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ABSTRACT 

Sweetpotato production in the southern United States is being threatened by a soft rot 

that develops in storage roots when fields are flooded and by an important post-harvest 

disease caused mainly by the fungi Fusarium solani and Macrophomina phaseolina. 

To identify the pathogens responsible for development of the soft rot, samples were 

collected from storage roots with soft rot from intentionally flooded fields and decayed tissue 

was streaked on plates of nutrient dextrose agar plus 0.05% cysteine and incubated 

anaerobically.  Two distinct groups of Gram positive strict anaerobic bacteria were re-isolated 

from rotting storage roots.  Endospores were observed in all isolates by differential staining.  

Genomic DNA was extracted from representative isolates of each group, LSU-B1 and LSU-B7, 

and the 16s ribosomal RNA region was amplified and sequenced.  BLASTn analysis of the 

1425 bp sequence of LSU-B1 resulted in 99% homology with Clostridium puniceum strain BL 

70/20 from rotting Irish potatoes.  Isolate LSU-B7 generated a sequence 1376 bp long, which 

resulted in 99% homology with C. saccharobutylicum strain P262. 

To determine how and when end rot pathogens enter sweetpotato storage roots, two 

greenhouse experiments were designed using tissue culture-derived plants free of F. solani and 

M. phaseolina.  In one experiment, plants were grown in autoclaved soil and one month after 

transplanting, plants were inoculated at the soil line with either non-infested toothpicks or 

with toothpicks infested with each fungus alone or combined.  In the other experiment, plants 

were grown in non-infested soil or in soil infested with each fungus alone or combined.  

Isolations were attempted from different parts of the plants.  F. solani and M. phaseolina were 

recovered from roots, storage roots, and plant stems below the soil line, at the soil line, and 



vii 
 

five centimeters above the soil line in both experiments.  This suggests that these fungi are 

capable of invading the sweetpotato plants and storage roots from infested soil, and 

systemically colonize the plant from infected plant propagation material, eventually reaching 

the storage roots.  These findings indicate that infection with F. solani and M. phaseolina can 

occur prior to harvest adding crucial information to end rot disease control. 
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CHAPTER 1: INTRODUCTION 

Sweetpotato (Ipomoea batatas, (L) Lam.) is an important crop in the United States and 

internationally.  Because of its high nutrient values, especially in vitamins and carbohydrates, 

it plays an important role in the human diet, principally in developing countries, where 

sweetpotato is an essential source of food for humans (Bovell-Benjamin, 2007) and animals 

alike (Martin and Woolfe, 1993).  In the United States, sweetpotato storage roots are 

traditionally used in preparation of holiday dishes.  Canned sweetpotato products have been 

widely available in the commercial markets for years.  However, demand has increased 

rapidly in recent years due to the popularity of newer sweetpotato products such as fries, 

chips, and easy-to-prepare frozen products as Americans are becoming increasingly more 

health conscious, and aware of the high nutrient value of this crop.  Sweetpotato is cultivated 

in several states in the United States, with Louisiana being one of the top five states in 

production, generating around $85 million annually (www.LSUAgCenter.com/agsummary). 

Frequent flooding events caused by storms and hurricanes, have disrupted sweetpotato 

production in Louisiana, especially since 2005.  In many cases, storage roots of sweetpotato 

growing in flooded fields develop a soft rot, which is distinguished by a strong odor and by 

the rapid decay of the roots within a few days.  Sweetpotato storage root soft rot diseases are 

recognized to be caused by Dickeya dadantii (Erwinia chrysathemi) (Martin and Dukes, 1997; 

Samson et al., 2005; Schaad and Brenner, 1977), Rhizopus stolonifer (Clark and Moyer, 1988; 

Clark and Hoy, 1994; Harter and Weimer, 1921), and most recently Geotrichum candidum 

(Holmes and Clark, 2002).  Under anaerobic conditions created by flooding, soft rot in 

sweetpotato storage roots seems to be triggered by an association of pathogens (Duarte, 1990), 

http://www.lsuagcenter.com/agsummary
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which was found to include pectolytic anaerobes, possibly clostridia (Duarte and Clark, 1990).  

These authors isolated putative clostridia from soft-rotted storage roots, and when inoculated 

into sweetpotato storage roots that were kept in an anaerobic environment, soft rot symptoms 

were reproduced and pectolytic anaerobic bacteria were re-isolated from the rotten roots.  

However, they were not able to fully characterize the strains, and the species that are involved 

in this sweetpotato storage root soft rot were still unidentified. 

Increasingly, sweetpotato growers must store sweetpotatoes for up to a year to be able 

to sufficiently supply and maintain their markets.  Thus, losses that occur after harvest and 

after the full cost of production have been paid out are especially costly.  Rotting 

sweetpotatoes may also produce the phytoalexins ipomeamarone and ipomeanols that have 

been implicated in deaths of cattle that were fed sweetpotatoes culled from storage (Hansen, 

1928; Hiura, 1943; Woolfe, 1992). 

Among the important postharvest disease complexes in sweetpotato are end rots, which 

are characterized by a visible dry decay at either or both ends of the storage roots.  In 

Mississippi, these diseases have increased significantly in the last few years, causing loss in 

storage facilities, and drastic reductions in production.  Little is known about the etiology of 

this disease complex, which makes it hard to integrate methods of management and disease 

control.  Although curing has long been established as an efficient practice to reduce water loss 

and infections by several pathogens during storage (Artschwager and Starrett, 1931; Weimer 

and Harter, 1921) , many growers have not invested in facilities to provide humidification and 

heating necessary to properly cure sweetpotatoes.  At the LSU AgCenter Burden Center in 

Baton Rouge in 2010, almost 60% of uncured sweetpotato storage roots stored for 6 months 

were partially decayed by end rots, but only 10-20% of cured roots developed end rots (Clark, 
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personal communication).  Weather conditions, such as intermittent flooding and/or 

droughts, may also influence end rot occurrence. 

In Louisiana, it is common to have periods of flooding during the sweetpotato growing 

season, and many farmers associate the increase of the incidence of end rots with flooding 

events.  Among the many effects of flooding on sweetpotato plants is the induction of ethylene 

synthesis (Paterson et al., 1979).  Ethylene can also be induced by ethephon,  which is a product 

used as a defoliant on potato (Solanum tuberosum L.) and pre-harvest application of this 

product also has been shown to reduce skinning in sweetpotato (Schultheis et al., 2000).  

However, preliminary data suggest that ethephon may in fact trigger greater incidence of end 

rots and/or internal necroses.  The results from an experiment designed to investigate these 

findings showed that Fusarium sp., Macrophomina phaseolina, and other fungal species were 

present inside of symptomless storage roots, apparently growing as endophytes (Experiment 

A1). 

Fungal endophytes are fungi that live internally in plants without inducing symptoms 

for at least a part of their life cycle (Wilson, 1995).  Fungal endophytes consist of several types 

of fungi, including latent pathogens (Saikkonen et al., 1998) and dormant saprophytes (Yuan et 

al., 2010).  The role of these fungi is not well established, and the little information known is 

based on their symbioses with a few agronomic grasses, mainly Festuca arundinacea (tall fescue) 

and Lolium perenne (perennial ryegrass); these interactions can extend from strong antagonism 

to obligate mutualism (Saikkonen et al., 1998).  Endophytic fungi are able to grow in the plant 

inter- or intracellularly (Boyle et al., 2001; Schulz and Boyle, 2005).  The plant-endophyte 

interaction is driven by: the plant’s physiology and genotype (Donoso et al., 2008), the fungal 

genotype (Freeman and Rodriguez, 1993), and the environmental circumstance (Redman et al., 
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2001; Rodriguez et al., 2009).  In addition, the endophyte-plant interaction seems to be quite 

variable (Yuan et al., 2010).  More stressful environments, such as summer drought 

(Malinowski et al., 2008) or flooding (Stanosz et al., 2001), drive the selection toward higher 

infection frequencies of endophytes (Jensen and Roulund, 2004).  However, endophytes can 

also play an important role in plant resistance to abiotic stresses (Cheplick, 2004; Donoso et al., 

2008; Yuan et al., 2010), to certain herbivores (Cheplick and Clay, 1988), and to pathogen 

infections (Schulz and Boyle, 2005; Schulz et al., 1999; Wilson, 1995).  Fungal endophyte 

interactions in sweetpotato storage roots have not yet been studied and thus their effects on 

the plant are unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 
 

CHAPTER 2: FLOODING-ASSOCIATED SOFT ROT OF SWEETPOTATO STORAGE 

ROOTS CAUSED BY Clostridium SPECIES 
 

2.1. LITERATURE REVIEW: 

Pectolytic Clostridia 

Pectolytic clostridia have been reported to cause soft rot in potato, Solanum tuberosum 

(Campos et al., 1982; Lund, 1972; Perombelon et al., 1979) and yam, Dioscorea rotundata (Obi, 

1981), are associated with wetwood diseases (Schink et al., 1981), and are known to cause 

cavity spot in carrots (Perry and Harrison, 1977).  An important common factor among these 

diseases is that their occurrence was associated with wet seasons in poorly drained soils with 

restricted aeration. 

Clostridium puniceum has been well described as a cause of potato soft rot.  C. puniceum 

is characterized as: anaerobic, spore-forming, rod-shaped, pink-pigmented on potato infusion 

agar (PIA), and forming pits (craters) on double-layer pectate medium (DLPM) (Lund et al., 

1981).  This bacterium is different from the putative pectolytic clostridia strains isolated from 

decayed sweetpotato storage roots by the localization of the endospore in the cells and by 

pigment production (Duarte, 1990).   Strains isolated from decayed sweetpotato storage roots 

tend to have vegetative cells with endospores located in the end of the cells and no pigment 

production was observed from colonies grown on PIA (Duarte, 1990).  Whereas, C. puniceum 

strains isolated from Irish potato produce sub-terminal endospores and pink pigment on PIA 

(Lund et al., 1981). 

Although pectolytic clostridia have been reported to be associated with soft rot in 

several plants, the species C. puniceum is the only  Clostridium species described as a plant 
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pathogen that has been thoroughly characterized and published as a valid name in the 

International Journal of Systematic and Evolutionary Microbiology (IJSEM) (Bull et al., 2010).  

Identification of the strains of pectolytic clostridia responsible for causing soft rot in 

sweetpotato storage roots growing in flooded fields is an important step to manage the disease 

and reduce losses associated with flooding.  The objective of this study was to identify the 

strictly anaerobic, pectolytic bacterium involved in the souring of sweetpotato storage roots. 

2.2. MATERIAL AND METHODS: 

2.2.1. Media Used 

 All media used in this study were reduced by incubating the plates for four days in an 

anaerobic jar (BD GasPakTM 100, Anaerobic Jars, Becton Dickinson Microbiology Systems, 

Franklin Lakes, NJ, USA) in an atmosphere containing H2/CO2 (90:10 by volume) at 32oC, 

prior to being used (Figure 1).  Streaked plates were also incubated in this anaerobic jar to 

maintain anaerobiosis.  Nutrient dextrose agar plus 0.05% cysteine hydrochloride (NDAC) 

(Difco nutrient agar, 23.0 g; dextrose, 2.5 g; cysteine HCl, 0.5 g; distilled water, 1000.0 ml)  was 

used for isolations, bacterial growth, and morphological characterization of the bacterial 

isolates (Lund, 1972).  Potato infusion agar (PIA) [white potatoes, 200.0 g; glucose, 5.0 g; 

(NH4)2SO4, 1.0 g; CaCO3. 3.0 g; cysteine HCl, 0.5 g; Davis agar, 15.0  g; distilled water, 1000.0 

ml] was used for morphological characterization and pigment production (Lund et al., 1981).  

Potato infusion medium (PIM) [white potatoes, 200.0 g; glucose, 5.0 g; (NH4)2SO4, 1.0 g; 

CaCO3. 3.0 g; cysteine HCl, 0.5 g; Davis agar, 0.5 g; distilled water, 1000.0 ml] was used for 

preservation of the isolates (Holdeman et al., 1977).  Pectinase activity was evaluated using a 
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double-layer pectate medium (DLPM) [medium for basal layer – Tryptone, 10.0 g; Lab-lemco 

powder, 2.4 g; yeast extract, 5.0 g; CaCl2.6H2O, 5.2 g; cysteine HCl, 0.4 g; Bacto agar, 19.0 g; 

polymyxin B sulphate solution (24,000 units/ml), 10.0 ml; distilled water, 1000.0 ml.  Medium 

for upper layer – sodium polypectate, 20.0 g; ethanol (absolute), 60.0 ml; EDTA (di-sodium 

salt), 1.0 g; distilled water, 1000.0 ml] (Lund, 1969). 

 

2.2.2. Bacterial Isolations 

Isolations were conducted from sweetpotato storage roots with soft rot symptoms 

obtained from plants growing in a field that was intentionally flooded two weeks before 

harvest.  In total, there were 10 samples from 10 different rotting storage roots, and one storage 

root was collected per plant.  Eight of the roots were of the cultivar Evangeline, one of Bonita, 

and one of 07-146.  Portions of the decayed tissue were suspended in sterile distilled water 

(SDW) and streaked on NDAC.  Streaked plates were then inverted and fumigated with 1 mL 

of chloroform for 10 minutes to eliminate non spore-forming bacteria (Bauernfeind and 

Figure 1 – Anaerobic jar, plates incubated in an atmosphere 

containing H2/CO2 (90:10 by volume). 
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Burrows, 1978).  Finally, the plates were incubated in an anaerobic jar for seven days at 32oC.  

Isolated bacterial colonies from these plates were re-streaked on NDAC and incubated in 

aerobic and anaerobic atmospheres.  Colonies from isolates that grew in the anaerobic 

environment but not in the aerobic environment were collected and preserved in screw-cap 

tubes (13 x 100 mm) containing PIM for further evaluations. 

2.2.3. Differentiation of Isolates 

Isolates of pectolytic clostridia were separated based on size and morphology of 

colonies growing on PIA and NDAC (Lund, 1972; Lund et al., 1981), on size and morphology 

of vegetative cells and endospores from colonies growing on PIM, and on pectolytic activity of 

colonies growing on DLPM (Lund, 1969). 

Pectolytic ability was evaluated by streaking bacterial cells kept in PIM onto plates of 

DLPM.   Streaked plates were incubated for seven days at 32oC in an anaerobic jar.  After 

incubation, the plates were inspected for pit formation, which is an indication of pectin 

degradation.  Colonies that formed pits were classified as pectolytic while colonies that did not 

form pits were considered negative for pectolytic activity. 

Bacterial endospores were observed by using a modified differential bacterial staining 

protocol Reynolds et al. (2005).  A loop of bacterial cells grown on PIM was spread on a 

microscope slide, and completely air dried.  The smear was heat-fixed by moving the slide 

quickly over a Bunsen burner flame 3 or 4 times.  Then, the slide was covered with a small 

piece of paper towel, and flooded with malachite green dye solution (0.5 g of malachite green 

[Sigma Chemicals] in 100 ml of distilled water).  The slide was left for five minutes on a wire 

screen on top of a beaker containing boiling water; which was previously placed on a hot plate 
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to boil.  The slide was then washed thoroughly with water and flooded with safranin dye 

solution (2.5 g of safranin O [Sigma Chemicals] in 100 ml of 95% [v/v] ethanol), and left for 

one minute.  Finally, the slide was washed thoroughly with tap water, blotted dry with paper 

towels, and observed with the aid of a light microscope under a 100 X oil immersion objective.  

Pictures were taken with an Olympus DP72 microscope digital camera (OLYMPUS 

CORPORATION). 

Bacterial cell measurements, length and thickness, were taken using differential 

interference contrast (DIC) microscopy.  10 µl of bacterial suspension grown on PIM were 

placed on a microscope slide, covered with slide cover and directly observed with the aid of a 

Leica TCS SP2 Spectral Confocal microscope in the Socolofsky Microscopy Center, Department 

of Biological Sciences, Louisiana State University. 

2.2.4. Pathogenicity Test 

 Inoculum was prepared by suspending bacterial cells that had been grown for 7 days 

on NDAC in sterile distilled water amended with 0.05% cysteine and diluting to an optical 

density (OD620) of 0.1 (approximately 1 x 108 CFU/ml).  For each isolate, 10 storage roots were 

inoculated and 10 control storage roots were mock inoculated with sterile distilled water 

(SDW) plus 0.05% cysteine.  Whole asymptomatic sweetpotato storage roots were washed with 

tap water, surface disinfected with 1% NaOCl for 10 minutes, and inoculated by inserting and 

leaving a pipette tip containing 50 µl of inoculum suspension in each root.  The storage roots 

were then individually wrapped with moist paper towels, placed in a plastic bag that was then 

tied shut, and incubated at 30oC for 7 days.  To gain information on host range, the same 

approach was used for inoculation of potato tubers, onion bulbs, and carrot roots purchased 
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from a local grocery store.  Re-isolations were performed from inoculated decaying tissue on 

NDAC as described above. 

2.2.5. Genomic DNA Extraction and 16S Ribosomal DNA Gene Amplification 

Genomic DNA of isolates of pectolytic clostridia were extracted by using a method 

modified from (Pospiech and Neumann, 1995): 

1. Bacterial isolates were grown on NDAC under anaerobic conditions at 28oC for 5 

days; 

2. Cells were harvested using a sterile toothpick and re-suspended in 500 µl of SET 

(75 mM NaCl, 25 mM EDTA, 20 mM Tris, pH 7.5). 

3. 0.5 mg of lysozyme (1 mg ml-l in sterile water) was added and incubated at 37oC 

for 30 min. 

4- 50 µl (1/10 volumes) of 10% SDS and 14 µl of proteinase K (0.5 mg ml-l) were 

added and incubated at 55oC with inversion every 20 min for 2 h. 

5- 190 µl (1/3 volume) of 5 M NaCl and 750 µl (1 volume) of chloroform were 

added, and incubated at room temperature for 30 min with frequent inversion. 

6- After centrifuging at 4500 g for 15 min, the aqueous phase was transferred to a 

new tube using a blunt-ended pipette tip. 

7- DNA was precipitated by adding ≈ 750 µl (1 volume) of isopropanol and gently 

inverting the tube. 

8- After centrifugation at 14,000 RPM for 10 min, the supernatant was discarded. 

9- 500 µl of 70% ethanol was added, the tube was inverted several times and 

centrifuged at 14,000 RPM for 2-5 min. 

10- The supernatant was discarded.  For a second wash, 500 µl of 70% ethanol was 

added, inverted several times and centrifuged at 14,000 RPM for 5 min. 

11- The supernatant was discarded and the tube centrifuged again to remove the 

excess ethanol. 
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12-  The extract was air dried for 15-20 min, then the pellet resuspended in 50-100 µl 

of TE for ≈ 20 minutes on ice. 

13- The DNA was stored at -70°C until ready to use. 

The 16S rDNA gene was amplified using the set of universal bacterial primers FD1 (5′-

AGA GTT TGA TCC TGG CTC AG-3′) and RD1 (5′-AAG GAG GTG ATC CAG CC-3′) 

(Weisburg et al., 1991).  PCR reactions were done in a reaction mixture containing 5 µl of 5 X 

thermophilic DNA buffer (Promega, Madison, WI - USA), 0.5 µl of 10 mM 

deoxyribonucleoside triphosphates (dNTPSs), 0.25 µl of Taq polymerase (0.5 U/ µl), 3.33 µl of 

25 mM MgCl2, 1.0 µl each of 10 mM stock of each primer (RD1 and FD1), 1.0 µl of 100 ng/µl of 

DNA sample, and 12.92 µl of SDW.  The PCR program included an initial denaturation period 

of 98°C for 2 min, 30 cycles of 98°C for 1 min, 55°C for 1 min, 72°C for 1.5 min, and a final 

extension period of 72°C for 5 min. 

Amplicons were purified with QIAGEN’s QIAquick® PCR Purification Kit and 

sequenced by Eton Bioscience (Eton Bioscience Inc., Durham, NC - USA).  DNA sample 

concentration was adjusted to 60 ng in 6 µl of deionized water per reaction.  Then, 10 pmols of 

primer, 6 µl of DNA sample, 8 µl of big dye v. 3.1, and 6 µl of deionized water was added in 

each well of a 96-well plate and placed on a Veriti™ Thermal Cycler (Applied Biosystems, 

Foster City, CA – USA) .  The cycle sequencing included an initial denaturation period of 98°C 

for 1 min; 30 cycles of rapid thermal ramp to 98°C, 98°C for 10 sec, rapid thermal ramp to 50°C, 

50°C for 5 sec, rapid thermal ramp to 60°C, 60°C for 4 min, rapid thermal ramp to 4°C, and 4°C 

for 5 min.  Finally, the samples were purified, vortexed, and loaded on ABI automated 3730xl 

sequencers (Applied Biosystems, Foster City, CA – USA), which translated the fluorescent 

signals into their corresponding base pair sequence. 
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The two 16S rDNA query sequences, LSU-B1 and LSU-B7, were edited in BioEdit v 7.1.3 

(Hall, 1999), and compared with the NCBI data base using BLASTn (Altschul et al., 1990) at the 

National Center for Biotechnology Information website (http://ncbi.nlm.nih.gov/blast). 

2.2.6. Phylogenetic analyses 

16S rDNA bacterial sequences used for comparative analyses were obtained from the 

NCBI GenBank (Table 1).  The sequences from 18 strains of Clostridium spp. and one sequence 

of Dickeya dadantii, as an outgroup, were aligned with Clustal W (Higgins et al., 1994).  A 

maximum likelihood (ML) search and a maximum parsimony (MP) analysis of taxa were 

performed in MEGA5 (Tamura et al., 2011).  Analyses were run with 1000 bootstrap replicates 

and a bootstrap consensus tree was inferred to represent the evolutionary history of the taxa 

analyzed (Felsenstein, 1985).  The MP tree was obtained using the Close-Neighbor-Interchange 

algorithm (Nei and Kumar, 2000) with search level 1 in which the initial trees were obtained 

with the random addition of sequences (10 replicates).  The tree was drawn to scale, with 

branch lengths calculated using the average pathway method (Nei and Kumar, 2000) and are 

in the units of the number of changes over the whole sequence.  All positions containing indels 

and missing data were eliminated.  There were a total of 1213 positions in the final dataset.  

Evolutionary analyses were conducted in MEGA5 (Tamura et al., 2011). 

Alternative topological hypotheses were tested by using the ML method based on the 

Data specific model (Nei and Kumar, 2000).  The tree with the highest log likelihood (-

6446.0885) was selected and the bootstrap support values of 1000 runs were included on the 

phylogenetic tree. 

 

http://ncbi.nlm.nih.gov/blast
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Table 1. Bacterial sequences used in the phylogenetic analysis. 

 

  

Species 

Designation 

Strain 

Designation 

Geographical 

Origin 

GenBank 

Accession Number 

Accession Number 

Description 

Clostridium acetobutylicum NCIMB8052  Weizmann, Israel U16165 Partial 16S rRNA 

C. baratii IP 2227 Inst. Pasteur, Paris NR_029229 Complete 16S rRNA 

C. beijerinckii JCM 8023 Riken, Japan AB647331 Partial 16S rRNA 

C. botulinum E134 Lake Erie, USA JN617090 Partial 16S rRNA 

C. butyricum AB33 India JQ993878 Partial 16S rRNA 

C. corinoforum DSM 5906 DSM, Germany X76742 Partial 16S rRNA 

C. difficile  DSM 11209 DSM, Germany X73450 Partial 16S rRNA 

C. diolis SH1 DSM, Germany NR_025542 Partial 16S rRNA 

C. favososporum DSM 5907 DSM, Germany X76749 Partial 16S rRNA 

C. perfringens JCM 3817 Riken, Japan AB588015 Partial 16S rRNA 

C. puniceum BL 70/20 Wisconsin, USA NR_026105 Partial 16S rRNA 

C. roseum N36 Italy AB601091 Partial 16S rRNA 

C. saccharobutylicum P262  New Zealand U16147 Partial 16S rRNA 

C. saccharoperbutylacetonicum N1-4 New Zealand NR_036950 Partial 16S rRNA 

C. sordellii HT3  India DQ978213 Partial 16S rRNA 

C. tetani NCTC 279 NCTC, UK NR_029260 Partial 16S rRNA 

Dickeya dadantii CFBP 1269 Comores  NR_041921 Partial 16S rRNA 

LSU_B1 LSU_B1 Louisiana, USA JX258847 Partial 16S rRNA 

LSU_B7 LSU_B7 Louisiana, USA JX258848 Partial 16S rRNA 
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B A 

Figure 2 - Pectolytic activity of the isolates was determined by pit formation on 

DLPM after seven days of anaerobic incubation at 32oC. A, pits formed by LSU-B1 

colonies. B, colonies of LSU-B7 in which no pit formation was observed. 

2.3. RESULTS: 

2.3.1. Isolate morphology 

 Two distinct groups of bacteria were consistently isolated from decaying tissue of soft 

rotted Evangeline storage roots grown in an intentionally flooded field.  One representative 

isolate of bacteria from each group, LSU-B1 and LSU-B7, were selected for further 

investigation.  Both isolates had a Gram positive reaction, grew on media incubated in an 

anaerobic environment but not on media exposed to air, and formed sub-terminal endospores 

and were thus preliminarily identified as Clostridium sp. (Lund and Kelman, 2001).  In other 

respects, the morphology of the isolates differed considerably (Table 2).  Only isolate LSU-B1 

formed pits on DLPM (Figure 2).  LSU-B1 produced smaller colonies and vegetative cells and 

appeared to produce fewer endospores on PIM than LSU-B7 isolate (Figures 3, 4, and 5). 
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Groups 

Colonies Vegetative Cells 

Color Appearance Diameter (mm) Form Elevation Margin Shape Size (µm) 

LSU-B1 Cream Butyrous 1-2 Rhizoid to 

Irregular 

Umbonate Undulate to 

Lobate 

Straight Rods 3-5 

LSU-B7 Light 

Cream 

Butyrous 4-7 Circular Raised to 

Convex 

Entire Straight Rods 5-11 

Figure 3 - Bacterial colonies growing on NDAC after seven days of anaerobic 

incubation at 30oC.  A, LSU-B1 colonies.  B,  LSU-B7 colonies. 

A

 

B

 

Table 2.  Morphological characteristics of the bacterial isolates, LSU-B1 and LSU-B7, following growth in an anaerobic 

environment at 32oC.  Colony characteristics were evaluated after seven days growth on NDAC.  Vegetative cell 

characteristics were evaluated after seven days on PIM. 

 A  A 
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Figure 5 - Light micrographs of differential staining of bacterial cells grown on PIM.  A, 

LSU-B1 bacterial cells.  B, LSU-B7 bacterial cells.  Note that there are fewer endospores (red 

arrows) in LSU-B1 than LSU-B7.  Scale bars = 10 µm. 

A

 

B

 

Figure 4 -  DIC micrographs of bacterial cells grown on PIM.  A, LSU-B1 bacterial cells (3-5 

µm long).  B, LSU-B7 bacterial cells (5-11 µm long).  Scale bars = 10 µm. 

A

 

B

 

 A  A 

 A  A 
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Figure 6 - Soft rot symptoms on Evangeline sweetpotato storage roots inoculated 
with LSU-B1 isolate (A) and (C), and LSU-B7 isolate (B) and (D). 

A B 

C D 

2.3.2. Pathogenicity test 

 All sweetpotato storage roots inoculated with either of the bacterial isolates developed 

severe soft rot after seven days of incubation in a hypoxic environment (Figure. 6).  Potato 

tubers, onion bulbs, and carrot roots were completely rotted after five days of incubation, 

when inoculated with either of the bacterial isolates (Figures 7 and 8).  None of the controls 

developed soft rot after the incubation period (Figures. 9 and 10).  However, three onion bulbs 

and four carrot roots developed fungal infections after the incubation period.  In all cases, the 

inoculated isolates were re-isolated from decaying tissue (Figure 11). 
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A B C 

Figure 7 - Soft rot symptoms on potato tuber (A), onion bulb (B), and carrot root (C) 
inoculated with LSU-B7 isolate. 

Figure 8 - Soft rot symptoms on potato tuber (A), onion bulb (B), and carrot root (C) 
inoculated with isolate LSU-B1. 

A B C 

Figure 9 - Evangeline sweetpotato storage root mock inoculated with 50 µl of sterile 
distilled water plus 0.05% cysteine as the experiment control. 
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A B 

Figure 11 - Bacterial colonies of isolate LSU-B1 (A) and isolate LSU-B7 (B) recovered 

from decaying sweetpotato storage root previously inoculated with the respective 

isolate. 

Figure 10 Onion bulb (A), Irish potato tuber (B), and carrot root (C) mock inoculated 

with 50 µl of sterile distilled water plus 0.05% cysteine as the experiment control. 

A 

A 

B 

B 

C 

C 
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2.3.3. 16S ribosomal DNA gene sequence analyses 

 Amplification and sequencing of the 16S rRNA region from isolate LSU-B1 generated a 

sequence 1425 bp long (GenBank database Accession No. JX258847).  BLASTn analysis against 

the NCBI database of this nucleotide sequence resulted in 99% homology with C. puniceum 

strain BL 70/20 (GenBank Accession No. NR_026105.1).  However, it resulted in high 

homology (98%) with other Clostridium species as well (Figure 12). 

Isolate LSU-B7 generated a sequence 1376 bp long (GenBank database Accession No. 

JX258848).  This nucleotide sequence resulted in 99% homology with C. saccharobutylicum 

strain P262 (GenBank Accession No. U16147), after a BLASTn analysis on the NCBI database 

website.  This analysis also showed that LSU-B7 is highly similar (98%) to other Clostridium 

species in regard to the 16S rDNA gene (Figure 13). 

A sequence comparison analysis between the LSU-B1 and LSU-B7 16S rRNA sequences 

revealed that although they were 97% similar, there are many mismatching and indels 

(insertion and/or deletion of nucleobases) among the sequences (Figure 14). 

2.3.4. Phylogenetic analysis 

Three distinct clades were recovered from maximum parsimony (MP) and maximum 

likelihood (ML) analyses using the 16S rRNA sequence dataset (Figure 15). 

Clade I, which was well supported by the ML and MP bootstrap values of 60 and 88, 

respectively, included the LSU-B7 isolate from this study and the species C. saccharobutylicum.  

Clade II, included the LSU-B1 isolate from this study and the species, C. puniceum, C. 

corinoforum, and C. favosporum. 
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Figure 13 - BLASTn analysis of the 16S rRNA sequence of LSU-B7 representative isolate 

showing 99% homology with C. saccharobutylicum and 98% homology with other 

Clostridium species. 

Figure 12 - BLASTn analysis of the 16S rRNA sequence of LSU-B1 representative isolate 

showing 99% homology with C. puniceum and 98% homology with other Clostridium 

species. 
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Figure 14 - Sequence comparison between the 16S rRNA sequences of LSU-B1 and LSU-B7 representative isolates showing 

97% homology. The color codes of the bases (A= green, T= red, C= blue, and G= black) represent the homology between 

the two sequences. Bases with white color code characterize the mismatching and indels between the sequences. 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 
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LSU-B7 

LSU-B1 

LSU-B7 

LSU-B1 

LSU-B7 
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Additionally, a strong phylogenetic relationship was indicated between the LSU-B1 

isolate and the species C. puniceum, which was well supported by the ML and MP bootstrap 

values (96 and 97).  Clade III, included Clostridium species that have industrial uses (C. 

saccharoperbutylacetonicum, C. butyricum, C. beijerinckii, and C. acetobutylicum), and soil 

inhabitant species (C. roseum and C. diolis). 

The human toxin producing Clostridium species (C. baratii, C. perfringens, C. tetani, C. 

difficile, C. sordellii, and C. botulinum), included in the phylogenetic study and the outgroup 

species Dickeya dadantii, did not form any distinct group and were far removed 

phylogenetically from isolates LSU-B1 and LSU-B7. 

2.4. DISCUSSION: 

 Pectolytic anaerobic bacteria resembling clostridia were found to cause soft rot in 

sweetpotato storage roots submerged in sterile distilled water (Duarte and Clark, 1990).  

However, until now, no study had been conducted under field conditions to characterize the 

occurrence of these pathogens in natural infections.  In this study, we were able to isolate two 

distinct isolates of clostridia involved in the occurrence of this disease complex from rotting 

storage roots in flooded fields.  Both isolates caused soft rot in sweetpotato storage roots and 

in other hosts following artificial inoculation and were re-isolated to fulfill Koch’s Postulates. 

  Clostridium species are considered to be difficult microorganisms to control and work 

with (David and Stefanie, 2005; Kelly and LaMont, 2008).  They produce resistant structures, 

endospores, which are hard to kill and can result in cross contamination among cultures when 

working with the isolates.  They are also strictly anaerobic, requiring special conditions for 

growth in culture, which are expensive and time consuming.  I also encountered unique 
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challenges in amplifying and sequencing DNA of these bacteria.  The G+C contents of isolates 

LSU-B1 and LSU-B7 were over 50% in the 16S rDNA gene (Table 3) and the G+C content was 

not uniformly distributed along the gene (Figure 15).  Some portions of the gene had G+C 

content much greater than 50% while for others the incidence was very low.  This seemed to 

induce the formation of secondary structures such as hairpin loops, which created problems in 

the amplification and sequencing of the gene.  However, these complications were resolved by 

increasing the melting temperature in the PCR and sequencer protocols from the standard 

95oC to 98oC and adding 5% DMSO to the mix reactions. 

 

Figure 15 - Phylogram of the 16S rRNA dataset for 18 species of Clostridium and one 

species of Dickeya included as an outgroup.  Branch tip labels include the species name 

with the strain designation in parentheses.  Sequences from all species were obtained from 

the National Center for Biotechnology Information GenBank.  The phylogram was 

produced by the maximum parsimony (MP) method.  Numbers on nodes represent 

bootstrap support values for maximum likelihood (top) and maximum parsimony 

(bottom).  The scale bar indicates number of substitutions per site. 

Maximum Parsimony analysis of taxa 

* 
* 

* 
* 

* 
* 

* Human Toxin 

Producers 

Clade I 

Clade 

II 

Clade III 

LSU-B7 

LSU-B1 
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Table 3.  Distribution of nitrogen-containing bases along the 16S rRNA sequences of LSU-B1 

and LSU-B7 isolates. 

Isolate 

Base Count 

Adenine (A) Thymine (T) Guanine (G) Cytosine (C) 
%G~C 
content 

Total 

LSU-B1 380 302 432 311 52.1 1425 

LSU-B7 372 294 413 297 51.6 1376 

 

 The identification of isolates LSU-B1 and LSU-B7 to species level was not attained due 

to the complexity of the genus and also due to the limited number of relevant gene sequences 

available on the NCBI database.  In fact, for the species C. puniceum, the only known plant 

pathogen in the genus Clostridium, only the 16S rDNA gene had been previously sequenced 

and deposited in the GenBank database.  Sequencing other genes for identification of the 

isolates was not within the scope of this study, as it would require obtaining numerous 

reference species and also sequencing them to have sufficient data for comparison.  Even 

though the 16S rDNA gene is widely used to identify bacterial species, this gene alone was 

insufficient for a reliable identification of the pectolytic clostridia isolated from sweetpotato 

storage roots.  The sequences were highly similar with numerous sequences of different 

Clostridium species within group 1 of the genus (Collins et al., 1994; Wiegel et al., 2006).  Inglett 

et al. (2011) encountered similar difficulties with this group of Clostridium and found that 

DNA-DNA hybridization analyses and numerous phenotypic characterizations were 

necessary to support their description of a new species, Clostridium chromiireducens. 



26 
 

 The phylogenetic analysis of the 16S rRNA sequence dataset corroborated the BLAST 

search results, showing isolate LSU-B7 to be very closely related with C. saccharobutylicum and 

isolate LSU-B1 with C. puniceum (Figure 15).  Furthermore, this analysis showed a low 

relatedness among human toxin producer Clostridium species (C. baratii, C. perfringens, C. tetani, 

C. difficile, C. sordellii, and C. botulinum) and the isolates from this study, which reduces the fear 

of these isolates being able to cause disease in humans.  However, more genes should be 

analyzed for a comprehensive conclusion. 

For final species identification of LSU-B1 and LSU-B7, it will be necessary to perform 

more sequence and phenotypic analyses.  Whole genome sequencing and comparison would 

provide the most thorough information.  However, this approach is still expensive, and since 

many of the genomes of other species in this group have not been completely sequenced yet, 

there is little available for comparison.  DNA finger print analyses and sequencing of other 

genes might also provide a suitable identification of these isolates.  Likewise, morphological 

studies looking for the presence and type of flagella, pili, s-layer; and studies to determine the 

cellular fatty acid compositions would be indispensable approaches to help to properly 

identify those isolates. 

Furthermore, this experiment was conducted in a single location, analyzing a small 

sampling of isolates.  Possibly other species are involved in this disease complex and a more 

detailed study covering multiple diverse locations, and involving more sampling will be 

needed to reveal the full complex etiology of this disease.  Duarte (1990) isolated two distinct 

isolates of Clostridium from decaying tissue of sweetpotato, one of his isolates produced small 

pits on DLPM while the other produced larger pits.  In our study, only the isolate LSU-B1 

produced pits on DLPM, while LSU-B7 grew on this medium, but no pit formation was 
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observed.  Additionally, Duarte (1990) also detected a higher severity of the disease when the 

clostridia isolates were inoculated together with the soft rotter, D. dadantii, into sweetpotato 

storage roots.  These facts suggest that more species within and out of the genus may also be 

triggering disease development, which reinforces the need for more studies. 

 In potato, pectolytic clostridia have been found primarily infecting lenticels 

(Perombelon et al., 1979) and when those lenticels open, under wet conditions, these and other 

microorganisms are able to penetrate into the tuber and initiate soft rot (Pérombelon, 2002).  

Substantial lenticel proliferations were observed on sweetpotato storage roots when those 

roots were submerged in water.  Possibly in flooded fields, the storage root lenticels proliferate 

and these are the sites to where Clostridium cells enter the root and start the infection.  This 

indicates that finding an efficient way to control lenticel proliferation in sweetpotato storage 

roots would play a pivotal role in controlling the initiation of this soft rot disease. 

The harsh Louisiana weather with constant severe thunderstorms and hurricanes, 

causing floods in the fields, seems to be the perfect combination for the development of this 

soft rot disease complex.  In this study, important information was determined about this 

disease etiology, which can be used as a foundation for developing strategies in the disease 

management and control programs, providing better support to sweetpotato growers in 

dealing with this problem. 
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CHAPTER 3: INFECTION OF SWEETPOTATO BY FUNGAL END ROT PATHOGENS 
PRIOR TO HARVEST 

3.1. LITERATURE REVIEW: 

End Rots Fungal Pathogens 

End rots of sweetpotato storage roots are caused by Fusarium solani (Clark, 1980), 

Macrophomina phaseolina (Jenk, 1981; Ray and Edison, 2005; Taubenhaus, 1913), Lasiodiplodia 

theobromae (Clark and Moyer, 1988; Clendenin, 1896) and/or Diaporthe batatatis (Harter and 

Field, 1913).  In addition, some end rots were observed in 2010 from which Sclerotium rolfsii 

was isolated (daSilva, unpublished).  These fungi are normally isolated alone from roots with 

end rot symptoms; however, isolations done in our laboratory from roots with end rot 

revealed that F. solani and M. phaseolina are often isolated from the same lesion (unpublished 

data) (Figure 16).  F. solani and M. phaseolina were also isolated from healthy storage roots that 

did not present any end rot symptoms (data not shown).  These findings suggested that these 

fungi are present inside of symptomless sweetpotato storage roots, suggesting that they are 

probably fungal endophytes in these roots, and become pathogens when conditions are 

favorable. 

It is well known that Fusarium (Dill-Macky and Jones, 2000; Fernando et al., 2000; 

Shaner, 2003; Sutton, 1982) and M. phaseolina (Baird et al., 2003; Bhattacharya and Samaddar, 

1976; Meyer et al., 1974; Short et al., 1980) can survive in crop residues and in the soil, from one 

season to another.  However, how and when these fungi enter the sweetpotato storage root are 

important factors yet to be determined. 
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In commercial sweetpotato production, storage roots are planted in beds to sprout, and 

then the sprouts are used as propagative material to establish field plantings.  From 

transplanting, sweetpotato plants take around four months to produce storage roots ready for 

harvesting.  Hence, during their entire life cycle, sweetpotato plants are kept in contact with 

soil, therefore creating different options for end rot causal agents to penetrate the plant. 

The traditional belief regarding end rot diseases is that pathogens infect storage roots 

through wounds, such those created by the harvesting process (Clark and et al., 2013; Lo and 

Clark, 1988; Nelsen and Moyer, 1979).  However, the discovery that F. solani and M. phaseolina 

are found inside of symptomless storage roots suggests other possibilities.  These fungi may 

enter the storage roots even before harvesting, during plant growth.  Understanding how and 

when those fungi invade sweetpotato storage roots are crucial steps to developing an effective 

end rot disease management program.  This study was carried out to investigate how and 

when sweetpotato storage roots are invaded by the fungi, F. solani and M. phaseolina. 

 

Figure 16 – Sweetpotato storage root infected with 

M. phaseolina and F. solani.  Surface view (A) and 

longitudinal section view (B). 



30 
 

3.2. MATERIAL AND METHODS 

3.2.1.  Inoculum 

Isolate CK-7 of M. phaseolina was isolated from an Evangeline sweetpotato storage root 

with tip rot at the Burden Center in Baton Rouge, LA in 2011.   Isolate M-10 of Fusarium solani 

was isolated from a sweetpotato with Fusarium root rot in North Carolina and provided by J. 

W. Moyer (Dept. Plant Pathology, North Carolina State University, Raleigh).  Isolates were 

revived on potato dextrose agar (PDA) and the hyphal tip technique was performed to 

eliminate any possible contaminants. 

3.2.2.  Toothpick Inoculation 

In order to investigate if the pathogens, F. solani and M. phaseolina, move from infected 

mother plants to storage roots during growth and development of the plant, a greenhouse 

experiment was designed using vines from tissue culture plants (screened for the absence of 

M. phaseolina and F. solani) planted in autoclaved soil.  After one month from the planting day, 

vines were mock inoculated with a sterile toothpick or inoculated with the specific fungus at 

the soil line, by a method modified from Pratt et al. (1998).  Tips (1.0 cm long) of 100 wooden 

toothpicks were autoclaved for 20 min in 250 ml of distilled water.  They were then blotted 

and re-autoclaved in additional water to remove inhibitory substances.  The toothpick tips 

were autoclaved for a third time in 250 ml of 20% V-8 juice.  Finally, they were cooled in sterile 

Petri dishes and transferred individually to colonies of the fungi growing on PDA Petri dishes 

or to Petri dishes with just PDA.  There were 30 toothpick tips on colonies of M. phaseolina, 30 

on colonies of F. solani, and 30 on plates with just PDA.  After incubation for seven days at 
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28oC, toothpick tips were removed, inserted in vines of sweetpotato plants at the soil line, and 

the inoculation site was wrapped with a piece of Parafilm® to avoid desiccation of the 

wounded region.  There were four treatments; plants mock inoculated with toothpick tips left 

on just PDA as control (Control), plants inoculated with toothpick tips infested with M. 

phaseolina (Mp) plants inoculated with toothpick tips infested with F. solani (Fso), and plants 

inoculated with two toothpick tips, one infested with M. phaseolina and another with F. solani 

(Fso+Mp).  Each treatment had 10 replicate plants and each plant was cultivated in a 15-cm-

diameter clay pot. 

After 120 days, storage roots were harvested and washed with tap water to remove 

excess soil.  Pencils roots, stems, and one storage root of each plant were collected for 

isolations as described below.  The remaining storage roots were kept in paper bags, stored at 

15oC, and analyzed after three months for end rot symptom development.  Percent of storage 

roots infected with each of the pathogens was determined.  This experiment was performed in 

2011 and repeated in 2012. 

3.2.3.  Soil Infestation 

This assay was performed to verify if the pathogens, F. solani and M. phaseolina, move 

from infested soil into the growing plant and/or into storage roots.  Vines from tissue culture 

(screened for the absence of M. phaseolina and F. solani) were planted in infested and non-

infested soil.  The soil was infested by a modified procedure (Miles and Wilcoxson, 1984) in 

which inoculum was produced in three metal pans (7 X 15 X 21 cm) lined with a double layer 

of aluminum foil.  150 g of cornmeal and 300 ml of warm 1% PDA were added to each pan.  

The pans were allowed to stand for 10-15 min, and 75 g of sand was thoroughly mixed with 
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the cornmeal.  Then, the pans were covered with two layers of aluminum foil and autoclaved 

for 1.5 hours at 1.27 kg/cm2 (18 psi) and 121oC.  After cooling, the pans were inoculated with 

the agar from one-week-old fungal cultures, one pan with M. phaseolina and one with F. solani, 

grown on PDA and one pan was inoculated with sterile PDA.  Agar from three petri dishes of 

each fungus was mixed in the sand-cornmeal of the corresponding pan with a sterile knife, 

and 50 ml of sterile distilled water was added.  The pans were closed with aluminum foil, and 

incubated for four weeks at 28oC.  After the incubation period, the fungal inocula were spread 

on a tabletop for two days to air-dry.  Dried inocula were stored individually in plastic bags at 

4oC until needed.  Cornmeal-sand inoculum of each fungus was mixed with sterile soil in a 15-

cm-diameter clay pot to a concentration of approximately 103 CFU/g (determined by serial 

dilution) of dry soil and approximately 10 g of non-inoculated cornmeal-sand was mixed in 

each control treatment pot.  There were four treatments; pots with cornmeal-sand soil infested 

with M. phaseolina (Mp), pots with cornmeal- sand soil infested with F. solani (Fso), pots with 

cornmeal-sand soil infested with both fungi (Fso+Mp), and pots with non-infested cornmeal-

sand soil (Control).  One vine cutting of sweetpotato cultivar Beauregard was transplanted 

into each pot. 

Sweetpotato plants and/or storage roots were sampled four times during the first year 

of this experiment (2011), at three developmental stages prior to harvest and at harvest.  

According to Villordon and his colleagues (2009), sweetpotato plants have three 

developmental stages (SR1, SR2, and SR3) (Figure 17).  SR1 is when there is a minimum of one 

adventitious root (minimum length = 0.5 cm) in each of at least 50% of transplants.  SR2 is 

when anomalous cambium is observed in a minimum of one adventitious root in each of at 

least 50% of transplants.  And SR3 is the presence of a minimum of one visible storage root 
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(adventitious root with visible localized thickening, minimum of 0.5 cm at its widest section) 

in each of at least 50% of plants. 

 

The first sampling was done at SR1, 5-10 days after transplanting (DAT) to determine if 

the pathogens are able to penetrate the plant in the first week after transplanting.  It is possible 

that the wounds on the transplants created during cutting might provide an avenue for ingress 

of these microorganisms.  The plants were sampled above and below the soil line, and 5 cm 

long segments were used for isolations as described below.  The second isolations were 

sampled at 15-20 DAT, at SR2 when cracks formed on the adventitious roots by the emergence 

of lateral roots during this developmental stage might provide a natural entrance for the fungi.  

In addition to the isolations done as in the SR1, isolations were also attempted from the 

adventitious roots.  The third sampling was attempted on plants at SR3, at 30-35 DAT to 

investigate the possibility that the fungi may enter storage roots through lateral adventitious 

roots.  The isolation procedure was attempted in the same manner as for the SR2 plus 

isolations of one of the SR formed per plant.  The fourth sampling was attempted at harvest 

Modified from A. Villordon et al. 2009 

Figure 17 - Phenology scheme for describing morpho-anatomical features 

related to storage root initiation. Development stages SR1, SR2, and SR3. 

AC= anomalous cambium, AR= adventitious root, SR= storage root. 
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and isolations were done as for the third sampling.  In the second year (2012), samples were 

only collected at one week after transplanting and at harvesting.  The stems, pencil roots, and 

the storage roots were sampled as described below.  In total, there were 10 plants sampled per 

each treatment in each sampling time and the remaining storage roots from the four samplings 

were kept in paper bags, stored at 15oC, and analyzed after three months for end rot symptom 

development.  Percent of storage roots infected with each of the pathogens was determined. 

3.2.4.  Isolation Procedures 

Isolations were attempted from different areas of the sweetpotato vines including the 

pencil roots, storage roots, the portion of the vine located below the soil line, and the portion of 

the vine from the soil line up to five cm above the soil line.  The pencil roots from each plant 

were chopped into small pieces and placed on each of the selective media.  One storage root 

was selected from each plant, split in half longitudinally, and transverse strips were taken 

from both ends (distal and proximal) and from the center of the storage root and placed on 

each of the selective media.  Segments from the vine of each plant were split in half, and the 

two parts were placed on each of selective medium with the split side facing the media.  All 

plant materials for isolations were surface disinfested in 1% sodium hypochlorite for 10 

minutes and placed on two different media:  Peptone PCNB Agar (PPA) medium selective for 

Fusarium species first described by Snyder and Hansen (1941) with modifications by Nelson 

and colleagues (1983) and RB medium (Cloud and Rupe, 1991) selective medium for M. 

phaseolina.  After growing on the specific selective medium, fungal mycelia were transferred to 

PDA, hyphal tips were transferred to acquire single isolates, and the isolates were kept on 

PDA for further evaluations. 
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3.2.5.  DNA Extraction, Amplification, and Sequencing 

In preparation for DNA extraction, isolates were grown first on PDA plates for seven 

days at 28oC in the dark.  Approximately 100 mg of fresh mycelia was scraped from plates, 

placed in 1.5 ml microfuge tube, macerated thoroughly with a micro-pestle, and allowed to 

stand for 6-10 min.  DNA extraction and purification was performed using the GenEluteTM 

Plant Genomic DNA Miniprep Kit following the manufacturer’s protocol (Sigma-Aldrich Co. 

St. Louis, MO, USA).  Extracted DNA was quantified using a NanoDrop® ND-1000 

Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE-USA) and samples in the 

range 1.8-2.0 ratio of absorbance at 260 and 280 nm were used as a template in the PCR 

reactions. 

PCR reactions were done in a reaction mixture containing 5 µl of 5 X thermophilic DNA 

buffer (Promega, Madison, WI-USA), 0.5 µl of 10 mM deoxyribonucleoside triphosphates 

(dNTPSs), 0.25 µl of Taq polymerase (0.5 U/µl), 3.33 µl of 25 mM MgCl2, 1.25 µl of 10 mM of 

each primer, 1.0 µl of the 100 ng/µl of DNA template, and 12.42 µl of SDW.  The PCR program 

included an initial denaturation period of 95°C for 2 min, 35 cycles of 95°C for 45 sec, 53°C for 

1 min, 72°C for 30 sec, and a final extension period of 72°C for 5 min. 

Amplicons were purified with QIAGEN’s QIAquick® PCR Purification Kit following 

the manufacturer’s protocol (Qiagen Inc., Valencia, CA) and sequenced by Eton Bioscience 

(Eton Bioscience Inc., Durham, NC - USA).  The Eton Bioscience procedure involved adjusting 

DNA sample concentration to 60 ng in 6 µl of deionized water per reaction.  Then, 10 pmols of 

primer, 6 µl of DNA sample, 8 µl of big dye v. 3.1, and 6 µl of deionized water were added in 

each well of a 96-well plate and placed on a Veriti™ Thermal Cycler (Applied Biosystems, 
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Foster City, CA – USA).  The cycle sequencing included an initial denaturation period of 95°C 

for 1 min, 30 cycles of rapid thermal ramp to 95°C, 95°C for 10 sec, rapid thermal ramp to 50°C, 

50°C for 5 sec, rapid thermal ramp to 60°C, 60°C for 4 min, rapid thermal ramp to 4°C, and 4°C 

for 5 min.  Finally, the samples were purified, vortexed, and loaded on ABI automated 3730xl 

sequencers (Applied Biosystems, Foster City, CA – USA), which translate the fluorescent 

signals into their corresponding base pair sequence. 

3.2.6.  Isolate Identification 

 Fusarium isolates from the experimental samples were identified based on 

morphological characters on PDA and on carnation leaf agar (CLA) following identification 

keys (Leslie and Summerell, 2006; Nelson et al., 1983).  The identification was confirmed by 

comparing partial translation elongation factor 1-alpha (TEF) sequences with the FUSARIUM-

ID database (Geiser et al., 2004).  The set of primers ef1 (5’-ATG  GGT AAG GA(A/G) GAC 

AAG AC-3’) and ef2 (5’-GGA (G/A)GT ACC AGT (G/C)AT CAT GTT-3’) (O'Donnell et al., 

1998) were used for the partial gene amplification and sequencing.  The partial TEF sequence 

of isolate M-10, used in the inoculations, was deposited in the GenBank database (Accession 

number JX945169). 

 Isolates of M. phaseolina were identified by morphological characters on PDA (Barnett 

and Hunter, 1998) and confirmed by comparing the partial internal transcribed spacer region 

(ITS) sequences with the GenBank database using BLASTn (Altschul et al., 1990) at the 

National Center for Biotechnology Information website (http://ncbi.nlm.nih.gov/blast).  The 

amplification and sequencing of the partial ITS region were performed using the primer set 

ITS1-(5´TCC GTA GGT GAA CCT TGC GG 3´) and ITS4-(5´TCC TCC GCT TAT TGA TAT GC 

http://ncbi.nlm.nih.gov/blast
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3´) (White et al., 1990).  The partial ITS sequences of the isolate CK-7, used in the inoculations, 

was deposited in the GenBank database (Accession number JX945170). 

3.2.7.  Pathogenicity Test 

 All fungal isolates obtained from parts of the plants and storage roots were tested for 

pathogenicity in slices of sweetpotato storage roots.  Whole asymptomatic sweetpotato storage 

roots were washed with tap water, peeled, and surface disinfested with 1% NaOCl for 10 

minutes.  1 cm thick slices were aseptically cut from those roots and individually placed on top 

of moistened filter paper that was placed individually in sterile glass Petri plates.  Then, in 

each slice, a 0.5 cm diameter agar plug from a 24-hr-old fungal colony growing on PDA was 

placed on the center of the sweetpotato slice, incubated for two weeks in dark at 28°C, and 

evaluated for necrosis development on the slice. 

3.2.8.  Statistical Analyses 

All statistical analyses were performed using PROC GLIMMIX for generalized linear 

mixed models in SAS (version 9.3; Copyright(c) 2002-2010 by SAS Institute Inc., Cary, NC, 

USA).  The data was arranged in binary distribution.  Pairwise treatment comparisons were 

conducted on the independent variables using LSMEANS comparison, and adjustments were 

performed using Tukey’s honest significant difference (Tukey, 1949). 

In both experiments, data for each experimental unit consisted of binary values from 

each isolation site.  Data was analyzed as a complete randomized design, with treatments 

consisting of toothpick inoculation type or soil infestation type.  The independent variables 

were treatment, isolation sites, and time for the infested soil experiment, and isolation sites for 
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the toothpick inoculation experiment.  The response variables were the fungi isolated: F. solani, 

M. phaseolina, and others (other Fusarium species). 

To evaluate the incidence of storage roots with end rot infected by each fungus, each 

storage root was used as an experimental unit and the presence or absence of each fungus was 

determined in a binary distribution.  The independent variables were the treatments and 

response variables were the fungi isolated from rotting storage roots (F. solani, M. phaseolina, 

and other fungi). 

3.3.  RESULTS: 

3.3.1.  Toothpick Inoculation 

 Both F. solani and M. phaseolina were recovered from inoculated plants but not from 

those not inoculated.  The percentage of recovery of each fungus did not differ from 

treatments where they were inoculated alone or where both fungi were inoculated together 

(Fso+Mp).  However, F. solani was recovered over 70% of the time while the recovery of M. 

phaseolina was below 53% in both years (Table 4).  Interestingly, other Fusarium species 

(Others) were found in all treatments (Table 5), except in plants inoculated with F. solani alone 

in 2012 (Table 4).  Also, the incidence of the other Fusarium species was lower in plants 

inoculated with F. solani, either alone or with M. phaseolina, and higher in plants inoculated 

with M. phaseolina alone (Table 4). 
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TABLE 5.  Number of isolates of other Fusarium species recovered from different isolation sitesy 
in each experiment. 

 
 

Treatmentz 
 2011  2012 

 
 

Fungi Isolatedy  Fungi Isolatedy 

F. solani M. 
phaseolina 

Others  F. solani M. 
phaseolina 

Others 

Control  0 b* 0 b 28 b  0 b 0 b 30 b 
Fso  96 a 0 b 20 b  86 a 0 b 0 c 
Mp  0 b 28 a 64 a  0 b 52 a 60 a 
Fso+Mp  98 a 16 a 20 b  74 a 36 a 2 c 

F Value  1060.09 10.81 11.50  135.18 28.09 33.22 
Pr>F  <.0001 <.0001 <.0001  <.0001 <.0001 <.0001 

 

 
Fusarium 
species 

Toothpick Inoculation Experiment  Soil Infestation Experiment 

Top Soil 
Line 

Bottom Roots Storage 
Roots 

 Top Soil 
Line 

Bottom Roots Storage 
Roots 

F. commune 0 0 0 0 0  3 2 3 0 0 
F. concentricum 0 0 0 0 0  0 0 0 0 1 
F. lateritium 0 1 1 1 0  0 0 0 0 0 
F. oxysporum 2 3 2 2 9  5 7 9 12 1 
F. pallidoroseum 8 10 8 13 21  6 6 5 8 0 
F. proliferatum 0 0 0 0 0  18 21 22 16 13 
F. solani* 5 7 5 11 13  21 18 24 20 12 

 
F. solani was recovered from all parts of the plants of the plant tested (isolation sites) in 

both years, and the rate of recovery did not differ among the isolation sites within year (Table 

6).  On the other hand, M. phaseolina was recovered mainly from the stem near the soil line in 

yTop (stem 5 cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below the soil line), 
roots (pencil roots), and storage roots. 
*Did not cause any significant rotting in slices of storage roots. 

z Plants inoculated with Fusarium solani (Fso), plants inoculated with Macrophomina phaseolina 
(Mp), plants inoculated with Fusarium solani and Macrophomina phaseolina  (Fso+Mp), and 
non-inoculated plants (Control). 
y Fso (Fusarium solani ), Mp (Macrophomina phaseolina), and Others (other Fusarium species). 
* Conservative Tukey-Kramer Grouping for Treatment Least Squares Means (Alpha=0.05).  
LS-means with the same letter within the same column are not significantly different. 

TABLE 4.  Toothpick inoculation experiment.  Percentage of fungi recovered from 
sweetpotato plants in each treatment.  
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both years.  With the exception of the bottom region in year the 2012, M. phaseolina was not 

recovered or recovered at a low rate in the isolation sites above and below the soil line (Table 

6).  Other Fusarium species were isolated from all isolation sites in both years, and they were 

found in a higher percentage in the storage roots in 2011 (Table 6). 

 

 
Isolation 

Sitez 

 2011  2012 

 
 

Fungi Isolatedy  Fungi Isolatedy 

F. 
solani 

M. 
phaseolina 

Others  F. 
solani 

M. 
phaseolina 

Others 

Top  50.0 a* 10.0 b 15.0 b  32.5 a 12.5 bc 22.5 a 
Soil Line 
(inoculation site) 

 
50.0 a 37.5 a 25.0 b 

 
37.5 a 45.0 a 27.5 a 

Bottom  50.0 a 7.5   b 12.5 b  45.0 a 30.0 ab 27.5 a 
Roots  47.5 a 0.0   b 37.5 b  45.0 a 17.5 bc 30.0 a 
Storage Roots  45.0 a 0.0   b 75.0 a  40.0 a 5.0   c 7.5   a 

F Value  0.0800 11.8500 14.9300  0.4600 6.3800 1.8900 
Pr>F  0.9889 <.0001 <.0001  0.7640 <.0001 0.1142 

 
There was not a significant difference in recovery rate of F. solani between isolation sites 

within treatment in each year (Table 7 A and B).  The highest recovery rate of M. phaseolina was 

from the soil line (the inoculation site) and the lowest was from storage roots followed by roots 

in the treatments M. phaseolina and Fso+Mp in both years (Table 7 A and B).  Other Fusarium 

species were frequently isolated from storage roots in all treatments in 2011 (Table 7 A).  

However, this pattern was not observed in 2012 where their distribution was similar among all 

isolation sites (Table 7 B). 

z Top (stem 5 cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below 
the soil line), roots (pencil roots), and storage roots. 
y Fso (Fusarium solani), Mp (Macrophomina phaseolina), and Others (other Fusarium species). 
* Conservative Tukey-Kramer Grouping for Isolation Site Least Squares Means (Alpha=0.05).  
LS-means with the same letter within the same column are not significantly different. 

TABLE 6.  Toothpick inoculation experiment.  Percentage of fungi isolated from different 
isolation sites in sweetpotato plants.  
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TABLE 7.  Toothpick inoculation experiment.  Percent recovery of fungi from different isolation sites in each treatment in 2011 
(A) and 2012 (B).   

             Treatmentz 
Site of 
Isolationy  

Fungi Isolated 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Top 0 b* 100 a 0 b 100 a  0 c 0 c 10   c 30 bc  10 c 0   c 50 abc 0   c 
Soil Line 0 b 100 a 0 b 100 a  0 c 0 c 100 a 50 b  30 bc 0   c 70 ab 0   c 
Bottom 0 b 100 a 0 b 100 a  0 c 0 c 30   bc 0   c  0   c 0   c 50 abc 0   c 

Roots 0 b 90   a 0 b 100 a  0 c 0 c 0    c 0   c  50 abc 10 c 80 ab 10 c 
Storage Roots 0 b 90   a 0 b 90   a  0 c 0 c 0    c 0   c  50 abc 90 a 70 ab 90 a 

F Value  0.67    10.60    3.23  

Pr>F  0.7818    <0.0001    0.0003  
 

             Treatmentz 
Site of 
Isolationy 

Fungi Isolated 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Top 0 b* 70 a 0 b 60 a  0 d 0 d 30   cd 20 cd  30 abc 0 c 60 ab 0   c 
Soil Line 0 b 90 a 0 b 60 a  0 d 0 d 100 a 80 ab  40 abc 0 c 70 a 0   c 
Bottom 0 b 90 a 0 b 90 a  0 d 0 d 60   abc 60 abc  40 abc 0 c 70 a 0   c 

Roots 0 b 90 a 0 b 90 a  0 d 0 d 50   bc 20 cd  40 abc 0 c 70 a 10 bc 
Storage Roots 0 b 90 a 0 b 70 a  0 d 0 d 20   cd 0   d  0   c 0 c 30 abc 0   c 

F Value  0.82    4.02    0.83  

Pr>F  0.6267    <0.0001    0.6209  

 

y Top (stem 5 cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below the soil line), roots (pencil roots), and 
storage roots. 
Z Plants inoculated with Fusarium solani (Fso), plants inoculated with Macrophomina phaseolina (Mp), plants inoculated with Fusarium 
solani and Macrophomina phaseolina (Fso+Mp), and non-inoculated plants (Control). 
* Means with the same letter within the same column are not significantly different by the Conservative Tukey-Kramer Grouping for 
Isolation Site*Treatment Least Squares Means (Alpha=0.05).  

B  

A
A 
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 Storage roots with end rot symptoms were found in over 30% of the storage roots from 

all treatments in both years, after three months in storage.  However, more rotting storage 

roots were observed in 2011 than in the 2012 in all treatments and there was no statistical 

difference between treatments within a year, for both years (Figure 18 A and B).  Also, neither 

F. solani nor M. phaseolina were isolated from rotting roots from the control treatment in the 

years (Table 8).  F. solani was isolated more often from Fso treatment than rotting storage roots 

from Fso+Mp treatment in 2011; however, this difference was not statistically significant.  In 

2012, F. solani was isolated from 20% of the rotting roots in both treatments.  However, this 

percentage was not statistically different from treatments were F. solani was not isolated, 

control and Mp (Table 8).  M. phaseolina was isolated from rotting storage roots from Mp and 

Fso+Mp treatments in both years.  Nevertheless, these isolation rates were not statistically 

significant from the failure to isolate M. phaseolina from the control or Fso treatments (Table 8).  

Furthermore, F. pallidoroseum, F. concentricum, F. proliferatum, and Aspergillus spp. (Other 

Fungi) were frequently isolated from rotting storage roots from all treatments in both years 

(Table 8).  However, these fungi failed to cause any significant necrosis or decay in 

sweetpotato storage root slices in the pathogenicity test (data not shown). 

3.3.2. Soil Infestation 

F. solani was frequently recovered from Fso and Fso+Mp treatments in both years (Table 

9).  In 2011, F. solani recovery was significantly greater from Fso treatment than from Fso+Mp 

(Table 9).  However, this trend was not observed in 2012 (Table 9). 
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Treatmentz 

 2011  2012 

 
 

Fungi Isolated  Fungi Isolated 

F. solani M. 
phaseolina 

Other Fungi  F. 
solani 

M. 
phaseolina 

Other Fungi 

Control  0.0   b* 0.0   a 73.3 a  0.0   a 0.0 a 35.0 a 
Fso  70.0 a  0.0   a 20.0 b  20.0 a 0.0 a 35.0 a 
Mp  0.0   b 7.7   a 38.5 ab  0.0   a 5.6 a 27.8 a 
Fso+Mp  40.0 ab 20.0 a 40.0 ab  20.0 a 8.0 a 40.0 a 

F Value  15.03 1.39 2.78  3.01 1.01 0.22 
Pr>F  <.0001 0.2610 0.0535  0.0349 0.3915 0.8822 
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Figure 18 - Toothpick inoculation experiment, 2011 (A) and 2012 (B).  Total percentage of 
sweetpotato storage roots with end rot symptoms in each treatment [plants inoculated with 
F. solani (Fso), plants inoculated with M. phaseolina (Mp), plants inoculated with F. solani and 
M. phaseolina (Fso+Mp), and non-inoculated plants (Control)]. Conservative Tukey-Kramer 
Grouping for Treatments Least Squares Means (Alpha=0.05).  LS-means within year were not 
significantly different. 
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zPlants inoculated with F. solani (Fso), plants inoculated with M. phaseolina (Mp), plants 
inoculated with F. solani and M. phaseolina  (Fso+Mp), and non-inoculated plants (Control). 
*Conservative Tukey-Kramer Grouping for Isolated Fungi Least Squares Means 
(Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

TABLE 8.  Toothpick inoculation experiment.  Percentage of fungi recovered from 
sweetpotato storage roots with end rot symptoms from each treatment.  
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Percent recovery of M. phaseolina was not significantly different between the treatments 

Mp and Fso+Mp in 2011 (Table 9), whereas in 2012 its recovery was significantly greater from 

the plants inoculated with M. phaseolina alone than combined inoculation with F. solani (Table 

9).  Additionally, M. phaseolina was found in about 10% of the plants from the Fso treatment, 

which was not significantly different from the failure to isolate it from the control plants (Table 

9).  Others were found in all treatments in both years and were isolated at significantly 

different rates among treatments within each year (Table 9). 

 

 
Treatmentz 

 2011  2012 

 
 

Fungi Isolated  Fungi Isolated 

F. solani M. 
phaseolina 

Others  F. solani M. 
phaseolina 

Others 

Control  0.0   c* 0.0   b 25.6 b  0.0   b 0.0   c 53.3 a 
Fso  92.2 a 0.0   b 1.1   c  94.4 a 2.2   c 3.3   b 
Mp  0.6   c 57.7 a 47.2 a  0.0   b 75.6 a 10.0 b 
Fso+Mp  79.4 b 55.0 a 4.4   c  95.6 a 53.3 b 51.1 a 

F Value  734.34 154.61 66.33  1128.14 111.04 40.13 
Pr>F  <.0001 <.0001 <.0001  <.0001 <.0001 <.0001 

 
Except for a lower frequency of isolation from storage roots in 2011, the rate of F. solani 

recovery was not statistically different among isolation sites (Table 10).  In contrast, M. 

phaseolina was recovered at higher frequency at isolation sites located in the infested soil in 

both years (Table 10).  Others were isolated from all parts of the plants and their isolation rate 

was not significantly different among isolation sites (Table 10). 

 

z Soil infested with F. solani (Fso), soil infested with M. phaseolina (Mp),  soil infested with F. 
solani and M. phaseolina  (Fso+Mp), and non-infested soil (Control). 
*Conservative Tukey-Kramer Grouping for Treatments Least Squares Means (Alpha=0.05).  
LS-means with the same letter within the same column are not significantly different. 

TABLE 9.  Soil infestation experiment.  Percentage of fungi recovered from sweetpotato 
plants in each treatment.  
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Isolation 
Sitez 

 2011  2012 

 
 

Fungi Isolated  Fungi Isolated 

F. 
solani 

M. 
phaseolina 

Others  F. 
solani 

M. 
phaseolina 

Others 

Top  43.1 a* 16.3 c 16.9 a  41.3 a 16.3 b 25.0 a 
Soil Line  42.5 a 26.9 bc 19.4 a  48.8 a 33.8 ab 25.0 a 
Bottom  48.8 a 36.3 ab 23.1 a  50.0 a 41.3 a 32.5 a 
Roots  50.0 a 41.9 a 20.0 a  48.8 a 41.3 a 30.0 a 
Storage Roots  18.8 b 11.3 c 17.5 a  50.0 a 30.0 ab 40.0 a 

F Value  6.31 11.26 0.56  0.41 3.94 1.01 
Pr>F  <.0001 <.0001 0.6893  0.8017 0.0038 0.4039 

 

Although recovery rates of F. solani, M. phaseolina, and Others differed slightly but 

significantly among sampling times in 2011, they did not significantly increase from week 1 to 

harvest (Table 11).  In 2012, F. solani was recovered at the same rate in week 1 and at harvest, 

while the recoveries of M. phaseolina and Others increased significantly from week 1 to harvest 

(Table 11). 

While M. phaseolina was recovered less frequently from the storage roots in 2011, the 

analysis of the interaction effects between treatments and isolation sites revealed a tendency of 

M. phaseolina to be isolated from parts of the plants that were in contact with the infested soil 

(bottom, roots, and storage roots).  On the other hand, the distribution of F. solani and Others 

were scattered in the plant (Table 12 A and B). 

 

 

zTop (stem 5 cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below 
the soil line), roots (pencil roots), and storage roots. 
* Conservative Tukey-Kramer Grouping for Isolation Site Least Squares Means (Alpha=0.05).  
LS-means with the same letter within the same column are not significantly different. 

TABLE 10.  Soil infestation experiment.  Percentage of fungi isolated from different 
isolation sites in sweetpotato plants.  
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  2011  2012 

Sampling 
TimeZ 

 Fungi Isolated  Fungi Isolated 

F. solani M. 
phaseolina 

Others  F. solani M. 
phaseolina 

Others 

1o Week  46.9 ab* 27.5 ab 13.8 b  45.6 a 25.0 b 8.8   b 
2o Week  50.0 a 32.5 ab 30.0 a  ND** ND ND 
3o Week  34.0 b 20.5 b 8.5   b  ND ND ND 
Harvest  43.5 ab 33.0 a 27.0 a  49.0 a 39.0 a 46.0 a 

F Value  3.64 3.24 12.95  0.40 8.04 70.70 
Pr>F  0.0127 0.0218 <.0001  0.5253 0.0048 <.0001 

 
 There was a statistical difference in the recovery rate of F. solani, M. phaseolina, and 

Others between sampling times in each treatment within a year.  However, the results were 

dispersed and they did not show a tendency to increase or decrease the recovery rate of these 

fungi with the age of the plant (sampling times) in each treatment (Table 13 A and B).  

Furthermore, the recovery rate of F. solani, M. phaseolina, and others did not differ statistically 

between site of isolation in each sampling time within a year (Table 14 A and B). 

End rot disease developed in stored storage roots from all treatments in 2011 and 2012 

(Figure 19 A and B).  There was a higher incidence of this disease in storage roots from 2011 

than from 2012 in all treatments and the disease incidence was significantly different among 

treatments in 2011, in which the Fso treatment had the highest incidence (Figure 19 A and B). 

 

z Week 1 (1 week after the planting day), week 2 (2 weeks after the planting day), week 3 (3 
weeks after the planting day), and harvest (at harvest day). 
* Conservative Tukey-Kramer Grouping for each Sampling Time Least Squares Means 
(Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 
** Non-determined, plants were not sampled at these times. 

TABLE 11.  Soil infestation experiment.  Percentage of fungi recovered from sweetpotato 
plants in each sampling time.  
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TABLE 12.  Soil infestation experiment, percentage of fungi recovered from different isolation sites in each treatment in 2011 (A) and 2012 
(B).  

 

           TreatmentZ 
Site of 
IsolationY 

Percent Recovery 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Top 0 d* 98   a 0 d 75   b  0 d 0 d 35 c 30 cd  20 cde 0 e 43 abc 5 de 
Soil Line 0 d 98   a 0 d 73   b  0 d 0 d 70 b 38 c  23 bcde 0 e 50 ab 5 de 
Bottom 0 d 100 a 3 d 93   a  0 d 0 d 73 ab 73 ab  30 abcde 0 e 58 a 5 de 

Roots 0 d 100 a 0 d 100 a  0 d 0 d 73 ab 95 a  23 bcde 3 e 50 ab 5 de 
Storage Roots 0 d 40   c 0 d 35   c  0 d 0 d 20 cde 25 cde  40 abcd 5 de 25 abcde 0 e 

F Value  12.91   10.09   1.35  

Pr>F  <0.0001   <0.0001   0.1863  
 

              TreatmentZ 
Site of 
IsolationY 

Percent Recovery 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Top 0 c* 85   ab 0 c 80   b  0 d 0   d 40 dc 25 d  40   bc 0   c 10 bc 50 ab 
Soil Line 0 c 95   a 0 c 100 a  0 d 0   d 85 ab 50 bcd  40   bc 0   c 5   c 55 ab 
Bottom 0 c 100 a 0 c 100 a  0 d 0   d 95 a 70 abc  60   ab 0   c 15 bc 55 ab 

Roots 0 c 95   a 0 c 100 a  0 d 10 d 85 ab 70 abc  50   ab 10 bc 10 bc 50 ab 
Storage Roots 0 c 100 a 0 c 100 a  0 d 0   d 70 abc 50 bcd  100 a 10 bc 10 bc 40 bc 

F Value  1.78    2.64    1.43  

Pr>F  0.0493    0.0022    0.1489  

 

yTop (stem 5cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below the soil line), roots (pencil roots), and storage 
roots. 
z Soil infested with F. solani (Fso), soil infested with M. phaseolina (Mp),  soil infested with F. solani and M. phaseolina  (Fso+Mp), and non-
infested soil (Control). 
*Means with the same letter within the same column are not significantly different by the Conservative Tukey-Kramer Grouping for 
Isolation Site*Treatment Least Squares Means (Alpha=0.05). 

B 

A 
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TABLE 13.  Soil infestation experiment, percentage of fungi recovered from different sampling times in each treatment in 2011 (A) and 
2012 (B).  

 

 

 

     TreatmentZ 
Time of 
SamplingY 

Percentage of Recovery 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Week 1 0 d* 100 a 3 d 85   ab  0 c 0 c 48 ab 63 a  8   cd 0 d 48 ab 0   d 
Week 2 0 d 100 a 0 d 100 a  0 c 0 c 60 a 70 a  33 bc 3 d 65 a 20 cd 
Week 3 0 d 80   b 0 d 56   c  0 c 0 c 52 ab 30 b  12 cd 2 d 20 cd 0   d 
Harvest 0 d 92   ab 0 d 82   b  0 c 0 c 70 a 62 a  48 ab 0 d 60 a 0   d 

F Value  6.67    3.69    6.27  

Pr>F  <.0001    0.0002    <.0001  

 

                 TreatmentZ 
Time of 
SamplingX 

Percentage of Recovery 

F. solani  M. phaseolina  Others 

Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp  Control Fso Mp Fso+Mp 

Week 1 0 c* 93 ab 0 c 90   b  0 c 0 c 73 a 28 b  18 b 0 b 13 b 5   b 
Harvest 0 c 96 ab 0 c 100 a  0 c 4 c 78 a 74 a  82 a 6 b 8   b 88 a 

F Value  2.10    10.30    46.41  

Pr>F  0.1004    <.0001    <.0001  

 

 
 

YWeek 1 (1 week after the planting day), week 2 (2 weeks after the planting day), week 3 (3 weeks after the planting day), and harvest (at 
harvest day). 
xWeek 1 (1 week after the planting day) and harvest (at harvest day). 
Z Soil infested with F. solani (Fso), soil infested with M. phaseolina (Mp), soil infested with F. solani and M. phaseolina (Fso+Mp), and non-
infested soil (Control). 
*Means with the same letter within the same column are not significantly different by the Conservative Tukey-Kramer Grouping for 
Sampling Time*Treatment Least Squares Means (Alpha=0.05). 
 

B 

A 
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TABLE 14.   Soil infestation experiment, percentage of fungi recovered from different isolation sites in each sampling time in 2011 (A) 

and 2012 (B). 

 

         Sampling  
Site of   TimeZ 
IsolationY 

Percent Recovery 

F. solani  M. phaseolina  Others 

Week 1 Week 2 Week 3 Harvest  Week 1 Week 2 Week 3 Harvest  Week 1 Week 2 Week 3 Harvest 

Top 48 a* 50 a 38 ab 38 ab  23 abc 13 abc 10 bc 20 abc  13 a 25 a 8   a 23 a 
Soil Line 38 ab 50 a 40 a 43 a  15 abc 38 abc 18 abc 38 abc  15 a 28 a 10 a 25 a 
Bottom 53 a 50 a 43 a 50 a  28 abc 40 ab 33 abc 45 a  20 a 33 a 10 a 30 a 
Roots 50 a 50 a 50 a 50 a  45 a 40 ab 38 abc 45 a  8   a 35 a 8   a 30 a 
Storage Roots ND ND 0   b 38 ab  ND ND 5   c 18 abc  ND ND 8   a 28 a 

F Value  1.08    0.88    0.30  

Pr>F  0.3714    0.5489    0.9810  

 

                   Sampling TimeZ 
 Site of 
 IsolationY 

Percent Recovery 

F. solani  M. phaseolina  Others 

Week 1 Harvest  Week 1 Harvest  Week 1 Harvest 

Top 35 a* 48 a  5   b 28 ab  5   c 45 ab 
Soil Line 50 a 48 a  30 ab 38 a  5   c 45 ab 
Bottom 50 a 50 a  35 ab 48 a  18 bc 48 a 
Roots 48 a 50 a  30 ab 53 a  8   c 53 a 
Storage Roots ND 50 a  ND 30 ab  ND 40 ab 

F Value 0.34  0.54  0.45 

Pr>F 0.7958  0.6570  0.7172 

 

ND = Not determined, storage roots were not formed yet at this times. 
y Top (stem 5 cm above the soil line), soil line (stem at the soil line), bottom (stem 5 cm below the soil line), roots (pencil roots), and 
storage roots. 
Z Week 1 (1 week after the planting day), week 2 (2 weeks after the planting day), week 3 (3 weeks after the planting day), and harvest (at 
harvest day). 
 x Week 1 (1 week after the planting day) and harvest (at harvest day). 
* Means with the same letter within the same column are not significantly different by the Conservative Tukey-Kramer Grouping for 
Isolation Site*Sampling Time Least Squares Means (Alpha=0.05).  

A 

A 



50 
 

Neither F. solani nor M. phaseolina were isolated from rotting roots from the control 

treatment in either year (Table 15).  The isolation rate of F. solani was significantly higher from 

rotting storage roots from the Fso treatment than rotting storage roots from the Fso+Mp 

treatment in both years.  Furthermore, the isolation rate of F. solani was much higher in 2011 

than in 2012 in both treatments, Fso and Fso+Mp (Table 15).  Even though the recovery of M. 

phaseolina did not differ statistically between treatments in 2012, this fungus was isolated 

slightly more often from rotting storage roots from the Mp treatment than from rotting roots 

from the Fso+Mp treatment, in 2011 (Table 15).  Additionally, F. pallidoroseum, F. concentricum, 

and Aspergillus spp. were frequently isolated from rotting storage roots from all treatments in 

both years (Table 15), but they did not cause necrosis or decay on sweetpotato slices in the 

pathogenicity test (data not shown). 
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Figure 19 -  Soil infestation experiment, 2011 (A) and 2012 (B).  Total percentage of 
sweetpotato storage roots presenting end rot symptoms in each treatment [soil infested with 
F. solani (Fso), soil infested with M. phaseolina (Mp), soil infested with F. solani and M. 
phaseolina (Fso+Mp), and non- soil infested (Control)]. Conservative Tukey-Kramer Grouping 
for Treatments Least Squares Means (Alpha=0.05).  LS-means with the same letter for the 
same treatment within year are not significantly different. 
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Treatmentz 

 2011  2012 

 
 

Fungi Isolatedy  Fungi Isolatedy 

F. 
solani 

M. 
phaseolina 

Other Fungi  F. 
solani 

M. 
phaseolina 

Other Fungi 

Control  0   c* 0   b 31 a  0   b 0   a 21 a 
Fso  89 a 0   b 0   a  25 a 0   a 10 a 
Mp  0   c 42 a 15 a  0   b 10 a 18 a 
Fso+Mp  39 b 31 ab 0   a  13 ab 0   a 6   a 

F Value  44.62 6.44 3.33  4.43 3.08 1.39 
Pr>F  <.0001 0.0007 0.0247  0.0056 0.0306 0.2489 

 

3.4. DISCUSSION: 

The results of this study provide insight into how F. solani and M. phaseolina invade 

sweetpotato plants and storage roots, adding information crucial for developing strategies for 

end rot disease complex management.  The outcomes from toothpick inoculation experiments 

make clear that both fungi are capable of moving from the vines of the plant to storage roots.  

This finding has important implications in controlling initial infection of these fungi; since the 

propagation material, sweetpotato vine cuttings, can be infected with them prior to planting 

and they could move to storage roots during the natural development of the plant, potentially 

causing subsequent end rot.  Therefore, using propagation plant material free of those 

pathogens could be an efficient way to reduce the initial inoculum concentration and 

consequently reducing disease incidence. 

It was also found that both fungi infected sweetpotato plants and storage roots from 

infested soil as early as the first week after planting.  This suggests that controlling the 

zSoil infested with F. solani (Fso), soil infested with M. phaseolina (Mp),  soil infested with F. 
solani and M. phaseolina  (Fso+Mp), and non- infested soil (Control). 
*Conservative Tukey-Kramer Grouping for Isolated Fungi Least Squares Means (Alpha=0.05).  
LS-means with the same letter within the same column are not significantly different. 

TABLE 15.   Soil infestation experiment.  Percentage of fungi recovery from sweetpotato 
storage roots developing end rot in each treatment.  
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population of these fungi in the soil by methods such as soil fumigation, would be an essential 

approach to reduce the incidence of latent pathogens inside of the storage roots, thus 

potentially reducing the occurrence of end rot infections.  In another experiment, we found 

that soil fumigated with 1% Chloropicrin has a great potential to reduce the incidence of M. 

phaseolina in symptomless sweetpotato storage roots (Table A4).  This is an indication that it is 

worthwhile investing some time to find out the best concentration of this compound to be 

used and also to test other chemical compounds for this purpose. 

Likewise, our results make it evident that F. solani and M. phaseolina can be 

simultaneously present inside of sweetpotato plants and they do not seem to influence the 

spread of each other in plants whether they are inoculated together in the vines or infested 

together in the soil in comparison to treatments where they are introduced alone.  This helps to 

explain why both pathogens have frequently been isolated at the same time from sweetpotato 

storage roots with end rots. 

The higher recovery rate of F. solani, especially at sites distant to the site of inoculation, 

in relation to M. phaseolina in both experiments suggests that F. solani is more aggressive in 

colonizing sweetpotato plants than M. phaseolina.  F. solani was commonly recovered from all 

parts of the plants in both experiments, while M. phaseolina was mostly recovered from the 

inoculation sites and from plant parts exposed to infested soil.  Furthermore, the spread and 

penetration of these fungi into sweetpotato plants seems to happen fast, within the first week 

after transplanting, and they do not seem to be correlated with the three developmental stages 

of sweetpotato plants as first hypothesized.  Furthermore, recovery rates did not significantly 

increase from the first week after inoculation until harvest. 
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The dramatically reduced frequency of isolation of other Fusarium species from 

treatments in which F. solani was present suggests that F. solani has some means of 

competitively colonizing the plant and reducing colonization by the other fusaria.  In contrast, 

M. phaseolina seems to have a positive biological interaction with other Fusarium species as 

these species were isolated more often in some treatments where M. phaseolina was inoculated.  

Further inoculation studies in which the other Fusarium species are inoculated alone or 

simultaneously with F. solani or M. phaseolina should be conducted to test these interactions.  

Furthermore, the fact that F. solani is more aggressive at colonizing sweetpotato plants 

suggests that it might be more likely than M. phaseolina to induce end rots when environmental 

conditions favor their development. 

Even though F. oxysporum and F. pallidoroseum (synonym F. incarnatum) have been 

found to cause surface rot in sweetpotato storage roots (Harter and Weimer, 1919; Martin and 

Person, 1951; Ray et al., 1996), isolates of these species collected in this study did not cause 

significant symptoms on inoculated sweetpotato slices.  The other isolates of F. solani also did 

not cause significant rot in inoculated slices (Figure 20).  In addition, those F. solani isolates 

differed significantly from our standard isolate (M-10), used in this research.  While M-10 

colonies produced a blue to blue-green pigment, sparse aerial mycelia, abundant micro- and 

macroconidia in PDA, and aerial microconidia from long monophialides, matching the 

morphological characteristics described by (Clark, 1980); the isolates found in our studies had 

a cream color on the upper surface of PDA and also produce microconidia on mono- and 

polyphyalides (data not shown).  The identification of these isolates was confirmed to be F. 

solani by comparing their TEF gene sequences with the FUSARIUM-ID database (Geiser et al., 

2004).  A more in depth study should be conducted to evaluate the role of the endophytic 
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Fusarium species in sweetpotatoes and also to better characterize those isolates that are 

members of the F. solani polytypic species complex (VanEtten and Kistler, 1988) now known as 

F. solani species complex (FSSC) (O'Donnell, 2000).  It is possible that many of these isolates, 

members of FSSC, found in sweetpotatoes can be characterized as new formae speciales or even 

as new species as discovered by Nalim and his colleagues (2011). 

The hypothesis proposed by Clark (1980) that F. solani requires a wound for infection of 

storage roots, such as occur during harvest, was not supported by our studies as we 

discovered that this pathogen can be found inside of symptomless storage roots prior to 

harvest.  Although not required, such harvest-related wounds, may still provide a major site of 

entrance for these pathogens since curing, which promotes healing of the wounds, is well 

known to reduce the incidence of end rots significantly (Artschwager and Starrett, 1931; 

Weimer and Harter, 1921).  Furthermore, the presence of pathogens inside of symptomless 

storage roots does not necessarily mean that end rot disease will develop as many roots from 

inoculated plants failed to develop the disease. 

Considering that other fungal species isolated from the rotting storage roots from our 

experiments failed to cause rotting symptoms in our pathogenicity tests, these fungi may be 

opportunistic pathogens that develop end rots only under certain environmental conditions.  

Storage roots stored for extended periods of three months or more, or those grown in 

greenhouse conditions, as well as those grown in flooded soils are more likely to develop end 

rot diseases (daSilva, unpublished data).  End rot of sweetpotato storage roots may also be 

linked with physiological changes in the plant, as it has been shown that incidence of tip rot, a 

type of end rot, in Mississippi is associated with ethylene-induced stress and pre-harvest foliar 

applications of ethephon (Arancibia et al., 2013).  Likewise, pathogen genotypes, plant 
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cultivars, plant nutrition, storage roots desiccation, and storage conditions may all play a 

significant role in the development of end rot diseases in sweetpotato storage roots. 
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Figure 20 - Pathogenicity test.  Slices of sweetpotato storage root inoculated with 0.5 cm diameter agar plugs:  

Sterile agar control (A), M. phaseolina isolate CK-7 (B), F. solani isolate M-10 (C), F. solani isolate F2 (D), F. solani 

isolate C4 (E), F. solani isolate C5 (F), F. solani isolate Mp2 (G), and F. solani isolate F3 (H).  Plates were incubated in 

the dark for two weeks at 28oC. 
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CHAPTER 4: CONCLUSIONS 

 Flooding-associated bacterial soft rot and fungal end rots are among the main diseases 

that threaten sweetpotato production in the southern United States.  Little is known about the 

etiology of these disease complexes making management of them difficult.  Knowing the 

causal agent of these diseases and how those agents enter the sweetpotato storage roots are 

vital steps to maximize integrated control measures. 

 Two anaerobic bacteria were isolated from soft rotting sweetpotato storage roots 

growing in flooded fields.  The isolates were identified as Clostridium spp. and caused severe 

soft rot symptoms when inoculated in sweetpotato storage roots, which provided strong 

support to the given hypothesis that Clostridium spp. are involved in the flooding-associated 

bacterial soft rot of sweetpotato storage roots.  Furthermore, these two Clostridium isolates 

were found to be phylogenetically distinct from the human pathogenic Clostridia according to 

the comparison analyses of the 16s rDNA sequences. 

 The two end rot pathogens studied, F. solani and M. phaseolina, were found inside of 

symptomless storage roots and they were proven to be capable of moving from infested soil to 

sweetpotato plants and spreading inside of plants to storage roots, potentially causing end rot 

disease.  Strong evidence was provided that sweetpotato storage root infections by these fungi 

can occur prior to harvest, which completely requires adapting earlier approaches to 

management and control of this disease complex.  An orthodox approach for managing the 

disease is to cure the storage roots as it was believed that the sites of entrance of these 

pathogens were uniquely through wounds created during the harvest process.  Since the 

evidence implicates infected propagating material as a source of these fungi, it is worth 
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considering using sweetpotato transplants free of these pathogens and efficient ways to reduce 

soil infestation by these fungi, prior to planting, as additional control measures. 
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APPENDIX 

Experiment A1. 

 

Flooding, ethephon, and incidence of end rots on sweetpotato storage roots 

 
Rationale 

This experiment was primarily designed to investigate if flooding and/or ethephon 

affected the incidence of end rot disease pathogens on sweetpotato storage roots. 

Material and Methods 

There were six treatments:  Plots not flooded and not treated with ethephon, plots not 

flooded and treated with ethephon, plots flooded one day prior to harvest and not treated with 

ethephon, plots flooded one day prior to harvest and treated with ethephon, plots flooded five 

days prior to harvest and not treated with ethephon, and plots flooded five days prior to 

harvest and treated with ethephon.  The sweetpotato cultivar Beauregard was used in this 

assay.  After harvest, the storage roots were cured at 29 +/- 2oC and 85-90% RH for 5 days then 

stored at 15 +/- 2oC until they were analyzed for end rot symptom development.  Every two 

weeks a storage root without end rot symptoms was taken from each treatment for isolations 

to discover if end rot pathogens were present inside the storage roots and where in the root 

they would be.  The isolations were attempted from different parts of the storage roots (Figure 

A1). 
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Results 

Fusarium sp., Macrophomina phaseolina, and other fungi were found inside symptomless 

storage roots in all isolation sites (Table A1).  While the incidence of M. phaseolina did not differ 

statistically between isolation sites, Fusarium sp. and other fungi were isolated more frequently 

from the proximal and distal ends than from the isolation sites located toward the center of the 

storage roots (Table A2).  Furthermore, the incidence rate of these fungi did not differ 

statistically between treatments in this experiment (Table A3). 

 

Fig. 3 - Figure of sweetpotato storage roots showing the areas where the isolations were 

attempted. SSA = slender stem attachment, SAJ = slender stem attachment junction with main 

storage root, PV = proximal vascular, PC = proximal central, MV = mid-root vascular, MC = 

mid-root central, DV = distal vascular, DC = distal central, RTJ = root tail junction with main 

storage root, 

RT = root tail. 

Figure A1 - Figure of sweetpotato storage roots showing the areas where isolations were 
attempted. SSA = slender stem attachment, SAJ = slender stem attachment junction with 
main storage root, PV = proximal vascular, PC = proximal central, MV = mid-root vascular, 
MC = mid-root central, DV = distal vascular, DC = distal central, RTJ = root tail junction 
with main storage root, RT = slender distal end of root. 
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          Isolation Site           
Isolations Treatments SSA  SAJ PV PC MV MC DV DC RTJ RT 

1 

BN-X BC Y, Y, Y 
       

F 
BN+X Y,CV P,  F 

      
F 

 
B1-X L F, L 

      
B Y 

B1+X B B 
      

F, Y, BC, B Y 
B5-X B F 

      
Y, BC B 

B5+X B, Y, F B, F 
  

F 
   

FY F 

2 

BN-X Y, F, P 
    

F 
  

P 
 

BN+X P P 
      

F, MP, T P, F 
B1-X Mp 

       
L L 

B1+X F, F, B Mp 
      

Y CV 
B5-X B B 

      
Y CV 

B5+X F, L L, F, PP 
      

Y BC 

3 

BN-X F, F F, F 
      

F P 
BN+X A, Mp, F BP, Mp, 

      
Mp Mp 

B1-X F A, F, Y Y 
 

Y, B 
   

Mp Mp 
B1+X F, F P, BM Y 

 
F 

 
F 

 
Mp, Y F 

B5-X F F 
  

F 
   

Mp 
 

B5+X P Mp, F Mp P, Mp CV, CV  F  B, F, P, Y F, F 
            4 BN-X F CV, Y 

      
F, F Y 

BN+X CV, Mp F, A 
      

F F, CV 
B1-X F, F CV, L 

      
F, CV Y 

B1+X F, BM B, F 
       

L, BM 
B5-X 

 
Y 

        
B5+X F F             L Mp 

TABLE A1 – Results of the healthy storage root isolations. B= Beauregard Cultivar, N= Plants not flooded, 1= Plants flooded one 

day prior to harvest, 5= Plants flooded five day prior to harvest, - = Plants not treated with ethephon, + = Plants treated with 

ethephon, X= Replication.    Colonies description 

B= Bacteria 
F= Fusarium sp. 
T= Trichoderma-like 
BC= Black mycelia 

A= Aspergillus-like 
Mp= Macrophomina phaseolina 
P= Penicillium-like 
BM= Brown mycelia 

Y= Yeast 
CV= Curvularia sp. 
L= Lasiodiplodia sp. 
BP= Bipolaris sp. 
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TABLE A2.  Binary LS-means (0 and 1, 0= not present and 1= present) of the incidence of fungi 
isolated from different locations in healthy storage roots*. 
 a SSA = slender stem attachment, SAJ = slender stem attachment junction with main storage 

root, PV = proximal vascular, PC = proximal central, MV = mid-root vascular, MC = mid-root 
central, DV = distal vascular, DC = distal central, RTJ = root tail junction with main storage 
root, and RT = slender distal end of root. 
b F= Fusarium sp., Mp= Macrophomina phaseolina, and Others= Other fungi species. 
* Conservative Tukey-Kramer Grouping for root location Least Squares Means (Alpha=0.05).  
LS-means in a column with the same letter are not significantly different. 

 
TABLE A3.  Binary LS-means (0 and 1, 0= not present and 1= present) of the incidence of fungi 
isolated from different treatments in healthy storage roots produced in plots with different 
flood treatments*. 
 Fungi Isolatedb 

Treatmenta  Fso  Mp  Others 

BN-X  0.100 a  0.000 a  0.275 a 
BN+X  0.075 a  0.150 a  0.300 a 
B1-X  0.075 a  0.075 a  0.300 a 
B1+X  0.050 a  0.050 a  0.425 a 
B5-X  0.050 a  0.025 a  0.250 a 
B5+X  0.200 a  0.100 a  0.325 a 

F Value  1.5300  1.9000  0.6800 
Pr>F  0.1807  0.0947  0.6397 
a B= Beauregard Cultivar, N= Plants not flooded, 1= Plants flooded one day prior to harvest, 
5= Plants flooded five day prior to harvest, - = Plants not treated with ethephon, + = Plants 
treated with ethephon, and X= Replication. 
b F= Fusarium sp., Mp= Macrophomina phaseolina, and Others= Other fungi species. 
* Conservative Tukey-Kramer Grouping for treatment Least Squares Means (Alpha=0.05).  LS-
means in a column with the same letter are not significantly different. 

 Fungi Isolatedb 

Root Locationa  Fso   Mp   Others 

SSA 
SAJ 

0.167 a,b 
0.167 a,b 

 0.125 a 
0.125 a 

 0.750 a 
0.833 a 

PV  0.000 b   0.042 a 0.083 b 
PC  0.000 b   0.042 a   0.042 b 
MV  0.083 a,b   0.000 a   0.125 b 
MC  0.042 b   0.000 a   0.000 b 
DV  0.042 b   0.000 a   0.042 b 
DC  0.000 b   0.000 a   0.000 b 
RTJ  0.125 a,b   0.208 a   0.708 a 
RT  0.125 a,b   0.125 a   0.542 a 

F Value  3.350   2.200   26.89 

Pr>F  0.0007   0.0230   < 0.0001 
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Treatmentz 
 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria  Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria 

Fumigated   32.50 a* 2.50 b 22.50 a  18.33 a 20.00  a 1.67 b 
Non-Fumigated  42.50 a 22.50 a 37.50 a  40.00 a 10.00 a 20.00 a 

Pr>F  0.3570 0.0051 0.1516  0.0506 0.3191 0.0033 

 

 

 

 

 

 

 

 

z Fumigated (Storage roots from soil fumigated with 1% Chloropicrin) and Non-Fumigated (storage roots from soil non-
fumigated with Chloropicrin). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
* Percentages were calculated from 5 roots collected from each plot for isolation.  Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

TABLE A4. Percentage of fungi isolated at harvest from symptomless sweetpotato storage roots produced in plots that were 
fumigated or not fumigated before planting.  
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Plant Source# 

 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria  Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria 

Beds   40.00 a* 17.50 a 27.50 a  33.33 a 16.67 a 10.00 a 
Greenhouse  35.00 a 7.50 a 32.50 a  25.00 a 13.33 a 11.67 a 
Pr>F  0.6444 0.1531 0.6306  0.4473 0.7391 0.7835 

 

 

 

 

 

 

 

 

# Beds (plants originated from sprouts grown in beds) and Greenhouse (plants originated from sprouts grown in greenhouses). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
* Percentages were calculated from 5 roots collected from each plot for isolation. Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

 

TABLE A5. Percentage of fungi isolated from symptomless sweetpotato storage roots from each plant source at harvest. 
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Treatmentz*Plant Source# 

 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other 
fusaria 

 Fusarium 
solani 

Macrophomina 
phaseolina 

Other 
fusaria 

Beds*Fumigated   40.00 a* 0.00 b 20.00 a  16.67 a 23.33 a 0.00 a 
Beds*Non-Fumigated  30.00 a 35.00 a 35.00 a  50.00 a 10.00 a 20.00 a 
Green.*Fumigated  25.00 a 5.00 b 25.00 a  20.00 a 16.67 a 3.33 a 
Green. *Non-Fumigated  55.00 a 10.00 ab 40.00 a  30.00 a 10.00 a 20.00 a 
Pr>F  0.0677 0.0336 1.0000  0.2882 0.7391 0.7835 

  

 

 

 

 

 

z Fumigated (Storage roots from soil fumigated with 1% Chloropicrin) and Non-Fumigated (storage roots from soil non-
fumigated with Chloropicrin). 
# Beds (plants originated from sprouts grown in beds) and Greenhouse (plants originated from sprouts grown in greenhouses). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
* Percentages were calculated from 5 roots collected from each plot for isolation.  Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

 

TABLE A6. Comparison of the percentage of fungi isolated from symptomless sweetpotato storage roots from each treatment 
in each plant source at harvest. 
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Treatmentz 
 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria  Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria 

Fumigated   0.50 a* 0.50 a 0.00  0.33 a 1.17 a 0.67 a 
Non-Fumigated  0.50 a 0.00 a 0.00  0.00 a 0.00 a 0.54 a 

Pr>F  1.0000 0.3179 0.00  0.4202 0.1262 0.8501 

  

 

 

 

 

 

 

z Fumigated (Storage roots from soil fumigated with 1% Chloropicrin) and Non-Fumigated (storage roots from soil non-
fumigated with Chloropicrin). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
*Percentages were calculated from 20 roots collected from each plot for storing.  Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

TABLE A7. Percentage of fungi isolated from rotting sweetpotato storage roots in each treatment after storage roots being 
stored for three months at 15oC. 
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Plant Source# 

 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria  Fusarium 
solani 

Macrophomina 
phaseolina 

Other fusaria 

Beds   0.50 a* 0.50 a 0.00  0.17 a 1.17 a 0.71 a 
Greenhouse  0.50 a 0.00 a 0.00  0.17 a 0.00 a 0.50 a 

Pr>F  1.0000 0.3179 0.00  1.0000 0.1262 0.7472 

 

 

 

 

 

 

 

 

 

# Beds (plants originated from sprouts grown in beds) and Greenhouse (plants originated from sprouts grown in greenhouses). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
* Percentages were calculated from 20 roots collected from each plot for storing.  Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

 

TABLE A8. Percentage of fungi isolated from rotting sweetpotato storage roots from each plant source after storage roots being 
stored for three months at 15oC.  
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Treatmentz*Plant Source# 

 Chasea  Gilbertb 

 
 

Fungi Isolated  Fungi Isolated 

Fusarium 
solani 

Macrophomina 
phaseolina 

Other 
fusaria 

 Fusarium 
solani 

Macrophomina 
phaseolina 

Other 
fusaria 

Beds*Fumigated   1.00 a* 1.00 a 0.00  0.33 a 2.33 a 1.00 a 
Beds*Non-Fumigated  0.00 a 0.00 a 0.00  0.00 a 0.00 a 0.00 a 
Greenhouse*Fumigated  0.00 a 0.00 a 0.00  0.33 a 0.00 a 0.33 a 
Greenhouse *Non-Fumigated  1.00 a 0.00 a 0.00  0.00 a 0.00 a 1.00 a 

Pr>F  0.1581 0.3179 0.00  1.0000 0.1262 0.1788 

  

 

 

 

 

 

z Fumigated (Storage roots from soil fumigated with 1% Chloropicrin) and Non-Fumigated (storage roots from soil non-
fumigated with Chloropicrin). 
# Beds (plants originated from sprouts grown in beds) and Greenhouse (plants originated from sprouts grown in greenhouses). 
a Plants cultivated at sweetpotato research station, Chase, LA-USA. 
b Plants cultivated at McLemore Farm, Gilbert, LA-USA. 
* Percentages were calculated from 20 roots collected from each plot for storing.  Conservative Tukey-Kramer Grouping for 
isolation site Least Squares Means (Alpha=0.05).  LS-means with the same letter within the same column are not significantly 
different. 

 

TABLE A9. Comparison of the percentage of fungi isolated from rotting sweetpotato storage roots from each treatment in each 
plant source after storage roots being stored for three months at 15oC.  
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Fusarium species 
 

Chasea  Gilbertb 

Non-
Fum.*Green. 

Fum.*Green. Non-
Fum.*Beds 

Fum.*Beds Non-
Fum.*Green. 

Fum.*Green. Non-
Fum.*Beds 

Fum.*Beds 

F. pallidoroseum 8 5 7 4 2 1 2 0 
F. oxysporum 0 0 0 0 0 0 0 0 

         

F. pallidoroseum 0 0 0 0 0 0 0 0 
F. oxysporum 0 0 0 0 1 1 0 3 

 

 

 

 

 

 

# Non-Fum.*Green. (storage roots from plants originated from sprouts grown in greenhouses and planted in soil non-

fumigated with Chloropicrin),  Fum.*Green (storage roots from plants originated from sprouts grown in greenhouses and 

planted in soil fumigated with 1% Chloropicrin),  Non-Fum.*Beds (storage roots from plants originated from sprouts grown in 

beds and planted in soil non-fumigated with Chloropicrin),  Fum.*Beds (storage roots from plants originated from sprouts 

grown in beds and planted in soil fumigated with 1% Chloropicrin) 
aPlants cultivated at sweetpotato research station, Chase, LA-USA. 
bPlants cultivated at McLemore Farm, Gilbert, LA-USA. 

TABLE A10. Number of isolates of other fusaria isolated from (A) symptomless sweetpotato storage roots at harvest and (B) 

rotting sweetpotato storage roots after storage roots being stored for three months at 15oC, from each treatment and each plant 

source#. 

B 

A 
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TABLE A11. List of Fusarium isolates, from this study, that had the TEF 1-alpha gene partially sequenced and deposited in the 

NCBI Database.  

Isolate Species Isolation_source Isolation Site GenBank Accession Number 

F1 F. pallidoroseum  
(synonym F. incarnatum) 

Plant Stem Exp_Infested Soil/Treat_Mp KC820972 

F7 F. pallidoroseum 
 (synonym F. incarnatum) 

Plant Stem Exp_Infested Soil/Treat_Mp KC820973 

F9 F. pallidoroseum  
(synonym F. incarnatum) 

Plant Stem Exp_Infested Soil/Treat_Control KC820974 

G2 F. oxysporum Storage Root Asymptomatic Storage Root KC820980 

G3 F. oxysporum Storage Root Asymptomatic Storage Root KC820981 

G5 F. oxysporum Plant Stem Exp_Infested Soil/Treat_Control KC820979 

G6 F. nygamai Plant Stem Exp_Toothpick/Treat_Mp KC820978 

G7 F. proliferatum Plant Stem Exp_Toothpick/Treat_Mp KC820975 

G9 F. commune Storage Root Surface Rot KC820971 

F-89.021* F. denticulatum Leaf Tissue Chlorotic Leaf Distortion  KC820969 

C F. proliferatum Plant Stem Exp_Infested Soil/Treat_Fso+Mp KC820976 

D F. concentricum Storage Root Exp_Toothpick/Treat_Control KC820970 

E F. proliferatum Storage Root Surface Rot KC820977 

F2 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC820963 

F3 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC820964 

F4 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC820965 

F5 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC820966 

F6 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC820967 

F8 F. solani Plant Stem Exp_Infested Soil/Treat_Mp KC825359 

B F. solani Rotting Storage Root Exp_Infested Soil/Treat_Fso KC820968 

* Not from this study. 
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