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ABSTRACT 

 

 Soybean (Glycine max) is one of the most important oilseed crops in the world.  Taproot 

decline is a recently discovered disease caused by Xylaria sp., a novel species located within the 

Xylaria arbuscula aggregate.  Foliar symptoms include interveinal chlorosis and necrosis, and 

upon further investigation, there are often dead plants adjacent within the row.  Many other 

soybean diseases have similar foliar symptoms; therefore, more examination is usually required 

for proper identification.  Soybean debris from previous years is suspected to be the primary 

source of inoculum.  Plants may be infected at any point during the growing season, often 

resulting in premature death.  Precision planting, reduced tillage, and soybean monoculture may 

contribute to disease incidence and severity.  There is little knowledge of genetic resistance, 

fungicide efficacy, or cultural practices that may be useful in managing taproot decline.   

 In greenhouse trials we have identified susceptible, moderately susceptible, moderately 

resistant, and resistant soybean varieties for growers.  Limited field data appears to corroborate 

these results, and more research is needed.  To date, no promising seed treatments have been 

identified in the field.  However, a few promising in-furrow fungicide treatments have been 

identified in field trials.  Results from on-farm studies indicate that taproot decline causes 

significant yield loss.  Results from these projects will directly benefit Louisiana stakeholders by 

providing potential management options for taproot decline.  
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CHAPTER 1. INTRODUCTION 

Importance of Soybean  Soybean is one of the most important oilseed crops grown in 

over 70 countries (Hartman et al. 2015).  The United States (US) was the leading soybean 

producer in 2017, with Louisiana ranking 18th, producing 62.4 million bushels.  This is a value of 

over $654 million to the Louisiana economy (Quick Stats, USDA-NASS, 2017).  

Importance of Taproot Decline  Taproot decline (TRD) is a soybean disease caused by a 

previously undescribed species within the genus, Xylaria (Allen et al. 2017).  The disease caused 

yield losses of approximately 770,000 bushels in Louisiana in 2017, and is widespread in the 

southern US (Allen et al. 2018).  The disease has been identified in Alabama, Arkansas, 

Louisiana, Mississippi, and Tennessee (Figure 1.1) (Allen et al. 2017).  Some specialists believe 

TRD is found further north along the Mississippi River Valley, but that has yet to be officially 

verified (personal communication).  Anecdotal evidence indicates higher incidence and severity 

in soybean monoculture and reduced tillage systems. 

 

Figure 1.1.  States where taproot decline has been reported (gray). 
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Importance of Xylaria  Xylaria was first observed within soybean seed from Ethopia in 

1979 (Mengistu and Sinclair) and was one of many organisms isolated in that study.  The first 

report on soybean of our Xylaria sp. causing TRD was in March of 2017 by Allen et al.  The 

pathogen is most closely related to Xylaria striata, within the Xylaria arbuscula aggregate (Allen 

et al. 2017).  Xylaria spp. are generally considered saprophytes of wood and other plant parts 

(Allen et al. 2017); however, some species are known pathogens on apple and cherry trees 

(Rogers, 1984).  Some Xylaria spp. are endophytes, such as those inhabiting Pinus strobus 

needles in Nova Scotia (Richardson et al. 2014).  Other endophytes within this genus have been 

reported in peach pits and magnolia litter (Rogers et al. 2002).  

Symptoms, Signs, and Epidemiology  Symptoms of TRD are usually noticed during pod 

fill and include interveinal chlorosis and necrosis, which is usually indicative of a root or lower 

stem issue (Hartman et al. 2015).  The color of foliar symptoms may vary from yellow to orange 

with location and variety (Figure 1.2, Allen et al. 2017).  This foliar symptom may be mistaken 

Figure 1.2.  Soybean plants exhibiting symptoms of TRD. 
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for many other soybean diseases and maladies including sudden death syndrome (Fusarium 

virguliforme), root knot nematode (Meloidogyne incognita), red crown rot (Cylindrocladium 

crotalariae), stem canker (Diaporthe sp.), and fungicide toxicity (Hartman et al. 2015).  With the 

increase of reduced tillage and soybean monoculture, seed are often planted into stubble from the 

previous season.  Accurate planting systems and tractors with guidance place the seed in the 

same furrow year after year (Figure 1.3).  This puts the soybean seed in direct contact with 

colonized plant tissue from previous seasons.  In turn, infection can occur early in the growing 

season causing seedling and/or vegetative stage death.  Dead plants are often overlooked, and 

symptoms observed later in the season manifest around these focal points.  When infected plants 

are excised from the soil, roots are usually in contact with soybean debris colonized by Xylaria 

sp. from previous years.  Plants expressing symptoms of TRD can be linearly clustered within 

the row (Allen et al. 2017).  The characteristic symptom of TRD is a blackened taproot, where 

Xylaria sp. forms black stroma on the root surface (Figure 1.4).  Another sign of TRD is white, 

cottony mycelial growth within the pith near the crown, which is best observed when the stem is 

split longitudinally.  A sign of Xylaria sp. that is observed in affected fields during periods of 

A B 

C D 

Figure 1.3.  Soybean in a 

furrow contacting stubble from 

the previous year. 
Figure 1.4.  Characteristic symptoms of TRD:  

blackened taproot (A), white mycelia (B), and 

stromata (C and D). 
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high humidity are “dead man’s fingers”, or stromata, which are compact masses of mycelia that 

support fruiting bodies.  For many years, this disease was misidentified as black root rot, caused 

by Thielaviopsis basicola, and also was referred to as the “mystery disease” (Allen et al, 2017).   

Soybean producers need information concerning yield losses, varietal resistance, 

chemical control, and the effect of cultural practices on TRD.  Therefore, the objectives of this 

research project were:  to screen for varietal resistance in the greenhouse and in the field, to 

determine the efficacy of seed treatments and in-furrow fungicides, and to determine yield losses 

associated with TRD.   
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CHAPTER 2. RESPONSE OF SOYBEAN VARIETIES TO XYLARIA SP., 

CAUSAL AGENT OF TAPROOT DECLINE 

Pathogen Isolation Infected soybean plants were removed from a field near Winnsboro, 

LA, where taproot decline (TRD) was observed.  Isolation of Xylaria sp. was accomplished by 

removing the tops of the plants 7.5 cm above the crown, washing roots under running water for 

15 minutes, surface-sterilizing tap and lateral root sections with 1:10 sodium hypochlorite 

solution for 1 minute then rinsing in tap water for 15 seconds.  Under an EdgeGARD laminar 

flow hood (The Baker Company, Sanford, ME, USA), lateral roots were cut into 1 cm sections, 

placed into 1:10 solution of sodium hypochlorite for 45-75 seconds, and rinsed in sterile, distilled 

water for 1 minute.  Lateral root sections were then placed on potato dextrose agar (Cole-Parmer, 

Inc. Vernon Hills, IL, USA) amended with chloramphenicol (75 ppm) and streptomycin sulfate 

Figure 2.1.  Colony characteristics.  Surface sterilized 

roots plated (A), initial growth (B), 7 day old culture 

(C), and 14 day old culture (D). 
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(125 ppm).  Isolation from taproots was accomplished by splitting surfaced sterilized roots and 

lower stems with a sterilized scalpel and directly transferring white mycelial growth to PDA-CS 

under a laminar flow hood.  Plates were placed into an incubator set to deliver a 12 hour 

light:dark cycle at room temperature (21-24oC) for 7 days.  Colonies were initially white, but 

within about 14 days became grayish-black with black stroma on the underside.  Colonies were 

circular in form with a starburst pattern (Allen et al. 2017) (Figure 2.1). 

Inoculum Production  The same Xylaria sp. isolate (MSU_SB201401) that was used to 

confirm pathogenicity (Allen et al. 2017) was transferred (1 cm plugs) from PDA-CS to 

Erlenmeyer flasks containing sterilized (121°C, 25 min) soybean flour (3.75 g), corn meal (3.75 

g), sucrose (7.5 g), calcium carbonate (0.75 g), stir magnet, and 250 mL of distilled water 

(Walker and Boyette, 1985).  Liquid cultures were allowed to grow on the lab bench for 7 days 

in ambient lighting on a magnetic stirrer at approximately 21-24oC.  Japanese millet, 

Echinochloa esculenta, (Wax Seed Co., Amory, MS, USA) (2.3 kg) was placed into a Unicorn 

Manufacturing (Plano, TX, USA) vented (0.2 µm) autoclave bag (25x13x61 cm) with 1.9 L of 

water then autoclaved at 121oC for 60 minutes, allowed to cool 6-12 hours, then sterilized again.  

After cooling to less than 30°C, 50 ml of liquid Xylaria sp. culture was added to the millet.  

Millet-based cultures were allowed to colonize for 12-14 days at 21-24oC and thoroughly mixed 

by shaking every 4-5 days.  Infested millet was evenly spread (0.5 cm deep) on tables covered 

with Kraft paper (Uline, Pleasant Prairie, WI, USA) for 7-10 days under ambient lighting at 21-

24°C, with hand stirring every 2-3 days.  Inoculum was stored in a refrigerator (4oC) in large 

paper grocery bags (Uline, Pleasant Prairie, WI, USA) until use.  This method of inoculum 

production was used in all field and greenhouse studies. 
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Greenhouse Setup  Experiments were conducted in a greenhouse facility near 

Winnsboro, LA, at the LSU AgCenter Macon Ridge Research Station (MRRS).  Soybean seed 

were planted in Sunshine Professional Growing Mix #8 (Sun Gro Horticulture, Agawam, MA, 

USA) supplemented with Osmocote 14-14-14 slow release fertilizer (Everris NA, Inc., Dublin 

OH, USA) in 10 or 15 cm pots with a furrow pressed into the potting soil across the diameter of 

pots using a specialized steel tool.  Seeds were sown evenly across the furrow, 4 (variety 

screening) or 6 (inoculum concentration) per pot, and either inoculated or not, according to the 

treatment design.  Pots were placed on fiberglass, flood-irrigated tables and watered twice daily 

for 15 minutes at 8am and 8pm.  Soybean plants were grown under supplemental lighting 

(Welthink LED, Hangzhou, China) with a 12-h light:dark cycle.  Greenhouse temperatures 

ranged from 15.5 to 27oC, and experiments were conducted during the fall/winter months.    

Data Collection At 21 days after planting (DAP), emergence was counted, plants were 

removed from pots, roots washed of potting soil, and weighed. Roots and shoots were weighed 

separately by cutting the plants at the crown, weighing them, and placing them into paper bags to 

dry in a drying room for 7 days at 52oC prior to determining final root and shoot weights.   

Inoculum Concentration  Before determining varietal reaction to Xylaria sp., inoculum 

concentration was standardized.  Fifteen cm pots were filled with growth media, and furrows 

were created as previously described.  The pots were inoculated with 0, 1, 2, 4, 6, 8, or 10 cc/15 

cm furrow of inoculum prepared as previously described.  Pots were placed on flood-irrigated 

fiberglass tables, and plants were grown under the previously described conditions.  Plants were 

harvested at 21 DAP, and emergence, root weights, and shoot weights were obtained as 

previously described.  The experiment was repeated three times in a randomized complete block 

design with 4 replications using a known susceptible soybean variety, AsGrow 4632.  Data were 
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subjected to ANOVA (JMP Pro 14, SAS, Cary, NC, USA).  Means were compared to the non-

treated control using Dunnett’s post hoc. 

Varietal Response to Xylaria sp.  Seed of soybean varieties (n=147) (Table 2.1) were 

obtained from the 2016 Official Variety Trial (OVT) supply where entries are submitted by 

multiple seed companies for evaluation by LSU AgCenter scientists.  The varieties provided had 

seed treatments, however, no evidence has been provided that seed treatment affects TRD.  

Because of space and time constraints, 10 cm pots were used instead of 15 cm, and the inoculum 

amount was reduced to 0.67 cc/10 cm furrow.  Instead of six, four seed were planted in the same 

growth medium as previously described.  One experiment, or “run” consisted of 40 varieties, 

inoculated with corresponding non-inoculated controls and arranged in a randomized complete 

block design with four replicates.  Twenty-seven varieties were screened on the last run.  Each 

experiment was repeated once.  Data were subjected to analysis of variance using JMP Pro 14.  

Run and replication were considered random effects.  Variety and inoculation were considered 

fixed effects.  Significant effects for variety (P<0.0001) and inoculation (P<0.0001) were 

observed.  Based on non-significant run x variety interactions (P=0.4382), data were combined.  

Means for emergence, root, and shoot weight reduction were compared for individual varieties 

using a paired t-test (α=0.05).    
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Table 2.1.  List of seed companies and varieties, LSU AgCenter Official Variety Trials, 2016. 

University 

of Arkansas 

Progeny Ag 

Products 

 

Stratton Seed 

Bayer 

CropScience 

Dyna-Gro 

Seed 

 

Croplan 

Mycogen 

Seed 

Delta 

Grow Seed 

OSAGE P5555RY GS47R216 CZ 4540LL S49XT07 R2C4775 5N406R2 4880 RR 

R10-197RY P4788RY Go Soy 5515LL CZ 5515LL S43RY95 RX4825 5N414R2 5625 RR2 

UA 5612 P4900RY Schillinger 5220.RC CZ 5147LL S48RS53 RX4926 5N490R2 5230 RR2 

UA 5213C P5289RY Go Soy 4915R2 CZ 3841LL S52LL66  5N452R2 4825 RR2 

R10-230 P4211RY Go Soy 5214GTS CZ 4656RY S52RY77  5N424R2 4670RR2 

UA 5014C P4814LLS Go Soy 5115LL CZ 5242LL S57RY26  5N523R2 5067 LL 

UA 5414RR P4247LL Schillinger 557.RC CZ 4748LL S56RY84  5N480R2 4967 LL 

R07-6614RR P5414LLS GS45R216 CZ 4181RY S48XT56  5N433R2 4970 RR 

UA 5814HP P5226RYS Go Soy 49G16 CZ 3945LL S42RY77   4995 RR 

R09-430 P4757RY GS48R216 CZ 4222LL S49LL34   4790 RR2 

 P4930LL Go Soy 4714GTS CZ 4818LL S45XS66   5170 RR2 

 P4613RY Go Soy IREANE CZ 4959RY S47RY13   4587 LL 

 P4588RY Go Soy 4913LL CZ 5445LL    5461 LL 

 P5752RY Go Soy LELAND CZ 4898RY    5520RR2 

   

CZ 5150LL 

   DGX4845

RR2 

   CZ 4590RY     

   CZ 4105LL     

   HBKLL4953     

   CZ 5375RY     

   CZ 4044LL     

   CZ 5225LL     

(table cont’d)   CZ 3991RY     
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Terral 

Seed 

Asgrow-

Monsanto 

Armor 

Seed 

University 

of Missouri 

 

Syngenta 

DuPont 

Pioneer 

51A56 AG 44X6 47-R70 S12-2418 S39-T3 P41T33R 

57R21 AG 55X7 49-D90 S12-3782 S47-K5 P47T36R 

56R63 AG 45X6 49-D66 S12-3791 S39-C4 P54T94R 

49R94 AG 46X6 ARX4906 S11-17025 S55Q3 P47T89R 

49A75 AG 46X7 47-D17 S11-20124 S45W9  

47R34 AG 48X7 ARX4706 S12-4718 S42-P6  

52A95 AG 47X6 46-D08    

48A76 AG 49X6 48-D24    

48L63 AG 54X6 48-D80    

49L49 AG 53X6 55-R68    

47016R AG59X7 ARX5506    

48A26  50-D04    

45A46      

      

      

 

Field Confirmation  For the field screening project, the seed source is as previously 

described.  In May of 2016, 32 varieties chosen at random were planted at MRRS in Winnsboro, 

LA.  In May 2017 and 2018, 16 susceptible and 16 resistant varieties, based on preliminary 

greenhouse data, were planted at MRRS in Winnsboro.  Agronomic milestones are identified in 

Table 2.2.  All field trials were planted in a randomized complete block design with 4 

replications.  Plots consisted of 2 rows, 20 ft in length, with one row inoculated (2cc/row ft).  

Parameters measured include:  emergence, taproot decline incidence (%), mortality (%), plant 

height (in), and yield (bu/a).  Data were subjected to analysis of variance using JMP Pro 14 

(SAS, Cary, NC, USA).  Overall analysis indicated differences among varieties for all measured 

parameters.  Therefore, means for individual varieties were compared using a paired t-test 

(α=0.05).  

Table 2.2.  Agronomic milestones for field confirmation locations during 2016-2018 at MRRS 

near Winnsboro, Louisiana.     
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Location 

Planting 

Date 

 

Soil Type 

 

Rainfall (inches) 

 

Harvest Date 

Winnsboro, 

LA 

April 26, 

2016 

Gigger-Gilbert silt 

loam 

20.49 October 6, 2016 

Winnsboro, 

LA 

May 17, 

2017 

Gigger-Gilbert silt 

loam 

19.07 October 6, 2017 

Winnsboro, 

LA 

May 22, 

2018 

Gigger-Gilbert silt 

loam 

16.21 Failed 

 

Inoculum Concentration Results  Results from the four experiments were combined 

based on non-significant experiment x treatment interactions (P=0.6951).  At 1 cc of 

inoculum/15 cm furrow, there was no significant emergence reduction, with a mean of 4.06 

plants/pot compared to 5.13 plants/pot in non-treated pots (P=0.1121); however, there were 

significant (P<0.0001) reductions in emergence from 3.38 to 1.25 plants/pot at 2 to 10 cc 

inoculum/15 cm furrow, respectively (Figure 2.2).  At 1 cc inoculum/15 cm furrow, there was a 

significant (P=<0.0001) 39.0 % shoot weight reduction.  Plants inoculated at rates of 2 to 8 cc 

inoculum/15 cm furrow also had significant (P=<0.0001) 54.6-59.7 % shoot weight reductions, 

while a 74.8 % reduction occurred at the 10 cc/15 cm furrow rate (Figure 2.3).  Root weights 

were significantly reduced by 56.9 % at 1 cc, 68.2-76.9 % at 2 to 8 cc/15 cm furrow, and 87.3 % 

at 10 cc/15 cm furrow (P=<0.0001) (Figure 2.4).  Based on these data, we decided to use 1 cc/15 

cm furrow for variety screening.  We did not want significantly reduced emergence; however, we 

needed significant root and shoot weight reduction to challenge varieties and have enough 

remaining measurable tissue.  
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Figure 2.2.  Emergence (No. plants/pot) 21 days after inoculation with Xylaria sp. at 1, 2, 4, 6, 8, 

or 10 cc/15 cm furrow of colonized Japanese millet.   

*Denotes statistical difference according to Dunnett’s means comparison to the non-inoculated 

control (P=0.05).  Error bars represent the standard error of the mean. 
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Figure 2.3  % Shoot wt. reduction (dry) 21 days after inoculation with Xylaria sp. at 1, 2, 4, 6, 8, 

or 10 cc/15 cm furrow of colonized Japanese millet.   

*Denotes statistical difference according to Dunnett’s means comparison to the non-inoculated 

control (P=0.05).  Error bars represent the standard error of the mean. 
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Figure 2.4.  % Root wt. reduction (dry) 21 days after inoculation with Xylaria sp. at 1, 2, 4, 6, 8, 

or 10 cc/15 cm furrow of colonized Japanese millet.   

*Denotes statistical difference according to Dunnett’s means comparison to the non-inoculated 

control (P=0.05).  Error bars represent the standard error of the mean. 

Variety Screening Results  There were significant reductions in emergence, root dry 

weight, and shoot dry weight.  Seed germination percentage, seed treatments, and fungicide 

efficacy were unknown factors.  Shoot weight is a function of root weight, and taproot decline 

initially affects the roots; therefore, root dry weight was the most reliable parameter used to 

determine the degree of susceptibility.  Based on paired t-tests, there were significant reductions 

in root dry weight in 97 varieties ranging from 48 to 85% (Table 2.3).  Varieties (n=97) with root 

weight reductions of >48% were considered susceptible (Table 2.3).  Varieties (n=25) with a 

reduction ranging from 36-48% were considered moderately susceptible (Table 2.4), varieties 

(n=16) ranging from 24-36% reduction were considered moderately resistant (Table 2.5), and 
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varieties (n=7) with <24% were considered resistant (Table 2.6).  Means of the susceptible and 

resistant varieties were 61 and 19 % root weight reduction, respectively (Table 2.3, Table 2.6). 

Table 2.3.  Commercial soybean varieties from the 2016 LSU AgCenter OVT considered 

susceptible to Xylaria sp. as determined by artificial inoculation in the greenhouse. 

 

Variety 

% Root Wt. 

Reduction 

 

Variety 

% Root Wt. 

Reduction 

S52LL66 85 UA 5414RR 60 

5461 LL 84 4790 RR2 60 

CZ4540LL 82 S39-C4 59 

AG 44X6 78 P47T36R 59 

DGX4845RR2 78 Rev 48A26 59 

AG 47X6 77 GS47R216 59 

GS45R216 76 Go Soy 5515LL 58 

CZ 4898RY 74 S45W9 58 

REV 47R34 73 UA 5814HP 57 

S12-3782 73 CZ 3841LL 57 

P5414LLS 72 Armor 50-D04 57 

5170 RR2 72 Go Soy 5214GTS 57 

CZ 5445LL 71 R09-430 57 

Rev 48L63 71 5N452R2 56 

Armor 47-R70 70 4670RR2 56 

S12-4718 70 CZ 3991RY 54 

CZ 5242LL 70 S12-3791 54 

P4613RY 69 AG 53X6 54 

S56RY84 69 REV 52A95 54 

CZ 5150LL 69 R10-197RY 54 

5N523R2 68 AG59X7 54 

P4757RY 68 S42-P6 53 

(table cont’d) 
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Variety 

% Root Wt. 

Reduction 

 

Variety 

% Root Wt. 

Reduction 

Armor 49-D66 67 P4211RY 53 

Go Soy LELAND 67 CZ 4748LL 52 

Armor 49-D90 66 UA 5014C 52 

5N424R2 66 S48RS53 52 

P4247LL 66 Schillinger 5220.RC 52 

Schillinger 557.RC 66 Armor 47-D17 51 

Go Soy 4913LL 66 CZ 3945LL 51 

4825 RR2 65 P5289RY 51 

CZ 5147LL 65 AG 46X7 51 

Go Soy 4714GTS 65 4970 RR 51 

ARX5506 65 Go Soy 4915R2 51 

P47T89R 65 5N414R2 51 

S39-T3 64 Go Soy 49G16 50 

ARX4706 64 CZ 4959RY 49 

R10-230 64 5230 RR2 49 

P4900RY 64 P5555RY 49 

S48XT56 62 S45XS66 49 

S57RY26 62 S11-20124 49 

CZ 4656RY 62 CZ 4181RY 49 

Rev 45A46 61 AG 54X6 49 

P5226RYS 61 Rev 48A76 48 

CZ 5515LL 61 AG 55X7 48 

4587 LL 61 P4930LL 48 

AG 49X6 61 S55Q3 48 

CZ 4590RY 61 5520RR2 48 

UA 5213C 61 CZ 4044LL 48 

REV 49A75 61 MEAN 61 
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Table 2.4.  Commercial soybean varieties from the 2016 LSU AgCenter OVT considered 

moderately susceptible to Xylaria sp. as determined by artificial inoculation in the greenhouse. 

 

Variety 

% Root Wt. 

Reduction 

 

Variety 

% Root Wt. 

Reduction 

P4588RY 48 S11-17025 44 

5N406R2 47 P41T33R 42 

5N480R2 47 Rev 51A56 41 

S43RY95 46 S52RY77 41 

Rev 49L49 46 S12-2418 40 

Rev 49R94 46 P54T94R 40 

Rev 56R63 46 S49LL34 39 

Armor 48-D80 45 CZ 4222LL 38 

Go Soy 5115LL 44 Rev 57R21 37 

Armor 48-D24 44 GS48R216 37 

Armor 46-D80 44 CZ 4105LL 37 

S47-K5 44 P4814LLS 37 

4967 LL 44 MEAN 43 

Table 2.5.  Commercial soybean varieties from 2016 LSU AgCenter OVT considered 

moderately resistant to Xylaria sp. as determined by artificial inoculation in the greenhouse. 

 

Variety 

% Root Wt. 

Reduction 

 

Variety 

% Root Wt. 

Reduction 

S49XT07 35 CZ 5225LL 29 

5625 RR2 35 P5725RY 28 

S47RY13 35 4880 RR 28 

AG 46X6 35 HBKLL4953 27 

P4788RY 32 CZ 5375RY 26 

AG 48X7 31 47016R 26 

4995 RR 31 Armor 55-R68 25 

Go Soy IREANE 31 MEAN 30 

ARX4906 30   
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Table 2.6.  Commercial soybean varieties from 2016 LSU AgCenter OVT considered resistant 

to Xylaria sp. as determined by artificial inoculation in the greenhouse. 

 

Variety 

% Root Wt. 

Reduction 

R07-6614RR 23 

5067 LL 23 

5N433R2 22 

S42RY77 21 

5N490R2 19 

CZ 4818LL 19 

OSAGE 8 

MEAN 19 

  

Field Confirmation Results  During 2016, stands were numerically lower on all 

inoculated rows with the exceptions of CZ5225LL (moderately resistant in greenhouse tests) and 

REV57R21 (moderately susceptible in greenhouse tests), and significant (α=0.05) reductions in 

stand occurred with 7 of 32 varieties (Table 2.7).  The average stand reduction was 10.92 

plants/20 ft.  In the 8 varieties with significant differences in stand, the inoculated row averaged 

67.46 plants/20 row ft and the non-inoculated row averaged 86.29 plants/20 row ft.  In the 24 

varieties with no significant differences the inoculated averaged 75.54 plants/20 row ft and the 

non-inoculated averaged 83.98 plants/row ft.  Taproot decline incidence was increased in all 

inoculated rows except ARX5506 (susceptible in greenhouse tests) and was significantly higher 

in 20 of 32 varieties (Table 2.8) with an average of 8.70 % incidence.  Mortality due to TRD was 

increased in all varieties except P4588RY and UA5814HP, with statistically significant increases 

in 4 of 32 varieties (Table 2.8) with an average increase in mortality of 1.05 % with inoculation.  

Plant height was lower in all inoculated varieties except S12-4718 and S48XT56, with 
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significant height reduction in 9 out of 32 varieties (Table 2.9) and an average reduction of 2.74 

inches.  In the 9 varieties with a significant difference among heights, the inoculated plots 

averaged 31.61 in and the non-inoculated plots average height was 33.11 in.  In the 23 varieties 

with no significant differences, average height in the inoculated plots was 35.94 in and non-

inoculated average height was 37.9 in.  Yields from MRRS during 2016 were numerically lower 

in all inoculated plots (Table 2.9).  According to paired t-tests for each variety, yield in 7 of 32 

varieties was significantly reduced by inoculation at MRRS during 2016 (Table 2.9).  In the 8 

varieties with significant yield differences, the inoculated plots averaged 10.26 bu/a and the non-

inoculated plots average yield was 27.84 bu/a.  In the 24 varieties without significant differences, 

the average yield was 16.18 bu/a in the inoculated plots and 25.49 bu/a in the non-inoculated 

plots. 

Table 2.7.  Stand (No. plants/20 row ft) of 32 varieties either inoculated (2cc/row ft) or not with 

Japanese millet infested with Xylaria sp. at planting in 2016 near Winnsboro, LA.   

Variety 

2016 Stand 

(Inoculated) 

2016 Stand 

(Non-inoculated) P-Value 

4587 LL 52.25 81.75 0.0011 

4970 RR 90.75 92.25 0.8043 

5461 LL 78.50 87.25 0.5081 

5N490R2 83.75 93.50 0.3573 

Armor 46-D08 85.25 101.00 0.2111 

Armor 47-R70 77.25 85.75 0.0245 

ARX4906 85.75 89.50 0.6392 

ARX5506 70.25 83.25 0.0336 

CZ 5150LL 67.00 83.00 0.1535 

CZ 5225LL 78.00 72.00 0.1612 

CZ 5445LL 81.25 93.25 0.1449 

Go Soy 5115LL 31.75 44.75 0.1261 

Go Soy IREANE 81.00 93.50 0.0893 

GS45R216 28.00 35.25 0.4422 

P4588RY 90.50 98.75 0.1152 

P47T89R 70.25 93.50 0.0207 

(table cont’d)    
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Variety 

2016 Stand 

(Inoculated) 

2016 Stand 

(Non-inoculated) P-Value 

P4930LL 59.00 76.00 0.0346 

P5289RY 75.75 79.00 0.6562 

P5555RY 75.00 88.00 0.1638 

R09-430 71.75 73.50 0.5436 

R10-230 70.75 91.25 0.0514 

Rev 48A26 92.75 97.00 0.4762 

Rev 48A76 77.75 89.75 0.1474 

REV 57R21 90.50 90.00 0.9335 

S12-4718 55.67 79.00 0.1544 

S47-K5 83.75 98.75 0.0590 

S48XT56 78.75 82.75 0.5363 

S52LL66 86.50 89.75 0.7488 

S57RY26 68.25 86.50 0.0049 

Schillinger 5220.RC 75.00 97.25 0.0122 

UA 5414RR 67.25 70.75 0.2890 

UA 5814HP 80.75 86.00 0.4852 

MEAN 73.77 84.48 -- 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05). 

Table 2.8.  Incidence (%) and mortality (%) (No. plants/20 row ft) of 32 soybean varieties either 

inoculated or not with sterilized Japanese millet infested with Xylaria sp. in 2016 near 

Winnsboro, LA.   

Variety 

TRD 

Incidence 

(Inoculated) 

TRD Incidence 

(Non-

Inoculated) 

 

P-

Value 

Mortality 

(Inoculated) 

Mortality 

(Non-

inoculated) 

 

P-

Value 

4587 LL 7.50 1.75 0.0012 3.00 0.00 0.0349 

4970 RR 21.25 4.50 0.0109 3.75 0.25 0.0689 

5461 LL 15.50 2.00 0.0158 0.75 0.50 0.7888 

5N490R2 14.75 1.50 0.0368 2.00 0.00 0.1162 

Armor 46-

D08 14.00 3.00 

 

0.0029 1.50 0.00 

 

0.1027 

Armor 47-

R70 17.25 4.75 

 

0.0586 1.00 0.25 

 

0.3189 

ARX4906 16.75 4.50 0.0005 2.50 0.25 0.1354 

ARX5506 7.75 9.50 0.7210 1.00 0.50 0.4950 

CZ 5150LL 10.00 9.00 0.8498 1.25 0.75 0.1817 

CZ 5225LL 13.25 4.25 0.0107 1.00 0.50 0.3910 

CZ 5445LL 10.00 5.00 0.3140 1.75 0.00 0.2126 

(table cont’d)      
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Variety 

TRD 

Incidence 

(Inoculated) 

TRD Incidence 

(Non-

Inoculated) 

P-

Value 

Mortality 

(Inoculated) 

Mortality 

(Non-

inoculated) 

 

P-

Value 

Go Soy 

5115LL 4.50 2.25 

 

0.2545 0.75 0.25 

 

0.3910 

Go Soy 

IREANE 12.50 1.75 

 

0.0446 0.50 0.00 

 

0.1817 

GS45R216 6.00 2.00 0.0469 1.00 0.00 0.1817 

P4588RY 13.00 3.75 0.0761 0.00 0.50 0.3910 

P47T89R 10.50 5.50 0.1654 2.00 0.00 0.0163 

P4930LL 11.25 5.50 0.0556 1.00 0.50 0.1817 

P5289RY 12.75 4.50 0.0440 1.75 0.00 0.0060 

P5555RY 12.00 5.00 0.1253 0.25 0.00 0.3910 

R09-430 11.75 1.75 0.0004 0.75 0.25 0.1817 

R10-230 14.00 5.25 0.0238 0.50 0.00 0.1817 

Rev 48A26 18.50 3.25 0.0088 1.00 0.50 0.1817 

Rev 48A76 16.00 1.25 0.0479 1.25 0.00 0.0796 

REV 57R21 11.25 3.00 0.0380 1.50 0.25 0.2783 

S12-4718 7.00 3.50 0.2066 0.50 0.00 0.3910 

S47-K5 11.75 3.00 0.0622 0.75 0.25 0.4950 

S48XT56 8.50 4.25 0.2200 0.75 0.25 0.3910 

S52LL66 14.00 3.00 0.0098 0.25 0.25 1.0000 

S57RY26 10.50 0.75 0.0178 1.25 0.00 0.1942 

Schillinger 

5220.RC 11.75 3.00 

 

0.0263 2.50 0.00 

 

0.0154 

UA 5414RR 13.75 2.50 0.0204 1.25 0.00 0.0796 

UA 5814HP 13.25 1.25 0.0052 0.25 0.50 0.3910 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05). 

Table 2.9.  Height (inches) and yield (bu/A) of 32 soybean varieties either inoculated or not with 

Xylaria sp. in 2016 near Winnsboro, LA.   

Variety 

Height 

(Inoculated) 

Height (Non-

inoculated) 

P-

value 

Yield  

(Inoculated) 

Yield (Non-

Inoculated) 

P-

value 

4587 LL 29.70 36.00 0.0006 10.77 29.67 0.0196 

4970 RR 38.60 40.15 0.2339 16.73 30.70 0.0818 

5461 LL 38.63 38.88 0.7053 18.58 37.20 0.1161 

5N490R2 35.75 38.53 0.1213 12.94 27.17 0.0708 

Armor 46-

D08 32.53 35.73 

 

0.0172 11.19 27.88 

 

0.0635 

(table cont’d)       
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Variety 

Height 

(Inoculated) 

Height (Non-

inoculated) 

P-

value 

Yield 

(Inoculated) 

Yield (Non-

Inoculated) 

P-

value 

Armor 47-

R70 34.85 37.45 

 

0.0332 7.88 28.35 

 

0.0236 

ARX4906 33.43 37.73 0.0109 19.60 34.22 0.0653 

ARX5506 33.60 36.20 0.1822 15.59 18.46 0.6739 

CZ 5150LL 35.50 37.38 0.3068 19.45 25.39 0.2666 

CZ 5225LL 31.70 33.53 0.3099 18.70 25.07 0.2878 

CZ 5445LL 37.73 38.40 0.3484 21.33 26.66 0.5538 

Go Soy 

5115LL 25.60 33.33 

 

0.0017 10.09 26.41 

 

0.0842 

Go Soy 

IREANE 39.40 42.10 

 

0.1496 13.59 16.19 

 

0.6714 

GS48R216 28.25 33.43 0.0823 9.89 31.18 0.0020 

P4588RY 38.63 40.23 0.2113 7.36 25.20 0.0319 

P47T89R 30.58 33.70 0.0123 13.15 30.19 0.0882 

P4930LL 28.95 34.00 0.1239 9.93 21.08 0.1058 

P5289RY 33.15 35.18 0.0524 13.66 21.98 0.0807 

P5555RY 32.73 36.90 0.0413 19.41 19.54 0.9311 

R09-430 39.25 40.10 0.3321 20.36 31.44 0.1231 

R10-230 33.48 38.10 0.0407 20.25 26.57 0.3596 

Rev 48A26 36.73 37.70 0.1237 11.53 23.99 0.1457 

Rev 48A76 33.68 37.98 0.1009 13.75 31.68 0.0254 

REV 57R21 35.95 37.10 0.3792 15.78 32.54 0.0976 

S12-4718 32.50 31.18 0.9037 26.30 26.82 0.9605 

S47-K5 41.55 42.25 0.5986 16.09 26.05 0.3886 

S48XT56 38.23 37.58 0.7462 12.99 16.88 0.3462 

S52LL66 34.73 38.10 0.0648 11.33 23.56 0.0486 

S57RY26 42.35 43.45 0.5490 19.58 27.36 0.3139 

Schillinger 

5220.RC 31.55 36.08 

 

0.0080 10.82 25.22 

 

0.0153 

UA 5414RR 35.45 38.98 0.0761 16.45 17.39 0.5646 

UA 5814HP 36.23 39.28 0.0503 11.22 20.01 0.2391 

MEAN 34.72 37.40 -- 14.88 26.00 -- 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05). 

During 2017 at MRRS, stand was lower in all inoculated rows except those of CZ 

5225LL and REV 57R21, with statistically significant reductions in 16 of 32 varieties (Table 

2.10).  The average stand reduction was 17.8 plants/20 row ft.  Incidence of TRD was 
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numerically higher in 23 varieties, significantly in one, AG54X6 (Table 2.11) with an average of 

1.18 % incidence.  Mortality due to TRD was numerically higher in 20 of 32 varieties (Table 

2.11) with an average increase in mortality of 0.46 % with inoculation.  Plant height was reduced 

in all inoculated rows except for four varieties, Armor 49-D66, ARX5506, CZ5242LL, and 

DGX4845RR2 (Table 2.12).  Significant reductions in plant height occurred in 6 of 32 varieties 

(Table 2.12) with an average reduction of 2.64 inches.  Inoculation with the TRD pathogen 

reduced yield in all varieties, significantly in 14 of the 32 varieties (Table 2.12).   

Table 2.10.  Stand (No. plants/20 row ft) of 32 varieties either inoculated (2 cc/row ft) or not 

with Japanese millet infested with Xylaria sp. at planting in 2017 near Winnsboro, LA.   

Variety 

Stand 

(Inoculated) 

Stand (Non-

Inoculated) 

P-

value 

4880RR 55.25 66.33 0.0447 

4995RR 50.67 73.50 0.0323 

5067LL 48.75 63.00 0.0556 

5170 RR2 47.00 62.50 0.2952 

5461 LL 60.00 66.00 0.6900 

5N433R2 54.25 72.00 0.1243 

AG 46X7 58.67 75.67 0.1638 

AG46X6 61.75 74.75 0.0045 

AG53X6 49.00 69.50 0.0324 

AG54X6 57.50 69.00 0.1487 

Armor 49-D66 64.67 77.67 0.2716 

Armor 49-D90 41.33 62.75 0.0108 

ARX5506 54.00 72.00 0.1204 

CZ 4818LL 60.33 66.75 0.0474 

CZ 5147LL 42.25 91.00 0.1841 

CZ 5242LL 58.00 70.67 --- 

CZ 5375 RY 38.67 62.75 0.0692 

DGX4845RR2 53.25 70.00 0.2578 

Go Soy 4913LL 48.00 73.75 0.0585 

Go Soy 5214 

GTS 54.33 74.33 

 

0.4121 

Go Soy Irene 51.00 61.50 0.5359 

Go Soy Leland 49.00 62.25 0.0489 

(table cont’d)    
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Variety 

Stand 

(Inoculated) 

Stand (Non-

Inoculated) 

P-

value 

GS48R216 53.75 71.50 0.0156 

P5752 RY 30.00 56.67 0.0242 

R10-197RY 44.50 56.67 0.0189 

47016R 57.67 75.00 0.0291 

S12-3782 23.00 59.75 0.0024 

S45W9 70.00 76.75 0.2665 

S47RY13 43.33 67.00 0.0213 

S48RS53 47.75 65.75 0.0558 

S52LL66 56.50 73.33 0.0249 

S56RY84 48.33 63.50 0.0341 

MEAN 51.02 68.86 -- 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05). 

Table 2.11.  Incidence (%) and mortality (%) (No. plants/20 row ft) of 32 soybean varieties 

either inoculated (2cc/row ft) or not with sterilized Japanese millet infested with Xylaria sp. in 

2017 near Winnsboro, LA.   

Variety 

Incidence 

(Inoculated) 

Incidence 

(Non-

Inoculated) 

 

P-

value 

Mortality 

(Inoculated) 

Mortality 

(Non-

Inoculated) 

 

P-

value 

4880RR 2.50 1.33 0.2999 1.50 0.00 0.2697 

4995RR 2.67 1.75 0.1835 0.67 0.75 0.6667 

5067LL 1.25 1.75 0.6376 0.75 0.00 0.2152 

5170 RR2 2.00 1.50 0.5000 0.75 0.00 0.5000 

5461 LL 3.67 3.33 0.7592 2.00 1.33 0.7048 

5N433R2 2.50 2.50 1.0000 0.50 0.50 1.0000 

AG 46X7 0.33 1.33 0.2048 2.00 1.67 0.7952 

AG46X6 1.75 1.25 0.4950 1.25 0.50 0.5472 

AG53X6 2.67 1.75 0.4226 1.00 1.75 0.5471 

AG54X6 5.00 2.00 0.0099 1.25 1.33 0.8399 

Armor 49-D66 2.33 1.33 1.0000 1.33 1.00 0.5000 

Armor 49-D90 4.00 1.00 0.2254 1.33 1.00 0.1835 

ARX5506 3.33 4.33 0.7952 0.33 0.33 1.0000 

CZ 4818LL 5.67 2.75 0.3468 2.67 0.75 0.0742 

CZ 5147LL 3.00 2.00 0.2522 0.75 0.75 1.0000 

CZ 5242LL 0.00 0.00 . 1.00 0.25 0.5000 

CZ 5375 RY 1.67 2.50 0.4778 1.00 1.00 1.0000 

DGX4845RR2 2.75 0.33 0.2507 0.25 0.67 0.1835 

(table cont’d)       
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Variety 

Incidence 

(Inoculated) 

Incidence 

(Non-

Inoculated) 

 

P-

value 

Mortality 

(Inoculated) 

Mortality 

(Non-

Inoculated) 

 

P-

value 

Go Soy 

4913LL 1.50 2.75 

 

0.3416 0.50 1.25 

 

0.4444 

Go Soy 5214 

GTS 3.00 1.33 

 

0.6784 0.50 0.33 

 

0.4226 

Go Soy Irene 1.75 2.75 0.6301 0.50 0.25 0.3910 

Go Soy 

Leland 2.50 2.25 

 

0.5000 1.50 0.25 

 

0.5000 

GS48R216 6.00 3.50 0.3615 1.25 1.00 0.8088 

P5752 RY 3.00 2.33 0.6254 0.25 0.67 0.4226 

R10-197RY 2.75 1.33 0.3701 0.50 0.67 1.0000 

47016R 4.67 1.50 0.3624 2.33 0.25 0.2254 

S12-3782 1.67 1.50 0.6914 0.00 0.50 0.4226 

S45W9 2.50 2.00 0.7177 0.75 0.25 0.4950 

S47RY13 6.33 1.50 0.1994 1.33 0.00 0.4226 

S48RS53 5.75 1.00 0.1826 0.75 0.25 0.3910 

S52LL66 2.50 2.33 0.6349 0.75 0.33 0.7418 

S56RY84 3.75 5.00 0.5158 0.00 1.75 0.1328 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05). 

Table 2.12.  Height (inches) and yield (bu/A) of 32 soybean varieties either inoculated or not 

with sterilized Japanese millet infested with Xylaria sp. in 2017 near Winnsboro, LA.   

Variety 

Height 

(Inoculated) 

Height 

(Non-

Inoculated) 

 

P-

value 

Yield 

(Inoculated) 

Yield 

(Non-

Inoculated) 

 

P-

Value 

4880RR 32.83 34.44 0.6254 29.97 52.59 0.0937 

4995RR 24.33 32.25 0.0805 35.12 45.32 0.3744 

5067LL 34.83 37.33 0.0055 26.60 50.00 0.0557 

5170 RR2 34.58 36.25 0.0590 28.99 37.48 0.6354 

5461 LL 34.78 36.67 0.4532 25.06 41.94 0.2151 

5N433R2 35.92 36.83 0.7737 31.28 50.05 0.0352 

AG 46X7 32.78 35.11 0.1257 21.91 57.60 0.0231 

AG46X6 35.83 37.25 0.2942 27.12 51.53 0.0109 

AG53X6 23.25 29.00 0.1043 25.36 49.77 0.0442 

AG54X6 37.67 38.58 0.8859 21.70 46.54 0.1112 

Armor 49-D66 31.92 31.75 0.9423 30.38 39.15 0.6129 

Armor 49-D90 31.08 33.58 0.2475 26.74 51.25 0.0368 

ARX5506 37.25 37.08 0.9517 29.64 50.32 0.3981 

(table cont’d)      (table cont’d) 
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Variety 

Height 

(Inoculated) 

Height 

(Non-

Inoculated) 

 

P-

value 

Yield 

(Inoculated) 

Yield 

(Non-

Inoculated) 

 

P-

Value 

CZ 4818LL 37.33 38.25 0.4773 31.00 50.26 0.0885 

CZ 5147LL 22.25 25.00 0.2383 26.81 51.23 0.0161 

CZ 5242LL 34.25 34.33 0.9198 28.98 45.97 0.3135 

CZ 5375 RY 21.56 24.42 0.2526 24.17 54.50 0.0160 

DGX4845RR2 31.75 30.67 0.6595 33.66 41.37 0.8467 

Go Soy 

4913LL 35.50 40.17 

 

0.0354 29.77 54.59 

 

0.0295 

Go Soy 5214 

GTS 26.08 35.08 

 

0.1816 24.38 47.01 

 

0.1246 

Go Soy Irene 22.67 23.67 0.6247 30.12 50.65 0.0143 

Go Soy 

Leland 23.33 27.92 

 

0.1799 28.36 44.56 

 

0.0014 

GS48R216 29.75 33.08 0.0518 23.66 52.47 0.0132 

P5752 RY 28.25 31.78 0.8857 22.51 53.13 0.0771 

R10-197RY 24.92 26.22 0.3546 30.46 61.34 0.0556 

47016R 31.33 34.58 0.0190 29.53 50.97 0.0577 

S12-3782 34.00 37.58 0.1069 29.57 54.34 0.0106 

S45W9 27.83 28.25 0.8108 31.57 59.39 0.1061 

S47RY13 33.44 36.17 0.0110 20.36 55.34 0.0526 

S48RS53 31.67 38.08 0.0082 27.15 54.76 0.0048 

S52LL66 33.00 35.42 0.2191 28.34 43.09 0.2230 

S56RY84 29.92 32.25 0.2923 25.45 55.03 0.0392 

MEAN 30.81 33.41 -- 27.68 50.11 -- 

*Gray highlighting indicates statistically significant difference according to paired t-tests 

(α=0.05).   

Discussion  Data from the greenhouse screening indicated that the TRD inoculum was 

effective and that soybean varieties varied in response to inoculation.  Because of the wide range 

of root weight reductions, it is likely that commercial sources of TRD resistance exist, which 

could be a viable management option for producers.  Our screening indicates 23 resistant or 

moderately resistant varieties that may be available to producers with a history of TRD on their 

farm.  At the time of the screening, each of the varieties were commercially available; however, 

since soybean varieties are replaced so quickly, regular screening of varieties is needed to keep 

up with the marketplace.  Seed treatments were unknown, likely varied among companies, and 
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could have been a source of variation; however, in other ongoing studies, no promising seed 

treatments have been identified to date.  Therefore, seed treatments likely had minimal effect. 

Field confirmation of greenhouse results was important in this study because field- 

screening is less tedious, provides yield data, and is more representative of a real world situation.  

Based on field data, the inoculum appeared to be effective.  Even though not all reductions were 

significant, most varieties showed trends towards reduced stand, height, and yield and increased 

incidence and mortality in inoculated plots.  The ranges of reduced stands, heights, and yields in 

the field were greater in varieties that were deemed susceptible in the greenhouse than in 

varieties considered resistant or moderately resistant For the most part, varieties that had reduced 

stand, increased incidence and mortality, or reduced height and/or yield in the field were deemed 

susceptible in the greenhouse (Tables 2.13 & 2.14).   

Of the 32 random varieties tested in the field in 2016, 29 of them showed significant 

differences in measured parameters between inoculated and non-inoculated.  Only 1 of the 

varieties, 5N490R2, was described as resistant in the greenhouse.  Three varieties: ARX 4906, 

CZ 5225LL, and Go Soy Ireane were described as moderately resistant in the greenhouse.  We 

saw only an increased TRD incidence in the field for 5N490R2, CZ 5225LL, and Go Soy Ireane, 

which could be an indication that these cultivars have the ability to compensate for TRD 

infection.  In the case of ARX 4906, which was deemed resistant in the greenhouse, we observed 

a significant increase in incidence and a significant decrease in plant height in response to 

inoculation in the field.  There were no significant differences in other parameters, which may 

indicate that this variety also has the ability to compensate for stand loss and height reductions.  

The overwhelming majority (25 varieties) of field assessments agreed with greenhouse 

assessments during 2016.    
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Table 2.13.  Soybean varieties showing significant stand reductions, incidence and mortality 

increases, and/or height and yield reductions in the field along with corresponding greenhouse 

screening designation during 2016.   

 

 

Variety 

Significant 

Stand 

Reduction 

Significant 

Incidence 

Increase 

Significant 

Mortality 

Increase 

Significant 

Height 

Reduction 

Significant 

Yield 

Reduction 

 

Greenhouse 

Designation 

4587 LL X1 X X X X S2 

Schillinger 

5220.RC 

X X X X X S 

Armor 47-

R70 

X   X X S 

P47T89R X  X X  S 

S57RY26 X X    S 

ARX 4906  X  X  MR 

Armor 46-

D08 

 X  X  MS 

ARX 5506 X     S 

P4930LL X     S 

Go Soy 

5115LL 

   X  MS 

GS48R216  X   X S 

4970RR  X    S 

P5289RY  X X   S 

4970 RR  X    S 

R10-230  X  X  S 

Rev 

48A76 

 X   X S 

5461 LL  X    S 

5N490R2  X    R 

S52LL66  X   X S 

CZ 

5225LL 

 X    MR 

Go Soy 

Ireane 

 X    MR 

GS45R216  X    S 

R09-430  X    S 

R10-230  X    S 

Rev 

48A26 

 X    S 

UA 

5414RR 

 X    S 

(table cont’d)     (table cont’d) 
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Variety 

Significant 

Stand 

Reduction 

Significant 

Incidence 

Increase 

Significant 

Mortality 

Increase 

Significant 

Height 

Reduction 

Significant 

Yield 

Reduction 

 

Greenhouse 

Designation 

UA 

5414RR 

 X    S 

UA 

5814HP 

 X    S 

P4588RY     X MS 

P5555RY    X  S 
1“X” indicates significance according to paired t-tests (α=0.05) in the variety for the 

corresponding category.   

2S=Susceptible, MS=Moderately Susceptible, MR=Moderately Resistant, R=Resistant. 

 

In 2017, 24 varieties showed significance differences in at least one of the measured 

parameters when compared to the inoculated row.  Five varieties that were deemed resistant or 

moderately resistant in the greenhouse had significant stand reductions only when inoculated in 

the field, indicating a possible tolerance.  Two varieties classified as moderately resistant in the 

greenhouse, 47016R and S47RY13, had significant reductions in stand and height in the field.  

Even with the reduced stand and height, apparently these two varieties were able to compensate 

for Xylaria sp. infection.  A significant height reduction was observed in 5067LL in the field, 

even with the greenhouse MR designation, which is indicative of an inoculum response without 

symptoms.  Three varieties that were resistant or moderately resistant in the greenhouse had 

significantly lower yield in the field.  Perhaps Xylaria sp. can affect soybean yield without 

producing foliar symptoms.  During 2017, several problems were encountered at planting and 

throughout the season that introduced considerable variability, which may have confounded 

results.  Other factors that may have increased variability in field trials include: natural infection, 

less-than-optimal stands, herbicide damage, or environmental stresses.  Our greenhouse 

inoculum rate may be too high for the field, which may explain the response of greenhouse-
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determined resistant varieties.  More testing is needed to further confirm our greenhouse results 

in the field.   

Table 2.14.  Soybean varieties showing significant stand reductions, incidence and mortality 

increases, and/or height and yield reductions in the field along with corresponding greenhouse 

screening designation during 2017.   

 

 

Variety 

Significant 

Stand 

Reduction 

Significant 

Incidence 

Increase 

Significant 

Mortality 

Increase 

Significant 

Height 

Reduction 

Significant 

Yield 

Reduction 

 

Greenhouse 

Designation 

4880RR X1     MR2 

4995RR X   X  MR 

AG46X6 X    X MR 

AG53X6 X    X S 

Armor 49-

D90 

X    X S 

CZ 

4818LL 

X     R 

Go Soy 

Leland 

X    X S 

GS48R216 X    X MS 

P5752 RY X     MR 

R10-

197RY 

X     S 

47016R X   X  MR 

S12-3782 X    X S 

S47RY13 X   X  MR 

S48RS53 X   X X S 

S52LL66 X     S 

S56RY84 X    X S 

AG54X6  X    S 

5N433R2     X R 

5067LL    X  R 

AG 46X7     X S 

CZ 

5147LL 

    X S 

CZ 

5375RY 

    X MR 

Go Soy 

4913LL 

   X X S 

Go Soy 

Ireane 

    X MR 
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1“X” indicates significance in the variety for the corresponding category.   

2S=Susceptible, MS=Moderately Susceptible, MR=Moderately Resistant, R=Resistant. 

Although variable, there are strong indications that commercial sources of TRD 

resistance are available, and this knowledge base may provide producers with an important TRD 

management option.  Breeders also may use this information to begin breeding for TRD 

resistance in the future.  More variety evaluation and development should continue in the United 

States to keep up with a constantly evolving industry in the future.  
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CHAPTER 3. EFFECT OF SEED TREATMENT AND IN-FURROW FUNGICIDES ON 

TAPROOT DECLINE 

 Introduction  Questions often arise from growers, consultants, and industry regarding 

seed treatment or in-furrow fungicides for the reduction and control of TRD.  Fungicide seed 

treatments, consisting of a fungicide treatment directly on the seed could be a convenient and 

economical solution.  There are over 70 seed treatments and in-furrow fungicides available to 

producers containing over 15 modes of action and many more mixtures.  The most common of 

these modes of action are FRAC Codes 4, 11, and 12.  Since seed treatments are applied directly 

to the seed before planting, there is no added effort or time with this technology.  Seed 

treatments can be costly but can be used on a field-by-field basis if there is a history of seedling 

disease issues or if the area has been planted to soybeans for many years. In-furrow sprays are 

more complicated due to equipment, calibrations, and mixes, but, if effective, may be more 

efficacious than seed treatments and economically beneficial.  Seed treatments and in-furrow 

sprays have previously been shown to be beneficial in soybean (Gaspar et. al. 2016) (Guy et. al. 

1989) (Vosberg et. al. 2017). 

Seed Treatment/In-Furrow Fungicide Efficacy Trials  Seed treatment and in-furrow 

fungicide efficacy trials were conducted from 2016-2018 at MRRS, DREC, and UA, Rohwer 

(Table 1).  A TRD susceptible variety, AsGrow 4632, was either treated in the laboratory or had 

a fungicide applied in the furrow at planting (Table 3.2).  Plots consisted of 4 rows, 35 feet long 

with row 1 and 2 inoculated with 2cc/row ft infested Japanese millet as described in Chapter 2.   

These trials were conducted in a randomized complete block design with four replicates.  

Parameters measured included: emergence, incidence (%), mortality (%), plant height (inches), 

and yield (bu/a).  Data were subjected to analysis of variance using JMP Pro 14 (SAS, Cary, NC, 

USA).  Means were compared post hoc using Tukey’s Honest Significant Difference Test 
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(P=0.05).  Due to drought, misapplication of herbicides, excessive insect damage, and/or severe 

weather events, acceptable data was only achieved in four trials.   

Table 3.1.  Agronomic milestones for seed treatment and in-furrow fungicide field testing 

locations during 2016-2018 in Arkansas, Louisiana, and Mississippi. 

 

Location 

Planting 

Date 

 

Soil Type 

Rainfall 

(inches) 

 

Harvest Date 

UA, 

Rohwer 

June 13, 2017 Herbert silt loam 2.99 October 10, 2017 

UA, 

Rohwer 

May 4, 2018 Herbert silt loam 19.05 September 19, 

2018 

MRRS April 26, 

2016 

Gigger-Gilbert silt loam 20.49 September 2, 2016 

MRRS May 17, 2017 Gigger-Gilbert silt loam 19.07 September, 7, 

2017 

MRRS May 1, 2018 Gigger-Gilbert silt loam 16.21 September 10, 

2018 

DREC June 21, 2016 Bosket very fine sandy 

loam 

17.6 October 26,2016 

DREC June 29, 2017 Bosket very fine sandy 

loam 

18.41 November 16, 

2017 

DREC April 25, 

2018 

Bosket very fine sandy 

loam 

20.57 September 21, 

2018 

 

Table 3.2.  Treatments, rates, and mode of actions used in fungicide seed treatment and in-

furrow trials at the Macon Ridge Research Station, Delta Research and Extension Center and 

University of Arkansas, Rohwer during 2016-2018. 

 

Treatment 

 

Rate 

 Mode of 

Action 

 

Treatment Type3 

Non-treated     

Vibrance 0.16 FL OZ/Cwt SDHI ST 

Acquire 0.75 FL OZ/Cwt Group 4 ST 

Stamina 1.5 FL OZ/Cwt QOI ST 

Vortex 0.15 FL OZ/Cwt DMI ST 

Sercadis 4.4 FL OZ/A SDHI IF 

Ridomil 3.7 FL OZ/A Group 4 IF 

Headline 10.8 FL OZ/A QOI IF 

Topguard Terra 8 FL OZ/A DMI IF 

(table cont’d)     
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Treatment 

 

Rate 

 Mode of 

Action 

 

Treatment Type3 

Ilevo1 2 FL OZ/Cwt SDHI ST 

Mertect2 0.64 FL OZ/Cwt Group 1 ST 

Topsin2 20 FL OZ/A MBC IF 
1Ilevo was added for the 2017 season. 
2Mertect and Topsin were added for the 2018 season.   
3ST=seed treatment, IF=in-furrow 

 

Results  At the MRRS location in 2016, increased taproot decline incidence was observed 

in inoculated plots when compared with non-inoculated plots (Figure 3.1).  In inoculated and 

non-inoculated plots, no seed treatments or in-furrow applications resulted in significantly lower 

disease incidence when compared to the non-treated control.  In inoculated plots four treatments: 

Stamina (seed treatment), Ridomil, Headline, and Topguard Terra had significantly lower disease 

incidence when compared to seed treated with Acquire (Figure 3.1).  There were no significant 

differences in yields among treatments (data not shown). 
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Figure 3.1.  Effect of seed treatment and in-furrow fungicide application on soybean inoculated 

or non-inoculated with taproot decline of soybean, caused by Xylaria sp., in 2016 near 

Winnsboro, LA. 

At the Arkansas location during 2017, the only parameter measured by the cooperator 

was yield.  Overall, yields were significantly lower in inoculated plots (Figure 3.2).  Yields in 

inoculated treatments trended lower in all treatments except Headline. 

 

Figure 3.2.  Effect of seed treatment and in-furrow fungicide application on yield of soybean 

inoculated with Xylaria sp., in 2017 in Rohwer, AR. 

At the Arkansas location during 2018, data were not recorded for non-inoculated rows.  

Treatments with the highest stand counts included Stamina, Mertect, and Vortex with 140, 134, 

and 106 plants/20 row ft, respectively (Figure 3.3).  There was a significant reduction in stand 

with the in-furrow treatment of Topguard Terra.  There were no significant differences in yield 

among treatments (data not shown).     
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At the DREC location during 2018, there was significantly more yield preservation 

compared to all other treatments in inoculated plots treated with Ridomil, Headline, Topguard 

Terra and Topsin (Figure 3.4).  Sercadis applied in-furrow resulted in significantly more yield 

preservation than Vibrance, Vortex, and Illevo, but less than Headline, Topguard Terra, and 

Topsin (Figure 3.4).  

Figure 3.3.  Effect of seed treatment and in-furrow fungicide application on stand in soybean 

inoculated with Xylaria sp. in 2018 in Rohwer, AR.   
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Figure 3.4.  Effect of seed treatment and in-furrow spray on plots inoculated with Xylaria sp. in 

2018 in Stoneville, MS. 

Discussion  Data from these trials indicate that the evaluated fungicide seed treatments 

are not effective at reducing taproot decline incidence or preserving yield, with the exception of 

TRD incidence trending downward with Stamina at MRRS during 2016.  Interestingly, the in-

furrow treatments with Headline, which contains the same fungicide as Stamina, seemed to be 

somewhat effective in two locations, particularly DREC during 2018.  This could be indicative 

of more material delivered to the seed furrow with in-furrow applications compared to seed 

treatments.  Additionally, Ridomil, Topguard Terra, and Topsin represent three separate modes 

of action and seem to be effective at reducing TRD incidence while preserving yield.  Multiple, 

effective modes of action bode well for producer options in the marketplace and with resistance 

management.  More research is needed in this area to further evaluate fungicide seed treatment 

and in-furrow application efficacy on taproot decline.    
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CHAPTER 4. A SOYBEAN TAPROOT DECLINE YIELD LOSS ESTIMATE 

Introduction  Yield loss studies have never been conducted on soybean affected by 

taproot decline (TRD). There are many diseases that can cause yield losses in soybean. These 

include nematodes (multiple species), frogeye leaf spot (Cercospora sojina), Cercospora leaf 

blight (Cercospora spp.), seedling diseases (multiple species), and charcoal rot (Macrophomina 

phaseolina) (Allen et al. 2018).  Each year state specialists provide yield loss estimates for 

soybean diseases using methods including field surveys, plant disease diagnostic clinic samples, 

variety trials, questionnaires to Cooperative Extension staff, research plots, grower 

demonstrations, crop consultant reports, foliar fungicide trials, and sentinel plot data (Allen et al. 

2018).  Yield losses define disease importance, since the bottom line of profit and resulting 

economic sustainability are most important to producers.  

On-Farm Yield Loss Estimates  On farm yield loss studies were conducted from 2015-

2018.  Crop consultants and producers identified fields with histories of taproot decline or 

ongoing epidemics.  

Upon thorough 

diagnosis and 

confirmation of the 

presence of TRD in 

a given field, ten 

locations per field 

were arbitrarily 

flagged, and the 

total number of 
Figure 4.1.  Map of locations of on-farm yield loss studies conducted 

from 2015-2018 in 7 parishes in Louisiana. 
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plants, TRD incidence, and TRD mortality was determined on 10 row feet per location.  Prior to 

commercial harvest, plants were removed from the field, and yield was attained by threshing 

samples with a small plot combine (Kincaid, Haven, KS, USA).  Yields were converted to bu/A.  

Yield loss estimations were conducted at 14 locations throughout northeast Louisiana during 4 

years (Figure 4.1) (Table 4.1).  

Table 4.1.  Taproot decline on-farm yield loss trials and locations in northeast Louisiana during 

2015-2018. 

Location Name Parish Year Soil Type 

Bowie West Carroll 2016 Grenada-Calhoun silt loams complex 

E. Pond (MRRS) Franklin 2018 Gigger-Gilbert silt loams complex 

Evans Madison 2018 Sharkey clay 

Gilbert Franklin 2015 Sharkey clay 

Mound Madison 2017 Sharkey clay 

Oak Ridge Morehouse 2017 Sterlington-Hebert silt loams complex 

Rayville Richland 2016 Rilla-Hebert silt loams complex 

Tank East Carroll 2017 Tensas Silty Clay 

Truelove Madison 2016 Dundee silt loam 

Turtleback (MRRS) Franklin 2018 Gigger-Gilbert silt loams complex 

Vandeven Tensas 2017 Sharkey clay 

Vining Madison 2018 Tensas-Sharkey clays complex 

Williams Franklin 2018 Dundee silty clay loam 

Young Franklin 2017 Sharkey clay 

 

On Farm Yield Loss Estimation Results  There was a significant and positive (P=0.10) 

correlation between % incidence and % mortality at 9 of 14 locations (Table 4.2).  When 
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combining data over these nine locations, TRD incidence and mortality were significantly and 

positively correlated (r = 0.736115, P=<0.0001) (Figure 4.2).   

Table 4.2.  Correlation of taproot decline % incidence and % mortality (P=0.10) from 14 on-

farm locations in northeast Louisiana during 2015-2018. 

Location % Incidence % Mortality P Value r Value 

Bowie 35.8 20.2 NS -- 

Tank 10.2 7.5 <0.0001 0.9558 

Oak Ridge 25.3 16.8 <0.0001 0.9399 

Rayville 26.3 10.8 0.0135 0.6057 

Truelove 38.7 14.5 0.0389 0.6073 

Vining 4.3 5.0 0.0386 0.4800 

Evans 7.7 6.0 NS -- 

Mound 36.8 15.6 0.0010 0.7604 

Williams 3.5 16.6 0.0362 0.4413 

E. Pond (MRRS) 7.7 2.3 NS -- 

Turtleback (MRRS) 4.5 1.3 NS -- 

Gilbert 7.5 3.8 0.0002 0.8435 

Young 2.3 1.9 <0.0001 0.9089 

Vandeven 13.6 5.7 NS -- 
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Figure 4.2.  Relationship between soybean taproot decline incidence and plant mortality on 9 

locations throughout northeast Louisiana from 2015-2018.   

1Trend line equation=*% yield loss = 4.5310259 + 1.217929 * % incidence, r = 0.736115, 

P=<0.0001. 

There were 7 locations where % incidence and % yield loss were significantly and 

positively correlated (Table 3).  Over these seven locations, correlation of TRD incidence and 

yield loss due to TRD was significant and positive (r = 0.57205, P=<0.0001) (Figure 4.3). 

Table 4.3.  Correlation of taproot decline % incidence and % yield loss (P=0.10) from 14, on-

farm locations in northeast Louisiana during 2015-2018 

 

Location % Incidence % Yield Loss P Value r Value 

Bowie 35.8 25.4 0.0803 0.3337 

Tank 10.2 13.5 0.0247 0.4875 

Oak Ridge 25.3 15.9 NS -- 

(table cont’d)     
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Location % Incidence % Yield Loss P Value r Value 

Rayville 26.3 5.9 NS -- 

Truelove 38.7 23.4 0.0074 0.7905 

Vining 4.3 11.9 0.0086 0.6505 

Evans 7.7 43.0 NS -- 

Mound 36.8 10.4 0.0035 0.6756 

Williams 3.5 12.7 NS -- 

E. Pond (MRRS) 7.7 10.4 0.0256 0.4834 

Turtleback (MRRS) 4.5 12.8 NS -- 

Gilbert 7.5 10.5 0.0093 0.5914 

Young 2.3 2.0 NS -- 

Vandeven 13.6 4.7 NS -- 

 

 

Figure 4.3.  Relationship between soybean taproot decline incidence and yield loss over 7 

locations throughout northeast Louisiana from 2015-2018.   
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1Trend line equation=*% yield loss = 6.326572 + 0.429816 * % incidence, r = 0.57205, 

P=<0.0001. 

There also were 7 locations where % mortality and % yield loss were significantly and 

positively correlated (Table 4.4).  Over these seven locations, mortality and yield losses caused 

by TRD were significantly and positively correlated (r = 0.60330, P=<0.0001). 

Table 4.4.  Correlation of taproot decline % mortality and % yield loss (P=0.10) from 14, on-

farm locations in northeast Louisiana during 2015-2018. 

 

Location % Mortality % Yield Loss P Value r Value 

Bowie 20.2 25.4 NS -- 

Tank 7.5 13.5 0.0253 0.4846 

Oak Ridge 16.8 15.9 NS -- 

Rayville 10.8 5.9 0.0935 0.3497 

Truelove 14.5 23.4 0.0342 0.6254 

Vining 5.0 11.9 0.0583 0.4219 

Evans 6.0 43.0 NS -- 

Mound 15.6 10.4 0.0013 0.7463 

Williams 16.6 12.7 0.0027 0.6965 

E. Pond (MRRS) 2.3 10.4 NS -- 

Turtleback (MRRS) 1.3 12.8 NS -- 

Gilbert 3.8 10.5 0.0339 0.4494 

Young 1.9 2.0 NS -- 

Vandeven 5.7 4.7 NS -- 
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Figure 4.4.  Relationship between soybean taproot decline yield loss and plant mortality over 7 

locations throughout northeast Louisiana from 2015-2018. 

1Trend line equation=*% yield loss = 4.6470625 + 0.7250549 * % mortality, r = 0.60330, 

P=<0.0001. 

 Discussion  In the case of taproot decline, yield loss is assumed to be due to reduced 

photosynthesis, smaller plants and fewer pods, smaller seed and pod size, and total plant death, 

although loss mechanisms in leguminous crops are complicated and not yet fully understood 

(Yang et al. 1991).  In our estimations incidence is positively correlated with mortality indicating 

that taproot decline progresses throughout the season causing death at multiple crop stages.  

Increased incidence can cause yield loss even without mortality due to less photosynthesis, 

smaller seed size, fewer pods per plant, reduced plant height, less nodes, and lodging.  Increased 

mortality early during the growing season can result in lower than recommended plant 

populations affecting yield.  Mortality during late reproductive stages results in incomplete pod 

fill and complete to partial yield loss for a given plant.     
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As demonstrated in previous chapters, genetic resistance is superior to any other 

compensation to yield loss by TRD.  Taproot decline is an emerging and major issue in the 

southern United States.  According to Allen et al. 2019, 2 million bushels of soybean were lost to 

the disease in the southern US, and this number should be expected to grow as disease incidence 

increases.    
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CHAPTER 5. SUMMARY 

 Soybean is produced in 16 states in the Southern US. Of these 16 states, the causal agent 

of taproot decline (TRD), Xylaria sp., has been found in Alabama, Arkansas, Louisiana, 

Mississippi, and Tennessee.  It is believed that TRD reaches even farther north, however, this has 

not been confirmed.  Distribution and genetic characterization of the pathogen is ongoing within 

the LSU Department of Plant Pathology and in cooperation with scientists in other southern 

states.  In 2018, there were over 950 million bushels of soybean produced in the south.  

According to Allen et al. 2019, TRD accounted for over 2 million lost bushels of soybeans in 

Alabama, Arkansas, Louisiana, and Mississippi.  In the 5 states where TRD has been confirmed, 

it is among the top five yield-limiting soilborne diseases, and in Louisiana ranks among the top 3 

along with root-knot nematode and pod and stem blight. 

These studies have described an effective inoculum production method, a variety 

screening process, and resistant varieties for producers.  Although some of these varieties may 

not still be available, they can still be used in breeding programs as a basis for the next 

generation of TRD resistant soybeans.  These studies also indicate that greenhouse screening is a 

valid way to test varieties against TRD during the off-season. Within about 3 weeks it can be 

determined if a variety is resistant or susceptible to TRD.  Results from these studies also 

indicate that field inoculation and screening of soybean varieties is possible.  We have identified 

fungicides that have potential activity against TRD, which may offer an additional management 

option for producers.  Yield loss estimations have provided scientific evidence that TRD causes 

significant yield losses, which is important information for all stakeholders.  Research on variety 

response, fungicide efficacy, and yield losses should continue providing stakeholders with key 
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management information.  Other future research efforts should include the effect of management 

practices such as crop rotation and tillage and on TRD.   
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