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ABSTRACT 

In Louisiana, sweetpotato (Ipomoea batatas) is infected in Louisiana by the four 

ubiquitous potyviruses: Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus G 

(SPVG), Sweetpotato virus 2 (SPV2) and the strain of SPFMV previously known as the common 

strain, recently renamed as Sweetpotato virus C (SPVC).  These four viruses belong to the 

Potyviridae family, with single stranded RNA of ~11kb.  In this group of plant viruses, a single 

polyprotein is coded entirely but later cleaved into ten mature proteins: P1, HC-pro, P3, 6K1, CI, 

6K2, NIa-VPg, NIa-Pro Nib and Coat Protein (CP).  In sweetpotato potyviruses, two additional 

open reading frames produced by polymerase slippage called PIPO and PISPO act as RNA 

silencing suppressors.  Despite the minimal differences at the nucleotide level in these four 

viruses, their titers, vector transmissibility and presence in the field are different.  The objectives 

of this research were: (i) redesign the qPCR assay of SPFMV and SPVC and determine the best 

organ and sampling time after sweetpotato transplanting to detect each of these four viruses; (ii) 

determine if SPVC is the missing element in reproducing the observed yield reduction of natural 

infections that occur in the field and; (iii) determine the complete sequences of nine isolates from 

sweetpotato production fields in Louisiana and analyze the genetic structure and variability 

compared to other isolates present in the world.  Results suggested that leaf tissue at the 3rd week 

after transplanting is the best organ to sample to determine if the plant is infected with the four 

potyviruses.  The inclusion of SPVC did not reproduce the storage root reduction observed under 

naturally infected plants and, the molecular variation was not high from other isolates previously 

sequenced but six isolates report recombination events in the CP and P1 region of their genome. 
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CHAPTER 1: LITERATURE REVIEW 

1.1 The plant 

Sweetpotato [Ipomoea batatas L. (Lam); Convolvulaceae] is the 7th most important 

agricultural commodity in the world.  It ranks 1st by quantity and value in China, and it is 6th and 

14th in the United States, respectively. (FAO, 2012).  Sweetpotato is a versatile plant being able 

to be cultivated under high and low input agricultural systems.  How it is used depends on the 

regions and the way that it is produced; varying from animal feed, industrial (ethanol 

production), to being one of the primary sources of carbohydrates, protein and nutrients (such as 

carotenoids, vitamin C, iron, among others) in some countries (Clark et al., 2013a).  In the 

United States, it has been traditionally consumed during the holidays and was an important 

source of food during the depression in the 1930’s, but is becoming more popular because of its 

nutritional value and availability of value-added products (Clark et al., 2012b).  Sweetpotato is 

known by other names such as batatas, camote, Louisiana yams or kumara.  These differences in 

nomenclature led growers to confuse it with other crops creating agricultural management 

problems as well as researchers when they describe sweetpotato morphology in comparison to 

other root and tuber crops (Villordon et al., 2014).  Sweetpotato is a dicotyledonous plant of the 

morning glory family.  It is believed to have originated in central and south America, but 

evidence suggests that it might have had a prehistoric distribution in Oceania.  Sweetpotato is a 

vegetatively propagated perennial crop that is grown as an annual.  It can form storage roots 

from the adventitious roots produced from the leaf gaps in nodes (Firon et al., 2009).  The genes 

involved in storage root initiation have not been fully described yet due to the hexaploid genome 

of 90 chromosomes of the plant, compared to the 30 chromosomes that most diploid species in 

the Ipomoea genus have (used as ornamentals or common weeds) (Kays, 1985).  However, it has 

been reported that external and internal stimuli determine if an adventitious root differentiates to 

become a storage root (Firon et al., 2009; Villordon et al., 2012). 

 

1.2 The viruses 

The reduction of the storage root quality and yield due to virus accumulation, pathogens, 

and mutations is known as cultivar decline (Villordon and Labonte, 1995).  The most important 

stimuli that are associated with yield variations are pathogens, where plant viruses of the 

Potyviridae family have been described as the culprit behind cultivar decline in the U.S. (Clark 

and Hoy, 2006).  Potyviruses belong to the family Potyviridae and the genus Potyvirus, where 

Potato virus Y is the type species of this group (Adams et al., 2011).  Sweetpotato potyviruses 

have filamentous particles approximately 850 nm long, restricted host range (affecting primarily 

the Convolvulaceae family) and are vectored in a non-persistent manner by many aphid species, 

some of them more efficiently than others in sweetpotato (Wosula et al., 2012).  Eriophyid mites, 

the fungus Polymyxa graminis, and the whitefly Bemisia tabaci (Shukla et al., 1994) transmit 

more distantly related viruses in the family.  The genome of sweetpotato potyviruses ranges from 

10,731 to 10,800 nt excluding the 3’ poly (A) tail (Li et al., 2012).  The genome includes several 

genes such as P1 (proteinase; terminal step in polyprotein processing, host identification); HC-

pro (aphid transmission; proteinase, polyprotein processing); P3 (unknown); 6K1 (unknown, 

possibly polyprotein genome replication); CI (polyprotein genome replication, RNA helicase, 

unwinding of dsRNA, membrane attachment); 6K2 (unknown, possibly polyprotein genome 

replication); NIa-VPg (polyprotein genome replication, primer); NIa-pro (proteinase, major 
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aspects of polyprotein processing); Nib (polyprotein genome replication, RNA-dependent RNA 

polymerase) and CP (RNA encapsidation, aphid transmission, cell-to-cell movement) (Shukla et 

al., 1994; Salvador et al., 2008).  In sweetpotato potyviruses, another open reading frame, called 

Pretty Interesting Sweet Potato Potyvirus ORF (PISPO) is much conserved among this group of 

viruses (Chung et al., 2008). 

In the United States, four potyviruses: Sweetpotato virus G (SPVG), Sweetpotato virus C 

(SPVC), Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato virus 2 (SPV2); have been 

documented to date (Clark et al., 2012).  This group of viruses has been transmitted by grafting, 

but not seed or contact between plants (Loebenstein et al., 2009).  Genetically, they are 

conserved in the C-terminal half of their coat protein gene (CP) (Li et al., 2012).  Titers in 

infected plants and vector transmissibility are most efficient when they are co-infected with other 

viruses (Kokkinos et al., 2006; Wosula et al., 2012).  The best-known example of mixed-

infections is called the Sweet potato virus disease (SPVD) when the potyviruses are co-infected 

with Sweetpotato chlorotic stunt virus (SPCSV), increasing potyvirus titers (Gutierrez et al., 

2003).  Their detection has been based on biological (grafting), serological (ELISA) or nucleic 

acid (Polymerase Chain Reaction (PCR)/ quantitative polymerase chain reaction (qPCR)) assays.  

However, similar symptoms have been documented in indicator plants such as I. setosa 

(Untiveros et al., 2008).  Similarly, cross reactions with antibodies between SPVG-SPV2 and 

SPVC-SPFMV (Souto et al., 2003), which may be due to high sequence similarity in the CP 

region (Li et al., 2012), leave only nucleic acid methods available for accurate detection of 

individual viruses.  A one-step multiplex RT-PCR for the four viruses was developed (Li et al., 

2012) that allows simultaneous detection of SPFMV, SPVC, SPCG, and SPV2.  For 

quantification,  individual qPCR tests for the relative quantification of SPVG, SPV2, SPCSV, 

and Sweet potato leaf curl virus (SPLCV) were developed (Kokkinos et al., 2006).  Another set 

of qPCR assays were developed for detection of SPFMV, SPVG, and SPV2 (Ling et al., 2010).  

Unfortunately, SPVC and SPFMV were reclassified as different species (Untiveros et al., 2010) 

after the design of the Kokkinos primers and probes, which are not specific enough to 

differentiate these species.  Conserved regions such as CP (Li et al., 2012) and P1 (Untiveros et 

al., 2010) have been used to differentiate the four viruses.  It is worth mentioning that the 

recently described Pretty Interesting Sweet Potato virus open reading frame (PISPO; 207-239 

AA residues), produced by polymerase slippage (Univeros et al., 2016) is not conserved among 

the four viruses (Li et al., 2012). 

SPVG was first described in China, where it is also widespread (Colinet et al., 1998).  It 

has been reported in other parts of the world such as Peru and the United States (Untiveros et al., 

2007; Souto et al., 2003).  This virus is vectored by the aphids A. gossypii and M. persicae 

(Wosula et al., 2012), it is also mechanically transmissible to various Ipomoea spp. such as I. 

codatotriloba, I. hederacea, I. nil, I. setosa and I. tricolor (Brunt et al., 1996; Souto et al., 2003).  

Genetically, SPVG is very similar to SPV2 in amino acid length (618aa), but differs from SPVC 

and SPFMV (664aa-724aa).  All are significantly larger than other potyviruses (Li et al., 2012).  

Together they share identities of 63.5-64.6% with SPFMV and 62.6-64.1% with SPVC, which 

makes them closely related but different potyvirus species, according to the criteria to describe 

species (73 and 86% homology for complete genome and polyprotein respectively) in 

potyviruses (Adams et al., 2005). 
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SPVC was proposed to be separated as a different species from SPFMV due to 

differences in the P1 region (Untiveros et al., 2010).  It was previously known as SPFMV-C 

(common strain) a distinct strain of SPFMV [East African (EA); ordinary (O) and russet crack 

(RC)] classified based on the CP sequences (Kreuze et al., 2000).  Isolates of strains RC, O and 

EA are closely related to each other, but are phylogenetically distant from strain C (Tairo et al., 

2005).  Strains RC, O and C are distributed worldwide, whereas isolates of the EA strain have 

been largely restricted to countries in East Africa (Kreuze et al., 2000; Mukasa et al., 2003).  

Besides serology, there is no pertinent information about vector efficiency or symptoms that 

differentiate SPVC from the other potyviruses (Kennedy and Moyer, 1982). 

SPFMV was first described and characterized in 1978 (Moyer and Kennedy, 1978).  It 

remained as the only characterized virus known in sweetpotato until 1998, but advances in 

molecular biology lead to a characterization of several species that diverge in their sequence.  

SPFMV is non-persistently transmitted by aphids M. persicae (Sulzer), and A. gossypii Glover 

(Souto et al., 2003; Wosula et al., 2012).  It can be mechanically transmitted to various Ipomoea 

spp. such as I. batatas, I. setosa, I. nil, I. incarnata and I. purpurea, and some strains of 

Nicotiana benthamiana, N. clevelandii, Chenopodium amaranticolor and C. quinoa (Brunt et al., 

1996). 

SPV2 was first described in Taiwan (Loebenstein et al., 2009).  It was also known as 

Sweet potato virus II, Sweet potato virus Y and Ipomoea vein mosaic virus.  It is found in several 

places in the world including the United States (Souto et al., 2003).  It induces chlorotic bands 

along sections of veins and discrete mosaic along the entire length of the veins in I. setosa, and 

vein mosaic in I. nil and I. tricolor (Ateka et al., 2007; Souto et al., 2003).  It is mainly found in 

mixed infections with SPVG and SPFMV and spreads slowly in the field (Clark et al., 2012).  

The isolate found in Taiwan is non-persistently transmitted by M. persicae similarly to a 

California isolate (Ateka et al., 2004; Clark personal communication), but the Louisiana isolate 

has not been successfully transmitted by A. gossypii or M. persicae (Souto et al., 2003).  It is 

mechanically transmitted to I. nil, I. setosa, I. tricolor, and several species of the genera 

Chenopodium, Datura, Nicotiana, and Ipomoea (Ateka et al., 2007; Loebenstein et al., 2009; 

Souto et al., 2003). 

 

1.3 The stimuli for storage root development and cultivar decline 

Cultivar decline is defined as the reduction of the storage root quality and yield due to 

accumulation of viruses, other pathogens and mutations in the propagating material (Bryan et al., 

2003; Villordon and Labonte, 1995; Clark et al., 2002).  It is not entirely clear what biotic or 

abiotic internal/external stimuli can affect the storage root initiation and/or storage root bulking 

(Villordon and Clark, 2014).  In sweetpotato, the most important physiological process is storage 

root initiation, which is defined as the appearance of cambia around the protoxylem and 

secondary xylem elements and determines sweetpotato yield (Wilson and Lowe, 1973; Firon et 

al., 2009). 

 Sweetpotato root architechture has been affected by several factors.  For example, in 

storage root initiation, differential expression profiles between fibrous roots and initiating storage 

roots indicate down-regulation of classical root functions like transport and lignin biosynthesis 

and upregulation of carbohydrate metabolism and starch biosynthesis (Firon et al., 2013).  
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Lateral root development was associated with the competency of adventitious roots to undergo 

storage root initiation (Villordon et al., 2012).  Together, root system architecture (lateral root 

initiation, morphogenesis, emergence and growth), promotes a better water-efficiency and 

nutrient uptake (Casimiro et al., 2003).  These previous studies suggested that both internal and 

external cues could drive the sweetpotato root system in different development rates. 

Internal cues for lateral root formation include auxins (De Smet et al., 2012; Wang and 

Estelle, 2014), ethylene (Ivanchenko et al., 2008), abscisic acid (Lopez-Buncio et al., 2002), 

cytokinin/strigolactones (Koltai, 2011) and carbohydrate availability (Ruyter-Spira et al., 2011). 

External cues include water availability in the growth substrate (Deak and Malamy, 2005) and 

nutrients such as ammonium (NH4) (Lima et al., 2010), nitrate (NO3) (Zhang et al., 1998), 

phosphorus (Johnson et al., 1996), sulfate (Kutz et al., 2002) and iron (Lopez-Bucio et al., 

2003).  Water availability in the growth substrate (Villordon et al., 2012) and nitrogen 

availability (Villordon et al., 2013) altering root architecture have been recently validated to 

affect storage root production in ‘Beauregard’ sweetpotato leading the rest of the stimuli for 

further investigation. 

In terms of sweetpotato plant viruses, potyviruses have been attributed as the main factor 

in yield decline in the U.S. due to their ubiquity in field surveys (Valderde et al., 2007) and their 

accumulation due to the vegetative propagation of the sweetpotato crop (Clark et al., 2012).  

Mixed infections of SPVG, SPFMV and SPV2 did not replicate the amount of yield lost 

observed in natural infections (Clark and Hoy, 2006), leaving the question of what is the missing 

component of sweetpotato cultivar decline in the U.S.  Since SPVC had not been evaluated 

previously for its role, the hypothesis was considered the SPVC was the missing component. 

SPVC was reported to have higher number of clean read tags in sweetpotato roots compared to 

other parts of the plant and to the other three potyviruses in next-genetion sequencing data, 

further suggesting its potential importance (Guo et al., 2014). 

 

1.4 Real-time PCR 

Real-time polymerase chain reaction (PCR) or quantitative PCR (qPCR) was introduced 

in 1992 as a modification of regular PCR (Huguchi et al., 1992).  The reaction starts as a regular 

PCR where theoretically the amount of initial DNA is doubled after each cycle resulting in an 

exponential amplification, but the efficiency starts to decrease when the reagents in the reaction 

are depleted.  Due to this factor, qPCR is divided into three phases: exponential (where the 

reaction proceeds with 100% of efficiency); linear or non-exponential (where the reagents start 

to decrease) and plateau (where the reagents are depleted and the reaction stops).  The 

exponential line is visualized due to probes that emit fluorescence after every cycle 

amplification. 

During the past decade, qPCR has been used for genotyping, quantifying viral load in 

patients, assessing gene copy number and gene expression levels.  It offers several advantages 

over other methods for quantification. These advantages include small amounts of template, high 

reproducibility; the capability of analyzing more than one target in the same reaction, increased 

speed due to reduced cycle number, lack of post-PCR gel electrophoresis for the visualization of 

the products and higher sensitivity (Fraga et al., 2008).  Despite these advantages, it also requires 

a strategic planning by several steps.  
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The first step in the strategic planning requires obtaining high quality of template (DNA 

or RNA).  RNA compared to DNA is very unstable and RNases -enzymes that degrade RNA, are 

ubiquitous in nature and highly stable compared to DNases –enzymes that degrade DNA.  This 

problem can be solved with clean laboratory techniques and the addition of RNase inhibitors at 

the end of the extraction.  The RNA template differs from DNA that it needs to be converted into 

protein-encoding genes (cDNA) by an RNA-dependent DNA polymerase enzyme called reverse 

transcriptase.  This enzyme is derived from retroviruses such as an Avian myeloblastosis virus 

(AMV) and the Moloney strain of Murine leukemia virus (MMLV).  The second step requires 

optimizing the technical aspects in the experiment.  These include the design of primers (specific 

to the target of interest, amplify short amplicons -<300bp and that do not from dimers), probes 

(non-specific dyes -SYBR green or strand-specific fluorescent probes -Taqman), annealing 

temperatures and optimal concentration of the other reagents.  Finally, the real-time analysis and 

quantification that include negative and positive controls and replication of the same sample to 

avoid pipetting errors. 

To quantify the expression of the different genes of interests and make comparisons, the 

cycle threshold (CT) is used.  The threshold is described as the fluorescence signal above the 

background to be considered a reliable signal.  If the threshold is set too low, it could lead to 

unreliable data and, if it is too high, a detection of the product when it has left the exponential 

phase.  To determine the CT value, a baseline is needed, which is determined from a plot of 

fluorescence versus cycle number.  The number of cycles usually are the first ones (3 to 15) and 

the CT value is set at three standard deviations above the baseline value. 

To be able to compare between two samples, it is important that they have similar amplification 

efficiencies.  Each efficiency is calculated by the formula E= 10 (-1/slope)-1 obtained from the 

line plotted from PCR on a serial dilution series of the template.  In theory a 100% efficiency 

would require 3.3 cycles to increase amplicon concentration by 10 fold.  A slope of -3.6 and -3.1 

corresponds to an efficiency of 90% and 110%.  When the slope of the line is <0.1, amplification 

efficiencies are comparable, if it is >0.1 primer redesign or improvement of the amplification is 

required (Bustin and Nolan, 2004).  To compare two samples for relative quantification titers, the 

equation: 2(CT1-CT2) = fold difference in the amount of starting target; where CT1 (of sample 1) 

and CT2 (of sample 2) is used for the calculations.  To determine the limit of detection the 

formula LoD= LoB + 1.645 x σlowconcentrationsample; where LOD= limit of detection, LoB= limit of 

blank (LoB=meanblank +1.645 x σblank) (Forootan et al., 2017) is employed. 

In qPCR, there are two types of quantifications.  The first one, absolute quantification 

expresses the amount of target expressed as copy number or concentration, which also requires 

identical amplification efficiencies for the control and the target sequence, which is more 

accurate but labor intensive, and usually requires knowing the amount of target.  The second one, 

relative quantification measures the change in gene expression in response to different treatments 

or the state of tissue.  It requires internal standards to control variability against different 

samples, which serves as normalization of the curve.  They are calculated as a ratio between the 

CT value of the experimental primers against the average of the CT values of the different 

housekeeping genes used for normalization (Pfaffl et al., 2001). 
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1.5 Reference genes for relative quantification in sweetpotato 

The importance to have stable internal reference genes for the normalization of real-time 

PCR reactions is crucial for the data analysis.  When plants face different stresses, the type of 

gene used for relative quantification can vary affecting quantification results and reliability of the 

data.  Some traditional genes considered housekeeping such as actin (ACT), tubulin (TUB), 

glyceraldehyde-3-phosphate dehydrogenase (GAP), elongation factor-1 alpha (EF1α) and 18S 

rRNA are commonly used for normalization.  Under two algorithms, geNorm and Normfinder, 

sweetpotato plants were evaluated under different abiotic conditions such as cold, drought, salt 

and oxidative stress (Park et al., 2012). 

GeNorm algorithm examines the stability of expression as well as the optimal number of 

reference genes needed for normalization.  It first calculates an expression stability value (M) for 

each gene and then the pairwise variation (V) of this gene with the others.  The lowest stability 

value represents the gene with the most stable expression within the gene set examined 

(Vandemsopele et al., 2002).  NormFinder algorithm determines the stability of expression as 

well as the optimal gene or combination of genes for normalization purposes.  It ranks the set of 

candidate normalization genes according to the stability of their expression in a given sample set 

under a given experimental design (Andersen et al., 2004). 

In an experiment conducted to determine the best reference gene in sweetpotato, several 

genes such as  β-actin (ACT), ribosomal protein L (RPL), glyceraldehyde-3-phosphate 

dehydrogenase (GAP), cyclophilin (CYC), α-tubulin (TUB), ADP-ribosylation factor (ARF), 

histone H2B (H2B) and ubiquitin extension protein(UBI), cytochrome c oxidase subunit Vc 

(COX) and phospholipase D1α (PLD) were used.  After the results were analyzed and tabulated 

by GeNorm and Normfinder, it was concluded that the number of reference genes depends on the 

cultivar used and the stress imposed to the plants and that COX was one of the best candidates 

(Park et al., 2012). 

 

1.6 Next-generation sequencing of plant viruses using Hiseq2000 

There are over 30 viruses infecting sweetpotato in the world and full genome sequencing 

has become a tool for their analysis.  The use of the next-generation sequencing (NGS) of viral 

genomes provides a highly sensitive method for virus detection compared to Sanger and overlap 

consensus sequence assemblies since it does not require previous knowledge of the virus.  

Additionally, the technology allows detection of unknown sequences in the sample.  The former, 

is more sensitive than the other two, however, it is cost prohibitive for some laboratories. 

The Hiseq2000 sequencing system can produce 200 GB per run with high yield data.  

The technology enables sequencing millions of fragments by using a reversible terminator-based 

method that detects single bases as they are incorporated into the growing DNA strands.  Each 

base is detected and, since all dNTP’s are present in the sequencing process, natural competition 

lowers bias incorporation.  The result is highly accurate since they exclude homopolymers or 

sequence-context errors.   

The workflow of the Hiseq2000 consists of three basic steps.  First, libraries are prepared 

from any nucleic acid sample, which are amplified to produce local clusters and sequenced using 

massively parallel synthesis (Illumina, 2010).  Second, a sample of pure DNA/RNA is sent using 
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the kits provided by the company who is offering the services for sequencing.  At this stage is 

important to take into consideration if the sample is multiplexed or not with others since the 

future analysis will compromise the quality of results.  Finally, the data obtained from NGS 

comes as a FASTA file with all reads that the machine provides.  Since usually these files are 

large, the use of High-processing computers (HPC) is required since they cannot be opened in a 

regular computer. 

In most cases, the FASTA reads are not free from host DNA, so viral reads need to be 

assembled using overlapping sequences present in the file using references from a database.  In 

virology, to assemble the contigs, free software such as Velvet, Galaxy, Bowtie, or paid software 

as DNAStar are preferred based on costs.  

The final step is the assessment of the genome.  To accomplish this, programs such as 

Mauve of ClustalW are used.  NGS detection is possible when virus identities are at least 30-

40% of the total viral genome (Kreuze et al., 2009).  When libraries are completed, it is 

necessary to confirm the samples by PCR and complete the ends by 5’RACE and/or 3’ RACE.  

Finally, the sequences could be uploaded to NCBI and analyzed as the project requires. 

 

1.7 5’/3’ RACE 

Rapid amplification of cDNA ends (RACE) is used to identify 5’ and 3’ ends of a cDNA 

transcript from partial cDNA (Frohman et al., 1988).  The technique has been modified by 

several laboratories and commercialized (Scotto-Lavino et al., 2006; Clontech Laboratories, 

2006).  RACE utilizes RT-PCR to convert the mRNA into cDNA, and PCR to amplify the ends 

of transcripts. 

To perform “classic” RACE, a partial or a complete sequence of the mRNA of interest 

has to be known, from where three gene specific primers are designed.  The first primer will 

reverse-transcribe the mRNA into cDNA.  Then, the reaction proceeds to dephosphorylate the 

cDNA with shrimp alkaline phosphatase (SAP) which leaves the full cDNA with the methylated 

“G” caps intact.  The methylated “G” cap is removed with tobacco acid pyrophosphatase (TAP) 

which exposes the ends for ligation to the linker or homopolymer.  The second primer is used to 

amplify a PCR product from the poly (A) tail to the known region (to obtain the 3’ end); while 

the appended homopolymer tail obtains the 5’ end.  Finally, a nested PCR, using the third 

specific primer allows reducing unwanted products. 

The moment of appending the homopolymer led to the discovery of three different 

methods of RACE (Yeku and Frohman, 2011).  In the “classic” RACE, the homopolymer is 

appended after the mRNA is reverse transcribed.  In the “new” RACE, the homopolymer is 

appended before the reverse transcription reaction that improves the recognition of the 

transcription start site.  Finally, “circular” RACE allows the recognition of both 5’ and 3’ in the 

same reaction, but it requires substantial optimization before an accurate end is acquired.  

“Circular” RACE has been mostly utilized in eukaryotes like Caenorhabditis elegans (McGrath, 

2011).   
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1.8 Molecular characterization in Potyviridae 

Before the advent of sequence data, species and strains of potyviruses were differentiated 

using host range, symptomatology and serology (Adams et al., 2005).  However, as molecular 

biology techniques improved, molecular characterization of the whole genome and its different 

genes has been used to describe them. 

A potyvirus consists of a positive-sense, single-stranded RNA genome, which encodes a 

large polyprotein processed into several genes by cleavage sites which are conserved (Adams et 

al., 2005).  The polyprotein starts with a nucleotide consensus of TGAAATGGC in plants 

(Lutcke et al., 1987) and starts the coding of the polyprotein as a whole.  The polyprotein then 

cleaves in some conserved amino acid regions, which allowed recognizing the following genes.  

P1 gene has been characterized in Tobacco vein mottling virus (TVMV) and Turnip mosaic virus 

(TuMV) with the functions of proteinase activity and single-stranded RNA binding activity, it 

has also been suggested to be an accessory factor for genome amplification (Verchot and 

Carrington, 1995).  The HC-Pro is a helper component for virus transmission by aphids, has 

proteinase activity in its C-terminal and is involved in long distance movement (Shukla et al., 

1994).  P3 has been reported with cylindrical inclusions with a possible event in replication 

(Restrepo and Carrington, 1994).  The 6K2 protein is believed to be involved in virus replication.  

The CI is a cytoplasmic inclusion protein with a conserved RNA helicase sequence suspected to 

be involved in virus replication (Shukla et al., 1994).  The NIa is composed of VPg and a 

proteinase, both of which are thought to be involved in RNA replicase for virus multiplication 

(Murphy et al., 1990).  The NIb is also probably involved in virus replication by RNA replicase 

and finally, the CP is involved in assembly, transmission and spread of the virus (Dolja et al., 

1994).  In sweetpotato potyviruses, two additional proteins produced by polymerase slippage 

called Potyvirus open reading frame (PIPO) and Pretty interesting open reading frame (PISPO) 

are probably involved in RNA silencing (Olspert et al.,  2015; Untiveros et al., 2016). 

  

To describe variability among the different species at a molecular level, phylogenetic 

trees of the 5’ untranslated region (UTR), 3’ UTR, the whole polyprotein and the different 

proteins that they produce have been used both at the amino acid and nucleotide level.  The 

encoded proteins can be inferred by the nucleotide sequence and analogy with other potyviruses.  

The amino acid cleavage site between P1 and HC-Pro are tyrosine (Y) and serine (S).  Between 

HC-Pro and P3 between glycine (G) and glycine (G).  In the middle of P3 and 6K1 is composed 

of a consensus of glutamine (Q) / alanine (A), serine (S) and glutamic acid (E) / arginine (R).  

Between 6K1 and C is glutamine (Q) / serine (S), threonine (T).  Next, CI and 6K2 are glutamine 

(Q) / serine (S).  Following, 6K2 and NIa-VPg are glutamine (Q) / glycine (G).  Next are NIa-

VPg and NIa-Pro with a glutamic acid (E) / alanine (A), glycine (G) and serine (S).  NIa-Pro and 

NIb by glutamine (Q) / alanine (A), glycine (G) and serine (S).  Finally, NIb and CP are 

separated by glutamine (Q) / alanine (A) or serine (S).  The end of the polyprotein is followed by 

a polyadenylated tail (Shukla et al., 1994).  The polyprotein and each gene has its own thresholds 

of nucleotide and amino acid similarity to be classified at the genera and species level as 

previously determined by Adams et al. in 2005 (Table 1.1).    
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Table 1.1. Nucleotide and amino acid identity between genera and species in Potyviridae 

(Modified from Adams et al., 2005) 

Between genera 

  % nucleotide identity % amino acid identity 

  Different genus Same genus Different genus Same genus 

P1 34.7-47.6 34.6+ 00.-45.5 0.0+ 

HC-Pro 35.1-46.5 47.1+ 19.3-31.7 36.0+ 

P3 33.4-44.7 36.9+ 0.0-32.6 0.0+ 

CI 38.4-55.4 49.4+ 21.6-51.8 42.3+ 

VPg 33.2-55.7 42.3+ 15.1-47.6 28.4+ 

NIa-Pro 33.6-52.8 45.2+ 9.1-47.6 28.4+ 

NIb 42.2-59.4 55.5+ 29.2-58.1 51.9+ 

CP 35.6-59.8 41.2+ 13.2-56.5 30.6+ 

Polyprotein 38.6-50.6 49.3+ 24.4-41.1 42.2+ 

5'-untraslated 33.8-62.8 32.0+ - - 

3'-untranslated 31.6-51.8 30.9+ - - 

Between species 

  % nucleotide identity % amino acid identity 

  Different species Same species Different species Same species 

P1 34.6-68.9 41.4+ 0.0-71.6 27.8+ 

HC-Pro 35.1-75.7 76.3+ 19.3-85.0 85.2+ 

P3 33.4-79.6 74.6+ 0.0-86.7 76.6+ 

CI 38.4-78.2 78.3+ 21.6-91.3 88.0+ 

VPg 33.2-79.1 76.2+ 15.1-87.2 81.4+ 

NIa-Pro 33.6-77.5 76.9+ 9.1-85.2 88.5+ 

NIb 42.2-77.8 76.6+ 29.2-88.4 89.0+ 

CP 36.6-81-1 78.0+ 13.2-88.6 79.6+ 

Polyprotein 38.6-74.7 77.1+ 24.4-80.9 82.9+ 

5'-untraslated 32.0-74.2 39.7+ - - 

3'-untranslated 30.9-84.0 71.9+ - - 

 

1.9 Recombination analysis 

Potyviruses have been described as prone to recombination events (Revers et al., 1996).  

Most of these events have targeted the P1, CI, 6K2 and VPg in several viruses in this family like 

Turnip mosaic virus (TuMV) (Ohshima et al., 2007), Sweetpotato mild mottle virus (SPMMV) 

(Valli et al., 2007) and Potato virus Y (PVY) (Galvino-Costa et al., 2012). 

Several studies prove that different recombination events through the SPFMV family 

could lead to the phylogenetic lineages of  East African (EA), Russet Crack (RC), Ordinary (O) 

and Common (C); now reclassified as SPVC (Untiveros et al., 2008; Untiveros et al., 2010).  

This evidence provides an indication that recombination analysis is necessary when new isolates 

are being described at a molecular level.   
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Several programs have been used to detect recombination events like Simplot, Dual 

Brothers, Jphmm, Scueal and RDP4.  However, RDP4 has been preffered over the others 

because of the flexibility of the software to configure which sequence is the recombinant of 

interest and the parent (Martin et al., 2010).  These software have been used in previous research 

to detect recombination events in SPFMV (Untiveros et al., 2008; Untiveros et al., 2010). 

 

1.10 Hypothesis and objectives 

 Objective 1:  

Design primer-probe sets for RT-qPCR that differentiate Sweetpotato feathery mottle 

virus (SPFMV) and Sweetpotato virus C (SPVC). 

Question to be answered:  

Where is the best part of the sweetpotato plant to test for SPVG, SPVC, SPFMV and 

SPV2 presence? 

Hypothesis: 

Hypothesis (H0): SPVG, SPVC, SPFMV and SPV2 have higher titers in roots and than in 

stems or leaves. 

Alternative hypothesis (H1): SPVG, SPVC, SPFMV and SPV2 do not have higher titers 

in roots. 

 Objective 2: 

Determine the effects of SPVC on sweetpotato storage root number under greenhouse-

controlled conditions. 

Question to be answered:  

Is SPVC the missing component for the differences in the storage root number of 

sweetpotato plants inoculated in combination of SPFMV, SPVG and SPV2 compared to 

naturally infected plants? 

Hypothesis: 

H0: Sweetpotato ‘Beauregard’ plants infected with SPVG, SPVC, SPFMV and SPV2 

together (4-way interaction) will produce similar number of storage roots than plants 

naturally infected (B14-G7). 

H1: Sweetpotato ‘Beauregard’ plants infected with SPVG, SPVC, SPFMV and SPV2 

together (4-way interaction) will not produce similar number of storage roots than plants 

naturally infected (B14-G7). 

 Objective 3: 

Determine full genome sequences of the isolates present in Louisiana and describe and 

compare them at a molecular level with other isolates originated in other parts of the 

world. 
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Question to be answered: 

Are SPFMV or SPVC isolates moleculary different from other isolates previously 

reported? 

Hypothesis: 

H0: Molecular variation of the United States potyvirus isolates describe them as new 

strains and molecular variation is high. 

H1: Molecular variation of the United States potyvirus isolates will not describe them as 

new strains and molecular variation is low. 
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CHAPTER 2: VIRAL DISTRIBUTION AND TITERS OF SPVG, SPVC, SPFMV AND 

SPV2 (POTYVIRIDAE) IN 'BEAUREGARD' SWEETPOTATO (IPOMOEA BATATAS) 

2.1 Introduction 

Sweetpotato (Ipomoea batatas (L.) Lam.) is ranked 7th in world staple food production 

(expressed on a dry matter basis).  The crop is particularly important in South-East Asia, Oceania 

and Latin America with China accounting for more than half of the total world production 

(Worldatlas, 2017).  Sweetpotato is a vegetatively propagated perennial crop, which is generally 

grown as an annual.  Slips (sprouts from storage roots) are used for propagation in the temperate 

zone, and the final consumed products are storage roots that are differentiated from adventitious 

roots that arise at or near nodes on the stems (Firon et al., 2009).  Cultivar decline is defined as 

the reduction of the storage root quality and yield due to accumulation of viruses, other 

pathogens and mutations in the propagating material (Bryan et al., 2003; Villordon and Labonte, 

1995; Clark et al., 2002).  While several pathogens affect the crop, in Louisiana, plant viruses are 

thought to primarily account for the cultivar decline effect.  The most prevalent sweetpotato 

viruses in the U.S. are members of the Potyviridae family (Clark and Hoy, 2006).  In the United 

States, four potyviruses: Sweet potato virus G (SPVG), Sweet potato virus C (SPVC), Sweet 

potato feathery mottle virus (SPFMV) and Sweet potato virus 2 (SPV2); are commonly found in 

field surveys (Valverde et al., 2007).  Symptom severity, distribution in the field, titers in 

infected plants and vector transmissibility are greater when plants are co-infected with these 

potyviruses than when any one of the viruses is present alone (Kokkinos et al., 2006; Wosula et 

al., 2012).  Therefore, it is important not only to know whether a plant is infected with one of the 

four potyviruses, but it is also important to know specifically which and how many of viruses are 

present. 

Methods for sweetpotato virus detection have included biological (grafting to the 

indicator host Ipomoea setosa) (Moyer and Salazar, 1989), serological (ELISA) (Hammond et 

al., 1992) or nucleic acid (PCR/qPCR) assays (Li et al., 2012; Kokkinos et al., 2006).  However, 

each of these methods have some limitations.  For example, similar symptoms have been 

documented in indicator plants such as I. setosa when infected with the different potyviruses, 

making it difficult to distinguish which potyvirus is present (Untiveros et al., 2008).  Cross-

reactions with polyclonal antibodies between SPVG-SPV2 and SPVC-SPFMV (Souto et al., 

2003) have been observed probably due to high amino acid sequence similarity in the coat 

protein region (Li et al., 2012).  All of these limitations led to the polymerase chain reaction 

(PCR) becoming the preferred detection method and to serve as a primary tool in quarantine and 

certification programs.   

Currently, for a sweetpotato plant to obtain virus-tested status, the procedure to test them 

for viral infections starts with total RNA extraction from the leaves of the sweetpotato plant (Li 

et al., 2008).  The total RNA extraction is used as a template to test for potyviruses (Ha et al., 

2008; Li et al., 2012; Zheng et al., 2010), Sweetpotato chlorotic stunt virus (SPCSV) (Wei and 

Nakhla, personal communication) and Sweetpotato leaf curl virus (SPLCV) (Li et al., 2004; Ling 

et al., 2010).  There are also additional qPCR primers that allow the detection of SPFMV, SPVG, 

SPV2, Sweet potato chlorotic stunt virus (SPCSV), and SPLCV (Kokkinos et al., 2006).  The 

common strain of SPFMV (now named SPVC) was reclassified as a different species due to 

differences in nucleotide sequences in the P1 region (Untiveros et al., 2010).  Unfortunately, this 

occurred after the design of the first set of primers and probes (Kokkinos, 2006), which 
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amplified both SPFMV and SPVC and did not allow independent quantification of each virus.  

Additionally, Kokkinos used a predesigned housekeeping gene, 18S rRNA, for gene 

normalization (AppliedBiosystems, Foster City, CA).  However, the reagents for that gene are 

not produced anymore and under our experimental conditions, amplification of the gene occurs 

in the first 10 cycles, which can produce errors in relative quantification experiments (Pfaffl, 

2001).  Recently, to obtain a housekeeping gene for relative quantification in sweetpotato, the 

plant was stressed using different abiotic conditions and 10 genes were tested to analyze which 

one remains more stable under geNorm (Vandesompele et al., 2002) and NormFinder (Andersen 

et al., 2004) algorithms.  The analysis suggested that Cytochrome C oxidase subunit Vc (COX) 

was one of the most stable (Park et al., 2012).  

The potyvirus genome is composed of ten mature proteins, which are cleaved following 

translation on a single large polyprotein (Adams et al., 2010).  SPFMV has two additional 

proteins, PIPO and PISPO, produced by polymerase slippage (Untiveros et al., 2016; Figure 2.1).   

Due to its high level of nucleotide sequence conservation compared to the other proteins 

produced, the coat protein (CP) gene has been chosen as an optimal target for primer design (Li 

et al., 2012).  However, the P1 region appears to be the region of greatest diversity between 

SPFMV and SPVC compared to the other 10 mature proteins (Untiveros et al., 2010).  Despite 

this low level of genetic diversity among the four potyviruses, there is evidence that their 

respective titers vary among different locations within an infected sweetpotato plant.  For 

example, the number of reads for SPVC were four-fold higher than the other three potyviruses 

and the greatest number of reads were from fibrous roots for each virus, except SPV2, for which 

the expanding roots had a greater number of reads according to next generation sequence data 

(Gu et al., 2014).  However, only one sample was taken at the end of the growing season in that 

study thus it did not take into consideration differences that might occur at different phenological 

stages of sweetpotato development.  To understand how the potyvirus complex affects yield and 

to develop the most sensitive protocol for detection of these viruses in plants that often do not 

show symptoms, it is important to know within which organs in the plant the viruses replicate 

and accumulate.  

 

Figure 2.1. Genome organization of Sweetpotato feathery mottle virus (~10.8Kb). The 

polyprotein is coded from 5’ to 3’ and then cleaved into the 10 mature proteins: P1, HC-pro, P3, 

6K1, CI, 6K2, NIa-VPg, NIa-Pro, NIb and CP. Two additional proteins named PISPO and PIPO 

are produced by polymerase slippage. 

This study was undertaken to develop methods to independently quantify SPFMV and 

SPVC, and to use those methods along with previously developed methods for quantifying 

SPVG and SPV2.  In addition, the study was aimed to compare the effects of different 

sweetpotato organs, phenological stages, and virus combinations on titers of each for the four 
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common sweetpotato potyviruses (Villordon et al., 2013).  The objective of this experiment is to 

test if roots have higher virus accumulation compared to leaves and stems plus, at the same time, 

if the SR3 stage (presence of at least one storage root), accumulate greater virus titers compared 

to SR1 (presence of at least one adventitious root) and SR2 (observation of the onset of 

anomalous cambium (AC) in a minimum of one AR in at least 50% of transplants) stages. 

 

2.2 Materials and methods 

2.2.1 Potyvirus isolates  

Potyviruses were collected in previous studies, either from sweetpotatoes from the U.S. 

showing potyvirus-like symptoms (Souto et al., 2003), or from I. setosa sentinel plants placed in 

sweetpotato fields in Louisiana (Wosula et al., 2013).  Individual viruses were transferred by 

mechanical inoculations from graft-inoculated or sentinel I. setosa to I. nil ‘Scarlet O’Hara’ 

(SOH).  Isolates of individual potyvirus species were obtained by single aphid transmission from 

infected to healthy SOH and by single lesion transfers from mechanically inoculated 

Chenopodium quinoa plants.  The potyviruses present in each plant were confirmed using the 

multiplex PCR method of Li et al. (2012).  Isolates were maintained in SOH by periodic 

mechanical inoculations using leaves triturated with a mortar and pestle in 0.02M phosphate 

buffer, pH 7.2, amended with 0.1M sodium diethyl dithiocarbamate (DIECA) and rubbing the 

inoculum on Carborundum-dusted leaves.  Their separation was confirmed by a multiplex RT-

PCR, which detects SPVG, SPVC, SPFMV and SPV2 in the same reaction (Li et al., 2012).  

Each isolate was kept in a rearing and observation cage of 12” cube white with vinyl window 

(model 1466AV) (Bioquip products, CA) in a greenhouse. 

Table 2.1. Potyvirus isolates of sweetpotato and used in this study. Isolates were separated using 

differential host assay or single aphid probe transmissions. Isolates were mechanically 

transmitted into Ipomoea nil ‘Scarlet O’Hara’ and renewed every three weeks. 

Isolate Species Location Method used for isolation 

LSU-1 SPVG Louisiana, U.S. Aphis gossypii single probe 

95-6 SPVC 

North Carolina, 

U.S. 

Nicotiana benthamiana mechanical 

inoculation 

Ark-1 SPFMV Arkansas, U.S. Chenopodium quinoa single local lesion 

CA-6 SPV2 California, U.S. C. quinoa single local lesion 

 

2.2.2 Plant material for Potyvirus quantification 

Ipomoea setosa seedlings were mechanically inoculated with SPVG (isolate LSU-1), 

SPVC (isolate 95-6), SPFMV (isolate Ark-1) and SPV2 (isolate CA-6) to create scions for graft-

inoculation into virus-tested I. batatas ‘Beauregard’ that were clonally propagated under 

controlled greenhouse conditions (Souto et al., 2003).  After two weeks, plants with viral 

symptoms were graft-inoculated into virus-tested ‘Beauregard’ sweetpotato plants.  Two I. 

setosa plants, with virus symptoms, were graft-inoculated per sweetpotato plant for each isolate 
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to produce singly infected plants.  To produce plants infected with all four potyviruses together, 

four grafts were made to each plant, one each with an I. setosa scion infected with either 

SPFMV, SPVC, SPVG, or SPV2.  After three weeks, plants with scions that survived grafting 

were tested by the Li et al. (2012) potyvirus multiplex PCR, to confirm whether or not they were 

infected with SPVG, SPVC, SPFMV and SPV2.  Plants with single infections, the four 

potyviruses together and a naturally infected plant propagated during seven generations (B14-

G7) were used as source for growing in aeroponics detailed in the next step.   

After grafting B14-G7 on I. setosa, it was tested using RT-PCR, qRT-PCR and NCM-

ELISA, and found to be infected with SPVG, SPVC, SPFMV and SPV2.  B14-G7 tested 

negative for Sweet potato mild mottle virus, Sweet potato latent virus, Sweet potato chlorotic 

fleck virus, Sweet potato mild speckling virus, Sweet potato leaf curl virus, Sweet potato 

chlorotic stunt virus, Sweet potato collusive virus, and Cucumber mosaic virus.  However, the 

possibility that it was infected by viruses not yet recognized in sweetpotato cannot be eliminated. 

2.2.3 Plant growth and sample collection 

Vine cuttings with two nodes from the infected and virus-tested plants were used for 

transplanting for tests in aeroponics.  The dark container (Sterilite® 20 Gallon Aquarium Latch 

Tote with Titanium Latches - 22-3/4" L x 18-1/2" W x 16-1/4" H, United States Plastic Corp.; 

Lima, OH) was covered with aluminum foil to exclude light to the root zone and filled with 

seven liters of Hoagland’s solution which was renewed every week (Hoagland and Arnon, 1950).  

The Hoagland’s solution provided the nutrients and water during the whole experiment to the 

slips via an intermittent mist (AgroMax Digital Cycle Timer; HTGSupply U.S.) irrigation 

system.  The irrigation system was composed of a dual outlet air pump (Active Aqua Air Pump, 

2 Outlets, 3W, 7.8 L/min; Hydrofarm, Inc., Petaluma CA), which connects to venturi-misters  

(19-8400-1, Hummert International; Topeka, KS) via hoses (Heavy-Duty 3/4" FLEXIBLE Black 

Tubing; HTGSupply U.S.).  On the top of the containers, six circles were made to fit black foam 

clone collars (HTGSupply U.S.) into which the sweetpotato slips were placed.  Quantum T5 

Fluorescent Light Fixtures (Hydrofarm; U.S.) provided supplemental light for 16 hrs per day.  

Samples of stems, leaves and roots were collected during the first, third, and fifth week after 

planting based on the SR1, SR2, and SR3 phenology stages described by Villordon et al. (2013).  

Each of the SR’s are calculated based on a growing degree day (GDD) formula.  To calculate 

GDD the formula is: maximum daily temperature (Tmax) – base temperature (B), where if Tmax> 

ceiling temperature (C, 32.2oC), then Tmax=C, and where GDD=0 if Tmin<B (15.5oC).  GDD of 

56, 278 and 468 were used  to demarcate the SR1, SR2, and SR3 stages.  Based on those 

considerations, samples from different organs were collected after seven, twenty-one and thirty-

five days. 

A weekly insecticide program was applied to control aphids and whiteflies.  The 

experiment was conducted three times with three replicated plants each time for each treatment. 

At each collection date, samples of whole stems, leaves and roots were placed immediately in 

liquid nitrogen, and kept at -80oC until RNA extraction. 

2.2.4 Total nucleic acid extraction 

Samples of stems, leaves and roots from weeks one, three and five after transplanting 

were ground into powder in liquid nitrogen using a mortar and pestle.  Total RNA was extracted 

using the CTAB method of (Li et al., 2008).  Leaf tissue (100 mg) previously ground in liquid 
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nitrogen using a mortar and pestle was transferred to FastPrep-24TM (MP Biomedicals; 

Eschwege, Germany) and mixed with 1ml of CTAB/beta-mercaptoethanol.  Samples were 

placed in a freezer at -20 oC for 15 min.  Tubes were homogenized using a Fastprep FP120 

(Qbiogene, Inc.; North America) at 4.5 speed for 30 sec, cooled on ice for five min and the 

homogenization step was repeated.  Samples were incubated at 65 oC for 15 min in a water bath 

and centrifuged at 5,220 g in an Eppendorf 5415 microcentrifuge (Eppendorf, U.S.) for five min.  

650 µl of the supernatant were mixed with 650 µl of 24:1 chloroform:isoamyl alcohol.  Samples 

were mixed using a vortexer and centrifuged at 16,300 g for 10 min.  500 µl of the aqueous 

phase were mixed with 350 µl of isopropanol (2-propanol) and centrifuged again at high-speed 

(16,300 g) for 10 min.  The supernatant was discarded and the pellet was washed twice with 500 

µl of 70% ethanol after two high-speed (16,300 g) centrifugations of two min.  Finally, the pellet 

was dried, resuspended in 50 µl of 20 mM Tris-HCl pH 8.0 and dissolved on ice for 15 min.  To 

eliminate RNAses, Invitrogen RNase Out (40 units/µl) (ThermoFisher) was added at 1 µl per 50 

µl of extract.  To standardize the initial concentration of RNA, samples were measured by 

spectrophotometry (Nanodrop; Thermo Scientific) and adjusted to a concentration of 250 ng/µl, 

and 260/230 and 280/230 ratios both above 2.0.  Samples were kept at -20oC until qPCR testing. 

 

2.2.5 Primer and probe development 

To develop primer sequences to differentiate SPFMV and SPVC, sequences from 

different strains of SPFMV and SPVC were analyzed previously by Li et al. (2012) who 

designed forward species-specific primers for SPFMV and SPVC.  Briefly, GenBank accession 

numbers: NC001841 (SPFMV-RC strain), FJ155666 (SPFMV-EA strain), AB439206 and 

AB439208 (SPFMV-O strain) and SPVC (AB509453 and GU207957) were aligned using 

MUSCLE on MEGA7 software (Kumar et al., 2017).  Due to the low amount of information on 

the P1 gene, its low percentage of nucleotide conservation (Adams et al., 2005) and the reports 

of P1 being prone to recombination (Ohshima et al., 2007; Salvador et al., 2008); the primers 

were designed from the CP region taking advantage of the small mismatches of the 3’ side of the 

primer and the cDNA template (Crouse and Vincek, 1995).  A reverse primer for SPFMV and 

SPVC were designed manually but their properties were analyzed using the OligoCal website 

(Kibbe WA, 2007) to avoid self-complementarity between primers and to adhere to correct 

primer design standards.  Sequences are indicated in Table 2.2 and were tested against different 

isolates maintained at Louisiana State University (Fig. 2.2). 
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Figure 2.2. Electrophoresis of amplicons from different Sweet potato feathery mottle virus 

(SPFMV), Sweet potato virus C (SPVC), Sweetpotato virus G (SPVG) and Sweetpotato virus 2 

(SPV2) isolates using primers for SPVC (top gel) and SPFMV (bottom gel). Lane 1: Bio-Rad 

100bp Molecular Marker. Lane 2: No-template control (NTC). From 3 to 7: SPVC isolates: 

Moyer C, 95-6, SPVC PR3, 11-5, TFSW1-E. Lane 8: SPVG (isolate LSU-1). From 9 to 13: 

SPFMV isolates: 95-2 04R, 95-2T, 11-1, TFSW1-J, ARK-1. Lane 14: SPV2 (isolate LSU-2). 

Samples were run in a 2.5% agarose/TBA buffer pH 7.0 gel at 60 volts for 4 hrs. Numbers on the 

left correspond to the molecular marker nucleotide size provided by Bio-Rad Molecular Marker 

and the expected fragment size for SPFMV (~166bp) and SPVC (~206bp). 
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Table 2.2. Primer Sequences of SPFMV, SPVC and COX used for qPCR analysis 

Primer Name   Primer Sequence   Expected fragment size 

SPFMV-forward  GGATTAYGGTGTTGACGACACA  166 bp 

SPFMV-reverse  TAGGCACTGCATGATCCAAC 

SPFMV-probe   FAM-AATGATGGACGGTGACGAGCAAGT-MGB 

SPVC-forward  GTGAGAAAYCTATGCGCTCTGTT  206 bp 

SPVC-reverse   TTGAGCGTGTATTCCCAATG 

SPVC-probe   FAM-CATACTAGCAAAATGCGCCA-MGB 

COX-forward   ACTGGAACAGCCAGAGGAGA   156 bp 

COX-reverse   ATGCAATCTTCCATGGGTTC 

COX-probe   FAM-ATCAGTGTTGTTGCCGATGA-MGB 

SPVG-forward  GAATCAAAGGTGAGGAGCAAGAC  160 bp  

SPVG-reverse   GCTATGAGCAAATCGTCACCATT 

SPVG-probe   FAM-AGGTTTGCGTCTACTTC-MGB 

SPV2-forward   GAGACAGCACTGAAAGCTCTGTACA  170 bp 

SPV2-reverse   CACGAACATACTCGGACAAATCTT 

SPV2-probe   FAM-TGTGTTGAACCATCAGC-MGB 

 

To analyze the data using relative quantification, the previously designed primers for the 

Cytochrome C oxidase gene (COX) housekeeping genes were used (Park et al., 2012; Table 4.2). 

Since Park et al., 2012 used SYBR green technology for the analysis, the probe was changed to 

make it consistent with the Taqman chemistry used for the rest of the probes as mentioned before 

(Table 2.2). 

To design probes for SPFMV and SPVC, the Primer3 website (Rozen and Skaletzky, 

1998) was used.  The FAM reporter was used in the 5’ end of the probe, and a Minor Groove 

binder (MGM) was used in the 3’ end to increase the melting temperature (Tm) of the probe due 

to the low GC content of the chosen region, as indicated in Table 4.2.  This chemistry was used 

to standardize the probes for SPFMV and SPVC to be consistent with the previously designed 

SPVG and SPV2 probes designed by Kokkinos et al. (2006).  To set up the reactions, each 

sample consisted of 500ng sample template, 10 µl of 1X of iTaq Universal Probe master mix 

(Bio-Rad; U.S. CA), 0.5 µl of 40X reverse transcriptase iTaq Universal Probe (Bio-Rad; U.S. 

CA), 2 µl (2.5 uM) of forward and reverse primer, 0.4 µl (5 uM) of probe and 5.1 µl of water for 

a reaction of 20 µl per tube.  Duplicates of each sample were run in 96-well PCR plate low-

profile semi-skirted (BioRad; U.S. CA) in a CFX-96 Connect Real-Time System (BioRad; U.S. 

CA) at 48°C for 30 min (cDNA synthesis), 95°C for 10 min (AmpliTaq Gold® activation), 

followed by 40 cycles of denaturation at 95°C for 15 sec annealing/extension at 60°C for one 

min.  The Ct value was determined from each sample using the ΔΔCq quantification method 

(CFX96 TouchTM Real-Time PCR Sequence Detection System Instruction Manual). 

 

2.2.6 qPCR relative quantification and data collection 

To determine the amplification efficiency and limit of detection of the primers used in 

this experiment, standard curves of at least five duplicated sample dilutions were generated for 

the two viral targets and the mRNA COX reference control (Figure 2.3, 2.4, 2.5).  Since the 
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correlation between Ct values and log relative amounts was very high with R-squared values (R2) 

exceeding 0.99 in all standard curves, the ΔΔCq quantification method (CFX96 TouchTM Real-

Time PCR Sequence Detection System Instruction Manual) was used which eliminates the use of 

standard curves on every plate and sample normalization.  From the standard curves generated, 

SPVC primer/probe set can detect 2.1x10-7 mg/ml, SPFMV primer/probe set can detect 1.39x10-7 

mg/ml and COX can detect 2.58x10-7 mg/ml.  Data collected represented relative quantification 

of the Ct (crossing point) values of 108 samples per organ and time run in duplicate. These 

values were analyzed in Analysis of Variance (ANOVA) in SAS 9.4 (p<0.05). 

 

 

Figure 2.3. Standard curve generated by plotting the log relative quantity of a concentrated 

source of virus against critical threshold values from real-time PCR assays for Sweetpotato virus 

C (SPVC). 
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Figure 2.4. Standard curve generated by plotting the log relative quantity of a concentrated 

source of virus against critical threshold values from real-time PCR assays for Sweetpotato 

feathery mottle virus (SPFMV). 

 

Figure 2.5. Standard curve generated by plotting the log relative quantity of a total RNA virus 

tested ‘Beauregard’ sweetpotato against critical threshold values from real-time PCR assays for 

Cytochrome C oxidase (COX). 
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2.3 Results 

Naturally infected sweetpotato plants ‘Beauregard’ that had been exposed in the field for 

seven generations were used as a source previously determined to have relatively high titers of 

each of the four potyviruses.  Titers for SPVG, SPVC, SPFMV and SPV2 were analyzed alone 

and in combination using the primers and probes designed for SPFMV and SPVC in this study 

and the primers for SPVG and SPV2 designed previously (Kokkinos et al., 2006).  SPVG 

relative quantification titers were significantly greater in ‘Beauregard’ sweetpotato plants singly 

infected and in plants with the 4-way infection than in the naturally infected plants.  For SPVC 

there were no statistical differences among treatments.  In the case of SPFMV, titer was 

significantly greater in singly infected plants than in plants inoculated with the 4-way 

combination but the naturally infected plants were intermediate and not significantly different 

from either of the other treatments.  Only for SPV2 did the naturally infected plants have greater 

titer than single infections but the 4-way multiple infection was intermediate and did not differ 

from the other treatments (Fig. 2.6). 

 

 

Figure 2.6. Relative quantification titers of treatments of SPVG, SPVC, SPFMV and SPV2 in 

sweetpotato ‘Beauregard’ in singly infected plants, plants artificially inoculated with all four 

potyviruses (Poty Combo) and plants naturally infected during seven generations of propagation 

in the field (B14 G7 Natural). Analyzed data is a combination of the different organs (leaf, root 

and stem) and times (week one, three and five). Bars with a common letter are not significantly 

different by ANOVA (p<0.05), Error bars = 1 standard deviation. 
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Relative titers were compared among three types of organs: roots, stems and leaves.  For 

both SPVG and SPFMV, leaves had a greater relative quantification titer than roots, and stems 

were intermediate and not significantly different from leaves or roots.  There were no significant 

differences among organ types for SPVC.  Finally, in SPV2, there was no statistical difference 

among the sampled organs (Fig. 2.7). 

 

 

Figure 2.7. Relative quantification titers of SPVG, SPVC, SPFMV and SPV2 in sweetpotato 

‘Beauregard’ in the different organs (leaf, root and stem). Analyzed data is a combination of the 

different treatments of singly infected plants, plants artificially inoculated with all four 

potyviruses (Poty Combo) and plants naturally infected during seven generations of propagation 

in the field (B14 G7 Natural). Bars with a common letter are not significantly different by 

ANOVA (p<0.05), Error bars = 1 standard deviation. 

 

Relative quantification titers were also analyzed at three times based on growing degree-

day (GDD) estimations of the phenological stages SR1 (week 1), SR2 (week 3) and SR3 (week 

5).  For SPVG, the third week had higher relative quantification titers compared to the first or 

fifth week.  There were no significant differences among sampling times for SPVC, SPFMV and 

SPV2 (Fig. 2.8). 
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Figure 2.8. Relative quantification titers of SPVG, SPVC, SPFMV and SPV2 in sweetpotato 

‘Beauregard’ of the different storage root development times (one, three and five week after 

planting). Analyzed data is a combination of the different treatments of singly infected plants, 

plants artificially inoculated with all four potyviruses (Poty Combo) and plants naturally infected 

during seven generations of propagation in the field (B14 G7 Natural). Bars with a common 

letter are not significantly different by ANOVA (p<0.05), Error bars = 1 standard deviation. 

 

The different interactions were also analyzed.  For the organ and development times, 

SPVG statistical differences were determined in leaves of the third week compared to root of the 

first week and stem of the fifth week.  In SPVC and SPV2 there were no statistical differences.  

In SPFMV leaves of the first week had statistical differences compared with roots of the third 

week and stems of week five (Fig. 2.9). 
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Figure 2.9. Relative quantification titers of SPVG, SPVC, SPFMV and SPV2 in sweetpotato 

‘Beauregard’ of the interactions between the different storage root development times (one, three 

and five week after planting) and the three different organs (leaf, stem and roots). Analyzed data 

is a combination of the different treatments of singly infected plants, plants artificially inoculated 

with all four potyviruses (4-way) and plants naturally infected during seven generations of 

propagation in the field (Natural). Bars with a common letter are not significantly different by 

ANOVA (p<0.05), Error bars = 1 standard deviation. 

 

The interactions of the different treatments and development times showed differences 

for the third week of the 4-way inoculation compared to the first week of single infections and all 

three weeks of natural infected plants in SPVG.  There were no statistical differences for SPVC 

and SPV2.  For SPFMV, there were differences between the first week, the third week of single 

infected plants and the fifth week of natural infection compared to the third week of the 4-way 

interaction (Fig. 2.10). 
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Figure 2.10. Relative quantification titers of SPVG, SPVC, SPFMV and SPV2 in sweetpotato 

‘Beauregard’ of the singly infected plants, plants artificially inoculated with all four potyviruses 

(4-way) and plants naturally infected during seven generations of propagation in the field 

(Natural) interaction with different storage root development times (one, three and five week 

after planting). Analyzed data is a combination of the three different organs (leaf, stem and 

roots). Bars with a common letter are not significantly different by ANOVA (p<0.05), Error bars 

= 1 standard deviation. 

 

SPVC did not show differences in the treatment and organ interactions.  For SPVG, leaf 

organ of single and 4-way titers were different from stem organ of natural infections.  SPFMV 

showed differences of leaf organ of single, natural infections and root organ of single infections 

compared to root organ of the 4-way inoculation.  For SPV2 showed statistical differences of 

root organs of natural infections compared to stem organs of single infected plants (Fig. 2.11). 
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Figure 2.11. Relative quantification titers of SPVG, SPVC, SPFMV and SPV2 in sweetpotato 

‘Beauregard’ of the singly infected plants, plants artificially inoculated with all four potyviruses 

(4-way) and plants naturally infected during seven generations of propagation in the field 

(Natural) interaction with the three different organs (leaf, stem and roots). Analyzed data is a 

combination of the different storage root development times (one, three and five week after 

planting). Bars with a common letter are not significantly different by ANOVA (p<0.05), Error 

bars = 1 standard deviation. 

 

2.4 Discussion 
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appears to be the ideal time to sample the plant for potyvirus infections. 

To collect a sample that is representative for virus screening is a complex task in a plant 

like sweetpotato and different approaches were attempted to alleviate this problem.  The 
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recognized as a different species (Untiveros et al., 2010) and perhaps these differences could be 

explained by the cross reactions, especially between SPFMV and SPVC, produced by the 

antibodies used using CP amino acid information (Souto et al., 2003).  The extensive leaf organ 

reaches a further level of complexity based on the evidence that the distribution of SPFMV and 

other viruses at any point in time is often not uniform among parts of sweetpotato plants or other 

hosts of the morning glory family like I. setosa or I. nil  (Gibb and Padovan, 1993; Kokkinos et 

al., 2006). 

It is difficult to sample other parts of the plant, such as roots or stems, without destroying 

the plant, especially at early plant stages.  In a more recent approach, a greater number of reads 

in roots were reported when compared to other organs under next generation sequence analysis 

(Gu et al., 2014).  However, the data obtained did not consider the different phenological stages 

proposed in sweetpotato (Villordon et al., 2013) and next generation sequence data were 

analyzed at the harvest of the plant.  The contrasting evidence could be explained by the 

observed differences of SPFMV and SPVC, since a decrease in titers is observed in leaf organs 

as time progresses but an inverse scenario is observed in roots.  More importantly, at the 

bioinformatics level, the presence of defective DNA/RNA triggers siRNA production (Wu et al., 

2010).  This siRNA, which is used for the assembly of sweetpotato viruses, is commonly not 

distributed uniformly among the potyvirus genome that could confuse the assembly software 

when determining the contigs (Kreuze, 2014).  This event could overestimate a significant 

amount of reads when our data suggests that SPVC titers do not have a significant difference for 

either time or organ.  

It is also important to know if there are interactions among the four viruses that influence 

viral titers.  The four potyviruses that are typically found in sweetpotato production in the U.S. 

infect sweetpotato in the field at different rates that leads to plants being commonly infected with 

different combinations of the viruses.  While it is well documented that co-infection with SPCSV 

has profound effects on titer of potyviruses, symptoms they induce, and effects on crop yield 

(Kokkinos et al., 2006), it is not known how different species of potyvirus might interact with 

each other.  In this study, single infections were statistically different for SPVG and SPV2 

compared to their natural infections on their 4-way interaction, but SPVC and SPFMV had no 

statistical differences and remain stable.  This could explain why, despite the interaction with 

other potyviruses, in field surveys it is more common to find SPFMV and SPVC than SPV2 and 

SPVG (Clark et al., 2002).  Additionally, it is necessary to know if the viral titers of the artificial 

inoculations is similar to natural infections for future studies in the cultivar decline effect that 

appears to be the most important effect of these viruses on sweetpotato (Clark and Hoy, 2006).  

Data suggests that the artificial 4-way combination of viruses did not modify titers compared to 

naturally infected plants for the viruses used except SPVG.  With this premise, the approach was 

used to determine if the recently distinguished SPVC is a missing component in understanding 

the cause of cultivar decline/yield reduction of sweetpotato in the U.S. (Herrera; Chapter 3).  

Results suggested that a factor is still neglected which could be involved in the reduction of viral 

titers of SPVG, but the same factor increases SPV2 under natural infections according to the data 

obtained in this study. 

In previous experiments, the universal 18S gene has been used for potyvirus 

quantification (Kokkinos et al., 2006), which unfortunately is no longer available.  In this 

experiment, the COX gene, previously determined to be a stable gene for sweetpotato gene 

expression under different abiotic stress (Park et al., 2012) appears to be useful for biological 
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agents like potyvirus relative quantification.  This finding could serve to consider COX for other 

experiments of viral quantification like confirmation of virus expression following detection by 

next generation sequencing methods (Kostic et al., 2011; Zhang et al., 2014; Zheng et al., 2016).  

Recenlty, COX has been used as a housekeeping gene for quantitative multiplex PCR detection 

of SPVG, Sweetpotato mild mottle virus (SPMMV) and Sweetpotato latent virus (SPLV) (Lan et 

al., 2017). 

Initial attempts to use the P1 region of the Potyviridae genome to develop specific 

primers for SPFMV and SPVC were unsuccessful despite the fact that this is a region of amino 

acid gene diversity (Untiveros et al., 2010).  This probably relates to the variability within the 

gene (Adams et al., 2010; Untiveros et al., 2016; Mingot et al., 2014) or frequency of 

recombination (Revers et al., 2015).  This problem was resolved using the CP region of SPFMV 

and SPVC.  CP is a highly conserved region at the nucleotide level (Adams et al., 2005); 

however, the 5’ end of the CP region provides enough mismatches for primer design between 

these two viruses.  Primer design took advantage of the fact that mismatches between the 3’ end 

of the primer and the template, reduce the ability of the oligonucleotide to prime (Crouse and 

Vincek, 1995).  This design helped to amplify each virus without having to increase annealing 

temperature of the reaction, which also helped in the creation of Taqman probes using minor 

groove binding chemistries in a region of poor GC content.  The CP region chosen appears to be 

conserved enough to differentiate between SPFMV and SPVC, which agrees with previous 

studies (Elvira-Gonzales et al., 2017; Lohmus et al., 2017; Voloudakis et al., 2004; Bejerman et 

al., 2016). 

The fact that in this study leaves contained higher titers than other parts of the plant, 

correlates to the increased expression of genes related to photosynthesis following SPFMV 

infection.  In a microarray analysis of gene expression of sweetpotato plants infected with 

SPFMV (Kokkinos et al., 2006), the plants infected with SPFMV, down regulated 

metallothionein-like type 1 protein (involved in cell rescue, defense and virulence; Golgi 

apparatus processing proteins for secretion) and 26S proteasome regulatory subunit S2 (RPN1) 

(involved in ATP regulation of ubiquinated proteins) and upregulated the L-arginine 

metabolizing enzyme plastocyanin (involved in copper-containing protein involved in electron 

transfer).  The results also correspond well with the correlation of higher titers with increased 

aphid transmission of SPFMV during the third week after plating in the field in 2010, at the time 

of rapid vine growth (Wosula et al., 2012).  All results combined suggests that protecting the 

sweetpotato plant canopy during the third week after planting could potentially reduce viral 

transmission by the different aphid populations in the field. 

The utilization of qPCR is cumbersome and expensive for general virus detection.  To 

improve the efficiency and reduce cost, improving each of the individual simplex real-time 

reverse transcription reactions into a single multiplex reaction will be needed for future 

experiments.  In the past, the utilization of multiple fluorophores that can emit different 

wavelengths have been used to screen the presence of different viruses in heirloom sweetpotato 

cultivars (Ling et al., 2010), however, development of this assay also pre-dated elevation of 

SPVC to a distinct species.  With the primers designed in this study, qPCR optimization 

modification with probes with different wavelengths could establish a cheaper assay that can 

detect the most common potyviruses in sweetpotato in the proposed organ and time by this 

experiment for a more efficient diagnostic assay. 
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CHAPTER 3: THE EFFECT OF SWEETPOTATO VIRUS C IN THE STORAGE ROOT 

NUMBER OF SWEETPOTATO (IPOMOEA BATATAS) 

3.1 Introduction 
Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop for food security due to 

the low agronomic inputs required to grow the crop, and its high nutritional value (Gibson et al., 

2009).  Among the different pathogens affecting sweetpotato, viruses have been shown to affect 

yields due to their accumulation during the continuous vegetative propagation of the crop.  Plant 

viruses affect their hosts in several ways, but in U.S. sweetpotato production, potyviruses are 

associated with a phenomenon known as cultivar decline, which results in gradual reductions in 

crop productivity over years of cultivation (Clark et al., 2002).  Four potyviruses are commonly 

found in field surveys in the U.S. (Clark and Hoy, 2006; Wosula et al., 2012).  Sweet potato 

feathery mottle virus (SPFMV) was the first sweetpotato virus fully characterized in 1978 

(Moyer and Kennedy, 1978) and it was the only one reported in the United States until 2001.  

However, Sweet potato virus G (SPVG) and Sweet potato virus 2 (SPV2; synonym Ipomoea vein 

mosaic virus), were subsequently characterized (Souto et al., 2003).  Recently, the former 

common strain of SPFMV-C was re-categorized as the distinct species, Sweet potato virus C 

(SPVC) based on amino acid sequence differences in the P1 region of SPFMV and SPVC 

(Untiveros et al., 2010).  All four potyviruses are ubiquitous in Louisiana and commonly 

detected when surveyed.  Most of the time, they are detected in combination rather than as single 

infections (Wosula et al., 2012). 

Cultivars of sweetpotato currently grown in Louisiana have only shown relatively mild 

foliar symptoms when infected with the common potyviruses, suggesting they have a degree of 

resistance.  However, this resistance is broken when potyviruses are co-infected with Sweet 

potato chlorotic stunt virus (SPCSV) in a synergistic interaction, resulting in the ‘sweetpotato 

virus disease’ (SPVD) (Karyeija et al., 1998).  To analyze how this combination affects 

‘Beauregard’ sweetpotato at the gene level in the plant, a microarray approach was used.  

SPFMV or SPCSV alone caused differential expression of only 3 to 14 genes, respectively, 

compared to virus-tested plants but when combined, 216 genes were expressed differently.   

Most of the genes were related to the photosynthetic pathway (McGregor et al., 2009).  Although 

potyvirus symptoms are most commonly observed in leaves, the factors that affect root 

development, storage root initiation and enlargement are considered critical to improve global 

food security (Villordon et al., 2014).  To date, several factors appear to affect root formation in 

plants.  Intrinsic factors such as ethylene and strigolactones (Ivanchenko et al., 2008; Koltai, 

2011) and environmental variables such as substrate water, nutrient availability and plant viruses 

(Deak and Malami, 2005; Johnson et al., 1996; Kutz et al., 2002; Peltier et al., 2011) have been 

tested in model systems.  Water, nitrogen availability, and virus infections have been 

corroborated to decrease storage root formation in ‘Beauregard’ sweetpotato (Villordon et al., 

2013; Villordon and Clark, 2014). 

Despite all these efforts of molecular and applied studies to understand the factors that 

are involved in storage root production, the infection with viruses known until 2006 in the United 

States did not fully reproduce the magnitude of yield reduction of sweetpotato plants that were 

naturally infected with viruses over many years in field production (Clark and Hoy, 2006).  Since 

SPVC was reclassified as a new species subsequently, the question arose as to whether it might 

account for the differences in yield between naturally infected plants and plants artificially 
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infected with SPFMV, SPVG, and SPV2.  The objective of this experiment was to test if the 

inclusion of SPVC in the potyvirus complex reproduces the reduction in storage root number 

observed in naturally infected plants in sweetpotato ‘Beauregard’.  The interaction of the other 

three potyviruses and the recently described SPVC could lead to a better understanding of 

management and epidemiology of virus-induced decline in this important crop.  

 

3.2 Materials and methods 

3.2.1 Virus isolates  

Sweetpotato plants, which showed potyvirus-like symptoms, were collected from the 

southeastern United States and separated by mechanical inoculations or single aphid 

transmission using different hosts (Souto et al., 2003; Table 3.1).  Isolates were maintained in I. 

nil ‘Scarlet O’Hara’ (SOH) by periodic mechanical inoculations using leaf tissue ground with a 

mortar and pestle in 0.02M phosphate buffer, pH 7.2, amended with 0.1M sodium diethyl 

dithiocarbamate (DIECA) and rubbing the inoculum on Carborundum-dusted leaves.  Their 

isolation was confirmed by a multiplex RT-PCR, which allows detection of SPVG, SPVC, 

SPFMV and SPV2 in the same reaction (Li et al., 2012).  The SOH plants infected with different 

isolates were kept in Bugdorm rearing and observation cages (Bioequip products, CA) in the 

greenhouse facilities of Louisiana State University Agricultural Center, Baton Rouge, Louisiana. 

Table 3.1. Potyvirus isolates from sweetpotato used in this study. Isolates were separated using 

differential host assay or single aphid probe transmissions. Isolates were mechanically 

transmitted into Ipomoea nil ‘Scarlet O’Hara’ and renewed every three weeks. 

Isolate Species Location Method used for separation 

LSU-1 SPVG Louisiana, U.S. Aphis gossypii single probe 

95-6 SPVC 

North Carolina, 

U.S. 

Nicotiana benthamiana mechanical 

inoculation 

Ark-1 SPFMV Arkansas, U.S. Chenopodium quinoa single local lesion 

CA-6 SPV2 California, U.S. C. quinoa single local lesion 

 

3.2.2 Potyvirus inoculation 

Virus-tested plants of sweetpotato ‘Beauregard’ mericlone B-14 originated by meristem-

tip culture (Carrol et al., 2004) were grafted with I. setosa seedlings.  These seedlings were 

previously mechanically inoculated with SPVG (isolate LSU-1), SPVC (isolate 95-6), SPFMV 

(isolate ARK-1) and SPV2 (isolate CA-6).  Two infected I. setosa scions were graft-inoculated to 

each sweetpotato plant for each isolate to create singly-infected plants.  Four grafts, one each 

with a scion infected with SPFMV, SPVG, SPV2, and SPVC were made to virus-tested 

‘Beauregard’ plants to create plants infected with all four potyviruses.  After three weeks, leaves 

from plants with scions that survived grafting were collected in liquid nitrogen and stored at -

80oC until total RNA extraction with CTAB procedure (Li et al., 2008).  

Total RNA was extracted from 100 mg leaf tissue  ground in liquid nitrogen using a 

mortar and pestle, transferred to a FastPrep-24TM tube containing beads for tissue disruption (MP 

Biomedicals; Eschwege, Germany), and mixed with 1ml of CTAB/beta-mercaptoethanol.  
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Samples were placed in a freezer at -20 oC for 15 min.  Tubes were homogenized using a 

Fastprep FP120 (Qbiogene, Inc.; North America) at 4.5 speed for 30 sec, cooled on ice for five 

min, and the homogenization step was repeated.  Samples were incubated at 65 oC for 15 min in 

a water bath and centrifuged at 5220 g in an Eppendorf 5415 microcentrifuge (Eppendorf, U.S.) 

for 5 min. 650 µl of the supernatants were mixed with 650 µl of 24:1 chloroform:isoamyl 

alcohol.  Samples were mixed using a vortexer and centrifuged at 16,300 g for 10 min.  500 µl of 

the aqueous phase were mixed with 350 µl of isopropanol (2-propanol) and centrifuged again at 

high-speed (16,300 g) for 10 min.  The supernatant was discarded and the pellet was washed 

twice with 500 µl of 70% ethanol after two high-speed (16,300 g) centrifugations of two min.  

Finally, the pellet was dried, resuspended in 50 µl of 20 mM Tris-HCl pH 8.0 and dissolved on 

ice for 15 min.  To eliminate RNAses, Invitrogen RNase Out (40 units/µl) (ThermoFisher, 

Waltham, MA) was added at 1 µl per 50 µl of extract.  To standardize the initial concentration of 

RNA, samples were measured by spectrophotometry (Nanodrop; Thermo Scientific) and 

adjusted to a concentration of 250 ng/µl, and 260/230 and 280/230 ratios both above 2.0.  

Samples were kept at -20oC until PCR analysis. 

3.2.3 Confirmation of Potyvirus infection  

RNA from single infections, a four-way potyvirus combination and a sweetpotato 

‘Beauregard’ propagated in the field and exposed to natural infection for seven generations 

(B14-G7); were tested by the multiplex-PCR which allows simultaneous detection of SPVG, 

SPVC, SPFMV and SPV2 in the same reaction (Li et al., 2012; Figure 3.1).  The reaction of the 

multiplex RT-PCR consisted of 0.7 µl of sterile water, 10 µl of 2X reaction buffer (Invitrogen 

Superscript III; Thermofisher), 1.2 µl of Superscript RT/Taq enzyme (Invitrogen), 2.5 µl of 

SPVG forward primer (1.25 µM), 0.4 µl of SPVC forward primer (0.2µM), 2 µl of SPFMV 

forward primer (1 µM) and 0.2 µl of SPV2 forward primer (0.1 µM), 2 µl of SPFCF2R (1 µM) 

and 1 µl of template of total RNA for a reaction of 20 µl.  The 2720 thermocycler (Applied 

Biosystems; Thermofisher) conditions consisted of preheating at 50 oC, then a reverse 

transcription of 50 oC for 30 min and 94 oC for two min.  The cDNA amplification consisted of 

30 cycles of 94 oC for 30 sec, 60 oC for 30 sec and 65 oC for one minute.  The reaction was 

stopped with 72 oC for 5 min. 

At the same time, a strain-specific multiplex RT-PCR, which allows the detection of 

SPVC, SPFMV-RC (russet-crack) and SPFMV-O (ordinary), was used to compare 4-way 

inoculations against B14-G7 (Bejerman et al., 2016; Figure 3.2).  The strain specific reaction 

consisted of 5.4 µl of sterile water, 10 µl of 2X reaction buffer (Invitrogen Superscript III; 

Thermofisher), 1 µl of Superscript RT/Taq enzyme (Invitrogen), 0.6 µl of each forward primer 

(0.3 µM) and 0.8 µl of reverse primer (0.4 uM) for a reaction of 20 µl.  The 2720 thermocycler 

(Applied Biosystems; Thermofisher, U.S.) conditions consisted of a reverse transcription of 48 
oC for 50 min and 94 oC for 4 min.  The cDNA amplification consisted of 40 cycles of 94 oC for 

1 minute, 57 oC for 1 minute and 68 oC for 90 sec.  The reaction was stopped with 72 oC for 10 

min.  Both multiplex RT-PCR reactions were run in a 0.8% agarose electrophoresis for 90 min at 

70V. 
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Figure 3.1. Agarose gel electrophoresis (0.8%) of the products from a multiplex RT-PCR 

reaction of total RNA extracts from the different treatments in this experiment. From left to right: 

Moyer-C (SPVC; positive control) (1), 100bp Bio-Rad Molecular Marker (2), No-template 

control (3), Sweetpotato virus G alone (SPVG; isolate LSU-1) (4), Sweetpotato virus C alone 

(SPVC; isolate 95-6) (5), Sweetpotato feathery mottle virus (SPFMV; isolate Ark-1) alone (6) 

and Sweetpotato virus 2 alone (SPV2; isolate CA-6) (7). Numbers on the left correspond to the 

molecular marker nucleotide size and the numbers on the right the expected fragment to be 

amplified by the different potyvirus isolate species used: SPVG (~1191bp), SPVC (~836bp), 

SPFMV (~589bp) and SPV2 (~369bp). 

 

Figure 3.2. Agarose gel electrophoresis (0.8%) of the products from a multiplex RT-PCR that 

detects different strains of SPFMV (Bejerman et al., 2016). The reaction consists of total RNA 

extracts from the different treatments in this experiment. From left to right: 100bp Bio-Rad 

Molecular Marker (1), Sweetpotato virus G alone (SPVG) (2), Sweetpotato virus 2 alone (SPV2) 

(3), 4-way combination treatment (Sweetpotato virus G (SPVG), Sweetpotato virus C (SPVC), 

Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato virus 2 (SPV2) (4), Virus-tested 

B14 (5), B14-G7 (sweetpotato ‘Beauregard’ naturally infected plant propagated during seven 

generations in the field) (6). Fragments amplified corresponded to SPFMV-O strain (~1302bp), 

SPVC (~900bp) and SPFMV-RC strain (~736bp). 
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After grafting B14-G7 on I. setosa, leaves were tested using RT-PCR, qRT-PCR and 

NCM-ELISA, and found to be infected with SPVG, SPVC, SPFMV and SPV2. B14-G7 tested 

negative for Sweet potato mild mottle virus, Sweet potato latent virus, Sweet potato chlorotic 

fleck virus, Sweet potato mild speckling virus, Sweet potato leaf curl virus, Sweet potato 

chlorotic stunt virus, Sweet potato collusive virus, and Cucumber mosaic virus.  However, the 

possibility that it was infected by viruses not yet recognized in sweetpotato cannot be eliminated. 

Plants were grown under standard greenhouse conditions in 15-cm-diameter clay pots 

containing autoclaved soil mix consisting of 1 part river silt, 1 part sand, 1 part Jiffy-Mix® Plus 

(Jiffy Products of America Inc., Norwalk, OH) and 3.5g per pot of Osmocote® 14-14-14 (Scotts-

Sierra Horticultural Products Company, Marysville, OH).  A weekly insecticide spray program 

was followed to control aphids and whiteflies. 

3.2.4 Plant growing conditions 

Vine cuttings with two nodes below the ground were grown in washed and autoclaved 

river sand in 10-cm diameter, 30cm high polyvinyl chloride (PVC) pots fitted with detachable 

plastic bottoms.  Each plastic bottom had five drain holes (2mm in diameter).  The diameter of 

sand particles varied from 0.05 to 0.9 mm.  The moisture of the growing substrate was 

maintained at approx. 65 to 75% of field capacity (12% volumetric water content).  Growth 

substrate moisture was measured with an ECH20 soil moisture sensor (Model EC-5, Decagon 

Devices Inc.).  High intensity mercury vapor lamps were used to extend daylength to 14 hrs per 

day when necessary (Villordon et al., 2012; Villordon and Clark 2014).  During the 1st, 3rd and 

5th week, plants were fertilized with 200ml of Hoagland’s solution (Hoagland and Arnon, 1950).  

A program of insecticide application, yellow sticky traps and sanitation was routinely used for 

insect control in the greenhouse (30.411380 N, 91.172807 W).  The experiment was conducted 

three times during the months of July to December of 2016 with five replicate plants each time, 

for a total of 15 plants per treatment. 

3.2.5 Data collection 

Six weeks after transplanting, plants were washed carefully to avoid root damage using 

tap water, and then taken to the laboratory for data collection.  Plants were then cut at the first 

main stem region above the soil and the roots were kept under DI water to allow precipitation of 

the grains of sand attached to the root system for eight hrs.  Data collected include differences 

between different types of roots classified based on their diameters such as storage roots 

(>0.4cm), pencil root (0.2-0.4cm) and undifferentiated roots (<0.2cm).  Measured variables 

included storage root number, pencil root number, storage root diameter, storage root length, 

undeferentiated root length, weight of storage roots and weight of total undeferentiated root 

mass, using a ruler and a digital balance.  Data was analyzed by PROC ANOVA (p<0.05) in 

SAS version 9.4. 

 

3.3 Results 
Species of sweetpotato potyviruses were successfully separated using the different 

methods proposed by Souto et al. (2003) as determined by subsequent testing using Li et al’s. 

(2012) multiplex PCR (Fig. 3.1). However, the attempt to separate SPFMV strains from each 

other using single local lesions on either Chenopodium quinoa or C. amaranticolor, was 
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unsuccessful according to the SPFMV strain-specific multiplex PCR of Bejerman et al. (2016) 

(Fig. 3.2).  The plants used in these experiments that were infected with SPFMV were found to 

be infected with both SPFMV-O and SPFMV-RC strains (Fig. 3.2).  

Storage root number was the only yield variable to show a significant difference, in this 

case between naturally infected plants compared to SPV2 (Fig. 3.3).  Despite the efforts to 

recreate the amount of reduction in storage root number observed in the naturally-infected plants 

under greenhouse-controlled conditions, the rest of the data showed high variability among 

treatments, and therefore, differences among treatments were not significantly different (Fig. 3.4 

to 3.9). 

 

Figure 3.3. Total storage root number produced in a greenhouse by ‘Beauregard’ sweetpotato 

plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato virus C 

(SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a plant 

artificially inoculated and infected with all four potyvirus isolates (4-way), a naturally infected 

sweetpotato ‘Beauregard’ propagated during seven generations which had the four potyvirus 

species (G7) and a virus-tested sweetpotato ‘Beauregard’.  Bars with a common letter are not 

significantly different by ANOVA (p<0.05). Error bars = 1 standard deviation. 
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Figure 3.4. Pencil root number produced in a greenhouse by ‘Beauregard’ sweetpotato plants 

infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato virus C (SPVC), 

Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a plant infected with 

all four potyvirus isolates (4-way), a naturally infected sweetpotato ‘Beauregard’ propagated 

during seven generations which was infected with all four potyviruses (G7) and a virus-tested 

sweetpotato ‘Beauregard’. Bars with a common letter are not significantly different by ANOVA 

(p<0.05). Error bars = 1 standard deviation. 

 

Figure 3.5. Diameter of storage roots (in cm) produced in a greenhouse by ‘Beauregard’ 

sweetpotato plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato 

virus C (SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a 

plant infected with all four potyvirus isolates (4-way), a naturally infected sweetpotato 

‘Beauregard’ propagated during seven generations which had the four potyvirus species (G7) and 

a virus-tested sweetpotato ‘Beauregard’. Bars with a common letter are not significantly different 

by ANOVA (p<0.05). Error bars = 1 standard deviation. 
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Figure 3.6.  Length of storage roots (in cm) produced in a greenhouse by ‘Beauregard’ 

sweetpotato plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato 

virus C (SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a 

plant infected with all four potyvirus isolates (4-way), a naturally infected sweetpotato 

‘Beauregard’ propagated during seven generations which had the four potyvirus species (G7) and 

a virus-tested sweetpotato ‘Beauregard’. Bars with a common letter are not significantly different 

by ANOVA (p<0.05). Error bars = 1 standard deviation. 

 

Figure 3.7. Length of undifferentiated roots (in cm) produced in a greenhouse by ‘Beauregard’ 

sweetpotato plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato 

virus C (SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a 

plant infected with all four potyvirus isolates (4-way), a naturally infected sweetpotato 

‘Beauregard’ propagated during seven generations which had the four potyvirus species (G7) and 

a virus-tested sweetpotato ‘Beauregard’. Bars with a common letter are not significantly different 

by ANOVA (p<0.05). Error bars = 1 standard deviation. 
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Figure 3.8. Fresh weight of storage roots (in grams) produced by ‘Beauregard’ sweetpotato 

plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato virus C 

(SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), a plant 

infected with all four potyvirus isolates (4-way), a naturally infected sweetpotato ‘Beauregard’ 

propagated during seven generations which had the four potyvirus species (G7) and a virus-

tested sweetpotato ‘Beauregard’.  Bars with a common letter are not significantly different by 

ANOVA (p<0.05). Error bars = 1 standard deviation. 

 

Figure 3.9. Undiferentiated root fresh weight (in grams) produced in greenhouse ‘Beauregard’ 

sweetpotato plants infected with different potyviruses. Sweetpotato virus G (SPVG), Sweetpotato 

virus C (SPVC), Sweetpotato feathery mottle virus (SPFMV), Sweetpotato virus 2 (SPV2), plants 

infected with all four potyvirus isolates (4-way), a naturally infected sweetpotato ‘Beauregard’ 

propagated during seven generations which had the four potyvirus species (G7) and a virus-

tested sweetpotato ‘Beauregard’.  Bars with a common letter are not significantly different by 

ANOVA (p<0.05). Error bars = 1 standard deviation. 
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3.4 Discussion 

Reduction of yield is the most common result of potyvirus infection in sweetpotato 

production (Clark et al., 2002).  Previously, under field conditions, the amount of yield loss 

observed for plants artificially inoculated with SPFMV, SPVG, and SPV2 was as great as for 

plants naturally infected in the field after years of exposure (Clark and Hoy, 2006; Valverde et 

al., 2007).  Since yield decline has been attributed to other factors like mutations or additional 

pathogens (Villordon and Labonte, 1995; Bryan et al., 2003), the discrepancy between yield 

reductions in naturally and artificially infected plants suggests additional factors should be 

considered.  One of these factors is SPVC, which was described as a different species and 

appears to have a high replication rate in the sweetpotato plant (Untiveros et al., 2010; Gu et al., 

2014).  While attempting to determine if SPVC was the missing causal factor in the amount of 

yield reduction observed by naturally infected plants, it was observed that the infection from the 

four potyviruses is statistically similar to the plants in the field, based on storage root number 

(Fig. 3.1) but the rest of the variables analyzed do not recreate the trend where virus-tested plants 

yielded more than single infections and these more than mixed infections (Clark and Hoy, 2006),  

which suggests that SPVC alone is not the critical missing element.  At the same time, data 

suggests that there are no statistical differences among other possible factors in root 

characteristics that could correlate to the observed differences in the field (Fig. 3.3 to 3.8).  

However, naturally infected plants have conspicuous symptoms of potyvirus infection, higher 

viral titers, and potyviruses are transmitted more frequently by different aphid species from these 

source plants compared to artificially inoculated plants (Kokkinos et al., 2006; Wosula et al., 

2012).  These phenomena were not replicated when SPVC was added into the potyvirus 

infection.  In this study, symptoms appear to be more conspicuous on the naturally infected 

plants than on the plants artificially inoculated with isolates of SPFMV, SPVC, SPVG, and 

SPV2 combined.  Relative viral titers also were greater in naturally infected plants (Herrera; 

Chapter 2). 

Storage root formation is associated with the appearance of anomalous cambia around the 

central metaxylem cells, protoxylem arms and secondary xylem (Firon et al., 2009).  Under 

optimal conditions, ‘Beauregard’ sweetpotato storage root initiation can be observed as early as 

13 days after transplanting (Villordon et al., 2009).  However, despite maintaining plants under 

greenhouse-controlled conditions, single infections or virus-tested plants had no statistical 

difference in storage root number compared to naturally infected plants, with the exception of 

SPV2-infected plants producing more roots than naturally infected plants.  This result differs 

from previous field experiments where virus-tested plants yielded more than mixed infections 

under field conditions (Clark and Hoy, 2006).  These differences could be attributed to the space 

restriction imposed by the PVC pipes.  These space limitations may prevent unimpeded storage 

root differentiation (Villordon et al., 2017) and impede development of a root ecosystem in 

which plants with deeper and abundant roots improve soil structure, water and nutrient retention, 

and sustainable plant yields (Kell, D.; 2011).  However, the total root mass did not suggest 

differences between artificial inoculations and naturally infected plants on the approach of using 

PVC pipes. 

In ‘Beauregard’ sweetpotato, naturally infected plants and virus tested plants displayed 

statistical differences in adventitious root number when nitrogen was not applied compared to 

complete fertilization.  However, the other variables analyzed (lateral root length, lateral root 

number or lateral root density) did not show a statistical difference among virus infections but 
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they did when the nitrogen variable was included.  This suggested that in the interaction between 

nitrogen fertilization and virus inoculations, nitrogen is more involved in differences in root 

architecture than virus inoculations under greenhouse conditions (Villordon and Clark, 2014).  

That could explain why differences in storage root architecture were not detected, since viral 

infections alone appear to not cause statistical differences in the rest of variables measured 

except in storage root number.  Despite the addition of Hoagland’s solution, nutrient availability 

may have been limited by the use of sand that allows rapid movement of nutrients through the 

rooting zone (Villordon et al., 2012) compared to the most common type of soils in Louisiana –

silt loam soils (Edmunds et al., 2008).  Sand also differs in other soil parameters like organic 

matter and microbial populations that could affect recycling of nitrogen or phosphorus (Hooper 

and Vitousek, 1998).  The addition of Hoagland’s solution to the autoclaved sand, supplied 

minor nutrients that have not been studied in terms of their effects on roots and they are not 

usually applied in field cultivation.  They may also have detrimental effects on plant 

development if supplied at toxic concentrations or if they are deficient (O’Sullivan et al., 1997).  

Despite the evidence, Hoagland’s solution has been a standard for controlled experiments in 

different crops (Shipley and Meziane, 2002; Koca et al., 2007; Zhao et al., 2005). 

One difficulty in studying the effects of single potyvirus infections in sweetpotato is the 

observation that ‘reversion’, or apparent loss of the virus, sometimes occurs in some cultivars 

(Gibson et al., 2013).  Reversion was not detected in the viral inoculations of the four 

potyviruses which remained stable through the experiment.  In particular, SPVC relative titers 

remained constant during the different storage root development stages and different plant organs 

analyzed (Herrera; Chapter 2).  However, the fact that naturally infected plants could be infected 

with an unknown virus should be considered (Clark et al., 2012; Wosula et al., 2012).  More than 

30 viruses have been reported from sweetpotato, including the recently described Sweet potato 

pakakuy virus (SPPV), a virus composed of Sweetpotato badnavirus A and B (Mbanzibwa et al., 

2014; Kreuze et al., 2009).  The virus-tested plants used in this study did not show virus 

symptoms and were previously tested and found to be apparently free of other known 

sweetpotato viruses (Sweet potato mild mottle virus, Sweet potato latent virus, Sweet potato 

chlorotic fleck virus, Sweet potato mild speckling virus, Sweet potato leaf curl virus, Sweet 

potato chlorotic stunt virus, Sweet potato collusive virus, and Cucumber mosaic virus).  The 

naturally infected plants have shown amplifications of badnavirus sequences under initial PCR 

screening of reverse transcriptase genes of both A and B regions, however, to date they remain 

poorly studied in terms of their effects in sweetpotato (Herrera, data not shown).  A study 

suggested that SPPV is wide spread in sweetpotato plants in mixed infections with Sweet potato 

symptomless mastrevirus 1 (SPSMV-1) in Tanzania (Mbanzibwa et al., 2014) and that it is 

commonly found in sweetpotato landraces (Mbanzibwa et al., 2011).  Since no means of 

horizontal transmission has been determined for SPPV, it is not yet clear whether it is truly a 

transmissible virus or if remnant DNA sequences are present in the host genome.  Additional 

research is needed to clarify this critical aspect, and if it is determined to be a transmissible virus, 

to then determine its biological effects on sweetpotato alone and when co-infecting with other 

common viruses.   

Plant hormones could mediate some of the effects observed in this study.  Storage root 

initiation results from development of cambia around the protoxylem and secondary xylem 

elements (Villordon et al., 2009).  The differentiation among root tissues has been associated 

with internal cues such as auxins, ethylene, abscisic acid, cytokinin and strigolactones 
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(Ivanchenko et al., 2008; Koltai, 2011).  Possibly an unknown virus is associated with 

differential expression of a plant hormone involved in storage root formation.  This is supported 

by a previous study in which SPVD infection resulted in apparent down regulation of 

gibberellin-regulated protein 5 (GASA5) (Kokkinos et al., 2006).  Future studies using 

quantitative PCR of the GASA5 gene associated with stem growth and flowering (Zhang et al., 

2009), and the amount of foliar and canopy production of naturally infected and virus-tested 

plants could lead to a better understanding of whether the viruses might modify the sweetpotato 

plant canopy. 

Difference in viral titers between greenhouse and field experiments have been reported in 

sweetpotato plants infected with SPVG, SPV2 and SPFMV (Kokkinos et al., 2006).  The ability 

to replicate faster or to stay at low titers to avoid competition in a virus population, has been 

demonstrated as a key advantage in viral survival (Elena et al., 2014).  For example, different 

potyvirus species have different rates of spread in sweetpotato fields, which is possibly related to 

viral titer in the source plants that in turn affects acquisition by aphid vectors (Wosula et al., 

2012).  Thus, SPFMV is more commonly detected in the field than SPVG, SPV2, or SPVC 

(Wosula et al., 2012a and b).  Four potyviruses replicating simultaneously in the same plant may 

require time for the each virus to reach a steady state titer, or the relative proportions of the 

viruses may vary over time as individual viruses go through cycles of increased or decreased 

rates of replication.  Thus, naturally infected plants in which the viruses have been replicating for 

years may differ from plants where the four viruses were only recently introduced.  Conceivably, 

plants may therefore perform differently even when infected with the same complement of 

viruses.  Future studies of how viral titers differ during different generations of vegetatively 

propagated plants could help to understand the observed effects in the field or if one of them is 

prone to overcome the others.  

SPFMV appears to be a more diverse species than the rest of the other potyviruses used 

in this study.  Different strains of SPFMV have been reported around the world such as the 

ordinary strain, russet-crack strain (Yamasaki et al., 2009) and the East African strain (Gibson et 

al., 2009; Untiveros et al., 2008; Untiveros et al., 2010).  This could be the reason why, despite 

the efforts to utilize isolates originated in Louisiana at the beginning of the study, SPFMV and 

SPV2 did not remain stable in the sweetpotato plant and had to be replaced with isolates with a 

different place of origin.  The assumption that the naturally infected plants are mixed with 

isolates that are not closely related enough at the genome level to the isolates used in artificial 

inoculations could be the reason that storage root number is severely affected in naturally 

infected plants.  Strain-specific PCR indicated that naturally infected plants were infected with 

the russet-crack and ordinary strains of SPFMV and SPVC, as were the artificial inoculations 

(Fig. 3.2).  Additionally, phylogenetic analysis of several isolates from the United States place 

them in the same clade as isolates from other parts of the world (Herrera; Chapter 4), which 

suggests that at least in the United States there is not enough genomic variation, at least with the 

studied isolates, to place the isolates used in this study as a different strains.  Despite the failed 

attempt to separate SPFMV using different Chenopodium species, future studies of the effects of 

the different SPFMV strains could help to elucidate which one is more detrimental to the plant. 

The combinations of potyviruses used in this study did not fully reproduce the effects on 

storage root production observed with naturally infected ‘Beauregard’ plants, and it appears that 

SPVC alone is not the missing element.  Further research is still needed to identify the missing 

factor(s) to reconstruct the complex that causes cultivar decline in ‘Beauregard’ and other 
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cultivars of sweetpotato.  Even though root development and architecture are considered drivers 

of yield in sweetpotato, virus titers were greater in leaves (Herrera; Chapter 2).  Previous 

research found that SPFMV and SPCSV differentially affect photosynthetic genes (Kokkinos et 

al., 2006).  This suggests that future experiments should focus on the effect of potyviruses in 

leaves and their correlation with sweetpotato roots.  For example, analyzing modifications in 

chlorophyll production since in tobacco plants infected with Cucumber mosaic virus, chlorophyll 

fluorescence lifetime of chlorotic leaves was significantly shorter than the healthy control leaves 

(Lei et al., 2017).  Measurement of the amount of foliar tissue produced in the canopy using 

remote monitoring technologies might reveal whether sweetpotato viruses have similar effects as 

those seen in wheat infected with Wheat streak mosaic virus, which appear to reduce root and 

shoot mass production reducing water intake to the plant (Mirik et al., 2012; Price et al., 2010).  
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CHAPTER 4: MOLECULAR CHARACTERIZATION OF SWEETPOTATO FEATHERY 

MOTTLE VIRUS AND SWEETPOTATO VIRUS C IN LOUISIANA 

4.1 Introduction 
Sweetpotato [Ipomoea batatas L. (Lam); Convolvulaceae] is the 7th most important 

commodity in the world (FAO, 2012).  There are several important diseases that affect the crop, 

but one of the greatest concerns is cultivar decline, which results from accumulation of 

pathogens and mutations during vegetative propagation (Bryan et al., 2003; Villordon and 

Labonte, 1995).  The main contributors to cultivar decline in the United States are potyviruses, 

(Clark and Hoy, 2006).  Potyviruses belong to the family Potyviridae and the genus Potyvirus, 

where Potato virus Y is the representative species of this group (ICTV, 2012).  

The potyviruses associated with sweetpotato have filamentous particles approximately 

850 nm long, and they are vectored in a non-persistent manner by many aphid species (Wosula et 

al., 2012).  They have a genome size ranging from 10,731 to 10,800 nucleotides (nt) excluding 

the 3’ poly (A) tail (Li et al., 2012).  The polyprotein is translated entirely and then it is cleaved 

in conserved locations producing 10 mature proteins (Adams et al., 2005).  Sweetpotato 

potyviruses also have a restricted host range, affecting primarily plants in the Convolvulaceae, 

the ‘morning glory’ family. 

The genome of potyviruses consists of several genes, ordered from the 5’ end to the 3’ 

end.  They start with a 5’ untranslated region (UTR), a large open reading frame (ORF) and a 3’ 

UTR region.  The ORF consists of 10 functional proteins: the P1 (proteinase), cleaves the 

polyprotein and is involved in host recognition.  HC-pro is involved in aphid transmission, as 

well as proteinase for polyprotein processing.  P3 and 6K1 have unknown functions but 6K1 is 

possibly involved in polyprotein replication.  CI, is involved in viral replication, and RNA 

helicase is involved in unwinding of dsRNA and membrane attachment.  The 6K2 has an 

unknown function but is possibly involved in polyprotein genome replication.  The NIa-VPg, 

which serves in virus replication as a primer.  The NIa-pro is involved in major aspects of 

polyprotein processing including producing the VPg which acts as a primer of the initial 

polyprotein.  The Nib is involved in genome replication as an RNA-dependent RNA polymerase.  

Finally, the coat protein (CP) which encapsidates and protects the RNA and is involved in aphid 

transmission and cell-to-cell movement (Shukla et al., 1994; Salvador et al., 2008).  In 

sweetpotato potyviruses, an extra open reading frame named Pretty Interesting Sweet Potato 

Potyvirus ORF (PISPO) is involved in RNA silencing (Chung et al., 2008; Mingot et al., 2016).  

In the United States, four potyviruses: Sweet potato feathery mottle virus (SPFMV), 

Sweet potato virus G (SPVG), Sweet potato virus 2 (SPV2), and Sweet potato virus C (SPVC) ; 

have been documented to date (Clark et al., 2012).  This group of viruses are graft transmissible 

and can be transmitted mechanically under artificially controlled conditions, but are not 

transmitted mechanically in the field or by seed (Loebenstein et al., 2009).  Prior to the 

utilization of sequence data, species and strains were differentiated using host range, 

symptomatology, and serology (Adams et al., 2005).  However, with the information of the CP 

nucleotide data, SPFMV can be divided into three representative strains: russet crack (RC), 

ordinary (O) and East African (EA) (Abad et al., 1992; Kwak et al., 2007).  Because of the low 

homology of the previously named Common (C) strain of SPFMV at the CP (Kreuze et al., 

2000; Ateka et al., 2007) and the amino acid (aa) differences in the P1 gene, it was reclassified 
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as the distinct species, SPVC, by the International Committee on Taxonomy of Viruses 

(Untiveros et al., 2010).  

These four potyviruses are genetically conserved in the C-terminal half of their CP gene 

which has been used to differentiate species (Li et al., 2012).  However, there has been some 

debate about using the CP region since it only represents 10% of the genome (Boss, 1992; 

Zettler, 1992).  The evidence of sequence differences in the P1 region (Untiveros et al., 2010) led 

to the necessity to study the full genome sequence and their respective genes to increase the 

knowledge about genetic structure, diversity, dispersion and emergence (Kwak et al., 2015).  

Since most of the sweetpotato plants are commonly infected with mixtures of several potyviruses 

(Valverde et al., 2007), the emergence of new viral strains as a product of genetic recombination 

likely contributed to the emergence of new positive-sense RNA viruses (Chare and Holmes, 

2006) and may even create some isolates that are no longer detectable by some qPCR assays (Ha 

et al., 2008; Lan et al., 2017). 

The objective of this study was to determine complete genome sequences of five SPFMV 

and four SPVC isolates collected from sweetpotato plants representative of several sweetpotato 

production fields in the southern United States.  The genetic structure and variability of isolates 

present in Louisiana were compared to other isolates present in the world to better understand the 

evolutionary relationship among the isolates. 

 

4.2 Materials and methods 

4.2.1 Isolate preparation 

Virus isolates from sweetpotato were collected from different locations in the United 

States, either directly from sweetpotato plants or from Ipomoea setosa sentinel plants placed in 

sweetpotato fields (Table 4.1; Souto et al., 2003; Wosula et al., 2012; Moyer and Kennedy 

1978).  Sweetpotato plants were grafted with seed propagated scions of I. setosa, and then 

mechanical transmissions were made from symptomatic I. setosa leaves into Ipomoea nil 

‘Scarlet O’Hara’ (SOH).  To separate SPFMV isolates, mechanical inoculations were made into 

Chenopodium quinoa and single local lesions produced after approximately 10 days were 

mechanically reinoculated back to SOH where they were maintained.  To separate SPVC 

isolates, mechanical inoculations of leaf tissue was made in Nicotiana benthamiana and then re-

inoculated back into SOH.  Mechanical inoculations were conducted with a chilled mortar and 

pestle using 0.02M phosphate buffer, pH 7.2, amended with 0.1M sodium diethyl 

dithiocarbamate (DIECA) and rubbing the inoculum on Carborundum-dusted leaves. (Souto et 

al., 2003).  All isolates were kept in Bugdorm rearing and observation cages (Bioequip products, 

CA) and renewed every three weeks.   

Isolate separation was confirmed by RT-PCR (Li et al., 2012) prior to CTAB total RNA 

extraction (Li et al., 2008).  A 100 mg sample of leaf tissue previously ground in liquid nitrogen 

using a mortar and pestle was mixed with 1ml of CTAB/beta-mercaptoethanol.  Samples were 

placed at -20oC for 15 min.  Tissue and extraction buffer was homogenized using a Fastprep 

FP120 (Qbiogene, Inc.; North America) at 4.5 speed for 30 sec, cooled on ice for five min and 

homogenized again.  Samples were incubated at 65oC for 15 min in a water bath and centrifuged 

at 5,220 g in an Eppendorf 5415 microcentrifuge (Eppendorf, U.S.) for 5 min.  650 µl of the 

supernatant was mixed with 650 µl of 24:1 chloroform:isoamyl alcohol.  Samples were mixed 
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using a vortex mixer and centrifuged at max speed for 10 min.  500 µl of the aqueous phase was 

mixed with 350 µl of isopropanol (2-propanol) and centrifuged again at max speed for 10 min.  

The supernatant was discarded and the pellet was washed twice with 500 µl of 70% ethanol after 

two high-speed centrifugations of two min.  Finally, the pellet was dried, resuspended in 50 µl of 

20 mM Tris-HCl pH 8.0 and dissolved on ice for 15 min.  To eliminate RNAses, Invitrogen 

RNase Out (40 units/µl) (ThermoFisher) was added at 1 µl per 50 µl of extract. 

Table 4.1. Origin of sweetpotato potyvirus isolates of sweetpotato used in this study.  

Isolate Virus Sequenced Location of origin Host of origin 

95-2 04R   New Mexico Sweetpotato ‘Beauregard’ 

TFSW-1 J   North Louisiana Ipomoea setosa sentinela 

11-8 SPFMV North Louisiana Sweetpotato 

95-2T 
  

New Mexico Sweetpotato ‘Beauregard’ 

11-8   North Louisiana I. setosa sentinela 

95-6   North Carolina Sweetpotato ‘Beauregard’ 

11-5 SPVC North Louisiana I. setosa sentinela 

SPVC PR3 
  

Burden Center, Baton Rouge Sweetpotato ‘Beauregard’ 

Moyer-C  
  

North Carolina Sweetpotato ‘Beauregard’ 

a Ipomoea setosa sentinel plants were placed in or adjacent to commercial sweetpotato 

fields and became naturally infected presumably as a result of aphid transmission from 

sweetpotato source plants in the field. 

 

4.2.2 Isolate sequencing 

Total RNA preparations were purified from SOH leaf samples infected with SPFMV or SPVC 

and supplied to Dr. Kai-shu Ling, a collaborator at USDA-ARS in Charleston, SC.  Using the 

small RNA sequencing and assembly technology (Kreuze et al., 2009, Li et al., 2012), small 

RNA (sRNA) libraries were prepared following the T4 RNA ligase 1 adenylated adapters 

method as described by Chen et al., 2012.  The bar-coded, small RNA libraries were pooled and 

sequenced using an Illumina HiSeq 2000 (Li et al., 2012).  For virus identification, sRNA 

sequences were assembled and analyzed using the VirusDetect program (Zheng et al., 2017).  

Any sequence gaps were filled with RT-PCR flanking primers.  A brief description of Illumina 

results are provided in Table 4.2. 
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Table 4.2. Summary of outputs from Deep sequencing sRNA on Ipomoea nil (SOH) leaf 

samples. 

Library 
Possible 

Viruses 
Barcode Total raw reads 

Final clean read 

reads 
% of 

raw 

KLL145 (Moyer-

C) 

SPFMV, 

SPVC 
AAGCGC  1,628,525 1,059,251 65.04 

KLL146 (95-6) 
SPFMV, 

SPVC 
AACAGA  2,679,219 516,084 19.26 

KLL148 (11-5) 
SPFMV, 

SPVC 
GAACGT  2,306,331 1,674,988 72.63 

KLL149 (SPVC 

PR3) 

SPFMV, 

SPVC 
GAATCA  2,271,380 1,426,038 62.78 

KLL150 (95-2 

04R) 
SPFMV  GAGACT  1,931,074 1,280,120 66.29 

KLL151 (95-2T) SPFMV AACGAC  12,083,368 9,017,879 74.63 

KLL153 (11-1) SPFMV AACTCT  2,242,799 1,881,974 83.91 

KLL154 (11-8) SPFMV AATACC  1,653,418 702,756 42.5 

KLL155 

(Healthy) 
None GAGGTC  1,803,531 1,000,804 55.49 

KLL156 

(TFSW1-J) 
SPFMV GAGTGG  1,477,150 1,080,203 73.13 

 

 

4.2.3 Completion of viral genome sequences 

Each potyvirus isolate was partially purified from infected SOH using polyethylene 

glycol (PEG) precipitation to determine the exact 5’ terminal sequence of the VP-g linked viral 

RNA for potyviruses (Jones et al., 1980).  Plant leaves and stems were chopped with a razor 

blade and weighed.  The leaf tissue (2 g) was ground (1:3 w:w) with buffer containing 0.0065 M 

disodium tetraborate, 0.435 M boric acid, 0.2% ascorbic acid and 0.2% sodium sulphite at pH 

7.8.  The homogenate was filtered through cheesecloth and the filtrate was centrifuged at 5000 g 

for 20 min in a Beckman Coulter Avanti J-25 centrifuge.  The supernatant was collected and 



46 
 

silver nitrate was added to 0.4%, mixed, and allowed to stand at room temperature for one hr.  

The mixture was centrifuged again at 5,000 g for 20 min.  PEG was added to the supernatant to 

4% (w:v) and mixed slowly at 4oC for one hr.  Samples were centrifuged again at 5,000 g for 20 

min and the pellet was collected and re-suspended with buffer containing 0.065 M disodium 

tetraborate, 0.435 M boric acid, 0.5 M urea and 0.1% mercaptoethanol at pH 7.8.  Samples were 

stirred for eight hrs at 4oC and then centrifuged at 5,000 g for 20 min.  The pellet was discarded 

and the supernatant was centrifuged at 64,000 g for 70 min.  The supernatant was discarded and 

the pellet was re-suspended in buffer with 0.01 M tris-HCl buffer pH 8.0 and stirred for one hr at 

4oC. 

The 5’ terminal sequence was obtained through rapid amplification of cDNA ends 

(RACE) using a 5’/3’ RACE kit (2nd generation ROCHE; Sigma, St Louis, MO, U.S.) following 

manufacturer instructions.  Primers from the known contigs were designed to obtain fragments 

that can be sequenced by Sanger sequencing.  After amplification of the correct PCR fragment 

and size tested by agarose gel electrophoresis, eight different PCR amplification samples per 

isolate were sequenced with their respective forward and reverse primers used in that PCR 

reaction using ABI3730XL Sanger sequencer (Macrogen, MD, U.S.).  Fragments were 

assembled de-novo using Geneious (Biomatters Limited, NZ), checking for quality scores (QS) > 

30. 

Libraries were completed and assembled with DNASTAR (Lasergene 13) using a 

referenced based approach.  A BLAST analysis (nBLAST, NCBI) of the complete genomic 

sequence and deduced polyprotein sequences (ORF finder, NCBI) available in GenBank was 

done to corroborate the completion of the sequences of each one of the isolates.  Based on the 

molecular biology of potyviruses (Adams et al., 2010), a complete assembly was considered if 

the whole nucleotide sequence produced a single polyprotein and their respective mature 

proteins. 

 

4.2.4. Sequence comparison 

The complete nucleotide sequences and deduced amino acid sequences were aligned 

using MUSCLE algorithm and the percentage of sequence similarity of nucleotide and amino 

acid data was obtained using Sequence demarcation tool Version 1.2 (Muhire et al., 2014).  

Pairwise sequence comparison analysis with previously reported isolates of SPFMV and SPVC 

were analyzed (Table 4.3).  Outgroups of SPVG, SPV2 and SPLV were used since they have 

similar genome composition as SPFMV and SPVC. 
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Table 4.3. Full Genome accession numbers of Sweetpotato feathery mottle virus (SPFMV), 

Sweetpotato virus C (SPVC), Sweetpotato virus G (SPVG), Sweetpotato virus 2 (SPV2), and 

Sweetpotato latent virus (SPLV) used in the phylogeny analysis.  Isolates obtained in this study 

are shown in boldface.  Louisiana State University (LSU) 

Species Isolate Name 
Accession 

Number 
Location Citation 

  PR3   LSU This study 

  95-6   North Carolina This study 

  11-5   North LA This study 

SPVC Moyer C   North LA 
Moyer and Kennedy, 

1978 

  Bungo AB509453 Japan Yamasaki et al. 2010 

  Argentina KF386015 Argentina Bejerman et al. 2015 

  IL JX489166 Israel Prakash et al. 2012 

  China 1 KU877879 China Not found 

  C1 GU207957 Peru Untiveros et al. 2010 

  95-2T   Derived 95-2 04R This study 

  95-2 04R   New Mexico, US This study 

  11-1   North Louisiana This study 

  TFSW-1 J   North Louisiana This study 

  11-8   North Louisiana This study 

  17-0 AB509454 Korea Yamasaki et al. 2010 

SPFM

V 
Ordinary AB465608 Japan Yamasaki et al. 2010 

  10-O AB439206 Japan Yamasaki et al. 2010 

  O KF386013 Argentina Bejerman et al. 2015 

  GJ122 KP115609 Korea Kwak et al. 2015 

  RUK73 KP729265 Uganda Tugume et al. 2010 

  Piu 3 FJ155666 Peru Untiveros et al. 2010 

  IS90 KP115610 Korea Kwak et al. 2015 

  CW137 KP115608 Korea Kwak et al. 2015 

  RC-Arg KF386014 Argentina Bejerman et al. 2015 

  Severe D86371 Japan Yamasaki et al. 2010 

SPVG 
GWBG JN613805 USA Li et al. 2012 

Z01001 JN613806 South Korea Li et al. 2012 

SPV2 
AUSCAN KX017448 Australia Maina et al. 2016 

GWB2 JN613807 USA Li et al. 2012 

SPLV 

TW KC443039 Taiwan 
Wang et al. 2013 

HG181 KP115611 Korea 
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4.2.5 Phylogenetic analysis 

Nucleotide sequence alignments were estimated in MEGA7 

(http://www.megasoftware.net/; Tamura et al., 2013) using the Muscle (Edgar, 2004) algorithm 

and MAFFT version 7 (Katoh and Standley, 2013) specifying a G-INS-I iterative refinement 

method and a 200PAM/K=2 scoring matrix or BLOSUM62.  Alignments were considered for 

nucleotide and amino acid sequences for both the 5’ UTR, the mature proteins produced by the 

polyprotein and the 3’ UTR described in potyviruses (Adams et al., 2005).   

The best-fit nucleotide substitution model was selected according to corrected Aikake’s 

Information Criterion (AICc) with JModelTest 2.0 version 0.01.1 (Darriba and Posada, 2014) for 

for nucleotide analysis as well as ProtTest version 2.4 (Abascal et al., 2009) with AICc for the 

amino acid analysis.  The best-fit model was chosen among a candidate set of 203 models 

according to AICc implemented in jModelTest and 66 models according to AICc in ProtTest.  

Maximum likelihood analyses were conducted in RAxML (Stamatakis, 2016) for protein data 

(raxml-PTHREADS -n tre -s infile -x 1234 -N 1000 -k -p 1234 -f a –m bestmodel) and Garli 

v2.01 (Zwickl, 2006) for nucleotide data (Table 4.4). 

Each tree was constructed using the resources at the Louisiana State University high-

performance computing center (http://www.hpc.lsu.edu).  The maximum likelihood tree was 

generated by stepwise addition with 100 search replicates.  Bootstrap proportions were estimated 

from a minimum of 1,000 pseudo replicate datasets, with the highest likelihood tree from two 

replicate searches per pseudo replicate dataset retained.  Bootstrap proportions were calculated 

and mapped onto the maximum-likelihood phylogenetic trees using SumTrees in the Dendropy 

v3.12.0 phylogenetic computing library (Sukumaran and Holder, 2010).   

Trees were visualized using the graphical representations of phylograms in FigTree 

v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).  Full genomes of SPFMV, SPVC and six 

outgroups of SPVG, SPV2 and Sweetpotato latent virus (SPLV) were used in the analysis (Table 

4.3). 

 

4.2.6 Recombination analysis 

SPFMV and SPVC full-length genome sequences (25 sequences, Table 4.3), were 

analyzed.  Previously aligned sequences were uploaded to RDP4 v4.55 software (Martin et al., 

2015) with default settings.  Sequences were analyzed using the following algorithms: rdp 

(Martin and Rybicki, 2000), maxchi (Smith, 1992), geneconv (Padidam et al., 1999), SiScan 

(Gibbs et al., 2000), chimaera (Posada and Crandall, 2001), bootscan (Salminen et al., 1995), 

and 3seq (Boni et al., 2007).  The P value was set as 0.05 and results for the isolates are 

summarized (Table 4.7). 

 

 

 

 

 

http://www.hpc.lsu.edu/
http://tree.bio.ed.ac.uk/software/figtree/
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Table 4.4. Best-fit models of sequence evolution based on ProtTest v2.4 (amino acid, 66 models 

tested) and JModelTest v0.01.1 (nucleotide, 203 models tested). Models were selected using the 

AICc criterion. Evolutionary models: JTT (Jones et al., 1992); LG (Le and Gascuel, 2008); GTR 

(Generalized time-reversible; Tavare, 1986); TIM2 (transitional model; Posada, 2003); HKY 

(Hasegawa et al., 1985). Rate of nucleotide change: I (proportion of invariable sites); G (gamma 

distributed rate variation among sites); F (unequal frequency model) (Darriba and Posada, 2014). 

Potyvirus Viral Gene/Region Protein Model (ProtTest) Nucleotide Model 

(JModelTest) 

5’ UTR ----- HKY +G 

3’ UTR ----- HKY +G 

Complete sequence JTT +I +G GTR +I +G +F 

P1 JTT +I +G GRT +G +F 

HC-Pro LG +G GTR +I +G +F 

P3 LG +G GTR +I +G +F 

6K1 JTT HKY +G 

CI LG +G GRT +G +F 

6K2 LG HKY +G 

NIa-VPg LG +G TIM2 +G 

NIa-Pro LG +G GRT +G +F 

NIb LG +G GTR +I +G +F 

CP JTT +I +G TIM2 +I +G 

 

 

4.3 Results 

 The full-length genome sequences of five SPFMV and four SPVC were obtained from 

sweetpotato or I. setosa plants separated at species level using mechanical inoculations in C. 

quinoa or N. benthamiana (Souto et al., 2003).  These isolates were representative of 

sweetpotato production fields in the United States (Table 4.3).  Their complete genome ranged 

from 10,793 to 10,830 nt (3481 aa) for SPVC isolates and 10,819 to 10,820 nt (3493aa) for 

SPFMV isolates.  Genome organization was typical of previously reported potyviruses in 

sweetpotato and the obtained sequences produced the potential 10 proteins.  5’ UTR ranged from 

125 to 160 nt (SPVC) and 117 nt (SPFMV).  P1 ranged from 654 aa (SPVC) and 664 aa 

(SPFMV).  The sizes of HC-Pro, P3, 6K1, CI, 6K2, VPg, NIa-Pro, and NIb were 458, 352, 52, 

643, 53, 192, 253, 521 aa respectively.  The CP aa size was 313 aa (SPVC) and 315 aa 

(SPFMV).  Finally, the 3’ UTR was 222 nt (SPVC) and ranged from 221 to 222 nt (SPFMV).  

Additionally, all isolates presented the previously reported Pretty Interesting Potyviridae ORF 

(PIPO) located in the P3 region (Chung et al., 2008) and the G2A6 motif, which belongs to the 

Pretty Interesting Sweetpotato Potyvirus ORF (PISPO) at the P1 region (Clark et al., 2012).  

Both PIPO and PISPO are produced by ribosomal frameshift and have been described to be 

involved in RNAi silencing processes (Chung et al., 2008; Olspert et al., 2016; Untiveros et al., 

2016). 

 Pairwise sequence comparison of complete nucleotide and amino acid sequences 

associated the four sequences of SPVC (Moyer-C, 95-6, PR3 and 11-5) as similar to the isolates 
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Israel, Bungo and Peru with sequence similarities ranging from 94 to 99%.  One of the SPFMV 

isolates (95-2T) was highly similar to the ordinary strains of SPFMV with 96% sequence 

similarity and the other four isolates (11-1, 11-8, TFSW-1 J, 95-04R) were similar to russet-

crack strains ranging from 90 to 98 % sequence similarity (Table 4.5; numbers: 1, 9, 10, 11, 14 -

SPFMV and 19, 21, 22, 24 -SPVC).  Similar association results were obtained from the amino 

acid pairwise sequence comparisons of the different potential proteins deduced from the 

completed sequences of the isolates used in the present study (Table 4.6). 

The complete nucleotide and amino acid sequence phylogenetic analysis using previously 

reported isolates on NCBI (Table 4.3) indicated similar association to pairwise sequence 

comparisons locating the SPVC and SPFMV isolates as monophyletic to previously reported 

SPVC/SPFMV isolates (Fig. 4.1 to 4.12).  Additionally, SPFMV phylogeny has been reported 

with two-within-virus species phylogroup classification (Jones and Kehoe, 2016).  The first is 

based on differences of biological characteristics or region of the world where each isolate 

originated and the second using a neutral nomenclature to avoid potentially misleading names 

based on biology or geography.  The major phylogroup A comprised two minor phylogroups EA 

(I) and O (II) strains of SPFMV and major phylogroup B, the RC strains of SPFMV.  Based on 

the phylogroup classification, simmilar tree topologies between nucleotide and amino acid data 

were observed in trees from genes of P1, HC-pro, CI, Vpg, NIa and NIb but not from P3, 6K1, 

6K2 and CP (Fig. 4.2 to 4.12).  Greater number of subtitutions were estimated in trees from the 

CP nucleotide data compared to amino acid data in isolate 11-1 of SPFMV (Table 4.11). 

 To examine whether recombination occurred in the sequenced potyviruses, 24 full-length 

sequences (16 from SPFMV and 9 sequences from SPVC) were analyzed in RDP4 using seven 

of the default algorithms (Table 4.7).  In total 30 recombination events were detected, however 

only 16 of them were detected by more than 3 algorithms and out of those 16, for recombination 

events # 6, 9, 11 and 13 both major and minor parental sequences were determined.  These 

results place the rest of the reported events as ‘tentative’ since they were supported by less than 

three methods or one of the parents is unknown.  For the isolates completed in this study, a 

majority of the recombination events were reported in the P1 and CP regions and were reported  

commonly for isolates of SPFMV 95-2T, 11-1, 11-8 and SPVC isolates 11-5, PR3, 95-6. 
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Table 4.5. Pairwise sequence comparison of complete nucleotide sequences (% identity). Sweetpotato feathery mottle virus (SPFVM), 

Sweetpotato virus C (SPVC), Sweetpotato virus G (SPVG), Sweetpotato virus 2 (SPV2), Sweetpotato latent virus (SPLV). O: ordinary 

strain, EA: East-African strain, RC: russet-crack strain. 
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Table 4.6. Nucleotide and amino acid sequence identity (%) of the russet crack strain of SPFMV 

(95-04R) and other potyviruses reported to infect sweetpotato. Sweetpotato feathery mottle virus 

(SPFVM), Sweetpotato virus C (SPVC), Sweetpotato virus G (SPVG), Sweetpotato virus 2 

(SPV2), Sweetpotato latent virus (SPLV). O: ordinary strain, EA: East-African strain, RC: 

russet-crack strain. 
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Figure 4.1. Maximum Likelihood Analysis of the 5’ untranslated (UTR) (left) and 3’ UTR (right) nucleotide (nt) sequences of 

Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate 

the isolates obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree 

represents estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and 

Sweetpotato latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.2. Maximum Likelihood Analysis of the P1 nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.3. Maximum Likelihood Analysis of the HC-pro nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.4. Maximum Likelihood Analysis of the P3 nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.5. Maximum Likelihood Analysis of the 6K1 nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.6. Maximum Likelihood Analysis of the CI nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.7. Maximum Likelihood Analysis of the 6K2 nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.8. Maximum Likelihood Analysis of the Vpg nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.9. Maximum Likelihood Analysis of the NIa-Pro nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.10. Maximum Likelihood Analysis of the NIb nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.11. Maximum Likelihood Analysis of the CP nucleotide (nt, left) and amino acid (AA, right) sequences of Sweetpotato 

feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate the isolates 

obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree represents 

estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and Sweetpotato 

latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Figure 4.12. Maximum Likelihood Analysis of the complete nucleotide (nt, left) and polyprotein amino acid (AA, right) sequences of 

Sweetpotato feathery mottle virus (SPFMV) and Sweetpotato virus C (SPVC).  Asterisks at the end of the name of sequences indicate 

the isolates obtained in this study.  Numbers show bootstrap values (1000 replicates) in the major nodes.  The bar below the tree 

represents estimated substitutions per site.  Outgroups belong to Sweetpotato Virus 2 (SPV2), Sweetpotato virus G (SPVG) and 

Sweetpotato latent virus (SPLV).  Other abbreviations are O: ordinary strains, EA: East-African strains, RC: russet crack strains. 
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Table 4.7. Recombination events for SPFMV and SPVC isolates.  Event number = ordered number of recombination events in all 

sequences.  Site in genome: position of the recombination event in the sequence.  Recombinant sequences: sequences that showed the 

recombination event.  Major/Minor Parental sequence: the most likely parental isolate among those analyzed.  Genes affected:  

potential genes affected with recombination breakpoints.  Detection methods = R (RDP), G (GENECOV), B (Bootscan), M (Maxchi), 

C (Chimaera), S (SiSscan) and 3 (3seq). Algorithms that showed the highest statistical difference (p<0.05) are marked with an asterisk 

(*), (+) that the algorithm also reported statistical differences and those that do not with a NS. 
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4.4 Discussion 

In this study, molecular characterization of nine sweetpotato potyvirus isolates (five from 

SPFMV and four from SPVC) from representative sweetpotato production fields from the United 

States were completed.  The genetic diversity using pairwise sequence comparisons and 

phylogenetic analysis was used as a tool to compare the genetic diversity of Louisiana SPFMV 

and SPVC isolates to previously reported sequences on NCBI.  These isolates contained the 

potential major conserved proteins reported in Potyviruses (Adams et al., 2010) and the 

additional PIPO and PISPO produced by polymerase slippage (Chung et al., 2008; Olspert et al., 

2016).  These isolates did not have a high molecular variation compared to previously sequenced 

isolates, but six isolates did have recombination events mostly in the CP and P1 region of this 

group of viruses. 

The ability to analyze the different genomic regions of these potyviruses allowed 

identifying genes of importance for different types of experiments.  For example, due to its 

conservation, the CP nucleotide data has been used for identification and phylogenetic studies 

(Elvira-Gonzales et al., 2017; Lohmus et al., 2017; Voloudakis et al., 2004; Li et al., 2012). Other 

experiments included the determination of hot-spots for recombination events (Karasev and 

Stewart, 2013; Kwak et al., 2015) or the identification of new proteins like PIPO (Chung et al., 

2008).  Some proteins are unique to sweetpotato potyviruses like PISPO (Olspert et al., 2016, 

Untiveros et al., 2016).  In terms of phylogeny of the different genes, regions such as the 5’ UTR 

or 3’ UTR apparently are not informative enough to differentiate strains of SPFMV (phylogroups 

A and B), probably due to recombination events (Kwak et al., 2015; Untiveros et al., 2010).  

Recombination events might have an effect on determining the accuracy of the dataset (Ruths and 

Nakhleh, 2005; Schierup and Hein, 2000) which would explain the monophyly of the different 

SPFMV isolates in this experiment at the 5’ UTR.  Viral regions such as Nib or CP appear to be 

the most informative in this group of viruses due to their conservation, which is understandable 

since both genes fulfill important functions for the virus such as RNA-dependent RNA-polymerase 

(RNA replicase in Nib) and encapsidation of the viral genome in the CP (Hong and Hunt, 1996; 

Revers and Garcia, 2015, Dolja et al., 1994).   

Previous experiments reported that molecular variation at the CP nucleotide and P1 amino 

acid sequences classified SPFMV into three different strains: russet-crack (RC), ordinary (O) and 

East-African (EA); and allowed the reclassification of the common strain of SPFMV into the new 

species SPVC (Kreuze et al., 2000; Untiveros et al., 2010).  The ability to analyze full nucleotide 

genome sequences allowed improving the viral taxonomy, possibly relating better to biological 

properties, identification of recombination events due to mixed infections in the sweetpotato plant 

and genetic connectivity between populations (Sakai et al., 1997; Yamasaki et al., 2010, Untiveros 

et al., 2010, Maina et al., 2017).  The implementation of the sequences in this study could serve 

for future studies such as phylogenetic placement of new isolates (Kwak et al., 2015; Rännäli et 

al., 2009), annotation of contigs in next-generation sequencing analysis (Zheng et al., 2017) or 

diagnostics in the creation of primers for new and recombinant isolates (Bejerman et al., 2016). 

In different sweetpotato surveys and experiments, plants showed mixed infections of 

several potyvirus species or strains in the same plant (Valverde et al., 2007; Kreuze et al., 2009; 

Guo et al., 2014).  These mixed infections have shown to be the cause of the emergence of new 

viral strains due to genetic recombination (Chare and Holmes, 2006).  In this experiment SPFMV 

isolates 11-1, 11-8, 95-2T and SPVC isolates PR3, 11-5 and 95-6 had recombination events 

primarily in the P1 and CP region but only 95-2T met the criteria to be called a true recombinant 
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since it had recombination events identified by more than three algorithms and both major and 

minor parents were identified.  The P1 protein has been reported as as the most divergent region 

in length and amino acid sequences (Adams et al., 2005; Untiveros et al., 2010), and vulnerable to 

recombination (Nguyen et al., 2013; Valli et al., 2007; Seo et al., 2009).  The CP region of the 

SPFMV-EA isolate Piu3 from Peru has been reported as a recombinant of SPFMV-O and SPFMV-

RC and in the recombination analysis of Potato virus Y sequences (PVY), the CP has been 

identified as a hot-spot for the recombination junction #4 (Karasev and Stewart, 2013; Kwak et 

al., 2015).  Other genes also had recombination events; however, based on the inability of the 

software to determine one of the parents or sensitivity of the algorithms, most of them were 

categorized as ‘tentative’.  The occurrence of such recombination events suggests the possibility 

that recombination could be a force in the emergence of new variants of sweetpotato potyviruses. 

Traditionally, viral sequence completion has been accomplished using PCR fragment 

overlap to ensure that they belong to the same genome (Kwak et al., 2015; Sakai et al., 1997; 

Yamasaki et al., 2010, Untiveros et al., 2010).  However, with the advent of next-generation 

sequencing techniques, viral completion has been archieved using techniques such as 454-

pyrosequencing (Roche) or deep sequencing of siRNA (Illumina HiSeq Series) (Bejerman et al., 

2016; Li et al., 2012; Mbanzibwa et al., 2014; Gu et al., 2014; Maina et al., 2017).  The advantages 

of the utilization of next-generation sequencing methods is the ability to detect viruses that were 

not amenable to Sanger PCR fragment overlap sequencing.  This method allowed identification of 

previously unknown viruses such as the Sweet potato pakakuy virus (SPPV), a virus composed of 

Sweetpotato badnavirus A and B (Mbanzibwa et al., 2014; Kreuze et al., 2009) or Pepino mosaic 

virus (PepMMV) infecting tomato (Li et al., 2012).  In our experiment, next-generation sequencing 

complemented with the utilization of biological methods to separate SPFMV from SPVC (Souto 

et al., 2003) improved the annotation of contigs to references of SPFMV in SPVC isolates and 

vice versa which could serve for future experiments to avoid problems such as low quality of RNA 

in the next-generation sequencing process. 

Co-infection of more than one sweetpotato virus in the same plant has been reported to 

affect the plant in different ways.  For example, the co-infection of SPFMV and Sweetpotato 

chlorotic stunt (SPCSV) causes Sweet potato virus disease (SPVD), which severely decreases 

yield and increases synergistically the titers of these viruses in the plant (Kokkinos et al., 2006; 

Clark et al., 2012; Mingot et al., 2016).  Another example of co-infection has been reported when 

plants have mixed infections with the Ordinary (SPFMV-O) and russet-crack (SPFMV-RC) strains 

of SPFMV.  When SPFMV-O infects the plant it causes mild discoloration compared to SPFMV-

RC that causes dark lesions on the storage roots.  However, cross protection occurs in the plant 

when both strains infect the sweetpotato plant at the same time (Yamasaki et al., 2010).  In this 

study, four sequences of SPFMV-RC were identified but these isolates did not cause russet-crack 

symptoms.  Some reasons for this incongruency could be the ability of some sweetpotato varieties 

to have different degrees of infected plants naturally become healthy (reversion) (Gibson et al., 

2014); co-infection of SPFMV-O and SPFMV-RC in the same plant (Bejerman et al., 2016); or 

the lack of congruity of the utilization of nomenclature using biological properties or origin of the 

isolate (Jones and Kehoe, 2016).  The East-African strain of SPFMV (SPFMV-EA) has previously 

been considered restricted to this region, but now sequences (mostly from CP) have been reported 

from elsewhere (Tairo et al., 2005; Tugume et al., 2010).  Additionally, SPFMV-RC isolates have 

been reported not to cause russet-crack symptoms in the storage roots associated with those isolates 

(Maina et al., 2017; Bejerman et al., 2016).  This underlines the need for greater effort to associate 
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biological properties of sweetpotato potyviruses with their molecular properties and further 

indicates that the factors that trigger russet crack symptoms in sweetpotato require further 

investigation. 

The widespread distribution of SPFMV and SPVC and their molecular variability around 

the world described in this and previous studies suggest the need to include rigorous programs for 

virus-tested sweetpotato.  These programs include graft and PCR techniques to identify viral 

infections (Li et al., 2008; Ha et al., 2008; Li et al., 2012; Zheng et al., 2010; Wei and Nakhla, 

personal communication; Li et al., 2004; Ling et al., 2010; Kokkinos et al., 2006) complemented 

with tissue culture techniques.  Undestanding the molecular variation is essential to improve 

current methods to facilitate strategies in the control of sweetpotato potyviruses. 
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

Sweetpotato (Ipomoea batatas (L.) Lam.) is an important crop for food security.  Plant 

viruses affect yields in sweetpotato due to their accumulation in cultivars.  The most common 

plant viruses which affect sweetpotato in the United States belong to the Potyviridae family.  

Sweet potato feathery mottle virus (SPFMV) was first described in 1978, being the only virus 

reported in the United States until 1998.  With the improvement of molecular biology techniques, 

Sweet potato virus G (SPVG) and Sweet potato virus 2 (SPV2), were characterized.  Recently, 

the former common strain of SPFMV was changed to species status and renamed Sweet potato 

virus C (SPVC).  These four viruses are similar at the nucleotide level, especially in the coat 

protein (CP) region, which has been used for classification, detection and identification.  Even 

though these four viruses are commonly detected as mixed infections, their spread in the field, 

titers in the plant, and vector transmissibility are different. 

The lack of sequence differences in the CP region between SPFMV and SPVC resulted in 

previous qPCR procedures that amplified both viruses, and thus a new approach was needed to 

quantify each species independently.  With this premise, the first objective of this dissertation 

was to determine if storage roots at the 5th week after transplanting is the best organ and time to 

screen for these four viruses.  New primers specific for SPFMV and SPVC were designed and 

evaluated along with a different housekeeping gene, Cytochrome C Oxidase, for relative 

quantification.  When compared with root and stem organs, the greatest relative titers among the 

four potyviruses were found in leaf tissue at the 3rd week after transplanting. 

Field experiments in which virus artificial inoculations did not replicate the amount of 

yield reduction observed on naturally infected plants led to further investigation of additional 

factors involved in the “yield decline effect”.  Additional factors such as water and nitrogen 

availability have been demonstrated to affect storage root production.  Because previous 

experiments did not include SPVC in the combination of artificially inoculated viruses, the 

second objective was to test if the inclusion of the new species can replicate the observed yield 

reduction.  Storage root production in the greenhouse among plants with different virus 

infections did not support the conclusion that SPVC was the missing element in accounting for 

“yield decline effect” and an additional factor(s) yet unknown may be involved. 

In the absence of molecular information of isolates from the United States, nucleotide 

sequence information of the CP region has been used in most phylogenetic studies to describe 

species and strains of potyviruses.  This focus on the CP region delayed the recognition of SPVC 

as a distinct species.  The differences from SPFMV are located primarily in the amino acid 

sequences of the P1 region which triggered the interest of the molecular genetic variation among 

this group of viruses.  The third objective was to test the molecular variation of isolates 

representative of the U.S. sweetpotato production fields was different from other isolates 

previously sequenced.  Phylogenetic analysis and pairwise sequence comparison showed that the 

variation was not high but several recombination events were detected in the CP and P1 region. 

The findings in this study indicate that there is a need to conduct research to determine 

what additional factors are involved in yield reduction, provide a cheaper system for quantifying 

titers of SPFMV and SPVC by multiplex qPCR, and improve the identification and management 

in the surveys of sweetpotato potyvirus isolates. 

 



70 
 

REFERENCES 

Abad, J.A., Conkling, M.A. and Moyer, J.W. 1992. Comparison of the capsid protein cistron from 

serologically distinct strains of Sweet potato feathery mottle virus (SPFMV). Arch. Virol. 

126: 147-157 

Abascal, F., Zardoya, R., and Posada, D.  2009.  ProtTest: Selection of best-fit models of protein 

evolution version 2.4. Available at: http://darwin.uvigo.es/download/prottest_manual.pdf 

Adams, M. J., Antoniw, J. F., and Fauquet, C. M.  2005.  Molecular criteria for genus and species 

discrimination within the family Potyviridae.  Arch. Virol. 150: 459-479. 

Adams, M.J., Zerbini, M., French, R.C., Rabenstein, F., Stenger, D.C., Valkonen, J. 2011. Family 

Potyviridae. In King, A. M. Q., Adams, M. J., Carstens, E. B., Lefkowitz, E. J. (eds.), The 

International Committee on the Taxonomy of Viruses, 9th Report. Elsevier/Academic Press, 

London. p. 1069-1089. 

Andersen, C. L., Jensen, J. L., and Ørntoft, T. F.  2004.  Normalization of Real-Time quantitative 

reverse transcription-PCR data: A model-based variance estimation approach to identify 

genes suited for normalization, applied to bladder and colon cancer data sets.  Cancer Res. 

64: 5245-5250. 

Ateka, E. M., Barg, E., Njeru, R. W., Thompson, G., and Vetten, H. J.  2007.  Biological and 

molecular variability among geographically diverse isolates of Sweet potato virus 2.  Arch. 

Virol. 152:479-488. 

Ateka, E. M., Njeru, R. W., Kibaru, A. G., Kimenju, J. W., Barg, E., Gibson, R. W., and Vetten, H. 

J.  2004.  Identification and distribution of viruses infecting sweet potato in Kenya.  Ann. of 

Appl. Biol. 144:371-379. 

Bejerman, N., Zanini, A., Rodríguez Pardina, P. and, Di Feo, L.  2016.  Use of 454‐Pyrosequencing 

for the Characterization of Sweet Potato Virus C and Sweet Potato Feathery Mottle Virus 

Isolates from Argentina and Development of a Multiplex One‐Step RT‐PCR for Their 

Simultaneous Detection. J. Phytopath. 164: 386-394. 

Boni, M.F., Posada, D. and, Feldman, M.W.  2007.  An exact nonparametric method for inferring 

mosaic structure in sequence triplets. Genetics. 176:1035-1047. 

Boss, L.  1992.  Potyviruses, chaos or order? Arch. Virol. 5: 31-46. 

Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., and Watson, L.  1996.  Viruses of Plants.  

Descriptions and Lists from the VIDE Database. CAB International. 

Bryan, A. D., Pesic-VanEsbroeck, Z., Schultheis, J.R., Pecota, K.V., Swallow, W.H., and Yencho, 

G.C.  2003.  Cultivar Decline in Sweetpotato: I. Impact of Micropropagation on Yield, 

Storage Root Quality, and Virus Incidence in Beauregard'. J. Am. Soc. Hort. Sci. 128: 846-

855. 

http://darwin.uvigo.es/download/prottest_manual.pdf


71 
 

Bustin, S., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., 

Pfaffl, M., Shipley, G., Vandesompele, J., and Wittwer, C.  2009.  The MIQE 

guidelines: Minimum information for publication of quantitative real-time PCR Experiments.  

Clin. Chem. 55: 611-622. 

Bustin, S.A., and Nolan, T.  2013.  Analysis of mRNA expression by real-time PCR.  Adv. Technol. 

Appl. 51:111-135.  

Bustin, S. A.  2005.  Real-time, fluorescence-based quantitative PCR: a snapshot of current 

procedures and preferences.  Expert. Rev. Mol. Diagn. 5:493-498. 

Campbell, R. N., Scheuerman, R. W., and, Hall, D. H.  1997.  Russet crack disease of sweet 

potatoes. Calif. Agric. Aug:8-10. 

Carroll, H.W., Villordon, A.Q., Clark, C.A., La Bonte, D.R. and, Hoy, M.W.  2004.  Studies on 

Beauregard sweetpotato clones naturally infected with viruses. Int. J. Pest Manage. 50:101-

106. 

Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., Casero, P., Sandberg, G., and 

Bennett, M.J.  2003.  Dissecting Arabidopsis lateral root development. Trends Plant 

Sci. 8:165-171. 

Chare, E.R. and Holme, E.C. 2006. A phylogenetic survey of recombination frequency in plant RNA 

viruses. Arch Virol. 151: 933–946. 

Charron, C., Nicolai, M., Gallois, J. L., Robaglia, C., Moury, B. and, Palloix, A.  2008.  Natural 

variation and functional analyses provide evidence for co-evolution between plant eIF4E and 

potyviral VPg. Plant J. 54:56-68. 

Chen, Y. R., Zheng, Y., Liu, B., Zhong, S., Giovannoni, J. and, Fei, Z.  2012.  A cost-effective 

method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated 

adapters. Plant Meth. 8:41.  

Chung, B. Y. W., Miller, W. A., Atkins, J. F., and Firth, A. E.  2008.  An overlapping essential gene 

in the Potyviridae. Proc. Natl. Acad. Sci. 105:5897-5902. 

Clark, C. A., and Hoy, M.W.  2006.  Effects of common viruses on yield and quality of Beauregard 

sweetpotato in Louisiana. Plant Dis. 90:83-88. 

Clark, C. A., Davis, J. A., Abad, J. A., Cuellar, W. J., Fuentes, S., Kreuze, J. F., Gibson, R.W., 

Mukasa, S. B., Tugume, A. K., Tairo, F., and Valkonen, J. P. T.  2012.  Sweetpotato viruses: 

15 years of progress on understanding and managing complex diseases. Plant Dis. 96:168-

185.  

Clark, C. A., Ferrin, D., Smith, T., and Holmes, G.  2013.  Compendium of Sweetpotato diseases, 

pests and disorders, Second Edition. American Phytopathological Society.  



72 
 

Clark, C. A., Valverde, R. A., Fuentes, S., Salazar, L. F., and Moyer, J. W.  2002.  Research for 

improved management of sweetpotato pests and diseases: Cultivar decline.  Pages 103-112 

in; Ames, T., ed.  Proc. 1st Internat. Symp. on Sweetpotato, Acta Hort. 583. 

Crouse, C. and Vincek, V.  1995.  Identification of ABO alleles on forensic-type specimens using 

rapid-ABO genotyping.  Biotechniques 18:478-483. 

Damond, F., Benard, A., Ruelle, J., Alabi, A., Kupfer, B., Gomes, P., Rodes, B., Albert, J., Böni, J., 

Garson, J., and Ferns, B.  2008.  Quality control assessment of human immunodeficiency 

virus type 2 (HIV-2) viral load quantification assays: results from an international 

collaboration on HIV-2 infection in 2006.  J. Clinical Microbiol. 46:2088-2091. 

Dang, C. C., Le, Q.S., Gascuel, O. and, Le, V.S.  2010.  FLU, an amino acid substitution model for 

influenza proteins.  BMC Evol. Biol. 10:99. 

Darriba, D. and, Posada, D.  2015.  The impact of partitioning on phylogenomic accuracy. bioRxiv 

p.023978. 

De Smet, I., White, P.J., Bengough, A.G., Dupuy, L., Parizot, B., Casimiro, I., Heidstra, R., 

Laskowski, M., Lepetit, M., Hochholdinger, F., and Draye, X., 2012. Analyzing lateral root 

development: how to move forward.  Plant Cell. 24:15-20. 

Deak, K., and Malamy, J.  2005.  Osmotic regulation of root system architecture. Plant J. 43: 17-28. 

Dolja, V.V., Haldeman, R., Robertson, N.L., Dougherty, W.G. and, Carrington, J.C. 1994. Distinct 

functions of capsid protein in assembly and movement of tobacco etch potyvirus in 

plants.  EMBO J. 13:1482. 

Edgar, R. C.  2004.  MUSCLE: multiple sequence alignment with high accuracy and high 

throughput.  Nucleic Acids Res. 32:1792-1797. 

Edmunds, B. A., Boyette, M. D., Clark, C. A., Ferrin, D.M., Smith, T. P. and Holmes, G. J. 

2008.  Postharvest handling of sweetpotato.  North Carolina Coop. Ext. Serv. AG-413-10-B. 

Elena, S.F., Bernet, G.P. and, Carrasco, J.L.  2014.  The games plant viruses play.  Curr. Opin. 

Virol. 8:62-67. 

Elvira-González, L., Puchades, A.V., Carpino, C., Alfaro-Fernandez, A., Font-San-Ambrosio, M. I., 

Rubio, L. and Galipienso, L.  2017.  Fast detection of Southern tomato virus by one-step 

transcription loop-mediated isothermal amplification (RT-LAMP).  J. Virol. Meth. 241:11-

14. 

Firon, N., Labonte, D., Villordon, A., McGregor, C., Kfir, Y., and Pressman, E.  2009. Botany and 

physiology: Storage root formation and development.  In The Sweetpotato. (pp. 13-26). 

Springer Netherlands. 

Firon, N., LaBonte, D., Villordon, A., Kfir, Y., Solis, J., Lapis, E., Perlman, T. S., Doron-

Faigenboim, A., Hetzroni, A., Althan, L. and Nadir, L. A., 2013. Transcriptional profiling of 

sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-



73 
 

regulation of starch biosynthesis at an early stage of storage root formation. BMC genomics 

14:460. 

Food and Agricultural Organization.  2012.  Food and Agricultural Organization of the United 

Nations Statistical Division. In: 

http://faostat3.fao.org/browse/rankings/commodities_by_regions/E. Food and Agricultural 

Organizations, Rome, Italy. 

Forootan, A., Sjöback, R., Björkman, J., Sjögreen, B., Linz, L. and, Kubista, M. 2017. Methods to 

determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). 

BDQ 12:1-6.  

Fraga, D., Meulia, T., and Fenster, S.  2008.  Current protocols: essential laboratory techniques. pp. 

10-3. 

Gallie, D. R.  2002.  The 5′‐leader of tobacco mosaic virus promotes translation through enhanced 

recruitment of eIF4F.  Nucleic Acids Res. 30:3401-3411. 

Gibb, K. S. and Padovan, A. C.  1993.  Detection of sweet potato feathery mottle potyvirus in sweet 

potato grown in northern Australia using an efficient and simple assay.  Int. J. Pest Manage. 

39:223-228. 

Gibbs, M. J., Armstrong, J. S. and, Gibbs, A. J.  2000.  Sister-Scanning: a Monte Carlo procedure for 

assessing signals in recombinant sequences.  Bioinformatics. 16:573-582. 

Gibson, R.  2009.  Review of Sweetpotato Seed System in East and Southern Africa. International 

Potato Center. 

Gibson, R. W., Mwanga, R. O. M., Namanda, S., Jeremiah, S. C., and Barker, I.  2009.  Review of 

sweetpotato seed systems in East and Southern Africa. Integrated Crop Management 

Working Paper 2009-1. International Potato Center (CIP), Lima, Peru. 

Gibson, R.W., Wasswa, P. and Tufan, H. A.  2014.  The ability of cultivars of sweetpotato in East 

Africa to ‘revert’from Sweet potato feathery mottle virus infection. Virus Res. 186:130-134. 

Gingeras, T. R.  2004.  RNA reference materials for gene expression studies. Difficult first 

steps. Clin. Chem.50:1289-1290. 

Green, S. K., Kuo, Y. J. and Lee, D. R.  1988.  Uneven distribution of two potyviruses (feathery 

mottle virus and sweet potato latent virus) in sweet potato plants and its implication on virus 

indexing of meristem derived plants. Int. J. Pest Manage. 34:298-302. 

Griffiths, R.C. and Tavare, S.  1994.  Sampling theory for neutral alleles in a varying 

environment. Philos. Trans. R. Soc. Lond. Biol. 344:403-410. 

Gu, Y. H., Tao, X., Lai, X. J., Wang, H.Y. and Zhang, Y. Z.  2014.  Exploring the polyadenylated 

RNA virome of sweet potato through high-throughput sequencing. PloS One 9:98884. 

Gutiérrez, D., Fuentes, S., and Salazar L. F.  2003.  Sweet potato virus disease (SPVD): distribution, 

incidence, and effect on sweet potato yield in Peru. Plant Dis. 87: 297-302. 



74 
 

Ha, C., Coombs, S., Revill, P. A., Harding, R. M., Vu, M. and Dale, J. L.  2008.  Design and 

application of two novel degenerate primer pairs for the detection and complete genomic 

characterization of potyviruses. Arch. Virol. 153:25-36. 

Hammond, J., Jordan, R. L., Larsen, R. C. and Moyer, J. W.  1992.  Use of polyclonal antisera and 

monoclonal antibodies to examine serological relationships among three filamentous viruses 

of sweetpotato. Phytopathology 82:713-717. 

Hasegawa, M., Kishino, H. and, Yano, T.A.  1985.  Dating of the human-ape splitting by a 

molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160-174. 

Hein, J., Schierup, M. and Wiuf, C.  2004.  Gene genealogies, variation and evolution: a primer in 

coalescent theory. Oxford University Press, USA. 

Higuchi, R., Dollinger, G., Walsh, P.S., and Griffith, R.  1992.  Simultaneous amplification and 

detection of specific DNA sequences. Biotechnology 10:413-417. 

Hoagland, D.R. and Arnon, D.I.  1950.  The water-culture method for growing plants without 

soil. Cal. Agric. Exp. Sta. Circ. 347. 

Hong, Y. and Hunt, A.G. 1996. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-

dependent RNA polymerase. Virology 226:146-151. 

Hooper, D. U. and Vitousek, P. M.  1998.  Effects of plant composition and diversity on nutrient 

cycling. Ecol. Monogr. 68:121-149. 

Hudson, R. R.  1983.  Properties of a neutral allele model with intragenic recombination. Theor. 

Popul. Biol. 23:183-201. 

Illumina.  2010.  HiqSeq 2000TM Sequencing system. Available at: 

http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf 

International Committee on Taxonomy of Viruses (ICTV).  2012.  In: 

http://ictvonline.org/virusTaxonomy.asp. Edinburgh, Scotland. 

Ivanchenko, M., Muday, M. and Dubrovsky, J.  2008.  Ethylene-auxin interactions regulate lateral 

root initiation and emergence in Arabidopsis thaliana. Plant J. 55:335-347. 

Jaakola, L., Pirttilä, A. M., Halonen, M. and Hohtola, A.  2001.  Isolation of high quality RNA from 

bilberry (Vaccinium myrtillus L.) fruit. Molecular biotechnology, 19:201-203. 

Johnson, J. F., Vance, C.P. and Allan D. L.  1996.  Phosphorus deficiency in Lupinus albus (altered 

lateral root development and enhanced expression of phosphoenolpyruvate carboxylase). 

Plant Physiol. 112:657–665.  

Jones, R. A. C. and Kehoe, M. A. 2016. A proposal to rationalize within-species plant virus 

nomenclature: benefits and implications of inaction. Arch. Virol. 161:2051-2057. 

Jones, D. T., Taylor, W. R. and Thornton, J.M.  1992.  The rapid generation of mutation data 

matrices from protein sequences. Comput. Appl. Biosci. 8:275-282. 

http://www.illumina.com/documents/products/datasheets/datasheet_hiseq2000.pdf
http://ictvonline.org/virusTaxonomy.asp


75 
 

Jones, R. C., Koenig, R. and Lesemann, D. E.  1980.  Pepino mosaic virus, a new potexvirus from 

pepino (Solanum muricatum). Ann. App. Biol. 94:61-68. 

Karasev, A.V. and Gray, S. M.  2013.  Continuous and emerging challenges of Potato virus Y in 

potato. Ann. Rev. Phytopath. 51:571-586. 

Karyeija, R. F., Gibson, R. W., and Valkonen, J.P.T.  1998.  Resistance to sweet potato virus disease 

(SPVD) in wild east African Ipomoea. Ann. Appl. Biol. 133:39-44. 

Katoh, K. and Standley, D. M.  2013.  MAFFT multiple sequence alignment software version 7: 

improvements in performance and usability. Mol. Biol. Evol. 30:772-780. 

Kays, S. J.  1985.  The physiology of yield in the sweet potato. Pages 80-132 in: Sweet potato 

products: a natural resource for the Tropics. J.C. Bouwkamp, ed. CRC Press, Boca Raton, 

FL. 

Kell, D. B.  2011.  Breeding crop plants with deep roots: their role in sustainable carbon, nutrient 

and water sequestration. Ann. Bot. p:mcr175. 

Kennedy, G. G. and Moyer, J. W.  1982.  Aphid transmission and separation of two strains of 

SPFMV from sweet potato. J. Econ. Entomol. 75:130–133. 

Kibbe, W.A.  2007.  OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids 

Res. 35:43-46. 

Koca, H., Bor, M., Özdemir, F. and Türkan, I.  2007.  The effect of salt stress on lipid peroxidation, 

antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60:344-

351. 

Kochanowski, B. and Reischl, U.  1999.  Methods in Molecular Medicine: Quantitative PCR 

Protocols 1st ed. Humana Press, Totowa, N.J. 

Kokkinos, C. D., and Clark, C. A.  2006.  Interactions among Sweet potato chlorotic stunt virus and 

different potyviruses and potyvirus strains infecting sweetpotato in the USA. Plant Dis. 

90:1347-1352. 

Kokkinos, C. D., Clark, C. A., McGregor, C. E., and LaBonte, D. R.  2006.  The effect of sweet 

potato virus disease and its viral components on gene expression levels in sweetpotato. J. 

Am. Hort. Sci. 131:657-666. 

Koltai, H.  2011.  Strigolactones are regulators of root development. New Phytol. 190:545-549. 

Kreuze, J.  2014.  siRNA deep sequencing and assembly: piecing together viral infections. 

In Detection and Diagnostics of Plant Pathogens (pp. 21-38). Springer Netherlands. 

Kreuze, J. F., Karyeija, R. F., Gibson, R. W., and Valkonen, J. P. T.  2000.  Comparisons of coat 

protein gene sequences show that East African isolates of Sweet potato feathery mottle 

virus form a genetically distinct group. Arch. Virol. 145: 567–574. 



76 
 

Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I., and Simon, R. 2009.  

Complete viral genome sequence and discovery of novel viruses by deep sequencing of small 

RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 

388:1-7. 

Kumar, S., Stecher, G. and Tamura, K.  2016.  MEGA7: Molecular Evolutionary Genetics Analysis 

version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. 

Kutz, A., Müller, A., Hennig, P., Kaiser, W. M., Piotrowski, M. and Weiler, E. W.  2002. A role for 

nitrilase 3 in the regulation of root morphology in sulphur‐starving Arabidopsis 

thaliana. Plant J. 30:95-106. 

Kwak, H.R., Kim, M.K., Jung, M.N., Lee, S.H., Park, J.W., Kim, K.H., Ko, S.J. and Choi, H,S. 

2007. Genetic diversity of Sweet potato feathery mottle virus from sweet potatoes in Korea. 

Plant Pathology J. 23: 13–21 

Kwak, H. R., Kim, J., Kim, M. K., Seo, J.K., Jung, M. N., Kim, J. S., Lee, S. and Choi, H. S.  2015.  

Molecular characterization of five potyviruses infecting Korean sweet potatoes based on 

analyses of complete genome sequences. Plant Path. J. 31:388. 

Lain, S., Riechmann, J. L. and, Garcia, J. A.  1990.  RNA helicase: a novel activity associated with a 

protein encoded by a positive strand RNA virus. Nucleic Acids Res. 18:7003-7006. 

Lan, P., Li, F., Abad, J., Pu, L. and Li, R. 2017. Simultaneous detection and differentiation of three 

Potyviridae viruses in sweet potato by a multiplex TaqMan real time RT-PCR assay. J. Virol. 

Meth. In Press.  

Le, S. Q. and, Gascuel, O.  2008.  An improved general amino acid replacement matrix. Mol. Biol. 

Evol. 25:1307-1320. 

Lefever, S., Hellemans, J., Pattyn, F., Przybylski, D. R., Taylor, C., Geurts, R., Untergasser, A., 

Vandesompele, J. and Consortium, R.  2009.  RDML: structured language and reporting 

guidelines for real-time quantitative PCR data. Nucleic Acids Res. 37:2065-2069.  

Lei, R., Jiang, H.S., Hu, F., Yan, J. and Zhu, S.F.  2017.  Chlorophyll fluorescence lifetime imaging 

provides new insight into the chlorosis induced by plant virus infection. Plant Cell Rep. 

36:327-341. 

Leonard, S., Viel, C., Beauchemin, C., Daigneault, N., Fortin, M. G., and Laliberte´, J. F. 2004.  

Interaction of VPg-Pro of Turnip mosaic virus with the translation initiation factor 4E and the 

poly(A)-binding protein in planta. J. Gen. Virol. 85:1055-1063. 

Li, F., Xu, D., and Abad, J.  2012.  Phylogenetic relationships of closely related potyviruses 

infecting sweet potato determined by genomic characterization of Sweet potato virus G and 

Sweet potato virus 2. Virus Genes 45:118-125. 

Li, F., Zuo, R., Abad, J., Xu, D., Bao, G. and Li, R.  2012.  Simultaneous detection and 

differentiation of four closely related sweet potato potyviruses by a multiplex one-step RT-

PCR. J. Virol. Meth. 186:161-166. 



77 
 

Li, R., Gao, S., Hernandez, A. G., Wechter, W. P., Fei, Z., and Ling, K. S.  2012.  Deep sequencing 

of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS 

ONE 7:e37127. 

Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., and Kinard, G.  2008.  A reliable and inexpensive 

method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J. 

Virol. Meth. 154:48-55. 

Li, R., Salih, S., and Hurtt, S.  2004.  Detection of geminiviruses in sweetpotato by polymerase chain 

reaction. Plant Dis. 88:1347-1351. 

Lima, J. E., Kojima, S., Takahashi, H. and von Wiren, N.  2010.  Ammonium triggers lateral root 

branching in Arabidopsis in an ammonium transporter 1: 3-dependent manner. Plant Cell 

22:3621-3633. 

Ling, K. S., Jackson, D. M., Harrison, H., Simmons, A. M., and Pesic-VanEsbroeck, Z. 2010.  Field 

evaluation of yield effects on the USA heirloom sweetpotato cultivars infected by Sweet 

potato leaf curl virus. Crop Protection 29:757-765. 

Loebenstein, G., Thottappilly, G., Fuentes, S. and, Cohen, J.  2009.  Virus and phytoplasma diseases. 

In The sweetpotato (pp. 105-134). Springer Netherlands.  

Lõhmus, A.  2016.  Helper component-proteinase and coat protein are involved in the molecular 

processes of potato virus A translation and replication. Doctoral dissertation. 

Lõhmus, A., Hafrén, A. and Mäkinen, K.  2017.  Coat Protein Regulation by CK2, CPIP, HSP70, 

and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation. J. 

Virol. 91:e01316-16. 

Lopez-Bucio, J., Cruz-Ramirez, A., and Herrera-Estrella, L. 2003. The role of nutrient availability in 

regulating root architecture. Curr. Opin. Plant Biol. 6:280-287. 

López-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M.F., Simpson, J., and, 

Herrera-Estrella, L.  2002.  Phosphate availability alters architecture and causes changes in 

hormone sensitivity in the Arabidopsis root system. Plant Physiol. 129:244-256. 

Maina, S., Barbetti, M. J., Edwards, O. R, Almeida, de L., Ximenes, A. and Jones, R. A. C. 2017. 

Sweet potato feathery mottle virus and Sweet potato virus C 1 from East Timorese and 

Australian Sweetpotato: Biological and Molecular properties, and Biosecurity implications. 

Plant Dis. Accepted for publication. 

Maina, S., Edwards, O. R., de Almeida, L., Ximenes, A. and Jones, R.A.  2016.  Complete genome 

sequences of the Potyvirus Sweet potato virus 2 from East Timor and Australia. Genome 

Announc. 4:e00504-16. 

Martin, D. and Rybicki, E.  2000.  RDP: detection of recombination amongst aligned 

sequences. Bioinformatics 16:562-563. 



78 
 

Martin, D. P., Murrell, B., Golden, M., Khoosal, A. and Muhire, B.  2015.  RDP4: Detection and 

analysis of recombination patterns in virus genomes. Virus Evol. 1:vev003. 

Mbanzibwa, D. R., Tugume, A. K., Chiunga, E., Mark, D. and, Tairo, F. D.  2014.  Small RNA deep 

sequencing‐based detection and further evidence of DNA viruses infecting sweetpotato 

plants in Tanzania. Annals of Applied Biology, 165(3), pp.329-339. 

Mbanzibwa, D. R., Tairo F., Gwandu C., Kullaya A. and Valkonen J. P. T. 2011. First report of 

Sweetpotato symptomless virus 1 and Sweetpotato virus A in sweetpotatoes in Tanzania. 

Plant Dis. 95:224. 

McGregor, C., Miano, D., La Bonte, D., Hoy, M., and Clark, C. A.  2009.  The effect of the 

sequence of infection of the causal agents of sweetpotato virus disease on symptom severity 

and individual virus titres in sweet potato cv. Beauregard. J. Phytopath. 157:514-517. 

Merits, A., Guo, D. and, Saarma, M.  1998.  VPg, coat protein and five non-structural proteins of 

potato A potyvirus bind RNA in a sequence-unspecific manner. J. Gen. Virol. 79:3123-3127. 

Mingot, A., Valli, A., Rodamilans, B., San León, D., Baulcombe, D.C., García, J.A., and López-

Moya, J.J.  2016.  The P1N-PISPO trans-frame gene of Sweet Potato Feathery Mottle 

Potyvirus is produced during virus infection and functions as an RNA silencing suppressor. J. 

Virol. 90:3543-3557. 

Mirik, M., Ansley, R. J., Michels, G. J. and Elliott, N. C.  2012.  Spectral vegetation indices selected 

for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum 

aestivum L.). Precis, Agric. 13:501-516. 

Morrogh, M., Olvera, N., Bogomolniy, F., Borgen, P. I., and King, T. A.  2007.  Tissue preparation 

for laser capture micro dissection and RNA extraction from fresh frozen breast tissue. 

Biotechniques 43:41-424. 

Moyer, J. W., and Kennedy, G. G.  1978.  Purification and properties of sweetpotato feathery mottle 

virus. Phytopathology 68:998-1004. 

Moyer, J. W., and Salazar, L. F.  1989.  Viruses and virus like diseases of sweetpotato. Plant Dis. 

73:451-455. 

Muhire, B. M. Varsani, A. and Martin, D. P. 2014. SDT: a virus classification tool based on pairwise 

sequence alignment and identity calculation. PloS one 9:e108277. 

Mukasa, S. B., Rubaihayo, P. R., and Valkonen, J. P. T.  2003.  Incidence of viruses and virus like 

diseases of sweet potato in Uganda. Plant Dis. 87:329–335. 

Nei, M. and Kumar, S.  2000.  Molecular evolution and phylogenetics. Oxford university press. 

Nguyen, H. D., Tran, H. T. N. and Ohshima, K. 2013. Genetic variation of the Turnip mosaic virus 

population of Vietnam: a case study of founder, regional and local influences. Virus Res. 

171:138-149. 



79 
 

Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K., and Gibbs, 

A.J.  2007.  Patterns of recombination in turnip mosaic virus genomic sequences indicate 

hotspots of recombination. J. Gen. Virol. 88:298-315. 

Olspert, A., Carr, J. P. and Firth, A. E.  2016.  Mutational analysis of the Potyviridae transcriptional 

slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acid 

Res. 44:7618-7629. 

O'Sullivan, J. N., Asher, C. J. and Blamey, F. P. C.  1997.  Nutrient disorders of sweet potato (Vol. 

48). Canberra: Australian Centre for International Agricultural Research. 

Padidam, M., Sawyer, S. and, Fauquet, C.M.  1999.  Possible emergence of new geminiviruses by 

frequent recombination. Virology 265:218-225. 

Park, S.C., Kim, Y. H., Ji, C.Y., Park, S., cheol Jeong, J., Lee, H. S., and Kwak, S. S.  2012.  Stable 

internal reference genes for the normalization of real-time PCR in different sweetpotato 

cultivars subjected to abiotic stress conditions. PloS One 7:51502. 

Peltier, C., Schmidlin, L., Klein, E., Taconnat, L., Prinsen, E., Erhardt, M., Heintz, D., Weyens, G., 

Lefebvre, M., Renou, J.P. and Gilmer, D.  2011.  Expression of the Beet necrotic yellow vein 

virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis 

thaliana. Transgenic Res. 20:443-466. 

Petek, M.  2015.  qPCR, Microarrays and RNA-seq: Why and When Should You Choose One Over 

the Other?. Available at: http://splice-bio.com/although-rna-seq-is-very-hip-right-now-is-it-

really-worth-its-money/ 

Pfaffl, M. W.  2001.  A new mathematical model for relative quantification in real-time RT-PCR. 

Nucl. Acids Res. 29:2002-2007. 

Posada, D. and Crandall, K. A.  2001.  Evaluation of methods for detecting recombination from 

DNA sequences: Computer simulations. Proc. Natl. Acad. Sci. USA. 98:13757-13762. 

Posada, D.  2003.  Selecting models of evolution. The phylogenetic handbook. A practical approach 

to DNA and protein phylogeny. Cambridge University Press, Cambridge 256-282. 

Price, J.A., Workneh, F., Evett, S.R., Jones, D.C., Arthur, J. and Rush, C.M.  2010. Effects of Wheat 

streak mosaic virus on root development and water-use efficiency of hard red winter 

wheat. Plant Dis. 94:766-770. 

Rännäli, M., Czekaj, V., Jones, R. A. C., Fletcher, J. D., Davis, R.I., Mu, L. and Valkonen, J. P. T. 

2009. Molecular characterization of Sweet potato feathery mottle virus (SPFMV) isolates 

from Easter Island, French Polynesia, New Zealand, and southern Africa. Plant Dis. 93:933-

939. 

Renhou, W., and Estelle, M.  2014.  Diversity and specificity: auxin perception and signaling 

through the TIR1/AFB pathway. Curr. Opin. Plant Biol. 21:51-58. 

http://splice-bio.com/although-rna-seq-is-very-hip-right-now-is-it-really-worth-its-money/
http://splice-bio.com/although-rna-seq-is-very-hip-right-now-is-it-really-worth-its-money/


80 
 

Revers, F. and García, J. A.  2015.  Chapter Three-Molecular Biology of Potyviruses. Adv. Virus 

Res. 92:101-199. 

Ririe, K. M., Rasmussen, R. P., and Wittwer, C. T.  1997.  Product differentiation by analysis of 

DNA melting curves during the polymerase chain reaction. Anal Biochem. 245:154-160. 

Rozen, S. and Skaletsky, H.  1998.  Primer3. Code available at http://www-

genome.wi.mit.edu/genome_software/other/primer3.html. 

Ruths, D. and Nakhleh, L.  2005.  Recombination and phylogeny: effects and detection. Int. J. 

Bioinformatics Res. App. 1:202-212. 

Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter N., 

Cardoso, C., Lopez-Raez. J. A., Matusova, R., and Bours, R.  2011. Physiological effects of 

the synthetic stringolactone analog GR24 on root system architecture in Arabidopsis: another 

below-ground role for stringolactones? Plant Physiol. 155:721-734. 

Sakai, J., Mori, M., Morishita, T., Tanaka, M., Hanada, K., Usugi, T. and Nishiguchi, M.  1997.  

Complete nucleotide sequence and genome organization of sweet potato feathery mottle 

virus (S strain) genomic RNA: the large coding region of the P1 gene. Arch. Virol. 142:1553-

1562. 

Salminen, M.O., Carr, J.K., Burke, D.S. and, McCutchan, F.E.  1995.  Identification of breakpoints 

in intergenotypic recombinants of HIV type 1 by BOOTSCANning. AIDS Res. Hum. 

Retroviruses 11:1423-1425. 

Salvador, B., Saenz, P., Yanguez, E., Quiot, J., Quiot, L., Delgadillo, M., Garcia, J. A., and Simon-

Mateo, C.  2008.  Host-specific effect of P1 exchange between two potyviruses. Mol. Plant 

Pathol. 9:147-155. 

Santorum, J.M., Darriba, D., Taboada, G.L. and Posada, D.  2014.  jmodeltest. org: selection of 

nucleotide substitution models on the cloud. Bioinformatics. p:btu032. 

Schierup, M.H. and, Hein, J. 2000. Consequences of recombination on traditional phylogenetic 

analysis. Genetics 156:879-891. 

Seo, J. K. Ohshima, K., Lee, H. G., Son, M., Choi, H. S., Lee, S. H., Sohn, S. H. and, Kim, K. H. 

2009. Molecular variability and genetic structure of the population of Soybean mosaic virus 

based on the analysis of complete genome sequences. Virology 393:91-103. 

Shipley, B. and Meziane, D.  2002.  The balanced‐growth hypothesis and the allometry of leaf and 

root biomass allocation. Funct. Ecol. 16:326-331. 

Shukla, D., Ward, D., and Brunt, A.  1994.  The Potyviridae. CAB International. Cambridge. 

Siaw, M.F., Shahabuddin, M., Ballard, S., Shaw, J.G. and, Rhoads, R.E.  1985. Identification of a 

protein covalently linked to the 5′ terminus of tobacco vein mottling virus 

RNA. Virology. 142:134-143. 

Smith, M.J.  1992.  Analyzing the mosaic structure of genes. J. Mol. Evol. 34:126-129. 

http://www-genome.wi.mit.edu/genome_software/other/primer3.html
http://www-genome.wi.mit.edu/genome_software/other/primer3.html


81 
 

Souto, E. R., Sim, J., Chen, J., Valverde, R. A., and Clark, C. A. 2003. Properties of strains of Sweet 

potato feathery mottle virus and two newly recognized potyviruses infecting sweet potato in 

the United States. Plant Dis. 87:1226-1232. 

Ståhlberg, A., Hakansson, J., Xian, X., Semb, H., and Kubista, M.  2004.  Properties of the reverse 

transcription reaction in mRNA quantification. Clin. Chem.50:509-515. 

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with 

thousands of taxa and mixed models. Bioinformatics. 22:2688-2690. 

Sukumaran, J. and Holder, M.T.  2010.  DendroPy: a Python library for phylogenetic 

computing. Bioinformatics 26:1569-1571. 

Tairo, F., Mukasa, S. R., Jones, R. A. C., Kullaya, A., Rubaihayo, P.R., and Valkonen, J. P. T.  2005.  

Unraveling the genetic diversity of the three main viruses involved in sweet potato virus 

disease (SPVD), and its practical implications. Mol. Plant Path. 6:199-211. 

Tavaré, S.  1986.  Some probabilistic and statistical problems in the analysis of DNA 

sequences. Lectures Math. Life Sci. 17:57-86. 

Tugume, A. K., Cuellar, W. J., Mukasa, S. B. and, Valkonen, J.  2010.  Molecular genetic analysis of 

virus isolates from wild and cultivated plants demonstrates that East Africa is a hotspot for 

the evolution and diversification of Sweet potato feathery mottle virus. Mol. Ecol. 19:3139-

3156. 

Untiveros, M., Fuentes, S., and Kreuze, J.  2008.  Molecular variability of sweet potato feathery 

mottle virus and other potyviruses infecting sweet potato in Peru. Arch. Virol. 153:473–483. 

Untiveros, M., Olspert, A., Artola, K., Firth, A. E., Kreuze, J. F. and Valkonen, J.  2016.  A novel 

sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and 

suppresses RNA silencing. Mol. Plant Path. 17:1111-1123. 

Untiveros, M., Quispe, D., and Kreuze, J.  2010.  Analysis of complete genomic sequences of 

isolates of the Sweet potato feathery mottle virus strains C and EA: molecular evidence for 

two distinct potyvirus species and two P1 protein domains. Arch. Virol. 155:2059-2063. 

Valli, A., Lopez-Moya, J.J. and Garcia, J.A.  2007.  Recombination and gene duplication in the 

evolutionary diversification of P1 proteins in the family Potyviridae. J. Gen. Virol. 88:1016-

1028. 

Valverde, R.A., Clark, C.A., and Valkonen, J. P. T.  2007.  Viruses and virus disease complexes of 

sweetpotato. Plant Viruses 1:116-126. 

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F.  

2002.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging 

of multiple internal control genes. Genome biol. 3:research0034.1-research0034.11 



82 
 

Villordon, A. and Clark, C. A.  2014.  Variation in Virus Symptom Development and Root 

Architecture Attributes at the Onset of Storage Root Initiation in ‘Beauregard’ Sweetpotato 

Plants Grown with or without Nitrogen. PLoS One. 9:e107384. 

Villordon, A., Clark, C., Ferrin, D. and LaBonte, D.  2009.  Using growing degree days, 

agrometeorological variables, linear regression, and data mining methods to help improve 

prediction of sweetpotato harvest date in Louisiana. HortTechnology. 19:133-144. 

Villordon, A., Ginzberg, I., and Firon, N.  2014.  Root architecture and root and tuber crop 

productivity. Trends Plant Sci. 19:419-425. 

Villordon, A., Labonte, D. R., Solis, J., and Firon, N.  2012.  Characterization of lateral root 

development at the onset of storage root initiation in ‘Beauregard’ sweetpotato adventitious 

roots. HortScience. 47:961-968. 

Villordon, A., Labonte, D.R., Firon, N., and Carey, E.  2013.  Variation in nitrogen rate and local 

availability alter root architecture attributes at the onset of storage root initiation in 

‘Beauregard’ sweetpotato. HortScience. 48:808-815. 

Villordon, A. Q. and LaBonte, D. R.  1995.  Variation in Randomly Amplified DNA Markers and 

Storage Root Yield inJewel'Sweetpotato Clones. J. Am. Soc. Hort. Sci. 120:734-740. 

Villordon, A.Q., Labonte, D.R., Firon, N., Kfir, Y., Pressman, E., and, Schwartz, A.  2009.  

Characterization of adventitious root development in sweetpotato. HortScience, 44: 651-655. 

Voloudakis, A. E., Malpica, C. A., Aleman-Verdaguer, M. E., Stark, D.M., Fauquet, C. M. and 

Beachy, R. N.  2004.  Structural characterization of Tobacco etch virus coat protein 

mutants. Arch. Virol. 149:699-712. 

Wakeley, J. and Hey, J.  1997.  Estimating ancestral population parameters. Genetics. 145:847-855. 

Wang, M. Abad, J. Fuentes, S. and Li, R. 2013. Complete genome sequence of sweet potato latent 

virus and its relationship to other members of the genus Potyvirus. Arch. Virol. 158:2189-

2192.  

Wilson, L. A., and Lowe, S.B.  1973.  The anatomy of the root system in West Indian sweet potato 

[Ipomoea batatas (L.) Lam.] cultivars. Ann. Bot. 37:633-643. 

Wittmann, S., Chatel, H., Fortin, M. G., and Laliberte´, J. F.  1997.  Interaction of the viral protein 

genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor 

(iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84-92. 

Wiuf, C. and Hein, J.  1999.  Recombination as a point process along sequences. Theor. Popul. Biol. 

55:248-259. 

WoldAtlas.  2017.  Top Sweetpotato Growing Countries.  Available at:  

http://www.worldatlas.com/articles/top-sweet-potato-growing-countries.html 

http://www.worldatlas.com/articles/top-sweet-potato-growing-countries.html


83 
 

Wosula, E. N., Clark, C. A., and Davis, J. A.  2012.  Effect of host plant, aphid species, and virus 

infection status on transmission of Sweetpotato feathery mottle virus. Plant Dis. 96:1331-

1336. 

Wosula, E.N.  2012.  Dynamics of the Sweetpotato Potyvirus Aphid Pathosystem in 

Louisiana (Doctoral dissertation, Jomo Kenyatta University of Agriculture and Technology). 

Wosula, E. N., Davis, J. A., Clark, C. A., Smith, T.P., Arancibia, R. A., Musser, F. R. and Reed, J. T.  

2013.  The role of aphid abundance, species diversity, and virus titer in the spread of 

sweetpotato potyviruses in Louisiana and Mississippi. Plant Dis. 97:53-61. 

Wu, Q., Luo, Y., Lu, R., Lau, N., Lai, E. C., Li, W. X. and Ding, S. W.  2010.  Virus discovery by 

deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. 

Sci. 107:1606-1611. 

Yamasaki, S., Sakai, J., Fuji, S., Kamisoyama, S., Emoto, K., Ohshima, K. and Hanada, K.  2010.  

Comparisons among isolates of Sweet potato feathery mottle virus using complete genomic 

RNA sequences. Arch. Virol. 155:795-800. 

Yamasaki, S., Sakai, J., Kamisoyama, S., Goto, H., Okuda, M. and Hanada, K.  2009.  Control of 

russet crack disease in sweetpotato plants using a protective mild strain of Sweet potato 

feathery mottle virus. Plant Dis. 93:190-194. 

Zettler, F.W. 1992. Designation of potyvirus genera: a question of perspective and timing. Arch. 

Virol. 5:235–237. 

Zhang, D., Rossel, G., Kriegner, A. and Hijmans, R.  2004.  AFLP assessment of diversity in 

sweetpotato from Latin America and the Pacific region: Its implications on the dispersal of 

the crop. Genet. Resour. Crop Evol. 51:115-120. 

Zhang, H., and Forde, B.  1998.  An Arabidopsis MADS box gene that controls nutrient-induced 

changes in root architecture. Science 279:407-409. 

Zhang, S., Yang, C., Peng, J., Sun, S. and Wang, X.  2009.  GASA5, a regulator of flowering time 

and stem growth in Arabidopsis thaliana. Plant Mol. Biol. 69:745-759. 

Zhao, D., Reddy, K. R., Kakani, V. G. and Reddy, V. R.  2005.  Nitrogen deficiency effects on plant 

growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur. J. 

Agron. 22:391-403. 

Zheng, L., Rodoni, B. C., Gibbs, M. J. and,Gibbs, A. J.  2010.  A novel pair of universal primers for 

the detection of potyviruses. Plant Path. 59:211-220. 

Zheng, Y., Gao, S., Padmanabhan, C., Li, R., Galvez, M., Gutierrez, D., Fuentes, Shu, Ling, K.S., 

Kreuze, J. and Fei, Z.  2017.  VirusDetect: An automated pipeline for efficient virus 

discovery using deep sequencing of small RNAs.  Virology 500:130-138.  

Zwickl, D.J.  2006.  GARLI: genetic algorithm for rapid likelihood inference. See http://www. bio. 

utexas. edu/faculty/antisense/garli/Garli. html. 



84 
 

VITA 

Favio Herrera Egüez was born in 1988 in Quito, Ecuador.  He is a graduate of the Pan 

American School of Agriculture Zamorano, Honduras from 2010.  After he received his B.S. 

degree, his work experience has been related to horticultural crops, rural development and 

biological control.  He had received the Secretariat of High Education, Science and Technology 

Scholarship in 2012.  He is member of American Phytopathological Society and Gamma Sigma 

Delta: The Honor Society of Agriculture since 2013.  After finishing his Master of Science 

studies at Louisiana State University, he continued his Doctor of Philosophy degree under the 

supervision of Dr. Christopher Clark in the Department of Plant Pathology and Crop Physiology 

at Louisiana State University, Baton Rouge. 


