuchii. A, Representative real-time PCR fluorescent amplification curves for C. 

kikuchii DNA concentrations from left to right are 10 ng, 1 ng, 100 pg, 10 pg, and 1 pg. Each 

standard was spiked with 10 ng of soybean DNA.  B, Data represent mean cycle threshold (Ct) 

values of at least six replicates of each dilution and error bars indicate standard deviation. Ct 

values were plotted against known DNA concentrations of C. kikuchii and the linear regression 

equation for calculating quantity of DNA of C. kikuchii in soybean leaf sample is shown inside 

the graph. 
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cultivars CP 5892 and DP 5634, respectively; while it remained at low levels in sprayed plants 

until R4 in both cultivars (Fig. 3.4B). The fungal DNA levels did not change from R4 to R6 in 

non-sprayed or sprayed plants in both cultivars. Soybean plants receiving two fungicide sprays at 

62 DAP (R2) and 78 DAP (R4) had very low levels of fungal DNA as compared to non-sprayed 

plants (Fig. 3.4B and Table 3.4). In the 2
nd

  planting (Experiments C and D, Table 3.3), the 

amount of C. kikuchii DNA detected in non-sprayed soybean plants from V8-V9 to R6 

significantly increased from 0.03 to 1.35 pg in CP 5892 and from 0.1 pg at R2 to 3.12 pg at R6 in 

DP 5634 (Fig. 3.4C). However, for the fungicide-treated plants, pathogen DNA increased from 

R5 to R6 in CP 5892 and remained constant in DP 5634. Cultivar DP 5634 had consistently 

higher levels of fungal DNA as compared to CP 5892 in non-sprayed and sprayed plants at every 

growth stage (Fig. 3.4C and Table 3.4). For the 3
rd

 planting (Experiments E and F, Table 3.3), 

DNA of C. kikuchii was detected as early as 22 DAP and at V4. Fungal DNA remained low until 

R3 in both cultivars whether sprayed or non-sprayed but increased from R3 to R5 (Fig. 3.4D and 

Table 3.4). The levels of C. kikuchii detected at R5 were lower than those of soybean plants at 

R5 in the first and second plantings. For CP 5892, the levels of C. kikuchii detected in non-

sprayed plants was higher than sprayed plants at R5, but there was no significant difference for 

DP 5634. 
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Figure 3.4. Cercospora leaf blight disease severity ratings and quantification of levels of DNA of 

Cercospora kikuchii in leaves of soybean cultivars CP5892 and DP5634 in 2007 in non-sprayed 

(U) and sprayed (S) plants. Arrows indicate the days after planting (DAP) when fungicides were 

applied. A, Bars represent the mean disease severity of 3 plots within each treatment and the 

error bars indicate standard deviation. The groups of means indicated with the same letters were 

not significantly different according to Tukey’s honestly significant difference (HSD) test at P < 

0.05.  B, First planting. Soybean leaf samples were collected at R2 (58 DAP), R4 (78 DAP), R5 

(85 DAP), and R6 (107 DAP) growth stages. In sprayed treatments, a mixture of pyraclostrobin 

and metconazole was applied at R2 (62 DAP) and R4 (78 DAP) growth stages. Error bars 

indicate standard deviation. C, Second planting. Soybean leaf samples were collected at V8-V9 

for CP 5892 and R2 for DP 5634 (44 DAP), R3-R4 (64 DAP), R5 (71 DAP), and R6 (93 DAP) 

growth stages. In sprayed treatments, a mixture of pyraclostrobin and metconazole was applied 

at R3-R4 (64 DAP) growth stage. Error bars indicate standard deviation. D, Third planting. 

Soybean leaf samples were collected at V3 for CP 5892 and V3-V4 for DP 5634 (22 DAP), R1-

R2 for CP 5892 and R2 for DP 5634 (42 DAP), R2 (49 DAP), R3 (57 DAP), and R5 (71 DAP) 

growth stages. In sprayed treatments, a mixture of pyraclostrobin and metconazole was applied 

at R1-R2 (42 DAP) growth stage. 
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Figure 3.4. continued 
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Figure 3.4. continued 
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Table 3.4. Cercospora kikuchii infection of soybean leaf samples collected at various growth 

stages in 2007. 

 

Planting 

 

DAP
x
 

DNA of C. kikuchii (pg/ng soybean DNA) 

CP 5892  DP 5634 

Growth 

Stage 

Non-

sprayed
y
 

Sprayed 
Growth 

Stage 

Non-

sprayed 
Sprayed 

First 58 R2 0.02 b - R2 0.11 b - 

 
78 R4 1.32 a 0.21 b R4 1.86 a 0.19 b 

 
85 R5 1.22 a 0.08 b R5 2.16 a 0.13 b 

 
107 R6 1.52 a 0.08 b R6 2.36 a 0.19 b 

     
 

  
Second 44 V8-V9 0.03 de - R2 0.1 c - 

 
64 R3-R4 0.4 c - R4 1.72 b - 

 
71 R5 1.06 b 0.06 e R5 3.09 a 0.96 bc 

 
93 R6 1.35 a 0.31 cd R6 3.12 a 0.71 c 

     
 

  
Third 22 V3 0.16 c - V3-V4 0.16 b - 

 
42  R1-R2 0.22 bc - R2 0.19 b - 

 
49 R2 0.23 bc 0.14 bc R2 0.23 b 0.18 b 

 
57 R3 0.25 bc 0.07 c R3  0.22 b 0.2 b 

 
71 R5 0.66 a 0.46 ab R5 0.7 a 0.9 a 

x
 DAP, days after planting. 

y
 Means followed by the same letter in non-sprayed and sprayed treatments in a given cultivar 

and given planting were not significantly different according to the Tukey’s honestly significant 

difference (HSD) test at P < 0.05.  

 

In 2009 (Experiment G, Table 3.3), there was no significant difference in CLB severity 

between sprayed and non-sprayed plants for DP 5808RR (Fig. 3.5A). There was no significant 

change in fungal DNA from V4 to R4 in non-sprayed plants and from V4 to R5 in sprayed plants 

(Fig. 3.5B). However, fungal DNA significantly increased from 1.15 pg at late R4 to 20.4 pg at 

R7 in non-sprayed plants and significantly increased from 2.41 pg at R6 to 11.67 pg at R7 in 

sprayed plants. Non-sprayed plants were about 7 to 10 days ahead of sprayed plants with regard 

to development of C. kikuchii at R6 and R7. There was almost a two-fold increase in fungal 

DNA in non-sprayed plants as compared to sprayed plants at R7 (Fig. 3.5B and Table 3.5). 
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Figure 3.5. Cercospora leaf blight disease severity ratings and quantification of levels DNA of 

Cercospora kikuchii in leaves of soybean cultivar DP 5808RR in 2009.  Arrows indicate the days 

after planting (DAP) when fungicides were applied. A, Bars represent the mean disease severity 

of 3 plots within each treatment and the error bars indicate standard deviation. Letters represent 

groups of means that were determined according to Tukey’s honestly significant difference 

(HSD) test. Different letters indicate significant differences at P < 0.05. B, Soybean leaf samples 

were collected at V4 (35 DAP), Late R1 (52 DAP), R2 (59 DAP), R3 (70 DAP), R4 (76 DAP), 

Late R4 (85 DAP), R5 (97 DAP), R6 (109 DAP), Late R6 (116 DAP), and R7 (124 DAP) growth 

stages. In sprayed treatments, pyraclostrobin was applied at R1 (48 DAP), R2 (55 DAP), R3 (74 

DAP), R4 (90 DAP), and R5 (103 DAP) growth stages. Error bars indicate standard deviation. 
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Figure 3.5. continued 

 

Table 3.5. Cercospora kikuchii infection of soybean leaf samples collected from DP 5808RR at 

various growth stages in 2009. 

DAP
x
 

Growth 

Stage 

DNA of C. kikuchii  

(pg/ng soybean DNA) 

Non-

sprayed
y
 

Sprayed 

35 V4 0.015 e 0.014 e 

52 Late R1 0.015 e ND
z
 

59 R2 0.017 e 0.184 e 

70 R3 0.028 e 0.171 e 

76 R4 0.528 e 0.165 e 

85 Late R4 1.153 de 0.248 e 

97 R5 3.34 d 0.781 e 

109 R6 6.79 c 2.414 d 

116 Late R6 11.9 b 7.669 c 

124 R7 20.4 a 11.607 b 
x
 DAP = days after planting,. 

y
 Means followed by the same letters in non-sprayed and sprayed treatments were not 

significantly different according to Tukey’s honestly significant difference (HSD) test at P < 

0.05.  
z
 ND, not detected.  
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In 2010, CLB symptoms were more severe in non-sprayed plants and plants with one 

spray (1S) as compared to plants with three (3S) and five (5S) sprays (Experiments H, I and J, 

Table 3.3) (Fig. 3.6A). There was no significant change in fungal DNA from V5 to R2 in any 

treatment. However, at R5, non-sprayed plants had the highest content of DNA of C. kikuchii 

(4.99 pg), followed by plants with one and three sprays (Fig. 3.6B). The least amount of fungal 

DNA was detected in plants with five sprays (Fig. 3.6B and Table 3.6). There was a significant 

difference in the amount of fungal DNA between sprayed and non-sprayed plants at R5. In all 

sprayed plants, there was more than a ten-fold increase in DNA of C. kikuchii from R2 to R5 

although the rate of increase was much smaller than in the non-sprayed plants (Fig. 3.6B). 

3.4 Discussion 

CLB has become a serious concern for soybean producers in the southern U.S. in recent 

years because most soybean cultivars are susceptible (Moore and Wolcott 2000).  Given the lack 

of disease resistant cultivars, the use of fungicides has become the primary means by which this 

disease is managed. However, management of CLB with fungicides has been less than 

satisfactory even though C. kikuchii is sensitive to commonly used fungicides in in vitro tests 

(Robertson et al. 2011).  We hypothesized that this apparent inconsistency may be attributed to a 

long latent period during which the pathogen may become established within leaf tissues in sites 

where fungicide concentration may be too low to suppress subsequent symptom expression. 

Thus, fungicides would have to be applied during the early stages of latent infection, and there 

would have to be sufficient residual activity or additional applications to suppress pathogen 

development during reproductive stages of plant growth. Cerkauskas and Sinclair (1980) first 

observed the development of C. kikuchii lesions on stems and pods of soybean plants  
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Figure 3.6. Cercospora leaf blight disease severity ratings and quantification of levels of 

Cercospora kikuchii DNA in leaves of soybean cultivar Pioneer 95Y20 in 2010. Arrows indicate 

the days after planting (DAP) when fungicides were applied. A, Bars represent the mean disease 

severity of 4 plots within each treatment and the error bars indicate standard deviation. Letters 

represent groups of means that were determined according to Tukey’s honestly significant 

difference (HSD) test. Different letters indicate significant differences at P < 0.05. B, Soybean 

leaf samples were collected at V5 (33 DAP), R1 (44 DAP), R2 (58 DAP), and R5 (100 DAP) 

growth stages. Flutriafol® was sprayed at V5 (30 DAP) growth stage in treatment with one spray 

(1S); at V5 (30 DAP), R1-R2 (51 DAP), and R3 (77 DAP) in treatment with three sprays (3S); 

and at V5 (30 DAP), R1-R2 (51 DAP), R3 (77 DAP), R5 (99 DAP), and R6 (113 DAP) growth 

stages in treatment with five sprays (5S). Error bars indicate standard deviation. 

B 
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Table 3.6. Cercospora kikuchii infection of soybean leaf samples collected from Pioneer 95Y20 

at various growth stages in 2010. 

Days after 

planting 

(DAP) 

Growth 

Stage 

DNA of C. kikuchii (pg/ng soybean DNA) 

Non-

sprayed
x
 

One 

spray  

Three 

sprays  

Five 

sprays  

33 V5 0.023 d ND 0.015 d 0.021 d 

44 R1 ND
y
 0.058 d 0.065 d 0.043 d 

58 R2 0.406 d 0.153 d 0.191 d 0.164 d 

100 R5 4.995 a 2.543 b 2.563 b 1.898 c 
x
 Means followed by the same letters in non-sprayed and sprayed treatments were not 

significantly different according to Tukey’s honestly significant difference (HSD) test at P < 

0.05.  
y
 ND, not detected. 

 

that had been dipped in a solution of the herbicide paraquat 2 weeks before symptoms appeared 

on non-treated tissues. They suggested that the pathogen exists in a latent state in soybean tissues 

until the inducement of senescence by the herbicide. Klingelfuss and Yorinori (2001) also 

observed latent infection of soybeans at the R5 stage and they went on to show that symptoms 

developed even after three applications of diphenoconazole during the pod filling stage of 

development (R5.2–R5.5). However, as they did not sample at earlier vegetative or reproductive 

stages, the leaves may be infected before the R5.2 stage of development. In our study, we 

documented an extended latent period and showed that fungicides differentially affected 

pathogen development within the host as a function of time of application. Our findings suggest 

that it is essential to apply fungicides at the time of infection even though symptoms may not 

become apparent for several weeks. Results from this study quantified the latent infection 

process over time using real-time PCR and assessed the effects of fungicide applications on the 

extent of this process. Furthermore, we showed that cultivar may be a factor in pathogen 
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development as well. To our knowledge this is the first report of using real-time PCR for 

detection and quantification of C. kikuchii in soybean plants.  

The real-time PCR primer set (CKCTB6-2F and CKCTB6-2R) and probe (CKCTB6-

PRB), which was based upon the cloned CTB6 gene sequence from C. kikuchii, produced a 

specific amplicon using genomic DNA from C. kikuchii but not from other Cercospora species 

tested in this study.  The detection limit was 1 pg of C. kikuchii DNA in the presence of 10 to100 

ng of soybean DNA.  This was equivalent to 34 copies of the genomes, which is based upon an 

estimate of the genome size of C. kikuchii of 28.4 Mb (or equivalent of 0.03 pg) (Hightower et 

al. 1995). The sensitivity was similar in the absence of soybean DNA. However, in order to 

simulate soybean leaf samples, the standard curve was constructed with serial dilutions of C. 

kikuchii genomic DNA in the presence of 10 ng of soybean genomic DNA. A similar approach 

was used in quantifying Fusarium solani f. sp. glycines in artificially inoculated soybean roots 

(Li et al. 2008). The real-time PCR protocol developed in this study was quantitative over four 

orders of magnitude of fungal genomic DNA concentrations, which was similar to results 

obtained by Guo et al. (2007). The relatively higher detection limit as compared to other studies 

with femtogram sensitivity may be attributed to the use of internal transcribed spacer (ITS) 

sequences used in other studies (Pastrik and Maiss 2000) that have far more copies than 

structural genes, such as the toxin biosynthetic pathway gene (CTB6) that we used in this study. 

Also, using the cercosporin pathway gene was important in differentiating C. kikuchii from C. 

sojina because both are capable of infecting soybean, but only C. kikuchii is known to produce 

cercosporin (Goodwin et al. 2001). In addition, a BLAST search done in October 2010 revealed 

that the ITS1 and ITS2 sequences of C. kikuchii share 97 and 100% similarity with C. sojina, 

respectively, and 100% similarity with other species of Cercospora, such as C. beticola, C. apii, 
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C. capsici, and C. rodmanii.  These similarities render ITS sequences of C. kikuchii of little use 

for developing species-specific real-time PCR primers. 

We showed that C. kikuchii was present in soybean leaf samples as early as 22 DAP (V4) 

in the third planting in 2007, 33 DAP (V5) in 2010, and 35 DAP (V4) in 2009, which were long 

before the development of symptoms at R6 (107 and 93 DAP in the first and second plantings, 

respectively, in 2007, 97 DAP in 2009, and 113 DAP in 2010).We documented a general trend of 

increasing amount of fungal DNA in non-sprayed soybean plants from R2/R3 to R4/R5 during 

2007 and 2010 and post R4 during 2009. These findings suggest that latent infection is quiescent 

until plants begin reproductive growth, at which time there is a steady increase in fungal biomass 

leading ultimately to symptom development.   

Results from this study indicated that latent infection responded differentially to different 

fungicide combinations. In 2007, the cultivars sprayed with a mixture of pyraclostrobin and 

metconazole for the first two plantings had significantly lower levels of fungal DNA at later 

stages of soybean growth as compared to non-sprayed controls. Whereas in 2009, multiple 

applications of pyraclostrobin alone only delayed the onset of rapid pathogen development by 

one growth stage as compared to non-sprayed controls. However, in 2010, a single flutriafol 

application at V5 was enough to limit development of C. kikuchii as there was no significant 

difference in fungal DNA content between the treatment receiving the single V5 spray and the 

treatment receiving three sprays with the last one being applied at R3. The treatment receiving 

five sprays, with the last one occurring at R6, had the lowest DNA content at the end of the 

season. However, three and five fungicide applications are impractical commercial practices for 

managing CLB. Clearly, fungicides must be applied during early latent stages in order to 
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suppress pathogen development, and Robertson et al. (2011) demonstrated that application of 

flutriafol and other fungicides during late vegetative stages provided superior disease control. 

It is likely that fungicidal control of other diseases with protracted latent infection periods 

would benefit from similar studies. For example, Ward et al. (2011) showed that the soybean rust 

pathogen, Phakopsora pachyrhizi, also has an extended latent period and that fungicide 

applications are most efficacious when applied shortly before the rapid increase in fungal 

biomass, which occurs about 2 weeks before pustules become evident. Guo et al. (2006) detected 

Mycosphaerella graminicola DNA in wheat two weeks before symptoms were visible. 

With the exception of the DP 5634 cultivar in 2007, there was not a clear relationship 

between DNA content of C. kikuchii and disease severity.  This may be attributed to the effects 

of environment on symptom expression.  For example, CLB is generally most severe when 

plants are exposed to hot, dry conditions late in the season.  It is possible that the pathogen is 

induced to produce more cercosporin in the plant, or the plant may be more sensitive to the toxin 

under these conditions even though fungal biomass may not be affected. These relationships 

warrant further study. 
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CHAPTER 4: IDENTIFICATION AND CHARACTERIZATION OF 

LIGHT-INDUCIBLE PROTEINS FROM CERCOSPORA KIKUCHII 
 

4.1 Introduction 

Cercospora kikuchii (T. Matsumoto & Tomoy.) M. W. Gardner causes purple seed stain 

(PSS) and cercospora leaf blight (CLB) in soybeans (Orth and Schuh 1994). C. kikuchii and at 

least 22 other Cercospora spp. (Assante et al. 1977) produce a non-hostspecific phytotoxin 

known as cercosporin. Kuyama and Tamura (1957) isolated this deep red pigment from dried 

mycelia of C. kikuchii. Kuyama (1962) described the nature of aromatic ring of cercosporin. The 

chemical structure of cercosporin was elucidated to be 1,12-bis(2-hydroxypropyl)-2,11-

dimethoxy-6,7-methylenedioxy-4,9-dihydroxyperylene-3,10-quinone (C29H26O10) (Lousberg et 

al. 1971; Yamazaki and Ogawa 1972). Cercosporin is a photosensitizer that absorbs light energy 

and converts to energetically activated triplet state (
3
S), which in turn reacts with molecular 

oxygen to generate superoxide ions (O2
-.
) or may react directly with oxygen by an energy 

transfer process to generate singlet oxygen (
1
O2) (Daub and Ehrenshaft 1997). Cercosporin with 

photosensitizing activity can cause peroxidation of membrane lipids, leading to membrane 

breakdown and cell death (Daub and Briggs 1983; Macri and Vianello 1979). 

  Cercosporin production is highly affected by environmental factors such as light, 

nutrient conditions, temperature, and culture age (Chung 2003; Daub and Ehrenshaft 2000; 

Ehrenshaft and Upchurch 1991; Jenns et al. 1989). Light is not only essential for cercosporin 

production but also for activation (Daub 1982). Cercosporin production is stimulated by light of 

450-490 nm in wavelengths (Lynch and Geoghegan 1979) and C. kikuchii isolates grown in 

continuous light accumulated more cercosporin than when grown in continuous dark (Ehrenshaft 

and Upchurch 1991; Fajola 1978; Rollins et al. 1993). 
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 Cercosporin plays a critical role in the disease development by Cercospora species that 

synthesize the toxin. Light intensity and day length were strongly correlated with disease severity 

caused by Cercospora species in coffee (Daub and Ehrenshaft 1997), banana (Calpouzos 1966), 

and sugar beet (Calpouzos and Stalknecht 1967). Cercosporin has been shown to be the crucial 

pathogenicity factor for C. kikuchii (soybean), C. nicotianae (tobacco), and C. zeae-maydis 

(maize) and gene disruption mutants [CFP disruption mutants in C. kikuchii (Callahan et al. 

1999), CZK3 disruption mutants in C. zeae-maydis (Shim and Dunkle 2003), CTB1 disruption 

mutants in C. nicotianae (Choquer et al. 2005)] showed reduced or abolished cercosporin 

production and produced fewer or no lesions when inoculated on their respective host plants. 

Using restriction enzyme mediated insertional mutagenesis (REMI), the cercosporin toxin 

biosynthesis (CTB) gene cluster harboring 8 genes CTB1 to CTB8, was identified in C. 

nicotianae (Chen et al. 2007b). Suppressive subtractive hybridization (SSH) was used to identify 

genes involved in cercosporin biosynthesis in C. kikuchii (Ehrenshaft and Upchurch 1991) and 

C. zeae-maydis (Shim and Dunkle 2002). However, so far the genes identified are very different 

in C. kikuchii, C. zeae-maydis, and C. nicotianae indicating that cercosporin biosynthesis is very 

complex at physiological and genetic levels (You et al. 2008) and also involves calcium signal 

transduction pathways (Chung 2003) 

 To aid in developing resistance in plants to Cercospora spp. that require cercosporin as a 

pathogenicity factor, our primary goal is be to identify the genes/proteins that are either directly 

involved in or regulating cercosporin biosynthesis and conferring resistance to cercosporin. 

Eventually we can target these genes to suppress the cercosporin production by Cercospora spp. 

in plants by using recent technologies like host-induced gene silencing (HIGS) (Nowara et al. 

2010; Tinoco et al. 2010; Yin et al. 2011). In this study, we used 2-dimensional gel 
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electrophoresis (2-DGE) to identify differentially regulated proteins in C. kikuchii grown under 

continuous light. In this study, we describe the complete cloning and functional characterization 

of hydroxynaphthalene reductase (HNR) and adenosylhomocysteinase (AHCY) genes by 

generating hnr and ahcy disruption mutants, and demonstrated the requirement of HNR and 

AHCY genes for fungal pathogenesis of C. kikuchii on soybeans. 

4.2 Materials and Methods 

4.2.1 Fungal Cultures and Cercosporin Determination 

 Cercospora kikuchii isolate MRL6020-2B was isolated from leaves of naturally infected 

soybean cultivar SS RT 6299N in Winnsboro, Louisiana (Cai and Schneider 2005). C. kikuchii 

was grown on PDA for 1 week and three 7-mm mycelial plugs (2 mm away from margins) were 

cut with a cork borer and ground in 2 ml of sterile water in a glass grinder. Two hundred 

microliters of this mycelial suspension was used to inoculate 250 ml of liquid complete medium 

[Ingredients per liter were: glucose (10 g); yeast extract (1 g); casein hydrolysate (1 g); 

Ca(NO3)2.4H2O (1 g); 10 ml of a solution containing 2 g of KH2PO4, 2.5 g of MgSO4.7H2O, and 

1.5 g of NaCl in 100 ml of H2O, adjusted to pH 5.3 with NaOH] (Jenns et al. 1989) in a 500 ml 

Erlenmeyer flask. Cultures were incubated at 25°C with constant shaking (200 rpm) under light 

(240 μE m
-2

s
-1

) or dark (achieved by wrapping flasks with two layers of aluminum foil). Cultures 

from light and dark were harvested at 4, 6, 8, 10, 12, and 16 days. Entire cultures were blended 

in Waring blender twice for 20 sec with high speed pulses and 4-ml aliquot of the suspension 

(mycelium plus medium) was mixed with 4 ml of 5N KOH, incubated in dark for 4 h and 

cercosporin concentration was determined with spectrophotometer by measuring absorbance of 

the sample at 480 nm [Molar extinction coefficient of cercosporin in base is 23,300 (Jenns et al. 

1989)]. C. kikuchii mycelia from the remaining suspension were separated from media by 
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vacuum filtration. Mycelia were freeze-dried and ground to fine powder using liquid nitrogen 

and stored at -80°C for further use. The entire experiment was repeated four times. 

4.2.2 Protein Extraction 

  Total proteins were extracted from fungal mycelia using a phenol method followed by 

methanolic ammonium acetated precipitation (Hurkman and Tanaka 1986). One gram of ground 

C. kikuchii mycelia was transferred to 30 ml oak ridge tube (Nalgene, Rochester, NY) and 

homogenized with 2.5 ml of Tris pH 8.8 buffered phenol and 2.5 ml of extraction buffer (0.1 M 

Tris-HCl pH 8.8, 10 mM EDTA, 0.4% 2-mercaptoethanol, 0.9 M sucrose) using a Polytron PT 

3100 (Kinematica Inc., Newark, NJ) homogenizer at 10,000 rpm for 1 min. Samples were 

agitated for 30 min at 4°C and centrifuged at 5000 g for 10 min at 4°C. The phenol layer (top) 

with proteins was transferred to a second tube. Proteins were re-extracted by adding an equal 

volume of Tris pH 8.8 buffered phenol to the first tube. After agitation for 30 min and 

centrifugation at 5000 g for 10 min, the phenol layer (top) was transferred to the second tube. 

The combined phenol phase was extracted with an equal volume of extraction buffer. The top 

phenol phase was transferred to a new tube and proteins were precipitated by adding 10 volumes 

of 0.1 M ammonium acetate in 100% methanol (pre-chilled to -80°C) and tubes were left at -

80°C overnight. Proteins were pelleted by centrifugation at 4000 g for 30 min at 4°C and the 

pellet was washed twice with 0.1 M ammonium acetate in 100% methanol containing 10 mM 

dithiotheritol (DTT), followed by two washes with ice-cold 80% acetone containing 10 mM 

DTT. Protein pellets were air dried in a laminar air flow hood and stored at -30°C until further 

use. 
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4.2.3 First-Dimension Gel Electrophoresis 

Approximately 5 mg protein pellets were solubilized in lysis buffer [8 M urea, 4% 3-[(3- 

cholamidopropyl) dimethylammonio]-1-propane sulfonate (CHAPS), 40 mM dithiotheritol 

(DTT), and 2% (w/v) 3-10 NL IPG (Non-linear immobilized pH gradient) buffer (Gorg et al. 

1998)] for 30 minutes at room temperature (RT). Samples were centrifuged at 14,000 rpm for 10 

min at RT and supernatant was transferred to a fresh 1.5 ml microfuge tube and protein 

concentration was determined using a protein assay buffer (Bio-Rad) (Bradford 1976). IPG strips 

(18 cm, pH 3-10 NL, Immobiline
TM

 DryStrip, GE Healthcare) were rehydrated overnight in 340 

μl of rehydration buffer (8 M urea, 2% (w/v) CHAPS, 20 mM DTT, 0.002% bromophenol blue, 

and 0.5% (w/v) 3-10 NL IPG buffer) with 100 μg of protein for silver staining (analytical gels) 

and 1000 μg of protein for Coomassie Brilliant Blue staining (preparative gels). Strips in the 

rehydration tray were covered by Immobiline
TM

 DryStrip cover fluid (3 ml per strip) (GE 

Healthcare, Cat # 17-1335-01), leveled horizontally, and left overnight at RT. Isoelectric 

focusing (IEF) was done at 20°C using the following conditions: 500 V for 1 h, 1000 V for 1 h 

and 8000 V for 5 h. The maximum current per strip was limited to 50 µA. The focused IPG strips 

were equilibrated for 20 min in 7 ml per strip of equilibration buffer I (50 mM Tris-HCl pH 8.8, 

6 M urea, 30% (v/v) glycerol, 20% (w/v) SDS, a trace of bromophenol blue, 1% (w/v) DTT) 

with gentle shaking, followed by 20 min in 7 ml per strip of equilibration buffer II [50 mM Tris-

HCl pH 8.8, 6 M urea, 30% (v/v) glycerol, 20% (w/v) SDS, a trace of bromophenol blue, 2.5% 

(w/v) iodoacetamide (IAA)].  

4.2.4 Second-Dimension Gel Electrophoresis, Staining, and Gel Analysis 

The equilibrated IPG strips were embedded in 1% agarose overlay solution on top of a 

12.5% sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel [235 mm (width) x 190 mm 
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(length) x 1.5 mm (thickness)] for the second dimension (Ettan
TM

 DALTtwelve large vertical 

system, GE Healthcare). Electrophoresis was carried out at 40 V for 1 h and 110 V for 16 h until 

the bromophenol blue dye reached the bottom of the gel. Proteins were visualized in analytical 

gels by staining with the Dodeca Silver Stain Kit (Bio-Rad) according to the manufacturer’s 

instructions. Preparative gels were stained with 0.125% (w/v) Coomassie Brilliant Blue (CBB) 

R-250. All stained gels were scanned using a UMAX PowerLook II scanner (UMAX data 

systems, Taiwan) and analyzed using the Progenesis SameSpots software (Nonlinear Dynamics, 

Durham, NC, USA). The 2-DE gels were prepared from four independent biological replicates 

and only consistent differentially expressed protein spots were processed for identification using 

LC-MS/MS. 

4.2.5 Protein Identification 

 The selected protein spots were excised from two to three CBB stained gels and were 

subjected to in-gel trypsin digestion. The digested peptides were subjected to liquid 

chromatography tandem mass spectrometry (LC-MS/MS) at the Pennington Biomedical Center 

(Baton Rouge, LA). The gel plugs were destained, reduced, alkylated, and then digested with 

trypsin at 37ºC overnight using an automated robotic workstation (MassPrep, Waters Corp., 

Milford, MA). The digested peptide fragments were extracted with 2% (v/v) acetonitrile and 1% 

(v/v) formic acid and transferred to a 96-well plate for analysis. The peptides from each digested 

spot were separated by a capillary LC system coupled to a nanospray quadrupole time-of-flight 

(Q-TOF) tandem mass spectrometer (Waters Corp).  Briefly, the peptides were injected onto a 75 

µm C18 reverse phase capillary column (Dionex) and separated using a gradient of 3 to 40% 

acetonitrile during a 30 min run. The MS was operated in a data-dependent acquisition mode, in 

which a full survey of the parental ions was followed by three MS/MS scans using normalized 
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collision energy. The instrument was operated in positive ion mode, with an electrospray voltage 

of 3.5 kV, sample cone voltage of 40 V and extraction cone voltage of 1.5 V. The peaklist (pkl) 

files were generated using ProteinLynx Global Server 2.2.5 (PLGS 2.2.5, Waters Corp.) with 

default parameters. Tandem mass spectra were searched against the SwissProt database using the 

PLGS 2.2.5 software (Waters Corp.) with the following settings: one missed tryptic cleavage; 

precursor-ion mass tolerance, 200 ppm; fragment-ion mass tolerance, 0.1 Da and fixed 

carbamidomethylation of cysteine residues. Methionine oxidation of proteins was allowed as a 

variable modification in the database search query in PLGS, and automodification query was 

selected to identify peptides with further post-translational modifications in PLGS. The top 

ranking hits (PLGS scores between 8-13) were further evaluated using molecular weight, pI, and 

% sequence coverage to help confirm protein identities. Proteins were identified by searching the 

non-redundant protein database of the National Center for Biotechnology Information (NCBI), 

expressed sequence tags (ESTs) from Cercospora zeae-maydis with the Mascot search engine 

(Perkins et al. 1999, http://www.matrixscience.com) and taxonomy limited to fungi. De novo 

sequencing directly from MS/MS data was also done using PEAKS software (Ma et al. 2003) to 

identify peptides. 

4.2.6 Cloning of the HNR Gene from C. kikuchii 

Two degenerate primers were synthesized for spot 57, HNRF (5′-

GTIGTIGTBAAYTAYGCIAAY-3′) and HNRR (5′- YTTICCRTTVACCCAYTCICC-3′) 

[I=Inosine, B=C/G/T, Y= T/C, R=A/G, V=A/C/G], based on peptide sequences VVVNYANS 

and GEWVNGK, respectively. The resulting 703 bp PCR amplicon was cloned into pCR
®
2.1-

TOPO
® 

TA Cloning vector (Invitrogen, Carlsbad, CA) and sequenced. To clone full length HNR, 

a chromosome library of C. kikuchii was constructed using the Universal GenomeWalker
TM

 kit 

http://www.matrixscience.com/
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per the manufacturer’s instructions (Clontech Laboratories Inc., Mountain View, CA). To walk 

upward and downward into unknown genomic regions, primers were synthesized to complement 

the known regions (HNRL1: 5′- aatgtcaactggctgtccaacacgag-3′; HNRL2: 5′-

gaactcacctcatcaacctcgtcatc-3′; HNRR4: 5′-aactcgacatcgtgtgctcaaactct-3′; HNRR3: 5′-

gtgctatcaaggagcacggtggagat-3′) and used for two rounds of PCR amplification with adaptor 

primers (AP1: 5′-gtaatacgactcactatagggc-3′; AP2: 5′- actatagggcacgcgtggt-3′) supplied with the 

kit. DNA fragments amplified from the library by PCR were cloned into pCR
®
2.1-TOPO

® 
TA 

Cloning vector (Invitrogen, Carlsbad, CA) for sequencing at Louisiana State University GeneLab 

(Baton Rouge, Louisiana). Prediction of ORFs and exon/intron junctions was first performed 

using the gene-finding software at http://www.softberry.com. The full length HNR gene was 862 

bp with one intron. Oligonucleotides used for PCR and sequencing were synthesized by 

Integrated DNA Technologies (IDT, Coralville, IA).  

4.2.7 Targeted Disruption of the HNR Gene 

The hygromycin  (HYG) cassette fused with HNR 5′ and 3′ fragments was constructed 

using three rounds of PCR using a high fidelity DNA polymerase (Roche Applied Science, 

Indianapolis, IN) according to Yu et al. (2004b). The HYG gene encodes a phosphotransferase 

under the control of the Aspergillus nidulans trpC promoter and terminator, conferring 

hygromycin resistance (pUCATPH vector was kindly provided by Dr. Turgeon, Cornell 

University). In the first round, HYG cassette, 5′ HNR, and 3′ HNR fragments were amplified. 

The HYG cassette (2.5 kb) was amplified from pUCATPH (Lu et al. 1994) with the primers 

M13R (5′-agcggataacaatttcacacagga-3′) and M13F (5′-cgccagggttttcccagtcacgac-3′). The 5′ HNR 

fragment (0.8 kb) was amplified by PCR with the primers HNR5F (5′- aacgggcggtgattcttgct-3′) 

and M13RHNR5R (5′-tcctgtgtgaaattgttatccgctgtccgaatgatacaacgccag-3′) and the 3′ HNR 

http://www.softberry.com/
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fragment (1 kb) was amplified with M13FHNR3F (5′-

gtccgtgactgggaaaaccctggcgctgttggcggacgaatcatc -3′) and HNR3R (5′- aacggagaagccacacgaa-3′) 

from the genomic DNA of C. kikuchii. The underlined sequence in the primers M13RHNR5R 

and M13FHNR3F represents the oligonucleotides completely complementary to the sequence of 

primers M13R and M13F, respectively. In the second round, a fusion PCR was done to combine 

all three fragments. The long fragment (4.3 kb) was amplified by direct fusion of the 5′ HNR 

fragment, 3′ HNR fragment, and the HYG cassette in equal molar concentration using the end 

primers HNR5F and HNR3R.  In the third round, a nested PCR was done on this using primers 

HNR5FN2 (5′- gctttcgctctctcgcacat-3′) and HNR3RN2 (5′-agccacacgaataccgcat-3′) to get the 

final HNR gene disruption construct (4.2 kb) (Figure 4.1). Hygromycin resistant colonies were 

screened by PCR using HYG specific primers HY (5′- ggatgcctccgctcgaagta-3′) and YG (5′-

cgttgcaagacctgcctgaa-3′). The primer HNR5F was paired with the primer HY (5′-

ggatgcctccgctcgaagta-3′) in PCR to validate site- specific integration. Presence of HYG in the 

middle of the HNR gene was confirmed by PCR using primer pairs HNR5F and HNR3R. 

4.2.8 Cloning of the AHCY Gene from C. kikuchii 

Two degenerate primers were synthesized for spot 34, AHCYF (5′-

TAYAARATGYTNAARAAYAA-3′) and AHCYR (5′-ARYTTNGCRTTNACRTGRTCNA-3′) 

[Y= T/C, R=A/G, N=A/G/C/T], based on the peptide sequences, YRMLKNK and LEHVNAKL, 

respectively. The resulting 842 bp PCR amplicon was cloned in to pCR
®
2.1-TOPO

® 
TA Cloning 

vector (Invitrogen, Carlsbad, CA) and sequenced. To clone full length AHCY, a chromosome 

library of C. kikuchii was constructed as described above. To walk upward and downward into 

unknown genomic regions, primers were synthesized to complement the known regions 

(AHCYL1: 5′-gcttgataggatcgatctcagtaacg-3′; AHCYL2: 5′-gcaatcgatctcagtaacgagcacac-3′;  
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Figure 4.1. Hydroxynaphthalene reductase (HNR) disruption strategy in Cercospora kikuchii. 

 

AHCYR4: 5′-gc ttactgagatcgatcctatcaacg-3′; AHCYR3: 5′-gcagagcaagtttgacaacctctacg-3′) and 

used for two rounds of PCR amplification with adaptor primers (AP1: 5′-gtaatacgactcactatagggc-

3′; AP2: 5′-actatagggcacgcgtggt-3′) supplied with the kit. DNA fragments amplified from the 

library by PCR were cloned into pCR
®
2.1-TOPO

® 
TA Cloning vector (Invitrogen, Carlsbad, 

CA) for sequencing at Louisiana State University GeneLab (Baton Rouge, Louisiana). Prediction 

of ORFs and exon/intron junctions was first performed using the gene-finding software at 

http://www.softberry.com. The full length AHCY gene was 1562 bp with two introns. 

Oligonucleotides used for PCR and sequencing were synthesized by Integrated DNA 

Technologies. 

 

 

http://www.softberry.com/
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4.2.9 Targeted Disruption of the AHCY Gene 

The HYG cassette fused with AHCY 5′ and 3′ fragments was constructed using three 

rounds of PCR using a high fidelity DNA polymerase (Roche Applied Science, Indianapolis, IN) 

according to Yu et al. (2004b). The HYG gene encodes a phosphotransferase under the control of 

the Aspergillus nidulans trpC promoter and terminator, conferring hygromycin resistance. In the 

first round, HYG cassette, 5′ AHCY, and 3′ AHCY fragments were amplified. The HYG cassette 

(2.5 kb) was amplified from pUCATPH (Lu et al. 1994) with the primers M13R (5′-

agcggataacaatttcacacagga-3′) and M13F (5′-cgccagggttttcccagtcacgac-3′). The 5′ AHCY 

fragment (1.4 kb) was amplified by PCR with the primers AHCY5F (5′- gcatagcgtgggaggatgtat-

3′) and M13RAHCY5R (5′-ttcctgtgtgaaattgttatccgcttcaaacttgctcttggtgacg-3′) and the 3′ AHCY 

fragment (1.4 kb) was amplified with M13FAHCY3F (5′-

gtcgtgactgggaaaaccctggcgccgtgtgctcgttactgaga-3′) and AHCY3R (5′-gttgaagaacggacagcgaa-3′) 

from the genomic DNA of C. kikuchii. The underlined sequence in the primers M13RAHCY5R 

and M13FAHCY3F represents the oligonucleotides completely complementary to the sequence 

of primers M13R and M13F, respectively. In the second round, a fusion PCR was performed to 

combine all three fragments. The long fragment (5.3 kb) was amplified by direct fusion of the 5′ 

AHCY fragment, 3′ AHCY fragment, and HYG cassette in equal molar concentration using the 

end primers AHCY5F and AHCY3R.  In the third round, a nested PCR was done on this using 

primers AHCY5FN2 (5′-tatgctggtcgttgagagcg-3′) and AHCY3RN2 (5′-gaaacaggcagaggaaacagt-

3′) to get the final AHCY gene disruption construct (5.1 kb) (Fig. 4.2). Hygromycin resistant 

colonies were screened by PCR by using HYG specific primers HY (5′- ggatgcctccgctcgaagta-3′) 

and YG (5′-cgttgcaagacctgcctgaa-3′). The primer AHCY5F was paired with the primer HY (5′-

ggatgcctccgctcgaagta-3′) in PCR to validate site-specific integration. 
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Figure 4.2. Adenosylhomocysteinase (AHCY) disruption strategy in Cercospora kikuchii. 

 

4.2.10 Preparation of C. kikuchii Protoplasts 

C. kikuchii protoplasts were prepared as previously described (Chung et al. 2002; 

Upchurch et al. 1991) with some modifications. Two hundred microliters of mycelial suspension 

(two 5-mm diameter mycelial agar plugs ground in 2 ml of water) was transferred into 200 ml of 

complete medium (CM) and grown for 5 days at 25°C with continuous shaking at 180 rpm. Then 

the culture was blended (two 8-sec cycles) in a Waring blender, and 50 ml of the mycelial slurry 

was transferred into 200 ml of fresh CM and incubated overnight. Culture flasks were wrapped 

in two layers of aluminum foil to minimize the production of cercosporin. One gram (fresh wt.) 

of mycelium was completely resuspended in 40 ml of an enzyme cocktail containing 10 mg/ml 

Glucanex (Sigma L1412), 5 mg/ml Driselase (Sigma D9515), 1200 U/ml ß-glucuronidase 

(Sigma G0876), 0.7 M NaCl, 10 mM CaCl2, and 10 mM Na2HPO4 (pH 5.8). Digestion was done 
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at 30°C for 3 h with gentle shaking (90 rpm). After digestion, the solution was passed, in 

succession, through cheesecloth, glass wool and Miracloth (EMD Millipore). Fungal protoplasts 

were harvested by centrifugation at 4000 g for 5 min at 4°C. Protoplasts were washed once with 

10 ml 0.7 M NaCl followed by two washes with STC buffer (1.2 M sorbitol, 10 mM Tris-HCl 

pH 7.5, 10 mM CaCl2). Finally protoplasts were adjusted to 10
8
 per ml in four parts of STC and 

one part of 50% PEG (polyethylene glycol 3350, 10 mM Tris-HCl pH 7.5, 10 mM CaCl2), stored 

as 100 ul aliquots at -80°C. 

4.2.11 C. kikuchii Transformation 

Fungal transformation was performed as described (Turgeon et al. 2010) with 

modifications. All steps were performed on ice. Approximately 1x10
7
 protoplasts in 100 μl 

STC/PEG solution were mixed gently with 10 μg of DNA [purified PCR product of HNR or 

AHCY gene disruption constructs or pUCATPH plasmid] and incubated on ice for 10 min. 

Freshly prepared polyethylene glycol (30 g Polyethylene glycol, MW 3,350 (60% w/v), 0.5 ml of 

1 M Tris–HCl pH 7.5 (10 mM), 0.37 g CaCl2·2H2O (50 mM), H2O to 50 ml) was added in three 

aliquots of 200, 200, and 800 ul each and mixed well after each addition by rolling. The tubes 

were incubated for 10 min on ice after the first and second addition and at room temperature 

after the third addition. Four hundred microliter aliquots were plated in 20 ml molten complete 

medium (Ingredients per liter: 1 g yeast extract, 1 g casein hydrolysate, 342 g sucrose, and 16 g 

agar) and incubated overnight in dark at room temperature. The plates were overlaid with 10 ml 

of 1% agar containing 900 μg/ml Hygromycin B (Sigma H9773). The final concentration of 

Hygromycin B in the plate was 300 μg/ml. One plate per transformation was kept as no overlay 

control. Plates were incubated at 25°C and the colonies of transformants that appeared between 6 
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and 9 days (growing through the Hygromycin B overlay) were selected and transferred to 

complete media plates containing 300 μg/ml Hygromycin B. 

4.2.12 Pathogenicity Assay on Soybeans 

For a detached leaf assay, C. kikuchii wild type, vector control, hnr and ahcy disruption 

mutants were grown on CM agar plates for 1 week. Three-millimeter diameter mycelial agar 

plugs were cut from the plates and placed on the adaxial surface of soybean leaves (collected at 

the R1 stage from greenhouse grown AG6202 cultivar) with the mycelial side touching the leaf 

and gently pressed. These leaves were placed on a moist filter paper in a Petri dish and incubated 

at 25°C with 16 h light and 8 h dark regime and development of chlorotic and necrotic symptoms 

was observed for 2 weeks and leaves were photographed using a digital camera. The experiment 

was repeated two times and each time 4 to 5 leaves were used for each control or mutant tested. 

For greenhouse inoculations, C. kikuchii wild type, vector control, hnr and ahcy 

disruption mutants were grown on CM agar plates lined with Spectra/Por 1 6-8 kDa MWCO 

dialysis membrane (VWR labshop, Batavia, IL) placed on top of the medium, for 10 days in dark 

at 25°C. Mycelia were removed from the top of the dialysis membrane with the help of a forceps. 

One gram of mycelia (fresh wt.) was blended with 100 ml sterile distilled water in a Waring 

blender, filtered through three layers of cheese cloth. Tween-20 was added to the filtrate at 

0.001% concentration and the filtrate (1.5x10
4
 CFU/ml) was used to inoculate greenhouse grown 

soybean variety AG6202 at the R1 stage. Approximately 10 ml filtrate was sprayed on each 

plant. Immediately after inoculation, the plants were kept in a plastic bag with moist paper 

towels (to maintain 100 % RH) and kept in dark for 24 h. Later the plants were transferred to 

greenhouse benches and development of symptoms was observed at 14 days post inoculation 
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(dpi). The experiment was repeated two times and each time 4 to 5 soybean plants were 

inoculated for each control or mutant tested. 

4.3 Results 

4.3.1 Light Enhanced Cercosporin Production in C. kikuchii 

The C. kikuchii isolate MRL 6020-2B used in our study produced high levels of 

cercosporin in CM broth, whereas it did not produce any detectable levels of cercosporin in 

potato dextrose broth (PDB) (data not shown). The red color of cercosporin was visible in 4-day-

old C. kikuchii cultures on CM under continuous light. Spectrophotometric analysis confirmed 

the production of cercosporin toxin with a characteristic peak of absorbance at 480 nm in 5N 

KOH (alkali). Dark-grown cultures grown in the dark accumulated significantly less cercosporin 

compared to those grown in light. On any sampling day after 4 days, cultures in light had up to 

6-fold more cercosporin than under dark conditions (Fig. 4.3A). More mycelial growth also was 

observed in dark-grown cultures compared to light (Fig. 4.3B). 

4.3.2 Comparison of Protein Profiles between Light and Dark Grown C. kikuchii 

2-DE analysis of mycelial proteins extracted at 4, 6, 8, 10, 12, and 16 d from light and 

dark grown C. kikuchii cultures  revealed approximately 1100 ± 55 spots from both light and 

dark samples using silver staining (Fig. 4.4A and 4.4B). Protein profiles from four biological 

replicates showed reproducible patterns. Protein levels of visible spots were quantified with 

Progenesis Samespots software after normalization and the average normalized volume of the 

spots was used for calculating fold change of up- and down-regulation between differentially 

expressed proteins grown under light and dark during the time-course experiment (Fig. 4.4A, 

4.4B, and 4.4C). The up-regulated spots in light include, spot 57: 5-fold at 4 d; spots 34 and 28: 
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5-fold at 6 d; spot 32: 4-fold at 8 d; spot 129: 4-fold at 4 d; spot 26: >1.5 fold at 4 and 6 d. The 

down-regulated spots in light include, spot 70: 2.5-fold at 8 d; spot 132: 2-fold at 6 d (Fig 4.4D). 

 

Figure 4.3. Effect of light on Cercosporin production and fungal growth of Cercospora kikuchii. 

A, Production of cercosporin toxin by the wild-type Cercospora kikuchii isolate MRL 6020-2B. 

The fungus was grown in CM broth under continuous light or darkness for 4 to 16 days. 

Cercosporin was extracted with 5 N KOH and quantified by absorbance at 480 nm. Data shown 

are the means of five biological replications and error bars indicate standard deviation. Means 

with the same letters were not significantly different at P < 0.05 according to Tukey’s honestly 

significant difference (HSD) test. B, Fungal growth of C. kikuchii under light and dark 

conditions. Mycelia were separated by vacuum filtration and dry weights were determined after 

freeze drying. Data shown are the means of five biological replications and error bars indicate 

standard deviation. 
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Figure 4.3. continued 

 

 

4.3.3 Identification of Differentially Expressed Proteins 

Six up-regulated and two down-regulated spots visible in Coomassie Brilliant Blue 

stained gels were recovered and sequenced at Pennington Biomedical Research Center through a 

fee-based service (Table 4.1). For the hypothetical/predicted proteins, probable function was 

assigned by considering sequence homology with other species using BLASTP. The presence of 

highly conserved domains was also taken into consideration using NCBI’s Conserved Domain 

Database (CDD). Peptide sequences of each spot and their sequence homology identified 

through database searches are summarized in Table 4.1. Peptide sequences of Spot 57 showed 

high similarity to hydroxynaphthalene reductase (HNR) from Cochliobolus lunatus. Spot 34 

showed homology to adenosylhomocysteinase (AHCY) from Verticillium albo-atrum. Spots 28 

and 26 were identified as S-adenosylmethionine synthetase and superoxide dismutase 

(mitochondrial precursor), respectively. The peptide sequences from Spots 132 and 70 showed 

high homology to elongation factor 2 and 60S ribosomal protein L7, respectively. 
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Figure 4.4. Two dimensional gel electrophoresis of proteins extracted from Cercospora kikuchii 

mycelia grown under light and dark conditions. Mycelial protein profiles of C. kikuchii grown in 

continuous light for 6 days (A), or under continuous dark for 8 days (B). 100 µg mycelia proteins 

were subjected to IEF on 18 cm 3-10 NL IPG strips followed by second dimension on 12.5% 

linear SDS-PAGE, and visualization of proteins with silver staining. Differentially expressed 

protein spots were indicated with open circles and spots were excised from the gels as indicated 

and subjected to in-gel digestion with trypsin prior to LC-MS/MS analysis. C, Gel sub-sections 

of selective protein spots up- (57 and 34) and down-regulated under light. D, Heat map showing 

fold change up- and down-regulation of protein spots under light. 
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Figure 4.4 continued 
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Figure 4.4 continued 

 
 

4.3.4 Cloning and Characterization of HNR and AHCY Genes 

The 703 bp fragment obtained by PCR using degenerate primers HNRF and HNRR (Fig. 

4.5A) showed homology to Brn1 gene coding for hydroxynaphthalene reductase from Embellisia 

hyacinthi (AB120882.1) and Cochliobolus lunatus (AB288866.1). To clone the full length HNR 

gene, a C. kikuchii genome library was constructed using the universal GenomeWalker
TM

 kit. 

Using gene specific primers and adapter primers, 1.8 kb upstream and 2.0 kb downstream 

fragments were obtained. After sequencing, these 2 fragments were aligned into a 3.2 kb contig. 

Sequence analysis of this contig revealed the presence of an 862-bp open reading frame with a 

52-bp intron (Fig. 4.5B). A transcriptional start site (TSS) was predicted 601 bp upstream of the 

ATG start codon, and the transcriptional termination site was located 143 bp downstream of the 

translational stop codon (www.softberry.com). The intron had the characteristic 5′-XX/GT and 

AG/XX-3′ splicing junctions commonly found in filamentous fungi and also contained an 

internal lariat consensus sequences CT(A/G) A (T/C) (Radford and Parish 1997). The HNR gene 

was predicted to encode a polypeptide of 269 amino acids (aa) with a predicted molecular mass 

of 28.6 kDa and a predicted isoelectric point (pI) of 5.71. BlastP search (Altschul et al. 1997) of  
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Table 4.1. Identification of differentially expressed protein spots from Cercospora kikuchii 

grown under continuous light and dark through peptide sequencing using tandem mass 

spectrometry (MS/MS).  
Spot Top Hit Organism NCBI accession 

number 

 

pI
w 

 MW 

(kDa)x 

E-

value 

Peptide Sequence 

57 Hydroxynaphthalene 

reductase 

 

Cochliobolus 

lunatus 

AF419330.1 7.0 31 1e-95 VVVNYANSz 

DVTEEFDRz 

LGSDAz 

LVSAEGEWLNGKz 

 

34 Adenosylhomocystei

nase 

Verticillium 

albo-atrum 

XP_003009749.1 5.6 17 1e-07 KIAVVAGFGDVGKGy 

KHIILLAEGRLy 

HLLLLAEGRz 

 

28 Predicted protein (S-

adenosylmethionine 

synthetase) 

Mycosphaerell

a graminicola 

EGP86389.1 5.0 17 9e-16 VACETATKTGMVMVFGEITTKSy 

EALKDLGYDDSALz 

 

        

26 Hypothetical protein  

(superoxide 

dismutase, 

mitochondrial 

precursor) 

 

Mycosphaerell

a graminicola 

EGP88469.1 5.5 24 1e-17 KETMEIHYTKHy 

KHHQTYVNNLNNLIKGy 

132* Hypothetical protein 

 (similar to 

Elongation factor 2)  

Botryotinia 

fuckeliana 

 

XP_001551461.1 6.3 33 6e-14 RILADNHGWDVTDARKy 

KAVQYLNEIKDy 

REGPIGEEPMRSy 

REGPIGEEPMRSy 

KDSVVSGFQWATKEy 

KAYLPVNESFGFNGELRQy 

RKIFAFGPDTNGANLLVDQTKAy 

 

70* Similar to 60S 

ribosomal protein L7 

 

Leptosphaeria 

maculans 
 

CBY00501.1 8.3 31 5e-13 KHFIEGGDLGNREy 

KQASNFLWPFKLy 

RLLQINNGVFIRVy 

KIVEPFVAYGYPNLKSy 

*: Indicates spots that were down-regulated under continuous light; the spots were up-regulated 

under continuous light 
w
: Experimental pI 

x
: Experimental MW 

y
: Peptides identified using MASCOT 

z
: Peptides identified using PEAKS 
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the National Center for Biotechnology Information (NCBI) protein database revealed that the 

predicted 269-aa translation product of HNR had high similarity to a hypothetical protein from 

Mycosphaerella graminicola (overall 88% identity, 94% similarity), an ESC reductase from 

Elsinoe fawcetti (overall 84% identity, 92% similarity), and a hydroxynaphthalene reductase 

from several fungi (maximum overall 78% identity, 87% similarity) (Fig. 4.5C). Analysis of the 

predicted translational product of the C. kikuchii HNR gene revealed the presence of a 

tetrahydroxynaphthalene/trihydroxynaphthalene reductase-like classical (c) SDR domain, 3-

ketoacyl-(acyl-carrier-protein) reductase domain, and a NADP binding site (Rossmann 

superfamily). 

 

Figure 4.5. Cloning and characterization of the hydroxynaphthalene reductase (HNR) gene from 

Cercospora kikuchii. A, PCR amplification of HNR coding region from C. kikchii gDNA using 

degenerate primers HNRF and HNRR (see Materials and Methods). A specific PCR product was 

amplified only in the presence of both HNRF and HNRR primers and the template (lane 1). No 

specific amplifications was visible when PCR with only one primer (HNRF only, lane 2; HNRR 

only, lane 3) or without template (lane 4). B, Schematic diagram of strategy to clone the full 

length HNR gene using genome walking. Note: drawing is not to scale. C, Multiple sequence 

alignment of HNR protein to hydroxynaphthalene reductase from Cochliobolus lunatus (gi 

23451229), Brn1 from Cochliobolus heterostrophus (gi 2760604), 1,3,8-trihydroxynaphthalene 

reductase from Alternaria alternata (gi 4115722), 1,3,8-trihydroxynaphthalene reductase from 

Setosphaeria turcica (gi 188039929), a hypothetical protein from Mycosphaerella graminicola 

(gi 339468210), and an ESC reductase (RDT1) from Elsinoe fawcettii (gi 166865159). 

Conserved amino acid residues across all sequences were shaded in black. 
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Figure 4.5. continued 

 

 

An 842 bp PCR fragment was obtained using the degenerate primers AHCYF and 

AHCYR (Fig. 4.6A), cloned into the pCR2.1 vector and sequenced. BLASTX search of this 

translated 842 bp DNA sequence against the nonredundant protein database  showed that it has a 

high homology to adenosylhomocysteinase from several fungi [Paracoccidioides brasiliensis 
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(EEH21092.1), Ajellomyces capsulatus (EEH07964.1), Coccidioides posadasii 

(XP_003072218.1)]. To clone the full length AHCY gene, genome libraries were constructed 

using the universal GenomeWalker
TM

 kit. Using gene specific primers and adapter primers, a 2.0 

kb and a 5.0 kb fragments were amplified for the up- and down-stream of AHCY, respectively. 

After sequencing, these fragments were aligned into a 3.7 kb contig. Sequence analysis of this 

contig revealed the presence of a 1562 bp ORF with two introns (47 and 69 bp) (Fig. 4.6B).  The 

transcriptional start site (TSS) was predicted 545 bp upstream of the ATG start codon, and the 

transcriptional termination site was located 18 bp downstream of the translational stop codon 

(www.softberry.com). The AHCY gene was predicted to encode a polypeptide of 481 aa with a 

predicted molecular mass of 52.2 kDa and a predicted pI of 6.12. BlastP search (Altschul et al. 

1997) of the NCBI protein database revealed that the predicted 481 aa translation product of 

AHCY had high similarity to a hypothetical protein from Mycosphaerella graminicola (overall 

79% identity, 85% similarity) and Pyrenophora teres f. teres (overall 71% identity, 77% 

similarity), and adenosylhomocysteinase from several fungi (maximum overall 72% identity, 

78% similarity) (Fig. 4.6C). Analysis of the predicted protein sequence of the C. kikuchii AHCY 

gene revealed the presence of a S-adenosyl-L-homocysteine hydrolase (AdoHycase) domain, and 

a NADP binding site (Rossmann superfamily). 

http://www.ncbi.nlm.nih.gov/protein/225682808?report=genbank&log$=prottop&blast_rank=2&RID=MFN9N49801N
http://www.ncbi.nlm.nih.gov/protein/225559682?report=genbank&log$=prottop&blast_rank=3&RID=MFN9N49801N
http://www.ncbi.nlm.nih.gov/protein/303324461?report=genbank&log$=prottop&blast_rank=4&RID=MFN9N49801N
http://www.softberry.com/
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Figure 4.6. Cloning and characterization of the adenosylhomocysteinase (AHCY) gene from 

Cercospora kikuchii. A, PCR amplification of the AHCY coding region from C. kikchii gDNA 

using degenerate primers AHCYF and AHCYR (see Materials and Methods). A specific PCR 

product was amplified only in the presence of both AHCYF and AHCYR primers and the 

template (lane 1). No specific amplifications was visible when PCR with only one primer 

(AHCYF only, lane 2; AHCYR only, lane 3) or without template (lane 4). B, Schematic diagram 

of strategy to clone full length AHCY gene using genome walking. Note: drawing is not to scale. 

C, Multiple sequence alignment of AHCY protein to hypothetical protein from Mycosphaerella 

graminicola (gi 339476483), adenosylhomocysteinase from Pyrenophora tritici-repentis (gi 

189189746), Paracoccidioides brasiliensis (gi 225682808), Aspergillus fumigatus (gi 

70995231), Neosartorya fischeri (gi 119495963), Metarhizium acridum (gi 322692740), and 

Ajellomyces dermatitidis (gi 261194789). Conserved amino acid residues across all sequences 

were shaded in black. 
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Figure 4.6. continued 
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4.3.5 Target Gene Disruption of HNR and AHCY Genes in C. kikuchii 

For disruption of HNR, the 5′-end of HNR (0.8 kb), hygromycin phosphotransferase B 

gene (HYG) cassette (2.5 kb) and 3′-end of HNR (1.0 kb) were combined using a fusion PCR to 

generate a long PCR product of 4.3 kb. A nested PCR using primers HNR5FN2 and HNR3RN2 

on this PCR product was employed to obtain the 4.2 kb DNA fragment (Fig. 4.7A). This 4.2 kb 

product was directly transformed into the wild-type C. kikuchii protoplasts. Fungal transformants 

(20 colonies) were selected on the complete medium (CM) supplemented with hygromycin (300 

μg/ml) 7 days after plating the transformed protoplasts and transferred to new CM plates with 

hygromycin. All 20 colonies (∆hnr1 - ∆hnr20) showed the presence of the 466 bp fragment from 

HYG by PCR using HYG specific primers HY (5′- ggatgcctccgctcgaagta-3′) and YG (5′-

cgttgcaagacctgcctgaa-3′). No amplification was observed from the wild-type C. kikuchii (Fig. 

4.7B). The primer HNR5F was paired with the primer HY (5′-ggatgcctccgctcgaagta-3′) in PCR 

to validate site-specific integration of the 4.2 kb DNA fragment used for transformation at HNR 

locus. Six colonies (∆hnr1, ∆hnr2, ∆hnr11, ∆hnr12, ∆hnr17 and ∆hnr 18) showed the presence of 

the expected 2.7 kb fragment and again no amplification was observed from the wild-type C. 

kikuchii (Fig. 4.7C). Finally, the presence of HYG in the middle of HNR gene was confirmed by 

PCR using primer pairs HNR5F and HNR3R. Three colonies (∆hnr2, ∆hnr12 and ∆hnr17) 

showed the presence of expected 4.3 kb fragment, whereas wild-type C. kikuchii and pUCATPH 

vector controls showed only the 2.0 kb fragment (Fig. 4.7D). From these analyses, colonies 

∆hnr2, 12, and 17 were considered correct transformants. Quantitative real-time RT-PCR using 

primers HNR-RT-F1 (5′-atgtcacagaagaggagtacgacc-3′) and HNR-RT-R1 (5′-

caggtgcttgtatgcttctcttgc-3′) showed significant reduction in HNR transcript levels (Fig. 4.7E) 
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Figure 4.7. Disruption of the hydroxynaphthalene reductase (HNR) gene in Cercospora kikuchii. 

A, Two truncated HNR fragments (5′ and 3′-end) were joined to hygromycin resistance gene 

cassette (HYG) using polymerase chain reaction (PCR) to generate the 4.3 kb DNA fragment. 

Nested PCR was done using HNR5FN2 and HNR3RN2 primer pairs and the resultant 4.2 kb 

fragment was directly transformed into C. kikuchii protoplasts. Note: drawing is not to scale. B, 

PCR confirmation of the presence of 466 bp hygromycin fragment in 20 of HNR gene disruption 

mutants (∆hnr1 to ∆hnr20). C, Site-specific disruption of the HNR gene as confirmed by PCR 

using primer pairs HNR5F (upstream primer) and HY primer. An expected 2.7 kb PCR product 

was detected in ∆hnr1, ∆hnr2, ∆hnr11, ∆hnr12, ∆hnr17, and ∆hnr18. D, Insertion of HYG in the 

middle of HNR gene using primer pairs HNR5F and HNR3R showed presence of a 4.3 kb 

fragment only in ∆hnr2, ∆hnr12, and ∆hnr17whereas wild type or pUCATPH vector controls 

showed only the 2.0 kb fragment. E, Quantitative real-time RT-PCR data showing fold reduction 

in HNR transcript levels in ∆hnr2, ∆hnr12, and ∆hnr17. The ratio of gene expression in the 

mutants was normalized to pUCATPH vector control and 18S RNA was used as internal 

reference. Data shown were means of four replications and error bars represent the standard 

deviation. 
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Figure 4.7. continued 
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For disruption of AHCY, the 5′-end of AHCY (1.4 kb), HYG cassette (2.5 kb) and the 3′-

end of AHCY (1.4 kb) were combined using a fusion PCR to generate a long DNA fragment of 

5.3 kb. A nested PCR using primers AHCY 5FN2 and AHCY3RN2 was performed on this 

product to obtain the 5.1 kb DNA fragment (Fig. 4.8A). This 5.1 kb fragment was directly 

transformed into the wild-type C. kikuchii protoplasts. Fungal transformants (20 colonies) were 

selected on the complete medium (CM) supplemented with hygromycin (300 μg/ml) 7 days after 

plating the transformed protoplasts and transferred to new CM plates with hygromycin. All 20 

colonies (∆ahcy1 to ∆ ahcy20) showed the presence of the 466 bp fragment from HYG by PCR 

using HYG specific primers HY (5′-ggatgcctccgctcgaagta-3′) and YG (5′-cgttgcaagacctgcctgaa-

3′) (Fig. 4.8B). No amplification was observed from the wild-type C. kikuchii. The primer 

AHCY5F was paired with the primer HY in PCR to validate the site-specific integration of the 

DNA fragment used for transformation at AHCY locus. Six colonies (∆ahcy1, ∆ahcy3, ∆ahcy4, 

∆ahcy9, ∆ahcy10 and ∆ahcy12) showed the presence of the expected 2.57 kb fragment. Again, 

no amplification was observed from the wild-type C. kikuchii (Fig. 4.8C). The target gene 

expression in three of these confirmed mutants were examined using quantitative real-time RT-

PCR with AHCY-RT-F1 (5′-tgtcatgattgctggcaagatcgc-3′) and AHCY-RT-R1 (5′-

atggagtggagagcctgagca-3′), which showed significant reduction in AHCY transcript levels in the 

disruption mutants (Fig. 4.8D). 
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Figure 4.8. Disruption of adenosylhomocysteinase (AHCY) gene in Cercospora kikuchii. A, Two 

truncated AHCY fragments (5′ and 3′-end) were joined to the hygromycin resistance gene 

cassette (HYG) using polymerase chain reaction (PCR) as described in text to generate the 5.3 kb 

DNA fragment. A nested PCR was conducted using AHCY5FN2 and AHCY3RN2 primer pairs 

and the resultant 5.1 kb fragment was directly transformed into C. kikuchii protoplasts. Note: 

drawing is not to scale. B, PCR confirmation of the presence of 466 bp hygromycin fragment in 

20 AHCY gene disruption mutants (∆ahcy1 to ∆ahcy20). C, Site-specific disruption of the AHCY 

gene as confirmed by PCR using primer pairs AHCY5F (upstream primer) and HY primer, 

which showed presence of a 2.57 kb fragment in ∆ahcy1, ∆ahcy3, ∆ahcy4, ∆ahcy9, ∆ahcy10, 

and ∆ahcy12. D, Quantitative real-time RT-PCR data showing fold reduction in AHCY transcript 

levels in ∆ahcy1, ∆ahcy3, and ∆ahcy4. The ratio of gene expression in the mutants was 

normalized to pUCATPH vector control and 18S RNA was used as internal reference. Data 

shown were means of four replications and error bars represent the standard deviation. 
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Figure 4.8. continued 

 

 

 

 

4.3.6 Detection and Quantification of Cercosporin 

Cercosporin production in the hnr and ahcy disruption mutants was measured and 

compared to that of pUCATPH vector transformed control by growing the fungal strains on CM 

plates amended with hygromycin (300 μg/ml). Mycelial plugs were extracted with 5N KOH and 

the amounts of cercosporin in the extract quantified by measuring the absorbance of the extract 

at 480 nm (Jenns et al. 1989). Both hnr and ahcy disruption mutants produced significantly lower 

levels of cercosporin compared to vector transformed control (Fig. 4.9A and B). There was no 
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significant difference in cercosporin levels among the three hnr or ahcy disruption mutants. The 

secretion of cercosporin into the media underneath was not affected in hnr or ahcy disruption 

mutants. Apart from lower cercosporin production, no other phenotypic characteristics were 

observed among the hnr and ahcy disruption mutants compared to the vector control or the wild-

type. All hnr and ahcy disruption mutants exhibited normal growth on CM. In addition, when 

tested for sensitivity to exogenously applied cercosporin, all mutants retained normal growth 

similar to the vector control (data not shown). 

 

4.3.7 Pathogenicity Assay on Soybeans 

Three hnr disruption mutants (∆hnr2, ∆hnr12, and ∆hnr17), three ahcy disruption mutants 

(∆ahcy1, ∆ahcy3, and ∆ahcy4), and vector-transformed control were compared to wild-type C. 

kikuchii for pathogenicity on soybeans using two methods. In the detached leaf assay, severe 

necrosis and chlorosis of the entire leaf was observed 14 days after inoculation with wild-type or 

vector-transformed C. kikuchii controls. However, neither hnr nor ahcy disruption mutants were 

able to cause severe chlorosis and necrosis with the exception of ∆hnr17 and ∆ahcy3, in which 

mild necrosis was observed at the site of attachment of mycelial plugs (Fig. 4.10). Lactophenol 

blue staining revealed the mycelia of hnr and ahcy disruption mutants were able to spread 

throughout the leaf (data not shown) but unable to cause chlorosis and necrosis. In the second 

method, mycelia from the above fungal strains were directly inoculated on soybean plants at the 

first flower stage in the greenhouse. Fourteen days after inoculation, small necrotic lesions were  
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Figure 4.9. Characterization of cercosporin produced by vector-transformed control and hnr and 

ahcy disruption mutants of C. kikuchii. A, Vector-transformed control, ∆hnr, and ∆ahcy 

disruption mutants were grown on CM plates amended with hygromycin (300 μg/ml) in 

continuous light and cercosporin production was assayed on mycelial agar plugs according to 

Jenns et al. (1989) and the absorbance at 480 nm was recorded. Error bars represent standard 

error of four biological replications. Asterisk indicates significant difference at p < 0.05 using 

ANOVA.  B, Appearance of vector-transformed control (A), wild-type with no hygromycin (B), 

wild-type with hygromycin (no growth) (C), hnr disruption mutants (D through F), and ahcy 

disruption mutants (G through I) on CM plates viewed from underside of plates (C from top 

side). Reduction in cercosporin production in mutants compared to wild-type and pUCATPH 

vector control can be observed on underside of plates. 
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Figure 4.9. continued 

 

 

observed on soybean leaves inoculated with wild-type or vector-transformed control. Neither hnr 

nor ahcy disruption mutants caused any visible necrotic lesions (Fig. 4.11). Collectively, 

disruption of the HNR and AHCY genes resulted in mutants that produced lower levels of 

cercosporin and were markedly reduced in virulence. These data support the observation that 

cercosporin is an important virulence factor in the infection of soybean by C. kikuchii. 
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4.4 Discussion 

 Cercosporin accumulation by different Cercospora species in vitro is highly variable and 

dependent on light, temperature, media type, pH, and C:N ratio of the media and also the 

complex interaction of the above factors. For the C. kikuchii isolate used in this study, CM  

 

Figure 4.10. Pathogenicity assay of ∆hnr and ∆ahcy mutants on detached soybean leaves 

harvested at R1 growth stage from cv. ASGROW 6202. Three 3 mm diameter mycelial agar 

plugs were excised from 7 day-old cultures grown on CM plates and directly placed on the 

detached soybean leaves with mycelia side touching the adaxial surface of leaves in a Petri plate.  

Plates were kept under 16 h light and 8 h dark at 25 ºC for 2 weeks and observed for symptoms. 

Severe necrosis and chlorosis was observed in leaves treated with wild type C. kikuchii (A) or C. 

kikuchii transformed with pUCATPH vector (B) compared to very minimal symptoms in leaves 

treated with C. kikuchii ∆hnr (C through E) or ∆ahcy (F through H) mutants. 
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Figure 4.11.  Pathogenicity assay of ∆hnr and ∆ahcy mutants on soybean plants (cv. ASGROW 

6202) at R1 growth stage in greenhouse inoculations.  All cultures were grown on CM plates 

lined with Spectra/Por 1 6-8 kDa MWCO dialysis membrane for 10 days in the dark, mycelia 

were removed, blended in Waring blender at high speed (1 gm fresh wt. mycelia in 100 ml 

water), and sprayed on soybean plants until runoff. Several necrotic spots (pin head size) 

surrounded by chlorosis were observed in soybean plants inoculated with wild type (A) or 

pUCATPH vector-transformed C. kikuchii (B) compared to very tiny necrotic spots (pin tip size) 

in soybean plants inoculated with  ∆hnr (C through E) or ∆ahcy (F through H) mutants 2 weeks 

after inoculation. 

 

induced cercosporin production, but not PDB, which is different from other studies. In C. zeae-

maydis, PDB (0.2X) induced cercosporin, but not CM (Shim and Dunkle 2002). Light is not only 

crucial for cercosporin toxicity, but also is required for the initiation of cercosporin biosynthesis 

(Ehrenshaft and Upchurch 1991, 1993). C.  kikuchii cultures incubated in light from 6 to 16 days, 

accumulated significantly higher cercosporin compared to dark-grown cultures and similar 
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results were reported in C. kikuchii, C. beticola and C. riciniella (Balis and Payne 1971; Fajola 

1978; Lynch and Geoghegan 1979; Rollins et al. 1993). 

Before performing 2D experiments, several protein extraction methods, such as the 

TCA/acetone (Damerval et al. 1986), Tri-HCl (Chen et al. 2006) and phenol-methanol (Hurkman 

and Tanaka 1986) methods as well as the methods specifically developed for filamentous fungi 

(Fernandez-Acero et al. 2006; Fragner et al. 2009) were compared for extracting proteins from 

C. kikuchii mycelia. The phenol-methanol method was selected for use as it had greater protein 

yield and well resolved proteins on 2D gels. This method was also followed to extract proteins 

from plant samples and shown to be very efficient (Carpentier et al. 2005; Park et al. unpublished 

data; Saravan and Rose 2004). Phenol extraction followed by methanolic precipitation eliminates 

nucleic acids, membrane lipids, and cell wall fragments that might interfere with downstream 

protein solubility and electrophoresis (Saravan and Rose 2004). The 3-10 NL pH gradient IPG 

strips proteins produced very well resolved profiles of about 1100 ± 55 proteins using silver 

staining.  

Rollins et al. (1993) compared the 2D protein profiles of extracted proteins and in vitro 

translated products (from poly A+ RNAs) from wild-type and mutant C. kikuchii isolates and 

found some proteins up-regulated under light, but they did not sequence any protein spots for 

further identification.  In this study, six protein spots were found up-regulated and two were 

down-regulated in C. kikuchii cultures grown under light compared to dark conditions. These six 

up-regulated spots (spots 57, 34, 28, 26, 32, and 129) and two down-regulated spots (spots 132 

and 70) in light were recovered from Coomassie stained gels, sequenced using LC-MS/MS. Six 

of them were identified (Table 1) based on peptide sequence homology analysis. Spot 57 showed 

homology to 1,3,8-trihydroxynaphthalene reductase (3HNR) gene from Cochliobolus lunatus 



100 
 

(Rižner and Wheeler 2003) and RDT1 gene from Elsinoё fawcettii, (Chung and Liao 2008). 

3HNR codes for a reductase that is involved in 1,8-dihydroxynaphthalene (DHN)-melanin 

biosynthetic pathway by reducing 1,3,8-trihydroxynaphthalene to vermelone in fungal cells. 

RDT1 encodes a putative polypeptide similar to a wide range of reductases, with strong 

similarity to the 1,3,8-trihydroxynaphthalene reductase (Chung and Liao 2008). It is located 

upstream of TSF1 gene, a transcriptional factor that regulates the biosynthesis of elsinochrome 

phytotoxin in E. fawcettii (Chung and Liao 2008), a photosensitizing compound that shares 

structural similarity to cercosporin (Weiss et al. 1987). Targeted disruption of the HNR gene 

resulted in a significant reduction in cercosporin accumulation by hnr disruption mutants. This 

suggests that HNR either is involved in the regulation of cercosporin biosynthesis or is one of the 

key homologs that function in the cercosporin biosynthetic pathway. Presence of RDT1 upstream 

of TSF1 in E. fawcetti also suggests that melanin biosynthesis may be related to elsinochrome 

biosynthesis. Melanin is the key pigment produced by many fungi to protect the spores and 

mycelia from harmful UV radiation (Bell and Wheeler 1986; Kawamura et al. 1999; Wheeler 

and Bell 1988) as well as damage caused by reactive oxygen species (ROS), such as singlet 

oxygen and super oxide radicals (Herrling et al. 2008; Tada et al. 2010). Because the main mode 

of action of cellular damage caused by cercosporin is through the production of ROS (Daub and 

Ehrenshaft 1997), C. kikuchii might have its own melanin biosynthesis linked to cercosporin 

biosynthesis. This is supported by the observation that HNR was up-regulated in cultures grown 

in continuous light, which is favorable for cercosporin production. Melanin is also important for 

virulence of pathogenic fungi on plants (Chumley and Valent 1990; Howard and Valent 1996; 

Kawamura et al. 1997; Takano et al. 1995). 
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Spots 34 and 28 were also up-regulated in light and showed homology to enzymes 

involved in cysteine and methionine metabolism. Spot 34 showed homology (72%) to 

adenosylhomocysteinase (AHCY) from several fungi. AHCY converts S-adenosylhomocysteine 

to homocysteine, which can be used to regenerate methionine or to form cysteine (Palmer and 

Abeles 1979) in amino acid metabolism. AHCY was also identified in the proteomics studies of 

extra-radical phase of arbuscular mycorrhiza (Recorbet et al. 2009) and haustoria of the the 

barley pathogen Blumeria graminis f.sp. hordei (Godfrey et al. 2009). Spot 28 showed homology 

(83%) to S-adenosyl methionine synthetase (SAM synthetase). SAM synthetase catalyzes the 

formation of SAM from methionine, which is involved in transferring methyl groups in many 

metabolic processes (Peleman et al. 1989). A proposed cercosporin biosynthesis pathway in C. 

nicotianae (Chen et al. 2007b) indicated the involvement of SAM, CTB2, and CTB3 gene 

products in the formation of pentaketomethylene, which upon dimerization forms cercosporin. 

SAM synthetase and AHCY proteins that are up-regulated in light might be associated with this 

step during cercosporin biosynthesis. However, ahcy disruption mutants did not completely 

abolish cercosporin production indicating that there may be more than one methyl donor 

involved in that particular step.  

 Spot 26 showed a high homology to superoxide dismutase, which causes dismutation of 

superoxide radicals (O2·
-
 + O2·

-
 + 2H

+
 → O2 + H2O2) (McCord and Fridovich 1969). In the 

presence of light, cercosporin gets activated, reaches a triplet state that reacts with molecular 

oxygen, resulting in the formation of singlet oxygen and superoxide radicals collectively known 

as ROS. ROS cause damage to membrane lipids and also other cellular components ultimately 

leading to cell death (Daub and Briggs 1983). As C. kikuchii grown under light accumulated 

higher cercosporin compared to dark-grown cultures, it is reasonable to expect that superoxide 
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dismutase also expressed at higher levels in light to protect fungal cells from the damage caused 

by ROS. We were unable to identify spots 32 and 129 as the mass spectrometry was not 

successful. Elongation factor 2 (spot 132) and 60S ribosmal protein L7 (spot 70), which are 

involved in protein metabolism, were down-regulated under light. This is in accordance with the 

observation that the C. kikuchii grown under dark had more mycelial growth compared to light.  

Cercosporin is known to be a crucial pathogenicity factor in C. kikuchii (Upchurch et al. 

1991), C. nicotianae (Choquer et al. 2005), and C. zeae-maydis (Shim and Dunkle 2003) and 

mutants deficient in cercosporin biosynthesis caused reduced or no disease. Both hnr and ahcy 

gene disruption mutants in C. kikuchii resulted in significantly lower production of cercosporin 

compared to the vector-transformed control and produced minimal or no chlorosis and necrosis 

on soybean leaves in both detached leaf assay (Fig. 4.10) and greenhouse inoculation 

experiments (Fig. 4.11). However, growth of the mutants in inoculated leaves as visualized 

through lactophenol blue staining was comparable to the wild type (data not shown). Slight 

necrosis at the site of inoculation in the detached leaf assay with disruption mutants ∆hnr17 and 

∆ahcy3 might be caused by damage from cercosporin present in the agar block. 

Since hnr and ahcy gene disruption mutants were not completely deficient in cercosporin 

production, the possibility of involvement of these genes in conferring resistance to exogenously 

applied cercosporin also was tested. In a preliminary experiment, when vector-transformed 

control and hnr and ahcy gene disruption mutants were grown on CM plates in the presence of 

10 μM cercosporin, no visual difference in fungal growth was observed between the mutants and 

the wild-type, indicating that the mutants were not sensitive to exogenously applied cercosporin 

(data not shown). One possible explanation for this observation is that the mutants are still 
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producing lower amounts of cercosporin, and the cercosporin self-protection mechanism is still 

operational under these conditions. 

Various strategies were employed to identify genes involved in or regulating cercosporin 

biosynthesis in different Cercospora species. Ehrenshaft and Upchurch (1991) isolated six light 

enhanced cDNAs by using suppressive subtractive hybridization (SSH) in C. kikuchii and one 

cDNA was characterized as the CFP gene (coding for cercosporin facilitator protein) by 

Callahan et al. (1999). Shim and Dunkle (2002) also used SSH in C. zeae-maydis and identified 

several genes up-regulated under cercosporin-producing conditions and characterized a MAP 

kinase kinase kinase (CZK3) involved in cercosporin biosynthesis (Shim and Dunkle 2003). 

Chung et al. (2003c) used restriction enzyme-mediated integration (REMI) mutagenesis in C. 

nicotianae and identified a polyketide synthase gene (CTB1) involved in cercosporin 

biosynthesis and further sequencing of upstream and downstream region of CTB1 revealed the 

presence of a gene cluster with CTB1 through CTB8 genes that code for various enzymes such as 

polyketide synthase, oxidoreductases, major facilitator proteins for cercosporin export and also 

identified four ORFs surrounding the gene clusters for which no putative function could be 

assigned (Chen et al. 2007a; Chen et al. 2007b; Choquer et al. 2007; Dekkers et al. 2007). The 

proteomics approach used in this study identified several up- and down-regulated proteins in C. 

kikuchii under light.  HNR and AHCY genes characterized in this study were not identified in 

earlier studies, indicating that proteomics can be used as a complementary approach to other 

approaches like SSH and REMI to identify additional genes related to cercosporin biosynthesis. 

Further studies indicate that cercosporin biosynthesis is influenced by various factors and 

is regulated in a very complex manner (Chen et al. 2007b). The general mode of action of 

cercosporin with the generation of ROS is essential for successful pathogenicity of Cercospora 
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fungi that produce cercosporin. But, some Cercospora species, such as C. sojina (frog eye leaf 

spot pathogen of soybeans) do not produce cercosporin and yet it is pathogenic. This suggests the 

involvement of additional factors in pathogenicity. The HNR and AHCY genes identified in this 

study are either involved in regulating cercosporin biosynthesis or part of redundant structural 

genes involved in cercosporin biosynthesis. Since hnr and ahcy disruption mutants are still 

producing small amount of cercosporin, further studies are necessary to better understand how 

HNR and AHCY genes are interacting with other genes by comparing protein profiles from wild-

type, hnr, and ahcy gene disruption mutants and identify differentially expressed proteins. 
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CHAPTER 5: IDENTIFICATION OF SECRETED PROTEINS FROM 

CERCOSPORA KIKCUHII 
 

5.1 Introduction  

Many plant pathogenic fungi secrete a large number of degradative enzymes and other 

proteins, which have diverse functions in colonization, nutrient acquisition, and ecological 

interactions (de Vries 2003; Freimoser et al. 2003; Walton 1994). Many extracellular enzymes 

such as polygalacturonase, pectate lyase, xylanase, and lipase, have been shown or proposed to 

be required for virulence in plant pathogenic fungi (Brito et al. 2006; Deising et al. 1992; Isshiki 

et al. 2001; Oeser et al. 2002; ten Have et al. 1998; Voigt et al. 2005; Yakoby et al. 2001). 

Several proteomics studies have been conducted on plant pathogenic fungi to understand the 

nature of secreted proteins (Cao et al. 2009; Liang et al. 2010; Lim et al. 2001; Yajima and Kav 

2006). The secretome of Aspergillus flavus and A. parasiticus in response to different growth 

media containing rutin, glucose and potato dextrose was examined (Medina et al. 2004, 2005). A 

high number of secreted proteins were identified when Fusarium graminearum was grown on 

hop cell wall (Phalip et al. 2005) indicating that fungal metabolism becomes oriented towards the 

synthesis and secretion of an arsenal of enzymes able to digest almost the complete plant cell 

wall. A high-throughput MS/MS (tandem mass spectrometry) to identify secreted proteins of F. 

graminearum in vitro (grown on 13 different media) and in planta (infection of wheat heads) 

identified a total of 289 proteins (229 in vitro and 120 in planta) with high statistical confidence 

(Paper et al. 2007). A comprehensive proteomic-level comparison of Pyrenophora tritici-

repentis avirulence race 4 and virulence race 5, by 2-DE followed by MS/MS, identified 29 

differentially abundant proteins in the secretome, including α-mannosidase, exo-β-1,3-glucanase, 

heat-shock, BiP (binding innmunoglobulin protein) proteins, and various metabolic enzymes 
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(Cao et al. 2009). The proteome-level differences suggested that reduced pathogenic ability in 

race 4 of P. tritici-repentis may reflect its adaptation to a saprophytic habit. Fernandez-Acero et 

al. (2010) studied the discrete sets of proteins secreted by B. cinerea grown on culture media 

supplemented with different carbon sources [glucose, carboxymethylcellulose (CMC), starch, 

pectin] and plant-based elicitors [tomato cell walls (TCW)] and identified 78 spots by MALDI-

TOF/TOF MS/MS  (matrix-assisted laser desorption/ionization time-of-flight/time-of-flight 

tandem mass spectrometry) analysis, corresponding to 56 unique proteins and 45 identified 

proteins contained secretion signal peptides for both classical and nonclassical secretory 

pathways. 

Plant pathogenic bacteria deliver a plethora of proteins, known as effector proteins, into 

their host plants, using the type III secretion system (TTSS) (Abramovitch et al. 2006). 

Staskawitz et al. (1984) successfully cloned the first effector protein coding gene avrA 

(avirulence A) from Pseudomonas syringae pv. glycinea and later several effector proteins were 

discovered. First fungal effector (avr9) was identified in Cladosporium fulvum in 1991 (van Kan 

et al. 1991) and followed by the first oomycete effector (Extracellular Protease Inhibitor 1) in 

2004 (Tian et al. 2004). These effector proteins are secreted by the pathogens during the 

interaction with their corresponding hosts (Catanzariti and Jones 2010). Effector proteins are 

required for enhanced virulence in the absence of a corresponding R gene in the host (Cui et al. 

2009). The pathogen effector and host R gene proteins may interact directly or indirectly (guard 

model) leading to effector triggered immunity (ETI) (Dangl and Jones 2001). As a result of ETI, 

pathogens respond by mutating or losing effectors, or by developing novel effectors that can 

avoid or suppress ETI, whereas plants develop novel R proteins mediating recognition of novel 

effectors (de Wit 2007; Jones and Dangl 2006). Extracellular fungal pathogens such as 
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Cladosporium fulvum and Fusarium oxysporum f. sp. lycopersici (Fol) secrete a large number of 

effector proteins that are small and rich in cysteine which provides stability in protease-rich 

environments (reviewed in Stergiopoulos and de Wit 2009). In C. fulvum, so far eight effector 

proteins were identified  which include Avr2, Avr4, Avr4E, Avr9, Ecp1, Ecp2, Ecp4, and Ecp5 

(Joosten et al. 1994; Laugé et al. 1997; Laugé et al. 2000; Luderer et al. 2002; van den 

Ackerveken et al. 1992; Westerink et al. 2004). In Fol, seven proteins have been identified in 

xylem sap during infection known as SIX (Secreted in xylem) proteins (reviewed in Catanzariti 

and Jones 2010). The fungus Leptosphaeria maculans, causal agent of black leg disease in 

brassicas, secretes three effectors, AvrLm1 (Gout et al. 2006), AvrLm6 (Fudal et al. 2007), and 

AvrLm4-7 (Parlange et al. 2009). Three small proteins are secreted by Rhyncosporium secalis, 

causal agent of barley leaf scald, known as necrosis inducing proteins (NIP). NIP1 can cause leaf 

necrosis by affecting the host’s plasma membrane H
+
-ATPase (Wevelsliep et al. 1993) and also 

activates ETI in barley cultivars carrying the Rrs1 resistance gene (Hahn et al. 1993; Rohe et al. 

1995). Necrotrophic fungi also secrete small effector proteins that have a functional role as 

virulence factors (Tan et al. 2010). Pyrenophora tritici-repentis, causal agent of tan spot of 

wheat, secretes PtrToxA and PtrToxB (Ballance et al. 1989; Martinez et al. 2001; Strelkov et al. 

1999).  The presence of SnToxA in Stagonospora nodorum, which showed a high homology to 

PtrToxA from P. tritici-repentis suggested that the genes coding for effector proteins can be 

horizontally transferred across different fungal genera (Stukenbrock and McDonald 2007). 

Biotrophic fungi and oomycetes have evolved haustoria for secretion of particular classes of 

host-translocated fungal and oomycete effectors (Catanzariti et al. 2006; Dodds et al. 2004; 

Whisson et al. 2007). Based on the evidence from the above studies, as the effector proteins 
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produced by fungi are secreted proteins, there is every need to study secreted proteins from C. 

kikuchii to identify potential effector proteins.   

The study of fungal secreted proteins, which often contain virulence factors/effectors to 

either suppress host defense response or breach host defense mechanism/breach host physical 

barrier to gain access to host nutrients, is another approach to understanding host-pathogen 

interaction which may be used to enhance resistance to C. kikuchii infection in soybean. In this 

study we isolated secreted proteins form C. kikuchii grown under continuous light and dark and 

protein sequencing was done using liquid chromatography tandem mass spectrometry (LC-

MS/MS). 

5.2 Materials and Methods 

5.2.1 Culture Conditions and Concentrating Culture Supernatant Fraction 

 Cercospora kikuchii isolate MRL6020-2B was grown on potato dextrose agar (PDA) for 

1 week and three 7-mm mycelial plugs (taken 2 mm from the margins) were cut with a cork 

borer and ground in 2 ml of water in a glass grinder. Two hundred microliters of this mycelial 

suspension was used to inoculate 200 ml of minimal media [ingredients per liter were: glucose 

(10.0 g); Ca(NO3)2.4H2O (1.0 g); 10 ml of a solution containing 2.0 g of KH2PO4, 2.5 g of 

MgSO4.7H2O, and 1.5 g of NaCl in 100 ml of H2O, adjusted to pH 5.3 with NaOH (Jenns et al. 

1989)] in a 500 ml Erlenmeyer flask. Cultures were incubated at 25°C with constant shaking 

(200 rpm) in light (240 μEm
-2

s
-1

) or dark (achieved by wrapping flasks with two layers of 

aluminum foil). Cultures from light and dark were harvested at 7 and 14 days. Mycelia were 

separated from media by vacuum filtration to obtain a culture supernatant. The supernatant was 

concentrated using Vivaspin 20 centrifugal concentrators (GE Healthcare, Piscataway, NJ) with 

5000 Da molecular weight cut off (MWCO) until the final volume was approximately 2 ml (100-
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fold concentration). Concentrated protein samples were stored at -30°C until further use. All 

centrifugations were performed at 4°C. 

5.2.2 Protein Extraction 

 An aliquot of concentrated protein sample was mixed with 3 volumes of pre-chilled 10% 

(w/v) trichloroacetic acid (TCA) in acetone containing 0.07% 2-mercaptoethanol (2-ME) and 

kept at -30°C overnight (Damerval et al. 1986; Vincent et al. 2009). Proteins were pelleted by 

centrifugation at 10,000 g for 30 min at 4°C. The protein pellet was washed three times with 

80% acetone containing 0.07% 2-ME. Each time the pellet was resuspended in acetone. After 

washing, the protein pellet was air dried and stored at -30°C until further use. 

5.2.3 2-DE (IEF/SDS-PAGE), Staining, and Scanning 

Protein pellets were solubilized in lysis buffer (8 M urea, 4% 3-[(3- cholamidopropyl) 

dimethylammonio]-1-propane sulfonate (CHAPS), 40 mM dithiotheritol (DTT), and 2% (w/v) 3-

10 NL IPG (Non-linear immobilized pH gradient) buffer. IPG strips (7 cm, pH 3-5.6 NL, GE 

Healthcare) were rehydrated overnight in 125 μl of rehydration solution (8 M urea, 2% (w/v) 

CHAPS, 20 mM DTT, 0.002% bromophenol blue, and 0.5% (w/v) 3-5.6 NL IPG buffer) 

containing 51 to 259 μg of proteins. Strips in the re-swelling tray were covered by Immobiline™ 

DryStrip cover fluid (GE Healthcare, Piscataway, NJ), leveled horizontally, and left overnight at 

room temperature. Isoelectric focusing (IEF) was performed as follows: (i) step and hold 300 V 

for 30 min; (ii) gradient to 1000 V for 30 min; (iii) gradient to 5000 V for 90 min; and (iv) step 

and hold 5000 V for 90 min for a total of 12 kVh. The focused IPG strips were equilibrated for 

20 min in 7 ml per strip of equilibration buffer I (50 mM Tris-HCl pH 8.8, 6 M urea, 30% (v/v) 

glycerol, 20% (w/v) SDS, a trace of bromophenol blue, 1% (w/v) DTT) with gentle shaking, 

followed by another 20 min in 7 ml of equilibration buffer II [50 mM Tris-HCl pH 8.8, 6 M urea, 
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30% (v/v) glycerol, 20% (w/v) SDS, a trace of bromophenol blue, 2.5% (w/v) iodoacetamide 

(IAA)] per strip. The equilibrated IPG strips were subjected to second dimension on the 12% 

Mini-PROTEAN
®
 TGX precast gels with IPG comb (Bio-Rad, Cat # 456-1041, Hercules, CA). 

Electrophoresis was carried out at 20 V for 10 min and 100 V for 90 min until the bromophenol 

blue dye reached the bottom of the gel. Gels were fixed overnight in fixing solution [10% (v/v) 

acetic acid and 40% (v/v) methanol] followed by staining with Coomassie Brilliant Blue G-250 

dye [(2% (v/v) phosphoric acid, 10% (w/v) (NH4)2SO4, 0.1% (w/v) Coomassie Brilliant Blue G-

250, and 20% (v/v) methanol] (Candiano et al. 2004; Neuhoff et al. 1985, 1988) for 24 hr at 

room temperature. The secreted proteins prepared from three biological repeats for each 

treatment (light and dark) and time point (7 and 14 days) were separated on 2-DE gels. Only 

consistently expressed protein spots were recovered for identification using LC-MS/MS. 

5.2.4 In-Gel Trypsin Digestion 

Fifteen protein spots were excised from the 2-DE gels, cut into 1 mm
2
 pieces and 

subjected to in-gel digestion by trypsin (Proteomics grade trypsin, Sigma, Cat # T6567) as 

previously described (Shevchenko et al. 2007). Briefly, the recovered gel pieces were first 

destained twice using 100 mM ammonium bicarbonate and acetonitrile (ACN) (1:1 v/v) followed 

by shrinking by adding 500 μl acetonitrile. On ice, 50 μl of trypsin digestion buffer [20 μg 

trypsin dissolved in 1.5 ml of  10 mM NH4HCO3/10% (v/v) ACN (1:1 v/v)] was added to cover 

the gel pieces and left for 30 min. Samples were left on ice for another 90 minutes. Samples were 

incubated at 37°C overnight for trypsin digestion. Peptides were extracted from the gel by adding 

extraction buffer containing 5% formic acid/acetonitrile (1:2 v/v). The collected supernatants, 

which contain the peptide mixtures, were dried under vacuum in a Savant SpeedVac (Thermo 

Scientific) and stored at -30°C. Just before mass spectrometry, peptides were resuspended in 10 
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μl of 0.1% (v/v) trifluoroacetic acid (TFA). The peptide mixtures were injected into LC-MS/MS 

to determine peptide mass spectra or de novo peptide sequences. 

5.2.5 Liquid Chromatography Tandem Mass Spectrometry and Protein Identification 

 Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to analyze the 

peptides extracted from the gel spots. The tryptic peptides dissolved in 10 μl 0.1% (v/v) TFA 

was injected with a microplate autosampler (Famos, Dionex, Sunnyvale, CA, USA) onto a 

0.3 × 1 mm trapping column (PepMap C18, Dionex) on a nano-LC system (Ultimate, Dionex) at 

a flow rate of 10 μl/min. After sample loading, the trapping column was washed with 0.1% (v/v) 

formic acid at a flow rate of 5 μl/min for an additional 5 min. The peptides were then eluted onto 

a 75 μm × 15 cm C18 column (Biobasic Vydac, Grace Davison, IL, USA) and separated using a 

gradient of 5–40% solvent B over 60 min with a flow rate of 200 nl/min. Solvent A was 95% 

water and 5% acetonitrile containing 0.1% formic acid. Solvent B was 80% acetonitrile and 20% 

water containing 0.1% formic acid. The effluent was directed to a quadrupole time-of-flight mass 

spectrometer (QSTAR XL, Applied Biosystems, Foster City, CA, USA) and ionized using a 

nano-electrospray source at a voltage of 2.5 kV. The mass spectrometer was operated in 

information-dependent acquisition (IDA) mode. Three collision energies (25, 38 and 50 eV) 

were selected for fragmentation of the peptides. The MS/MS spectra were subjected to database 

search using MASCOT (Perkins et al. 1999, http://www.matrixscience.com) and proteins were 

identified based on homology searches against the NCBI non-redundant (NCBInr) protein 

database and the SwissProt database with taxonomy limited to fungi. MASCOT individual ions 

scores of 48 or greater indicate a significant homology to the peptide spectra in the database 

(p<0.05). Ions score is calculated as -10*Log(P), where P is the probability that the observed 

match is a random event. 

http://www.matrixscience.com/
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5.3 Results 

5.3.1 2-D Electrophoresis of the Secreted Proteins 

Initial trial 2-D gels in which the first dimension was done with IPG strips spanning a pH 

range of 3-10, showed most of the protein spots were concentrated in the pH range 3-6 (not 

shown). Therefore, IPG strips with a pH range of 3–5.6 NL were used for subsequent 

experiments. For each time point (7 and 14 days) and cultures grown in light and dark, proteins 

from three biological repeats were separated in three gels. The spot patterns in these gels were 

very consistent and reproducible. For cultures grown in light, the total number of protein spots 

was approximately 50, whereas about 60 spots were observed in samples from cultures grown in 

the dark (Fig. 5.1). Differences in protein profiles between light and dark were observed, such as 

the presence of high molecular weight proteins in light-grown cultures, but not in dark-grown 

cultures. In addition, some of the medium and low molecular weight proteins with a pI range of 

4.5–5.6 were found only in the dark-grown cultures (Fig. 5.1). 

5.3.2 Protein Identification 

 Fifteen protein spots (Fig. 5.1) were excised from 2-D gels. Following in-gel trypsin 

digestion, peptides were separated by liquid chromatography and subjected to tandem mass 

spectrometry. Out of 15 spots, only three spots were positively identified based on their MS/MS 

spectra, corresponding to three different hypothetical proteins (Table 5.1) with only one 

matching peptide per protein. Spots 4 and 26 showed the presence of possible signal peptides 

based on predictions with SignalP 4.0 (http://www.cbs.dtu.dk/services/SignalP/). Identities of the 

remaining 12 spots are unknown although their partial peptide sequences have been obtained 

determined (Table 5.2). 

http://www.cbs.dtu.dk/services/SignalP/
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These proteins were annotated according to results of sequence homology search using 

BLAST against the NCBInr database.  Spot 4 showed no significant homology to any proteins in 

the database. Spot 26 showed homology (63% identity) with glucan endo-1,3-beta-glucosidase 

eglC from Aspergillus flavus (GenBank accession XP_001816626). Spot 45 showed homology 

to EAP30 family protein Dot2 from Ajellomyces capsulatus (GenBank accession EER40012). 

 

Figure 5.1. Profiles of secreted proteins from Cercospora kikuchii grown under dark and light 

conditions separated on two dimensional polyacrylamide gels. Protein profiles of C. kikuchii 

grown in minimal media broth with constant shaking (200 rpm) for 1 week in continuous dark 

(A, 224 μg) and continuous light (B, 51 μg). Culture supernatant was concentrated and secreted 

proteins were precipitated by acetone precipitation and separated on 3-5.6 NL IPG strip, 

followed by 12% w/v SDS-PAGE. Arrows indicate the protein spots recovered from the SDS-

PAGE gel for LC-MS/MS.  

 
5.4 Discussion 

 The typical symptoms of CLB only appear during the mid-pod fill stage of development 

(R5) even though in an earlier study, using real-time PCR primers and probe specific for C. 

kikuchii, we detected  C. kikuchii in soybean leaf tissues as early as 22 days after planting (V4 

growth stage). Such a long latent period prompted us to look into different proteins that may be 

secreted by C. kikuchii during this phase of the disease. Towards this goal, as a first step, we 
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designed this experiment to gain insight into proteins secreted by C. kikuchii in vitro when grown 

on minimal media. To our knowledge, this is the first report of proteins secreted by C. kikuchii. 

Out of 15 spots recovered and sequenced, only spots 4, 26, and 45 were positively 

identified in this study (20% discovery) that show significant homology to other proteins in the 

database. Spot 4 has no significant homology to any known proteins in the database suggesting 

this protein may be an uncharacterized protein of C. kikuchii. Spot 26 showed homology to 

glucan beta 1,3-glucosidase (EC 3.2.1.58), which belongs to a class of hydrolytic enzymes that 

catalyze the cleavage of 1,3-β-D-glucosidic linkages in β-1,3-glucans and are found in many 

fungi (Espino et al. 2010; Fernandez-Acero et al. 2010; Liang et al. 2010; Vincent et al. 2009) 

and plants (Doxey et al. 2007). The secretion of beta-1,3-glucanases by the yeast Pichia 

membranifaciens is one of the possible mechanisms related to its antagonism against Botrytis 

cinerea (Masih and Paul 2002). β-glucanases have a role in many developmental processes 

including fungal cell wall growth and extension (Adams 2004). They are also involved in 

mobilization of β-glucans in response to conditions of carbon and energy source exhaustion 

(Piston et al. 1993). They play important nutritional roles in both saprobic and mycoparasitic 

fungi, and represent primary biochemical offensive weapons for parasitized fungal cell wall 

degradation (de la Cruz et al. 1995; Pitson et al. 1993). β-glucanases play a crucial role in fungal 

cell autolysis that is triggered by many factors (White et al. 2002). Given the various roles played 

by β-glucanases in fungi, it is not surprising to see this protein secreted by C. kihuchii. 
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Table 5.1. List of secreted proteins of Cercospora kikuchii identified by LC-MS/MS. 

 

Spot
w
 Top Hit Organism NCBI accession 

number 

pI
x
 MW 

(kDa)
y
 

MASCOT 

score
z
 

E 

value 

Peptide Sequence 

4 Hypothetical protein 

MYCGRDRAFT_64715 

Mycosphaerella 

graminicola 

EGP82597.1 4.45 60 88 5.7e-

06 

AGLTTAGAVYGLDGR 

26 Hypothetical protein 

BC1G_09079 

Botryotinia 

fuckeliana 

XP_001552608.1 4.34 44 49 0.054 VVGISVGSEDLYR 

45 Hypothetical protein 

MYCGRDRAFT_103841 

Mycosphaerella 

graminicola 

EGP88932.1 6.1 28 51 0.043 AENGGMIALAEAR 

w
: spot number corresponds to spots shown in Fig. 5.1

 

x
: predicted isoelectric point

 

y
: predicted Molecular weight  

z
: see materials and methods (5.2.5) for description of scores 

 

 

 

 

 

 

 

 

 

 

 

 



116 
 

Table 5.2. List of peptide sequences of unknown secreted proteins of Cercospora kikuchii 

identified by de novo sequecing using Mascot Distiller version 2.4.2.0. 

 

Spot No. Peptide sequence 

5 VDP[YT]A[RG] 

DiPYiqEiYDDi 

YG[GC]NEVqPR 

7 iVD[SGC]NA[RG] 

NGAGPFVVNEiSFASR 

RiSSPAMN 

SSPAT[SG][VA|Gi]R 

9 EiSqFiNAAK 

iqEiYTNTiR 

iGiDNVAMDDFYR 

VASEiGiDNVAFDDFYR 

[VA|Gi]SEiAVE[VN|RG]AFDDFYR 

Yii[SG]iiYGSqVDAFR 

YGSqVDAFR 

YiG[GC]SAGGAqGFK 

18 iSSPATRASR 

iiFWASDEPHR 

NGAGPFVVNEiSFASR 

iSSPAMN 

29 YiGYiEqiiR 

PiSGCAEVGTTFEVK 

RPDiYWVDiVPRR 

GViiVGFADDAPiFR 

iDWTEDAVEVPNiDRK 

AGWGiDSDGGiR 

PFYDTYG 

AiTVSGR 

VGFADDAPFiR 

AGEiATVAGW 

30 WYiENATEEFK 

iHEPVDGS[NH]A[SG]iYK 

YVDSGDE[PN]GYiAGGiK 

NNNYYDGiMK 

[VD|Ti]GGVPiFEGFiNYYDVAFK 

31 iPVTDDEV[VP]TGAGR 

SP[GC]WPNVVDW[GC]VSAR 

WTEDAVEFYiDGVK 

NiiAGR 

G[GC]ASAEFPSVYAK 

[NC]ASAEFPSVYAK 
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Table 5.2. (continued) List of peptide sequences of unknown secreted proteins of Cercospora 

kikuchii identified by de novo sequecing using Mascot Distiller version 2.4.2.0. 

Spot No. Peptide sequence 

37 qEFDqAiTiVK 

qDFATFAiYSDNR 

EDFATFANYSDNR 

FYESiGNR 

qEAqRAD[NF]R 

EAEWGiSYAGAiR 

FAiYSDNR 

NGADiDi[Pq]ANAK 

ADVWVNq[VP]NSNTPSPDR 

TGYSSPDR 

YiS[GC]PGAiTFDNT[PA]K 

38 ATFAiYSDNR 

GEAEqFiNAAK 

qGDiiPRVi[GC]R 

iAASSYN 

qDFATFAiYSDNR 

SiDPAVPN 

EAEWGiSYAGAiR 

CETiAGEqSiMCD[CC][PA]K 

41 GAGPFDqGTNDPK 

DADqGTNDPK 

VGEViATADPN 

NPDATAiVEGVPVR 

DATAiVEGV[VP]R 

N[WP]TAiVEGV[VP]R 

ATAiVEGV 

[SGC]N[PD|Vi]ATPS[GC] 

43 [VD|Ti]ADiiiTSiSR 

EiV[GCC]iNAAK 

GNEqFiNAAR 

FATFAiYSDNR 

46 AGPATE 

iE[NA|Gq]TEEFK 

MiiRiSSPAT 

iSSPATGS 

AqAFNPSTiAN[AA]K 

WiENATEEFK 

AqDFCGK 

NFqqSGqVS[GC]K 
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 Spot 45 showed homology to EAP30 family protein. EAP30 encodes for a 30 kDa 

protein, which is part of a multiprotein complex of RNA polymerase elongation factor ELL and 

three ELL-associated proteins (Shilatifard 1998). EAP30 protein shows significant homology to 

the Saccharomyces cerevisiae SNF8 gene, which is required for efficient derepression of glucose 

repressed genes (Schmidt et al. 1999). As C. kikuchii was grown on minimal media containing 

glucose, EAP30 protein might be induced. 

MASCOT search uses an algorithm in which MS/MS spectra of peptide ions generated 

are searched against the available protein information in public databases such as NCBInr and 

SwissProt. If a particular protein is not present in the database, the chance of having a positive 

identification is very low. The reason for such a low discovery rate (20%) in this study is the lack 

of genome sequence information for C. kikuchii. The alternative approach to identify the 

peptides would be to analyze the MS/MS spectra using de novo sequencing software such as 

Mascot Distiller and obtain the peptide sequences by carefully reading the mass spectra. We 

were not able to identify the proteins based on de novo approach. Once genome sequence of C. 

kikuchii is available in future, many secreted proteins can be identified from C. kikuchii, and 

some of the secreted effector proteins  can be used as a potential target for silencing using virus 

induced gene silencing (VIGS), as a means of enhancing resistance to C. kikuchii infection in 

soybeans. 
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CHAPTER 6: EVALUATION OF HOST-INDUCED GENE SILENCING 

(HIGS) STRATEGY FOR CONTROL OF CERCOSPORA KIKUCHII 

INFECTION OF SOYBEANS 
 

6.1 Introduction 

RNA interference (RNAi) is a conserved gene silencing mechanism in eukaryotes 

(Baulcombe 2004). RNAi was first described in Caenorhabditis eleagns in which double-

stranded RNA (dsRNA) induces sequence specific post-transcriptional gene silencing (PTGS) 

(Fire et al. 1998). RNAi is referred to as quelling in fungi (Romano and Macino 1992) and, co-

suppression in plants (Napoli et al. 1990). RNAi is typically achieved by application or 

expression of dsRNA homologous to a target sequence to silence its expression. Various RNAi 

pathways utilize small noncoding RNAs (sRNAs) of about 20 to 30 nucleotides (nt) that act as 

regulators of cellular processes, host defense, transcription and translation (Reviewed in Dang et 

al. 2011). sRNAs include both short interfering RNAs (siRNAs) and micro RNAs (miRNAs). 

Both miRNAs and siRNAs are derived from dsRNA precursors that are recognized and 

processed by Dicer to generate short duplexes (21 to 25 nt). siRNAs are derived from exogenous 

dsRNA (e.g. viral RNA) or endogenous transcript from repetitive sequences, or from transcripts 

that can form long hairpins (Carthew and Sontheimer 2009; Ghildiyal and Zamore 2009; Hannon 

2002), and siRNA-induced silencing requires RNA-dependent RNA polymerases (RdRPs) 

(Allen et al. 2005; Cogoni and Macino 1999; Gent et al. 2010) whereas miRNAs are generated 

from miRNA-encoding genes that generate ssRNA precursor transcripts from hairpin structures. 

siRNAs trigger RNA cleavage or transcriptional silencing mediated by Argonaute proteins and 

generally function in genome defense, while miRNAs can target mRNAs that are not fully 

complementary and cause mRNA degradation and translational repression (Ambros et al. 2003; 

Bartel 2004). RNAi components (Dicer, Argonaute, and RdRP) have been identified in all major 
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branches of eukaryotes (Cerutti and Casas-Mollano 2006; Shabalina and Koonin 2008), 

suggesting that RNAi is an ancient defense and/or regulatory mechanism that existed in the 

common eukaryotic ancestor.  

RNAi has been used commercially to engineer virus resistance in plants by expression of 

viral sequences as transgenes (Frizzi and Huang 2010). RNAi-based silencing showed reduced 

development of root knot nematodes as well as Lepidoptera and Coleoptera insects feeding on 

transgenic plants carrying RNAi constructs against target genes in these pests (Baum et al. 2007; 

Huang et al. 2006; Huvenne and Smagghe 2010; Mao et al. 2007;Sindhu et al. 2009; Yadav et al. 

2006). Tomilov et al. (2008) reported that β-glucuronidase (GUS) expression was suppressed in 

Tryphysaria spp. by expressing dsRNA of the GUS gene in the host plant, and they demonstrated 

the application of host-induced gene silencing (HIGS).  

Like other eukaryotes, fungi are sensitive to RNAi (Nakayashiki 2005; Nakayashiki and 

Nguyen 2008; Nakayashiki et al. 2006). Exploration of HIGS to engineer resistance in plants to 

fungi seems to be a viable alternative based on the outcome from several recent studies. Tinoco 

et al. (2010) showed that tobacco transformed to express a GUS hairpin-structured dsRNA 

specifically silenced GUS transcripts in a GUS-expressing strain of Fusarium verticillioides 

during infection. In planta expression of fungal dsRNA also triggered HIGS in the biotrophic 

pathogens Blumeria graminis and Puccinia striiformis f.sp. tritici. Nowara et al. (2010) used 

virus induced gene silencing (VIGS) in barley using barley stripe mosaic virus (BSMV) to 

produce antisense GTF1 and GTF2 transcripts (1,3-β-glucanosyltransferase) that resulted in 

significant reduction in haustorium formation and the rate of secondary hyphal elongation, 

respectively. Yin et al. (2011) demonstrated HIGS in wheat targeting Puccinia striiformis f.sp. 

tritici (PST) genes in which a highly abundant haustorial PST transcript (PSTha12J12) was 
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silenced by the expression of dsRNA in VIGS mediated BSMV–wheat transformants. Further 

examination of other PST genes revealed that only genes highly expressed in haustoria were 

effectively silenced (Yin et al. 2011). 

 Bean pod mottle virus (BPMV)-VIGS system has been successfully used to test the 

candidate genes for their involvement in resistance to Phakopsora pachyrhizi in soybeans 

(Meyer et al. 2009; Pandey et al. 2011). In this study, a C. kikuchii gene (AHCY) was selected for 

analysis. AHCY codes for adenosylhomocysteinase and in our previous experiments ahcy 

disruption mutants of C. kikuchii produced low levels of cercosporin and also showed reduced 

virulence on soybeans. The BPMV-VIGS system is used to express dsRNA from C. kikuchii 

AHCY gene in soybean plants to determine whether silencing signals can be delivered to the 

pathogen and suppress expression of the fungal genes. The broader goals are to develop a host-

induced gene-silencing system for functional analysis of C. kikuchii genes and for control of C. 

kikuchii infection of soybeans. 

6.2 Materials and Methods 

6.2.1 Construction of BPMV-Derived Vectors 

The Cercospora kikuchii AHCY gene was targeted for silencing using BPMV derived 

vectors (Figure 6.1A; Zhang et al. 2010). The middle and 3′-end fragments of AHCY were 

designated as AHCY #6 and AHCY #7-1, respectively (Figure 6.1B). The AHCY #6 and AHCY 

#7-1 sequences were used to search public sequence databases and showed no homology to the 

available soybean genome sequences. AHCY #6 and AHCY #7-1 were amplified by PCR from 

cDNA of C. kikuchii using primer pairs AHCY_F_176/AHCY_R_614 and 

AHCY_F_491/AHCY_R_883, respectively (Fig. 6.2). The AHCY_F_176/AHCY_R_614 

primers contain a StuI restriction site at the 5′-end and a SalI site at the 3′-end allowing insertion 
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of AHCY #6 in a reverse orientation into the vector pBPMV-IA-V2. The AHCY #6 and #7-1 

were subcloned into pCR
TM

2.1-TOPO
® 

TA Cloning vector (Invitrogen, Carlsbad, CA) to obtain 

pTOPO-AHCY-6  and pTOPO-AHCY-7-1, respectively, and confirmed by DNA sequencing 

using vector specific primers T7 and M13. The AHCY #6 was released from pTOPO-AHCY-6 

by StuI and SalI digestion (Fig. 6.3) and inserted into similarly digested and dephosphorylated 

pBPMV-IA-V2 (Zhang et al. 2010) to generate pBPMV-AHCY-6. StuI and SalI digestion of 

pBPMV-AHCY-6 confirmed the release of the insert with the expected size (428 bp) (Fig. 6.3). 

AHCY #7 was released from pTOPO-AHCY-7-1 by SalI digestion (Fig. 6.3) and inserted into 

similarly digested and dephosphorylated pBPMV-IA-V2 to generate the pBPMV-AHCY-7. SalI 

digestion of the pBPMV-AHCY-7 also confirmed the release of the insert with the expected size 

(241 bp) (Fig. 6.3). pBPMV-PDS-3R (Zhang et al. 2010) was used as a positive control in which 

silencing of the phytoene desaturase (PDS) gene shows photo-bleaching of soybean leaves and 

pBPMV-IA-V2 was used as an empty vector control. 

6.2.2 Delivery of BPMV-Derived Vectors into Soybean Leaves 

For HIGS experiments, pBPMV-IA-R1M (modified RNA1 of BPMV, Zhang et al. 2010) 

was either mixed with pBPMV-IA-V2 (empty vector control), pBPMV-PDS-3R (positive 

control), pBPMV-AHCY-6 (AHCY #6), or pBPMV-AHCY-7 (AHCY #7) and biolistically 

introduced into the primary leaves (vegetative cotyledon stage) of 14-day-old soybean seedlings 

(cultivar ASGROW 6202) by a single particle bombardment (Please see Appendix for detailed 

protocol) as described (Sanford et al. 1993)  using a Biolistic PDS-1000/He system (Bio-Rad 

Laboratories, Hercules, CA), 1.0  μm gold particles, and 1,100-psi rupture disks at a distance of 
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Figure 6.1. A, Diagram of the RNA2 molecule of BPMV. The restriction sites at the end are for 

integration of genes of interests into the vector. B, Diagram of AHCY gene with arrows 

indicating location of primers used to amplify the middle and 3′ fragments of the AHCY gene in 

Cercospora kikuchii. Note: Map is not to scale. 

 

 

Figure 6.2. PCR amplification of two different regions of AHCY gene from Cercospora kikuchii. 

Lane 1, the middle region of AHCY (AHCY #6, 439 bp); lane 2, the 3′ end of AHCY (AHCY #7-

1, 393 bp); and lane M is 1 kb DNA ladder. 
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Figure 6.3. Restriction digestion of pBPMV-AHCY-6 (lane 1) and pTOPO-AHCY-6 (lane 2) 

with StuI and SalI showing release of a 428 bp fragment corresponding to AHCY #6. Restriction 

digestion of pBPMV-AHCY-7 (lane 3) and pTOPO-AHCY-7-1 (lane 4) with SalI showing 

release of a 241 bp fragment corresponding to AHCY #7.  The linearized pBPMV-IA-V2 (lanes 

1 and 3) and pCR™ TOPO®-2.1 (lanes 2 and 4) vector parts are shown as 7.8 kb and 3.9 kb 

fragments, respectively. Lane M is 1 kb DNA ladder. 

 

6 cm. Following bombardment, plants were lightly misted with water and maintained in the 

greenhouse at 20°C with a photoperiod of 16 h. 

6.2.3 Cercospora kikuchii Inoculation of Soybean Plants Carrying BPMV-Derived Vectors 

 C. kikuchii mycelial suspension (blend of 1g mycelium in 100 ml water with 0.001% 

Tween-20) was sprayed onto healthy soybean plants and plants (2 weeks after BPMV 

inoculation by particle bombardment) carrying the empty vector,  pBPMV-AHCY-6, or 

pBPMV-AHCY-7 constructs. Mock inoculated plants were sprayed with 0.001% Tween-20.  
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Immediately after inoculation, the plants were sealed in a plastic bag with moist paper towels (to 

maintain 100% RH) and kept in the dark for 24 h. Later the plants were transferred to greenhouse 

benches and the development of symptoms was observed until 14 days post inoculation (dpi). 

6.2.4 Soybean Leaf Tissue Collection 

 Leaves were collected from mock- and C. kikuchii-inoculated healthy (4 plants), empty 

vector (4 plants), AHCY #6 (4 plants), or AHCY #7 (5 plants) bombarded soybean plants at 0, 7 

and 14 dpi. For each treatment, leaves collected from individual plants were considered as one 

sample. Individual plant is considered as a replicate (minimum of 4 plants). The leaves were 

immediately frozen in liquid nitrogen and stored at -80°C. 

6.2.5 Total RNA Isolation and RT-PCR Analysis 

Leaf tissue was ground in liquid nitrogen, and total RNA was extracted using RNeasy 

Plant Mini Kit (Qiagen) and treated with DNase I to eliminate residual DNA contamination. 

Total RNA was extracted from the leaves of ASGROW 6202 soybean infected with BPMV 

carrying the RNAi target regions of AHCY of C. kikuchii. RNA also was isolated from healthy 

plants and plants which were infected with the empty pBPMV-IA-V2 vector carrying no fungal 

sequences. Reverse transcription was conducted with 500 ng of total RNA using Taqman® 

reverse transcription reagents (Applied Biosystems, Foster City, CA) according to the 

manufacturer’s guidelines. The level of AHCY expression in soybean leaves was determined by 

comparative quantitative real-time polymerase chain reaction (qRT-PCR) using 18S rRNA to 

normalize RNA amounts. Real-time PCR assays were performed using SYBR
®
 Green PCR 

Master Mix (Applied Biosystems) in a 25 μl reaction volume with 1 μl of reverse transcribed 

cDNA, 12.5 μl 2X SYBR
®
 Green Master Mix, and 1 μM of each primer. ABI PRISM 7000 

Sequence Detection System was used for real-time PCR under standard conditions.  The same 

protocol was used for 18S rRNA (internal control) primers. Specific primers for AHCY gene 



126 
 

were selected from regions outside of those used in RNAi target regions for AHCY #6 and 

AHCY #7 and were designed using primer design software available at http://www.idtdna.com 

(Table 6.1). Melting curve analysis was conducted to confirm amplification of a single product 

and the absence of primer dimers. Relative RNA expression of AHCY was determined using the 

∆∆Ct method ([Ct (18S rRNA) – Ct (AHCY)]AHCY #6 or #7 - [Ct (18S rRNA) – Ct (AHCY)]empty vector) (Pfaffl 

2001). 

6.2.6 DNA Isolation and Quantitative Real-Time PCR Assessment of C. kikuchii 

Accumulation 

Leaf tissue was ground in liquid nitrogen, and DNA was extracted using a GenElute
TM

 

Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St Louis, MO) according to the 

manufacturer’s instructions. All DNA samples were diluted to 10 ng/µl according to DNA  

Table 6.1. List of primers used in this HIGS study. 

 

Primer Sequence (5′ to 3′) 

AHCY_F_176 GAGGCCTCGCACCATCCATC 

AHCY_R_614 AACGTCGACGGCGGTCTTCTTCA 

AHCY_F_491 GAGGCCGAGACATCATTGTTGG 

AHCY_R_883 TGAGTCGACCCTCCTCTTGGA 

BPMV-IA-F1 TGTGCTGCTGTTGGCTTGAC 

BPMV-IA-R1 TCAGTTTGCCCATAAACCTAT 

R2-3195F CCTCATTGGTACAAGTGTTT 

Gm-PDS-3F CGCGGATCCGCAAGGAATATTATAGCCCAAA 

AHCY_R_510 AACAATGATGTCTCGGCAACC 

AHCY_R_816 GACATACTTGGTGGCGAACTG 

hAHCY-RT-F2 ACTCAAGATCACGCTGCC 

hAHCY-RT-R2 CATCTCTGGGTACTTGGTGTG 

CKCTB6-2F CACCATGCTAGATGTGACGACA 

CKCTB6-2R GGTCCTGGAGGCAGCCA 

 

quantification based on absorption at 260 nm using a NanoDrop ND-1000 Spectrophotometer 

(Thermo Fisher Scientific Inc., Wilmington, DE). Real-time PCR using primers CKCTB6-

2F/CKCTB6-2R and fluorescent probe (CKCTB6-PRB: 5'-FAM-



127 
 

CTCGTCGCACAGTCCCGCTTCG-TAMRA-3') targeting the C. kikuchii CTB6 gene, was 

performed with MicroAmp optical 8-tube strips and optical 8-cap strips (Applied Biosystems, 

Foster City, CA) in the ABI 7000 sequence detection system (Applied Biosystems) under the 

standard conditions. Each reaction contained 7.5 µl 2X TaqMan Universal PCR Master Mix 

(Applied Biosystems), 1 µl of 10 µM each primer (final concentration 666 nM each primer), 0.6 

µl of 10 µM (final concentration of 400 nM) probe and 1 µl of 10 ng or 100 ng template DNA. 

The absolute quantity of DNA of C. kikuchii in leaf samples, which was used to determine the 

level of infection by C. kikuchii, was calculated by using the Ct value of each sample and the 

regression equation obtained with DNA standards of C. kikuchii (y = -1.434ln(x) + 37.913), with 

x being pg of C. kikuchii DNA and y being Ct value. Amounts of DNA of C. kikuchii are 

expressed as picograms per nanogram soybean DNA. 

6.3 Results 

6.3.1 Successful Delivery of VIGS Vectors into Soybeans 

 The biolistic inoculation method used in this study to deliver the modified BPMV was 

successful. After approximately 14 days, plants inoculated with recombinant pBPMV-IA-V2 

constructs developed typical BPMV symptoms such as crinkled leaves with a mosaic of light and 

dark green regions and photobleaching was observed in positive control plants bombarded with 

pBPMV-IA-PDS-3R (Fig 6.4). Reverse transcription (RT)-PCR was performed with pBPMV-

IA-V2 vector-specific forward primer R2-3195F and each insert-specific reverse primer, Gm-

PDS-3F for PDS, AHCY_R_510 for AHCY #6, and AHCY_R_816 for AHCY #7 to examine 

the integrity of the recombinant BPMV RNA2. A single band with the expected size was 

observed for each BPMV RNA2 carrying the corresponding PDS or AHCY insert (Fig. 6.5) 
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demonstrating that the PDS and AHCY fragments were stably maintained during the virus 

infection. 

6.3.2 Silencing expression of Cercospora kikuchii AHCY Transcript in Soybean using 

BPMV as a HIGS Vector 

 

In order to determine whether C. kikuchii genes can be silenced in planta, the RNAi 

target regions (AHCY #6 and AHCY #7) were chosen to be C. kikuchii specific by homology 

searches to all soybean sequences in the database to avoid nonspecific silencing of plant genes. 

The level of AHCY expression in modified virus inoculated plants was compared with vector 

control and healthy plants.  At 7 dpi, we detected 3.5-fold (ranged from 2.4 to 4.4-fold in 3 

plants) and 6.6-fold (ranged from 4.1 to 9.3-fold in 5 plants) reduction in AHCY transcript levels 

in soybean plants expressing HIGS gene constructs AHCY #6 and AHCY #7 respectively, 

compared to vector control. However, by 14 dpi, AHCY transcript levels in both AHCY #6 and 

ACHY #7 were similar to vector control (data not shown). 

 

Figure 6.4. Symptoms induced by blank BPMV vector or modified recombinant virus expressing 

foreign genes on leaves of soybean cultivar ASGROW 6202. pBPMV-IA-R1M was used as the 

RNA1 for all inoculations. A, Vector soybean plants were bombarded with the empty pBPMV-

IA-V2. B, PDS plants were bombarded with the modified virus containing pBPMV-PDS-3R as 

RNA2. C and D, AHCY #6 and AHCY #7 plants that were bombarded with modified virus 

containing pBPMV-AHCY-6 and pBPMV-AHCY-7 as RNA2, respectively. AHCY #7 induced 

strong viral symptoms compared to AHCY #6. Plants were photographed at 4 weeks post 

inoculation. 
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Figure 6.5. Empty vector (pBPMV-IA-V2) amplified with primers BPMV-IA-F1 and BPMV-IA-

R1 (lane 1) showing expected 1.1 kb fragment with no insert. RT-PCR analysis using the 

forward primer R2-3195F and each of the reverse primer corresponding to the PDS, AHCY #6, 

and AHCY #7 target sequence in each of the HIGS constructs to confirm the PDS (lane 2), 

AHCY #6 (lane 3) and AHCY #7 (lane 4) fragment insertions. Lane M is 1 kb DNA ladder.  

 

6.3.3 Inoculation of Soybeans Plants Carrying HIGS Constructs with Cercospora kikuchii 

  

Soybeans bombarded with two HIGS gene constructs (AHCY #6 and AHCY #7), vector 

control constructs with no fungal genes, and healthy plants were inoculated with mycelial 

suspension of C. kikuchii.  At 7 dpi, healthy and vector control plants developed numerous 

necrotic lesions, whereas in AHCY #6 and AHCY #7 plants had few necrotic lesions (Fig. 6.7). 

Real time PCR analysis of DNA samples isolated from C. kikuchii inoculated soybean plants that 

had been pre-bombarded with HIGS constructs found that by 7 dpi, C. kikuchii biomass 

decreased by 16-fold and 18-fold fold in AHCY #6 and AHCY #7 plants respectively (Fig 6.8). 

We saw good negative correlation between AHCY transcript levels and C. kikuchii biomass in 

AHCY #6 (r = -0.81) and AHCY #7 (r = -0.72) plants. 
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Figure 6.6. RT-PCR analysis showing C. kikuchii AHCY transcript levels 7 dpi in soybeans 

carrying recombinant HIGS vectors. AHCY transcript levels in AHCY #6 and AHCY #7 were 

normalized against empty vector AHCY transcript levels and 18S rRNA was used as internal 

reference. Data is the mean of three or more individual plants per each treatment and error bars 

indicate standard error of the mean. 

 

 
 

Figure 6.7. Symptoms on soybean plants carrying recombinant HIGS vectors after7 days after 

Cercospora kikuchii inoculation. Healthy (A) and Vector control (B) leaves showed many 

necrotic lesions, AHCY #6 plants (C), and ACHY #7 (D) leaves showed few necrotic lesions. 
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Figure 6.8. Quantitative real-time PCR analysis showing differential accumulation of C. kikuchii 

at 7 dpi in soybeans carrying recombinant HIGS vectors. Leaves collected form individual plant 

constitute a sample. Data indicate mean for healthy (4 plants), empty vector (3 plants), AHCY #6 

(3 plants), and AHCY #7 (3 plants) and error bars indicate standard error of the mean. 

 

6.4 Discussion 

 HIGS assay with the AHCY gene of C. kikuchii showed that upon successful inoculation 

of soybeans with C. kikuchii, BPMV carrying parts of the AHCY gene could silence the AHCY 

gene of C. kikuchii in planta.  The AHCY transcript levels in AHCY #6 and AHCY #7 plants 

were reduced compared to empty vector control at 7 dpi. Necrotic spots typical of C. kikuchii 

infection seen in greenhouse soybean inoculations with fungal mycelial suspensions, were 

evident at 7 dpi. Healthy and vector control plants developed extensive necrotic lesions 

compared to AHCY #6 and AHCY #7 (Fig. 6.7). In our previous study, ahcy disruption mutants 

produced significantly less cercosporin compared to wild type and also were less virulent on 

soybeans. We saw the similar results using this HIGS study by silencing the AHCY transcript. 

 There was a clear difference in C. kikuchii biomass accumulation in the vector control, 

AHCY #6 and AHCY #7 plants at 7 dpi with a rapid increase in C. kikuchii biomass in vector 
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control plants compared to AHCY #6 and AHCY #7 plants. The data are in agreement with 

reduction in AHCY transcript levels in both AHCY #6 and AHCY #7 at 7 dpi.  These results are 

similar to other HIGS studies with fungi. HIGS was promising in the Blumeria graminis-barley 

interaction, in which effector gene Avra10 was silenced resulting in reduced fungal development 

in the absence of matching resistance gene Mla10 (Nowara et al. 2010). Yin et al. (2011) also 

achieved silencing of highly expressed genes in haustoria of rust fungi belonging to Puccinia 

spp. by using Barley Stripe Mosaic Virus (BSMV) as a vector.  

The VIGS approach was originally developed for silencing plant genes for functional 

genomics studies, and now by inserting a piece of pathogen genes in the VIGS vectors, it opens 

new arenas of research for developing disease resistance in host plants by targeting essential 

virulence/pathogenicity factors of pathogens. In plants, the mobile RNA silencing signals are 

transported systemically mainly through phloem to all plant parts (reviewed in Melnyk et al. 

2011). In the case of biotrophic pathogens like rusts dsRNA fragments can enter fungal cells 

through haustoria (Yin et al. 2011).  However, the movement of dsRNAs in to the mycelia of C. 

kikuchii in the infected soybean has to be demonstrated. Future studies are needed to demonstrate 

the presence of gene-specific dsRNA in the fungus, which will be key in determining whether 

HIGS can be used to control fungal disease in soybean. 
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CHAPTER 7: GENERAL CONCLUSIONS AND PROSPECTS FOR 

FUTURE RESEARCH 

 
7.1 General Conclusions 

 CLB symptoms are visible at R5 growth stage of soybeans 

 PCR primers designed based on C. nicotianae CTB gene cluster can amplify specific 

gene product in C. kikuchii, indicating that some CTB genes are conserved across 

Cercospora spp. 

 

 The qPCR assay developed based on CTB6 gene is highly sensitive for the detection of C. 

kikuchii with a detection limit of 1 pg of genomic DNA 

 

 The qPCR assay can detect C. kikuchii as early as 22 DAP in field grown soybeans 

 

 The qPCR also can be used to quantify C. kikuchii biomass in soybean leaves at different 

growth stages 

 

 The C. kikuchii biomass showed a slow increase during vegetative stages followed by a 

quick increase during late reproductive stages 

 

 Multiple fungicide applications beginning from late vegetative stages until reproductive 

stages reduced the C. kikuchii levels and development of CLB symptoms 

 

 Fungicides tested in this study differed in their effectiveness in controlling CLB 

symptoms 

 

 C. kikuchii accumulated up to 6-fold higher cercosporin under light compared to dark 

 

 Differential expression of proteins was detected in C. kikuchii grown on CM under light 

and dark. More proteins were up-regulated under light compared to dark 

 

 HNR protein (Spot 57) up-regulated under light showed homology to RDT1 from Elsinoё 

fawcettii and suggests that melanin biosynthesis in C. kikuchii may be tightly linked to 

cercosporin biosynthesis 

 

 AHCY (Spot 34) and S-adenosyl methionine synthetase (Spot 28) proteins were up-

regulated under light, indicating a direct relationship between cysteine and methionine 

metabolism and cercosporin biosynthesis 

 

 Up-regulation of superoxide dismutase (Spot 26) in general under light indicates a 

possible role of this protein in protecting C. kikuchii from harmful reactive oxygen 

species generated by photosensitizing cercosporin 
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 hnr and ahcy disruption mutants showed a significant reduction in cercosporin production 

in vitro suggesting their role in regulating cercosporin biosynthesis 

 

 hnr and ahcy disruption mutants showed a reduced virulence in both detached leaf assay 

and greenhouse inoculations suggesting their role in pathogenicity on soybeans 
 

 C. kikuchii secreted a large number of proteins in vitro and three of them have been 

identified using mass spectrometry. One is a potential glucan endo-1,3-beta-glucosidase 

based on sequence homology, which is known to play important nutritional and 

colonization roles in both saprobic and mycoparasitic fungi 

 

 AHCY gene of C. kikuchii was silenced in C. kikuchii infected soybean tissues using the 

HIGS approach resulting in reduced AHCY transcript levels and also reduced 

accumulation of C. kikuchii biomass 

 

7.2 Prospects for Future Research  

 

 This qPCR assay can be exploited to screen different soybean varieties for resistance to 

C. kikuchii under field conditions by quantifying the fungal biomass 

 

 This qPCR assay can be used as a testing tool to determine if asymptomatic soybean 

seeds are infected or infested by C. kikuchii, and to determine the efficacy of different 

fungicide treatments in controlling CLB 

 

 Development of qPCR assay based on ITS sequences unique to C. kikuchii may further 

increase the present detection limit of 1 pg to fg of genomic DNA  

 

 Lack of correlation between C. kikuchii biomass and CLB severity in CP 5892 variety 

suggests that measuring cercosporin levels in leaf tissues may be another assessment 

 

 Since some cercosporin is also produced under dark, proteomics study using cercosporin 

producing and non-producing conditions might be more useful in identifying key proteins 

involved in cercosporin biosynthesis 

 

 Comparing protein profiles of C. kikuchii wild-type and hnr/ahcy disruption mutants may 

lead to discovery of other proteins involved in regulation of cercosporin biosynthesis 

 

 Sequencing C. kikuchii genome using the currently available next generation sequencing 

technologies might help in identifying the secreted proteins of C. kikuchii 

 

 Verifying the presence of small RNAs in soybean tissues generated by HIGS approach 

will provide more conclusive evidence as to whether HIGS is functional in soybean 
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APPENDIX 

A. Preparation of gold particles 

1. Transfer 30 mg gold particles (Bio-Rad Cat # 165-2263) to a 1.5 ml  low retention 

microcentrifuge tube (Phenix Research Products Cat # MAX-815S ), and vortex 

vigorously in 0.5 ml of 100% (v/v) ethanol 

2. Incubate at room temperature for 10 min 

3. Pellet the gold particle by centrifugation @ 15,000 RPM for 2 min, decent the ethanol 

4. Wash three times with 0.5 ml of sterile distilled water (SDW) each time 

5. Resuspend gold particles in 500 µl of SDW and store as aliquots of 25 µl in 1.5 ml tubes 

at -20°C until further use 

B. Coating of gold particles with Plasmid DNA and particle bombardment 

1. To a 25 µl aliquot of prepared gold particles in 1.5 ml tube, add the following while 

vigorously vortexing after adding each component (very important to ensure uniform 

coating) 

a. 2.5 µl of pBPMV-IA-RIM DNA (1 µg/µl) – RNA1 

b. 2.5 µl of pBPMV-IA-V2 DNA (1 µg/µl) – RNA2 or pBPMV-IA-V2 carrying 

gene of interest 

c. 50 µl of 50% glycerol 

d. 25 µlof 2.5 M CaCl2  

e. 10 µl of 0.1 M freshly prepared spermidine (Sigma, Cat # S-0266) 

 

2. Centrifuge at 14,000 RPM and discard the supernatant 

3. Wash particles with 70 µl of 70% isopropanol 

4. Wash particles with 70 µl of 100% isopropanol 

5. Resuspend the particles in 25 µl of 100% isopropanol 
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6. Wash macrocarrier discs (Bio-Rad, Cat # 165-2335) with 100% isopropanol and air dry 

7. Load 6 µl of prepared gold particles onto center of the macrocarrier and spread uniformly 

using a yellow pipet tip 

8. Load rupture disc (Bio-Rad Cat # 165-2329), prepared macrocarrier, and stopping screen 

(Bio-Rad Cat # 165-2336) into sample holder 

9. Place 14 days old soybean seedlings in the bottom chamber with primary leaves spread 

out directly under the macrocarrier 

10. Press the vacuum switch 

11. Press the fire switch and hold it until you hear the shooting sound 

12. Remove the plants from chamber, lightly mist with water 

13. Transfer the plant to a growth chamber that maintains 22°C and 16 h of light period 

14. After 1 week, transfer the plants to big pots in the greenhouse and add fertilizer 

15. Observe the development of viral symptoms in 2 weeks on newly developing trifoliates 

 

(This protocol is adapted from Dr.  Chunquan Zhang, Alcorn State University) 
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