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ABSTRACT 

Bacterial panicle blight is among the three most limiting diseases of rice production in the 

United States. Yield loss up to 40% has been reported from rice fields severely infested with 

bacterial panicle blight. The disease is caused by Burkholderia glumae and B. gladioli. Although, 

both species produce similar symptoms and are closely related, but B. glumae strains are more 

aggressive and cause more severe symptoms on rice. Bacterial panicle bight is difficult to 

manage in the absence of effective chemical control measures. Rapid and early disease detection 

is needed to avoid severe yield losses. Several techniques have been developed for bacterial 

identification, but these methods are time consuming and some require high-precision 

instruments for amplification and analysis of target DNA. We developed a Loop-Mediated 

Isothermal Amplification (LAMP) protocol for rapid detection of B. glumae using a set of six 

primers from the gyrB housekeeping gene. Several commercially available dyes including, 

PicoGreen, Hydroxynaphthol Blue (HNB) and Calcein were compared to analyze the LAMP 

product. The LAMP detection method resulted in rapid and accurate detection of B. glumae. 

Among the different detection dyes, PicoGreen and HNB produced reliable results in the 

detection of B. glumae. Although, both produced accurate results; however, HNB is more cost-

effective. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Economic Impact and Disease Distribution 

Rice is one of the most important crops grown worldwide and it is the primary food source 

for more than half of the world population (Redoña, 2004). China is the major rice producing 

country, followed by India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar, Philippines, 

Brazil and Pakistan (FAOSTAT, 2012). The United States rank 13
th

 in rice production in the 

world. Its rice production and consumption have heavily increased between 1960 and 2012 (Ray 

and Schaffer, 2013). The United States produced 12.35 million tons of rice in 2011 (Childs, 

2012). Rice production is mainly concentrated in the southern United States (Arkansas, 

Mississippi, Missouri, Louisiana and Texas) and the Sacramento Valley of California (USDA, 

2013). In 2000, rice in Arkansas, Louisiana and Mississippi ranked among the top five 

agricultural commodities (Livezey and Foreman, 2004). Over the years, several new diseases 

have adversely affected the rice production in rice growing areas of the world, but more recently, 

bacterial panicle blight (BPB) has become an economically important disease responsible for 

causing severe yield losses in rice. Yield loss up to 40% has been reported from rice fields 

severely infested with BPB in the United States and Asia (Chien et al., 1987; Tsushima, 1996 

and Ham and Groth, 2011), and 40-75% in Panama, Nicaragua, Colombia, Venezuela, Costa 

Rica and Dominican Republic (Salamanca, 2011). 

Bacterial panicle blight of rice is caused by Burkholderia glumae and B. gladioli. 

Burkholderia glumae was first described as the cause of grain rotting and seedling blight of rice 

in Japan (Goto and Ohata, 1956). Since then, B. glumae has spread to other rice growing regions 

of the world including the United States, east and southeast Asia and South America (Chien and 

Chang, 1987; Cottyn et al., 1996; Shahjahan et al., 1998 and Ziegler, 1990). 
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For several years, rice panicle blight has been observed in the southern United States, but it 

was considered an unknown disorder (Groth et al., 1991).  

Finally, during 1996-1997, B. glumae was confirmed the causal organism of BPB of rice 

(Rush et al., 1998 and Shahjahan et al., 1998). Nandakumar et al. (2009) demonstrated that BPB 

is caused by B. glumae and B. gladioli in the southern United States. The symptoms of BPB 

include seedling blight, sheath rot and panicle blight (Chien et al., 1987 and Tsushima, 1996). 

Symptoms found on the leaf sheath include long, vertical, grayish lesions surrounded by dark 

reddish brown margin. Shahjahan et al. (2000) observed that the stems below the infected grains 

remained green. They also reported that grain discoloration and green stems are the most 

important diagnostics characteristics of BPB. Burkholderia glumae has been reported as a seed-

borne and soil-borne bacterium causing seedling blight, sheath rot and panicle blight in other 

parts of the world, but in the United States it has been reported to be associated with symptoms 

such as floret blight, unfilled grains and abortion of kernels (Trung et al., 1993 and Groth et al., 

2009).  

Management of BPB with oxolinic acid has been reported, however, oxolinic acid-resistant 

B. glumae strains have been isolated from rice in Japan (Hikichi et al., 1998). Furthermore, 

oxolinic acid is not labeled for rice in the United States. Most commercially available rice 

varieties are susceptible to BPB, with the exception of Jupiter, which is partially resistance and 

two resistant lines designated as LM1 and LMT (Groth et al., 2007). 

1.2 Disease Epidemiology 

The bacterium multiplies on the surface of panicles at initiating stage and infects the 

florets after emergence (Goto and Ohata, 1956).  
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High night time temperature and humidity favor disease development (Tsushima et al., 

1985; Zeigler and Alvarez, 1990 and Mew, 1992). Tsushima et al. (1995) established that high 

humidity at the flowering stage played an important role in spikelet infection. Presence of 

bacterial cells on the leaf sheath also played an important role in primary infection of the 

emerging panicles (Tsushima et al., 1991 and Tsushima et al., 1996).  

  Tsushima et al. (1985) demonstrated that the rate of infection is directly proportional to 

the inoculum density. They also reported that the disease progressed in a circular pattern with 

fewer affected plants on the edges in the field. 

1.3 Burkholderia glumae  

Burkholderia glumae was initially classified as Pseudomonas glumae (Kurita and Tabei, 

1967). The bacterium is rod-shaped, gram negative, non-endospore producer and possesses two 

to four polar flagella. It produces slightly yellow or milky white colonies on potato dextrose agar 

at 30-35°C. The growth of bacterium ceases below 11°C and above 40°C (Asuyama, 1939 and 

Hashioka, 1969). 

Fory et al. (2013) observed that after 48 hours of incubation on Kings B agar medium, B. 

glumae strains appeared as convex colonies with pronounced halo zone, usually with irregular 

margins and an average diameter of 0.6 mm. They also reported that B. gladioli colonies were 

slightly domed, smooth and shiny, with regular, circular margins and a larger average diameter 

of 1.6 mm. Also, Yuan et al. (2004) observed that convex colony was a common morphological 

characteristic among Burkholderia species. 

1.4 Burkholderia glumae Detection Methods 

Several selective and semi-selective media have been developed for the detection of B. 

glumae including: semi selective (SP-G) (Tsuschima et al., 1986), selective media (SMART) 
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(Kawanishi et al., 2011) and CCNT media (Kawaradani et al., 2000). However, conventional 

methods including colony morphology or disease symptoms are less reliable and time consuming 

and serological or molecular techniques may be required to detect and confirm the identity of the 

pathogen in question. Biochemical methods such as BIOLOG can be used to identify bacterial 

pathogens, but the assay requires pure culture of the bacterium and is time consuming (Cottyn et 

al., 1996). 

Enzyme-Linked Immunosorbent Assay (ELISA) is a serological test based on the use of 

antibodies specific for detection of pathogens. However, sensitivity is lower than 10
5 

cells per ml 

(Agdia, Inc., 2008).  

Fatty Acid Methyl Esters (FAME) has been used for bacterium identification, but it requires 

the use of an automated gas chromatograph and the process involves several steps including 

harvesting, saponification, methylation, extraction and gas chromatography. After obtaining the 

fatty acids profile, it is compared to profiles present in the FAME database (Sasser, 1990 and 

Zhu et al., 2008). 

Polymerase chain reaction (PCR), real-time PCR and multiplex PCR are molecular methods 

that can identify pathogens at very low concentration (Takeuchi et al., 1997 and Maeda et al., 

2006). However, PCR based methods require high precision instruments for amplifying the 

target DNA and post-PCR analysis of the amplified DNA in case of conventional PCR.  

Real-time PCR has the ability to amplify the target DNA in short period of time and does not 

require gel electrophoresis to visualize amplified DNA (Walker, 2002). Real-time PCR has many 

advantages including sensitivity, quantitative aspects, specificity and lower contamination; 

however, real-time PCR requires expensive equipment and specific probes (Parida et al., 2008).  
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1.5 Loop-Mediated Isothermal Amplification 

Loop-mediated isothermal amplification also known as LAMP rapidly amplifies target 

DNA with high specificity and efficiency under isothermal conditions over a range of 60-65°C, 

using a strand displacement reaction (Notomi et al., 2000). The strand displacement reaction has 

the ability to displace downstream DNA produced during DNA synthesis (New England Biolabs, 

2014).  

The method employs a DNA polymerase and a set of four to six specially designed 

primers that recognize a total of six distinct sites on the target DNA (Notomi et al., 2000 and 

Nagamine et al., 2002). 

 LAMP has shown accurate results in medical sciences for the detection of bacterial 

pathogens in specimens from humans and animals (Iwamoto et al., 2003; Savan et al., 2004; 

Song et al., 2005; Dukes et al., 2006; En et al., 2008 and Wastling et al., 2010). This technique 

also has been used for the detection of plant pathogenic bacteria including Ralstonia 

solanacearum (Kubota et al., 2008), Xylella fastidiosa (Harper et al., 2010), Pectobacterium 

atrosepticum (Li et al., 2011), Erwinia amylovora (Temple and Johnson, 2011) and Candidatus 

Liberibacter solanacearum (Ravindran et al., 2012). 

LAMP can amplify and detect a gene by incubating the reaction at a single temperature 

(Notomi et al., 2000).  

Unlike other nucleic acid amplification techniques, LAMP has the advantage of greater 

simplicity with good amplification efficiency (Parida et al., 2008). LAMP does not require a 

thermo cycler and amplification can be readily achieved in a standard heat-block or a water-bath 

(Notomi et al., 2000 and Tomlinson and Boonham, 2008). In addition, gel electrophoresis to 

visualize the amplified DNA is not required (Tomlinson and Boonham, 2008). LAMP amplified 
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product can be visualized using intercalator dyes including PicoGreen, SYBR Green I and 

ethidium bromide and metal (e.g. magnesium) indicator dyes such as Calcein and HNB (Parida 

et al., 2008).  

1.6 LAMP Principle 

The principle of LAMP is based on auto-cycling strand displacement DNA synthesis 

facilitated by Bst (Bacillus stearothermophilus) DNA polymerase by using a set of four to six 

primers, including forward inner primer (FIP) and backward inner primer (BIP), outer primers 

(F3 and B3) and loop primers (LF and LB) (Notomi et al., 2000). The loop primers help 

accelerate the amplification reaction by binding to additional sites that are not accessed by both 

inner primers (Nagamine and Notomi, 2002).  

The forward inner primer anneals to initiate the first strand synthesis of the target 

sequence by the Bst DNA polymerase. The forward outer primer anneals to the complementary 

region F3c, outside of FIP, on the target sequence and displaces the synthesized first strand. The 

released strand forms a stem-loop structure at the 5′ end because of the complementary sequence 

to the F1 region contained in the FIP primer. This released single strand serves as a template for 

BIP, similarly to FIP process the B3 primer anneals to its complementary region B3c. 

Starting from the 3′ end of the BIP, synthesis of the complementary DNA starts and 

reverts the loop structure formed by F1 and F1c regions into a linear structure.  

A double stranded DNA is produced from the process previously described. The BIP-

linked complementary strand previously displaced forms a structure with stem-loops at each end, 

resulting in a dumbbell structure. The formation of the dumbbell-like product is essential for 

LAMP to establish isothermal amplification because the loop structures are always single 

stranded and can be annealed by FIP or BIP. The formation of the loop structure can lead to the 
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elimination of the denaturing step, which is otherwise indispensable in PCR for obtaining single-

stranded DNA (Notomi et al., 2000). 

After dumbbell-like structure formation, a cyclic reaction is established between the 

dumbbell-like structure and its complementary product, employing inner primers. The product is 

made of different size structures consisting of alternately inverted repeats of the target sequence 

of the same strand (Figure 1), producing a cauliflower-like structure (Notomi et al., 2000). 

When amplification is achieved, LAMP generates large amounts of DNA strands that 

contain multiple copies of the target DNA. During this reaction magnesium pyrophosphate is 

produced as a by-product in the form of an insoluble white precipitate which becomes visible 

when the reaction is terminated (Mori et al., 2001). 

1.7 Detection of LAMP Product 

 

Several different methods have been developed to detect LAMP products.  

1.7.1 Turbidity 

Initially, turbidity of the final product was used to detect positive amplification of DNA 

(Notomi et al., 2000; Yoshida et al., 2005 and Parida et al., 2008). Parida et al. (2008) reported 

that to observe the turbidity in the form of a white precipitate, DNA yield in excess of 4µg is 

required.  

They also found that the LAMP reaction can produces DNA yields of ≥ 10 µg compared 

to 0.2 µg produced by conventional PCR in 25 μL reaction. On the basis of this reaction, Tomita 

et al. (2008) developed a colorimetric method for detection of LAMP reaction by adding Calcein 

(fluorescence metal indicator) to the pre-reaction solution in conjunction with manganese ions.  
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Figure 1. Principle of LAMP method (adopted from Notomi et al., 2008). 
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Amplified DNA also can be detected by intercalating dyes such as, ethidium bromide 

(Pham et al., 2005), SYBR green I (Iwamoto et al., 2003), Hydroxynaphthol Blue (HNB) (Goto 

et al., 2009) and PicoGreen (Dukes et al., 2006 and Tsai et al., 2009). In addition, to confirm that 

the DNA amplified in the reaction is the target DNA and not the non-specific amplification or 

primer dimers, the final product can be visualized on the gel to obtain the characteristic banding 

pattern defined by the number of target sequence copies (Tomlinson and Boonham, 2008). 

1.7.2 Calcein and MnCl2 

Calcein is a fluorescent dye also known as fluorexon. It has an excitation and emission 

wavelengths of 495 and 515 nm, respectively. Calcein can be used as a Ca
2+

 or Mg
2+

 indicator in 

alkaline pH and can be quenched strongly by Co
2+

, Ni
2+

 and Cu
2+

 and significantly by Fe
3+

 and 

Mn
2+

 at neutral pH (Zhang et al., 2012).  

Calcein is soluble in Dimethyl sulfoxide (DMSO) and Dimethyl formamide (DMF) and it 

is slightly water soluble (pH > 6). Calcein is light sensitive and must be stored at 4°C (Green, 

1990). Previous report has shown that Calcein only produces a strong fluorescence signal in 

neutral buffer (Yu et al., 2008). Therefore, it is a good indicator for techniques that involve 

amplification of DNA at neutral pH. 

Calcein is quenched in the pre-reaction by manganese. As the LAMP reaction proceeds, 

pyrophosphate ions (PPi) are produced as a by-product of the Bst DNA polymerase reaction; PPi 

subsequently form a manganese pyrophosphate complex, causing the removal of the manganese 

ion from Calcein, because PPi are stronger base than Calcein. Consequently, free Calcein 

combines with magnesium ions and produce bright fluorescence under UV light. As a result, the 

presence of fluorescence indicates the presence of the target DNA (Tomita et al., 2008). 
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1.7.3 Hydroxynaphthol Blue  

HNB has been reported to be useful as a colorimetric indicator for the titration of Ca
2+

 

ions at pH 13.0 and Mg
2+

 ions at pH 10 (Ito and Ueno, 1970). Goto et al.(2009) hypothesized 

that HNB could be a novel indicator for LAMP reaction by monitoring the change in the Mg
2+

 

ion concentration since Bst DNA polymerase synthesizes DNA under alkaline conditions (pH 8.8 

at 25°C). This indicator changes color depending on the pH of the solution; it was reported that 

when the solution contained 8 mM Mg
2+ 

and no dNTPs, its color was magenta at pH 8.6 to 9.0 

and violet at pH 8.4. After the addition of 1.4 mM dNTPs to this solution, the color of HNB 

changed from magenta to violet regardless of the pH (Goto et al., 2009). This change in color is 

induced by chelation of Mg
2+

 ions by dNTPs.  

Also, it has been reported that HNB is purple at Mg
2+

concentrations of 6 mM or higher, 

but as DNA synthesis progresses, the concentration of Mg
2+

 decreases, and when it reaches 

below 6 mM, the color of HNB changes to sky blue, indicating a positive reaction. 

1.7.4 PicoGreen 

PicoGreen is a fluorescent probe that binds to double stranded DNA and forms a highly 

luminescent complex. It has characteristics similar to SYBR Green I.  

It has a maximum excitation at 480 nm and an emission peak at 520 nm. Dragan et al. 

(2010) reported that when PicoGreen binds to double stranded DNA, fluorescence is extremely 

high. They also observed that PicoGreen shows similar fluorescence enhancement when binds to 

short 16 bp DNA and with highly polymeric DNA. Based on their DNA assays, sensitivity to 

DNA was demonstrated at a concentration of ≈ 1 pg/ml. 
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1.8 LAMP Reagents 

 LAMP reagents vary in some major aspects to one of the techniques more widely used, 

conventional PCR, for the detection of B. glumae. The use of six primers provide a greater level 

of target specificity than the one achieved with two primers normally used in PCR (Notomi et 

al., 2000) as well as the use of a DNA polymerase with strand displacement activity (Bst DNA 

polymerase) under isothermal conditions and lower temperature (e.g. 60-65°C). Bst DNA 

polymerase contains the 5´→3´ polymerase activity, but lacks 5´→3´ exonuclease activity (New 

England Biolabs, Beverly, MA). The enzyme has a heat-resistant property and a strand-

displacement type DNA polymerase activity, which synthesizes a new DNA strand while 

separates the hydrogen bond of the double stranded template DNA. Since the strand-

displacement DNA polymerase does not require dissociation of double-stranded DNA, the DNA 

can be synthesized at a constant temperature.  

Optimum temperature for Bst DNA polymerase ranges from 50-65°C, which facilitates 

primer annealing and enhance tolerance to inhibitors typically found in diagnostic samples; an 

advantage compared to other polymerases. However, inhibition above 65°C and inefficient 

incorporation of dNTPs has been reported (Tanner, New England Biolabs, Inc.). The DNA 

polymerase is supplied with Thermopol buffer (20 mM Tris-HCl, 10 mM (NH4)2SO4, 10 mM 

KCl, 2 mM MgSO4, 0.1% Triton®-X-100, pH 8.8 @ 25°C) that ensures polymerase activity. 

The concentration of dNTPs in the PCR reaction mixture also plays an important role in 

achieving the desired results. Slight deviation from the required concentration has led to dramatic 

increase of misincorporation levels of dNTPs (McPherson and Moller, 2000). In most of the 

publications about LAMP, dNTPs concentration is very high (1.4 mM) compared to 

conventional PCR (Li et al., 2011). 
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The presence of magnesium source (MgSO4) in conventional PCR is required for 

polymerase activity, primer annealing, strand dissociation and product specificity. Previous 

reports on conventional PCR have demonstrated that optimum concentrations of MgSO4 should 

contain 0.5 to 2.5 mM over the total dNTPs concentration (Innis and Gelfand, 1990). Previous 

LAMP procedures concentrations up to 2.5 mM have been reported (Ravindran et al., 2012). In 

LAMP assays, magnesium concentration can also interfere with dye reactions (Goto et al., 2009 

and Dasa et al., 2012). 

Previous studies have reported that the addition of enhancers such as Betaine improves 

yield and specificity in GC rich regions and decreases the production of undesired products 

(Reese et al., 1993; Henke et al., 1997 and Jensen et al., 2010). 

DNA regions rich in GC concentration can sometimes be problematic due to inefficient 

separation of DNA strands or the formation of secondary structures. Betaine decreases the 

amount of energy necessary to separate DNA strands (Rees et al., 1993). 
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CHAPTER 2 

MATERIAL AND METHODS 

2.1 LAMP Primer Design 

 There are 4,964 nucleotide sequences, for B. glumae, of variable lengths available in the 

National Center for Biotechnology Information (NCBI) GenBank database. Taking into 

consideration the large amount of sequence data, regions used for previous PCR assays and 

housekeeping genes (Takeuchi et al., 1997; Maeda et al., 2006 and Sayler et al., 2006) that have 

resulted in accurate detection of B. glumae were used in this study for the development of LAMP 

primers. 

Several genes were selected as promising sequences for LAMP primer design including, 

16-23S rDNA Intergenic Spacer Region, rpoD, and gyrB housekeeping genes. The 16-23S 

rDNA Intergenic Spacer Region of B. glumae used in this study was previously used to design 

primers for conventional PCR (Takeuchi et al., 1997).  

16-23S rDNA was suitable for LAMP primer design because it contained 51.7% GC 

content. Housekeeping genes evaluated (rpoD and gyrB) also contained high GC content (64-

65%). GC content is one of the most important criteria in order to design an ideal LAMP primer 

set; it must be around 50-60%. Primers with a higher number of Gs and Cs are more stably 

paired with the template at a given temperature (e.g. 60°C-65°C) than primers of the same length 

that have higher number of As and Ts.  

 From gyrB and 16-23S rDNA Intergenic Spacer Region of B. glumae, only 294 bp and 306 

bp were used respectively, due to the required distance between LAMP primers, GC content and 

alignment with closely related species. 
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The first set of LAMP primers for B. glumae were designed based on Takeuchi et al. 

(1997) sequence of the 16-23S rDNA Spacer Region for the detection of B. glumae, which 

amplifies an approximate 400 bp fragment (Figure 2). Based on these specifications, part of the 

amplicon region from 280-589 bp was used to generate oligonucleotide primers using PREMIER 

Biosoft LAMP designer software (Figure 3). 

 

Figure 2. Nucleotide sequence of 16-23S rDNA Intergenic Spacer Region (GenBank accession 

no. D87080.1) and location of forward and reverse LAMP primers (adapted from Takeuchi et al., 

1997). Forward and reverse primers adapted from Takeuchi et al. (1997) are indicated in yellow 

and LAMP primers (Forward and backward) designed in this study are indicated in green color. 

 

 

Figure 3. Nucleotide sequence of 16-23S rDNA Intergenic Spacer Region (GenBank accession 

no. D87080.1) and location of the LAMP primers designed with PREMIER Biosoft LAMP 

designer. 
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A second set of LAMP primers for B. glumae were designed by aligning16-23S rDNA 

regions of three closely related Burkholderia species including B. glumae (GenBank accession 

no. D87080), B. gladioli (GenBank accession no. D87081) and B. plantarii (GenBank accession 

no. D87079) using the NCBI software. A third set of LAMP primers for B. glumae were 

designed from the gyrB region of B. glumae sequence used by Maeda et al. (2006) to design 

primers for the phylogenetic study and multiplex PCR-based detection among B. plantarii, B. 

glumae and B. gladioli using gyrB sequence (Figure 4 and Figure 5). Different parameters used 

for designing LAMP primers are shown in Table 1 and PCR and LAMP primers used in this 

study are shown in Table 2. 

 

Figure 4. Nucleotide sequence of the gyrB gene for DNA gyrase subunit B and location of the 

forward and reverse LAMP primers and Maeda et al., 2006 primers. Forward and reverse 

primers are indicated in yellow (Maeda et al., 2006) and forward and reverse LAMP primers are 

indicated in green color. 
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Figure 5. Nucleotide sequence of the gyrB gene for DNA gyrase subunit B and location of the 

LAMP primers along the sequence using PREMIER Biosoft software. 

 

 

Table 1 - Different parameters used for LAMP gyrB primer design using PREMIER Biosoft 

LAMP designer. 

Parameter                                                                                                          Value 

Nucleic acid concentration (nM) 100 

Monovalent ion concentration (mM) 30 

Free Mg
2+

 ion concentration (mM) 3 

dNTPs concentration (mM) 0.4 

Total Na
+
 equivalent (mM) 223.76 

Temperature for free energy calculation 60°C  
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Primer Target Region Sequence (5′–3′) Length (nt) Reference

FIPBGLU16 16-23S rDNA CGC TTC CGC TAT CCA CTT AGC CAG TCA GAG GAT GAG 36 This study

glu-F gyrB  of B . glumae GAA GTG TCG CCG ATG GAG 18

glu-B gyrB  of B . glumae CCT TCA CCG ACA GCA CGC AT   20

Loop-F gyrB  of B . glumae TTG GC GAG GAT GTC GTA GT 19

Loop-B gyrB  of B . glumae AAG GGC TTC GTC GAG TAC A 19

CTC GCC GAT GAT GTG GAA G 19

CAC GCC GTT GTT GAG GAA CTT CGG CAC CGT CGA ATA C 37

GCG GCA AGG AAG ACG ATT CAC GCT CTT GGT CTT GTT GA 38

LOOPBBGLU16 GCT CAA TTG GAA TAC GGC AC

F3 gyrB  of B . glumae GAA GTG TCG CCG ATG GAG 18

B3BGLU16 GAG TCT GTC TCG CTC TCC

BIPBGLU16 TCA AGA TGA TTC GAA CGC AAG TCT ACA GGT TGA GTT CTC GC

LOOPFBGLU16 AGA ACG ACA GCC GAT AAG C

This study

This study

Maeda et al ., 2006

Maeda et al ., 2006

BGFW ACA CGG AAC ACC TGG GTA

BGRV TCG CTC TCC CGA AGA GAT 

F3BGLU16 GCC TCC ACC AAT CTT CAA T

Maeda et al ., 2006

This study

FIP gyrB  of B . glumae This study

BIP gyrB  of B . glumae This study

B3 gyrB  of B . glumae

16-23S rDNA 19 This study

16-23S rDNA 20 This study

16-23S rDNA 41 This study

16-23S rDNA 18 This study

16-23S rDNA 18 This study

16-23S rDNA 18 Takeuchi et al .,1997

16-23S rDNA 18 Takeuchi et al .,1997

Table 2 - PCR and LAMP primers used in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

All primers were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA).  
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2.2 DNA Extraction 

Burkholderia glumae, B. gladioli, B. plantarii, Pseudomonas syringae, Xanthomonas 

campestris and Xanthomonas campestris pv. vignicola were provided by Jong Hyun Ham and 

Hari Karki (Phytobacteriology Laboratory, LSU AgCenter). Bacterial strains were maintained on 

LB agar at 30°C. 

DNA from pure cultures of bacterial isolates and asymptomatic and symptomatic 

Trenasse and Lemont rice seeds (provided by Phytobacteriology Laboratory, LSU AgCenter) 

were extracted with DNeasy Plant Mini Kit according to manufacturer’s guidelines (QIAGEN 

Inc, Valencia, CA) as well as symptomatic rice seeds provided by Donald Groth, LSU AgCenter. 

DNA was quantified with NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific Inc., 

Wilmington, NC) by absorbance at 260 nm and further diluted to 50 ng/μL for LAMP 

amplification assays. Bacterial strains used in this study are listed in Table 3. 

2.3 Bacterial Strains Identity Confirmation 

 Burkholderia glumae and B. gladioli strains were confirmed with conventional PCR 

using species specific primers, GL-13f (5'-ACACGGAACACCTGGGTA-3') and GL-14r (5'-

TCGCTCTCCCGAAGAGAT-3') for B. glumae and GLA-f (5-'CGAGCTAATACCGCGAAA-

3') and GLA-r (5'-AGACTCGAGTCAACTGA-3') for B. gladioli (Takeuchi et al., 1997 and 

Furuya et al., 2002). Reaction mixture (25 μL) consisted of 12.5 μL GoTaq® Green Master Mix 

(Promega Co.), 0.4 μM of each forward and reverse primer, 1 μL of DNA template and 9.5 μL of 

nuclease free water. The PCR conditions consisted of initial denaturation at 95°C for 2 min and 

30 cycles of 94°C for 30 s, 55°C for 30 s, 72°C for 40 s and a final elongation at 72°C for 7 min. 

The PCR products were visualized using 1% agarose gel.  
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Table 3 - Bacterial isolates used in this study.  

Name Strain Description and Origin                 Reference 

B. glumae 106sh-5 Avirulent, Louisiana Nandakumar et al., 2009 

 

237gr-5 Avirulent, Louisiana Nandakumar et al., 2009 

 

366gr-2 Avirulent, Arkansas Nandakumar et al., 2009 

 

257sh-1 Avirulent, Louisiana Nandakumar et al., 2009 

 

396gr-2 Avirulent, Arkansas Nandakumar et al., 2009 

 

961149-4-4 Avirulent, Louisiana Nandakumar et al., 2009 

 

99sh-7 Avirulent, Louisiana Nandakumar et al., 2009 

 

201sh-1 Virulent, Louisiana Nandakumar et al., 2009 

 

336gr-1 Virulent, Louisiana Nandakumar et al., 2009 

 

117g1-7a Virulent, Louisiana Nandakumar et al., 2009 

 

189 gr-8 Virulent, Texas Nandakumar et al., 2009 

B. gladioli 372 gr-1 Arkansas Yuan, 2004 

 

170sh-1 Louisiana Yuan, 2004 

 
223gr-1 Louisiana Yuan, 2004 

B. plantarii                                     254-gr5 Louisiana Yuan, 2004 

X. campestris  

 

Louisiana Isolated by Clark, 1986 

X. campestris 

pv. vignicola 

 

Louisiana Isolated by Clark, 1995 

P. syringae   Louisiana Isolated by Clark, 1986 

 

2.4 LAMP Primer Specificity  

 The six primers were tested in sets of two (forward and reverse), using conventional 

PCR, and then the PCR product was separated by agarose (1%) gel electrophoresis. 

Amplification for the Loop primers (LF and LB) was not expected. This experiment was 

performed using the gyrB and 16-23S rDNA LAMP primers.  
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2.5 LAMP Reaction 

 LAMP reactions (25µL) were performed in PCR tubes. Master mix containing 

Thermopol buffer, Bst DNA polymerase (M0275S, New England Biolabs), Betaine solution 

(B0300-5VL, Sigma Aldrich), MgSO4, dNTPs (DNTP10-1KT, Sigma Aldrich) and six primers 

were prepared (Table 4). Two assays were performed according to Ravindran et al. (2012) using 

the 16-23S rDNA LAMP primers. The first mixture following the same concentration as 

Ravindran et al. (2012) (Table 4) and the second mixture using lower concentration of reagents 

(Table 5) were prepared. For the LAMP product visualization, Calcein and MnCl2 were added to 

the master mix according to Tables 4 and 5. 

Table 4 - Composition of LAMP reaction mixture adopted from Ravindran et al., 2012. 

Components Working conc. Required conc. 

Required 

vol/reaction 

(μL) 

Nuclease free water 6.20 

Thermopol buffer
a
 10X 2X 5.00 

Betaine 5 M 1.6 M 4.00  

MgSO4 100 mM 12 mM 1.50  

dNTPs 25 mM 2.8 mM 1.40  

F3
c
 100 pM  10 pM 0.10 

B3
c
 100 pM 10 pM  0.10  

FIP
c
  100 pM 40 pM 0.20  

BIP
c
 100 pM 40 pM 0.20  

LF
c
 100 pM 20 pM 0.40  

LB
c
 100 pM 20 pM 0.40  

MnCl2 20 mM 1 mM 1.25  

Calcein 1 mM 50 µM 1.25 

8 units of Bst DNA polymerase
a,b

 1.00 

Template DNA (~50 ng/µl) 2.00  

Total reaction volume  25.00  
   aPurchased from New England BioLabs 
    bBacillus stearothermophilus DNA polymerase 
     cPrimers were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA) 
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Table 5 - Modified composition of LAMP reaction mixture. 

Components 
Working 

conc. 

Required 

conc. 

Required 

vol/reaction(μL) 

Nuclease free water 

  

6.2 

Thermopol buffer
a
 2 X 0.4X 5 

Betaine 1.6 M 0.25 M 4 

MgSO4 12 mM 0.7 mM 1.5 

dNTPs 10 mM 0.5 mM 1.4 

F3
c
  100 μM 0.4 μM 0.1 

B3
c
  100 μM 0.4 μM 0.1 

FIP
c 
 100 μM 1.6 μM 0.4 

BIP
c
 100 μM 1.6 μM 0.4 

LF
c
 100 μM 0.8 μM 0.2 

LB
c
 100 μM 0.8 μM 0.2 

MnCl2 20 mM 1 mM 1.25 

Calcein 1 mM 0.05 mM 1.25 

8 units of Bst DNA polymerase 
a,b

 

  

1 

Template DNA (~50 ng/µl) 

  

2 

Total reaction volume      25 
   aPurchased from New England BioLabs 
    bBacillus stearothermophilus DNA polymerase 
     cPrimers were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA)  

 

Accordingly, the F3 and B3 primers, required only for the initial displacement reaction, 

were added at a lower (4-fold) concentration than the FIP and BIP primers. The LF and LB 

primers are not required for DNA synthesis and can be omitted from the reaction, but they help 

reduce the amplification time (Nagamine et al., 2002). 

Bst DNA polymerase was added to the master mix and then 23 µL aliquot of the mix was 

dispensed to each sample tube, and 2 µL of bacterial DNA (50 ng/µL) was added. Each reaction 

was carefully mixed after the addition of the DNA into the mix. A third mixture was performed 

using 8 mM of MgSO4  and 1.4 mM dNTPs using the gyrB LAMP primers (Table 6). For LAMP 

product visualization, 2 µL of Quant-iT™ PicoGreen® dsDNA was added 60 minutes post-

reaction. Another assay was performed using the same components as before except that 3 mM 

of Hydroxynaphthol Blue was added pre-reaction to the master mix.  

http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=P7581&_bcs_=H4sIAAAAAAAAAI1SyW6DMBD9Gl%2BKEgFuKNckND20SlORniPLDGDJ4MgeEvH3HQc56aJWlazxLG%2B2%0AZ88SFuc7a6pBootYmkUl2JOS4P7wt4hHxpcs3dA5n89zrWpAkG1vtGkUuLk0HYUGRwJ6Eq3pgC5j%0AK7DzFjtNVVjK%2FYlztAN4O37ww9R4SJI4IXR9SPN7Hid35H0bRI8ztWd87QZq%2FkgjoRUVML4iH6En%0Ad7RT0jxZoK6fkBaa77jKFdtlFDb891J8mcdhEbqlQEHRsOZ7SUJUyoJE0jQyvpFdxXhBwEK5oxZj%0AiaMmLjJvTjovStU3Gl7gBHotEBpjR0JQzjOMFL7Qkb3uSK2VRt85mxRfZCs6X%2BPKULqYNqebdl8E%0AnshcXWLet7kBVjfGfmR63n7NuzDo8wOHYaj9ePQDJVeHnzu86uLru14%2FQS2087%2FgA65u6zWRAgAA%0A&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1101%252Ff_284301*
http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=P7581&_bcs_=H4sIAAAAAAAAAI1SyW6DMBD9Gl%2BKEgFuKNckND20SlORniPLDGDJ4MgeEvH3HQc56aJWlazxLG%2B2%0AZ88SFuc7a6pBootYmkUl2JOS4P7wt4hHxpcs3dA5n89zrWpAkG1vtGkUuLk0HYUGRwJ6Eq3pgC5j%0AK7DzFjtNVVjK%2FYlztAN4O37ww9R4SJI4IXR9SPN7Hid35H0bRI8ztWd87QZq%2FkgjoRUVML4iH6En%0Ad7RT0jxZoK6fkBaa77jKFdtlFDb891J8mcdhEbqlQEHRsOZ7SUJUyoJE0jQyvpFdxXhBwEK5oxZj%0AiaMmLjJvTjovStU3Gl7gBHotEBpjR0JQzjOMFL7Qkb3uSK2VRt85mxRfZCs6X%2BPKULqYNqebdl8E%0AnshcXWLet7kBVjfGfmR63n7NuzDo8wOHYaj9ePQDJVeHnzu86uLru14%2FQS2087%2FgA65u6zWRAgAA%0A&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1101%252Ff_284301*
http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=P7581&_bcs_=H4sIAAAAAAAAAI1SyW6DMBD9Gl%2BKEgFuKNckND20SlORniPLDGDJ4MgeEvH3HQc56aJWlazxLG%2B2%0AZ88SFuc7a6pBootYmkUl2JOS4P7wt4hHxpcs3dA5n89zrWpAkG1vtGkUuLk0HYUGRwJ6Eq3pgC5j%0AK7DzFjtNVVjK%2FYlztAN4O37ww9R4SJI4IXR9SPN7Hid35H0bRI8ztWd87QZq%2FkgjoRUVML4iH6En%0Ad7RT0jxZoK6fkBaa77jKFdtlFDb891J8mcdhEbqlQEHRsOZ7SUJUyoJE0jQyvpFdxXhBwEK5oxZj%0AiaMmLjJvTjovStU3Gl7gBHotEBpjR0JQzjOMFL7Qkb3uSK2VRt85mxRfZCs6X%2BPKULqYNqebdl8E%0AnshcXWLet7kBVjfGfmR63n7NuzDo8wOHYaj9ePQDJVeHnzu86uLru14%2FQS2087%2FgA65u6zWRAgAA%0A&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1101%252Ff_284301*
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Optimal reaction conditions are listed in Table 6. The optimization of the LAMP protocol 

was conducted using DNA extracted from B. glumae culture grown on LB agar at 30°C and from 

B. glumae infected seeds and DNA extracted from other bacterial cultures (Table 3) as the 

negative control. LAMP gyrB primers were added in concentrations as recommended previously 

(Table 6).  

 

Table 6 - Composition of LAMP reaction mixture used for gyrB LAMP Primers. 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

   

    a Purchased from New England Bio Labs 

   
b Bacillus stearothermophilus DNA polymerase 

   c Primers were synthesized by Integrated DNA Technologies, Inc. (Coralville, IA). 
 

 

2.6 Direct Analysis of LAMP Products 

 

LAMP amplicons were directly detected by checking the formation of magnesium 

pyrophosphate in the reaction tubes; turbidity indicated a positive reaction, whereas a negative 

result remained clear. To improve the visualization of magnesium pyrophosphate, samples were 

centrifuged for 15 seconds using an Eppendorf 5424 centrifuge to look for pellet formation.  

Components 
Working 

Conc. 

Required 

conc. 

Required 

vol/react.(μL) 

Nuclease free water 
  

7.9 

Thermopol buffer
a
  10x 1x  2.5 

Betaine 5 M 0.8 M 4 

MgSO4 100 mM 6 mM 1.5 

dNTPs 10 mM 1.4 mM 3.5 

F3
c
 50 μM 10 0.1 

B3
c
 50 μM 10 0.1 

FIP
c
 50 μM 40 0.8 

BIP
c
 50 μM 40 0.8 

LF
c
 50 μM 20 0.4 

LB
c
 50 μM 20 0.4 

8 units of Bst DNA polymerase
 a,b

   1 

Template DNA (50 ng/μl)   2 

Total reaction volume   25 
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Detection was also enhanced by the addition of 1 mM of MnCl2 and 50 µM of Calcein to 

the master mix, which results in the formation of a fluorescent green metal indicator. A positive 

reaction produced green fluorescence and a negative reaction did not produce fluorescence. 

Amplified products were also detected using 2 μL PicoGreen post-reaction and 3 mM of HNB 

pre-reaction.  

In daylight, positive results with PicoGreen were detected by an orange to green color 

change and fluorescence for positive results and no fluorescence for negative results under UV 

light, and by violet to blue color change using HNB. LAMP product was confirmed by 2% 

agarose gel electrophoresis at 85 V for 1 hour, revealing a characteristic ladder pattern for 

positive results.  

2.7 Optimum Temperature and Time 

LAMP products were detected using 2% agarose gel after 60 min amplification and 5 

minutes of heat-inactivation at 80°C. The assay was performed at 50°C, 60°C and 70°C using 

16-23S rDNA and at 60°C and 65°C using gyrB LAMP primers. Burkholderia gladioli and water 

were used as negative controls. 

LAMP primers from both regions were tested at three different times (30, 45 and 60 min) 

at 60°C. After amplification at 60°C for 1 h, Bst DNA polymerase heat inactivation was tested at 

80°C at 2, 5 and 10 min. 

2.8 LAMP Specificity and Sensitivity  

For the sensitivity assay using gyrB LAMP primer set, a LAMP reaction was performed 

using a serial dilution of DNA extracted from B. glumae (336 gr-1). The DNA sample was 

diluted 10-fold from 10
2 

(100 ng) to 10
-6 

(0.000001 ng). The presence of LAMP product was 

http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=P7581&_bcs_=H4sIAAAAAAAAAI1SyW6DMBD9Gl%2BKEgFuKNckND20SlORniPLDGDJ4MgeEvH3HQc56aJWlazxLG%2B2%0AZ88SFuc7a6pBootYmkUl2JOS4P7wt4hHxpcs3dA5n89zrWpAkG1vtGkUuLk0HYUGRwJ6Eq3pgC5j%0AK7DzFjtNVVjK%2FYlztAN4O37ww9R4SJI4IXR9SPN7Hid35H0bRI8ztWd87QZq%2FkgjoRUVML4iH6En%0Ad7RT0jxZoK6fkBaa77jKFdtlFDb891J8mcdhEbqlQEHRsOZ7SUJUyoJE0jQyvpFdxXhBwEK5oxZj%0AiaMmLjJvTjovStU3Gl7gBHotEBpjR0JQzjOMFL7Qkb3uSK2VRt85mxRfZCs6X%2BPKULqYNqebdl8E%0AnshcXWLet7kBVjfGfmR63n7NuzDo8wOHYaj9ePQDJVeHnzu86uLru14%2FQS2087%2FgA65u6zWRAgAA%0A&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1101%252Ff_284301*
http://www.lifetechnologies.com/order/catalog/en/US/adirect/lt?cmd=catProductDetail&showAddButton=true&productID=P7581&_bcs_=H4sIAAAAAAAAAI1SyW6DMBD9Gl%2BKEgFuKNckND20SlORniPLDGDJ4MgeEvH3HQc56aJWlazxLG%2B2%0AZ88SFuc7a6pBootYmkUl2JOS4P7wt4hHxpcs3dA5n89zrWpAkG1vtGkUuLk0HYUGRwJ6Eq3pgC5j%0AK7DzFjtNVVjK%2FYlztAN4O37ww9R4SJI4IXR9SPN7Hid35H0bRI8ztWd87QZq%2FkgjoRUVML4iH6En%0Ad7RT0jxZoK6fkBaa77jKFdtlFDb891J8mcdhEbqlQEHRsOZ7SUJUyoJE0jQyvpFdxXhBwEK5oxZj%0AiaMmLjJvTjovStU3Gl7gBHotEBpjR0JQzjOMFL7Qkb3uSK2VRt85mxRfZCs6X%2BPKULqYNqebdl8E%0AnshcXWLet7kBVjfGfmR63n7NuzDo8wOHYaj9ePQDJVeHnzu86uLru14%2FQS2087%2FgA65u6zWRAgAA%0A&returnURL=http%3A%2F%2Fwww.lifetechnologies.com%3A80%2Forder%2Fcatalog%2Fen%2FUS%2Fadirect%2Flt%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1101%252Ff_284301*
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determined by naked eye using PicoGreen post-reaction, and by running the products on a 2% 

agarose gel to determine characteristic ladder patterns.  

For the specificity assay, LAMP gyrB primers were tested using DNA samples from 

closely related bacterial species including: B. gladioli strains and B. plantarii (Table 3). Other 

bacteria species including X. campestris, X. campestris pv. vignicola, P. syringae and seven 

avirulent and four virulent strains of B. glumae were also included in the assay. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 LAMP 16-23S rDNA Primer Design 

Outer and loop primers from the 16-23S rDNA Intergenic Spacer Region produced 

promising results by amplifying DNA from B. glumae strains (Figures 6, 7 and 8). As expected, 

loop primers did not amplify any product (Data not shown). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Agarose gel (1%) showing PCR products, using LAMP 16-23S rDNA outer primers, 

from B. glumae strains. Lane1, water; lanes 2-4, 336gr-2; 366gr-2; 106sh-5; lanes 6-7, 117g17-a; 

189gr-8; lane 8, B. gladioli and lanes 9 and10, 201sh-1 and 396gr-2. 

 

  

 

 

 

 

 

 

 

Figure 7. Agarose gel (1%) showing PCR products, using LAMP 16-23S rDNA inner primers , 

from B. glumae strains. Lane 1, Bench Top DNA marker; Lanes 2-8, B. glumae strains, 336gr-2; 

366gr-2; 106sh-5; 117g17-a; 189gr-8; 201sh-1 and 396gr-2, respectively. Lanes 9 and 10, B. 

gladioli and water. 
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3.1.1 LAMP 16-23S rDNA Optimum Temperature 

 

 LAMP 16-23S rDNA amplified products were visualized using 2 % agarose gel and, 

amplification for B. glumae was observed at 60°C (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Agarose gel (2%) showing optimum reaction temperature for LAMP assays using 

primers from 16-23S rDNA from B. glumae. LAMP products were detected after 60 minutes 

amplification with 100 ng of DNA template at 50°C, 60°C, and 70°C. BG, B. glumae; BL, B. 

gladioli; W, water and M, 1.5 kb DNA marker. 

 

LAMP 16-23S rDNA reaction with concentrations shown in Table 5 amplified the target 

DNA and the product was checked under UV light. After 2 h of amplification followed by heat-

inactivation, bright fluorescence was emitted by the sample containing only B. glumae DNA and 

the characteristic multiple band pattern was visualized using 2% agarose gel (Data not 

shown).This result was not reproducible.  

 When the same reaction was performed for 1 h at 60°C and Bst DNA polymerase was 

heat inactivated at 80°C for 10 min, all the samples emitted fluorescence under UV light (Data 

not shown) but multiple bands pattern just appeared in B. glumae sample. 
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3.1.2 LAMP 16-23S rDNA Primers and HNB 

Low concentrations of magnesium did not change color using HNB, because the master 

mix was already blue, pre-reaction. However, a weak difference was found between B. glumae 

samples and other bacterial strains (Figure 9). Reactions were confirmed using 2 % agarose gel 

revealing multiple bands for B. glumae DNA (Figure 10).  

 

 

 

 

 

 

 

 

 

Figure 9. LAMP 16-23S rDNA products after 1 h amplification at 60°C using 120 μM of HNB. 

Tube 1, Water; tubes 2 and 3, B. glumae; tube 4, B. gladioli and tube 5, B. plantarii. 

 

 

 

 

  

 

 

 

 

 

Figure 10. Agarose gel (2%) showing LAMP 16-23S rDNA products from HNB assay. Lane 1, 

water; lanes 2 and 3, B. glumae; lane 4, B. gladioli and lane 5, B. plantarii. E, empty and M, 

Bench Top DNA marker. 
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 The same reaction using lower concentrations of magnesium was performed using 

avirulent and virulent strains of B. glumae and no difference was found (Figure 11). 

Figure 11. Agarose gel (2%) showing LAMP 16-23S rDNA products of avirulent and virulent B. 

glumae strains. Lanes 1-6, virulent strains of B. glumae, 336gr1; 201sh-1; 117g1-7-a; 191sh-6; 

189gr-8, and 957856-41-c, respectively. Lanes 7-14, avirulent strains of B. glumae, 366gr-2; 

106sh-5; 237gr-5; 396gr-2; 257sh-1; 99sh-7; 395gr-2 and 261-gr-9, respectively; lane 15, B. 

gladioli and lane 16, water. E, empty and M, Bench Top DNA marker. 

 

 

3.2 LAMP gyrB Primer Design 

LAMP gyrB preliminary primer testing was done using conventional PCR (Figure 12) 

and expected results were achieved, getting amplified products in outer and inner primers for B. 

glumae DNA and no amplification with loop primers.  

 

 

 

 

 

 

 

Figure 12. Agarose gel (1%) showing PCR product using LAMP gyrB outer inner  

and loop primers). W, water; GLA, B. gladioli; GLU, B. glumae and M, 1.5 kb DNA marker. 
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3.2.1 LAMP gyrB Optimum Temperature 

 

 Optimum temperature was tested using two different temperatures (60 and 65°C), but no 

difference was observed between the two temperatures (Figure 13). 

 

 

 

 

 

 

 

 

 

 

Figure 13. Agarose gel (2%) showing optimum reaction temperature for LAMP assays using B. 

glumae gyrB primers. W, water; GLU, B. glumae; GLA, B. gladioli; S1, P. syringae at 60°C and 

S2, P. syringae at 65°C. The first three lanes were amplified at 60°C and the following lanes at 

65°C.  

 

3.2.2 LAMP gyrB Primers and PicoGreen 

 

 The same reaction was performed using concentrations shown in Table 6 at 60°C for 1 h 

and inactivated for 5 min at 80°C. Two microliters of PicoGreen was added to each sample post-

reaction. In daylight, positive results were detected by an orange to green color change (Figure 

14A) and strong fluorescence under UV light for positive results (Figure 14B). Confirmation was 

done using 2% agarose gel, revealing multiple bands for B. glumae DNA (Figure 14C). 
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Figure 14. An example of positive and negative LAMP gyrB results using PicoGreen as an 

indicator in daylight (A), under UV light (B) and confirmation by 2 % agarose gel (C). BG, 

B. glumae; BL, B. gladioli and W, water. 

 

 

Similar results were observed when PicoGreen was used with different strains of B. 

glumae and orange to green color changed in positively amplified tubes (Figure 15) and the 

multiple banding pattern was observed for strains of B. glumae (Figure 16). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Avirulent and virulent strains of B. glumae showing positive results with gyrB LAMP 

primers using PicoGreen as an indicator in daylight. Lanes 1-7 avirulent strains, 106sh-5; 237gr -

5, 366gr-2; 396 gr-2; 961149-4 and 99sh-7.Lanes 8-11 virulent strains of B. glumae, 201sh-1; 

336gr-1; 117g1-7a and 189gr-8. W, water and BL, B. gladioli. 

A 

B 
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     BG               BL               W    

BG                       BL                 W  
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Figure 16. Confirmation of LAMP gyrB product using PicoGreen as an indicator. Lanes 1-7 B. 

glumae avirulent strains, 106sh-5; 237gr -5; 366gr-2; 396 gr-2; 961149-4 and 99sh-7. Lanes 8-

11, virulent strains, 201sh-1; 336gr-1; 117g1-7a and 189gr-8. W, water; BL, B. gladioli; M, 

Bench Top DNA marker. 

 

         Amplified product was detected with 10
-3

 dilution (0.01 ng) using 2% agarose gel (Figure 

17). The multiple banding pattern was not clear at 10
-4 

dilution (0.001 ng) of B. glumae DNA, 

however PicoGreen still detected the amplified product (Figure 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Agarose gel (2%) showing serial dilutions of B. glumae DNA amplified by LAMP 

gyrB primers. M, Bench Top DNA marker. 
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Figure 18. Serial dilutions of LAMP gyrB product using, PicoGreen post-reaction as an indicator, 

under UV light. BL, B. gladioli and W, water. 

 

          PicoGreen assay using DNA from rice seeds revealed that three samples were positive for 

B. glumae (Figures 19, 20 and 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. LAMP gyrB product from asymptomatic and symptomatic rice seeds using PicoGreen 

as an indicator in daylight . Tubes 1-8 symptomatic and tubes 9-16 asymptomatic Trenasse rice 

seeds. Tube 17 symptomaticand Tube 18 asymptomatic Lemont rice seeds. W, water and BL, B. 

gladioli. 
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Figure 20. LAMP gyrB product from asymptomatic and symptomatic rice seeds using PicoGreen 

as an indicator under UV light. Tubes 1-8 symptomatic and tubes 9-16 asymptomatic Trenasse 

rice seeds. Tube 17 symptomaticand Tube 18 asymptomatic Lemont rice seeds. W, water and 

BL, B. gladioli. 

 

 

Figure 21. Confirmation of LAMP gyrB product from asymptomatic and symptomatic rice seeds. 

Tubes 1-8 symptomatic and tubes 9-16 asymptomatic Trenasse rice seeds. Tube 17 symptomatic 

and Tube 18 asymptomatic Lemont rice seeds. BL, B. gladioli and M, Bench Top DNA marker. 
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         Post-reaction assays sometimes lead to contamination; However, PicoGreen was found to 

be reproducible and false positives were not found (Figures 22 and 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. LAMP gyrB product using PicoGreen post-reaction in daylight. BG, B. glumae; BL, 

B. gladioli; BP, B. plantarii; PSE: P. syringae; XC, X. campestris; W, water.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. LAMP gyrB product using PicoGreen post-reaction under UV light. BG, B. glumae; 

BL, B. gladioli; BP, B. plantarii; PSE, P. syringae; XC, X. campestris; W, water.  
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3.2.3 LAMP gyrB Primers and HNB 

 

            The same assay was performed using HNB pre-reaction and positive amplification was 

observed by change in color from violet to sky blue. Tubes containing water and B. gladioli 

remained violet (Figure 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Avirulent and virulent strains of B. glumae showing positive results with gyrB LAMP 

primers using HNB as an indicator. Tubes 1-7 B. glumae avirulent strains, 106sh-5; 237gr -5; 

366gr-2; 396 gr-2; 961149-4 and 99sh-7.Tubes8-11, virulent strains, 201sh-1; 336gr-1; 117g1-7a 

and 189gr-8.W, water and BL, B. gladioli  

 

LAMP gyrB amplification using HNB was confirmed using 2% agarose gel and multiple 

banding pattern was observed in all the positive samples (Figure 25). HNB assay was replicated 

several times and was found to be reproducible (Figures 26 and 27).  
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Figure 25. Confirmation of LAMP gyrB product using HNB as an indicator. Lanes 1-7 B. glumae 

avirulent strains, 106sh-5; 237gr -5; 366gr-2; 396 gr-2; 961149-4 and 99sh-7.lanes 8-11, virulent 

strains, 201sh-1; 336gr-1; 117g1-7a and 189gr-8. W, water; BL, B. gladioli; M, Bench Top DNA 

marker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. LAMP gyrB product using HNB. BG, B. glumae; BL, B. gladioli; BP, B. plantarii; 

PSE, P. syringae; XC, X. campestris; W, water.  
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Figure 27. Confirmation of LAMP gyrB product by agarose (2%) gel. BG, B. glumae; BL, B. 

gladioli; BP, B. plantarii; PSE, P. syringae; XC, X. campestris; W, water and M, Bench Top 

DNA marker. 

 

3.2.4 LAMP gyrB Primers Optimum Time 

LAMP gyrB primers were tested at 30, 45 and 60 min, amplifying B. glumae DNA at 45 

and 60 min. (Figure 28). 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Agarose gel (2%) showing LAMP gyrB amplified product at 30, 45 and 60 minutes. 

Lanes 1-3, B. gladioli; water, and B. glumae incubated at 60°C for 30 min, lanes 4-6, B. gladioli; 

B. glumae and water incubated for 45 min and lanes 7-9, B. gladioli; B. glumae and water 

incubated for 60 min. M, Bench Top DNA marker. 
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3.3 Optimal Conditions for Detection of B. glumae using LAMP 

 

Optimum concentration of Bst DNA polymerase, MgSO4, and Betaine were found to be 8 

Units per reaction, 8 mM, and 0.8 M, respectively. LAMP amplification at 50 and 70°C was not 

observed (Figure 8). Positive amplification was observed at both 60 and 65°C using LAMP gyrB 

primers (Figure 13). 

 LAMP reactions with gyrB primers required a minimum of 45 min incubation to achieve 

positive amplification .No amplification was observed when reactions were incubated for 30 min 

(Figure 28). 

Bst DNA polymerase inactivation at 80°C was evaluated at 10 and 5 min. No difference 

was observed between the two inactivation times, and five min inactivation time was chosen to 

decrease the reaction time.  

Primers from the 16-23S rDNA Intergenic Spacer Region of B. glumae produced 

successful amplification and were specific for B. glumae using the concentrations shown in 

Table 5, but positive reactions could not be detected using HNB (Figure 9) and Calcein (Data not 

shown).  

In addition, the master mix pre-reaction was dark blue due to the low levels of 

magnesium sulfate and dNTPs in the reaction. Therefore, the 16-23S rDNA primers were not 

used for further studies. Concentrations from Table 4 were evaluated as well, but it amplified 

DNA from B. gladioli as well, due the high concentration of magnesium and the lack of 

specificity of the 16-23S rDNA LAMP primers for B. glumae.  
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3.4 Visual Detection of LAMP Products 

Different methods for the amplified product were evaluated. Turbidity was not observed 

with any set of primers. 

 Detection of LAMP products with Calcein produced variable results. Fluorescence was 

observed in negative controls as well.  

 Successful amplification using HNB was detected by a color change from purple to blue 

in tubes containing B. glumae DNA (Figures 9, 24 and 26). No color change was observed in 

tubes containing water or B. gladioli DNA. HNB and PicoGreen assays were reproducible 

(Figures 22, 23, 26 and 27) and were able to detect the amplified product from symptomatic rice 

seeds (Figures 22 and 23). 

3.5 Specificity of LAMP 

 The specificity of LAMP using the gyrB LAMP primer set was confirmed using DNA 

samples from closely related bacterial species such as B. gladioli and B. plantarii. Multiple 

alignments of the amplicon and primer sequences corresponding to the region used for selection 

of the gyrB LAMP primers indicated that there was ~93 % similar to B. gladioli. The primer set 

did not amplify products from other Burkholderia species (e.g. B. gladioli and B. plantarii) as 

well as other bacterial isolates shown in Table 3. 

 Using lower concentrations of MgSO4, LAMP 16-23SrDNA primers could amplify just 

B. glumae making the assay specific for amplification of this bacterium. When the magnesium 

concentration was raised these primers amplified DNA from B. gladioli as well, but no 

amplification was observed using other bacterial isolates shown in Table 3. 

 Conventional PCR using 16-23S rDNA primers (Takeuchi et al., 1997) amplified DNA 

from eleven B. glumae strains.  
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 As well conventional PCR primers from B. gladioli 16-23S rDNA region (Furuya et al., 

2002) were used to confirm B. gladioli strains (170sh-1, 223gr-1 and 372gr-1). These 

experiments confirmed that the gyrB LAMP primers are specific for B. glumae strains. 

3.6 Sensitivity of LAMP 

The sensitivity of LAMP to detect B. glumae DNA was compared using a 10-fold 

dilution series from 10
2 

(100 ng) to 10
-6

 DNA (0.000001 ng). Amplified product was detected 

with 10
-3

 dilution (0.01 ng) using 2% agarose gel and 2 μL of PicoGreen post-reaction. The 

multiple banding pattern was not clear at 10
-4 

dilution (0.001 ng) of B. glumae DNA, however 

PicoGreen still detected the amplified product (Figure 18). DNA product less than 100 ng was 

not detected using HNB. 

3.7 Discussion 

 This study provides the nucleotide sequences for the LAMP primer set, gyrB LAMP, and 

describes a complete protocol for LAMP detection of B. glumae. Furthermore, this study 

discusses primer design, reaction optimization, as well as reduction in time required for 

successful B. glumae DNA amplification and the visualization of the amplified LAMP product.  

 Inspite of the high degree of similarity among Burkholderia species (60-90%) and B. 

gladioli, B. glumae and B. plantarii content of 81-90% degree similarity, specific primers were 

designed from the gyrB region of B. glumae. This gene encodes the β-subunit polypeptide of 

DNA gyrase and it is estimated to evolve much faster than the 16S rDNA gene (Yamamoto and 

Harayama, 1998). It was reported from previous studies that this housekeeping gene showed no 

diversity among 41 strains of B. glumae (Maeda et al., 2006). This study confirmed previous 

results using eleven different strains of B. glumae and showed no difference among strains in 

DNA synthesis and visualization of LAMP products. 

http://ijs.sgmjournals.org/content/56/5/1031.long#ref-17
http://ijs.sgmjournals.org/content/56/5/1031.long#ref-17
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 The results using the gyrB LAMP primer set and the optimized LAMP protocol validated 

that the method effectively detected B. glumae. Our LAMP protocol can be accomplished in a 

water bath at 60°C within 45-60 min and post-reaction processes are not required. LAMP 

amplified product can be visualized by the naked eye or under UV light using HNB or 

PicoGreen, respectively. These results emphasize the significant advantages of the LAMP 

technique i.e. accuracy and speed.  

 LAMP gyrB primers amplified B. glumae DNA at 60 and 65°C and amplification was not 

observed at 50 and 70°C. Optimal annealing temperature is determined by the melting 

temperature of the primer. If the temperature is too high the primers will melt, and if the 

annealing temperature is too low the primers may anneal nonspecifically. Also Bst DNA 

polymerase efficiency is around 20% at 70°C and 30-45% at 50°C and 100% at 60-65°C.  

 Several studies have been reported using expensive real-time turbidimeter for the 

detection of the LAMP product (Parida et al., 2004). In fact the use of expensive equipment 

takes away one of the main focus of LAMP technique and decreases the limit of use in 

developing countries, where this technique can be of high importance. Turbidity in LAMP 

reaction mixtures is caused by production of insoluble magnesium pyrophosphate, a by-product 

of DNA synthesis (Notomi et al., 2002 and 2008). Since the production of magnesium 

pyrophosphate is directly associated with the amount of DNA synthesized (Mori et al., 2001), 

the absence of turbidity in the B. glumae LAMP reaction mixture could be related to insufficient 

amplification of B. glumae DNA. 

 Due the absence of turbidity in preliminary assays, it was intended to develop an easy and 

fast protocol for the detection of B. glumae, using metal indicator and intercalator dyes such as 

HNB, Calcein and PicoGreen, respectively.  
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 The performances of LAMP assays using HNB, PicoGreen, and Calcein were compared 

by reliability and sensitive. Several previous reports have proposed Calcein as a good indicator 

dye (Ravindran et al., 2012), but a lot of false positives and variable results were obtained in this 

study.  

 It was believed that color change in positive amplification occured due the detection of 

magnesium pyrophosphate by removing a manganese quencher from the Calcein-manganese 

complex (Tomita et al., 2008). However, the interaction between DNA and Calcein had not been 

reported until Zhang et al. (2012) reported that there exists an obvious interaction between 

Calcein and dsDNA. LAMP inner primers are susceptible to form primer dimers due their 

structures and lengths, suggesting that Calcein emitted fluorescence because it was able to detect 

primer dimers produced by the inner primers during the LAMP reaction. 

 LAMP is a method that permits a high risk of cross contamination of samples by 

aerosolized product (Zhang et al., 2012). In order to avoid cross contamination, methods that 

allow the incorporation of the dye pre-reaction were developed such as HNB. This study showed 

that LAMP protocol using HNB was accurate and reliable as compared to other method in which 

tubes are opened post reaction to add PicoGreen. HNB produced consistent and visual color 

change in positively amplified reactions and did not require UV to analyze the results. In 

addition, HNB is more cost effective than PicoGreen.  The only disadvantage using HNB as an 

indicator is that it was unable to detect amplified product less than 100 ng.   

 PicoGreen showed accurate results with high sensitivity (until 0.001 ng) and results can 

be seen in daylight and under UV light. Both tecniques were able to detect B. glumae in 

symptomatic rice seeds and HNB was able to detect the amplified product by adding more DNA 

to the reaction.  
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 Our LAMP gyrB protocol offers two reliable and simple methods for the detection of B. 

glumae. PicoGreen is accurate and highly sensitive, but poses a high risk of post reaction 

contamination, whereas HNB is accurate, cheaper and omits the risk of post reaction cross 

contamination, but has low sensitivity.   
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