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ABSTRACT 

 

Asian soybean rust, caused by Phakopsora pachyrhizi, is an emerging disease in the 

continental U. S. and resistant commercial varieties have not been reported. In an effort to 

understand the interactions during rust infection of soybean, protein profile changes were 

examined over a 14-day period in soybean leaves of one susceptible commercial line (Pioneer 

93M60) with or without soybean rust inoculation using proteomics in this study. Forty protein 

spots differentially expressed after rust inoculation were identified and fourteen of them were 

recovered and sequenced. These included proteins involved in plant defense, stress, metabolism, 

and other biological processes. During the time-course of rust infection, several proteins were 

significantly induced as early as 10 hai, such as pathogenesis-related protein 10 (PR10) and 

cytosolic glutamine synthetase. PR10 and chalcone isomerase 1 (CHI1), putative plant defense 

proteins, were further examined using quantitative real-time PCR (qRT-PCR). CHI1 transcript, 

the most abundant among three CHIs, was highly induced by soybean rust infection at 10 hai. 

Transcript level of PR10 was also significantly induced at 10 hai, 6 and 8 dai. We found two 

accessions (PI417089A and PI567104B) showed consistent immune response to a Louisiana 

soybean rust isolate using both detached leaf assay and greenhouse inoculation after screening of 

12 accessions. Fungal biomass, determined using qRT-PCR, increased significantly at 2 days 

after infection in susceptible lines, whereas no or little increase was detected in the resistant lines. 

Protein profiles of these two resistant and two susceptible lines (PI548631 and 93M60) were 

compared to find proteins involved in host resistance at the molecular level. Eight and 15 

proteins were identified as up-regulated spots at 1 day after rust infection in both resistant 

accessions after comparing to the susceptible lines, PI548631 and 93M60, separately. Sixteen 

spots were sequenced, and they belonged to plant defense, signaling, and photosynthesis. We 
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found that most up-regulated protein spots were identified as potential plant defense-related 

proteins in this study using proteomics and proteomics approach may be an effective means to 

identify novel proteins potentially involved in host resistance.  



 1 

CHAPTER 1 

INTRODUCTION 

 

1.1Justification 

Asian soybean rust (ASR), caused by an obligate parasite Phakopsora pachyrhizi, was 

first reported in Japan in 1902 and then in China in 1940. The pathogen spread to Africa in 1996 

South America in 2001 (Yorinori et al. 2005), and finally to the continental United States in 2004 

(Schneider et al. 2005). In the U.S., soybean rust was found in nine states in 2005, and it was 

reported in 16 states in 2009 (http://sbr.ipmpipe.org/). Further, recent studies indicated that P. 

pachyrhizi could survive the mild winter conditions in the southern U.S., and therefore, the 

pathogen poses a continuous threat to soybean production in the U.S. (Jurick II et al. 2008; Park 

et al. 2008).  P. pachyrhizi is a very aggressive foliar pathogen of soybean and causes yield 

losses up to 80% (Hartman et al. 2001; Yorinori et al. 2005). Currently, all U.S. commercial 

soybean cultivars are susceptible to the fungus, and the only method to control this disease is 

timely and costly application of fungicides. Hence, there is an urgent need to develop varieties 

that are resistant or tolerant to ASR to reduce its potential to cause yield losses in the U.S. In an 

effort to develop resistance to ASR, germplasm screening studies were conducted. Soybean 

accessions resistant to P. pachyrhizi isolates collected from different countries, such as India, 

Taiwan, Nigeria, Paraguay, Vietnam, and the U.S. were identified (Miles et al. 2008; Pham et al. 

2009; Twizeyimana et al. 2007). Four single dominant genes, Rpp1, Rpp2, Rpp3, and Rpp4, have 

been reported that confer resistance to specific isolates of P. pachyrhizi (Bromfield and Hartwig 

1980; Hartwig 1986; Hidayat and Somaatmadja 1977). However, it has been reported that the 

effectiveness of resistance can be overcome by virulent ASR isolates collected from other places 

(Hartman et al. 2005). Due to this reason, developing genetic resistance has not been successful. 

Recently, molecular based approaches have been conducted to find genes involved in host 
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defense, as well as to study how soybean rust infects the host and how the host responds to 

pathogen attack at the molecular level. Microarray studies have been conducted to identify genes 

involved in host resistance after soybean rust infection using resistant lines containing Rpp1 or 

Rpp2 resistance genes (Choi et al. 2008; van de Mortel et al. 2007). However, microarray is 

limited to analysis of gene expression at the transcript level, which usually has poor correlation 

with expression at the protein level. Proteomics is the study of proteins which have vital function 

in all celluar mechanisms, and this approach is very useful for studying proteins differentially 

expressed between different treatments and proteins undergoing post-translational functional 

modifications. A proteomic approach has been successfully used to examine host-pathogen 

interactions in previous studies between bean and Uromyces appendiculatus (Lee et al. 2009), 

barrel-clover and Orobanche crenata (Castillejo et al. 2009), wheat and Puccinia triticina 

(Rampitsch et al. 2006), rice and Magnaporthe grisea (Kim et al. 2004), and maize and 

Aspergillus flavus (Chen et al. 2004).   

1.2 Objectives 

1) Identify host and fungal proteins induced during compatible interaction using proteomics 

2) Screen soybean accessions to find resistant accessions to Louisiana isolate 

3) Study differentially expressed proteins between resistant and susceptible accessions with and 

without fungal infection using proteomics 

4) Characterize these proteins to understand host-fungus interactions 

5) Verify the importance of promising host proteins in disease resistance using a virus induced 

gene silencing.  

In this study, the long term goal is to enhance host resistance to Phakopsora pachyrhizi infection 

and control soybean rust disease through understanding host-parasite interactions using a 

proteomic approach. 
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CHAPTER 2 

 REVIEW OF LITERATURE 

 

2.1 Asian Soybean Rust 

2.1.1 Asian Soybean Rust History 

Asian soybean rust, caused by Phakopsora pachyrhizi, obligate biotrophic plant fungus, was 

first discovered in Japan in 1902 and then in China in 1940. The pathogen spread to Africa in 1996 

South America in 2001 (Yorinori et al. 2005), and finally to the continental United States in 2004 

for the first time (Schneider et al. 2005). In the U.S., nine states reported soybean rust in 2005, 

16 states in 2006, 19 states in 2007, and 16 states in 2008 and 2009  

(http://www.usda.gov/soybean rust/). The disease poses a serious threat to the soybean industry 

in the U. S. 

2.1.2 Disease Symptoms and Yield Loss 

The three most common host reactions to infection by P. pachyrhizi that have been 

described are tan reaction, reddish-brown (RB) reaction, and immune reaction. Tan is a 

susceptible reaction characterized by tan lesions with many uredinia and prolific sporulation. RB 

is a resistant reaction classified by reddish-brown lesions with few uredinia and little to moderate 

sporulation, and immune is another resistant reaction with no visible lesions or uredinia 

(Bromfield et al. 1984; Bromfield and Hartwig 1980). Dark reddish brown lesions with few 

uredinia and extensive necrosis indicate a semi-compatible interaction, and tan lesions with two 

or more uredinia without extensive necrosis indicate a compatible interaction (Sinclair and 

Hartman 1999). Lesions are angular and 2-5 mm in diameter. They are often restricted by leaf 

veins but may also appear on petioles, stems, and pods (Miles et al. 2007). The disease symptom 

generally appears in the lower canopy and proceeds upward. Sporulating lesions are most easily 

identified on the lower leaf surface. As the disease progresses, high lesion densities result in 

http://www.usda.gov/soybean%20rust/
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premature leaflet drop and early maturation (Sinclair and Hartman 1999). Color of a lesion varies 

depending on its age and the interaction between the soybean genotype and the race of pathogen. 

In 1966, physiological races of P. pachyrhizi were first reported when a set of nine single 

urediniospore isolates were inoculated onto six soybean and five legume accessions (Lin 1966). 

Six pathotypes were found based on their reactions on the legume accessions, while the reactions 

of the nine isolates were similar on all six of the soybean genotypes. Different reaction types of P. 

pachyrhizi on soybean accessions were first reported in Australia (McLean and Byth 1980). They 

found that one isolate was virulent on the cultivar ―William‖ but avirulent on the accession 

PI200492, while another isolate was virulent on both soybean genotypes. Other studies have 

reported significant variation in virulence among isolates collected from different geographical 

areas (Pham et al. 2009; Oloka et al. 2008).  

 Heavily infected plants result in reduced seed weight and fewer pods and seeds. 

Significant losses have been reported in Thailand (10-40%), India (10-90%), southern China (10-

50%), Taiwan (23-90%), Japan (40%), and Brazil (30-75%) (Hartman et al. 1991; Hartman et al.  

1999; Miles et al. 2007).  

2.1.3 Soybean Rust Host Range 

Host range of P. pachyrhizi is very broad. It infects over 95 species of legumes including 

soybean, related Glycine species (Rytter et al. 1984), and kudzu (Pueraria lobata), which is an 

invasive fast-growing vine spread wide in the southern U.S. Yellow sweet clover (Melilotus 

officinalis), vetch (Vicia dasycarpa), medic (Medicago arborea), lupine (Lupinus hirsutus), 

green and kidney bean (Phaseolus vulgaris), lima and butter bean (Phaseolus lunatus), and 

cowpea or blackeyed pea (Vigna unguiculata) are common hosts for the fungus as well.    
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2.1.4 Asian Soybean Rust Life Cycle 

The Asian soybean rust life cycle begins 1 to 2 h after inoculation (hai) with 

urediniospore germination and germ-tube formation when incubated in a dark, humid condition 

and at a conductive temperature (Bonde et al. 1976). Appressoria forms from the tips of germ 

tubes along anticlinal walls of epidermal cells within 2 hai (Bonde et al. 1976; Koch et al. 1983). 

High humidity for about 6 hrs is required for successful infection. Penetration pegs form by 7 hai, 

and hyphae directly enter epidermal cell. The penetrated epidermal cell loses cellular 

organization within 24 hai and collapses by 4 days after inoculation (dai) (Koch et al. 1983). The 

primary hyphae grow between spongy mesophyll cells and occasionally form hausteria between 

the plant cell wall and plasma membrane where the fungus obtains nutrients and secretes effector 

proteins (Hahn et al. 1997; Staples 2001; Voegele and Mendgen 2003) between 1 dai and 2 dai. 

When effector proteins are not recognized by the the host plant, the fungus proceeds to further 

colonize the intercellular spaces of the spongy mesophyll by producing secondary hyphae and 

additional haustoria. Urediniospores are produced at 7 to 9 dai (Marchetti et al. 1975). 

Urediniospores, which are the means of disease spread, are released by rupture of the epidermis 

at 9 dai, and uredinia can disseminate spores up to 4 weeks (Koch et al. 1983) (Fig. 2.1). 

2.1.5 Environmental Conditions 

Temperature is one of the key factors affecting the rust life cycle. Many studies have 

been conducted to identify favorable temperature conditions for disease development. Natural 

infection by P. pachyrhizi is favored by a maximum temperature of 26 C to 29 C and a 

minimum temperature of 15 C to 17 C (Levy 2005). No infection was observed at temperatures 

29.5°C or higher (Marchetti et al. 1976; Melching et al. 1989). Rust disease development also 

was greatly inhibited when mean night temperature drops below 14 °C, and was stopped when 

night temperature reaches below 9 °C (Tschanz et al. 1986; Melching et al. 1989). 
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 When temperatures were kept at 4 to 5 C or below, P. pachyrhizi, urediniospores lost their 

viability in 5 days (Patil et al. 1997). However, at 9 C, viability lasted up to 27 days (Tan 1994). 

Kochman (1979) reported significantly reduced germination when dry spores were exposed to 

temperatures of 28.5-42.5 °C. According to a disease assessment study, climatic conditions of 

soybean growing regions in the U.S. are suitable for soybean rust epidemics (Pivonia and Yang 

2004). Recent studies indicated that P. pachyrhizi could survive the mild and short winter 

conditions in the southern U. S., and the disease therefore poses a continuous threat to soybean 

production in the U. S. (Jurick II et al. 2008; Park et al. 2008). Kudzu also has been found as a 

host, on which soybean rust urediniospores can survive the winter in the southern U.S. states, 

such as Alabama, Florida, Georgia, Louisiana, Mississippi, and Texas (Pivonia and Yang 2005).  

 

 

Figure 2.1. Asian soybean rust (Phakopsora pachyrhizi) life cycle. 
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2.1.6 Control Methods 

 

Most of the studies addressing rust disease control methods focus on developing host 

resistance and the use of fungicides. Some limited cultural practice and biological control 

research also are being conducted (Desborough 1984). The first host plant resistance to P. 

pachyrhizi was reported in Taiwan in the 1960s from the field screening of soybean accessions 

(Lin 1966). Soybean lines with specific single-gene resistance to P. pachyrhizi, such as Rpp1, 

Rpp2, Rpp3, Rpp4 and Rpp5 were identified (Rpp1, Hartwig and Bromfield, 1983; Rpp2, Hidayat 

and Somaatmadja, 1977; Rpp3, Bromfield and Hartwig, 1980; Rpp4, Hartwig 1986; Rpp5, 

Garcia et al. 2008). However, these lines showed resistance to limited rust isolates and became 

ineffective soon after they were found (Hartman et al. 2005). Accessions containing Rpp1 

showed an immune reaction to a few soybean rust isolates, including India 73-1, while soybean 

plants containing Rpp1 and the other genes resulted in RB reaction with no or sparsely 

sporulating uredinia after inoculation of most rust isolates (Bond et al. 2006). An example of 

ineffective single gene resistance can be found in the soybean accession PI230970 containing 

Rpp2. It was identified as resistant in field evaluations in 1971-1973, but a few susceptible 

lesions were found on the plant in 1976. By 1978, most of the lesions were the susceptible tan 

reaction type (Bromfield 1984).  

Due to the ineffective single gene resistance and lack of information on mechanisms of 

host resistance to soybean rust, soybean growers are dependent on costly fungicide applications. 

There are only a few fungicide compounds currently registered for foliar application on soybean 

in the U.S. These include chloronitrile (Bravo and Echo), Strobilurins (Quadris, Headline), 

Triazoles (Topguard, Folicur) and strobilurin and triazole premixes (Quadris Xtra). Many studies 

also focused on developing effective application methods for delivering enough fungicide, 

uniformly, into the lower portion of the soybean canopy after flowering (Miles et al. 2007). The 
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economics of fungicide application in regard to timing, number of sprays, and which fungicides 

to use for the most cost effective control also is studied (Christiano and Scherm 2007).          

2.2 Proteomics 

2.2.1 Comparison of Genomic and Proteomic Approaches 

In recent years, many advanced molecular techniques have been used to identify genes 

and their functions. Gene expression at the transcriptional level has been studied using 

differential screening methods, such as differential display, real time PCR (RT-PCR), 

suppressive subtractive hybridization, serial analysis of gene expression (SAGE), and DNA 

microarray. DNA microarray has been used extensively to study differential gene expressions 

and regulations in response to pathogens/stresses, as well as to identify known or unknown 

defense genes.     

However, the limitations of these mRNA based techniques also are clear. First, mRNA 

expression levels do not necessarily correlate with protein levels because of large differences in 

mRNA stability and protein turnover (Gygi et al. 1999). Second, mRNA analysis gives us little 

information as to whether a particular transcript is being translated into a protein, and whether 

the encoded protein is active or has a function because many proteins involved in plant defense 

mechanisms have activity and function at a particular subcellular location only after they 

undergo post-translational modifications, such as removal of signal peptides, phosphorylation or 

glycosylation (Zivy and de Vienne 2000), which cannot be revealed through mRNA analysis. 

Third, mRNA cannot be used for studying profile changes of secreted proteins (Kim and Kang 

2008). Fourth, mRNA analysis will not predict how many protein species will be produced from 

one gene through alternative splicing or post-translational modifications. It has been reported 

that a number of protein species can be translated from a single gene as a result of alternative 

splicing during the resistance response. Several mechanisms of alternative splicing have been 
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reported for plant resistance (R) genes belonging to the Toll/interleukin -1 receptor (TIR)-

nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class. Alternative transcripts of R genes 

have premature stop codons that produce truncated open reading frames (ORFs) resulting TIR-

NBS or TIR-NBS with first several LRRs (Jordan et al. 2002; Zhang and Gassmann 2007). Fifth, 

mRNA analysis will give limited information on proteins which have function only when they 

form complexes with other proteins or RNA molecules. Moreover, transcriptomics or functional 

genomics approaches to study soybean are not effective because soybean has genome 

duplications and a long generation time (Komatsu and Ashan 2009). In these cases, the 

proteomic approach would be a powerful tool to compensate for the drawbacks of 

transcriptomics for analyzing the functions of the plant genes or proteins.  

Proteomics is the study of function and structure of proteins which have vital roles in 

various physiological metabolic pathways in a cell. Proteomics has wide applications: 1) 

identification of all the proteins that make up a proteome, 2) studying the structure and function 

of the complete set of proteins produced by the genome of an organism, including post-

translational modification and glycosylation, 3) studying protein interaction with small or large 

molecules, and 4) studying expression pattern of proteins by a time-course under certain 

physiological conditions (Bradshaw 2008). Moreover, proteomics is a promising tool for 

analyzing the gene responses of non-model plants, especially those whose genome has not been 

completely sequenced (Komatsu and Ahsan 2009). In addition, proteomics can identify the 

missing proteins that have not been identified due to alternative splicing or uncharacterized 

proteins that were not revealed by genome analysis (Bradshaw 2008). Therefore, proteomics is 

considered a complementary approach to genomics or transcriptomics because the first step of 

the proteomics is matching proteins to genes already known through database analysis.  
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2.2.2 Principle of 2-Dimensional Electrophoresis 

 

Two-dimensional gel electrophoresis (2-DE), which separates proteins based on their pI 

(isoelectric point) in the first dimension and their molecular weight in the second dimension, has 

been a powerful technique in the 35 years since its first report (O‘Farrell 1975). Its application 

was accelerated with the development of immobilized pH gradient (IPGs) and protein 

identification through mass spectrometry (MS). The major steps of 2-DE are sample preparation 

and protein solubilization, protein separation by 2-DE, protein detection, analysis of protein 

pattern using software, peptide sequencing using MS, and protein identification through 

homology analysis.  

2.2.2.1 Development of Protein Extraction Methods for Better Resolution and High 

Reproducibility 

 

To achieve a high resolution of 2-DE, protein samples are denatured, disaggregated, 

reduced and solubilized to completely disrupt the molecular interactions and to maximize the 

chance that each spot represents an individual protein. There is no single method for sample 

preparation that can be used universally on all kinds of plant tissues. It should be optimized for 

the different types of tissues. Many research groups have developed protein extraction methods 

that are optimized for protein extraction and reproducibility using different plants (rice, soybean, 

tomato) or different tissues (leaf, root, stem, flower, or fruit) (Carpentier et al. 2005; Saravanan 

and Rose 2004). Recently, different extraction methods were compared for different organs of 

soybean, such as hypocotyls, root, seed, and leaf (Aghaei et al. 2009; Sarma et al. 2008; Xu et al. 

2006). They demonstrated that a phenol-based method or/TCA-acetone-phenol based method is 

more effective than TCA/acetone precipitation. Especially, the modified phenol-based 

methanol/ammonium acetate precipitation method, which is originally developed by Hurkman 

and Tanaka (1986), resulted in the best resolution of soybean leaf proteome. It is believed phenol 
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and acetone or ethanol precipitation can efficiently remove interfering compounds, such as 

proteolytic enzymes, salts, lipids, nucleic acids, polysaccharides, plant phenols and/ or highly 

abundant proteins (Sarma et al. 2008). This method also provides better results for recalcitrant 

plant tissues compared to TCA/acetone precitation method. Along with optimization of protein 

extraction methods, development of a pre-fractionation method also is important to remove 

house-keeping and highly abundant proteins, such as Rubisco in plants and albumin in animal 

systems and to allow detection of low abundance proteins, such as membrane protein or 

transcription factors. These methods include: polyethylene glycol (PEG) fractionation followed 

by Mg/NP-40 extraction buffer (Kim et al. 2001), sequential extraction with a series of reagents 

based on differential protein solubility (Santoni et al. 2000), subcellular proteome for 

compartments, including chloroplasts, mitochondria, nuclei, and the extracellular matrix 

(Chivasa et al. 2005), and secreted proteome (Oh et al. 2005).  

High reproducibility and high resolution are achieved by the immobilized pH gradient 

(IPG) strip using the bifunctional immobiline reagents, a series of 10 chemically well idefined 

acrylamide derivatives. They form a series of buffers with different pK values between pK1 and 

13 and copolymerize with the acrylamide matrix. It produces a very stable pH gradient allowing 

true steady-state iso-electric focusing (IEF) with increased reproducibility (Blomberg et al. 1995).  

2.2.2.2 Various Staining Methods for Protein Spot Visualization 

After protein samples are separated on the SDS-polyacrylamide gel by pI and MW, 

protein spots must be visualized by universal or by specific staining methods. Important 

properties of staining methods are low cost, high sensitivity (low detection limit), high linear 

dynamic range for quantitative accuracy, reproducibility, and compatibility with post-

electrophoretic protein identification methods such as MS. However, there is no single staining 

method that satisfies all these requirements (Görg et al. 1998). Universal protein detection 
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methods include coomassie brilliant blue (CBB), silver, and SYPRO Ruby staining. CBB 

staining method is widely used because of low price, simplicity, reproducibility and 

compatibility with peptide sequence methods like MS. However, low abundance proteins cannot 

be detected by CBB because of its low sensitivity (the detection limit is about 100-500 ng per 

spot). Thus, just a few hundred spots can be detected even if a large amount of protein is loaded 

(Candiano et al. 2004). Silver staining method is more sensitive than CBB because its detection 

limit is as low as 0.1 ng protein per spot. But it is more expensive and complicated. Also, it lacks 

reproducibility (Syrovy and Hodny 1991) and is incompatible with subsequent protein analysis 

like MS due to protein cross-linkage (Yan et al. 2000). Recently, acidic silver staining method 

using zincon and sodium thiosulfate as silver ion sensitizers, which is compatible with MS, has 

been developed (Jin et al. 2008). A fluorescent staining method, SYPRO Ruby, has a detection 

limit of 0.25–1ng per band. This method is simpler and more sensitive than the silver staining 

method, with better linear dynamic range, reproducibility, and MS compatibility; however, the 

cost of stain is higher, and special handling and instruments are required for data acquisition of 

fluorescent-stained gels (Berggren et al. 2000). Recently, 2-D fluorescence difference gel 

electrophoresis (2-D DIGE) technique employing two to three different fluorescent dyes for 

control and treated samples was used in differential proteomics to reduce the time-consuming, 

laborious, and gel-to-gel variation of multistep 2-DE. DIGE method was first developed by Ünlü 

et al. in 1997. Two samples are labeled in vitro using two different fluorescent cyanine minimal 

dyes differing in their excitation and emission wavelengths, then the two labeled samples are 

mixed and separated in the same gel. After consecutive excitation with two different wavelengths, 

the images are overlaid and normalized, where protein differences (up- or down-regulated, 

modified proteins) between two samples are visualized, which can significantly reduce the time 

required to identify differentially expressed proteins. However, the cost of dyes is prohibitive for 
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daily use. Other fluorescent detection methods include Pro-Q Diamond and Pro-Q Emerald, 

which also are compatible with MS. They are used for detecting phosphorylated protein 

(detection limit is 1-2 ng) and glycosylated protein (detection limit is 5-20 ng), respectively. 

2.2.2.3 Gel Image Analysis and Spot Indentification 

Gel images are subjected to computer-based analysis using 2-D software for spot 

detection, quantification and matching. Differentially expressed unknown protein spots can be 

identified using tandem mass spectrometry (MS/MS) technique for high throughput protein 

identification. There are two methods to characterize proteins. First is a ‗top-down‘ strategy, in 

which intact whole proteins are ionized by electrospray ionization (ESI) or matrix-assisted laser 

desorption/ionization (MALDI), and then introduced into mass analyzer. Second is a ‗bottom-up‘ 

strategy, in which proteins are digested into smaller peptides using proteases, such as trypsin or 

pepsin, and the collected peptides are then introduced into a mass analyzer (Schad et al. 2005). 

Characteristic pattern of peptides can be used for identification using peptide mass fingerprinting 

(PMF). De novo peptide sequences also can be obtained for protein identification if the peptide 

of interest is further analyzed through a second MS (Jorrín-Novo et al. 2009).  

2.2.3 Various Applications of Proteomics and Proteomic Studies on Host-Parasite 

Interactions 

 

Proteomics has be applied in many different studies such as characterizing the 

biochemistry of organelles (Ashan and Komatsu 2009; Carroll et al. 2008), protein differential 

expression induced by a specific genotype (i.e. wild, transgenic, mutant) (Herman et al. 2003; 

Kang et al. 2007), a developmental stage (i. e. germination) (Kim et al. 2009), fruit development 

and ripening (Giribaldi et al. 2007), leaf senescence (Hebeler et al. 2008), programmed cell death 

(Kim et al. 2008a), effect of hormone (auxin, giberellins, abscisic and jasmonic acid) (He et al. 

2008; Kim et al. 2008b, and external conditions (i. e. symbioses, biotic stress; pathogen or insect, 
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abiotic stress; drought, temperature, UV light, heavy metal, and oxidative stress) (Patterson et al. 

2007; Sharma et al. 2008; van Noorden et al. 2007; Wan and Liu 2008; Wang et al. 2009;  Xu et 

al. 2008; Zhu et al. 2007). It has also been used to identify proteins that have undergone 

posttranslational modification (Nuhse et al. 2007), and to study protein interaction (Popescu et al. 

2007). Many studies on host-parasite interaction using proteomics have been conducted in plant 

species with complete genome sequence information, such as rice (Kim et al. 2004, 2008a), 

Arabidopsis (Chivasa et al. 2006), and maize (Campo et al. 2004; Chen et al. 2007). Proteomic 

approach also has been extensively used for studying host-parasite interactions in other plant 

systems whose complete genomic sequences are not available yet, such as wheat (Rampitsch et 

al. 2006), tomato, barley, and peach (Chan et al. 2007; Geddes et al. 2008; Houterman et al. 

2007). A few legume species have also been studied using a proteomic approach, such as Lotus 

japonicus (Wienkoop and Saalbach 2003), Medicago truncatula (Colditz et al. 2004), and Pisum 

sativum (Curto et al. 2006), to gain a better understanding of the molecular basis of host-parasite 

interactions.  

Proteins differentially expressed due to pathogen infection have been identified in many 

model plant systems. When rice was infected by the rice blast fungus, Magnaporthe grisea, a 

number of proteins (two RLKs, glucanase 1 and 2, POX22.3, PBZ1, and OsPR10) were found 

differentially expressed in response to the infection. Western blot analysis showed that induction 

of TLP, OsRLK, PBZ1 and OsPR10 was faster and higher in the incompatible interactions than 

in compatible ones. They also studied localization of two PR10 family members, PBZ1 and 

OsPR10, and found that PBZ1 localized in the mesophyll cells under the attachment sites of 

appresoria, whereas OsPR10 was present in the vascular tissues. They concluded that temporal 

and spatial differences contributed to the different host defense against the pathogen (Kim et al. 

2004). Differentially expressed proteins were identified in Arabidopsis cell culture after 
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Fusarium fungal elicitor treatment. Elicitor responsive proteins included molecular chaperones, 

oxidative stress defense proteins, mitochondrial proteins, and enzymes of diverse number of 

metabolic pathways, such as peroxidase (PR-9), glutathione S-transferase, and fructose-

bisphosphate aldolase (Chivasa et al. 2005).  In maize responding to Fusarium verticillioides 

infection, the following proteins were induced in embryo: β-1,3-glucanases, glutathione S-

transferase, glyceraldehydes 3-phosphate dehydrogenase, and fructose-bisphosphate aldolase 

(Campo et al. 2004). The majority of M. truncatula root proteins produced in response to 

Aphanomyces euteiches infection are in the PR10 family, whereas others were putative cell wall 

proteins and enzymes of the phenylpropanoid-isoflavonoid pathway (Colditz et al. 2004). 

Interestingly, many hosts induce similar proteins in response to pathogens. A number of PR 

proteins (PR1, PR5, etc), POX and SOD were differentially accumulated in response to pathogen 

attack in two pea lines that were susceptible or resistant to powdery mildew, Erysiphe pisi (Curto 

et al. 2006). Seven host and 22 fungal proteins were found consistently upregulated in a 

susceptible interaction between wheat and Puccinia triticina (leaf rust) (Rampitsch et al. 2006). 

This study also demonstrated that a proteomics approach can be used to identify not only the host 

proteins, but also fungal proteins.   

2.2.4 Proteomic Study on Soybean  

 

A few studies of soybean interactions with symbionts, such as Bradyrhizobium 

japonicum, using proteomics have been reported (Hempel et al. 2009; Wan et al. 2005). Recently, 

several studies reported differential expression of soybean proteins in response to various 

stresses, including toxic metals (Sobkowiak and Deckert 2006), salinity (Aghaei et al. 2009), 

flooding (Shi et al. 2008), and UV-B (Xu et al. 2008). The proteomic approach has also been 

used to compare allergens between cultivars and wild-type soybean (Joseph et al. 2006) and to 

analyze expression of allergens in transgenic soybean (Herman et al. 2003). Protein profiles of 
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soybean leaf, root hair, and during seed filling also have been examined (Brechenmacher et al. 

2009; Hajduch et al. 2005; Xu et al. 2006). The completion of the soybean genome sequence 

(Schmutz et al. 2010) will accelerate the functional genomics in soybean, including proteomics.   

2.3 Plant Defense Mechanism 
 

2.3.1 Microbe/Pathogen-Associated Molecular Patterns-Triggered Host Resistance  

Plants don‘t have mobile defense cells or a somatic adaptive immune system like 

mammals, so they rely on the innate immune system and systemic signals starting from infected 

cells, where each individual plant cell can autonomously initiate a defense mechanism (Chisholm 

et al. 2006). There are two layers in the plant defense system. First layer is a basal defense 

mechanism which is based on membrane-anchored pattern recognition receptors (PRRs) 

(Panstruga et al. 2006). Plant PRRs consist of leucine-rich reapeat (LRR) receptor-like kinases, 

such as flagellin receptor FLS2, its coreceptor BRI1 (brassinosteroid insensitive 1)-associated 

kinase 1 (BAK1), and the receptor for bacterial elongation factor EF-Tu called EFR (Nürnberger 

and Kemmerling 2006). Membrane-bound proteins containing peptidoglycan-binding LysM 

domain is also a PRR, which binds the fungal MAMP, chitin (Wan et al. 2008). PRRs monitor 

conserved micro/pathogen-associated molecular patterns (MAMP or PAMP), such as 

lipopolysaccharides and flagellin, and bind to them directly or associate with MAMP binding 

proteins. Recognition of MAMP by PRRs induces intracellular signal transduction through 

mitogen-activated protein kinase (MAPK) cascades (van Ooijen et al. 2007). This event induces 

plant–specific transcriptional factors like WRKY to activate defense genes (Nicaise et al. 2009).  

Early MAMP-triggered responses include secretion of defense-related proteins, such as 

PR-1 for immune response by vesicle-associated and SNARE protein-mediated focal secretion 

through exocytosis pathway (Kwon et al. 2008), translocation of toxic chemical derived from the 

non-toxic precursor in cytosol to the extracellular space for antimicrobial activity through ATP-
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binding cassette (ABC) transporter family, apoplast acidification, and extracellular generation of 

reactive oxygen species (O2
-
 and H2O2) (ROS) by membrane-localized NADPH oxidases 

(RbohD). Especially, ROS triggers the hydroperoxidation of membrane phospholipids producing 

toxic mixtures of lipid hydroperoxides, resulting in disruption of cell membranes (Agrios 1997). 

In contrast, proteins in polyglucan callose or papilla biosynthesis to produce structural barriers in 

the extracellular space showed a relatively late response (Panstruga et al. 2006). Although these 

events induce weak immune responses, it is effective to stop colonization of most disease-

causing microbes (Mehta et al. 2008; Takken and Tameling 2009).  

 The first layer, basal defense mechanism, can be overcome by the secreted extracellular 

enzymes of pathogen, such as catalases (pectin esterases, polygalaturonases, xylanases, pecto 

lyases and cellulases), superoxide dismutase (SOD) protecting microbes from oxidative stress 

through inactivating O2
-
 and H2O2, and effector proteins (Mehta et al. 2008; Takken and 

Tameling 2009). Microbial effector proteins, such as AvrPto, AvrPtoB, and HooM1, break the 

basal innate immune system by reducing the level of MAMP signaling or by targeting the 

secretory defense mechanism (Boller 2008). The second layer of host defense is effective against 

specific pathogens that can successfully break through the first layer and is based on highly 

polymorphic resistance (R) proteins from host (Takken and Tameling 2009).  

2.3.2 Resistance (R) Protein-Triggered Host Resistance 

During infection, pathogens produce effector proteins, which suppress the first layer of 

host defense mechanisms (basal defense) and clear the way for infection through the intercepting 

of signaling induced by innate immune response or by targeting the secretory defense machinery 

(Panstruga et al. 2009). But some effectors are recognized by host R proteins, consequently 

causing the host to develop strong defense responses. In contrast to PRRs, R proteins specifically 

recognize avirulence proteins (effector) that are not conserved between species or even isolates 
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of a given pathogen (Jones and Dangl 2006). Due to the one-to-one relationship between a plant 

R gene and matching avirulence (Avr) gene in a pathogen, this type of immunity is called gene-

for-gene resistance (Flor et al. 1942). Plant R proteins (RPM1, RPS2, PRF, N, RPS4, MLA and 

L6) are present in the cytosol and interact either directly or indirectly with Avr proteins, such as 

AvrRpm1, AvrB, and AvrRpt2 like PRRs-mediated resistance (Marathe and Dinesh-Kumar 

2003). Common structure modules of plant R proteins contain a central nucleotide binding (NB) 

domain, a LRRs in the C-terminal and a coiled-coil (CC) or TOLL/Interleukin-1 receptor (TIR) 

domain at the N-terminal (van Ooijen et al. 2007). The NB domain is part of the NB-ARC 

domain. Proteins containing NB-ARC domain belong to the family of STAND (signal 

transduction ATPases with numerous domains) NTPase and may regulate signal transduction 

(Takken and Tameling 2009). In this model, the ADP-bound state represents the ―OFF‖ state and 

ATP-bound state is the ―ON‖ state of the protein. Interaction with effector proteins induces a 

conformational change that enables ADP, which is tightly bound to the R protein in the absence 

of effector, to be exchanged for ATP. With ATP binding, R proteins can activate host defenses 

through an unknown pathway (Tameling et al. 2006). Many R proteins need cytosolic 

chaperones HSP90 and HSC70, as well as co-chaperones RAR1 and SGT1 for their function 

(Azevedo et al. 2002). This folding module is typically necessary in the synthesis of 

autorepressed receptors (Liu et al. 2004). This autoinhibition mechanism enables R protein 

expression to be inhibited in the absence of the pathogen but rapidly activated upon attack. 

Otherwise, constitutive R protein expression can cause host cell death. 

 R protein mediated resistance is achieved by accumulation of reactive oxygen species (ROS) 

that lead to hypersensitive reaction (HR) at the site of infection and activation of defense genes 

encoding pathogenesis-related (PR) proteins or antimicrobial compound. This differs both 

quantitatively and kinetically from PRRs-mediated resistance (Dangl and Jones 2001). Previous 
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studies showed that similar defense-related gene expression changes were found in compatible 

and incompatible interactions between A. thaliana and the fungus Peronospora parasitica 

(Maleck et al. 2000), and oxidative burst occurs not only in the incompatible interaction, but also 

in the compatible interaction (Goodman and Novacky 1994). They concluded that resistance may 

be the result of a faster response and at a higher quantity of defense-related gene expression in 

the incompatible interaction than the compatible interaction, in which susceptible plants failed to 

stop pathogen growth due to a slow response of and/or low levels of defense-related gene 

expressions. Since the output from both PRRs and R protein-triggered resistance is similar, it is 

possible that they share the same signaling pathway. Recently, it was reported that several 

intracellular R proteins are translocated into the nucleus and involved in direct transcriptional 

reprogramming of host cells for rapid immune response (Panstruga et al. 2006).  

In addition to HR, systemic acquired resistance (SAR) is also induced in uninfected tissue 

by R protein-mediated resistance reaction (Sticher et al. 1997). Unlike HR causing localized cell 

death only at the infection site, SAR provides a long-lasting resistance throughout the whole 

plant to stop infections by a broad range of pathogens (Lamb and Dixon, 1997). Initiation of 

SAR is related to the elevated levels of phenolic hormone salicylic acid (SA). Activated 

intracellular R proteins stimulate SA biosynthesis and signaling through the nucleo-cytoplasmic 

regulators, EDS1 and PAD4 (Bartsch et al. 2006). Induced SA interacts with oligomeric NPR1 

(nonexpressor of pathogenesis-related genes 1) to reduce it to monomeric NPR1 because only 

monomeric NPR1 can be translocated from cytoplasm to nucleus where it modulates the 

expression of antimicrobial and secretory pathway genes needed for SAR (Mou et al. 2003). 

Other phytohormones, gaseous ethylene (ET) and jasmonic acid (JA) also regulate SAR. It has 

been proposed that cross-talking between different hormone systems enable host plants to 

respond appropriately to a particular mode of pathogen infection and to integrate biotic and 
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abiotic stress stimuli. The JA and ET pathways are integrated at the transcriptional machinery by 

closely related induction of defense pathway. In addition, SA and
 
ET/JA signaling pathways are 

mutually antagonistic (Kunkel and
 
Brooks 2002). 
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CHAPTER 3 

IDENTIFICATION AND CHARACTERIZATION OF  

PROTEINS INDUCED OR SUPPRESSED DURING A SUSCEPTIBLE 

HOST-PATHOGEN INTERACTION BETWEEN SOYBEAN AND 

PHAKOPSORA PACHYRHIZI 
 

3.1 Introduction  

Asian soybean rust, caused by an obligate parasite Phakopsora pachyrhizi Sydow, was 

first reported in Japan in 1902 and later in China in 1940. The pathogen spread to Africa in 1996 

South America in 2001 (Yorinori et al. 2005), and finally to the continental United States in 2004 

(Schneider et al. 2005). In the U.S., soybean rust was found in nine states in 2005, and it was 

reported in 16 states in 2009 (http://sbr.ipmpipe.org/). P. pachyrhizi is a very aggressive foliar 

pathogen of soybean and causes yield losses up to 80% (Hartman et al. 2001; Yorinori et al. 

2005). Currently, all U. S. commercial soybean cultivars are susceptible to soybean rust disease, 

which can only be controlled through timely fungicide applications. Further, recent studies 

indicated that P. pachyrhizi could survive the mild winter conditions in the southern U.S. and 

poses a continuous threat to soybean production in the U.S. (Jurick II et al. 2008; Park et al. 

2008). The development of resistant soybean varieties is a high priority for soybean breeders as it 

represents a more effective, economical and sustainable long-term control measure for producers 

when compared to expensive fungicide applications.  

As part of a concerted effort to develop resistant cultivars, soybean germplasm 

collections have been screened in the past years and soybean lines with single-gene resistance, 

including Rpp1, Rpp2, Rpp3, Rpp4, and Rpp5 have been identified (Rpp1, Hartwig and 

Bromfield, 1983; Rpp2, Hidayat and Somaatmadja, 1977; Rpp3, Bromfield and Hartwig, 1980; 

Rpp4, Hartwig 1986; Rpp5, Garcia et al. 2008). However, these lines showed resistance to 

limited rust isolates and became ineffective soon after they were found (Hartman et al. 2005). 
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Another approach to develop resistant cultivars is to understand host-pathogen interactions at the 

molecular level and use this knowledge for marker-assisted selection. Recent microarray studies 

showed that most of the differentially expressed host genes in a susceptible interaction between 

soybean and P. pachyrhizi were defense-related genes and stress-inducible genes (Panthee et al. 

2007), and the majority of up-regulated genes in soybean containing Rpp1 or Rpp2 resistance 

genes also were defense-related (Choi et al. 2008; van de Mortel et al. 2007). Both resistant and 

susceptible soybean lines were found to induce a similar set of genes after rust infection, but the 

induction at transcript level was observed one day earlier in the resistant line than in the 

susceptible one (van de Mortel et al. 2007). It was suggested that this temporal difference in gene 

expression may be key in the successful infection of soybean. However, whether or not the up-

regulation of these genes has been translated into an increased production of their corresponding 

proteins, expressing biological functions during the host-parasite interactions has yet to be 

examined.  

 Proteomics, a complementary approach to genomics, has been effectively used to 

identify host and fungal proteins involved in host pathogen interactions in wheat and Puccinia 

triticina (Rampitsch et al. 2006), rice and Magnaporthe grisea (Kim et al. 2004), and 

Arabidopsis and Alternaria brassicicola (Oh et al. 2005). The present study used a proteomic 

approach to examine the protein profile differences between Asian soybean rust-inoculated 

soybean leaves and non-inoculated leaves to identify proteins that were differentially expressed 

in rust inoculated leaves compared to control leaves. Protein profiles also were compared during 

the time course of rust infection to determine how early the host responds to pathogen attack and 

how protein levels are changed at different infection stages. Two of the infection-induced 

proteins, chalcone isomerase 1 and pathogenesis-related protein 10 (PR10), were further 

investigated to determine their roles in soybean defense against rust infection.  
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3.2 Materials and Methods 
 

3.2.1 Chemicals  

  All chemicals used in this study were of analytical grade. Isoliquiritigenin (2‘, 4‘, 4‘, 6‘- 

tetrahydroxychalcone), KCN, β-methoxyethanol, Dowex (100-200 mesh), ethylenediaminetetra 

acetic acid (EDTA), and iodoacetamide (IAA) were purchased from Sigma (St. Louis, MO). 

Phenol was purchased from EMD Chemicals Inc. (Gibbstown, NJ). Immobilized pH gradient 

(IPG) buffer (pH 3.0 to 10.0 NL and pH 4.0 to 7.0), Immobiline Dry Strip (pH 3.0 to 10.0 NL, 18 

cm and 24 cm and pH 4.0 to 7.0, 18cm), dithiothreitol (DTT), and bromophenol blue were 

purchased from GE Healthcare Biosciences (Pittsburgh, PA). Tris, urea, Dodeca Siver Stain Kit, 

sodium dodecyl sulfate (SDS), Coomassie brilliant blue R-250, 3-([3-Cholamidopropyl]-

dimethyl-ammonio)-1-propane-sulfonate) (CHAPS), ammonium persulfate, and N,N,N
9
,N

9
, -

tetramethyl-ethylenediamine (TEMED) were purchased from Bio-Rad (Hercules, CA). Tween 

20, β-mercaptoethanol, and sucrose were purchased from AMRESCO Inc. (Solon, OH). 

Ammonium acetate, acetone, and glacial acetic acid were purchased from Fisher Scientific 

(Pittsburgh, PA). Methanol, glycerol, sodium phosphate, and potassium phosphate were 

purchased from Mallinckrodt Baker Inc. (Phillipsburg, NJ).    

3.2.2 Soybean Plant Inoculation  

Soybean rust (Phakopsora pachyrhizi) urediniospores were collected from naturally 

infected soybean leaves (10/20/2007)) at the Ben Hur Experiment Station, Louisiana State 

University Agricultural Center, Baton Rouge. Spores were stored at -80°C until use. Soybean 

cultivar 93M60 (Pioneer, Johnston, IA) was grown in 20-cm-diameter plastic pots (4 seeds per 

pot) in the greenhouse. After 3 weeks, 24 plants (at R1 to R2 growth stage) were inoculated by 

spraying 100 ml of a urediniospore suspension (1 x 10
5
 urediniospores per ml) in sterile water 

containing 0.01% Tween 20. Plants were maintained at 25°C with 100% humidity in the dark for 
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2 days before being moved back to greenhouse. Control (non-inoculated) plants were sprayed 

with 100 ml of sterile, distilled water containing 0.01% Tween 20 and were treated in the same 

manner. The fourth to sixth trifoliate leaves from non-inoculated and inoculated plants were 

harvested at 14 days after inoculation and frozen immediately with liquid nitrogen. For the time-

course experiment, inoculated and non-inoculated leaves were collected 10 h, 1, 2, 3, 4, 6, 8, 10, 

12, and 14 days after inoculation (dai). They were stored at -80°C until extraction.  This 

experiment was conducted independently three times.                              

3.2.3 Protein Extraction  

Soybean leaves (1 g) were ground in liquid nitrogen using a mortar and pestle. Protein 

was extracted using phenol followed by methanolic ammonium acetate precipitation (Hurkman 

and Tanaka, 1986). Briefly, the ground leaf powder was transferred to a 30 ml oak ridge tube 

(Nalgene, Rochester, NY), and 2.5 ml of 0.1 M Tris-HCl (pH 8.8) saturated phenol and 2.5 ml of 

extraction buffer (0.1 M Tris-HCl, pH 8.8, 10 mM EDTA, 0.4% β-mercaptoethanol, 0.9 M 

sucrose) were added to the tube and homogenized for 1 min using a Polytron PT 3100 

homogenizer (Kinematica Inc., Newark, NJ) at 10,000 rpm. Mixtures were agitated for 30 min at 

4°C followed by centrifugation for 10 min at 5000 g and 4°C. Phenol layer (top layer) was 

transferred to a new tube and another 2.5 ml of Tris-HCl (pH 8.8) saturated phenol was added to 

the original tube to repeat the extraction one more time. This second phenol phase was 

transferred to a new tube. An equal volume of protein extraction buffer was added to the 

combined phenol phase, and the mixture was agitated for 30 min at 4°C followed by 

centrifugation for 10 min at 5000 g and 4°C. Phenol phase was transferred to a new tube and the 

extracted proteins were precipitated by adding 5 to 10 volumes of 0.1 M ammonium acetate in 

100 % methanol (pre-chilled at -80°C) at -80°C for at least 2 hours. A protein pellet obtained by 

centrifugation at 4000 g for 30 min at 4°C was washed twice with ice-cold 0.1 M ammonium 
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acetate in 100% methanol containing 10 mM DTT and washed twice with 80% acetone 

containing 10 mM DTT. During each wash step, the pellet was recovered by centrifugation at 

5000 g for 10 min at 4°C. The pellet was dried in a fume hood for 10 min and stored at -30°C 

until use. Protein extraction for each leaf sample was conducted twice. 

3.2.4 First-dimension Gel Electrophoresis  

Pellets were solubilized in lysis buffer (8 M urea, 4% CHAPS, 40 mM DTT, and 2% 

wt/vol IPG buffer) (Görg et al. 1998). The mixture was centrifuged for 10 min at 14,000 rpm at 

20°C. Supernatant was transferred to a new tube and protein concentration was measured 

(Bradford, 1976). Immobiline DryStrips of pH 3 to10 NL or pH 4 to 7 were re-hydrated 

overnight in 350 μl of rehydration solution (8 M urea, 2% CHAPS, 20 mM DTT, bromophenol, 

and 0.5% IPG buffer) with 150 μg of protein for silver staining (18 cm strip, analytical gel) and 

in 450 μl of rehydration solution with 700 μg protein for Coomassie blue staining (24 cm strip, 

preparative gel). Isoelectric focusing (IEF) was performed at 20°C for a total of 7 h for 18 cm 

and 10 h for 24 cm strips under the following conditions: 1 h at 500 V, 1 h at 1,000 V, and 5 h at 

8,000 V for 18 cm and the same duration for 500 V and 1,000 V but 8 h at 8,000 V for 24 cm 

strips using Ettan IPGphor (GE Healthcare Biosciences, Pittsburgh, PA). The focused strips were 

first equilibrated immediately for 20 min in 7 ml per strip of SDS equilibration buffer (50 mM 

Tris-HCl, pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 0.002% bromophenol blue) with 1% DTT 

and followed by a second equilibration for 20 min in 7 ml per strip of SDS equilibration buffer 

containing 2.5% IAA. After equilibration, IPG gel strips were embedded in a 1% agarose 

solution on top of the SDS-PAGE gel for second-dimension gel electrophoresis. 

3.2.5 Second-dimension Gel Electrophoresis, Staining and Gel Analysis  

SDS-polyacrylamide gels (12.5%), 235 x 190 x 1.5 mm (width x length x thickness) were 

prepared. SDS-PAGE was conducted at 22°C at a constant voltage of 110 V for 1608 Vh using 



 26 

an Ettan Dalt 2-D electrophoresis system (GE Healthcare Biosciences, Pittsburgh, PA). 

Analytical gels were stained with Silver Stain Kit according to the manufacturer‘s instructions. 

Preparative gels were stained with 0.125% Coomassie brillant blue R-250 in 10% glacial acetic 

acid and 50% methanol followed by destaining in 10% acetic acid and 50% methanol. All 

stained gels were scanned using a UMAX PowerLook II scanner (UMAX data systems, Taiwan). 

The resulting 16-bit images were analyzed, and the changes of spot intensity between non-

inoculated and inoculated samples were quantified using Progenesis Same Spots software 

(Nonlinear USA Inc, Durham, NC). Our preliminary comparisons of proteins from identical 

samples separated on different gels indicated that the average coefficient of variation of 

normalized volume of a given matched spot was 9.5%. Based on this, only those protein spots 

exhibiting at least a 1.5 fold change in intensity, when comparing 14 dai inoculated leaf samples 

against controls, were considered differentially expressed and chosen for peptide sequencing and 

further study in the time-course experiment.  

3.2.6 Peptide Sequencing and Homology Analysis  

Differentially expressed protein spots recovered and pooled from three Coomassie 

brilliant blue R 250-stained preparative two-dimensional (2-D) gels were subjected to in-gel 

trypsin digestion and de novo peptide sequencing using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) at the Pennington Biomedical Center (Baton Rouge, LA). The de 

novo peptide sequences were compared to known protein and translated open reading frames of 

expressed sequence tags (ESTs) in the databases at the National Center for Biotechnology 

Information (NCBI) and SWISS-Prot using BLAST (Basic Local Alignment Search Tool) to 

identify their homologies (Altschul et al. 1997).   
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3.2.7 Data and Statistical Analysis 

Statistical analysis of protein spot intensity in the time-course experiment was conducted 

using SAS (version 9.1; SAS Institute, Cary, NC). Significance of differences in fold change in 

protein spot intensity between inoculated and non-inoculated samples at the same time point was 

analyzed by the Student‘s t-test. Comparison of protein spot intensity between different time 

points for each spot was conducted by one-way analysis of variance (ANOVA) followed by 

Fisher‘s least significant difference test. In all case, P≤0.05 was used to determine statistically 

significant differences.      

3.2.8 Cloning of cDNAs Encoding PR10 Protein.  

 Total RNA was extracted from the soybean leaf powder using RNeasy Plant Mini Kit 

(Qiagen, Valencia, CA) according to the manufacturer‘s instruction. Extracted total RNA was 

treated with DNase I (Qiagen) to eliminate residual DNA contamination. Reverse transcriptase 

reactions were conducted with 6 µg of total RNA using M-MLV reverse transcriptase (Promega, 

Madison, WI) according to the manufacturer‘s protocol. Random hexamers from the kit reagents 

were used for the reaction. For PCR cloning of full coding sequence of PR10, 100 ng of the 

reverse transcribed cDNA was used. Degenerated primers were synthesized for spot 1, 5‘-

GA(A/G)AA(T/C)GT(I)GA(A/G)GG(I)AA(T/C)GG-3‘ (PR10-F) and 5‘- 

(A)GT(T/C)TT(I)A(G/A)(T/C)TC(A/G)TC(T/C)TG(A/G)TT-3‘ (PR10-R), based on peptide 

sequences, ENVEGNG and NQDELKT, respectively. After the PCR reaction, PCR products 

were ligated to pCR2.1-TOPO vector (Invitrogen, Carlbad, CA) and sequenced. The remaining 

parts of the PR10 gene were cloned by PCR using primers designed based on the DNA sequence 

of the PCR product. For cloning genomic DNA encoding PR10, the same primer sets for cDNA 

cloning were used. PCR amplification was conducted using genomic DNA extracted from 

soybean leaves using GenElute Plant Genomic DNA Miniprep Kit (Sigma, St. Louis, MO). PCR 
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product was directly ligated into the pCR2.1-TOPO vector, and three colonies were selected and 

sequenced. Resultant sequences were used for database homology search.  

3.2.9 Total RNA Extraction and Real-time PCR Assay  

 Total RNA was extracted from the soybean leaves collected at various time points using 

RNeasy Plant Mini Kit and treated with DNase I to eliminate residual DNA contamination. 

Reverse transcription was conducted with 500 ng of total RNA using TaqMan® reverse 

transcription reagents (Applied Biosystems, Foster City, CA) according to the manufacturer‘s 

protocol. Real-time PCR assays were performed using 2x SYBR Green PCR Master Mix 

(Applied Biosystems) in 25 µl reaction volume with 1 µl of reverse transcribed cDNA, 12.5 µl of 

SYBR green, and 1 µM of each primer. ABI PRISM 7000 Sequence Detection System (Applied 

Biosystems) was used for real-time PCR under standard conditions. The same protocol was used 

for 18S rRNA (internal control) primers. Primers used for PR10 and CHI 1, 2, 3 were listed in 

Table 3.1. These specific primers were designed based on corresponding nucleotide sequences 

from databases (GU563345 for PR10, AF276302 for CHI1, DQ191404 for CHI2, and DQ 

191405 for CHI3) (Table 3.1). Real time PCR for each CHI gene was conducted in this study to 

determine whether CHI2 and CHI3 gene were induced by ASR infection as CHI1. Melting curve 

analysis was conducted to confirm amplification of a single product and the absence of primer-

dimers. Relative RNA expression of target genes was determined using ΔΔCt method ([Ct (18S 

rRNA) – Ct (target)]inoculated – [Ct (18S rRNA) – Ct (target)]control).  

3.2.10 Chalcone Isomerase Activity Assay  

 Crude enzyme extract was prepared according to Mol et al. (1985). One gram of ground 

leaf powder was homogenized in a mortar with 1 g of Dowex (100-200 mesh) and 2 ml of 0.1 M 

sodium phosphate (pH 8.0) containing 1.4 mM ß-mercaptoethanol. The supernatant was 

recovered by centrifugation for 5 min at 12,000 rpm using an oak ridge centrifuge tube at 4°C. 
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Supernatant was homogenized twice, each with 0.5 g Dowex (100-200 mesh), to remove residual 

flavonoids. The final recovered yellowish supernatant was used as a crude enzyme extract. 

Enzyme assay was conducted according to van Weely et al. (1983). The reaction was started by 

addition of isoliquiritigenin (2‘, 4‘, 4‘, 6‘- tetrahydroxychalcone) to a final concentration of 18.4 

µM in a 1 ml reaction mixture (0.1 M potassium phosphate, pH 7.5, 10 mM KCN, and 10 mM 

ethylene glycol monomethyl ether (2-methoxy ethanol). Non-enzymatic cyclization was 

monitored for 1-2 min by measuring the decrease in absorbance at 365 nm before the addition of 

a crude enzyme extract. The enzymatic cyclization was then monitored after addition of 25 µl 

crude enzyme extract. The non-enzymatic conversion measured in the first 2 min was subtracted 

from the total conversion measured after the addition of enzyme for correction. The assay was 

conducted three times and the mean activity was used for comparison.    

Table 3.1. Primer sets designed for real–time polymerase chain reaction. 

Genebank 

ID 

Target gene Orientation Primer sequence (5‘-3‘) Amplicon 

size (bp) 

AF276302 Chalcone 

isomerase1 

Forward AATTTTGCACCTGGTGCCTC 106 

Reverse TCACTGCAGCCTCCTTTTCTG 

DQ191404 Chalcone 

isomerase2 

Forward AAATTTCCCACCAGGCTCCA 131 

Reverse CCTCCGAAAGTGGCTTGTTGT 

DQ191405 Chalcone 

isomerase3 

Forward CCAGTTAACGGAATCCGACCA 133 

Reverse GGCCACACAATTTTCTGCCA 

GU563345 *PR10 Forward AAATCAACTCCCCTGTGGCTC 121 

Reverse CCACCATTTCCCTCAACGTTT 

*; soybean PR10 genomic DNA was cloned in this study, and sequence was submitted to the Genebank (GU563345). 

3.3 Results    

3.3.1 Comparison of Protein Profiles between Non-inoculated and Inoculated Soybean Leaf 

in Different pH Ranges  
 

The non-inoculated and inoculated soybean leaf samples contained 1436 ± 138 and 2034 

± 67 protein spots, respectively, when resolved using 18 cm, pH 3 to 10 NL IPG strips for the 

first dimension and 12.5% SDS-PAGE gels for the second dimension (Fig 3.1, A and B).  



 30 

To further enhance protein separation in the region concentrated with protein spots between pH 4 

to 7, a narrower pH 4 to 7 IPG strip was used (Fig 3.1, C and D). A total of 1202 ± 4 and 1598 ± 

17 protein spots were detected in the pH 4 to 7 2-D gels containing the non-inoculated and 

inoculated soybean leaf samples, respectively. This represents an increase of 133 and 379 more 

spots when compared to 1069 ± 45 and 1129 ± 50 spots detected from the same region of pH 3 to 

10 NL gels for the non-inoculated and inoculated leaf samples, respectively. Spot image intensity 

analysis of leaf protein samples separated using pH 3 to10 NL gels identified 11 up-regulated 

and three down-regulated (≥ 1.5 fold) (Fig. 3.1; spots 13, 38 and 39) spots in the inoculated 

samples. Analysis of protein samples separated using pH 4 to 7 gels identified 26 additional 

differentially expressed protein spots (≥ 1.5 fold) between inoculated and non-inoculated leaves: 

21 spots up-regulated and 5 down-regulated (spots 6, 11, 12, 13, and 28) in the inoculated 

soybean leaves (Fig. 3.1). Spot 1 showed the highest induction of 21-fold whereas spot 13 

showed the highest suppression of five-fold in inoculated leaves compared to their corresponding 

protein spot in the non-inoculated leaves. Changes of these protein spots were observed 

reproducibly in three biological repeats.   

3.3.2 Identification of Differentially Expressed Protein Spots  

Eleven up-regulated and 3 down-regulated protein spots that were visible in Coomassie 

brillant blue stained gels were recovered and sequenced (Table 3.2). Ten of the differentially 

expressed spots were found in both gels (pH 3 to 10 NL and pH 4 to 7) and the other four spots 

were only found in pH 7 to 10 region of pH 3 to 10 NL gels. Peptide sequences of each spot and 

their sequence homology identified through database searches were summarized in Table 3.2. 

Peptide sequences of spot 1 showed 100% match to a PR 10-like protein (AF529303) (Chou et al. 

2004) and a SAM22 protein (Crowell et al. 1992) from Glycine max. It also showed high 

sequence similarity to PR 10 protein from other plants, such as Vigna unguiculata, and  
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Lupinus albus (Fig. 3.2). Spot 2 showed high sequence similarity to the deduced amino acid 

sequences of a stress induced gene H4 (X60044) from G. max. It is interesting to point out that 

peptide sequences between spots 1 and 2 shared 48% identity. 

The peptide sequences from Spot 8 showed a complete match to G. max chalcone 

isomerase 1 (CHI1, AF276302) (Cramer et al. 1985; Lambais and Mehdy 1993; Seehaus and 

Tenhaken 1998; van de Mortel et al. 2007). It also showed 32% and 31% identity to CHI2 and 

CHI3, respectively (Fig. 3.3).  Spots 16, 36, and 40 showed high homology to a chloroplast L-

ascorbate peroxidase from Oryzae sativa, a stress inducible protein from G. max, and a β-1,3 

glucanase from G. max (Keen and Yoshikawa 1983; Lambais and Mehdy 1993), respectively.  

Spot 26 was identified as a G. max cytosolic glutamine synthetase, and spot 32 showed 

high homology to the S-adenosylmethionine synthetase I from Oryza sativa based on their 

sequence (Table 3.2). Spots 13, 38 and 39 all showed high homology to a 28/31 kDa 

glycoprotein (or vegetative storage protein) from G. max. The five peptide sequences obtained 

from spot 38 were identical to five of the nine peptides obtained for spot 39. The other four 

peptides also matched to the same glycoprotein (Table 3.2). Spot 14 was highly homologous to  

an α-soluble ethylmaleimide sensitive attachment protein from Helianthus annuus (sunflower) 

that functions in protein modification and transportation (Subramaniam et al. 1997). Spot 19 

showed 83% homology to a 3‘5‘-cyclic phosphodiesterase from Trichomonas vaginalis, 

indicating it is likely a protein of rust origin. The peptide sequences from spot 37 showed 100% 

match to cyclophilin/peptidyl-prolyl cis-trans isomerase from maize (ACG31960) and cotton 

(ACT63839). It also showed significant homology (92%) to a yeast (Schizosaccharomyces 

pombe: NP_595664.1) cyclophilin, which is involved in protein folding (Wang et al. 2001).  
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Figure 3.1. Comparison of non-inoculated and inoculated soybean leaf two-dimensional (2-D) 

protein gel images 2 weeks after infection. The down-regulated protein spots were indicated with 

asterisk and the rest of the spots without asterisk were up-regulated. Non-inoculated (water-

inoculated, A and C) and rust-inoculated (B and D) leaf proteins were separated on pH 3 to 10 

NL (A and B) or pH 4 to 7 (C and D) gradient strips. 
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Table 3.2. Identification of differentially expressed protein spots from soybean leaves inoculated 

with Phakopsora pachyrhizi through peptide sequencing using tandem mass spectrometry 

(MS/MS). 

Spot Top Hit Organ

ism 

GenBank pI MW 

(kDa) 

e-

value 

Cover

age 

(%) 

Peptide sequence 

1 PR10-like protein 

 

G.max AF529303 4.46 

 

17.41 5e-22 54 KALVTDADNVIPKA   

KSVENVEGNGGPGTIKK 

KITFLEDGETKF 

KGDAEPNQDELKT 

KAIEAYLLAHPDYN 

 

2 Stress-induced gene 

(H4) 

 

G.max X60044 

 

4.65 

 

18.23 2e-9 41 TFEDETTSPVAPATLYK 

LAVTDAGSLALPK 

SVENLEGNGGPTGLK 

QDQPNPDDLK 

AVEAYLLANPHYN 

LTFVEDGESK 

 

8 Chalcone--flavonone 

isomerase 

 

G.max AF276302 7.17 

 

23.10 2-23 33 RTYFLGGAGERG 

KFTGIGVYLEDKA 

RDIISGPFEKL 

KSVGTYGDAEAAAIEKF 
KAVSAAVLETMIGEHAV 

SPDLKR 

RLPAVLSHGIIV 

 

13* 31 kDa glycoprotein 

 

G.max P10743 7.07 

 

25.95 3e-18 31 KTIPEECVEPT  

KDYINGEQFRS  

KGDAPALPETLKN 

KMAVTEANLKK 

AGFHTWEQLILKD 

RIVGIIGDQWSDLLGDHRG 

 

14 alpha-soluble N-nsf 

attachment protein 

 

R. 

comm

unis 

XP_00252

20820 

4.93 

 

34.24 4e-11 20 YEDAADLFDK  

KVAQFAAQLEQYQK 

AMEIFEEIA 

RYQDLDPTFSGTR 

EFDSMTPLDSWK 

LNGYGIFGSK 

 

16 Probable chloroplast L-

ascorbate peroxidase 

 

N. 

nucife

ra 

ABO2142

2 

6.83 

 

33.48 5e-16 21 RLGWHDAGTYNKN 

KHAANAGLVNALKL  

KEIVALSGAHTLGRS 

TGPGAPGGQSWTVQWL 

KFDNSYFKD 

KYAEDQEAFFKD 

 

19 3'5'-cyclic nucleotide 

phosphodiesterase 

family protein 

T. 

vagina

lis 

xp_00131

0604 

5.6 124 47 1 NLNSVKQSNLQVK 

 

 

26 

 

Cytosolic glutamine 

synthetase 

 

G.max AF301590 5.96 

 

40.81 2e-21 29 KVIAEYIWIGGSGMDLRS 

RTLPGPVSDPSELPKW 

RGNNILVICDAYTPAGEPI

PTNKRH 

RDIVDAHYKA 

KGDWNGAGAHTNYSTKT 
REDGGYEVIKA 

RHETADINTFLWGVANRG 

KEHIAAYGEGNERR 
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Table 3.2. Continued 

Spot Top Hit Organ

ism 

GenBank pI MW 

(kDa) 

e-

value 

Cover

age 

(%) 

Peptide sequences 

32 S-adenosylmethionine 

synthetase 1 

 

C. 

arietin

um 

EU92416

0 

5.41 

 

43-.13 8e-70 45 METFLFTSESVNEGHPDK 

LCDQISDAVLDACLEQDP

DSK 

TNMVMVFGEITTK 

NIGFVSDDVGLDADNCK 

VLVNIEQQSPDIAQGVHG

HL 

TK TQVTVEYYNDK 

VHTVLISTQHDETVTNDEI

AADL 

KEHVIKPVIPEKTIFHLNPS

GR 

FVIGGPHGDAGLTGR 

TAAYGHFGR 

DDADFTWEVVKPLK 

 

36 Stress inducible protein 

(Sti) 

 

G. 

max 

Q43468 5.74 

 

63.54 2e-07 5 KALELDDEDISYLTNRA 

KELEQQEYFDPKL 

 

37 Cyclophilin, 

Peptidyl prolyl cis trans 

isomerase 

Z. 

mays 

ACG3196

0 

 

 

8.95 

 

18.34 

 

2e-07 10 KHVVFGQVVEGMDVVKA 

 

 

 

38* Stem 31 kDa 

glycoprotein 

 

G. 

max 

P10742 8.91 

 

24.66 4e-10 18 KEYIHGEQYRS 

KTVNQQAYFYARD  

KGNAPALPETLKN  

KDPQDPSTPNAVSYKT 

KIIFLSGRT 

 

39* Stem 31 kDa 

glycoprotein or 

vegetative storage 

protein 

 

G. 

max 

P 10742 8.86 

 

29.37 

 

8e-24 29 KEYIHGEQYRS 

KTVNQQAYFYARD 

KFNSTLYDEWVNKG 

KGNAPALPETLKN 

KIIFLSGRT 

KDPQDPSTPNAVSYKT 

RGESRTFKL 

 

40 β-1,3-endoglucanase G. 

max 

Q03773 9.13 

 

31.63 2e-05 10 KVSTAIDTGALAESFPPSK 

GRSPSVVVQDGSLGYRN 

*: indicate spots that were down-regulated in inoculated soybean leaves; the rest of spots were up-regulated in inoculated soybean leaves 
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Figure 3.2. Homology comparison between peptide sequences from spot 1 and deduced amino 

acid sequences of PR10 from soybean and other plant species. SPOT1, sequenced in this study; 

Glycine max_SAM22, X60043; Capsicum annuum, AY829648; Medicago sativa, X98867; 

Pisum sativum, M18249; Lupinus albus, AJ000108; Phaseolus vulgaris, X61364; Vigna 

unguiculata, AB027154; Betula pendula, AJ289771; and Corylus avellana, AF136945. 
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Figure 3.3. Amino acid sequence comparison of spot 8. Alignment of the amino acid sequence of 

spot 8 with deduced peptide sequences of CHI1, CHI2, and CHI3 genes from Glycine max.  

 

3.3.3 Changes in Production of Identified Protein Spots after P. pachyrhizi Infection during 

the Time-course   

 

The expression of the 14 sequenced protein spots that showed over 1.5-fold increase or 

decrease in protein levels in the inoculated soybean leaves 14 dai were  further examined to 

determine how these proteins respond during the time-course of rust infection. Relative fold 

change for each of these differentially expressed proteins normalized to the same protein spot 
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from the non-inoculated control over the time-course is shown in Table 3.3. Protein spots, 1, 2, 8, 

16, 36, and 40 involved in plant defense or stress were up-regulated. The highest induction for 

most of these protein spots was detected at either 6 or 8 dai.  Spots 1 (PR10 protein), 16 

(chloroplast L-ascorbate peroxidase) and 36 (stress inducible protein) responded quickly to 

soybean rust infection at 10 hai with 10, 2 and 1.6-fold increase, respectively, compared to non-

inoculated control. The production of PR10 (spot 1) was significantly induced up to 6 dai 

compared to the control, which showed a low basal expression during the time-course (Fig 3.4). 

The expression pattern of spot 2 (a stress-inducible gene, H4) was different from that of spot 1. 

Spot 2 was actually down-regulated at 10 hai and became significantly induced at 12 dai (2-fold).  

However, the earliest significant induction after rust infection for spot 8 (CHI1) was detected at 6 

dai compared to control, which also showed a very low basal level expression of CHI1 (Fig. 3.4). 

Spots 36 (stress inducible protein) and 40 (β-1,3-glucanase) were significantly induced (2-fold) 

at 14 and 12 dai, respectively. This slow induction was possibly an indirect or secondary result of 

rust infection.   

 Protein spots belonging to plant metabolism or growth and development responded 

differently to soybean rust infection compared to the defense related proteins. Spots 13, 16, and 

38 (all glycoproteins) were reduced by over 2-fold at 12 dai. Spot 14, involved in protein 

modification and transformation, was induced by 1.7 fold at 10 hai and increased gradually to 

about 3.3 fold at 14 dai. Spot 26 (glutamine synthetase) showed a significant induction (ranging 

from 2.7 to 6.8 fold) during the entire time-course. In contrast, spot 32 (S-adenosylmethionine 

synthetase I) was down-regulated initially, but was significantly induced at 4 and 14 dai. Spot 37 

showed a pattern of induction similar to spot 40, which was only significantly induced at a late 

stage of infection. Spot 19, a potential fungal protein, was significantly induced from 2 dai. 

Overall, five proteins (PR10, alpha-soluble N-ethylmaleimide-sensitive attachment protein, 
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ascorbate peroxidase, glutamine synthetase, and a stress inducible protein) were induced rapidly 

by soybean rust infection at as early as 10 hai and the rest of the proteins responded more slowly 

over the time-course of the experiment. 

3.3.4 Cloning of cDNAs and Genomic DNA Encoding PR10   

 The time-course experiment showed that spot 1 (PR10 protein) was induced earlier and to 

higher levels after soybean rust infection than any other protein spot, and spot 8 (chalcone 

isomerase I), a known plant defense related protein, was also induced during early stages of rust 

infection. To further study their possible roles in soybean response to rust infection, cDNA and 

genomic DNA of these two proteins were cloned. PCR amplification with degenerate primers 

corresponding to spot 1 generated a 281 bp product (Fig. 3.5). The DNA sequence of this PCR 

product showed 100% homology to a gene encoding a G. max stress inducible protein (SAM22) 

(X60043), but low homology (63%) to the PR10-like protein (AF529303, contains ins/del 

compared to X60043) (Supplement 2) because of two separated deletions. The cloned full-length 

coding sequence (477 bp) of PR10 showed 99% homology with the stress inducible protein 

(SAM22) (X60043) (Fig. 3.6). The cloned genomic DNA (634bp, GenBank accession: 

GU563345), which contained an intron of 157 bp, also showed near 100% homology to the 

stress inducible protein (SAM22) (X60043) in the exon regions with only one nucleotide 

disagreement in the second exon region (Fig. 3.6). Homology search using the nucleotide 

sequences of X60043 resulted in 100% similarity with a partial sequence of soybean PR10 

(DQ267260; Graham et al. 2003) (data not shown). Based on these sequence data, spot 1 is 

concluded to be a PR10 protein. Since spots 1 and 2 showed high amino acid sequence similarity 

and the positions of these spots on the 2-D gel were very close (similar pI and MW), they could 

be different isoforms of PR10, which has been previously reported (Bestel-Corre et al. 2002; Xie 

et al. 2010). 
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Table 3.3. Relative fold change vs. control samples at each time point from soybean leaf during Phakopsora pachyrhizi infection. 

(Proteins induced by rust infection were normalized by the proteins induced during the developmental process in non-inoculated leaves 

at each time point). 

Spot Identity Fold change at time
a
 

10h 1d 2d 3d 4d 6d 8d 10d 12d 14d 

1 PR10-like protein 10.4±1.2 

(0.004) 

10.6±2.6 

(0.0002) 

12.2±2.9 

(<.0001) 

13.3±1.6 

(0.0004) 

8.8±2.2 

(0.041) 

15.2±2.0 

(0.012) 

24±2.2
¶
 

(0.006) 

15±3.3 

(0.013) 

18.3±2.4 

(<.0001) 

21.2±3.4 

(<.0001) 

2 Stress-induced gene (H4) or PR10 

–like protein 

0.6±0.18 

(0.025) 

0.7±0.04 

(0.022) 

0.9±0.02 

(0.752) 

1.1±0.5 

(0.687) 

1.3±0.3 

(0.524) 

1.5±0.5 

(0.128) 

1.8±0.5 

(0.063) 

1.8±0.1 

(0.072) 

2.0±0.02
¶ 

(0.020) 

2.0±0.2 

(0.002) 

8 Chalcone--flavonone isomerase 1.4±0.3 

(0.092) 

1.2±0.1 

(0.215) 

1.2±0.2 

(0.654) 

1.4±0.4 

(0.321) 

2.1±0.1 

(0.236)_ 

1.8±0.3 

(0.012) 

2.9±0.3
¶
 

(0.021) 

2.2±0.1 

(0.015) 

2.8±0.1
¶
 

(<.0.0001) 

2.6±0. 

(<.0.0001) 

13* Soybean 31 kDa glycoprotein 0.8±0.4 

(0.072) 

0.9±0.5 

(0.089) 

1±0.3 

(0.091) 

1±0.6 

(0.096) 

0.8±0.3 

(0.082) 

0.9±0.3 

(0.051) 

0.9±0.2 

(0.066) 

0.7±0.3 

(0.005) 

0.2±0.04
¶
 

(0.019) 

0.2±0.08
¶
 

(0.043) 

14 alpha-soluble N-ethylmaleimide-

sensitive attachment protein 

1.7±0.4 

(0.050) 

1.4±0.5 

(0.084) 

1.4±0.6 

(0.052) 

1.8±0.5 

(0.017) 

2.3±0.7 

(0.028) 

2.2±0.5 

(0.035) 

2.8±0.5 

(0.045) 

2.5±0.6 

(0.029) 

2.8±0.04 

(0.041) 

3.3±0.3
¶
 

(0.012) 

16 Probable chloroplast L-ascorbate 

peroxidase (OsAPx06) 

2.1±0.4 

(0.021) 

3.6±0.8 

(0.023) 

1.5±0.4 

(0.041) 

2.9±0.05 

(0.014) 

0.7±0.2 

(0.035) 

5.2±0.8
¶
 

(0.016) 

2.2±0.1 

(0.018) 

1±0.5 

(0.723) 

2.1±1.7 

(0.032) 

2.0±0.4 

(0.021) 

19 3'5'-cyclic nucleotide 

phosphodiesterase family protein 

1±0.4 

(0.432) 

1.2±0.5 

(0.743) 

1.6±0.5 

(0.450) 

2.3±0.2 

(0.256) 

1.9±0.3 

(0.478) 

1.6±0.8 

(0.152) 

3.9±0.3 

(0.271) 

5.5±2.2
¶
 

(0.007) 

2.7±0.1 

(0.041) 

3.9±1 

(0.017) 

26 cytosolic glutamine synthetase 5.8±1.4 

(0.0002) 

4.1±0.7 

(0.012) 

5.0±0.4 

(0.003) 

3.6±1.3 

(0.006) 

2.7±0.4 

(0.012) 

4.3±1 

(0.001) 

4.7±0.3 

(0.006) 

4.5±0.2 

(0.004) 

6.8±0.5
¶
 

(0.005) 

6.5±1 

(<.0.0001) 

32 S-adenosylmethionine synthetase 

1 

0.7±0.4 

(0.001) 

0.8±0.2 

(0.009) 

0.7±0.3 

(0.001) 

0.7±0.2 

(0.003) 

1.8±0.3
¶
 

(0.002) 

0.9±0.7 

(0.001) 

1.5±0.1 

(0.005) 

1.4±0.1 

(0.047) 

1.3±0.4 

(0.051) 

2.0±0.3
¶
 

(0.006) 

36 Sti gene; stress inducible protein 1.6±0.1 

(0.012) 

1.2±0.1 

(0.001) 

1.9±0.2 

(0.321) 

1.5±0.09 

(0.012) 

1.5±0.05 

(0.021) 

1.7±0.3 

(0.158) 

1.7±0.08 

(0.385) 

1.8±0.02 

(0.147) 

1.7±0.01 

(0.721) 

1.9±0.1
¶
 

(0.052) 

37 Cyclophilin, Peptidyl prolyl cis 

trans isomerase 

1.0 ±0.2 

(0.953) 

1.1±0.2 

(0.715) 

1.3±0.8 

(0.624) 

1.3±0.4 

(0.180) 

1.3±0.3 

(0.157) 

1.0±0.1 

(0.625) 

1.1±0.1 

(0.432) 

1.2±0.2 

(0.351) 

1.5±0.3 

(0.147) 

2±0.2
¶
 

(0.008) 

38* Stem 31 kDa glycoprotein 

precursor 

0.8±0.4 

(0.326) 

0.9±0.12 

(0.621) 

1.15±0.5 

(0.426) 

0.7±0.2 

(0.157) 

0.3±0.2 

(0.189) 

0.9±0.2 

(0.821) 

0.3±0.01 

(0.100) 

0.7±0.3 

(0.042) 

0.4±0.0
¶
 

(0.026) 

0.5±0.1 

(0.048) 

39* Soybean 28/31 kD glycoprotein or 

vegetative storage protein 

1.4±0.5 

(0.284) 

0.9±0.1 

(0.815) 

0.9±0.5 

(0.473) 

0.8±0.3 

(0.382) 

0.4±0.03 

(0.317) 

1.0±0.3 

(0.972) 

0.4±0.03 

(0.132) 

0.8±0.2 

(0.421) 

0.3±0.02
¶
 

(0.045) 

0.7±0.1 

(0.024) 

40 Soybean β-1,3-endoglucanase 0.9±0.4 

(0.046) 

1.3±0.2 

(0.089) 

1.1±0.4 

(0.050) 

1.0±0.8 

(0.047) 

1.2±0.3 

(0.039) 

1.1±0.2 

(0.052) 

0.8±0.2 

(0.049) 

1.5±0.1 

(0.052) 

2.0±0.1 

(0.038) 

2.3±0.3
¶
 

(0.017) 
a
 Relative fold-change vs. control samples at each time point after inoculation [mean ±standard deviation(P value)]. The Student‘s t test was used to find whether 

there was significant difference (p<0.05) between non-inoculated and inoculated soybean leaves. The relative fold-changes are means from three different 

experiments. 

*: indicates spots that were down-regulated in inoculated soybean leaves; the rest of spots were up-regulated in inoculated soybean leaves. 
¶
 represents significant fold-change during the time course. LSD test was used for statistical analysis at P=0.05
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Figure 3.4. Changes of spot 8 (CHI1) and spot 1 (PR10) protein level during the time-course. A, 

sub-sections of the 2-D gel of protein spots 8 and 1; B, volume change of spots 8 and 1 from 

control and infected during the time-course. The bar graphs show average volume for the pointed 

spots with standard deviations. 
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Figure 3.5. PCR amplification of PR10 product using degenerated primers synthesized based on 

spot 1 peptide sequences identified by tandom MS spectrometery. M, marker; 1, no template; 2, 

no primers; and 3, cDNA template. 
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Figure 3.6. PR10 DNA sequence comparisons between cDNA cloned by PCR, PR10 genomic 

DNA cloned in this study (GU563345), AF529303 (PR10 like protein), and X60043 (stress 

inducible gene, SAM22). 
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3.3.5 Changes of Chalcone Isomerase 1 and PR10 at Transcript Level during the Time- 

course of Rust Infection  

 

 The corresponding transcripts of chalcone flavonone isomerase and PR10 were examined 

using real time PCR to determine whether their changes follow the same pattern as those at the 

protein level and to find the time point of gene expression initiation by ASR infection. In non-

inoculated control leaves, the basal expression of CHI1 gene was much higher than that of either 

CHI2 or CHI3 (Fig. 3.7 A) and the abundance of CHI3 was the lowest among the three at all 

time points. The relative abundance of CHI1 was dramatically increased by the ASR infection 

and was significantly higher than CHI2 and CHI3 in most of the time points except 1, 4, or 6 dai  

when CHI2 and/or CHI3 showed a level of expression close to CHI1 (Fig. 3.7 B). When 

comparing the transcript levels between infected and control samples, all three CHI genes 

showed significant induction by ASR infection compared to control leaves at 10 hai, but the 

magnitude of induction for CHI1 (about 30 fold) was much higher than that for CHI2 or CHI3 

(about 10-15 fold) (Fig. 3.8). CHI1 transcript levels were reduced drastically to the level of the 

non-inoculated control at 1 dai. It was induced thereafter and peaked at 8 dai, but the induction 

was about 1/3 of that seen at 10 hai. CHI2 and CHI3 expression followed a similar pattern of 

induction and peaked at 6 dai and the induction for CHI3 expression remained high (10-23 fold) 

up to 12 dai (Fig. 3.8). Although the relative expression ratio of CHI3 was significantly higher 

than that of CHI1 from 6 to 12 dai, the abundance of CHI3 was significantly lower in non-

infected and infected compared to that of CHI1 (Fig. 3.7 A and B). The highest induction of PR10 

expression (38 fold) in inoculated leaves was detected at 10 hai compared to that in non-inoculated 

control leaves. It decreased to that of non-inoculated control leaves at 1 dai. Its expression was induced 

thereafter and peaked at 6 dai, but its expression was not as high as at 10 hai (Fig. 3.9). In addition, a low 

basal level expression of PR10 was detected at all time points in non-inoculated control leaves (Fig. 3.10).  
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Figure 3.7. Comparison of CHI1, CHI2, and CHI3 gene expression using quantitative real-time 

PCR after and befor soybean rust infection during the time-course. A, Control (non-infected); B, 

Infected. Relative abundance represents gene expression level normalized by the level of the 18s 

rRNA gene expression at each time point. The bar graphs show mean of relative gene 

expressions with standard deviations. 
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Figure 3.8. Comparison of CHI1, CHI2, and CHI3 gene expressions using quantitative real-time 

PCR after soybean rust infection during the time-course. The ratio of gene expression changed 

after infection when each time point was calculated by normalization to the gene expression of 

the non-infected at the same time point. The bar graphs show mean relative expression ratios 

with standard deviations. 

 

 

 
Figure 3.9. Comparison of gene expression of PR10 using quantitative real-time PCR after 

soybean rust infection during the time-course. The ratio of the gene expression changed after 

infection when each time point was calculated by normalization to the gene expression of the 

non-infected at the same time point. The bar graphs show mean relative expression ratios with 

standard deviations. 



 46 

 

Figure 3.10. Comparison of PR10 gene expression between control (non-infected) and infected 

soybean leave using quantitative real-time PCR during the time-course. Relative abundance 

represents gene expression level normalized by the level of the 18s rRNA gene expression at 

each time point. The bar graphs show mean relative expression abundance with standard 

deviations. 

 

3.3.6 Changes of Chalcone Isomerase Enzyme Activities during the Time-course after Rust 

Infection  

 

The enzyme activity of CHI was compared between non-inoculated and inoculated leaves 

during the time-course to study whether CHI protein volume changes detected by proteomics 

have a similar pattern with CHI enzyme activity. CHI in non-inoculated showed a constitutive 

basal enzyme activity throughout the time points (Fig. 3.11). The CHI activity increased 

gradually and peaked at 6 dai in infected leaves. The induction in enzyme activity in inoculated 

leaves was significant at all time points compared to non-inoculated control (p=0.05) (Fig. 3.11). 

CHI enzyme activity from 10 hai to 4 dai didn‘t follow the protein changes of CHI1 but they 

showed similar changes to each other from 6 dai.    
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Figure 3.11. Comparison of enzyme activity of CHI between non-inoculated and inoculated 

soybean leaves during the time-course. The bars represent the mean enzyme activity with 

standard deviations. 

 

3.4 Discussion     

3.4.1 Improved Protein Isolation and Separation were Achieved through a Phenol-Based 

Protein Extraction and Using a Narrower pH Gradient  

 

 Several methods have been used to extract proteins from soybean leaves for proteomics 

(Ahsan and Komatsu 2009; Sarma et al. 2008; Xu et al. 2006). In a preliminary study, we 

compared two of them: TCA/acetone method (Granier 1988) and phenol-methanol method 

(Hurkman and Tanaka 1986). The phenol-methanol method consistently produced highly 

resolved 2-DE gels. This method also produced highly resolved 2-D protein profiles of other 

plants or plant tissues (Carpentier et al. 2005; Saravanan and Rose 2004). It is believed that 

phenol extraction and methanol precipitation can effectively reduce contamination of protein 

extracts with rigid plant cell wall, membrane lipids, and nucleic acids, which impede protein 

solubility and electrophoresis conductivity (Saravanan and Rose 2004). Our initial studies using 

pH 3 to 10 NL gradient for the first dimension found that the majority of the protein spots were 
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located between pH 4 to 7, therefore, pH 4 to 7 gradient was also used in this study, which 

resulted in a significant (13 to 33%) increase in the number of new spots/proteins detected due to 

better resolution. 

3.4.2 Identification of Differentially Expressed Proteins after P. pachyrhizi Inoculation and 

Their Possible Functions through Sequence Homology Analysis  

 

 In this study, 40 protein spots were found differentially expressed after rust inoculation, 

and 14 spots were recovered and sequenced. Based on peptide sequence homology analysis, 

these differentially expressed proteins belong to four different groups: plant defense or stress 

related proteins; plant metabolism, growth and development; protein modification or transport; 

and rust fungal proteins.  

 Proteins belonging to the first group include PR10 protein (spots 1), CHI1 (spot 8), 

chloroplast ascorbate peroxidase (spot 16), stress inducible proteins (spots 2 and 36), and β-1,3-

endoglucanase (spot 40). It is interesting to point out that the proteins in this group were all up-

regulated in soybean leaves after rust inoculation. Induction of PR10 during pathogen attack of 

plants has been previously reported in Medicago truncatula and Zea mays (Bestel-Corre et al. 

2002, Xie et al. 2010). Reduced expression of PR10 through RNAi gene silencing also leads to 

increased susceptibility of maize to Aspergillus flavus infection (Chen et al. 2010). Decreased 

expression of L-ascorbate peroxidase (spot 16) resulted in elevated level of H2O2 and a 

hypersensitive reaction (HR) in resistant tomato following avr5 elicitor treatment (Vera-Estrella 

et al. 1994). Ascorbate peroxidase also was inhibited by salicylic acid (SA) treatment, which 

induces a signaling pathway to activate resistance genes in tobacco (Durner and Klessing 1995). 

This agrees with our proteomics study, which showed that ascorbate peroxidase levels were 

induced after rust infection in this susceptible (compatible) interaction. A soybean stress 

inducible protein (spot 36) was moderately induced in this susceptible interaction. Its homolog 
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from G. max was highly induced by heat and cold treatment (Torres et al. 1995). This protein 

contains a TRP (tetratricopeptide-repeat) motif, which serves as a protein-protein interaction 

module found in a number of functionally different proteins (Das et al. 1998). The involvement 

of β-1,3-endoglucanase (spot 40) in plant defense against fungal pathogen attack has been well 

documented (Daugrois et al. 1990; Keen and Yoshikawa 1983; Schrőder et al. 1992). Its 

expression was induced in both compatible and incompatible interactions, but the increase was 

significantly higher and earlier in the incompatible interactions (Yi and Hwang 1996). Our study 

found that endoglucanase increased at a late stage of infection (12 dai) in this compatible 

interaction. CHI1 (spot 8) also was highly expressed and mostly induced compared to other 

members of the family (such as CHI2 and CHI3) in responding to ASR infection. CHI functions 

in flavonoids biosynthetic pathway, which is involved in the synthesis of phytoalexins and the 

cell wall reinforcing metabolites as part of plant defense responses (La Camera et al. 2004). 

 Most of the remaining sequenced proteins belong to the plant metabolism, growth and 

development group, and were down-regulated after rust infection except cytosolic glutamine 

synthetase (spot 26) and the S-adenosylmethionine synthetase 1 (spot 32). Although these 

proteins primarily function in plant metabolism or growth and development, there are also 

studies indicating their involvement in host resistance. Different isoforms of 28/31kD 

glycoprotein or vegetative storage protein (VSP) (spots 13, 38, and 39) were down-regulated 

upon rust infection in the present study.  This group of proteins, which contains a conserved 

acidic phosphatase motif (DXDXT) and has phosphatase activity and anti-insect activity (Liu et 

al. 2005), has been shown to be associated with disease resistance in Phaseolus vulgaris against 

Pseudomonas syringae (Jakobek and Lindgren 2002) and in barley against powdery mildew 

(Beβer et al. 2000). S-adenosylmethionine synthetase 1 (spot 32) is an enzyme catalyzing the 

formation of S-adenosylmethionine, which is a major methyl-group donor and an intermediate in 
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the biosynthesis of the phytohormone ethylene. It has been reported that S-adenosylmethionine 

synthetase 1 is involved in host pathogen interaction in parsley against an elicitor from 

Phytophthora megasperma f. sp. glycinea (Kawalleck et al. 1992), and in barley upon powdery 

mildew infection (Caldo et al. 2004). In our study, a soybean cytosolic glutamine synthetase 1 

(GS 1, spot 26), one of the isoform of GS that are highly active in senescent leaves, was also 

highly up-regulated in rust infected soybean leaves 12 dai, corresponding to defoliation caused 

by rust infection, indicating an increase in ammonium reassimilation and nitrogen 

remetabolization (Habash et al. 2001). Cytosolic GS1 might also be involved in plant defense, 

since GS1 gene was induced in bean by Colletotrichum lindemuthianum infection (Tavernier et 

al. 2007). 

 Spots 14 (α-soluble N-ethylmalmeimide sensitive attachment protein, SNAP) and 37 

(cyclophilin or peptidyl prolyl cis trans isomerase) belong to the third group (protein 

modification or transport) and were up-regulated upon rust infection. SNAP plays a critical role 

for stable binding of n-ethylmaleimide-sensitive factor (NSF) and NSF‘s ATPase activity during 

vesicular trafficking (Subramaniam et al. 1997; Whiteheart and Matveeva 2004). Its up-

regulation in rust infected leaves compared to control leaves may be the result of responding to 

increased protein trafficking inside infected soybean leaves. The expression of cyclophilin (spot 

37), which functions in catalyzing peptidyl-prolyl isomerisation to increase protein stability and 

is consequently involved in protein folding (Wang and Heitman 2005), was also increased during 

the wheat and Puccinia triticina (leaf rust) susceptible interaction (Rampitsch et al. 2006).  

 The fourth group (rust protein) includes spot 19 since its peptide sequences matched to a 

3,5‘-cyclic nucleotide phosphodiesterase from Trichomonas vaginalis. This enzyme catalyzes the 

hydrolysis of cyclic AMP to form adenosine 5‘-phosphate and was required for hyphal 

development in Candida albicans (Jung and Stateva 2003). It also may play a role in 
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morphological conversion and in pathogenesis in Magnaporthe grisea and Ustilago maydis 

(Choi and Dean 1997; Kruger et al. 2000). Therefore, it is speculated that this protein may play a 

role in the infection of soybean. 

3.4.3 CHI1 and PR10 Expression at Transcript and Protein Levels  

 In order to understand how soybean and P. pachyrhizi interact at the molecular level, and 

to develop new strategies to control soybean rust disease in the future, the transcript levels of 

these two proteins during the time-course of rust infection also were examined using real-time 

PCR.  The expression of both genes showed a clear fluctuation: first induction was observed at 

10 hai followed by a down-regulation at 1 dai and another induction around 2 dai (or from 6 to 8 

dai). Similar biphasic induction has also been reported in recent microarray studies of soybean 

genes upon rust inoculation (Panthee et al. 2007; van de Mortel et al. 2007).  

We further compared CHI transcript level with its corresponding protein and enzyme 

activity levels during the time-course of rust infection. CHI expression pattern found in this 

study agreed with the result of van de Mortel and associates (2007) who reported that CHI 

expression was biphasic in response to ASR infection. Among the three CHIs we examined, 

CHI1 had the highest abundance and showed the most induction after rust infection. CHI2 

expression did not respond to the ASR infection significantly except at only one time point, 6 dai. 

Although CHI3 showed a higher relative level of induction comparable to CHI1 at a later stage 

of rust infection, the transcript abundance of CHI1 was always higher than CHI2 and CHI3 in 

non-inoculated and inoculated leaves (Fig. 3.7). Although their amino acid sequence homology 

was low and gene expression patterns were different from each other in this study, they bind to 

the same substrate and generate the same product called naringenin (chalcone) which is the 

precursor of the phytoalexin (Shimada et al. 2003). The overall CHI1 expression pattern is 

different from CHI1 protein level, which was significantly increased only 6 dai.  
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The corresponding enzyme activity pattern after rust infection follows the pattern of CHI1 at 

protein level. Similar results were reported in bean (Phaseolus vulgaris) after fungal elicitor 

treatment (Cramer et al. 1985).  

PR10 gene expression level was also studied. Overall, PR10 transcript was significantly 

induced at two time points, 10 hai and 6 dai in infected leaves, while protein expression was 

significantly induced as early as 10 hai and continued to increase throughout the time-course. 

Therefore, the gene expression pattern was different from protein expression pattern during the 

time-course. The overexpressed PR10 did not appear to have ribonuclease activity (unpublished 

data, Park and Chen, 2010), although the deduced amino acid sequence of the cloned PR10 gene 

contains a conserved P-loop motif, which has been considered required for the ribonuclease 

activity reported in some other PR10 proteins (Bantignies et al. 2000; Kim et al. 2008; Saraste et 

al. 1990; Wu et al. 2003). This lack of correlation between the levels of a transcript and its 

corresponding protein has been reported in earlier studies (Gygi et al. 1999; Lee et al. 2004), 

indicating that PR10 expression might be translationally or post-translationally regulated (Lee et 

al. 2004). 

3.4.4 Possible Function of PR10 and CHI in Soybean Response to Rust infection  

CHI is involved in the synthesis of flavonoid pigments, anthocynin and isoflavonoid 

phytoalexin for pollination, seed dispersal, protection of DNA from UV damage, and for plant 

defense (Bednar and Hadcock 1988; Dixon et al. 1983). In this study, we found that CHI1 was 

highly induced in soybean leaves after rust infection. CHI also was induced by soybean rust 

infection in earlier microarray studies (Panthee et al. 2007; van de Mortel et al. 2007). Further 

investigation found its enzyme activity showed significant increase as early as 10 hai, although 

its protein level increased slowly after rust infection and was not significant until 6 dai, 

indicating it may play a critical role in host response to rust infection. In addition, many studies 
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found that CHI was induced by pathogen invasion. It has been reported that CHI increased early 

in the incompatible interaction of Phaseolus vulgaris L. and Colletotrichum lindemuthianum 

(casual agent of anthracnose) prior to phytoalexin accumulation, in contrast to its expression 

being delayed in a compatible interaction (Cramer et al. 1985; Mehdy and Lamb 1987).   

PR10 has been reported as a defense protein in soybean (Chou et al. 2004), rice (Kim et 

al. 2004), pepper (Park et al. 2004), peanut (Chadha and Das 2006), and maize (Chen et al. 2006). 

Its transcript also was reportedly induced during rust infection of soybean (van de Mortel et al. 

2007).  In the present study, we demonstrated that PR10 increased rapidly at both transcript and 

protein levels and is the most induced protein after rust inoculation. Another interesting aspect of 

this PR10 is that the same PR10 showed a similar gene expression pattern in response to a 

treatment with Phytophthora sojae cell wall elicitor, which was highly induced at 8 hai (Graham 

et al. 2003). This early response of the same PR10 to infections by different pathogens suggests 

that PR10 is part of a host‘s initial but rather nonspecific response to pathogen infection. 

Recently, some studies demonstrated cytokinin binding activity of PR10 (Zubini et al. 2009) and 

reported structural similarity to a regulatory components of ABA receptor (RCAR) (Ma et al. 

2009) and pyrabactin resistance 1 (PYR1) (Park et al. 2009). However, the precise function of 

PR10 needs to be further investigated.   

In summary, differentially expressed soybean leaf proteins after P. pachyrhizi infection 

during a compatible interaction were identified and sequenced. Most of the induced proteins 

appear to have a role in plant defense, stress, protein modification or transport, whereas proteins 

involved plant growth and development were suppressed after rust infection. The changes for 

some of the proteins can be detected as early as 10 hai whereas other proteins were induced only 

at a late stage of rust infection.  Two such proteins, PR10 and CHI, were further characterized, 

and the data suggested that both play important roles in host response to rust infection. Further 



 54 

studies involving virus induced gene silencing to reduce the expression of these two proteins will 

be necessary to provide more definite answers as to their functions in soybean resistance to rust 

infection.           
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CHAPTER 4 

EVALUATION OF SOYBEAN ACCESSIONS FOR THEIR  

RESPONSE TO A LOUISIANA ISOLATE OF PHAKOPSORA 

PACHYRHIZI AND PROTEOMIC ANALYSIS OF RESISTANT AND 

SUSCEPTIBLE LINES 
 

4.1 Introduction 
 

Asian soybean rust (ASR) caused by Phakopsora pachyrhizi, was first reported in Japan 

in 1902 and later in China. The disease spread through most of the soybean producing areas in 

South America, including Brazil and Paraguay, by 2001 (Yorinori et al. 2005). Soybean rust is 

now a major emerging disease in the continental United States since its discovery in late 2004 in 

Louisiana (LA). P. pachyrhizi infection can cause quick defoliation and severe yield losses 

ranging from 50 to 80% (Yang et al. 1991). According to models of disease epidemiology (Yang 

et al. 1991) and studies of soybean rust spore viability under southern U.S. winter conditions 

(Jurick II et al. 2008; Park et al. 2008), soybean rust is expected to establish in the south and 

spread gradually to the north and will pose a serious threat to U.S. soybean production in the 

future. 

All U.S. commercial soybean cultivars are susceptible to the fungus, and the only 

method to control this disease is through timely and costly fungicide applications. Therefore, 

there is an urgent need to develop varieties that are resistant or tolerant to ASR to reduce its 

potential to cause yield losses in the U.S. In an effort to develop soybean varities resistant to 

ASR, soybean germplasm collections have been screened. Soybean accessions resistant to P. 

pachyrhizi isolates collected from different countries, such as India, Taiwan, Nigeria, Paraguay, 

Vietnam, and U.S., were identified (Miles et al. 2008; Pham et al. 2009). Three reaction types of 

soybean accessions after inoculation with P. pachyrhizi have been described, including immune 

reaction, reddish-brown reaction with limited sporulation and fungal growth, and tan reaction 
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with fully sporulating uredinia (Miles et al. 2006; Bonde et al. 2006). Four single dominant genes 

(Rpp1, Rpp2, Rpp3, and Rpp4) confering resistance to specific isolates of P. pachyrhizi have 

been reported (Hidayat and Somaatmadja 1977; Bromfield and Hartwig 1980; Hartwig 1986). 

However, it has been reported that the effectiveness of resistance can be quickly overcome by 

virulent ASR isolates collected from different places (Hartman et al. 2005). For example, 

soybean accession PI200492 containing the Rpp1 gene showed immune response to an Indian 

isolate, but it produced a tan or RB reaction to the other ASR isolates (Pham et al. 2009). 

Soybean rust isolates collected from different regions in the U.S. also produced different types of 

reactions on the same soybean accession (Pham et al. 2009). Thus, developing broad spectrum 

durable ASR resistance has not been successful.  

Recently, microarray studies have been conducted to understand how soybean rust 

infects the host and how the host responds to pathogen attack at the molecular level using 

resistant lines containing the Rpp1 or Rpp2 resistance genes (Choi et al. 2008; van de Mortel et al. 

2007). It was found that most of the rust infection induced genes were defense-related, and these 

genes were induced earlier and with higher intensity in a resistant line. However, a microarray 

analysis is limited to gene expression at the transcript level, which may have a poor correlation 

with its expression at protein level (Gygi et al. 1999). A proteomic approach has been 

successfully used to examine host-pathogen interactions in studies between bean and Uromyces 

appendiculatus (Lee et al. 2009), barrel-clover and Orobanche crenata (Castillejo et al. 

2009), wheat and Puccinia triticina (Rampitsch et al. 2006), rice and Magnaporthe grisea (Kim 

et al. 2004), and between maize and Aspergillus flavus (Chen et al. 2004). Kim et al. (2004) 

found several pathogen-responsive proteins induced earlier and stronger in an incompatible 

interaction than a compatible one in rice during the rice blast fungus infection, including ß-1,3-

glucanases, peroxidase, and pathogenesis-related 10. They concluded that a timely expression of 
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defense-related proteins was important for conferring host resistance. Proteomic comparison 

between Medicago truncatula and Orobanche crenata identified differentially expressed defense 

and stress-related proteins between early-resistant and late-resistant genotypes and after pathogen 

inoculation (Castillejo et al. 2009). They also suggested the existence of a functional genetic 

defense mechanism during early stages of infection that differed between the two genotypes. A 

proteomic approach also has been used to study soybean and ASR interaction in our laboratory 

(Park et al. 2010). Differentially expressed proteins belonging to plant defense, protein 

modification, and development were identified in this compatible interaction. Moreover, a 

follow-up time-course study showed that proteins relating to defense mechanisms were rapidly 

induced responded fast with higher levels after ASR infection. 

 In this study, we screened 12 accessions previously identified as resistant to rust isolates 

from other regions to determine their response upon inoculation with a LA rust isolate, and 

compared leaf protein profile differences between two resistant and two susceptible soybean 

lines with or without inoculation. Protein profiles of two resistant lines were compared with each 

of two susceptible accessions separately. Common spots only induced by ASR infection in both 

resistant lines after separate comparisons to each of the susceptible accessions were selected for 

sequencing and identification to attempt to elucidate the molecular basis of resistance of soybean 

to Asian soybean rust disease. 

 

4.2 Materials Methods   
 

4.2.1 Plant Material 

Twelve soybean accessions, PI200492, PI230970, PI462312, PI417089A, PI518671, 

PI398998, PI437323, PI506863, PI398288, PI587905, PI567351B, and PI567104B, were 

screened in this study using a LA ASR isolate. PI548631 (Williams) and a commercial cultivar, 
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93M60 (Pioneer, Johnston, IA) were used as susceptible plant genotype in this study. Seeds were 

kindly provided by the Plant Genetic Resources Unit, USDA-ARS, Urbana, IL. Soybean plants 

were grown in 20-cm-diameter plastic pots (four plants per pot) in the greenhouse.  

4.2.2 Inoculation of Detached Soybean Leaves and Plants in the Greenhouse with 

P. pachyrhizi 

 

Asian soybean rust (Phakopsora pachyrhizi) urediniospores used for this study were 

collected from naturally infected soybean leaves (10/20/2007) at the Ben Hur Experiment Station, 

of Louisiana State University located in Baton Rouge, LA and kept at -80 °C. The frozen spores 

were resuspended in deionized water containing 0.01% Tween 20 after warming up to room 

temperature.  

For the detached leaf assay, four pots were prepared for each accession, and the fourth to 

sixth trifoliate leaves were collected at R1 to R2 growth stages for inoculation with a rust spore 

suspension. Spore concentration was determined using a hemocytometer and adjusted to 2500 

spores/ml. Two hundred microliters of inoculum containing, 500 spores were applied evenly to 

the adaxial surface of each of the detached soybean leaves that had been washed three times with 

deionized water and air-dried. Inoculated leaves were placed adaxial surface up on filter paper 

soaked with sterile, distilled water in 9-cm-diameter Petri dishes. The inoculated leaves were 

incubated under the following conditions: 26 ± 0.5 °C, 16 h day (about 50 µE S
-1

m
-2

) and 20 ± 

0.5 °C, 8 h night. High moisture inside Petri dishes was maintained by adding 3 ml of deionized 

water every 4 days. Total numbers of lesions were counted at 14 days after infection. This 

experiment was conducted twice with two replicates during 2007 and 2008 using same spors. 

Each replicate consisted of 24 detached soybean leaves: half of them inoculated with rust 

urediniospores and the other half with water containing 0.01% Tween 20. The data from two 
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repeated experiments were combined and compare mean number of lesions per leaf between 

accessions.  

For greenhouse accession evaluation, 39 pots, 3 pots for each soybean accessions, at R1 

or R2 grown stage were inoculated by spraying 200 ml of a urediniospore suspension at 5 x 10
4
 

spores per ml and maintained at 25 °C in the dark with 100% humidity for 2 days before 

returning to greenhouse. One pot containing four plants for each accession was inoculated with 

100 ml of water containing 0.01% Tween 20 as a control. Total number of lesions was counted at 

14 days after infection. This greenhouse evaluation was conducted twice concurrent with the 

detached leaf assay.       

4.2.3 Sample Preparation of Two Resistant, PI417089A and PI567104B, and Two 

Susceptible, PI548631 and 93M60 for Proteomic Analysis. 

   

    Two resistant, PI417089A and PI567104B, and two susceptible, PI549631 and 93M60 

were selected for comparison to identify commonly up-regulated proteins in both infected 

resistant accessions after comparison to infected susceptible lines with P. pachyrhizi. One 

hundred sixty plants in 40 pots at R1 or R2 grown stage of two resistant and two susceptible 

accessions were inoculated by spraying 200 ml of a urediniospore suspension with 5 x 10
4
 

urediniospores per ml and maintained at 25 °C in the dark with 100% humidity for 2 days before 

returning to greenhouse. Another 160 plants in 40 pots were sprayed with 200 ml of sterile, 

distilled water containing 0.01% Tween 20 for each accession to serve as controls. The fifth to 

sixth trifoliate leaves from non-inoculated and inoculated plants were harvested at each time 

point, 0 h, 6 h, 10 h, 1, 2, 4, 6, and 12 d, after inoculation and frozen immediately using liquid 

nitrogen. Soybean leaf tissue was ground in liquid nitrogen using a mortar and pestle. Protein 

was extracted using phenol followed by methanolic ammonium acetate precipitation according to 

Hurkman and Tanaka (1986). Pellets were washed twice with ice-cold 0.1 M ammonium acetate 
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in 100% methanol with 10 mM DTT and twice with 80% acetone with 10 mM DTT. Washed 

pellet was dried and stored at -30 °C. This experiment was conducted twice and each sample was 

run in triplicate. 

4.2.4 Gel Electrophoresis, Staining, and Analysis 

 

Protein pellets were solubilized in lysis buffer (8 M urea, 4% CHAPS, 40 mM DTT, and 

2% wt/vol IPG buffer). The mixture was centrifuged for 10 min at 14,000 rpm at 20 °C. 

Supernatant was transferred to a new tube and protein concentration was measured using the 

Bradford method (Bradford, 1976). Immobiline DryStrip (pH3.0 to 10.0 NL, 24 cm; GE 

healthcare Biosciences, Pittsburgh, PA) were rehydrated overnight at room temperature in 350 μl 

of rehydration solution (8 M urea, 2% CHAPS, 20 mM DTT, bromophenol, and 0.5% IPG buffer) 

with 150 μg of protein for silver staining (analytical) and in 450 μl of rehydration solution with 

700 μg protein for Coommasie blue staining (preparative). The first and second dimensions of 

gel electrophoresis were performed essentially as described in Chapter 3 in this thesis. Protein 

spots in analytical gels were stained with Silver Stain Kit (Bio-Rad) and preparative gels were 

stained with 0.125% Coomassie Brillant Blue R-250 (Chen et al. 2004). All stained gels were 

scanned using a PowerLook II scanner (UMAX data systems, Taiwan) and analyzed using the 

Progenesis software (Nonlinear USA Inc, Durham, NC) to identify differentially expressed 

protein spots. Protein profiles from leaf collected at 1 dai were were analized to find common 

spots which showed over 1.5-fold difference in both infected resistant accessions compared to 

the controls with the p≤0.05 after Student t-test using SAS (version 9.1; SAS Institute, Cary, NC) 

Among those spots, 16 spots were selected for sequencing. Gel comparison strategies were 

illustrated in Figure 4.6.  
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 4.2.5 Peptide Sequencing 

 

             Protein spots were recovered from three Coomassie-stained prep 2-D gels. These spots 

were subjected to an in-gel trypsin digestion (Shevchenko et al. 1996) and sequenced using 

liquid chromatography and tandem mass spectrometry (LC-MS/MS) at the Pennington 

Biomedical Center (Baton Rouge, LA). 

4.2.6 Database Sequence Homology Analysis 

 

           Resulting peptide sequences were compared using BLAST (Altschul et al. 1997) to 

known protein in the databases at the National Center for Biotechnology Information (NCBI) 

and SWISS-Prot to determine their identities or homologies. 

4.2.7 Fungal DNA Extraction and Absolute Quantification Using Real-time PCR  

Genomic DNA was extracted from infected leaves collected at each time-point, 0 h, 6 h, 10 

h, 1, 2, 4, 6, and 12 d using DNeasy plant maxi kit (Qiagen). Absolute quantification using real- 

time PCR was conducted with specific primers (forward: Ppm1 5′-

GCAGAATTCAGTGAATCATCAAG-3′and reverse: Ppa2 5′-

GCAACACTCAAAATCCAACAAT-3′) and probes (5′-FAM-

CCAAAAGGTACACCTGTTTGAGTGTCA-TAMRA-3′(Frederick et al. 2002)  ampifying 

internal transcribed spacer (ITS) region Phakopsora pachyrhizi using Taqman 2x Universal PCR 

Master  Mix (Applied Biosystems) in 25 µl reaction volume with 10 ng of genomic DNA, 12.5 

µl of 2x universal PCR mixture, and 5 µM of each primer. ABI PRISM 7000 Sequence 

Detection System (Applied Biosystems) was used for real-time PCR under standard conditions. 

Amount of fungal DNA was calculated using a standard curve. Fungal DNA was extracted from 

total pure 4 x 10
6 
spores using DNeasy plant maxi kit (Qiagen) to generate a fungal DNA 

standard curve. Amount of fungal DNA extracted from 4 x 10
6 
spores was 25 ng/µl. Ten-fold 

serial dilutions were prepared from 25ng/µl to 0.25pg/ µl. One µl of template was used for real-
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time PCR using the same conditions described above. PCR efficiency was 98%, R
2 

was 0.99, and 

the slope was -3.35 for the standard curve.       

4.3 Results 
 

4.3.1 Screening Soybean Accessions to Identify Resistant to a LA Soybean Rust Isolate 

Using a Detached-Leaf Assay and Greenhouse Evaluation 

 

A high number of tan lesions with many sporulating pustles were detected in both the 

detached leaf assay and greenhouse inoculation on accessions, PI548631 (William), PI 518671 

(William 82), PI398998, PI437323, PI506863, PI398288, PI587905, and PI567351B (Fig. 4.1, 

Fig. 4.2) indicating a susceptible reaction. PI230970 containing Rpp2, which is an ASR resistant 

gene, showed a reddish-brown (RB) reaction (Fig 4.2) with a few sporulating pustules (Fig. 4.1) 

and fewer number of urediniospores in both the detached leaf assay and greenhouse inoculation. 

PI462312 containing Rpp3 showed an RB reaction with few sporulating pustles (Fig. 4.1) and 

urediniospores only in the greenhouse inoculation. It showed immune reaction in the detached 

leaf assay. PI200492 (also containing Rpp2), PI417089A and PI567104B showed an immune 

reaction (Fig 4.2) in both the detached leaf assay and greenhouse inoculation. Commercial 

cultivar, 93M60, produced a tan reaction with a similar number of lesions between the detached 

leaf assay and greenhouse inoculation (Fig. 4.1, Fig 4.2).  

More lesions were observed on the greenhouse inoculated leaves, which contained 

upto10 times higher numbers of soybean rust urediniospores per leaf than the inoculated 

detached leaves of the same accession. The detached leaf assay didn‘t showed significant 

variation in number of lesions among the accessions resulting tan or reddish-brown ractions, 

whereas the greenhouse inoculation method resulted in significant variation among the 

susceptible accessions. Although the number of lesions produced on leaves of same accession 

varied between the two methods, the reaction type was same for all accessions with both 
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methods (Fig 4.2). Evaluation results in this study were compared to results from studies 

conducted by others (Table 4.1). The types of reaction for most soybean accessions to the study 

LA ASR isolate were similar to what was reported in previous studies except for PI417089A, 

PI398998, PI398288, and PI567104B. Tan and RB reactions were detected on leaves of 

PI417089A after infection with Vietnam and Nigeria isolates (Adeleke et al. 2006; Vuong et al. 

2006), respectively, whereas this accession showed immune reaction to the LA isolate. PI398998 

showed an RB reaction after infection with a Vietnam isolate, but it responded to the LA isolate 

infection as a tan reaction (Table 4.1).  PI398288 and PI567104B showed immune and RB 

reactions with sporulation to a Paraguay isolate, while they exhibited an RB reaction with 

sporulation and an immune reaction to the LA ASR isolate, respectively. 

 
Figure 4.1. Comparison of mean number of lesions per leaf among different accessions using 

detached leaf assay and greenhouse inoculation with a LA ASR soybean rust isolate. The number 

of lesions was counted at 14 days after inoculation. Bars represent standard deviation.
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Figure 4.2. Different types of host reactions 14 days after LA soybean rust isolate infection. A, Immune reaction; B, reddish-brown 

reaction; C, tan reaction.
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Table 4.1. Comparison of reaction types of various accessions between this study and studies 

conducted by others. 

Accession Maturity 

group 

Reaction type                       

(By others) 

Named 

single 

gene 

Reaction type 

using a LA 

ASR isolate 

PI200492 VII RB with sporulation  to LA 

isolate, Pham et al. 2009 

Rpp1 Immune or RB  

PI230970 VII RB with sporulation  to LA 

isolate, Pham et al. 2009 

Rpp2 RB with 

sporulation 

PI462312 VIII RB with sporulation  to LA 

isolate, Pham et al. 2009 

Rpp3 RB with 

sporulation 

PI417089A IX Tan to Vietnam isolate,     

Vuong et al. 2005                 

RB to Nigeria isolate,     

Adeleke et al. 2006 

 Immune 

PI548631 III Not tested Williams Tan 

PI518671 III Tan to LA  isolate,              

Pham et al. 2009 

Williams 

82 

Tan 

PI398998 VI RB to Vietnam isolate,     

Vuong et al. 2005 

 Tan 

PI437323 III RB to LA  isolate,    Pham 

et al. 2009 

 RB 

PI567351B III  RB with sporulation to 

Paraguay isolate, Miles et 

al. 2008 

 RB with 

sporulation 

PI506863 IV RB with sporulation to 

Paraguay isolate, Miles et 

al. 2008 

 RB with 

sporulation 

PI398288 V Immune to Paraguay 

isolate, Miles et al. 2008 

 RB with 

sporulation 

PI587905 VII Tan to LA  isolate,   Pham 

et al. 2009 

 Tan 

PI567104B IX RB with sporulation to 

Paraguay isolate, Miles et 

al. 2008 

 Immune 
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4.3.2 Comparison of P. pachyrhizi DNA Accumulation in Inoculated Leaves between Two 

Resistant and Two Susceptible Accesions 

 

Successful fungal infection was verified by measuring the abundance of fungal DNA using real-

time PCR in two resistant and two susceptible accessions. Ct value was converted to the fungal 

DNA amount compared to the standard curve generated by serial dilution of P. pachyrhizi 

genomic DNA. Significantly different fungal DNA accumulation was detected from 4 dai 

between the resistant and susuceptible lines.At 4 dai, 7.4 and 8 pg of fungal DNA per 1 ng of 

infecected soybean DNA were detected from susceptible accessions, PI548631 and 93M60, 

respectively. They were about 40 times higher than amount of fungal DNA initially used for 

inoculation at 0 hai, and 7 and 40 times higher than fungal DNA accumulation of the resistant 

lines, PI567104B and PI417089A. At 12 dai, 178 and 280 pg of fungalDNA per 1 ng of infected 

soybean DNA were detected from susceptible accessions, PI548631 and 93M60, respectively. 

They were about 900 to 1400 times higher than amount of fungal DNA initially used for 

inoculation at 0 hai, and about 100 and 1400 times higher than fungal DNA accumulation of the 

resistant lines, PI567104B and PI417089A. While the two susceptible lines had similar levels of 

fungal DNA accumulation, different amounts of fungal DNA were detected between the resistant 

accessions with PI567104B accumulating 14 times higher fungal DNA than PI417089A, which 

showed almost no fungal accumulation (Fig 4.3). However, PI567104B still showed an immune 

response to the LA ASR isolate (Fig 4.2). 

4.3.3 Protein Profile Comparisons between Two Resistant and Two Susceptible Accessions 

at One Day after Infection 

 

 We detected slightly different amounts of fundgal DNA accumulation between two 

resistant and two susctible lines from 2 dai. We think proteins involved in this difference may be 

expressed ahead of 2 dai. This is the reason that we decided to compare protein profiles of 

resistant to susceptible accessions at 1 dai (Fig 4.4).  
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Figure 4.3. Accumulation of soybean rust DNA in infected leaves of four different accessions 

during the time-ourse of rust infection using quantitative real-time PCR.  
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Induced protein spots were found in both infected resistant accessions after separate comparisons 

to each susceptible accession. First, 40 spots were found up-regulated after the comparing 

protein profile of infected resistant line PI417089A at 1 dai to that of infected susceptible 

PI548631 (Table 4.2). Second, 26 proteins were found induced after comparing protein profile of 

infected resistant, PI567104B at 1 dai to the same infected susceptible PI548631 (Table 4.3). 

Among them, 18 protein spots were found commonly induced by P. pachyrhizi infection in both 

resistant accessions (Table 4.4). In order to subtract protein spots that were induced in resistant 

accessions compared separately to the same susceptible accessions without rust infection at 1 dai, 

u-pregulated proteins in non-inoculated resistant accessions also were identified. First, 30 

constitutively expressed proteins were identified as up-regulated in non-infected resistant 

PI417089A at 1 day after water inoculation compared to that of water-inoculated susceptible 

PI548631 (Table 4.5). Second, 31 constitutively expressed proteins were found up-regulated in 

water-inoculated resistant PI567104B at 1 dai compared to that of water-inoculated susceptible 

PI548631 (Table 4.6). Among them, 18 of the constitutively expressed common protein spots 

were found up-regulated in both water-inoculated resistant accessions compared to PI548631 

(Table 4.7). Thirty protein spots specifically induced by P. pachyrhizi infection in resistant 

accession (PI417089A) were identified (Table 4.8) after subtraction of constitutively expressed 

protein spots induced in non-infected resistant accession (PI417089A) compared one non-

inoculated susceptible accession (PI548631) (Table 4.5) from upregulated protein spots by ASR 

infection in PI417089A (Table 4.2). Seventeen protein spots specifically induced by P. 

pachyrhizi infection in another resistant accession (PI567104B) were identified in the same 

manner as above (Table 4.9). Finally, eight common spots were found between spots induced by 

ASR in PI417089A and PI567104B (Table 4.10). All protein spots found in this comparison 

were marked with asterisk on the gel image (Fig 4.5).  
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 The same comparison scheme was used to compare protein profile differences between 

the same two resistant lines and another susceptible soybean cultivar 93M60. First, 42 spots were 

found up-regulated in infected resistant PI417089A at 1 dai compared to the protein profile of 

infected susceptible 93M60 (Table 4.11). Second, 39 protein spots were induced in infected 

resistant PI567104B at 1 dai compared to the protein profile of infected susceptible 93M60 

(Table 4.12). Among these spots, 22 were found commonly induced by ASRin both infected 

resistant accessions (Table 4.13) after comparing spots in Table 4.11 with spots in Table 4.12. In 

order to subtract protein spots that were induced in resistant lines compared to susceptible lines 

without rust infection at 1 dai, upregulated proteins in water-inoculated resistant lines also were 

identified. In water-inoculated resistant PI417089A, 21 constitutively expressed protein spots 

were found up-regulated at 1 dai compared to the protein profile of water-inoculated susceptible 

93M60 (Table 4.14). In the other water-inoculated resistant, PI567104B, 32 constitutively 

expressed protein spots were found up-regulated compared to that of water-inoculated 

susceptible 93M60 (Table 4.15). Among them, 15 spots were found commonly up-regulated in 

both water-inoculated resistant accessions (Table 4.16). Thirty-four protein spots were 

specifically induced by P.pachyrhizi infection in resistant PI417089A after subtraction of 

constitutively expressed protein spots in non-infected resistant PI417089A identified by 

comparison to  non-inoculated susceptible 93M60 (Table 4.17) from protein spots up-regulated 

in PI417089A (Table 4.11). Thirty protein spots specifically induced by ASR in the other 

resistant PI567104B were identified in the same manner as above (Table 4.18). Finally, 15 

common spots were found between spots induced by ASR in PI417089A and PI567104B (Table 

4.19). Positions of these spots were marked on the gel images with asterisk (Fig 4.6).      
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Figure 4.4. Schematic diagram of protein profile comparisons between resistant (PI417089A and PI567104B) and susceptible 

(PI548631 and 93M60) accessions at 1 day after infection in order to identify differentially expressed proteins.
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Table 4.2. Identification of up-regulated protein spots and their fold changes in infected soybean 

leaves of resistant accession (PI417089A) compared to the protein profile of one infected 

susceptible (PI548631) at 1 dai. This table represents the comparison A listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3. Identification of up-regulated protein spots and their fold changes in infected soybean 

leaves of resistant accession (PI567104B) compared to the protein profile of one infected 

susceptible (PI548631). This table represents the comparison B listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Identification of common spots up-regulated in both resistant accessions (PI417089A 

and PI567104B) through the comparison of Table 4.2 and Table 4.3. This table represents the 

comparison C listed in Figure 4.4.      

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

48 2.802 483 2.397 790 1.518 1378 1.809 

91 8.344 524 2.62 854 1.977 1405 2.06 

186 2.869 549 1.747 927 1.733 1456 2 

201 2.671 574 3.658 1103 1.702 1589 1.862 

207 4.02 616 2.119 1139 1.989 1621 1.713 

274 2.987 688 1.644 1238 1.958 1677 1.335 

351 4.693 699 2.131 1240 2.246 1827 1.474 

374 2.182 755 2.004 1249 2.234 1860 1.6 

382 1.789 760 1.749 1340 2.017 1890 1.633 

419 3.663 781 2.368 1352 2.063 2174 1.5 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

91 10.418 816 1.762 1378 1.9 1677 2.048 

274 1.773 929 2.778 1423 1.4 1827 1.666 

380 1.783 1139 2.27 1442 1.941 1860 1.6 

382 2.825 1249 1.886 1456 2 1890 1.7 

483 1.528 1249.1 5.7 1589 1.805 1977 1.435 

760 1.71 1340 1.035 1603 1.346 2289 1.5 

781 2 1352 2.318 1621 1.586 
  

Spot number Fold change Spot number Fold change 

 
PI417089A PI567104B 

 

PI417089A PI567104B 

91 8.344 10.418 1378 1.809 1.9 

274 2.987 1.773 1442 1.363 1.941 

382 1.789 2.825 1456 2 2 

483 2.397 1.528 1589 1.862 1.805 

760 1.749 1.71 1621 1.713 1.586 

781 2.368 2 1677 1.335 2.048 

1139 1.989 2.27 1827 1.474 1.666 

1249 2.234 1.886 1860 1.6 1.6 

1340 2.017 1.035 1890 1.633 1.7 
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Table 4.5. Identification of constitutively expressed protein spots induced in non-infected 

soybean leaves of resistant accession (PI417089A) compared to the protein profile of one non-

infected susceptible (PI548631). This table represents the comparison D listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6. Identification of constitutively expressed protein spots induced in non-infected 

soybean leaves of resistant accession (PI417089A) compared to the protein profile of one non-

infected susceptible (PI548631). This table represents the comparison E listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.7. Identification of common constitutively expressed protein spots induced in both non-

infected resistant accessions (PI417089A and PI567104B) through the comparison of Table 4.5 

and Table 4.6. This table represents the comparison F listed in Figure 4.4.      

 

 

 

 

 

 

 

 

 

 

 

 

 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

46 3.389 1357 2.358 1976 1.733 2177 1.569 

48 9 1368 2.336 1981 1.728 2226 1.512 

82 3.275 1420 1.989 2000 1.5 2258 1.5 

539 4.22 1442 1.749 2071 1.662 2472 1.354 

972 1.5 1555 1.688 2072 1.662 2512 1.7 

973 2.826 1897 1.762 2080 1.655 2514 2.5 

1132 1.5 1909 1.523 2107 1.441 
  1147 2.285 1937 1.759 2129 1.601 
  

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

46 6.753 1132 1.6 1853 1.79 2107 1.266 

48 9 1147 1.707 1897 1.568 2226 1.533 

138 7 1168 1.546 1909 1.776 2469 3 

443 3.776 1368 1.71 1937 1.754 2472 1.247 

540 3.7 1378 1.83 1976 1.535 2514 2.3 

563 1.709 1420 1.567 1981 1.663 
  604 2.244 1442 2.255 2000 1.5 
  972 1.772 1657 2.01 2071 1.3 
  1109 2.717 1762 1.569 2073 1.51 
  

Spot 

number 
Fold change 

Spot 

number 
Fold change 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

46 3.389 6.753 1909 1.523 1.776 

48 9 9 1937 1.759 1.754 

972 1.5 1.772 1976 1.733 1.535 

1132 1.5 1.6 1981 1.728 1.663 

1147 2.285 1.707 2000 1.655 1.5 

1368 2.336 1.71 2107 1.441 1.266 

1420 1.989 1.567 2226 1.512 1.533 

1442 1.749 2.255 2472 1.354 1.247 

1897 1.762 1.568 2514 2.5 2.3 
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Table 4.8. Identification of protein spots specifically induced by ASR infection in resistant 

accession PI417089A after subtraction of constitutively expressed protein spots (Table 4.5) from 

protein spots up-regulated in response to ASR in PI417089A (Table 4.2). This table represents 

the comparison G listed in Figure 4.4.   

 

 

 

 

 

 

 

 

 

 

Table 4.9. Identification of protein spots specifically induced by ASR infection in resistant 

accession PI567104B after subtraction of constitutively expressed protein spots (Table 4.6) from 

protein spots up-regulated in response to ASR in PI567104B (Table 4.3).  This table represents 

the comparison H listed in Figure 4.4.  

 

 

 

 

 

 

 

 

 

 

Table 4.10. Identification of common protein spots specifically induced by P.pachyrhizi between 

infected two resistant accessions (PI417089A and PI567104B) by comparing the results in Table 

4.8 to Table 4.9. This table represents the comparison I listed in Figure 4.4.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

48 374 549 781 1249 1456 

186 382 574 790 1340 1589 

201 419 616 854 1352 1677 

207 483 688 927 1378 1860 

274 524 699 1103 1405 2174 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

274 929 1423 1860 

382 1249 1456 
 

483 1340 1589 
 

781      1352 1603 
 

816 1378 1677 
 

Spot number Fold change Spot number Fold change 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

274 2.987 1.773 1378 1.809 1.9 

382 1.789 2.825 1589 1.862 1.805 

483 2.397 1.528 1860 1.6 1.6 

781 2.368 2 1249 2.233 1.886 
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Figure 4.5. Comparison of soybean leaf 2-D protein profile differences between two resistant accessions (PI417089A and PI567104B) 

and one susceptible accession (PI548631) at 1 dai with P. pachyrhizi. The numbered spots were up-regulated in both resistant lines in 

response to ASR. The spots marked by asterisk were commonly induced in both infected resistant lines compared to infected 

susceptible one.
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Table 4.11. Identification of up-regulated protein spots and their fold changes in infected 

soybean leaves of resistant PI417089A compared to the protein profiles of infected susceptible 

93M60. This table represents the comparison J listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.12. Identification of up-regulated protein spots and their fold changes in infected 

soybean leaves of resistant accession PI567104B compared to the protein profile of infected 

susceptible 93M60. This table represents the comparison K listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.13. Identification of common spots up-regulated in both resistant accessions (PI417089A 

and PI567104B) through the comparison of Table 4.11 to Table 4.12. This table represents the 

comparison L listed in Figure 4.4. 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

91 4.089 742 1.652 1323 1.793 1579 1.746 

201 3.03 746 2.248 1327 1.465 1565 1.5 

232 1.685 811 2.223 1342 1.378 1647 1.546 

351 3.427 892 2.856 1340 1.5 1624 1.489 

435 2.155 927 2.783 1456 1.509 1663 1.626 

459 2.163 958 1.77 1458 1.723 1863 1.5 

539 1.991 1035 1.898 1471 1.758 1679 1.79 

605 1.987 1160 2.25 1503 1.959 1697 1.711 

696 1.556 1184 1.931 1523 1.701 1707 1.278 

699 2.623 1198 1.807 1542 1.506 
  728 1.945 1249 2.177 1571 1.648 
  

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

91 3.162 892 1.744 1249 1.598 1565 1.883 

214 5.888 927 1.854 1267 1.573 1571 1.852 

380 1.623 958 2.694 1278 1.748 1589 1.583 

435 4.291 963 1.686 1291 2.144 1597 1.853 

459 2.913 1035 1.759 1323 1.94 1640 1.673 

530 1.987 1111 1.578 1327 2.136 1647 1.812 

586 1.69 1130 2.4 1342 2.115 1663 1.8 

728 1.618 1160 1.956 1393 2.008 1676 1.792 

746 2.123 1184 1.595 1471 1.638 1249.1 4.5 

851 1.909 1245 1.925 1503 1.57   

Spot 

number Fold change 

Spot 

number Fold change 

Spot 

number Fold change 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

91 4.089 3.162 927 2.783 1.854 1458 1.723 1.424 

435 2.155 4.291 958 1.77 2.694 1471 1.758 1.638 

459 2.163 2.913 1035 1.898 1.759 1503 1.959 1.57 

728 1.945 1.618 1160 2.25 1.956 1523 1.701 1.324 

746 2.248 2.123 1184 1.931 1.595 1571 1.648 1.852 

851 1.461 1.909 1323 1.793 1.94 1647 1.546 1.812 

892 2.856 1.744 1327 1.465 2.136 1663 1.626 1.8 

  
 1249 2.177 1.5 
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Table 4.14. Identification of constitutively expressed protein spots induced in non-infected 

soybean leaves of resistant accession PI417089A compared to the protein profile of non-infected 

susceptible 93M60. This table represents the comparison M listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

Table 4.15. Identification of constitutively expressed protein spots induced in non-infected 

soybean leaves of resistant accession PI567104B compared to the protein profile of non-infected 

susceptible 93M60. This table represents the comparison N listed in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 Table 4.16. Identification of constitutively expressed protein spots induced in both non-infected 

resistant accessions (PI417089A and PI567104B) through the comparison of Table 4.14 to Table 

4.15. This table represents the comparison O listed in Figure 4.4.   

    

 

 

 

 

 

 

 

 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

46 1.929 972 1.5 1498 1.773 2080 1.627 

48 4.545 1132 2.595 1510 1.716 2112 1.613 

82 2.831 1168 1.5 1584 2.04 2350 3 

539 4.158 1378 1.5 1676 1.737 
  868 1.883 1448 1.879 1909 1.776 
  914 1.625 1485 1.869 2000 1.5 
  

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

Spot 

number 

Fold 

change 

46 3.845 1109 2.242 1443 2.206 1676 1.993 

48 4.707 1132 2.682 1448 1.55 1706 1.848 

138 4.7 1168 2.325 1485 1.944 1826 1.695 

313 2.281 1190 1.633 1498 2.022 2019 1.587 

540 4.218 1191 1.661 1502 1.607 2057 1.642 

868 1.996 1375 1.781 1510 1.789 2190 1.559 

914 2.514 1378 1.503 1531 1.5 2350 3 

972 1.758 1442 1.773 1584 2.01 2000 1.5 

Spot 

number Fold change 

Spot 

number Fold change 

Spot 

number Fold change 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

 

PI417089A 567104B 

46 1.929 3.845 1168 1.5 2.325 1510 1.716 1.789 

48 4.545 4.707 1378 1.5 1.503 1584 2.04 2.01 

868 1.883 1.996 1448 1.879 1.55 1676 1.737 1.993 

914 1.625 2.514 1485 1.869 1.944 2000 1.5 1.5 

1132 2.595 2.682 1498 1.773 2.022 2350 3 3 



 77 

Table 4.17. Identification of protein spots specifically induced by ASR infection in one resistant 

accession PI417089A after subtraction of constitutively expressed protein spots (Table 4.14) 

from protein spots up-regulated in response to ASR in PI417089A (Table 4.11). This table 

represents the comparison P listed in Figure 4.4. 

  

  

 

 

 

 

 

 

 

 

Table 4.18. Identification of protein spots specifically induced by ASR infection in resistant 

accession PI567104B after subtraction of constitutively expressed protein spots (Table 4.15) 

from protein spots up-regulated in response to ASR in PI567104B (Table 4.12).  This table 

represents the comparison Q listed in Figure 4.4.  

 

 

 

 

 

 

 

 

 

 

Table 4.19. Identification of common protein spots specifically induced by P. pachyrhizi 

infection between infected two resistant accessions (PI417089A and PI567104B) by comparing 

the result in Table 4.17 to Table 4.18. This table representsthe comparison R listed in Figure 4.4.   

 

 

 

 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

201 728 958 1198 1393 1542 1624 

232 742 1035 1249 1456 1571 1863 

605 746 1130 1327 1458 1579 1813 

696 811 1160 1342 1471 1565 1727 

699 892 1184 1340 1503 1647  

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

Spot 

number 

232 958 1160 1327 1503 1589 

586 963 1184 1342 1523 1597 

728 1035 1249.1 1393 1557 1640 

746 1111 1267 1458 1565 1647 

892 1130 1291 1471 1571 1676 

Spot 

numb

er Fold change 

Spot 

number Fold change 

Spot 

number Fold change 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

 

PI417089A PI567104B 

459 2.155 4.291 1035 1.898 1.759 1471 1.758 1.638 

728 1.945 1.618 1160 2.25 1.956 1503 1.959 1.57 

746 2.248 2.123 1184 1.931 1.595 1571 1.648 1.852 

892 2.856 1.744 1327 1.465 2.136 1647 1.546 1.812 

958 1.77 2.694 1458 1.723 1.424 1249 2.177 1.5 
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Figure 4.6. Comparison of protein profile differences between two resistant accessions (PI417089A and PI567104B) and one 

susceptible accession (93M60) at 1 day after with P. pachyrhizi inoculation. The numbered spots were up-regulated in both resistant 

lines in response to ASR. The spots marked by asterisk were commonly induced in both resistant lines compared to the susceptible one.  
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4.3.4 Sequencing and Identification of Common Protein Spots Induced by ASR Infection in 

Both Resistant Accessions    

 

Six from Eight spots induced in both resistant accessions by P. pachyrhizi infection 

compared to susceptible PI548631 (Table 4.10) and 8 from 15 spots that were induced in both 

resistant accessions only by P. pachyrhizi infection compared to the susceptible cultivar, 93M60 

(Table 4. 19) were recovered from Coommassie brilliant blue preparative gels (Table 4.20) for 

sequencing. Two additional spots, 91 and 1249.1 also were sequenced. Spot 91(spot 48 in non-

infected comparison) showed the highest protein expression in both non-infected resistant 

accessions compared to susceptible line PI548631, which had a low level of spot 91. The 

expression level of this protein spot also was high in both resistant lines after infection. When the 

protein levels of spot 91in the two resistant lines were compared to that of the other susceptible 

line 93M60, its expression level was relatively low because spot 91 was highly expressed in 

93M60. However, its expression level remained high after infection in both resistant accessions 

(Table 4.17; Table 4.18). Spot 1249.1 from infected PI 567104B and its corresponding spot 138 

from non-infected PI56704B was unique and constitutively expressed at a high level, and its 

expression level remained high after infection.  

Table 4.20. Summary of spots up-regulated over 1.5-fold in both resistant accessions in response 

to P. pachyrhizi infection that were selected for peptide sequencing. 

 

Two resistant vs. PI548631 Two resistant vs. 93M60 Additional spots 

1-274 

1-483 

1-781 

1-1378 

1-1589 

1-1860 

2-728 

2-958 

2-1160 

2-1184 

2-1471 

2-1571 

2-1647 

2-1977 

91  

1249.1 
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The obtained peptide sequences and identities of the sequenced protein spots are summarized in 

Table 4.21. The identities of protein spots induced in both resistant accessions by infection 

compared to susceptible PI548631 were lactoylglutathione lyase (spot 1-274, also known as 

glyoxalase I, EC4.4.1.5), 1-deoxyxylulose-5-phosphate reductoisomerase (spot 1-483), ATP 

synthase subunit delta (spot 1-781), elongation factor 2 (spot 1-1378), phosphoglycerate kinase 

(spot 1-1589), and SAM-2 (S-adenosylmethionine synthetase 2) (spot 1-1860). The identities of 

protein spots induced in both resistant lines compared to susceptible 93M60 include FKBP type 

peptidyl prolyl cis trans isomerase 3 (spot 2-728), a possible membrane associated 30 kDa 

protein (spot 2-958), a probable protein phosphatase 2C (spot 2-1160), a nucleoside diphosphate 

kinase (spot 2-1184), a cell division protease ftsH homolog 2 (spot 2-1471), a ferredoxin--NADP 

reductase (spot 2-1571), and the DNA repair protein RAD23 (spot 2-1647). Spot 1249.1 

uniquely present in infected PI567104B was identified as SAM22 (also known as PR10 protein). 

Spot 1977, down-regulated in PI567104B, was identified as a thylakoid lumenal 19 kDa protein. 

Spot 91 was identified as an oxygen evolving enhancer protein 1. The functions of these spots 

will be discussed in discussion section. 

4.3.5 Comparison of PR10 Expression between Two Resistant and Two Susceptible 

Accessions during the Time-course of Rust Infection 

  

In the previous chapter, we found that PR10 protein was induced earlier and more rapidly in 

response to ASR infection than any other protein in a compatible interaction. In considering 

using PR10 as a marker protein for initiating defense mechanism, we examined the time and 

level of PR10 expression in two resistant and two susceptible accessions during a time-course 

(Fig 4.7). Earliest PR10 protein expression was detected in PI417089A resistant accession at 6 h 

and 10 h after infection (hai) compared to the susceptible accessions. 
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Table 4.21. Identification of protein spots up-regulated in soybean leaves of two different 

resistant accessions inoculated with Phakopsora pachyrhizi through peptide sequencing using 

tandem mass spectrometry (MS/MS). 

Spot Top hit Organism GenBank pI MW 

(kDa) 

 Peptide sequences 

1-274 Lactoylglutathione 

lyase 

G. max Q9ZS21 5.5 21 3e-13 KESPSNNPGLHTTPDEATKG  

KGYIMQQTMFRI 

KVSLDFYSRV 

RFQNLGVEFVKK 

 

1-483 1-deoxyxylulose-

5-phosphate 

reductoisomerase 

O. sativa NP_001041

780 

5.7 51 

 

 

 

 

 

 

3e-07 

 

 

 

 

 

 

 

 

 

 

KAILAALEAGKD 

KISYLDIFKV 

RNESLIDELKE 

RVILTASGGAFRD 

KAVEMFIDEKI 

KVVELTCDAHQN 

KITIDSATLFNKG 

RIYCSEVTWPRL 

RAGGTMTGVLSAANEKA 

RLPILYTLSWPERI 

KETLIAGGPFVLPLAKKH 

 

1-781 ATP synthase 

subunit delta', 

mitochondrial 

 

P. 

sativum 

Q41000 7.7 21 7e-06 KVSPNIDPPKT 

TKLTVNFVLPYSSQLAAKE 

RIDANLVQKG 

LQEFTQKL 

NSATTDLEKR 

1-1378 Elongation factor 2 B. 

Vulgaris 

O232755 5.8 93 2e-04 RNMSVIAHVDHGKS 

KFSVSPVVRV KSDPVVSFRE 

KGVQYLNEIKD 

KEGALAEENMRG 

RIMGPNYVPGEKK 

KILSEEFGWDKE 

RGFVQFCYEPIKQ 

KEQMTPLSEFEDKL 

RNCDPEGPLMLYVSKM 

 

1-1589 Phosphoglycerate 

kinase  

chloroplastic  

N. 

tabacum 

Q42961 8.6 51 5e-11 KFAVGTEAIAKK 

KYSLAPLVPRL 

KRPFAAIVGGSKV 

RLSELLGIQVVKV 

KLASLADLFVNDAFGTAHRA 

KELDYLVGAVSSPKR 

KGVSLLLPSDVVIADKF 

KLVASLPDGGVLLLENVRF 

 

1-1860 SAM-2 (S-

adenosylmethionin

e synthetase 2) 

A. 

thaliana 

NP_192094 5.6 43 2e-12 KEHVIKPVIPEKY KSIVANGLARR 

KNGTCPWLRPDGKT 

RFVIGGPHGDAGLTGRK 

KTAAYGHFGRE 

RKNGTCPWLRPDGKT 

RGGPHGDAGLTGRK 

REDPDFTWEVVKPLKW 

KTIFHLNPSGRF 

KVLVNIEQQSPDIAQGVHGHLTKR 

KIIIDTYGGWGAHGGGAFSGKD 

RVHTVLISTQHDETVTNDEIAADL

KE METFLFTSESVNEGHPDKL 

KTNLVMVFGEITTKA 

KLCDQISDAVLDACLEQDPDSKV 
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Table 4.21 Continued 

Spot Top hit Organis

m 

GenBank pI MW 

(kDa) 

e-

value 

Peptide sequences 

2-728 FKBP type 

peptidyl prolyl cis 

trans isomerase 3  

chloroplastic 

A. 

thaliana 

NP_199380 8.8 22 3e-13 KVFDSSYNRG  

RGKPLTFRI 

2-958 Probable 

membrane 

associated 30 kDa 

protein 

chloroplastic 

P. 

sativum 

Q03943 9.5 35 2e-08 KSYADNASSLKA 

KILEQAVLEMNDDLTKM 

RQATAQVLASQKR 

KSYANAVLSSFEDPEKI 

2-1160 Probable protein 

phosphatase 2C 

10 

A. 

thaliana 

NP_174731 7.4 30 8.8 RVNGQLAVSRA KDDISCIVVRL 

KVMSNQEAVDVARK 

 

2-1184 Nucleoside 

diphosphate 

kinase 2  

chloroplastic 

S. 

oleracea 

Q01402 9.1 26 0.003 RGDLAVQTGRN  

KELAEEHYKD  

KLIGATDPLQAEPGTIRG 

 
2-1471 Cell division 

protease ftsH 

homolog 2, 

chloroplastic 

O. sativa Q655S1 5.5 73 8e-16 RFLEYLDKDRV 

KIVEVLLEKE 

KEIDDSIDRI 

KETMSGDEFRA 

KGVLLVGPPGTGKT 

RFLEYLDKDRV 

KSLVAYHEVGHAICGTLTPGHDA

VQKV 

KQDFMEVVEFLKK 

KAKENAPCIVFVDEIDAVGR Q 

RIVAGMEGTVMTDGKS 

RTPGFSGADLANLLNEAAILAGRR 

RVQLPGLSQELLQKL 

KTGVTFDDVAGVDEAKQ 

RLSDEAYEIALSQIRS 

KENAPCIVFVDEIDAVGRQ 

 
2-1571 Ferredoxin--

NADP reductase     

I. 

cylindric

a 

P84210 7.5 40 6e-06 RLVYTNDQGEIVKG 

RLYSIASSAIGDFGDSKT  

KGIDDIMVSLAAKD  

 

2-1647 DNA repair 

protein RAD23, 

putative 

A.thalian

a 

NP_198663 4.5 40 0.13 

 

RNSQQFQALRA 

2-1977 Thylakoid 

lumenal 19 kDa 

protein  

chloroplastic  

A.thalian

a 

P82658 7.4 24 1e-05 KEYLTFLAGFRQ 

KGTNGTDSEFYNPKK 

91 Oxygen evolving 

enhancer protein 

1 chloroplastic 

P. 

sativum 

P14226 6.2 34 7e-18 RVPFLFTIKQ 

KQLVASGKPDSFSGEFLVPSYRG 

RGASTGYDNAVALPAGGRG 

RDGIDYAAVTVQLPGGERV 

 

1249.1 Stress induced 

protein SAM22  

 

G. max X60043 4.4 17 2e-06 KALVTDADNVIPKA 

KSVENVEGNGGPGTIKK 
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Its expression remained high until 6 dai and then almost no expression was detected at 10 dai. In 

both susceptible accessions, PR10 protein spots appeared at 10 hai but its expression level was 

much less than in that of PI417089A during early stages of infection. PR10 then increased from 

4 dai and remained higher than resistant line PI417089A until 12 dai. Another resistant line, 

PI567104B showed a specific protein spot before inoculation. The position of this spot is unique 

compared to other accessions and is very close to PR10 protein spot. But sequencing result of 

this spot (1249.1) revealed that it is another isoform of PR10 (Table 4.21). The normal PR10 

protein spot appeared at 10 hai, but its expression level was much lower than in PI417089A and 

the susceptible accessions. It was slowly induced until 6 dai and reduced at 10 dai.  

4.4. Discussion  
 

4.4.1 Identification of Two Resistant Soybean Accessions Using Detached-leaf Assay and 

Greenhouse Inoculation 

 

Twelve accessions were screened using a LA ASR isolate. Most of the accessions were 

previously reported as resistant to isolates collected from other countries (Miles et al. 2008). 

Soybean accessions containing single gene resistance to rust also were tested using the LA 

isolate in this study. The number of lesions from the detached-leaf assay compared to those 

resulting from greenhouse inoculations was significantly lower in susceptible accessions. Similar 

numbers of lesions were observed in all accessions showed tan and RB reaction in the detached -

leaf assays, whereas the number of lesions was variable among them in greenhouse inoculations. 

One possible explanation is that the same number of urediniospores was applied on the leaves of 

all the accessions for the detached-leaf assay. In addition, the environmental conditions were 

more strictly controlled for disease development in the detached-leaf assay compared to 

greenhouse inoculations. 
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Figure  4.7. Changes of PR10 protein spot in two resistant (PI417089A and PI567104B) and two susceptible (PI548631 and 93M60) 

accessions during the time-course of rust infection. Red circle indicates the PR10 protein spot.
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However, PI200492, PI417089A, and PI567104B produced consistent immune reactions 

to LA ASR isolate in both assays. In a previous study (Twizeyimana et al. 2007), field, 

greenhouse, and detached-leaf evaluation have been compared. They concluded that a detached-

leaf assay is a very reliable and rapid method to discriminate rust resistance in soybean under 

laboratory conditions since all disease evaluation data from the three screening methods were 

well-correlated (Twizeyimana et al. 2007). Differences in the reaction of the accessions to the 

LA isolate were observed and compared to the reactions reported by others using different 

isolates in earlier studies, such as PI417089A, PI398998, PI398288, and PI567104B. These 

accessions have been reported to have tan or RB, immune, and RB with sporulation responses to 

ASR, respectively (Miles et al. 2008), but they produced a different reaction to the LA isolate in 

this study. Our data agree with the study by Pham et al. (2009), in which soybean accession 

showed a different reaction type to different rust isolates.      

4.4.2 Differential Fungal DNA Accumulation between the Resistant and Susceptible 

Accessions as well as between the Two Resistant Soybean Accessions  

 

A significantly higher level of soybean rust fungal DNA accumulated in both susceptible 

accessions compared to the two resistant accessions. Fungal DNA accumulated in PI417089A 

whereas a limited amount of fungal DNA accumulated in PI567104B, indicating that these two 

resistant accessions may have different defense mechanisms. Pham et al. (2009) arrived at a 

similar conclusion in their soybean accession study, in which they showed that many identified 

sources of resistance included in the study had reaction patterns different from the genotypes 

possessing the known resistance genes Rpp1-4. They suggested that additional resistance genes 

are present in these genotypes (Pham et al. 2009). 

 When protein profiles of two resistant accessions were compared to with one susceptible, 

separately following infection, different unique spots were induced in each infected resistant 
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accessions in addition to common spots induced in both resistant accessions. These uniquely 

induced spots could be realted to different defense mechanisms resulting in different amount of 

fungal DNA accumulation. The study results suggest both different and common defense 

mechanism, which is conferred by the common spots induced after infection, they also have their 

own unique defense mechanisms, which determines their degree of resistance.The unique spots 

up-regulated in each infected resistant accession should be sequenced and characterized in the 

future  

4.4.3 Differential Protein Expressions in Two Resistant Accessions Compared to Two 

Susceptible Accessions With and Without ASR Infection 

 

 Some of the induced protein spots found in infected resistant accessions were 

constitutively expressed at high levels in the same accession before inoculation. These pre-

existing proteins were probably involved in a basal defense mechanism associated with MAMP 

(microbe-associated molecular patterns) recognition (Creelman and Mullet et al. 1995; van Loon 

et al. 2006). In this study, an attempt was made to identify spots that were commonly induced 

only in both resistant accessions (after subtracting highly expressed constitutive protein spots), 

that might be involved in a inducible basal host defense mechanism or the repaire of a weak 

basal defense (Lee et al. 2009). We also found a few of the spots, 1249 and 1340, that were up-

regulated at 1 dai in resistant accessions matched to the identified spots discussed in the previous 

chapter identifying differentially expressed proteins during the compatible interaction between 

soybean and soybean rust interactions based on their physical locations in 2-D protein profiles. 

Spot 1249, which was up-regulated in both resistant lines only after ASR infection matched to 

PR10, and spot 1340, which was only induced in one resistant PI417089A after ASR infection, 

was matched to the previously identified CHI1. In this study, time-course experiment of PR10 

showed that it was up-regulated from 6 hai and CHI1 induction was detected at 1 dai in resistant 
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which is 5 days earlier than the expression found in compatible interactions from previous study. 

It implies that PR10 and CHI1 protein may be involved in the basal defense mechanism in 

resistant accessions.  

4.4.4 Possible Involvement of Infection Induced Proteins in Soybean Resistance to P. 

pachyrhizi  

 

 Spots, 1-274, 1-483, 1-781, 1-1378, 1-1589, and 1-1860 were identified from 

comparisons with susceptible PI548631. Spot 1-274 showed high homology to lactoylglutathione 

lyase (commonly known as glyoxalase I), which functions in detoxification of methylglyoxal and 

2-oxoaldehydes that can chemically damage several components of the cell (Chen et al. 2004). A 

transcript of this protein was up-regulated in sorghum during attack by phloem-feeding aphid. It 

also was suggested that an accumulation
 
lactoylglutathione lyase and detoxification of ROS 

simultaneously occur in greenbug-stressed
 
sorghum seedlings (Zhu-Salzman et al. 2004).  

Spot 1-483 showed a high homology (83%) to 1-deoxyxylulose-5-phosphate 

reductoisomerase, which is involved in isoprenoids synthesis (Lange et al. 2000). Isoprenoids 

play essential roles in plants as hormones, photosynthetic pigments, electron carriers, membrane 

components, signal transduction and defense (Mahmoud and Croteau 2001). Over-expression of 

1-deoxyxylulose-5-phosphate reductoisomerase in mint resulted in elevated level of isoprenoids 

and an increase of essential oil production (Mahmoud and Croteau 2001).  

Spot 1-781 was identified as the ATP synthase subunit delta protein, which functions in 

producing ATP from ADP by H
+
 gradient. Induction of ATPase was detected in tomato 

containing Cf5 resistant protein challenged by the avr5 gene products from race 4 of
 

Cladosporium fulvum (Vera-Estrella et al. 1994).  

Spot 1-1378 showed a high homology to the elongation factor 2, which is normally 

generated by pathogens as an elicitor (Dallo et al 2002; Kunze et al. 2004). 
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 Spot 1-1589 showed high homology to a phosphoglycerate kinase (Q42961, Bringloe et 

al. 1996). It has been reported that nitric oxide interplays with Ca
2+

 and protein kinases including 

phosphoglycerate kinase to initiate nitric oxide signaling in Arabidopsis cell suspension culture 

treated with the NO-donor S-nitrosoglutathione (Lindermayr et al. 2005).  

Spot 1-1860, a SAM-2 (S-adenosylmethionine synthetase 2), has been discussed in the 

previous chapter 3, in which it is involving in plant metabolisms as well as defense mechanism. 

Spots, 2-728, 2-958, 2-1160, 2-1184, 2-1471, 2-1571, 2-1647, and 2-1977 were identified 

from comparisons with susceptible 93M60. Spot 2-728 showed a high sequence similarity (89%) 

to the FKBP (FK506-binding protein) type peptidyl-prolyl cis-trans isomerase (PPIase) 3 from 

Arabidopsis (NP_199380; Gupta et al. 2002). This protein is reported to regulate folding, 

assembly, and trafficking of substrate proteins, and to act as a molecular chaperone (Wang and 

Heitman 2005; Lima 2006). Recombinant FKBP protein cloned from Chinese cabbage (Brassica 

campestris L. ssp. pekinensis) and over-expressed in Escherichia coli showed peptidyl−prolyl 

cis−trans isomerase activity and antifungal activity against pathogenic fungi, including Candida 

albicans, Botrytis cinerea, Rhizoctonia solani, and Trichoderma viride (Park et al. 2007). 

Another study showed that FKBP peptidyl−prolyl cis−trans isomerase was involved in protein 

folding, and it induced accumulation of the photosystem II (PSII) supercomplex in the 

chloroplast thylakoid lumen in Arabidopsis (Lima et al. 2006). Proteomic analysis of bean 

(Phaseolus vulgaris) infected by virulent and avirulent obligate rust fungus (Uromyces 

appendiculatus) showed that FKBP peptidyl−prolyl cis−trans isomerase was up-regulated in 

host plants infected by an avirulent race at 1 day after infection (Lee et al. 2009). This protein 

also was induced in resistant soybean at 1 day after P. pachyrhizi infection in our study. 

Functional diversity of FKBP peptidyl−prolyl cis−trans isomerase, such as protein folding, 

restoring PSII or antifungal activity may contribute to soybean resistance to ASR.  
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Spot 2-958 has a high identity (80%) to a possible membrane associated 30 kDa protein 

(Q03943). No studies of this protein have been published. This protein was located to the 

chloroplast envelope and thylakoid membranes so it may be involved in photosynthesis (Li et al. 

1994). It has been reported that increased photosynthesis induced resistance of broad bean (Vicia 

faba L.) against rust (Uromyces viciae-fabae) (Murray and Walters 1992). When they fed 
14

CO2 

to the upper uninfected leaves of rusted plants, there was a high increase in labeled 
14

CO2 

assimilation in those leaves. In addition, substantial movement of labeled assimilate to rusted 

leaves was detected (Murray and Walters 1992). This result indicated that the rates of net 

photosynthesis were significantly increased in uninfected upper leaves following inoculation of 

the lower leaves.They concluded that increased photosynthesis in uninfected leaves facilitates 

maximum expression of resistance to rust infection.  

Spot 2-1160, which is an unknown protein with 39% sequence identity to a protein 

phosphatase 2C (PP2C) of Arabidopsis, may function in plant growth, development and 

responses to hormones and abiotic stresses according to an earlier study by Schweighofer et al. 

(2007). The involvement of PP2C in regulating abscisic acid (ABA) response has been well 

established in Arabidopsis (Kerk et al. 2002), and ABA was generally considered a negative 

regulator of disease
 
resistance (Mauch-Mani and Mauch, 2005). Other studies showed that 

increased PP2C protein resulted in disease resistance in tobacco (Hu et al. 2009) and bean (Lee 

et al. 2009). Rice PP2C gene over-expressed in transgenic tobacco plants lead to enhanced 

disease resistance and constitutive expression of defense-related genes (Hu et al. 2009). 

Therefore, it was suggested that OsBIPP2C2a may play an important role in disease resistance 

through activation of defense responses (Hu et al. 2009). Proteomic analysis of bean (Phaseolus 

vulgaris) infected by virulent and avirulent obligate rust fungus (Uromyces appendiculatus) 

showed that PP2C was up-regulated 1.6 fold in the host plant infected by an avirulent race at 1 
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day (Lee et al 2009) compared to the control. The up-regulation of this protein under rust 

infection conditions may lead to enhanced expression of defense related proteins through signal 

transduction. In our study, this spot was 2.3 fold and 2 fold higher in infected resistant accessions 

PI417089A and PI567104B compared to susceptible cultivar 93M60, respectively.  

Spot 2-1184 showed a moderate sequence homology (43%) to nucleoside diphosphate 

kinase 2 (NDP kinase 2). NDP kinases (NDPKs) are multifunctional proteins that regulate a 

variety of eukaryotic cellular activities including cell proliferation, development, and 

differentiation, signal transduction, and phosphotrasnfrase activity (Engel et al. 1998; Galvis et al. 

2001; Otero 2000). One study over-expressing AtNDPK2 in Arabidopsis, resulted in high levels 

of autophosphorylation, NDPK activity, and low levels of reactive oxygen species (ROS) 

compared to wild-type plants, suggesting that this protein might be involved in enhancing plant 

tolerance to multiple environmental stresses (Moon et al. 2003). In rust fungus infected soybean 

leaves, it is speculated that increased expression of this protein might be a response to increase of 

ROS.  

Spot 2-1471 showed a high homology (91%) to a cell division protease, ftsH homolog 2 

(Yue et al. 2010). These ATP-dependent proteases have been shown to play crucial roles in 

repairing PSII after light-induced photodamage to prevent chronic photoinhibition (Silva et al. 

2003). The up-regulation of this protein in our study might contribute to degrading damaged 

proteins involved in PSII system to reconstitute photosynthesis.  

Spot 2-1571 showed a 65% sequence homology to the ferredoxin-NADP reductase 

(FNR), catalyzing the last step of photosynthetic electron transport in chloroplasts by driving 

electrons from reduced ferredoxin to NADP
+
 (Hajirezaei et al. 2002). Transgenic tobacco 

(Nicotiana tabacum) plants expressing a pea (Pisum sativum) FNR targeted to chloroplasts 

exhibited an enhanced tolerance to photooxidative damage and redox-cycling herbicides 
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(Rodriquez et al. 2007). The upregulation of this protein in resistant soybean lines might be in 

response to photodamage caused by necrosis in rust fungus infected leaves.  

Spot 2-1647, which completely matched (100%) to a DNA repair protein RAD23 

(Ishikawa et al. 2004) with a ubiquitin-like (UbL)
 
domain for binding to proteasome, has been 

shown to interact with the nucleotide excision-repair
 
(NER) factor Rad4 and with ubiquitinated 

proteins to promote their degradation
 
by the proteasome (Ortolan et al. 2004). This protein is 

required for conferring
 
resistance to DNA damage (Ortolan et al. 2004). In plants,

 
the 

ubiquitin/proteasome pathway of protein degradation has
 
been implicated in plant responses to 

internal and external
 
stimuli, including phytohormones, abiotic stress, and pathogen

 
attack (Dong 

et al. 2006; Haglund and Dikic 2005; Smalle and Vierstra 2004). It was reported that protein 

polyubiquitination plays a role in basal host resistance of barley. Therefore, it is likely this 

RAD23 protein might be involved in soybean basal defense against rust infection. 

Spot 2-1977 showed high homology to the thylakoid luminal 19 kDa protein, which is 

involved in photosysnthesis. Interestingly, this protein also has been reported as up-regulated in 

rice seedling leaves after treatment with hydrogen peroxide along with OEE1 (Wan and Liu 

2008). Up-regulation of thylakoid luminal protein involved in photosynthesis along with OEE1, 

was crucial for PSII in this study indicating that photosynthesis might confer resistance through 

generating oxygen in soybean. 

In addition, constitutively expressing protein spots in two resistant accessions without 

ASR infection (spot 91), and constitutively expressing spot only in one resistant (spot 1249.1) 

without infection were sequenced. Spot 1249.1 showed a high homology (100%) to the stress 

and rust infection induced PR 10 protein reported in Chapter 3 and spot 91 showed very high 

sequence homology (84%) to an oxygen evolving enhancer protein 1 (OEE1), a nuclear-encoded 

chloroplast protein bound to PSII on the luminal side of the thylakoid membrane that is the most 
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important protein for oxygen evolving in PSII (Sugihara et al. 2000; Heide et al. 2004). Increased 

OEE1 protein expression along with β-1, 3-glucanase and peroxidase was reported in Vitis 

rotundifolia (wild grape) tolerant to bacterial disease (Xylella fastidiosa) (Basha et al. 2010). It 

also has been reported that OEE1 gene expression was increased by abiotic stress in mangrove, 

Bruguiera gymnorrhiza (Ezawa and Tada 2009). Up-regulation of this protein in resistant 

accessions following inoculation in this study probably enabled host plant to generate oxygen for 

producing more ROS for inducing HR reaction. 

Among all of the sequenced differentially expressed proteins identified in this study, two 

spots, 2-1471 (cell division protease ftsH homolog 2) and 91 (oxygen evolving enhancer protein 1), 

are involved in PSII. Especially, spot 91 was constitutively and highly expressed before 

inoculation in resistant accessions and it still remained high after ASR infection. Up-regulation 

of these proteins in resistant accessions against ASR in this study agrees with a recent study of 

the impact of P. pachyrhizi infection on soybean leaf photosynthesis and radiation absorption 

(Kumudini et al. 2008). They found a huge decline in carbon exchange rate (CER) as disease 

severity increased compared to disease-free control and concluded that soybean rust–induced 

reductions in CER were
 
mainly associated with a lower efficiency of PSII

 
photochemistry and 

damage to PSII reaction centers (Kumudini et al. 2008), which are commonly observed in rust 

fungus infected susceptible leaves. 

In summary, two ASR resistant accessions, PI417089A and PI567104B, were identified 

by two methods, the detached-leaf assay and greenhouse inoculation. They showed an immune 

reaction in both assays. Detection of fungal DNA accumulation using real-time PCR showed a 

significantly higher fungal DNA accumulation in two susceptible accessions (PI548631 and 

93M60) compared to two resistant accessions (PI417089A and PI567104B). Interestingly, a low 

level of fungal DNA accumulation was detected in PI567104B while no DNA accumulation was 
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detected in PI417089A. Differentially expressed soybean leaf protein between resistant and 

susceptible accessions with and without inoculation also were identified. PR10 and CHI found in 

a previous study were found to be up-regulated in both resistant lines and PI417089A alone, 

respectively. Sixteen up-regulated proteins, which only appeared in resistant accessions after 

infection, were sequenced. They were involved in metabolism, defense, photosynthesis, growth 

and development, and protein ubiquitination. Further studies involving cloning of their 

corresponding genes from soybean plants and characterizing their possible functions in disease 

resistance will be necessary to understand the exact roles that these proteins might have in 

soybean resistance to ASR.             
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 
  

 A 2-DE based proteomic approach was used to detect and identify differentially 

expressed proteins to better understand the host-parasite interaction between soybean and 

Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease. In this study, the 

objectives were: 1) identify host and fungal proteins induced during a compatible interaction 

using proteomics, 2) screen soybean accessions to identify accessions resistant to a Louisiana 

ASR isolate, 3) study differentially expressed proteins between resistant and susceptible 

accessions with and without fungal infection using proteomics, and 4) characterize these proteins 

to understand host-fungus interactions , and 5) verify the importance of promising host proteins 

in disease resistance using a virus induced gene silencing method.  

Forty soybean leaf proteins differentially expressed after P. pachyrhizi infection during a 

compatible interaction were identified, and 14 of them were sequenced. Eleven of the induced 

proteins appear to have a role in plant defense, stress, protein modification or transport, whereas 

three other proteins involved plant growth and development were suppressed after rust infection. 

A time-course experiment showed that changes for some of the proteins were detected as early as 

10 hai, whereas other proteins were induced only at a late stage of rust infection. Two such 

proteins, PR10 and CHI1, were further characterized because previous microarray studies also 

suggested that both play important roles in host response to ASR (Choi et al. 2008: van de 

Mortel et al. 2007). Real-time PCR results showed that gene expression pattern and protein 

expression pattern during the time-course were not closely related. An enzyme activity test of 

CHI1 showed a pattern similar to protein expression. Complementary DNAs of PR10 and CHI1 

were cloned and over expressed in E. coli. Anti-fungal assay and RNA degradation assays have 
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been conducted using over-expressed PR10, but they did not show any activity in both assays. 

Further studies involving virus-induced gene silencing to reduce the expression of these two 

proteins are currently ongoing and will hopefully provide more definite answers as to their 

functions in soybean resistance to rust infection.  

 Twelve accessions were screened in this study to identify accessions resistant to a LA 

ASR isolate. Two resistant (PI417089A and PI567104B) accessions with immune reactions were 

identified through both a detached-leaf assay and greenhouse inoculation. Detection of fungal 

DNA accumulation using real-time PCR showed significantly higher fungal DNA accumulation 

in two susceptible lines (PI567204B and 93M60) compared to two resistant lines (PI417089A 

and PI567104B). Different levels of fungal DNA accumulation detected in the two resistant lines 

may indicate the presence of different defense mechanisms.   

Soybean leaf proteins differentially expressed between two resistant and two susceptible 

accessions with and without inoculation were identified using proteomics. Eight and 15 proteins 

were identified as induced spots at 1 day after rust infection in both resistant accessions after 

comparison with PI548631 and 93M60 susceptible accessions, separately. PR10 and CHI found 

in the compatible interaction study also were found to be up-regulated in both resistant 

accessions and PI417089A alone, respectively. Sixteen up-regulated proteins which only 

appeared in resistant accessions after ASR inoculation were sequenced. They were involved in 

metabolism, defense, photosynthesis, growth and development, and protein ubiquitination. Two 

of the proteins, nucleoside diphosphate kinase 2 (spot 2-1184) and ferredoxin-NADP reductase 

(2-1571), have a function in reducing ROS stress for fortification of host cells (Moon et al. 2003; 

Rodriquez et al. 2007). Two other upregulated proteins, a cell division protease ftsH homolog 2 

(2-1471) and an oxygen evolving enhancer protein 1 (spot 91), play an important role either in 

the function or in the repairing of PSII (Silva et al. 2003; Sugihara et al. 2000). This finding 
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agrees with an earlier report that ASR infection damaged the PSII system in the soybean plant 

(Kumudini et al. 2008). Further studies involving cloning their corresponding genes from 

soybean and characterizing their functions are necessary for better understanding of the potential 

roles these proteins play in soybean resistance to rust infection 

Here, I have presented a detailed analysis of proteome differences
 
between rust fungus 

infected and control soybean leaves, and between resistant and susceptible soybean accessions 

with and without inoculation based on the 2-DE coupled with MS/MS mass spectrometry. This is 

the first study of soybean and P. pachyrhizi interaction using proteomics to detect differential 

protein expression. In this thesis study, I found that up-regulated proteins involved in various 

metabolic pathways also were likely involved in the soybean defense mechanism against ASR. 

The failure to identify proteins involved in fungal pathogenicity was possibly due to their low 

abundance, or their hydrophobicity that could not be well-solubilized and separated in a standard 

2-DE gel system. In a future study, we should use a more sensitive staining method to identify 

fungal proteins involved in soybean-rust interactions, and to characterize the up-regulated host 

proteins identified in this study. Knowing the molecular mechanisms
 
that underlies the plant 

response to P. pachyrhizi
 
will help in developing a more efficient

 
disease control measure by 

enhancing host resistance using genetic engineering than the currently used fungicide 

applications. 
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APPENDIX  

VIABILITY OF PHAKOPSORA PACHYRHIZI UREDINIOSPORES UNDER 

SIMULATED SOUTHERN LOUISIANA WINTER TEMPERATURE 

CONDITIONS 
 

1. Introduction   

Phakopsora pachyrhizi, the primary causal agent of soybean rust disease, can infect 

soybean plants and cause quick defoliation and severe yield losses (7). This disease was first 

discovered in Japan in 1902 and later spread into China and other Asian countries. In recent 

years, the disease entered Africa and South America and has spread rapidly in these continents. P. 

pachyrhizi was first detected in South America in Paraguay in 2001, from where it was spread by 

wind across the border into Argentina. Between 2001 and 2003, it became established and 

widespread in soybean production regions of Brazil (19, 26). Now, soybean rust is a major 

emerging disease in the continental US since its discovery in late 2004 in Louisiana (20). 

Soybean rust disease was reported in nine, 15 and 19 states from 2005 to 2007, respectively, 

according to the USDA soybean rust information website (http://www.usda.gov/soybeanrust/). 

Based on model predictions, soybean rust disease is expected to become established in the 

United States, but very likely to be restricted to the southern US where the fungus could 

overwinter in frost-free areas or areas with brief below-freezing temperatures during the winter, 

such as Louisiana (9, 14, 17, 18, 25). Yield loss due to soybean rust was predicted as low as 10% 

in most of the United States and up to 50% in the Mississippi Delta and southeastern states in 

early, pre infestation models (25). 

 Temperature is one of the key factors affecting rust spore viability. Keogh (8) reported 

that urediniospores of P. pachyrhizi germinate at temperatures between 8 and 33°C. When 

temperatures were kept at 4-5°C or below, urediniospores lost their viability in 5 days (15). 

When temperature was raised to 9°C or higher, P. pachyrhizi urediniospores could remain viable 
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for up to 27 days (22). Kochman (10) reported significant reduced germination when dry spores 

were exposed to temperatures of 28.5-42.5°C. The optimum temperature for rust disease 

development, however, is slightly different from that for viability. Levy (11) reported that natural 

infection by P. pachyrhizi in Zimbabwe is favored by a maximum temperature of 26 to 29°C and 

a minimum temperature of 15 to 17°C. Under controlled environmental conditions, no infection 

was observed at temperatures 27.5°C or higher (12,13). Rust disease development also was 

greatly inhibited when mean night temperature dropped below 14°C, and was stopped when 

night temperature reached below 9°C (13,23). In addition to temperature, humidity also affects 

soybean rust disease development in the field. Melching et al. (13) indicated that humidity of 

over 80% for 4-6 h was necessary for disease development and urediniospores lost their 

infectivity completely after eight days on dry foliage.  

 However, the main concern for soybean growers in the US is whether P. pachyrhizi 

urediniospores can survive the winter conditions in southern US, such as Louisiana, and cause a 

new cycle of infection in the next growing season. Therefore, the objective of this study was to 

examine the viability and infectivity of soybean rust spores exposed to simulated winter 

conditions (12°C, 14 h day and 1°C, 10 h night with 75% relative humidity) for various durations. 

Additionally, over-wintered kudzu leaves were collected in January 30, 2008 from the field 

where soybean rust had been reported for in the past two years, to determine whether over-

wintered soybean rust spores were still viable.               

A.2. Materials and Methods 

Materials.  

 Soybean rust (Phakopsora pachyrhizi) urediniospores were collected from infected 

soybean leaves in October 2006 at Central Research Station, Louisiana State University, Baton 
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Rouge. Spores were collected from infected soybean leaves (R8 stage) in the field using a hand-

held vacuum in the early afternoon. Spores were stored at -80°C before they were used for 

experiments, and they were termed as frozen spores which mean 0 day or non-winter treatment 

in the present study. Soybean plants (cultivar 93M60, Pioneer) were grown in 20 cm diameter 

plastic pots (four plants per pot) in the greenhouse. The 3
rd

 to 5
th

 trifoliolate leaves at R1 to R2 

stages were used in the detached leaf assays.  

Winter treatment of urediniospores.   

 One mg subsamples of urediniospores from -80°C were stored in 1.5-ml microcentrifuge 

tubes (with lid open). The tubes were maintained either at room temperature (25°C) inside a 

sealed box with a relative humidity maintained at 75% using a saturated NaCl solution or under a 

simulated southern LA winter conditions (12 ± 1°C, 14 h day with a light intensity of 50 µE S
-

1
m

-2
 and 1 ± 1°C, 10 h night with 75% relative humidity) for up to 60 days in a diurnal incubator. 

Winter-treated spore samples were removed daily during the first 7 days to examine the effect of 

short term winter treatment on spore viability. For the long term effect of winter treatment on 

spore viability, germ tube development, and infectivity, winter-treated spore samples were 

removed at 0, 4, 14, 30, 44 and 60 days from the experimental conditions and examined. The 

simulated southern LA winter conditions were based on the high and low average winter 

temperatures recorded from southern Louisiana (Cameron, Vermilion, St. Mary, and Lafourche 

Parishes) to central Louisiana (Vernon, Rapides, and Avoyelles Parishes) in the past 30 years 

during December and January (http://www.weather.com) (Table 1). The studies were conducted 

three times, with three replicates for each time points. Means were separated by least significant 

difference (LSD) test at P = 0.05 using the Statistical Analysis System (SAS Institute, Cary, NC; 

version 9.1).    
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Table A.1. Average high and low temperatures during December and January in southern and 

northern Louisiana in the past 30 years (data were compiled from http://www.weather.com). 

                         

y 
Mean high and low temperature (°C) of 19 parishes in southern Louisiana between  December 

and January: Vernon, Rapides, Avoyelles, Beauregard, Allen, Evangeline, St. Landry, Pointe, 

Coupee, East Baton Rouge, Tangipahoa, Washington, Calcasieu, Acadia, Iberville, Cameron, 

Vermilion, Iberia, and St. Charles. SD = standard deviation. 
z 
Mean high and low temperature (°C) of 10 parishes in northern Louisiana between December 

and January: Union, Morehouse, East Carroll, Bienville, Jackson, Madison, Nachitoches, Winn, 

Tensas, and Grant. SD = standard deviation. 

 

Viability of urediniospores and germ tube growth.   

 Soybean rust urediniospores in microcentrifuge tubes (1 mg/tube) were removed from 

simulated winter temperature conditions after 0, 4, 14, 30, 44 and 60 days. Spores were 

resuspended in 1 ml of deionized water containing 0.01% Tween 20 and allowed to germinate at 

room temperature for 12 h (3) along with control spores that had been kept at room temperature 

for the same period of time. Spore viability under different conditions was assessed using spore 

germination rate, which was defined as the percentage of spores germinated. At the end of 

incubation, the spore suspension was mixed and three 20-µl subsamples were removed from the 

microcentrifuge tube and examined with a microscope. The percentage of spores germinated was 

determined based on the total number of germinated spores versus total number of spores 

counted from at least 25 different fields of view (at ×200magnification) for each sample. The 

highest number of spores seen in a field was 44 and the lowest number was 15, with an average 

of 26.8 ± 6.1 spores per field. The germination percentage for each time point was the mean from 

 Southern Louisiana  Northern Louisiana  

Av. T high  Av. T low Av. T high  Av. Tlow 

(mean ± SD)
 y

 (mean ± SD)
 z
 

Dec. 17.1 ± 0.7 5.5 ± 1.1 14.5 ± 0.8 3.0 ± 0.8 

Jan. 16.6 ± 2.6 4.4 ± 1 13.0 ± 0.9 1.8 ± 0.9 

 

http://www.weather.com/
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three replicated samples.  

 For determining germ tube growth, three 20 µl subsamples of winter-treated and frozen 

spore suspensions were removed from the water suspension in microcentrifuge tubes at various 

times ranging from 0 to 10 h and examined microscopically. Images of germinated spores from 

at least 25 different fields of view for each sample were captured by a Spot RT camera 

(Diagnostic Inc., Sterling Heights, MI) attached to the microscope. The germ tube length of each 

germinated spore was measured using the Spot Advance software (Diagnostic Inc.). The mean 

germ tube length for each of time points was determined from two repeated experiments, each 

with three replicated samples. Means were separated by the LSD test at P = 0.05.            

Inoculation of detached soybean leaves with P. pachyrhizi.   

 The infectivity of rust spores which had been stored under simulated LA winter 

conditions for various durations (0, 4, 14, 30, 44 and 60 days)  was assessed using an in vitro 

detached leaf assay. Winter-treated and frozen spores were resuspended in deionized water 

containing 0.01% Tween 20. Spore concentration was determined using a hemocytometer and 

adjusted to 2500 spores/ml. Two hundred microliters of inoculum containing 500 spores were 

applied evenly to the adaxial surfaces of detached soybean leaves that had been washed three 

times with deionized water and air-dried. Inoculated leaves were placed adaxial surface up on 

filter paper soaked with sterile water in Petri dishes. The inoculated leaves were incubated under 

the following conditions: 26 ± 0.5°C, 16 h day (about 50 µE S
-1

m
-2

) and 20 ± 0.5°C, 8 h night. 

Pustule formation was determined by visual inspection daily. High moisture inside Petri dishes 

was maintained by adding 3 ml of deionized water every 4 days. Infection rate was determined 

by the percentage of leaves with visible pustules versus total number of inoculated leaves. 

Pustule density was defined as the average number of pustules per leaf 15 days after inoculation. 

This experiment was conducted twice with two replicates. Each replicate consisted of 24 
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detached soybean leaves: half of them inoculated with rust urediniospores and the other half with 

water containing 0.01% Tween 20. The data from two repeated experiments were combined to 

calculate the mean pustule densities, and the means were separated by LSD at P = 0.05.  

Viability of soybean rust spores recovered from over-wintered kudzu leaves.  

 Over wintered dry kudzu leaves were collected in Jan. 30, 2008 from the two locations in 

southern Louisiana (New Iberia, LA) where soybean rust on kudzu had been reported in the past 

two consecutive years. These earlier infected kudzu leaves had  senescenced at the end of 

growing season and fallen off vines during the winter. The collected leaves were first examined 

with a dissecting microscope (Leica MZ16) to confirm pustule lesions at ×200 Leaves with 

lesions were then sliced into 3-by-5 mm sections and transferred to a 15-ml centrifuge tube with 

deionized water containing 0.01% Tween 20 enough to submerge all leaf sections.  After 12 h 

incubation at room temperature, the spore suspension was examined with a microscope for 

viability.    

3. Results     
 

Effect of simulated southern Louisiana winter temperature conditions on P. pachyrhizi 

urediniospore viability.  
 

 The average germination rate of urediniospores freshly harvested from the field varied 

greatly from 93% to 15% depending on the time of harvest and the micro-environment which the 

spores were exposed to before harvest (Park and Chen, unpublished data). Spores can be stored 

at -80°C for up to one year without showing a further decline in germination rate (5,21). The 

spores used for this study had an average germination rate of 72% to 80%. Frozen soybean rust 

urediniospores stored at room temperature (25°C) lost their viability gradually from 72% to 32% 

in 7 days, whereas the viability of spores stored under simulated winter conditions decreased 

from 72% to 40% in the first 24 h, followed by a steady decrease to about 17% at the end of 7 
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days (Fig. A.1). Spores kept at room temperature had a significantly higher viability than that of 

winter treated spores after 2 days of storage (Fig. A.1). However, the difference in viability 

between spores kept at room temperature and under winter conditions diminished as the time 

increased and became insignificant at day 7 (Fig. A.1). 

 In an effort to determine how long soybean rust spores remain viable under simulated 

southern Louisiana winter temperature conditions, the germination rate of spores was examined 

bi-weekly up to 60 days in a separate experiment. It was found that spore germination rate 

decreased rapidly from 72% to about 22% in 14 days, and then more slowly to 11% at 60 days 

when stored under simulated winter temperature conditions (Fig. A.2). However, the germination 

rate of control spores kept at room temperature decreased from 76% to 32% in the first two 

weeks (Fig. 2), and then decreased steadily to 20% and 8% at 30 days and 44 days, respectively. 

Spore germination rate reached 0% at the end of this 60-day study (Fig. A.2).  
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Figure A.1. The effect of short-term winter temperature treatment on the germination rate of 

Phakopsora pachyrhizi urediniospores. Germination rate of winter-treated spores (up to 7 days) 

was compared daily to control spores kept at room temperature for the same duration. 

Germination rate was measured as the percentage of spores germinated at room temperature after 

being suspended in deionized water containing 0.01% Tween 20 for 12 h. RT, room temperature 

(25-26°C); LA winter, simulated southern Louisiana winter conditions (12°C, 14 h day and 1°C, 

10 h night with 75% relative humidity). Vertical bars represent standard deviation. 
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Figure A.2. The effect of long-term winter temperature treatment on the germination of 

Phakopsora pachyrhizi urediniospores. Germination rate of winter-treated spores (up to 60 days) 

was compared to control spores kept at room temperature for the same duration. Germination 

rate was measured as the percentage of spores germinated at room temperature after being 

suspended in deionized water containing 0.01% Tween 20 for 12 hr. RT, room temperature (25-

26°C); LA winter, simulated southern Louisiana winter conditions (12°C, 14 h day and 1°C, 10 h 

night with 75% relative humidity). Vertical bars represent standard deviation. 

 

Effect of simulated winter temperature treatment on spore germ tube growth.  

 Simulated-winter temperature treatment not only reduced spore viability, but also slowed 

spore germ tube growth (Fig. A.3). Germ tube development for frozen spores was clearly visible 

after 2 h of germination and elongated rapidly between 4 to 8 h. Germ tube length reached an 

average of 90 µm after 4 h and an average of 250 µm at the end of 10 h of incubation (Fig. A.4). 

Germ tube length of winter-treated spores was significantly shorter than frozen spores after 2 h 

of germination except for the spores that were winter-treated for only 4 days (Fig. A.4) The 

average germ tube length was 30 µm at the end of 10 h germination for the spores that had been 

treated for 14 days or longer, which was about 8 times shorter than those of frozen spores (Fig. 

A.4). The average germ tube growth rate for frozen spores and spores under winter conditions 

for 4 days was about 25 µm/h compared to that of 3 µm/h for the spores that had been under 

winter temperature conditions for 14 to 60 days.  
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Figure A.3. The effect of simulated winter temperature treatment on Phakopsora pachyrhizi 

urediniospore germ tube development. Germ tube growth was examined after incubating frozen 

spores and over-wintered rust spores in deionized water containing 0.01% Tween 20 at room 

temperature for 10 h. (A) frozen spores; (B) to (F), spores that had been under simulated winter 

conditions for 4, 14, 30, 44 and 60 days, respectively. 
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Figure A.4. The effect of winter treatment on germ tube growth rate of Phakopsora pachyrhizi 

urediniospores. Germ tube length was measured witha light microscope hourly after suspending 

the frozen and winter-treated spores in deionized water containing 0.01% Tween 20 at room 

temperature. The data presented here were means from two repeated experiments, each with 

three replicates. Vertical bars represent standard deviation. 

 

Effect of winter-treatment on spore infectivity using a detached leaf assay.   

 Detached soybean leaves started producing roots about 7 days after incubation under the 

detached leaf assay conditions, enabling leaves to remain green up to 30 days after inoculation 

(Fig. A.5). Spores that had been treated under simulated winter temperature conditions for as 

long as 60 days retained their infectivity and were able to produce new pustules when inoculated 

onto detached soybean leaves (Fig. A.6) although the number was significantly less compared to 

that produced by frozen spores (Table A.2). Pustules were observed 9 days after inoculation on 

all soybean leaves inoculated with frozen or 4-day-old over-wintered spores (Table A.2). For 

leaves inoculated with 14 or 30-day-old over-wintered spores, the initial pustules were observed 

9 days after inoculation, but only in 85 or 25% of the inoculated leaves, respectively. Infectivity 

decreased as the duration of winter-treatment increased. Leaves inoculated with spores that had 
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over-wintered for 44 and 60 days did not develop pustules until 12 days after inoculation, and 

pustules were observed in only 40% and 10% of the inoculated leaves, respectively (Table A.2). 

 In addition, pustule density in inoculated leaves decreased as the duration of winter-

treatment increased. Fourteen days after inoculation, leaves inoculated with frozen or 4-day-old 

over-wintered spores had an average of 42.3 or 49.2 pustules per leaf, respectively (Table A.2). 

However, the pustule density was significantly lower in leaves inoculated with spores over-

wintered for 14 days or longer compared to leaves inoculated with frozen spores. On the average, 

only 16 and 3 pustules per inoculated leaf were observed in leaves inoculated with spores that 

over-wintered for 14 and 30 days, respectively. Leaves inoculated with spores over-wintered for 

44 or 60 days had an average of less than one pustule per inoculated leaf (Table A.2). 

 

Figure A.5. Evaluation of Phakopsora pachyrhizi urediniospore infectivity using a detached leaf 

assay. Soybean leaves (3
rd

 to 5
th

 trifoliate) at R1 to R2 stage were harvested from greenhouse-

grown 93M60 soybean plants, inoculated with soybean rust spores, placed on filter paper soaked 

with deionized water, and incubated for 14 days under the condition of 26°C, 16 h day and 20°C, 

8 h night before being evaluated for disease severity or pustule density. (A), leaf before 

inoculation; (B) leaf 14 days after inoculation. Root formation was evident in the detached leaves 

after one week of incubation. 
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Figure A.6. The effect of winter temperature treatment on infectivity of soybean rust 

urediniospores.  Detached soybean leaves were inoculated with rust spores that had been treated 

under simulated southern Louisiana winter condition for different durations. Soybean leaves 

were inoculated with spores over-wintered for 0 day (frozen spores, A), 4 days (B), 14 days (C), 

30 days (D), 44 days (E) and 60 days (F), respectively. Photos were taken 14 days after 

inoculation. Arrows indicate pustules. 
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Table A.2. Effect of simulated winter temperature treatment on Phakopsora pachyrhizi 

urediniospore infectivity. 

Duration at winter 

conditions 

Infection rate (%)
y
 Pustule density 

z
  

(mean±SD) 9 DAI 12 DAI 14 DAI 

0 day  100 100 100 42.3 ± 28.7 a 

4 days 100 100 100 49.2 ± 31.8 a 

14 days 85 100 100 16.4 ± 9.3 bc  

30 days 25 70 85   3.3 ± 4.6 c 

44 days 0 40 50   1.5 ± 2.4 c 

60 days 0 10 30   0.4 ±0.8 c 

 
y
  Infection rate was the average percentage of inoculated leaves developing visible pustules at 

the specified time intervals. DAI, days after inoculation.  

 
z
  Pustule density was the mean number of pustules per leaf observed 15 days after inoculation 

from two combined experiments. Means in the same column followed by a common letter were 

not significantly different by LSD test at P = 0.05; SD = standard deviation. 

 

Viability of soybean rust spores on over-wintered kudzu leaves.   

 No viable soybean rust spores were recovered from kudzu leaves collected from one 

location. However, sixty-seven out of about 500 spores recovered from an over-wintered dry 

kudzu leaf at the other location were found to germinate after 12 h of incubation in water 

containing 0.01% Tween 20 (Fig. A.7). In addition, germ tube growth of these viable spores 

reached an average of 25 ± 4.7 after 10 h of germination, which was about same as those of 

spores that had been treated under simulated winter for 60 days.    
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Figure A.7. Germination of Phakopsora pachyrhizi spores recovered from over-wintered dry 

kudzu leaves collected from southern Louisiana. Spore germination was examined a light 

microscope. A, spores before incubation; B-D, spores after 12 h incubation.     

 

4. Discussion 

Soybean rust urediniospore survivability under winter conditions, especially in the south, is a 

major concern for the US soybean growers. Previous studies determined the maximum and 

minimum temperature and moisture conditions for spore germination and infection (10,12,13).  It 

was also reported that when temperatures were kept at 4 to 5°C lower,urediniospores lost their 

viability in 5 days (15). However, it has not been investigated how well soybean rust spores 

over-winter in the southern United States where winter night temperature is usually above 0°C. 

As a first step, a simulated winter condition based on average day and night temperatures from 

central to southern Louisiana during the past 30 years was used to treat frozen spores for various 

durations before examining their viability and infectivity.  

 In agreement with earlier studies (12,15), soybean rust spore viability was found to be 

detrimentally affected by low temperature treatment. The effect of simulated winter temperature 
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conditions on spore viability was observed within the first 24 h and viability was significantly 

decreased after 2 days compared spores kept under room-temperature conditions. This sudden 

initial decline in spore viability might be related to age variations among the collected spores 

since it had been previously reported that viability of spores from inactive pustules was 

significantly lower than that of spores from active pustules when exposed to freezing 

temperatures (16).  It also appeared that spores kept under simulated winter conditions remained 

viable longer than spores stored at room temperature. It has been reported that cellular 

metabolism is reduced at sub-optimal temperatures (6). This may explain why spores with 

limited nutrient and energy reserves survived longer under simulated winter conditions than 

under room temperature.  

 Our study also found that simulated winter treatment slowed germ tube growth. The 

average germ tube growth for spores that had been under winter conditions for 14-60 days was 

about 8-fold slower than that of frozen spores. This may be why those spores were less effective 

than frozen spores in producing pustules when inoculated onto detached soybean leaves. The 

time of initial symptom appearance, infection rate, and pustule density were delayed or reduced 

in  leaves inoculated with spores that had been treated under simulated winter conditions for 44 

days or longer. However, it was demonstrated that even spores overwintered for 60 days were 

able to infect soybean leaves and produce pustules. It indicated that P. pachyrhizi urediniospores 

could over-winter in southern Louisiana and initiate a new cycle of infection in the next growing 

season, although the initial infection cycle may take longer than 14 days. 

   The spores over-wintered for 4 days had a similar germ tube growth rate as, but a 

significantly lower germination percentage (35%) than, frozen spores (72%). In the detached leaf 

assay, both kinds of spores showed the same infectivity. This suggests that germ tube growth rate 

is a more important factor than spore viability in determining whether a successful infection can 
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occur. This may be due to the fact that P. pachyrhizi spores have only 6-8 h to germinate, 

elongate a germ tube and penetrate the host cell wall (13) before spores exhaust their limited 

nutrients and energy reserves (4). A study by Adendorff and Rijkenberg (1) reported that germ 

tubes of direct penetrating fungi, like soybean rust, prefer the junction area between two leaf 

epidermal cells and penetration usually occurs 6 h after inoculation. Therefore, it is likely that 

spores with fast elongating germ tubes will have a better chance in finding an appropriate surface 

area for penetration than spores with slow growing germ tubes before the window of opportunity 

elapses. 

 A new detached leaf assay was used in the present study to examine changes in spore 

infectivity after the winter treatment.  The earlier detached leaf assay developed by Burdon and 

Marshall (2) and modified by Twizeyimana et al. (24) uses 1% agar plates supplemented with 10 

mg/l kinetin to delay leaf senescence. Also, the earlier assay uses only a small section of a leaf 

per Petri dish. Our method, first reported by Chen et al. (3), uses whole leaves, placed on sterile 

filter papers pre-soaked with 4 ml of sterile water per 100 mm Petri dish without agar medium or 

kinetin. Another difference is that the detached leaves in this new assay were incubated under 

light and temperature settings of 14 h day (at 26°C) and 10 h night (at 20°C). Detached leaves 

remained green for over a month. In addition, detached leaves in this new assay often develop 

roots during the first 10 days of incubation, which further delays leaf senescence. This assay 

proved very useful not only in determining spore infectivity in a short time, but also in 

maintaining live soybean rust cultures under laboratory conditions.  This assay could also be 

used to evaluate host resistance levels of different soybean varieties under laboratory conditions.  

 In summary, soybean rust spores that had been stored under simulated LA winter 

temperature conditions for as long as 60 days germinated, infected detached soybean leaves and 

produced pustules though at a lower rate and density compared to frozen spores. This study 
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suggests that P. pachyrhizi could survive winter temperatures in southern Louisiana and other 

southern states, and serve as a source of inoculum for the coming season in North America. This 

conclusion is supported by the observation of viable soybean rust spores recovered from over-

wintered dry kudzu leaves collected in January 30, 2008 from southern Louisiana, where night 

temperatures dipped four times below-freezing (-1ºC) in January alone. It is also supported by 

the fact that the first two 2007 soybean rust infections in Louisiana were reported on newly 

grown kudzu leaves at the two locations where soybean rust was reported in 2006 even though 

all of the earlier infected kudzu leaves and vines had died back during the 2005-2006 winter 

(www.sbrusa.net). 
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