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ABSTRACT 

 

 

 Glyphosate (Roundup®, Monsanto, Inc., St. Louis, MO) is the most widely used 

herbicide in the world because of its broad spectrum and its efficacy in controlling annual 

broadleaf weeds and undesired grasses. The effect of glyphosate on mineral nutrition and plant 

diseases has been an important topic during the past decade, because of its controversial effects 

on plant mineral nutrition. In order to test the hypothesis that glyphosate affects soybean mineral 

nutrition, and therefore predisposes soybean to Cercospora leaf blight, six glyphosate-resistant 

(GR) soybean varieties were either not treated or treated with glyphosate in field experiments. 

Plants were then evaluated for leaf concentrations of 13 nutrients, foliar disease symptoms, and 

biomass of Cercospora cf. flagellaris as assessed with real-time PCR assays. Experiments were 

conducted at three locations in Louisiana. Three sets of soybean GR varieties were used in the 

experiments, six each year at each location, for a total of 18 varieties. These varieties 

corresponded to maturity groups III, early and late IV, and V. Control plots received no 

glyphosate application on the soybean foliage. Disease assessments were performed at R6 

growth stage at one location using predefined scales for purple symptoms in 2014 and 2016. No 

symptoms of CLB were observed at any other location during the three-year period of the study. 

Differences were detected in nutrient uptake among research stations and years, and there were 

variations in fungal biomass across varieties. The effects of glyphosate on leaf concentrations of 

Al, Fe, Mn, N, Na, and K were location-dependent. Glyphosate enhanced uptake of Zn in all 

experiments. Real-time PCR analyses of the CTB6 gene of C. cf. flagellaris consistently detected 

higher fungal biomass in glyphosate-treated samples compared to controls, indicating that 

glyphosate affected colonization of host plants during the latent period of infection. Enhanced 

uptake of of Zn, which is a key part of a transcriptional activator (CTB8) in the cercosporin 

biosynthetic pathway, could be associated with higher concentrations of C. cf. flagellaris DNA 

in glyphosate-treated leaves. However, CLB purple leaf symptom severity was significantly 

lower in glyphosate-treated plots compared to controls in 2014 and 2016. Therefore, colonization 

by C. cf. flagellaris was not associated with disease severity. These results suggest glyphosate 

may affect colonization by C. cf. flagellaris only while the pathogen is in its endophytic stage of 

development. 
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1. INTRODUCTION 

Glyphosate (Roundup, Monsanto, Inc., St. Louis, MO) has been the most used herbicide in 

the world since its introduction in the1970’s by Monsanto (Duke & Powles, 2008). Even though 

glyphosate is applied to control weeds, the material may also affect soil properties, soil chemistry 

and availability of nutrients, some specific microorganisms, and the host plant (Altman & 

Campbell, 1977). Many plant diseases have been associated with glyphosate in previous 

research, but results arguing both inhibition and synergistic properties of glyphosate for some 

specific pathogens have been reported, including increases of root rot, target spot, sudden death 

syndrome, and white mold in soybean (Glycine max (L) Merr.) (Johal and Huber, 2009), as well 

as growth inhibition of Macrophomina phaseolina, causal agent of charcoal rot of soybean, in in 

vitro assays (Mengistu, et al., 2013). For other organisms, such as Cercospora beticola, causal 

agent of sugar beet leaf spot, glyphosate had shown no fungicidal effect in field tests (Kanh & 

Bradley, 2013).  

One of the reasons why glyphosate has been associated with plant diseases is because of the 

findings of Johal & Huber (2009) regarding the effects of glyphosate on micronutrient uptake, 

which linked glyphosate to reduced levels of certain nutrients in soybean. This could ultimately 

predispose plants to infection (Johal & Huber, 2009). Application of sub-lethal doses of 

glyphosate to non-glyphosate resistant soybean was the main factor causing a reduction in leaf 

and seed concentrations of Ca, Mn, Mg and Fe, suggesting that glyphosate interferes with uptake 

and translocation of these elements by binding to them and therefore inhibiting their mobilization 

into the plant (Cakmak, et al., 2009). Similar results were shown in GR soybean by Zobiole, et al 

(2012) regarding nutrient uptake. Furthermore, Eker et al (2006), using sub-lethal doses of 

glyphosate, showed that glyphosate drift suppressed leaf uptake of Mn and Fe in sunflower 48-

72 hours after application. On the other hand, Duke et al (2012a) and Duke et al (2012b), in an 

extensive literature review of the effect of glyphosate in GR crops (soybean, cotton, and corn), as 

well as experimenting in greenhouse and field plots, showed no significant differences between 

glyphosate-treated plants and controls in tissue concentrations of Ca, Mg, Mn, Zn, Fe, Cu, Sr, 

Ba, Al, Cd, Cr, Co, or Ni. These findings created controversy concerning whether or not 

glyphosate should be applied to crops. 
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In this research project, we tested the hypothesis that glyphosate may have important effects 

on soybean mineral nutrition and therefore may impact soybean diseases in Louisiana.  We 

focused our efforts on Cercospora leaf blight, caused by Cercospora cf. flagellaris. We tested 

this hypothesis by applying glyphosate to the foliage of six glyphosate-resistant (GR) soybean 

varieties to compare nutrient uptake and disease development between glyphosate-treated plants 

and their respective controls (no foliar application of glyphosate). We also determined the direct 

effect of glyphosate on the CLB causal agent, C. cf. flagellaris (Albu et al., 2016), formerly 

known as C. kikuchii (Matsumoto & Tomoyasu, 1925), by measuring DNA 

concentration/amplification in glyphosate-treated and control leaf samples. 

 

1.1 Cercospora Leaf Blight (CLB) 

 

 Cercospora leaf blight is a major disease of soybean (Glycine max (L) Merr.) in many 

states in the USA. Cercospora leaf blight is caused by Cercospora cf. flagellaris (Albu, et al., 

2016), formerly known as C. kikuchii (T. Matsumoto & Tomoy.) M.W. Gardner. Cercospora leaf 

blight may be linked to purple seed stain of soybean. However, it can also infect leaves, stems, 

and pods. Upper leaves exposed to the sun can show a light purple appearance when infected by 

C. cf. flagellaris (Sinclair & Backman, 1989). A reddish, purple symptom highlighted with a 

bronzing appearance also can be seen in affected leaves. When infection is severe, necrosis and 

chlorosis can develop from these lesions and defoliation may occur, although this can be 

mistaken for early senescence (Sinclair & Backman, 1989). As reported by Walters (1978), 

symptoms of CLB are observed at the beginning and throughout seed set (R5-R7) under field 

conditions. Cercospora cf. flagellaris is known to produce cercosporin, a red pigmented 

phytotoxin (Kuyama & Tamura, 1957).  

 

Cercospora cf. flagellaris can now be targeted with speficific primers and probe 

developed by Chanda et al (2014) for real-time PCR assays. These primers were developed 

based on the CTB6 region of the C. kikuchii genome from the same isolates that later were 

shown to be C. cf. flagellaris by Albu et al (2016). Amplification of this region was used to 

detect trace amounts of fungal DNA in plant tissue or cultures, and, using Chanda’s equation, to 

convert cycle threshold (CT) value to relative DNA concentrations of C. cf. flagellaris. 
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1.2 History of Glyphosate 
 

 Glyphosate [N-(phosphonomethyl) glycine] was first synthetized in 1950 by Henri 

Martin in a small Swiss pharmaceutical company (Cilag) (Franz et al, 1997; Duke & Powles, 

2008). It was not until 1970 that John E. Franz of Monsanto Co. synthetized and tested the 

molecule for herbicidal use, and the compound was patented as a herbicide. The broad-spectrum 

herbicide was rapidly accepted by farmers because of its high efficacy. In fact, two decades later, 

glyphosate was considered the “first billion dollar product” of the pesticide industry (Cox, 1998). 

However, since the day of its introduction, a problem emerged with glyphosate because the 

herbicide also killed crops. This brought about a need to avoid killing desired plants with 

applications of glyphosate, so glyphosate could only be used against undesired plants (Franz et 

al, 1997). 

 

1.3 Molecular Basis for Glyphosate Resistant (GR) Varieties 

 

  Before we can understand the molecular basis of glyphosate resistance, we need to look 

at the mode of action of glyphosate in susceptible plants. In such plants (non-GR), glyphosate 

binds to the 5-enolpyruvilshimimate-3-phosphate enzyme (EPSP synthase), inhibiting the 

penultimate step of the shikimate acid pathway, where shikimate is converted to chorismate 

(Amrhein, Schab, & Steinrucken, 1980; Tzin & Galili, 2010; Haslam, 1974; Steinrücken & 

Amrhein, 1980). Three aromatic amino acids, phenylalanine (Phe), tyrosine (Tyr) and tryptophan 

(Trp), are produced at the end of this pathway when glyphosate is not present. When glyphosate 

is present in the cytoplasm, it inhibits the production of these three amino acids by blocking the 

EPSP synthase recognition site. Plants use these amino acids, or primary metabolites, to build 

proteins and other basic processes, including production of some compounds involved in plant 

defense such as flavonoids (Palo & Robbins, 1991). These amino acids also play an important 

role in the food chain since they are essential for animals, but only plants can produce them in 

the shikimate acid pathway. To obtain plants that were able to avoid dying by amino acid 

starvation caused by glyphosate, a GR plant was engineered with the ability to produce 

previously mentioned aromatic amino acids through the shikimate acid pathway even when 

glyphosate is present in the cytoplasm or the chloroplast. One way to obtain GR plants is by 

mutagenesis of EPSP synthase (Cao, et al., 2012). An EPSP mutant (Pro101 to Ser) of 

Salmonella typhimurium activated glyphosate resistance in transgenic tobacco plants (Comai et 
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al, 1985). In soybean, the changes in the genome to obtain glyphosate resistance were made to 

obtain an EPSP synthase with high affinity for Phe, Tyr, and Trp but low affinity for glyphosate. 

A mutant with an alanine (Ala) residue at position 100 that leads to CP4 EPSP (obtained from 

Agrobacterium sp. strain CP4) being glyphosate-insensitive, was identified, even though most 

bacterial and plant EPSP enzymes contain a strictly bound glycine (Gly) residue at that position 

(Funke, et al, 2006; Cao, et al., 2012). This led to GR soybeans using Agrobacterium sp. strain 

CP4. 

 

1.4 Effects of Glyphosate on Plant Diseases 

 

 The initial controversy of glyphosate associated with plant diseases started long ago and 

has recently increased because of several studies conducted in the past decade (Duke et al, 

2012a). Johal & Huber (2009) linked glyphosate to several plant diseases through an extensive 

literature review. In soybean, glyphosate was linked to increases in Fusarium virguliforme, 

causal agent of sudden death syndrome (SDS), as well as Corynespora casiicola, the pathogen 

causing target spot (Huber, Cheng & Winsor, 2005). These diseases were reported to increase in 

incidence because of weed control programs based on glyphosate (Johal & Huber, 2009; Keen, et 

al., 1982). However, Kandel et al (2015) found no significant effects of glyphosate on SDS. No 

effects on glyphosate on charcoal rot, caused by Macrophomina phaseolina where found in field 

studies (Mengistu et al, 2013). In other cases, glyphosate has shown suppresing effects on certain 

diseases in soybean. Applications of glyphosate inhibited soybean rust, caused by  Phakopsora 

pachyrhizi in glyphosate resistant soybeans (Feng et al, 2005). These results have led 

investigators to think that the effects of glyphosate on plant nutrition and diseases are dependent 

on many factors, since mixed results are found across crops and microorganisms (Duke, 2012). 

 

One of the arguments used to support the hypothesis that glyphosate increased the 

incidence of diseases was the fact that glyphosate is a strong chelator. When the molecule was 

first isolated in the 1950’s, the only use known for glyphosate was as a chelator until its 

herbicidal properties were discovered in the 1970’s (Bromilow, et al., 1993). This means that, 

when applied to the foliage, glyphosate readily translocates to the roots where it can immobilize 

most cations that are in close contact with the rhizosphere or even throughout the plant, 

especially in meristems where most micronutrients are needed to activate enzymes and other 
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essential physiological activities of the plant (Pline, et al., 200; Schuette, 1998). Therefore, 

glyphosate can potentially reduce Mn, Fe and other metals making them unavailable for plants 

and microorganisms (Johal & Huber, 2009; Thompson & Huber, 2007). However, these effects 

of glyphosate that have caused controversy in the last decade are based only on reports of 

reduction of Fe, Mn, and other nutrients by glyphosate applied to non-GR soybeans, in a 

greenhouse test, using 0.06% and 1.2% of the recommended application rate (Cakmak, et al., 

2009); as well as research performed in other crops (Ozturk, et al., 2008). Previous research in 

our laboratory showed that these minor elements play an important role in the disease cycle (i.e., 

high levels of Fe suppressed severity of CLB, and high levels of Mn increased severity) (Feng et 

al., 2005; Ward, et al., 2015; Silva, et al., 2014). However, no effect of glyphosate affecting C. 

cf. flagellaris has been reported. The possibility of glyphosate binding to soil particles and 

chelating metals also exists, but the extent at which this could have an effect in the host plant, 

causing secondary effects on some diseases of soybean and other hosts by predisposing plants to 

infections that depend on the nutritional status of the plant, is still unknown.  

 

1.5 Plant Nutrition and Plant Diseases 

 

 Plant nutrition can play an important role in plant diseases. If certain nutrients are 

deficient, plants are predisposed to some diseases by modifying resistance or susceptibility 

(Huber, 1980; Datnoff et al, 2007). Among many nutrients, micronutrients are needed to activate 

most plant physiological processes (Barker & Pilbean, 2007; Datnoff et al 2007; Marschner, 

2012). Some pathogens, such as species of Gaeumannomyces, Magnaporthe, Phymatotricum, 

Corynespora and Streptomyces utilize Mn oxidation to reduce defense mechanisms in plants 

involving the shikimate acid pathway (Thompson & Huber, 2007; Schulze, et al., 1995; Melgar, 

et al., 1998; Huber, et al., 2000). Two elements often mentioned in literature are Fe and Mn, to 

which glyphosate is associated to cause detrimental effects in plant uptake (Cakmak, 2009; 

Duke, 2012; Johal & Huber, 2009; Huber, 2005). Recent field studies with CLB demonstrated 

that Fe and Mn play important roles in the disease cycle. Brandt™ EDTA-Fe formulations 

applied to soybean foliage showed higher CLB purple symptom severity in field experiments. 

Formulations of Brandt™ Manni-plex Fe applied to soybean foliage showed lower CLB purple 

symptom severity. Both EDTA-Fe and Manni-plex Fe reduced blight symptoms of CLB (Silva, 

et al., 2014;Silva, 2014). High concentration of Mn in planta increased CLB severity in petioles 
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and exacerbated symptoms. Moreover, in vitro tests showed that Fe, Mn and Zn were effective in 

inhibiting mycelial growth of the CLB causal agent (Ward, et al., 2015; Ward, 2015). Based on 

these findings and conclusions, we would expect glyphosate to play an indirect role in the CLB 

life cycle by limiting the concentration of Fe and Mn in soybean leaves.  



7 
 

2. MATERIALS AND METHODS 

 

2.1 Field Test of Six Glyphosate Resistant Soybean Varieties 

 

 In order to test the hypothesis of glyphosate affects micronutrient content in soybean, 

resulting in impacts on disease severity and biomass of C. cf. flagellaris, six soybean GR 

varieties were tested in field experiments where plants were either treated or not treated with 

glyphosate. Disease assessments were performed in 2014 and 2016. No assessments were made 

in 2015 because of low disease severity. Samples were collected in all locations each year that 

the experiment was conducted (2014, 2015, and 2016) to determine nutrient concentrations 

through tissue analysis. Real-time PCR was conducted for all samples collected to determine the 

biomass of C. cf. flagellaris in glyphosate-treated and control samples. This study was conducted 

at three locations in Louisiana: Ben Hur Research Station in Baton Rouge (BHRS) in 2014, Dean 

Lee Research Station in Alexandria (DLRS) in 2014, 2015 and 2016, and Macon Ridge Research 

Station (MRRS), in Winnsboro during 2015 (Table 1). No fertilizers were applied to any of the 

plots used in these research stations for this test. Standard management practices for insects were 

followed at each research station. 

 

Table 1. List of research stations and years when the varieties were planted. Sampling dates and 

growth stages at which samples were collected for later analyses. Soybean growth stages were 

estimated based on Fehr, et al.,(1971). Asterisk (*) indicates the year in which each set of 

varieties presented in Table 2 were planted. 

 

Code Research Station/Year Sampling Date Growth Stage Varieties* 

DLRS2014 Dean Lee/2014 8/30/2014 R5-R6 2014  

BHRS2014 Ben Hur/2014 8/29/2014 R3, R6 2014  

DLRS2015 Dean Lee/ 2015 9/3/2015 R6 2015  

MRRS2015 Macon Ridge/2015 10/8/2015 R6 2014  

BHRS2015 Ben Hur/2015 9/24/2015 R6 2015  

DLRS2016 Dean Lee/2016 8/25/2016 R6 2016  

 

 

2.1.1 Spatial Configuration of Field Experiments  

 

 Six soybean GR varieties belonging to maturity groups III to V were planted at three 

research stations in Louisiana from 2014 to 2016 (Table 2). Maturity groups were assigned as 

described by Cregan & Hartwig (1984) and Zhang, et al. (2007). The experiment was repeated in 
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2015 and 2016 with different varieties each year, but the same number of maturity groups. One 

block with four replicates of each variety was planted for the Roundup® (50.2% glyphosate) 

treatment. A control treatment was planted consisting of one block with four replicates of each 

variety, in a randomized block design (RBD). The plots were composed of two rows (20 ft long 

and row spacing of 30’’ at BHRS, 38” at DLRS, and 40” at MRRS) per experimental unit with 

no borders in between. Each experimental unit was composed of a variety (plot) either sprayed 

(glyphosate-treated) or not sprayed (control). Glyphosate was applied at label rates and times 

indicated below (Section 2.2). 

 

 All of the varieties used in this experiment were planted as part of a statewide research 

project named “Official Variety Trials (OVT)” conducted by Dr. Ronald Levy. Yield was 

measured for each of the varieties planted at DLRS as well as other stations and published in the 

LSUAgcenter Soybean Variety Yields and Production Practices annual report (Levy, et al., 

2016). Some varieties could not be replanted in successive years because of regulations 

regarding seed storage as well as loss of viability. For this reason, a different set of varieties had 

to be used each year (Table 2). The same set of varieties was planted in 2014 at DLRS and 

BHRS. These varieties also were planted in 2015 at MRRS in order to have a complete 

replication of the varieties planted in 2014. The seed of the varieties that were planted in 2015 at 

MRRS was kept at -4 
o
C in the off season (from 2014 to 2015). However, different varieties had 

to be planted at DLRS and BHRS in 2015 for the reasons mentioned above. The test was 

repeated in 2016 only at DLRS with a new set of varieties (Table 2). Terral REV 47R53 was the 

only variety that was planted during all three years of the study using new seed each year. 

Planting dates differed at the each location (Table 1) to increase the probabilities of CLB 

development. For example, the field was planted early at DLRS (May 14
th

) and late at BHRS 

(July 2
nd

) in 2014.  
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Table 2. Soybean varieties planted at Dean Lee, Ben Hur, and Macon Ridge Research Stations 

from 2014 to 2016. Maturity groups were assigned as described by Cregan & Hartwig (1984) 

and Zhang, et al. (2007). An asterisk (*) indicates that the variety also was planted in another 

station/year of the study. 

 

  Varieties/Year 

Maturity Group 2014 2015 2016 

Late III and IV DynaGro 39RY43* TerralREV 38R10 Asgrow 3931 

  Pioneer 94Y82 TerralREV 39A35 TerralREV 47R53* 

  TerralREV 47R53* DynaGro 39RY43* Armor 48R70 

V TerralREV 52A94 TerralREV 47R53* Pioneer P54T94R  

  DynaGro S56RY84 Armor 55-R22 TerralREV 56R63* 

  Asgrow 5332 TerralREV 56R63* DynaGro 32Y55 

 

 

2.2 Application of Glyphosate 

 

 Roundup® (50.2% glyphosate [isopropylamine salt]) was applied at a rate of 22 fl 

oz/acre (0.65 L/acre) to the foliage of plots labeled as glyphosate-treated using a backpack 

sprayer calibrated to deliver 20 gal/A (75.7 L/A). Two applications were made in 2014 at BHRS 

(R1 and early R3) and one at DLRS at R1. The R3 application at BHRS in 2014 was an off-label 

application, which was needed because of high weed pressure. However, we did not exceed the 

maximum allowed per season (44 fl oz/A in soybean). The other half of the experiment was left 

non-treated for all six varieties with four replicates each. Mechanical control of weeds, using 

hoes, was performed on both sides of the field (glyphosate-treated and control) three times in 

2014 at DLRS and once at BHRS using a tractor outfitted with a cultivator. Mechanical control 

of weeds was not needed in 2015 and 2016. Roundup® was applied to grasses between rows of 

the non-treated block at R1 at all research stations in 2015 and DLRS in 2016 using a hooded 

backpack sprayer at a rate of 22 fl oz/A. This application method (hooded backpack sprayer) 

allowed us to avoid contact of glyphosate with soybean foliage in the control plots. 
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 2.3 Sampling and Storage of Samples for Real-time PCR (qPCR) and Leaf Tissue Analysis 

 

 Leaf samples were collected at all locations from all varieties each year. Two sets of 

samples, one for analysis of tissue concentrations of 13 nutrients and one for qPCR for C. cf. 

flagellaris, were collected at each plot for all varieties. Samples for analysis of tissue 

concentrations of nutrients were from collected in paper bags (Duro Bulwark, Novolex, 

Hartsville, SC). Each sample consisted of 20 leaflets from the third node from the top that 

randomly collected from the glyphosate-treated and nontreated (control) plots at R6 growth stage 

at all locations. Samples for qPCR were kept in plastic bags (Zip-Loc, SC Johnson, East 

Haddam, CT) and dry ice during transportation back to the lab. For long-term storage, samples 

were kept in a -80 
o
C freezer (Baxter, Deerfield, IL). For short-term storage, samples were kept 

at -20 
o
C in a household freezer (Avantco, Kuala Lumpur, Malaysia). 

 

2.4 Tissue Analyses for Nutrients 
 

2.4.1 Washing, Desiccating, and Grinding of Leaves 

 

 Leaflets were put in paper bags during sampling and immediately brought to the lab in 

boxes or ice chests if the samples were being carried for a long distance (i.e. from DLRS or 

MRRS to our lab) for washing using a solution of 0.1 M HCL and 0.05 M Liquinox (sodium 

dodecylbenzenesulfonate). Leaves were then dried at room temperature (21-23 
o
C) and 

transferred to new paper bags. These bags were then put in an oven (Fisher Scientific, Hampton, 

NH) to be dried at 60 
o
C for 3-4 days. Leaves were ground in a coffee grinder (Intertek, London, 

United Kingdom) under a laminar flow hood until a powder was obtained. The coffee grinder 

was cleaned between samples with compressed air to avoid cross-contamination. Samples were 

transferred to small envelopes and sent for tissue analysis of 13 elements using inductively 

coupled plasma mass spectrometry (ICP-mass spectrometry) at the LSU AgCenter Soil Testing 

and Plant Analysis Lab. 

 

2.4.2 Spectrophotometry for Macro and Micronutrients 

 

 In order to measure the concentrations of elements in plant tissue, glyphosate-treated and 

control samples were analyzed following the plant tissue digestion for multi-element ICP 

protocol (nitric acid- hydrogen peroxide method) (Hansen, et al., 2009). Tissue was digested as 
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follows: 1) 0.5 g was wrapped in a Kimwipe (Kimberly-Clark, Irving, TX) for each sample then 

placed in digestion tubes consisting of disposable standard glass tubes (Wheaton 358607 16 X 

125mm Tube, 15-415 Cap). Note: for every 36 samples, two blanks (negative control/water) and 

two reference (positive control) samples were weighed; 2) 5 mL of HNO3 were added to the 

tubes to ensure elimination of plant tissue on the walls of the digestion tube. The digestion block 

was heated to152-155 
o
C, and 50 minutes later the digestion block tray was removed from the 

digestion block; 3) each sample was mixed for about 5 seconds using a Vortex™ mixer prior 

placing the tubes in the digestion block tray; 4) the tray was returned to the digestion block for 5 

minutes to initiate vigorous boiling; 5) the tray was then removed from the digestion block and 

tubes were removed and allowed to cool for 10 minutes; 6)  3mL of H2O2 were then added to 

each tube, covered with a small glass funnel, and placed on the digestion block for 2 hours and 

45 minutes; 7) after digestion, samples were removed from the block and allowed to cool to 

room temperature; 8) once cooled, samples were stirred using the Vortex then transferred to a 15 

mL centrifuge tube. The solution was brought to 12.5 mL total volume  with distilled water; and 

9) samples were filtered through Whatman No. 1 filter paper (Sigma-Aldrich, St. Louis, MO) 

using a Fisherbrand porcelain funnel (Fisher Scientific, Pittsburgh, PA), poured into ICP tubes 

(Polypropylene Autosampler Tubes) and covered with Parafilm™ prior to analysis. Samples 

were analyzed for concentrations of 13 elements: Al, B, Ca, Cu, Fe, Mg, Mn, N, P, K, Na, S, and 

Zn.  

 

2.5 Real-time PCR for Cercospora cf. flagellaris  

 

2.5.1 Sample Processing for DNA Extraction 

 

 Frozen samples from the 2014, 2015 and 2016 growing seasons were ground to a powder 

using mortars and pestles and liquid nitrogen to keep them frozen during the process. After 

obtaining a powder, samples were stored at -80 
o
C in scintillation vials until DNA extraction. 

 

2.5.2 Plant Genomic Total DNA Extraction 

 

 Sigma’s GenElute™ Plant Genomic DNA Purification Miniprep Kit (Sigma–Aldrich, St. 

Louis, MO) was used to obtain total DNA from the soybean leaf powder. The initial amount of 

powder used to extract DNA was 0.1-0.2 grams, as specified in the kit. We made some minor 
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modifications to the suggested protocol to obtain more DNA: 1) the temperature used in the dry 

bath was changed from 65 to 70 
o
C; 2) on the third step, the centrifuge time was extended to 10 

minutes at a speed of 14,000X g; and 3) in the last step of DNA extraction only 50 µL of Elute 

solution was used. 

 

2.5.3 Measuring DNA Concentration and Dilutions 

 

 In order to measure DNA concentrations in the 50 µL of eluted DNA extracted from the 

soybean leaflets, a drop (~2 µL) of the eluted DNA was put in a Nanodrop Spectrophotometer 

ND-1000 (NanoDrop Technologies Inc, Wilmington, DE). The purity ratio used for a 

concentration to be accepted was the standard for this type of spectrophotometer (1.7-1.9). The 

reports containing DNA concentration in ng/µL were saved to be used later for calculations for 

making dilutions. Tubes containing this initial concentration of DNA were kept at -20 
o
C and 

labeled as working stocks. This procedure provided the amount of DNA in µL needed in 100 µL 

of total solution to obtain a concentration of 10 ng/µL. Dilutions were made for each sample 

diluting the initial concentration to obtain 100 µL of 10 ng/µL, which was the same 

concentration of the C. cf. flagellaris standards that we used as positive controls in our qPCR 

plates. The new diluted samples were properly labeled as templates to be used in qPCR.  

 

2.5.4 Real-time PCR Plate Setup 

 

 The protocol for detection of C. kikuchii, developed by Chanda et al (2014), was used to 

perform qPCR analyses to quantify DNA of the CLB causal agent, C. cf. flagellaris. The primers 

and probe used for this part of the study were: CKCTB6-2F: 5’-

CACCATGCTAGATGTGACGACA-3’ as the forward primer, CKCTB6-2R: 5’-

GGTCCTGGAGGCAGCCA-3’ as the reverse primer, and CKCTB6-PRB: 5’-

FAMCTCGTCGCACAGTCCCGCTTCG- TAMRA-3’ as the fluorescent probe. These primers 

and probe are specific for the CTB6 gene present in the C. cf. flagellaris genome. Isolates used 

by Chanda et al (2014) to develop these primers and probe (CKCTB6-2R, CKCTB6-2F and 

CKCTB6-PRB) also were used by Albu et al (2016) to demonstrate that C. cf. flagellaris is the 

most common pathogen causing CLB in Louisiana. We also tested our primers with isolates used 

by Albu et al (2016) to verify amplification (Supplementary Figure 1).  
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 A premix solution was prepared using the Taqman Universal Master Mix (12.5 µL), 

Nucleoside Free Water (NFW) (8.9 µL), forward primer CKCTB6-2F (1 µL), reverse primer 

CKCTB6-2R (1 µL) and fluorescent probe CKCTB6-PRB (0.6 µL) per technical replication. 

Three technical replications were performed per biological sample. Once the premix solution 

was prepared, 24 µL were added to each well of a 96-well reaction plate, and 1 µL of template 

obtained from dilutions of total DNA for the glyphosate-treated and nontreated samples was used 

as the source of DNA to be amplified resulting in a total solution of 25 µL/well. The plate was 

setup following a previously designed spreadsheet in order to maintain a record of samples. After 

the template DNA was added to the plate, it was processed for measuring fluorescence of the 

probe (CKCTB6-PRB) using a qPCR detection system. 

 

2.5.5 DNA Amplification and Quantification by qPCR  

 

 A 96-well MicroAmp ® Optical Reaction Plate (Applied Biosystems-Thermo Fisher, 

Foster City, CA) containing the templates diluted in the master mix, plus a positive control (C. 

cf. flagellaris 10ng/µL) and a negative control (NFW labeled as NTC on the plate), and covered 

with MicroAmp 8 cap-strips (Applied Biosystems-Thermo Fisher, Foster City, CA) was 

centrifuged for 3 min at 4000X g in a 96-well plate centrifuge (Eppendorf [5810R], Hamburg, 

Germany) for a 3-minute spin cycle at 4000X g. The plate was then transferred to an ABI 

PRISM® 7000 Sequence Detection System (Applied Biosystems-Thermo Fisher, Foster City, 

CA) where 40 temperature cycles were performed by the qPCR thermocycler, and fluorescence 

(Delta Rn) was measured after each temperature cycle. The temperature pattern for each cycle in 

the ABI PRISM ® 7000 comprised three stages: 1) 50 
o
C for 2 minutes; 2) 95 

o
C for 10 minutes; 

and 3) divided in two steps: 95 
o
C for 15 seconds for step 1 and 60 

o
C for 1 minute for step 2. 

The last stage was repeated 40 times.  

 

 DNA concentration was estimated using the cycle threshold (Ct) value, which reflects the 

cycle number at which the fluorescence (Delta Rn) generated within a reaction crosses the 

threshold (statistically significant point above calculated baseline), usually at the linear phase of 

amplification (calculated automatically by ABI 7000 software). Ct-values were transformed to 

DNA concentration in picograms per nanogram of total DNA using a linear regression developed 

by Chanda et al (2014). 
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2.6 Disease Assessments  

 

 Disease assessments for foliar symptoms of CLB were performed at DLRS in 2014 and 

2016. These assessments relied on two different rating scales for CLB foliar symptoms (Figures. 

1 and 2) that were developed by Silva (2014 and unpublished, respectively) using a disease 

symptom image analysis system, ASSESS 2.0 (APS Press, St. Paul, MN) with field-collected 

symptomatic leaves. The values in the scales used for CLB (Figures 1 and 2) represent disease 

severity on soybean leaves for two common symptoms associated with CLB. The purple 

symptom of CLB (Figure 1A) ranged from 0% disease severity, which is a healthy leaf, to >20% 

disease severity representing the highest value of CLB purple leaf severity for the scale used in 

2014. The majority of severities did not exceed 15%. The blight symptom of CLB is shown in 

lower row of the scale in Figure 1B, and the values range from 0% (healthy) to 20%. These 

ratings were done in 2014 at the R6 growth stage. Ratings also were repeated at the same time of 

the season the following years (2015 and 2016). However, symptoms of CLB were not observed 

in 2015 at any of the research stations where the experiment was repeated. Both symptoms of 

CLB (blight and purple) were observed in 2016 at DLRS, and a different scale was used to 

estimate disease severity (Figure 2), which also was created in ASSESS 2.0, as well as our 

previous scale. This rating scale used a wider range of symptomatic leaves, which provided more 

accurate estimates of severity for both purple and blight symptoms.  
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Figure 1. Scale used to assess purple and blight symptoms of Cercospora leaf blight of soybean 

at the R6 growth stage at the Dean Lee Research Station in 2014. A) Purple symptom 

percentages estimated by ASSESS 2.0. B) Blight symptom percentages estimated by ASSESS 

2.0. Modified from Silva (2014). 
 

Assessment of CLB was conducted at DLRS in 2014 in a single-blind fashion where 

evaluators knew only the glyphosate-treatment (whether the plots being evaluated were treated or 

nontreated). The values assigned by ASSESS 2.0 were A) CLB purple symptom values (1-5) 

were 1=0% (healthy), 2=5%, 3=10%, 4=15% and 5=>20%. B) CLB blight symptom values were 

assigned as follow: 1=0% (healthy), 2=5%, 3=10%, 4=15%, and 5=20% (Figure 1). To evaluate 

glyphosate-treated and control plots based on this scale, and the entire plot was assigned a value 

based on the number of leaves affected by the disease. If more than one evaluator was in the 

same field, an average between the two evaluators was obtained for each plot. In case of widely 

differing values assigned to a certain plot, both evaluators went back to that plot and discussed 

the values until reaching a consensus. Raw data collected in 2014 were converted to percentages 

prior to analysis. This procedure was repeated at DLRS in 2015 at R6 growth stage using the 

new scale (Figure 2).  

 

A 

B 

1 2 3 4 5 

1 2 3 4 5 

>20% 
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Figure 2. Scale used to assess purple and blight symptoms of Cercospora leaf blight of soybean 

at the R6 growth stage at the Dean Lee Research Station in 2016. A) Purple symptom 

percentages were estimated by ASSESS 2.0. B) Blight symptom percentages also were estimated 

with ASSESS 2.0. Developed by Silva (unpublished). 

 In 2016, assessments of CLB were conducted at DLRS using the revised, expanded scale 

above (Figure 2). The values assigned by ASSESS 2.0 were on a 0-7 scale as follows: A) CLB 

purple symptom values (0-7): 0=0% (healthy), 1=5%, 2=10%, 3=20%, 4=35%, 5=50%, 6=80%, 

and 7=100%; B) CLB blight symptom values were assigned as follows: 0=0% (healthy), 1=2%, 

2=5%, 3=10%, 4=25%, 5=50%, 6=75%, and 7=100%. 

 

2.7 Analysis of DATA 

 

 Datasets for concentrations of nutrients and DNA amplification were created using all the 

information for each data point (i.e. year, location, variety, nutrient, treatment, and percentage of 

each nutrient or DNA concentration for qPCR data). Datasets were then input into SAS 9.4 

through the LSU virtual lab application and analyzed using PROC UNIVARIATE to test 

normality and PROC GLM for interactions across our sources of variation (random effects: year, 

location, and nutrient; fixed effects:  treatment and variety) and PROC MIXED for significant 

differences (P≤0.05) between glyphosate-treated and control across our model. Field ratings for 

CLB purple leaf symptoms were transformed to percentages based on the scales described in 

A 

B 

0 1 2 3 4 5 6 7 

0 1 2 3 4 5 6 7 
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Figures 1 and 2 and input in SAS 9.4 for analysis using PROC UNIVARIATE to test for 

normality, PROC GLM for interactions across sources of variation (random: year and location; 

fixed: treatment and variety) and PROC MIXED for significant differences (P≤0.05) between 

glyphosate-treated and control across varieties 

 

 Major flooding affected our field at BHRS in 2015 and 2016 (heavy rain in June). Even 

though samples were collected in 2015 at this location, only a maximum of three replications for 

five varieties could be recovered because of low stand and poor germination of soybeans, which 

resulted in unbalanced data that could decrease our statistical power in PROC GLM test for 

interactions. For this reason, data from BHRS collected in 2015 were dropped from our analyses. 
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3. RESULTS 
 

3.1 Leaf Tissue Analysis for Concentrations of 13 Nutrients 

 

 Significant differences were detected in the field experiment main random effects: 

location, year and nutrient, as well as the fixed effects treatment and variety. However, these 

differences were influenced by interactions across the sources of variation. Results from SAS 

PROC GLM regarding interactions across sources of variation included in the class statement for 

each data point (i.e. year, location, variety, nutrient, and treatment) showed several significant 

two-way and three-way interactions (Table 3). Two-way interactions were detected for 

treatment*location, location*year, treatment*variety, nutrient*treatment, location*nutrient, 

year*nutrient, and variety*nutrient (Table 3). Three-way interactions for 

location*nutrient*treatment, location*year*nutrient, variety*nutrient*treatment, and 

location*variety*nutrient were detected (Table 3). These interactions indicated data had to be 

kept separated by year, location, nutrient, and variety for analyses with PROC MIXED for 

treatment effects. 

 

Table 3. SAS output from PROC GLM for fixed and random effects, and interactions affecting 

nutrient concentrations. Effects and interactions were considered significant when P≤0.05. 
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3.1.1 Results from Ben Hur Research Station in 2014  

 

 Results from soybean varieties analyzed for macro and micronutrient content in leaf 

tissue showed significantly higher concentrations of Mn, N, and Zn in samples collected at 

BHRS in 2014 from six GR varieties. Concentrations of Mn were significantly higher in 

glyphosate-treated samples in three out of six varieties (Asgrow 5332, Terral REV 47R53, and 

Terral REV 52A94) in 2014 (Figure 3). The concentrations of N  also were significantly higher 

in glyphosate-treated samples for four out of six varieties analyzed in 2014 at BHRS (DynaGro 

39RY43, TerralREV 47R53, TerralREV 52A94, and Asgrow 5332) (Figure 4). Concentrations 

of Zn were found in significantly higher amount in glyphosate-treated samples for five out of six 

varieties at this location in 2014 (DynaGro 39RY43, Pioneer 94Y82, TerralREV 47R53, 

DynaGro S56RY84, and Asgrow 5332) (Figure 5).  

 

 
 

Figure 3. Concentrations of Mn in six soybean varieties for glyphosate-treated and control 

samples collected at the Ben Hur Research Station in 2014. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistical differences (P≤0.05) between 

glyphosate-treated and control are marked with an asterisk (*). 
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Figure 4. Concentrations of N in six soybean varieties for glyphosate-treated and control 

samples collected at the Ben Hur Research Station in 2014. Bars represent means (n=4), and 

error bars represent standard error. Statistical differences (P≤0.05) between glyphosate-treated 

and control are marked with an asterisk (*). 

 

 

 

Figure 5. Concentrations of Zn for six soybean varieties in glyphosate-treated and control 

samples collected at the Bun Hur Research Station in 2014. Bars represent means for each 

variety (n=4), and error bars represent standard errors. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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 Sodium was found in significantly higher concentration in nontreated plants from all 

varieties tested at this research station in 2014 (Figure 6). No significant differences (P≤0.05) 

were observed in the rest of nutrients analyzed (Al, B, Ca, Cu, Fe, Mg, P, K, and S).  

 

 

 

Figure 6. Concentrations of Na for six soybean varieties in glyphosate-treated and control 

samples collected at the Ben Hur Research Station in 2014. Bars represent means for each 

variety (n=4), and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

3.1.2 Results from Macon Ridge Research Station in 2015 

 

 Results from MRRS in 2015 showed significantly higher concentrations of Mn, Fe, Al, 

Na, and Zn for glyphosate-treated samples across six varieties. Concentration of Mn was 

significantly higher in all varieties tested at MRRS in 2015 (DynaGro 39RY43, Pioneer94Y82, 

TerralREV 47R53, TerralREV 52A94, DynaGro S56RY84, and Asgrow 5332)(Figure 7). The 

concentration of Fe was significantly higher in samples treated with glyphosate for four out of 

six varieties in 2015 at MRRS (DynaGro 39RY43, TerralREV 47R53, TerralREV 52A94, and 

DynaGro S56RY84) (Figure 8). Aluminum also was found in higher concentration in glyphosate 

treated samples at this research station in 2015. Five out of six varieties showed significantly 

higher concentration of Al (DynaGro 39RY43, TerralREV 52A94, DynaGro S56RY84, and 

Asgrow 5332) (Figure 9).  
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Figure 7. Concentrations of Mn for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means across 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 
 

Figure 8. Concentrations of Fe for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means across 

variety (n=4) and error bars represent standard error. Statistically significant differences (P≤0.05) 

are marked with an asterisk (*). 
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Figure 9. Concentrations of Al for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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collected from five out of six varieties tested at MRRS in 2015 (DynaGro 39RY43, 

Pioneer94Y82, TerrallREV 47R53, DynaGro S56RY84, and Asgrow 5332) (Figure 10). The 

concentration of Zn also was found in higher concentration in glyphosate treated samples at this 

location in 2015 in four out of six varieties tested (DynaGro 39RY43, TerralREV 47R53, 

TerralREV 52A94, and Asgrow 5332) (Figure 11). 
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Figure 10. Concentrations of Na for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
 

 
 

Figure 11. Concentrations of Zn for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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 Concentrations of N and K were significantly lower for glyphosate-treated samples at 

MRRS in 2015. Nitrogen was found in significantly lower concentration in glyphosate-treated 

samples from three out of six varieties (TerralREV 52A94, DynaGro S56RY84, and Asgrow 

5332) (Figure 12). Potassium was found in significantly lower concentration in glyphosate-

treated samples from all varieties tested in 2015 at MRRS (DynaGro 39RY43, Pioneer94Y82, 

TerralREV 47R53, TerralREV 52A94, DynaGro S56RY84, and Asgrow 5332) (Figure 13). No 

significant differences were observed for all other nutrients at MRRS in 2015. 

 

 

 

Figure 12. Concentrations of N for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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Figure 13. Concentrations of K for six soybean varieties in glyphosate-treated and control 

samples collected at the Macon Ridge Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

3.1.3 Results from Dean Lee Research Station from 2014 to 2016 
 

 Differences in concentrations of nutrients were detected between glyphosate treated and 

nontreated plants in samples collected at DLRS in 2014, 2015 and 2016, using different varieties 

each year (Table 2). Results from samples collected in 2014 at DLRS showed significantly 

higher concentration of Zn in glyphosate-treated samples for four out of six varieties (DynaGro 

39RY43, Pioneer94Y82, DynaGro S56RY84, and Asgrow 5332) (Figure 14). Nitrogen and 

potassium were found in significantly lower concentrations in glyphosate-treated samples at this 

location in 2014. The concentrations of N were significantly lower in glyphosate-treated samples 

from all varieties tested at DLRS in 2014 (DynaGro 39RY43, Pioneer94Y82, TerralREV 47R53, 

TerralREV 52A94, DynaGro S56RY84, and Asgrow 5332) (Figure 15). Potassium was found in 

lower concentration in glyphosate-treated samples from five out of six varieties tested at DLRS 

in 2014 (Pioneer94Y82, TerralREV 47R53, TerralREV 52A94, DynaGro S56RY84, and Asgrow 

5332 (Figure 16). 
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Figure 14. Concentrations of Zn for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2014. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 
 

Figure 15. Concentrations of N for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2014. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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Figure 16. Concentrations of K for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2014. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 In 2015, Zn was found in significantly higher concentrations in glyphosate-treated 

samples collected at DLRS. Zinc was found in higher concentration in four out of six varieties 

tested at DLRS in 2015 (TerralREV 38-R10, TerralREV 47R53, Armor 55-R22, and TerralREV 

56R63) (Figure 17). Iron was detected in significantly lower concentration in glyphosate-treated 

samples collected at DLRS in 2015 for two out of six varieties tested (TerralREV 39A35, 

TerralREV 47R53) (Figure 18). No significant differences were detected between glyphosate-

treated and control plants for all other nutrients analyzed in 2015 at DLRS. 
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Figure 17. Concentrations of Zn for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 
 

Figure 18. Concentrations of Fe for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2015. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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  Similar results were obtained in 2016 at DLRS. The concentration of Zn and Mn was 

significantly higher in glyphosate-treated plants. Zinc was detected in higher concentrations in 

glyphosate-treated plants in samples collected from all six varieties tested in 2016 (Asgrow 3931 

TerralREV 47R53, Armor 48R70, Pioneer P54T94R, TerralREV 56R63, and DynaGro 32Y55) 

(Figure 19). Manganese also was detected in significantly higher concentration in glyphosate-

treated plants at this research station for four out of six varieties tested (Asgrow 3931 

TerralREV 47R53, Armor 48R70, and Pioneer P54T94R) (Figure 20). One variety (TerralREV 

56R63) showed significantly lower concentration of Mn in glyphosate-treated plants at DLRS in 

2016 (Figure 20). 

 

 
 

Figure 19. Concentrations of Zn for six varieties with four replications each (n=4) in samples 

collected at the Dean Lee Research Station in 2016. Bars represent means for each variety and 

error bars represent standard error. Statistically significant differences (P≤0.05) are marked with 

an asterisk (*). 
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Figure 20. Concentrations of Mn for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2016. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 Nitrogen and potassium were again found in lower concentration in glyphosate-treated 

plants at DLRS in 2016. The concentration of N was significantly lower in glyphosate-treated 

samples for three out of six varieties tested at this research station in 2016 (Armor 48R70, 

Pioneer P54T94R, and DynaGro 32Y55) (Figure 21). The concentration of K was significantly 

lower in glyphosate-treated plants for four out of six varieties tested at DLRS in 2016 (Asgrow 

3931, Armor 48R70, Pioneer P54T94R, and DynaGro 32Y55) (Figure 22). No significant 

differences between glyphosate-treated and control plants were observed in 2016 among all other 

nutrients analyzed. 
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Figure 21. Concentrations of N for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2016. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 

 

 
 

Figure 22. Concentrations of K for six soybean varieties in glyphosate-treated and control 

samples collected at the Dean Lee Research Station in 2016. Bars represent means for each 

variety (n=4) and error bars represent standard error. Statistically significant differences 

(P≤0.05) are marked with an asterisk (*). 
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3.2 Relative DNA Concentrations of Cercospora cf. flagellaris 

 

 Expression of C. cf flagellaris CTB6 gene was estimated through real-time PCR in 

leaflets collected at all research stations during the three-year period that the experiment was 

conducted. Differences were apparent in most assays between control and glyphosate-treated 

samples with more C. cf. flagellaris DNA detected in samples from treated plants. An example 

of a typical amplification plot in the ABI 7000 is shown in Figure 23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Typical qPCR amplification plot for glyphosate-treated vs control samples. Y-axis 

represents Delta Rn (fluorescence value of an experimental reaction minus the Rn value of the 

baseline signal generated by ABI 7000). X-axis represents the temperature cycle number (40 

cycles total). A) Positive control, Cercospora cf. flagellaris diluted to 10 ng/µL. B) Glyphosate-

treated sample (diluted to 10 ng/µL of total DNA). C) Control sample (NR=no-roundup) from 

the same variety as B. D) Negative control or nontreated cell (NTC), which was 1 µL of 

Nucleoside Free Water (NFW). Green line represents threshold at which Delta Rn reached the 

linear phase of amplification for all samples. 

 

 Results from PROC GLM in SAS for all sources of variation included in the class 

statement for year, location, variety, and treatment showed significant differences across the 

main fixed effects treatment (P=0.0198) and variety (P<0.0001), as well as random effects for 
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location (P<0.0001) and year (P<0.0001). However, these differences were influenced by two-

way and three-way interactions across sources of variation (Table 4). Two-way interactions 

(P≤0.05) between variety*treatment and year*treatment were detected. Three-way interactions 

(P≤0.05) between year*variety*treatment were detected (Table 4). These results indicated the 

data had to be kept separated in ANOVA using PROC MIXED. 

 

Table 4. SAS output from PROC GLM for fixed and random effects, and interactions affecting 

concentrations of Cercospora cf. flagellaris DNA. Effects and interactions were considered 

significant when P≤0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In 2014, DNA concentrations of C. cf. flagellaris were significantly higher for 

glyphosate-treated samples from four varieties (DynaGro 39RY43, Pioneer 94Y82, Terral REV 

52A94, and Asgrow 5332) planted at DLRS (Figure 24). 
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Figure 24. Biomass of Cercospora cf. flagellaris for glyphosate-treated and control samples 

from six soybean varieties collected at the Dean Lee research station in 2014. Bars represent 

mean DNA concentrations of C. cf. flagellaris in picograms per nanogram of total DNA. Error 

bars represent standard error calculated among four biological replications and three technical 

replications during qPCR procedure. Significant differences (P≤0.05) between glyphosate-

treated and control are marked with an asterisk (*). 

 

 Results from qPCR analyses for samples collected at BHRS in 2014 showed significantly 

higher amounts of C. cf. flagellaris DNA for three out of six varieties (DynaGro 39RY43, Terral 

REV 47R53, and Asgrow 5332) treated with glyphosate, which indicated that higher 

amplifications of the CTB6 gene of C. cf flagellaris occurred in those varieties when treated with 

glyphosate (Figure 25). DynaGro 39R43 and Asgrow 5332 had higher amounts of C. cf 

flagellaris at both locations. 
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Figure 25. Biomass of Cercospora cf. flagellaris for glyphosate-treated and control samples 

from six soybean varieties collected at Ben Hur Research Station in 2014. Bars represent mean 

DNA concentrations of C. cf. flagellaris in picograms per nano grams of total DNA. Error bars 

represent standard error calculated among four biological replications and three technical 

replications during qPCR procedures. Significant differences (P≤0.05) between glyphosate-

treated and control are marked with an asterisk (*). 
 

 Samples collected at DLRS in 2015 showed significantly higher amplification of C. cf. 

flagellaris in glyphosate-treated samples in four out of six varieties tested. The varieties that 

showed significantly higher concentrations of C. cf. flagellaris in glyphosate-treated samples 

were TerralREV 38-R10, TerralREV 39A35, DynaGro 39RY43, and TerralREV 47R53 (Figure 

26). TerralREV 56R63, showed a significantly lower concentration of C. cf. flagellaris in 

glyphosate-treated samples (Figure 26). Data obtained from the ABI 7000 also suggested that 

this location-year (DLRS 2015) had the highest values of DNA concentrations of C. cf. 

flagellaris compared to all research stations and years, ranging from 36.02 pg of C. cf. flagellaris 

DNA per ng of total DNA (control of TerralREV 39A35) to 624.10 pg of C. cf. flagellaris DNA 

per ng of total DNA (control of TerralREV 56R63). 
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Figure 26. Biomass of Cercospora cf. flagellaris for glyphosate-treated and control samples 

from six soybean varieties collected at the Dean Lee Research Station in 2015. Bars represent 

mean DNA concentrations of C. cf. flagellaris in picograms per nanogram of total DNA. Error 

bars represent standard error calculated for four biological replications and three technical 

replications during the qPCR procedure. Significant differences (P≤0.05) between glyphosate-

treated and control samples are marked with an asterisk (*). 

 

 Three out of six varieties planted at MRRS in 2015 showed significantly higher 

concentration of C. cf. flagellaris DNA in 2015: Pioneer 94Y82, TerralREV 47R53, and Asgrow 

5332 (Figure 27). 
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Figure 27. Biomass of Cercospora cf. flagellaris for glyphosate-treated and control samples 

from six soybean varieties collected at the Macon Ridge Research Station in 2015. Bars 

represent mean DNA concentrations of C. cf. flagellaris in picograms per nanogram of total 

DNA. Error bars represent standard error calculated forfour biological replications and three 

technical replications during the qPCR procedure. Significant differences (P≤0.05) between 

glyphosate-treated and control samples are marked with an asterisk (*). 

 

In 2016, five out of six varieties planted at DLRS showed significantly higher 

concentrations of C. cf. flagellaris DNA in glyphosate-treated samples. The varieties that 

showed significantly higher DNA of the fungus at this research station were TerralREV 38R10, 

Asgrow 3931, Armor 48R70, TerralREV 56R63, and DynaGro 32Y55 (Figure 28).  
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Figure 28. Biomass of Cercospora cf. flagellaris for glyphosate and control samples from six 

soybean varieties collected at the Dean Lee Research Station in 2016. Bars represent mean DNA 

concentrations of C. cf. flagellaris in picograms per nanogram of total DNA. Error bars represent 

standard error calculated among for four biological replications and three technical replications 

during the qPCR procedure. Significant differences (P≤0.05) between glyphosate-treated and 

control are marked with an asterisk (*). 

 

3.3 Disease Assessment of Cercospora Leaf Blight Purple Symptom in 2014 and 2016 

 

 Results obtained with PROC GLM showed significant differences across the main fixed 

effects treatment (P= 0.0014) and variety (P≤0.0001). This analysis did not show significant 

differences across the random effect year. Location effect was not included in the model because 

purple symptom of CLB was observed twice at the same location (DLRS in 2014 and 2016). 

Based on these results, varieties were kept separated in our analyses with PROC MIXED for 

differences between glyphosate-treated and controls.  

 

 Purple leaf symptoms of CLB were observed at DLRS in 2014 and 2016. CLB blight 
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were observed between glyphosate-treated and control). No symptoms of either CLB blight or 

purple leaf were observed in 2015. Overall, glyphosate-treated plots showed lower severities of 

CLB purple symptoms in 2014. However, only three out of six varieties showed significantly 

lower severities of CLB purple symptom in glyphosate-treated plots (P≤0.05) (Figure 29).  

 

  The varieties that showed statistically significant differences (P≤0.05) with higher 

disease severity in control plots were Dyna-GroS56RY84, Terral REV52A94, and Pioneer 

94Y82 (Figure 29). Asgrow 5332 did not show CLB purple leaf symptoms in either glyphosate-

treated or control plots in 2014 at DLRS.  

 

 
 

Figure 29. Disease assessment for the Cercospora leaf blight purple symptom at the Dean Lee 

Research Station in 2014. Bars represent means across four replications for each variety, and 

error bars represent standard error. Statistical differences (P≤0.05) between glyphosate-treated 

and control are marked with an asterisk (*). 

 

 In 2016, purple symptoms of CLB were observed at DLRS. Disease symptoms were 

assessed in six varieties in each half of the field (treated and non-treated). CLB purple leaf 

symptoms were numerically lower in glyphosate-treated plots in five out of six varieties. 

However, only two out of six varieties showed significantly lower purple leaf severity, Pioneer 
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P54T94R and TerralREV 56R63 in glyphosate-treated plots. Asgrow 3931 did not show any 

purple leaf symptoms at either treated or nontreated plots (Figure 30). The scale used in 2016 

(Figure 2) was enhanced using ASSESS2.0 to obtain more accurate estimates of disease severity 

above 20%. However, only Pioneer P54T94 and DynaGro 32Y55 showed percentages higher 

than 20% at DLRS in 2016 (Figure 30). 

 

 
 

Figure 30. Disease assessment for the Cercospora leaf blight purple symptom at the Dean Lee 

Research Station in 2016. Bars represent mean disease severity across four replications for each 

variety, and error bars represent standard error. Statistical differences (P≤0.05) between 

glyphosate-treated and control are marked with an asterisk (*). 
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4. DISCUSSION 

 

4.1 Effects of Glyphosate on Nutrient Uptake 

 

 Glyphosate can affect nutrient availability and uptake in plants and potentially affect host 

plant resistance and disease severity. There has been concern that disease severity could be 

enhanced in transgenic soybean for glyphosate resistance (Buiatti, et al. 2013; Cerdeira & Duke, 

2006; Williams, et al. 2000). Therefore, a field study was conducted to evaluate the effects of 

glyphosate application to GR soybeans on nutrient uptake and the development of an important 

disease, Cercospora leaf blight. The results indicated that glyphosate does affect nutrient uptake, 

fungal development, and disease severity. 

 

 Glyphosate affected concentrations of some nutrients in GR soybeans, including key 

nutrients involved in plant resistance responses. However, the effects were not consistent across 

locations and years. Overall nutrient results from tissue analyses were not meaningful because of 

the high variation observed among research stations and years of the study. Concentrations of 

some nutrients were significantly higher for glyphosate-treated plants at some locations, whereas 

concentrations of the same nutrient in plants at another research station showed significantly 

lower concentrations. Nitrogen, for example, was found in significantly higher concentration in 

glyphosate-treated plants collected at BHRS in 2014 but significantly lower concentrations for 

glyphosate-treated at DLRS in 2014 and MRRS in 2015. Similar variations were observed in the 

concentrations of Al, Fe, K, Mn, and Na, which were found in significantly higher, no significant 

differences, or significantly lower concentrations in glyphosate-treated plants at different 

locations.  

 

 Variability in the uptake of most nutrients was not observed across varieties within 

experiments. Rather, tissue analyses detected variability across locations and years. These results 

suggested that glyphosate affects nutrient uptake similarly in GR soybean varieties but more so 

in some varieties than others. However, this process is dependent upon edaphic conditions.  

 

 The results regarding uptake of Fe and Mn, which are involved in CLB life cycle, 

disagreed with those of Johal & Huber (2009), who argued that glyphosate has a detrimental 
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effect in the uptake of these elements. Iron was found in lower concentrations in glyphosate-

treated plants at DLRS in 2015, but only two out of six varieties showed significantly lower 

concentration. However, the concentration of Fe was higher in glyphosate-treated plants at 

MRRS in 2015 and four out of six varieties showed significantly higher concentration. The 

concentration of Mn was higher in glyphosate-treated plants from three out of six varieties at 

BHRS in 2014, six out of six varieties at MRRS in 2015, and four out of six varieties at DLRS in 

2016. The concentration of Mn was lower in glyphosate-treated plants from one of six varieties 

tested at DLRS in 2016. Mn did not show significant differences between glyphosate-treated and 

control plants at DLRS in 2014 and 2015. The results indicate that the uptake of Fe and Mn is 

location-dependent as it is for the other nutrients mentioned above. However, when Mn was 

affected, it was found in higher concentrations in glyphosate-treated plants. 

 

 Routine soil nutrient analyses showed variability across research stations in soil 

concentration of some nutrients (Supplementary Table 1). However, no nutrient was found to 

occur at levels regarded as deficient. Although, natural variations in the soil profile could have 

influenced leaf concentration of nutrients. In general, soil pH did not show high variability across 

fields (with some exceptions). 

 

Zinc was the only nutrient that was always found in significantly higher concentrations in 

glyphosate-treated plants at all research stations and years of study, when there was a significant 

treatment effect. The results with Zn did not support those of Moreira et al (2016), who found 

that tissue concentrations of Zn were lower in glyphosate-treated soybean leaves. This 

greenhouse study used different varieties, and the soil type probably differed compared to this 

study. 

 

 The higher uptake of Zn when glyphosate was applied has been studied in detail by Li, et 

al. (2013), and their findings help to explain the current study results. They showed that the 

synergistic activity of glyphosate and Zn was dependent on soil pH. The highest uptake of Zn in 

the presence of 1.0 mM glyphosate occurred when gamma-alumina was at pH=5.5 (lowest at pH 

8.0). The average pH for each of the study soils was: BHRS in 2014, pH=5.8 (moderately acid); 

DLRS in 2014, pH=6.6 (slightly acid); DLRS in 2015, pH=5.9 (moderately acid); MRRS, 
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pH=4.8 (very strongly acid); and DLRS in 2016, pH=6.5 (slightly acid). The acidic soil 

conditions provide an explanation for the increased concentration of Zn in treated plants. 

 

The variability in tissue concentrations of nutrients among research stations and years of 

study could have been caused by many factors, including glyphosate application timing and 

variable edaphic and environmental conditions. Glyphosate was applied twice during the season 

at most research stations (except for BHRS in 2014), one application prior to planting and one 

application at R1 (one extra application at BHRS in 2014 because of high weed pressure) at a 

rate of 0.65 L/acre. However, plants were collected at the R5-R6 stage of development of 

soybeans at each research station every year. Plants were evaluated at that time to investigate 

nutrient concentrations and biomass of C. cf. flagellaris at the time when CLB symptoms are 

usually observed in soybean foliage (R5-R6) (Hartman, et al. 2015). For most varieties planted 

in Louisiana, the time period between R1 (beginning bloom) and R6 (full seed) would be 

approximately 50-60 days (Mueller, et al. 2016; Casteel, 2016; Pedersen, 2016).  

 

This gap between application and sampling would have resulted in glyphosate 

degradation in the soil. Glyphosate degradation depends on the type of soil and environmental 

conditions, varying from 4 to 189 days, with an average of 49 days (Grundmann, et al., 2008; 

Laitinen, et al., 2006; Capri & Vicari, 2010; Williams, Kroes, & Munro, 2000). A report by 

Monsanto states that the half-life of glyphosate in soil is 32 days, but this does not mean that 

glyphosate will be gone in 64 days, since it can be detected after 3-4 half-lives (Backgrounder, 

2005).Glyphosate is readily translocated to roots after it is applied to the foliage of GR soybeans, 

and it may degrade in soil in a relatively short time (around 49 days) depending on 

environmental conditions; therefore, it should not have a large direct effect on the foliage (Franz, 

et al. 1997; Grundmann, et al., 2008; Laitinen, et al. 2006; Capri & Vicari, 2010; Williams, et al. 

2000). 

 

 Another source of variation could be the time of sampling in different varieties. Samples 

were collected at a time when most of the varieties had reached R5-R6. However, since three 

maturity groups were included in the study (III, IV, and V), some varieties reached R6 earlier 

than others (varieties of maturity group III would reach R6 earlier, even though planted at the 
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same time as IV and V). Including different varieties and maturity groups in the study increased 

chances of observing symptoms of CLB by planting several varieties with no prior knowledge of 

susceptibility to disease, since CLB symptoms are hard to predict from season to season and 

across varieties (some varieties might or might not show CLB symptoms from season to season). 

 

4.2 Effects of Glyphosate on DNA of Cercospora cf. flagellaris and Disease Symptoms 

 

 DNA concentrations of C. cf. flagellaris were significantly higher in leaves of 

glyphosate-treated plants at all locations (with some minor exceptions) indicating higher biomass 

of the pathogen in leaves. Variability in amplification of DNA occurred among varieties as 

would be expected because of variability in levels of susceptibility to the fungus for each variety. 

However, the pattern for increased fungal biomass in glyphosate treated plants was similar across 

varieties with the exception of one variety in one experiment at one location. 

 

 The portion of the genome associated with cercosporin biosynthesis in C. cf. flagellaris 

was amplified (CTB6 gene), and higher concentrations of Zn in soybean leaves could enhance 

toxin production. Zinc is part of a major transcriptional activator identified as Zn (II) Cys6 

domain in the CTB8 gene cluster that regulates the cercosporin biosynthetic pathway in 

Cercospora nicotianae (Chen, et al. 2007; Newman & Townsend, 2016; Campbell, et al. 2008). 

However, increased Zn levels in treated plants and increased fungal biomass were not associated 

with increased symptom expression. The effect of glyphosate on cercosporin production in 

Cercospora-infected GR soybean needs to be evaluated. 

 

The highest DNA amplification values were found in samples collected at DLRS in 2015 

in glyphosate-treated plots, which also showed the lowest pH and highest Zn concentrations in 

leaves (90-112ppm). However, symptoms of CLB were not detected at this site in 2015. The 

lowest values of relative DNA concentrations of C. cf. flagellaris were obtained from samples 

collected in glyphosate-treated plots at DLRS in 2014. Purple symptoms of CLB were observed 

in these plots, and three of six varieties treated with glyphosate showed significantly lower 

severities of the CLB purple symptom. At DLRS in 2016, there were higher DNA concentrations 

but lower disease severities for glyphosate-treated plants compared to 2014. In 2016, three of six 

varieties again showed lower disease severity in treated plants.  
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The disease assessment results demonstrated that glyphosate reduced CLB purple 

symptom severity in some varieties during the only two seasons that disease symptoms occurred 

(2014 and 2016 at DLRS). These results failed to support a link between biomass of the fungus 

and disease severity found by Chanda et al (2014). The results were similar to the reported 

reduced severity for soybean rust in glyphosate treated plants (Feng, et al. 2005). 

 

The residual activity of glyphosate in soil and soybean foliage may not be sufficient to 

have a direct effect on the development of symptoms of CLB. Instead, glyphosate has been 

suggested to affect disease development by its effects on nutrient uptake and disease resistance. 

If cercosporin production depends on Zn concentration, then glyphosate could indirectly 

influence the development of CLB symptoms by enhancing the conditions for toxin production. 

However, disease severity was reduced rather than increased following glyphosate application 

while fungal biomass was increased in the leaves. The reasons for these contradictory results are 

unclear, but the study results did not produce evidence that glyphosate will increase CLB 

severity in GR soybean. 

 

Cercospora leaf blight is a complex disease. Cercospora will infect soybean and develop 

endophytically (Cai & Schneider, 2008; Costa-Silva, et al. 2010; Douanla-Meli, et al. 2013; 

Soares, et al. 2015), and disease expression is erratic. The results suggest that glyphosate 

enhances endophytic colonization in GR soybean. However, some effects on nutrient uptake 

separately affect the CLB resistance response and symptom development. 

 

4.3 Overall Conclusions 
 

 Glyphosate affected nutrient uptake in GR soybean. Differences in nutrient uptake 

between glyphosate treated and nontreated plants were similar across GR soybean genotypes but 

variable by location and year. 

 

Glyphosate application consistently increased fungal biomass in treated GR soybean 

plants across varieties and locations. However, the purple symptom of CLB was unrelated to the 

concentration of DNA found in leaves in contrast to earlier research (Chanda, et al. 2014) that 
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associated higher concentrations of DNA of C. cf. flagellaris with more severe CLB blight 

symptoms. The application of glyphosate to GR soybean increased endophytic colonization by 

the fungus, but treatment either decreased or had no effect on CLB severity.  

 

 Glyphosate significantly affected concentrations of Fe and Mn, two minor elements 

involved in the CLB disease cycle, but not in a consistent manner. Glyphosate consistently 

increased Zn uptake, and the increased availability of Zn could have a direct effect on the 

replication of CTB8 and cercosporin production. However, disease severity was decreased in 

treated plants rather than increased.  

 

 The overall results suggest glyphosate has complex effects on the uptake of different 

nutrients involved in plant resistance, fungal colonization, and CLB development in GR soybean 

that are dependent on edaphic and environmental conditions.  
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6. APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1. Amplification of Albu et al (2016) isolate SA1019 (B) diluted at 0.1 

ng/µL compared to Chanda et al (2014) isolate DLL 6013-1B (A) diluted at 10 ng/µL with 

primers and probe developed using the latter isolate. Negative control (C) was the premix used in 

all other wells (iTaq/Taqman DNA polymerase, CKCTB6-2R/2F primers and CKCTB6-PRB, 

and nucleoside free water) and 1.0 µL nucleoside free water instead of template DNA. 
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Supplementary Table 1. Results from routine soil analyses at each location and year of the 

study. Values represent average nutrient concentrations in soil at the time of sampling 

(midseason). Data provided by Dr. Brenda Tubana. 

 

 

 

 

 

 

 

 

 

 

  

 
Ben Hur Research Station Dean Lee Research Station  Macon Ridge Research Station  

Nutrient 2014 2015 2016 2014 2015 2016 2014 2015 2016 

Al 0.06443 - - 0.06752 0.06738 0.06338 - 0.06098 - 

B 0.00016 - - 0.00047 0.00047 0.00005 - 0.00009 - 

Ca 0.19490 - - 0.19482 0.19409 0.42967 - 0.11244 - 

Cu 0.00019 - - 0.00019 0.00019 0.00030 - 0.00014 - 

Fe 0.04905 - - 0.05087 0.05059 0.04195 - 0.04770 - 

Mg 0.03357 - - 0.03377 0.03362 0.03129 - 0.01106 - 

Mn 0.00647 - - 0.00654 0.00650 0.00663 - 0.04204 - 

N 0.14821 - - 0.15063 0.15055 0.11946 - 0.13906 - 

P 0.00713 - - 0.00712 0.00705 0.00574 - 0.00194 - 

K 0.01465 - - 0.01552 0.01552 0.02096 - 0.00774 - 

Na 0.00638 - - 0.00550 0.00542 0.00480 - 0.00201 - 

Zn 0.00018 - - 0.00017 0.00017 0.00021 - 0.00016 - 
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