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ABSTRACT 

 

Bacterial panicle blight, caused by Burkholderia glumae, is a major bacterial 

disease of rice in Louisiana. This bacterium contains several virulence factors required 

for disease development such as toxoflavin, lipase and flagella. In a genome-wide search 

for regulatory factors related to the virulence of B. glumae, tepR was identified as a 

negative regulator for toxoflavin production and found to encode a sigma 54-dependent 

response regulator. TepR is homologous to LuxO, a quorum-sensing signaling 

component of Vibrio spp. A markerless tepR deletion mutant of B. glumae 336gr-1, 

LSUPB401, produced more toxoflavin and showed higher lipase and protease activities 

compared to the wild type, 336gr-1. The phenotype of mutant LSUPB401 was 

complemented by a functional tepR clone, confirming that tepR is a novel negative 

regulator for toxoflavin production in B. glumae. In addition, LSUPB401 was more 

aggressive than the wild type in causing symptoms on rice panicles and onion bulb 

scales.  However, LSUPB401 lost flagellar motility and hypersensitive reaction, 

suggesting positive roles of tepR in those phenotypes. These findings suggest that TepR 

promotes the cellular functions for initial host colonization. 

Ten bacterial strains showing antagonistic activities against B. glumae in an in 

vitro assay were detected from several thousand bacterial isolates obtained from the root 

region of rice grown at the Rice Research Station, Crowley, Louisiana. Those bacteria 

were identified as Bacillus, Paenibacillus and Pseudomonas based on the 16S rDNA 

sequences. Some isolates suppressed bacterial panicle blight significantly in both 

greenhouse and field conditions, therefore, are potential candidates for further biocontrol 

studies.
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CHAPTER 1. GENERAL INTRODUCTION 

1.1 Rice and bacterial panicle blight 

 

Rice (Oryza sativa) is an important cereal crop in the world and about half of total 

population in the world consumes it as a staple food. Rice is grown in tropical and 

subtropical regions of the world. Southeastern region of Asia has a suitable environment 

for rice production and farmers of that area consider rice a major crop. Texas, Louisiana, 

Arkansas, Missouri, California and Mississippi are the top rice-producing states in the 

United States. Even though the U.S. only produces 2% of the world’s annual rice supply, 

it is the 3rd largest rice exporter (USA Rice federation, 2013). Diseases and pests are the 

major detrimental factors that reduce the production of any crop. Rice diseases cause 

major problems in rice industries in the world. In the United States the major rice 

diseases are sheath blight caused by Rhizoctonia solani; blast caused by Pyricularia 

grisea; brown spot caused by Cochiobolus miyabeans; narrow brown spot caused by 

Cercospora janseana; kernel smut caused by Neovossia horrida and bacterial panicle 

blight (Louisiana Rice Production Handbook, 2014). 

Bacterial panicle blight is an important disease of rice caused by the bacterial 

pathogens, Burkholderia glumae and B. gladioli (Groth and Hollier, 2011). This disease 

can cause more than 70% loss in yield and milling in rice (Groth and Hollier, 2011). The 

major pathogen for bacterial panicle blight, B. glumae, was first recorded in Japan as a 

causal organism of grain rot or grain blight of rice (Goto and Ohata, 1956). High 

humidity and high night-temperature are favorable environmental conditions for B. 

glumae to develop the disease in rice (Nandakumar et al., 2008; Tsushima et al., 1996). 

Such weather conditions are found in many tropical regions of the world and the southern 

part of the United States. In Louisiana, the symptoms of the disease in the rice plant had 
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been observed for a long time and the symptoms were assumed to be caused by some 

abiotic factors (Groth, 1991).  But, later in 1996/97, it was confirmed that the disease was 

caused by B. glumae and B. gladioli (Shahjahan et al., 2000). Most of the rice cultivars 

grown in Louisiana are susceptible to the bacterial panicle blight, but some cultivars and 

lines, such as LM-1 and Jupiter, show partial resistance (Rush et al., 2007). Panicle 

initiation is the most vulnerable stage of rice growth for the development of bacterial 

panicle blight. Blighting in panicles and seeds is a typical symptom of this disease but in 

severe cases whole plant can be killed. Moreover, panicle grains appear to be unfilled and 

seed coat becomes greyish and straw colored (Ham et al., 2011). Significant yield 

reductions of rice due to outbreaks of bacterial panicle blight were recorded in 

1995,1998, 2000 and 2011 in Louisiana (Louisiana Rice Production Handbook, 2014). 

1.2 Burkholderia glumae 

 

The major pathogen of bacterial panicle blight of rice, B. glumae, was previously 

considered as Pseudomonas glumae. Later, P. glumae and another rice pathogenic 

bacterium, P. plantarii, were transferred from the genus Pseudomonas to Burkholderia in 

1994 (Urakami et al., 1994). B. glumae is in a unique bacterial genus with diverse types 

of species including human pathogens to plant pathogens and non-pathogenic species 

(Coenye and Vandamme, 2003). B. glumae is reported to cause wilts in many field crops 

including tomato, hot pepper, potato, eggplant, sesame and sunflower (Jeong et al., 

2003). In the course of disease development, the bacteria infect seeds and invade 

plumules or infect the plant directly through the stomata or wounds and proliferation 

occurs in the intercellular spaces of parenchyma (Hikichi et al., 1995). B. glumae has 

been reported in major rice growing countries including Japan, China, Korea, the 
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Philippines, Latin America and the United States (Nandakumar et al., 2009). Recently, it 

has been reported from other rice growing regions of the world including Africa (Zhou, 

2014), suggesting that this bacterium is an emerging major pathogen of rice in the world 

(Ham et al., 2011). 

B. glumae is a Gram-negative, motile with flagella, aerobic, rod-shaped 

bacterium. This bacterium can grow between 11- 40 0C, but optimum growth range is 

between 30 to 350C (Brenner et al., 2005). In rice B. glumae is considered a seed-borne 

pathogen but this has been also found in soil. Another species of Burkholderia, B. 

gladioli also causes bacterial panicle blight in rice (Nandakumar et al., 2009) but B. 

glumae is the major one causing bacterial panicle blight. B. glumae is closely related to 

other rice pathogenic species, B. plantarrii and B. gladioli, but distant from B. cepacia 

which causes sour skin disease in onion (Jacobs et al., 2008). Some strains of B. glumae 

can be opportunistic human pathogens being isolated from an infant suffering from 

granulomatous disease (Weinberg et al., 2007). 

The major known virulence factors and virulence-related traits of B. glumae are 

toxoflavin, lipase and flagellum-dependent motility (Devescovi et al., 2007; Kim et. al., 

2004; Kim et al., 2007). Toxoflavin-deficient and lipase-deficient mutant strains of this 

bacterium are almost avirulent to rice (Kim et al., 2004; Devescovi et al., 2007). 

Toxoflavin, which is considered to be a major disease-causing factor in rice, is a host 

nonspecific phytotoxin produced by B. glumae and a very effective electron carrier 

generating reactive oxygen species (ROS) (Kim et al., 2013; Sato et al., 1989). To find 

out other virulence factors of this bacterium, different genetic approaches are ongoing in 

plant pathology and microbiology laboratories. 
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The pathogenicity of B. glumae is governed by multiple virulence factors, which 

are regulated by a global regulatory quorum-sensing (QS) system mediated by the LuxI 

homologue, TofI and the LuxR homologoue, TofR (Francis et al., 2013; Kim et al., 2007, 

2009). The bacteria utilize QS as a part of their colonization and invasion strategies 

(Devescovi et al., 2007; Kim et al., 2004; Kim et al., 2007). QS is a cell-to-cell 

communication process in which bacteria regulate gene expression according to their 

population density. In most gram-negative bacteria, the QS system is mediated by 

synthesis of and response to of N-acyl homoserine lactones (AHLs) (Netotea et al., 

2009). In LuxI/LuxR QS system, AHL production is catalyzed by AHL synthase, which 

belongs to LuxI-family proteins. AHL synthase requires S-adenosylmethionine (SAM) 

and acylated acyl carrier protein (ACP) as a substrate from the fatty acid biosynthesis 

pathway (Choudhary et al., 2013). AHL molecules bind to the sensor/regulator protein 

belonging to LuxR-family proteins (Figure 1.1). The AHL-binding domain is present in 

the N- terminal region of LuxR, which facilitates the formation of functional homodimers 

that bind the specific target gene promoters and activate the transcription of those genes 

(Miller and Bassler, 2001). 
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Figure 1.1. A schematic view of TofI/TofR quorum-sensing system for the virulence of 

B. glumae where this system controls the production of known major virulence factors: 

toxoflavin (Kim et al., 2004), lipase (Devescovi et al., 2007) and flagella (Kim et al., 

2007). 

 

The major regulatory mechanism to control the production of virulence factors of 

B. glumae is QS, which is mediated by LuxI/LuxR homologues TofI/TofR (Figure 1.1) 

and AHL type signal molecule N-octanoyl-L-homoserine lactone (Duerkop et al., 2007; 

Kim et al., 2007). TofI also produces another signaling molecule, N-hexanoyl-L-

homoserine lactone but the function of this molecule is unknown in B. glumae and 

Burkholderia spp. (Chen et al., 2012). 
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1.3 Bacterial panicle blight disease management in rice 

 

Judicious application of agrochemicals, development of resistant varieties, 

improvement on cultural practices, and utilization of biological agents are some 

important strategies for controlling crop diseases. However, proper management of 

bacterial diseases of crops is more complicated than fungal diseases. In Japan, oxolinic 

acid was found to be effective for controlling seedling and grain rot of rice caused by B. 

glumae (Hikichi and Egami, 1995). Unfortunately, the chemical is not registered in the 

United States and cannot be used in the rice field for the management of bacterial panicle 

blight (Nandakumar et al., 2009). In addition, there is question in the sustainability of this 

chemical because some strains of B. glumae have already developed resistance to 

oxolinic acid in the rice fields due to mutation (Maeda et al., 2004). There are some rice 

varieties showing different levels of susceptibility and resistance to bacterial panicle 

blight (Sayler et al., 2006). However, no complete resistant variety for bacterial panicle 

blight has been developed even though partial resistant varieties have been identified 

(Shahjahan et al., 2000). These partial resistant varieties can be used as the genetic 

sources to develop additional disease resistant varieties through the conventional 

breeding as well as marker-assisted breeding based on genetic information about partial 

resistance to bacterial panicle blight  (Nandakumar and Rush, 2008). 

Biological control studies in rice revealed that some avirulent strains of 

Burkholderia spp. suppressed bacterial panicle blight (Ham et al., 2011). An avirulent 

strain of Pseudomonas glumae (which was later renamed as Burkholderia glumae), 

N7503, highly suppressed the bacterial seedling rot of rice when rice seeds were treated 

by that strain (Furuya et al., 1991). There may be many more potential biological control 
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agents inhabiting the rice plants and its rhizosphere. Some preliminary experiments in our 

laboratory also suggested that some strains of Bacillus spp. isolated from rice plants 

showed high levels of antagonism against B. glumae in in vitro assays. 

Since, rice is the most important food crop consumed by more than half of the 

world’s population, reduced rice production will negatively affect the global economy 

(Yuan, 2004). A major bacterial disease of rice, bacterial panicle blight is a potentially 

serious problem for rice growers because of the seed borne nature of the pathogen, which 

can be transmitted year-to-year in the field (Trung et al., 1993).  The severe seed 

infestation causes reduction of rice yield up to 75% because of sterility on florets and 

decreased grain quality. Hence, the study of bacterial panicle blight and its major 

pathogen B. glumae is very important to find out the effective control methods of the 

disease. 
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CHAPTER 2. CHARACTERIZATION OF σ54-DEPENDENT RESPONSE 

REGULATOR, tepR, IN THE RICE PATHOGENIC BACTERIUM 

BURKHOLDERIA GLUMAE 

 
2.1 Introduction and literature review 

2.1.1 σ54-dependent response regulators and their roles in different virulence 

systems of bacteria 

 

Different regulatory factors ultimately control the ability of a pathogen to cause 

disease. In pathogenic bacteria, different regulatory genes are involved in maintaining 

adhesion to colonize on the host surface by controlling the flagellar motility, penetration 

and proliferation in host tissue via different secretion systems, and destroying the normal 

cell function through the toxin production (Hao et al., 2013). 

 In bacteria, numbers of cellular activities are regulated by transcription of genes 

and transcription factors play significant roles to regulate levels of gene expression 

(Studholme and Dixon, 2003). The regulation of transcriptional initiation, which requires 

a σ–bound holoenzyme, is a fundamental mechanism for developmental process and 

adaptation in different environmental conditions for any organism in the living world 

(Shingler, 1996). Sigma (σ) subunit, which binds RNA polymerases reversibly, is 

important to bacterial RNA polymerases for the promoter recognition and transcription 

initiation. A single sigma factor is composed of hundreds of prokaryotic genes and the 

sigma factor regulates simultaneous expression of those genes, which might contribute to 

clearly defined primary or multiple physiological functions (Kazmierczak et al., 2005). 

Typical bacterial cells contain different alternative sigma subunits, which have specific 

sequences and roles to direct RNA polymerase (RNAP) holoenzyme towards different 

sets of promoters (Studholme and Dixon, 2003). Bacteria contain multiple sigma factors 

among which the primary sigma factor (σ70) is responsible for transcription of 
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housekeeping genes necessary for viability and others are referred to as alternative sigma 

factors, which control specialized functions (Helmann, 2001). Studies have shown that in 

prokaryotes, mode of transcription initiation mediated by σ54 subunit is structurally and 

functionally distinct from σ70 (Merrick, 1993). Different studies were done on σ54-

depenent genes in different prokaryotic organisms and found that those genes were 

responsible for virulence in multiple bacterial species. Sigma-54 is a major central 

regulator in various pathogenic bacteria and governs multiple cellular processes and 

virulence traits like motility and biofilm formation (Francke et al., 2011). The sigma 

factor in bacteria controls the biosynthesis and transport of the main precursors of toxins 

by controlling the related genes in different metabolic and cellular processes (Francke et 

al., 2011). Different studies on σ54-depenent genes on multiple bacterial species reveled 

that those genes are involved in different virulence systems even though originally it was 

believed that σ54 controls the nitrogen metabolism through transcription of the genes 

encoding enzymes for nitrogen assimilation and nitrogen fixation (Kazmierczak et al., 

2005). In bacteria, genes under the control of the σ54 factors are regulated by different 

environmental and metabolic signals (Shingler, 1996).  

Different types of genes, which are involved in the survival and adaptation of 

bacteria under unfavorable environmental conditions, are activated by the alternative 

sigma factor σ54 (RpoN) and ultimately those functions are closely linked to the virulence 

of pathogenic bacteria (Reitzer and Schneider, 2001). The rpoN deletion mutant of Vibrio 

anguillarum, NB10, was defective in flagellum formation and motility, which made the 

mutant less virulent (O’Toole et al., 1997). 
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In Pseudomonas aeruginosa, a rpoN mutant did not show any motile activity 

governed by flagella and cannot synthesize flagellin antigen while wild type showed all 

of above characteristics; this result reveals that flagellin structural gene is transcribed by 

RNA polymerase containing RpoN (Totten et al., 1990). Boucher et al. (2000) found that 

σ54 represses the algD (responsible for the production of alginate) of P. aeruginosa in 

certain environmental conditions. It was found that some sigma factors have critical roles 

in bacteria-plant interactions which is proved by finding the function of σ54 in P. 

syringae, where it controls hrp gene expression and influences virulence mechanism 

(Kazmierczak et al., 2005). HrpLEsc is an important alternate sigma factor of the extra-

cytoplasmic function family in Erwinia carotovora sub sp. carotovora, having a vital role 

for the expression of hrp genes, which are responsible for the type III secretion system 

and production of harpin. Chatterjee et al. (2002) found that RpoN (σ54) is required for 

the expression of hrpL Ecc by demonstrating the lower level of hrpL Ecc transcripts in the 

RpoN– strain, lacking sigma-54. 

In Vibrio harveyi, LuxO is homologue of the two-component response regulator 

protein NtrC (Bassler et al., 1994) and members of this transcriptional activator protein 

family is composed of a conserved central region containing nucleotide binding and 

hydrolysis determinants which are required for activating the closed σ54 – holoenzyme-

promoter complexes (Popham et al., 1989). In several bacteria, σ54 is required for the 

transcription of flagellar biogenesis genes. Lilley and Bassler (2000) performed an 

experiment to test whether σ54 is required for the motility of V. harvey by using the soft 

agar motility plates. They found that the wild type showed swarming, whereas rpoN::CM 

null strain did not show any swarming. In addition, they found that σ54 controls the 
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motility independent of LuxO system. LuxO regulates more than one cellular processes 

including motility, protease production and biofilm formation in Vibrio cholera (Zhu et 

al., 2002). In Vibrio anguillarum M3, ΔrpoN mutant lacks swarming motility in soft agar 

and is deficient in flagellar production (Hao et al., 2013). Moreover, the rpoN deleted 

mutant of V. anguillarum formed less biofilm and showed significantly lower EPS level 

as compare to the wild type containing the functional rpoN gene, and there was no 

mortality in fish inoculated with the ΔrpoN mutant, whereas 100% mortality was 

observed with the wild type (Hao et al., 2013). There are many evidences pointing out the 

role of sigma-54 in virulence-related functions in addition to nitrogen assimilation or 

bacterial metabolism. Iyer and Hancock (2012) tested the effect of rpoN (σ54) deletion on 

extracellular DNA (eDNA) during biofilm development in Enterococcus faecalis and 

observed a lesser amount of eDNA in the biofilm produced by the deletion mutant than 

by the wild type, suggesting the role of sigma-54 in regulation of the structure and 

composition of the biofilm matrix. Sigma-54 and its associated activators are also highly 

important in the field of medicine, food safety and agricultural microbiology because the 

change in exterior environment affects stability and aggressiveness of deleterious 

bacterial population (Francke et al., 2011).  

2.1.2 LuxO type regulatory system 

LuxO protein was first characterized in Vibrio harveyi as a crucial regulatory 

component having a role in the quorum sensing system (Bassler et al., 1994). In V. 

harveyi, two types of autoinducers, AI-1 and AI-2, are involved in controlling the 

expression of density-dependent luciferase structural operon luxCDABE through the 

phosphorylation of the response regulator protein LuxO (Bassler, 1999). Mutation on the 
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quorum-sensing regulator LuxO in V. cholera C6706 increased the expression of the gene 

responsible for type VI secretion system (T6SS) indicating the negative role of LuxO in 

this important virulence factor  (Zheng et al., 2010). In general, LuxO-family signal 

transduction proteins in the bacteria are also referred to as the σ54-enhancer binding 

protein (Morett and Segovia, 1993). Klose et al. (1998) suggested that LuxO acts as a 

possible repressor or activator at σ54 or other σ-dependent promoters in pathogenic 

bacteria. In functional analysis of a LuxO mutant of the fish pathogen V. alginolyticus, it 

was observed that the mutant produced significantly higher amount of extracellular 

protease (ECP) in comparison to the wild type strain, suggesting the role of LuxOval as a 

negative regulation of ECP production (Wang et al., 2007). However, in different Vibrio 

spp. the role of LuxO on ECP production might be variable (Wang et al., 2007). Zhu et 

al. (2002) observed that a luxO mutant of V. cholera had a less motility than the wild type 

in swarm plate and the same mutant was defective in biofilm formation. In V. harveyi, 

Yang and Defoirdt (2014) observed a significantly lower flagellar gene expression and 

less motility in luxO mutant in the background of inactive quorum sensing, than the wild 

type.  

In the QS network of V. harveyi, multiple autoinducers are produced by 

autoinducer synthases and those autoinducers and corresponding sensor proteins act 

together to control the phosphorylation of the response regulator protein LuxO (Henke 

and Bassler, 2004). The phosphorylated form of LuxO allows for the production of 

multiple small RNAs (sRNAs), which repress the QS master regulatory protein LuxR 

(Figure 1.2). In a low cell density, sRNAs are activated from the phosphorylated LuxO 

and effectively repress the LuxR, while, in higher cell density, sRNAs are significantly 
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reduced thereby increasing the level of LuxR, resulting in the activation of the 

luminescence genes (Mok et al., 2003; Timmen et al., 2006; Waters and Bassler, 2005; 

Tu and Bassler, 2007). 

 

Figure 1.2. A schematic view of the quorum-sensing system of V. harveyi. In the low cell 

density, due to absence of autoinducers, the sensor kinases LuxN, LuxQ and CqsS 

autophosphorylate. Such a phosphorelay cascade phosphorylates LuxU and LuxO. 

Phosphorylated LuxO with sigma-54 activates the sRNAs. The sRNAs, along with Hfq, 

repress the luxR mRNA. In contrast, in high cell density, autoinducers interact with 

LuxN, LuxQ and CqsS sensors to switch from kinase to phosphatase. This results in the 

dephosphorylation of LuxO, making LuxO inactivate. The inactivate LuxO cannot 

promote the production of sRNAs, which allows the activation of lux operon by LuxR 

(McDougald et al., 2007). 
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2.2 Materials and Methods 

2.2.1 Bacterial strains, media, plasmids and growth conditions 

The bacterial strains and plasmids used in this study are listed in Table 2.1. 

Burkholderia glumae 336gr-1 and Escherichia coli were grown in Luria-Bertani (LB) 

broth or on LB agar plates (Sambrook et al., 2001) at 30°C or 37°C depending on the 

purpose of each experiment. Bacterial strains grown on LB broth were incubated in a 

shaking incubator at 200 rpm. In addition, recombinant mutants that lost the sucrose-

sensitive gene, sacB, via the secondary homologous recombination were selected in LB 

agar plates containing 30% sucrose (Chen et al., 2012). Antibiotics used in this study 

were kanamycin (Km), nitrofurantoin (Nit), gentamycin (Gm) and ampicillin (Amp) at 

the concentrations of 50 µg/ml, 100 µg/ml, 20 µg/ml and 100 µg/ml, respectively. 

Table 2.1. The bacterial strains and plasmids used in this study 

Strains or plasmids Properties References 

Escherichia coli S17-1λpir recA thi pro hsdR [res- 

mod+][RP4::2-Tc::Mu-

Km::Tn7] λ pir phage lysogen, 

Smr/Tpr 

(Simon et al., 1983) 

Burkholderia glumae 336gr-1 WT strain and the causative 

isolate of bacterial panicle blight 

of rice in Crowley, LA 

 

Chromabacterium violaceum 

CV026  

 

A biosensor that can detect AHL 

molecules  

 

(McClean et al., 1997)  

 

LSUPB401 A ΔtepR derivative of B. glumae 

336gr-1 
This study 

LSUPB145 A ΔtofI derivative of B. glumae 

336gr-1 

(Chen et al., 2012) 

pKKSacB  

 
A suicide vector; R6K γ-ori, 

RP4 oriT, sacB, KmR
  

 

(Chen et al., 2012) 

pSC-A-amp/kan A blunt PCR cloning vector; f1 

ori, pUC ori, lacZ’, KmR, AmpR 
Stratagene 

pBBR1MCS-5 A broad host range cloning 

vector, RK2 ori, lacZα, GmR 

(Kovach et al., 1995) 
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(Table 2.1. continued) 

Strains or plasmids Properties References 

pRK2013::Tn7 A helper plasmid; ColE1 ori (Ditta et al., 1980) 

 

2.2.2 Development of a tepR deletion mutant 

 

A markerless tepR (Locus_tag= “bglu_1g09700”) deletion mutant (ΔtepR), 

LSUPB401, was developed using a pKNOCK vector derivative, pKKSacB, containing a 

kanamycin resistance gene and the sacB gene for sucrose sensitivity (Chen et al., 2012). 

Briefly, a 479-bp upstream flanking region of σ54 dependent response regulator gene 

(tepR) and a 355-bp downstream flanking region of tepR was amplified with the primers 

Sigma54GF2 (5’-CATGGTGCTGGTCTGCAA-3’), S54DWNR (5’-

GTCGACGAAGACCTGTTGATCC-3’), S54UPF (5’-GTCGACGTTGGGATCGTCTT-

3’), and S54UPR (5’-ATCGATAGATCACCTACAC-3’), respectively. The upstream 

and downstream PCR products were ligated separately into the pSC-A-amp/kan 

topocloning vector using the Strataclone PCR Cloning Kit (Agilent Technologies, Santa 

Clara, CA).  A SalI-PstI fragment containing the upstream region of tepR was then 

subcloned into pKKSacB to generate pKKSacBTepRUP. An XhoI-SalI fragment 

containing the downstream region of tepR was subcloned into pKKSacBTepRUP to 

generate pKKSacB∆TepR. This work to make the construct (pKKSacB∆TepR) was done 

by research associate, Inderjit K. Barphaga in our laboratory for this study. 

The pKKSacB∆TepR was first introduced into E. coli S17-1λpir competent cells via 

electroporation and then introduced into B. glumae 336gr-1 via tri-parental mating with 

the helper strain pRK2013::Tn7. An initial selection following tri-parental mating was 

performed to obtain colonies resistant to kanamycin and nitrofurantoin. These colonies 
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were then grown at 30°C for 48 h on LB media with 30% sucrose. Colonies growing on 

the LB-sucrose plate were tested for their ability to grow on LB media without 

kanamycin and their inability to grow on LB media containing kanamycin.  Colonies, 

which grew on LB media but not on LB media containing kanamycin were selected as 

markerless ΔtepR mutants.  The deletion of tepR in those mutants was confirmed by PCR 

using primers TepRSuF (5’-GCTTGTTGTAGAGCGTCTTCG-3’) and TepRSuR (5’-

GGGGGACATAAAATCCGACT-3’), which amplify 1620 bp of B. glumae 336gr-1 and 

219 bp for tepR deletion mutant. All the primers used for the experiments were listed in 

Table 2.2. For the confirmation of deletion following PCR condition was used: 

1. Initialization step:  95°C for 5 min 

2. Denaturation step: 95°C for 30 s 

3. Annealing step: 55°C for 30 s 

4. Extension/ elongation step: 72°C for 1.5 min 

5. Go to step 2 

6. Final elongation: 72°C for 7 min at last cycle (30th cycle) 

Table 2.2. Primers and PCR conditions used in this study 

Primer Name Primers (5’-3’) Annealing and 

extension condition 

S54UPF GTCGACGTTGGGATCGTCTT Annealing: 50°C/30 s  

Extension: 72°C/50 s S54UPR ATCGATAGATCACCTACAC 

S54GF2 CATGGTGCTGGTCTGCAA Annealing: 50°C/30 s  

Extension: 72°C/30 s S54DWNR GTCGACGAAGACCTGTTGATCC 

TepRSuF GCTTGTTGTAGAGCGTCTTCG Annealing: 55°C/30 s  

Extension: 72°C/1.5 min TepRSuR GGGGGACATAAAATCCGACT 
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2.2.3 Complementation 

 

For the genetic confirmation of all the phenotypes showed by the ∆tepR mutant, 

complementation was done by cloning a functional DNA constructs carrying tepR into 

the ΔtepR mutant of B. glumae through triparental mating (Figurski and Helinski, 1979). 

The tepR clone for the complementation was developed by Mrs. Inderjit K. Barphaga, 

Department of Plant Pathology and Crop Physiology, LSU. For tripartental mating, 

overnight liquid culture of helper strain, ΔtepR and DNA construct containing functional 

tepR (pBB5-tepR, having Gm resistance marker) were used. From each of the overnight 

cultures, 500 µl was taken and mixed in a microcentrifuge tube and centrifuged in 1300 

rpm for 1 min in centrifuge machine (Eppendrof Centrifuge 5415D). The resultant 

bacterial pellet was dissolved in 50 µl of LB broth and was dropped on an LB plate. The 

plate was incubated at 30°C overnight. On the next day, the spot on the plate was 

dissolved in 1 ml of LB broth and 100 µl of the sample was spread on LB Gm/ Nit plates. 

After incubation of those plates at 30°C for 2-3 days, colonies were observed. Colonies 

growing on the plates were again transferred to LB Gm/ Nit for confirmation. One of the 

several colonies that were confirmed to have the tepR clone by doing PCR was used for 

further study. 

2.2.4 Toxoflavin quantification 

Bacterial cells were grown on LB agar media at 37°C for 48 h. All bacterial cells 

were removed by sterile water from the surface of the agar plate and the concentration of 

the bacterial cell was measured through absorbance at 600 nm. The solid agar diffused 

with toxoflavin was chopped into small pieces. Then, the small pieces of the LB agar 

were mixed with chloroform 1:1 (w/v) ratio. After a few minutes, the chloroform fraction 
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that contains the toxoflavin was filtered through filter paper and collected in microtubes. 

The toxoflavin-dissolved chloroform was evaporated overnight in a fume hood. After 

evaporation, the remaining culture filtrate was dissolved in 1 ml of 80% methanol. For 

determining the relative amount of the toxoflavin, absorbance of each sample was 

measured at 393 nm (Jung et al., 2011) and 260 nm (Kim et al., 2004), using a 

spectrophotometer (Biomate 3, thermoelectromate corporation, USA). 

Toxoflavin was also extracted from liquid culture of the strains. Bacterial cells 

were grown in LB broth for 48 h at 37°C with shaking speed of 180 rpm. The 

concentration of bacteria was measured before proceeding for toxoflavin production. 

About 1 ml of the liquid culture (OD600 = 1) was centrifuged for 10 min at 10,000X g and 

cell free supernatant was collected in another centrifuged tube. The same volume (1 ml) 

of chloroform was added to the supernatant and the mixture was vortexed for 15 sec. The 

chloroform fraction was separated and evaporated in a fume hood overnight. After 

evaporation, the remaining culture filtrate was dissolved with 1 ml of 80% methanol. For 

determining the relative amount of the toxoflavin, the absorbance of each sample was 

measured at 260 nm (Kim et al., 2004). 

2.2.5 Observation and quantification of lipase activity 

 

Bacterial cells were grown in the LB broth overnight at 37°C with shaking speed 

at 180 rpm. The lipase quantification was done according to Winkler and Stuckmann 

(1979) with some modifications as to obtain a cell-free supernatant, 1.5 ml of overnight 

culture was centrifuged for 10 min at 10,000 g. Substrate solution was made by adding 25 

ml of isopropanol (Fischer Scientific, Fair Lawn, NJ, USA) containing 75 mg of p-

nitrophenylpalmitate (Sigma-Aldrich, St. Louis, MO, USA), which was mixed with 90 ml 
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of 0.05M Sorensen’s phosphate buffer (0.2 M NaH2PO4-5.3 ml and 0.2M Na2HPO4-94.7 

ml, Sigma-Aldrich, St. Louis, MO, USA) with pH 8.0 containing 207 mg of Sodium 

deoxycholate (Acros Organic, NJ, USA) and 50 mg of gum Arabic (Acros Organic, NJ, 

USA). The freshly prepared substrate solution was then pre-warmed at 370C for 10 min 

and 2.4 ml of that solution was mixed with 0.1 ml of the cell free supernatant and again 

incubated in water bath at 37°C for 15 min. After incubation the absorbance was 

measured on OD410 value in a spectrophotometer (Biomate 3, thermoelectromate 

corporation, USA). 

2.2.6 Virulence test in onion bulb scales 

 

The onion assay system used to determine the virulence of the bacterial strains in 

this study was similar to the system followed by Jacobs et al. (2008) for Burkholderia 

cenocepacia and Karki et al. (2012) for B. glumae. Fresh onion scales were cut into small 

pieces (~2*4 cm2) with a sterile razorblade. A small puncture was made at the center of 

each onion piece with a sterile micropipette tip. An overnight liquid culture of bacteria 

grown at 37°C with shaking speed at 180 rpm was centrifuged to obtain the pellet. The 

pellet was washed twice with LB broth and final bacterial suspension was made in 10 

mM MgCl2. The bacterial concentration was then adjusted to 5×107 CFU/ml (OD600 = 

0.1). About 5 µl of the bacterial suspension was applied to the puncture of the onion 

scales. The inoculated onion scales were placed in moist chamber and incubated at 30°C 

for 48-72 h. The virulence levels of each strains of B. glumae were evaluated by 

measuring the maceration area on each onion bulb scale. 
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2.2.7 Virulence test in rice  

Rice (Oryza sativa) cultivar Trenasse was grown in the greenhouse in pots 

containing clay, commercial soil and sand in the ratio of 4:2:1 in the greenhouse. 

Overnight culture grown in LB plate at 37°C was resuspended in sterile water and the 

bacterial concentration was adjusted to 0.1 at OD600 (5 × 107 cfu/ml). The bacterial 

suspension was then sprayed onto the rice at the 20%-30% heading stage. For the proper 

disease development, the infected rice plants were covered with a plastic frame to 

maintain more than 80% humidity. The disease score was determined on the basis of 

observation of percentage-infected area of the panicles 7 days after the bacterial 

inoculation. The disease severity on rice panicles was determined by the following scale: 

healthy panicle, 0; 1%–10% symptomatic area, 1; 11%– 20% symptomatic area, 2; 21%–

30% symptomatic area, 3; 31%–40% symptomatic area, 4; 41%–50% symptomatic area, 

5; 51%–60% symptomatic area, 6; 61%–70% symptomatic area, 7; 71%–80% 

symptomatic area, 8; >81% symptomatic area, 9 (Nandakumar et al., 2007). 

 2.2.8 Hypersensitivity response test on tobacco leaves 

For the hypersensitivity response test, tobacco plants were grown in greenhouse. 

Tobacco seeds were sterilized by rinsing with 100% isopropanol for 1 min. The seeds 

were again rinsed with 50% bleach and finally the seeds were rinsed seven times with 

sterile water. The surface sterilized tobacco seeds were germinated on MS media (MS 

salts-0.43 g, plant cell culture agar-0.75, sucrose-0.75 g, vitamins-10 µl, sterile water- 

100 ml) for 7 days. The germinated seeds were grown on plastic pots containing clay, 

commercial garden soil and sand in the ratio of 4:2:1 in the greenhouse. Overnight 

bacterial cultures grown on LB agar at 37°C were resuspended in 10 mM MgCl2 and 
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adjusted to the OD600 value of 0.1 (5 × 107 cfu/ml). The resultant suspension was 

infiltrated in fully expanded tobacco leaves through the ventral side with the help of a 

needle-less syringe. About 10-12 week-old tobacco plants were used for this experiment. 

Hypersensitive response was observed after 18 h of infiltration. 

2.2.9 Swimming and swarming test 

To observe the motility action of the B. glumae strains, swimming and swarming 

tests were conducted on different agar concentrations. 0.3% LB agar and 0.7% LB agar 

medium were used for swimming and swarming tests, respectively following the 

procedure used by Kim et al. (2007). In this test about 1 ml of overnight culture was 

centrifuged at 13000 rpm for 1 min and washed with the LB broth twice. One µl (for 

swimming test) and 5 µl (for swarming test) of bacterial suspension were dropped on the 

center of freshly prepared LB agar plates. The inoculated plates were incubated at 37°C 

for 20 h.  

2.2.10 Electron microscopy of flagella 

Bacterial cells were grown in LB agar plates at 37°C and these cells were 

collected and suspended in sterile distilled water. Five µl of the bacterial cells in sterile 

water was spotted onto a square mesh copper grid. After 2 min, staining solution was 

added to the grid containing bacterial cells. After a minute, the liquid was withdrawn by 

using filter paper and morphology and presence or absence of flagella was observed 

using transmission electron microscopy (TEM) (Facility service provided by Socolofsky 

Microscopy Center, LSU). 
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2.2.11 AHL assay 

Chromobacterium violaceum CV026 was used as a biosensor to determine the 

AHL production by B. glumae because in C. violaceum CV026 the purple pigment, 

violacein, can be restored by incubation with AHL signal molecules (McClean et al., 

1997). The AHL production assay was performed following the procedure used by Kim 

et al. (2004). Briefly, the supernatant fraction of an overnight culture of each B. glumae 

strain grown in LB broth at 37°C was obtained by centrifugation. The AHL molecules 

were extracted from the supernatant (1ml) with an equal volume of ethyl acetate. The 

ethyl acetate fraction, which dissolved AHL molecules, was left in a fume hood for air-

drying. The residue obtained from the air-dried sample was dissolved in 1% volume of 

sterile distilled deionized water. Then, 20 μl of each culture extract were applied to the 

cells of C. violaceum CV026 immediately after they were streaked on a LB agar plates. 

The production of the purple pigment by this biosensor strain was observed after 48 h of 

incubation at 30°C. 

2.2.12 Protease activity test 

Protease activity was compared among the bacterial strains by spotting 5 µl of 

each bacterial suspension with OD600 = 1.0 onto the surface of nutrient yeast glycerol agar 

(NYGA) plate containing 1% skimmed milk powder (Huber et al., 2001). The plates 

were incubated at 37°C and observed at 24 h and 48 h of incubation. 

2.3 Results 

2.3.1 Development of markerless deletion mutant of tepR and complemented strain 

 

A mutant derivative of B. glumae 336gr-1 with deleted tepR region, LSUPB401, 

was generated using the pKKSacB system (Chen et al., 2012). The tepR deletion in 
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LSUPB401 was confirmed by PCR using primers corresponding to the flanking 

sequences of the deleted region (Figure 2.1 and Table 2.2). A functional tepR clone, 

pBB5-tepR was introduced into the tepR deletion mutant, LSUPB401, through triparental 

mating. The sizes of the PCR products amplified from the wild type and the mutant 

matched the predicted sizes of the intact and deleted tepR DNA sequences (Figure 2.1). 

The complemented strain, LSUPB401 (pBB5-tepR), was confirmed by the amplification 

of both intact and deleted tepR regions (Figure 2.1). 

 

 

 

 

 

Figure 2.1. PCR products amplified with the primers, TepRSuF and TepRSuR, to confirm 

the tepR deletion in LSUPB401. L indicates the 1kb plus DNA ladder (Invitrogen, Santa 

Clara, CA, USA) used as a marker; W indicates the wild type strain, 336gr-1; M indicates 

the tepR deletion mutant, LSUPB401; and C indicates the complemented strain, 

LSUPB401(pBB5-tepR). 

2.3.2 Toxoflavin production assay 

 

The tepR deletion mutant of B. glumae 336gr-1, LSUPB 401, produced higher 

toxoflavin production compared with its parental strain when grown in LB agar plate 

(Figure 2.2). Similar results were observed when the bacterial strains were grown in LB 

broth (Figure 2.3). Statistical analysis showed significantly higher toxoflavin production 

by tepR deletion mutant in liquid media (Figure 2.4). 
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Figure 2.2. Toxoflavin production by B. glumae strains in LB agar plates. The tepR 

deletion mutant LSUPB401 showed enhanced toxoflavin production compared with the 

parental wild type strain, 336gr-1, when growing on LB agar for 48 h at 37°C. 

 

 

 

 

 

 

  

 

Figure 2.3. Toxoflavin production by B. glumae strains in LB broth. The tepR deletion 

mutant, LSUPB401, yielded higher toxoflavin in comparison with the parental wild type 

strain, 336gr-1, when growing in LB broth for 48 h at 37°C. 
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Figure 2.4. The tepR deletion mutant of B. glumae, LSUPB401, produced significantly 

higher amount of toxoflavin than its parental wild type strain, 336gr-1. Toxoflavin was 

quantified measuring the toxoflavin dissolved in 80% methanol at an optical density 600 

nm (OD610). All experiments were done more than three times. Data were analyzed by 

using of Tukey’s honest significant difference (HSD) test at P value 0.05. Means with a 

same letter are not significantly different. 

 

 According to the statistical analysis using Tukey’s honest significant difference 

(HSD) test at P value 0.005 (Tukey, 1975), toxoflavin production in liquid LB media was 

significantly different between the wild strain and the tepR deletion mutant, LSUPB401 

(Figure 2.4). 

2.3.3 Lipase activity 

 The ΔtepR strain, LSUPB401, showed higher lipase activity compared to its wild 

type strain 336gr-1. The mean of the OD410 values, which represented the relative amount 

of the p-nitrophenol formed after the reaction of lipase on the substrate (p-nitrophenyl 

palmitate), was plotted on a bar chart (Figure 2.5). The bar chart showed that ΔtepR had 

relatively higher lipase activity than that of the wild type.  The statistical analysis by 
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using Tukey’s honest significant difference (HSD) test at P value 0.05 (Tukey, 1975), 

suggested the significantly higher lipase activity in LSUPB401 compared to wild type 

strain 336gr-1 (Figure 2.5). 

 

Figure 2.5. A tepR deletion mutant of B. glumae, LSUPB401, showed higher lipase 

activity than the parental wild type strain, 336gr-1. Lipase activity was quantified 

measuring the release of p-nitrophenol from the chromogenic substrate p-nitrophenyl 

palmitate at an optical density at 410 nm (OD410). All experiments were done in triplicate. 

Data were analyzed by using of Tukey’s honest significant difference (HSD) test at P 

value 0.05. Means with a same letter are not significantly different. 

2.3.4 Virulence assay on onion 

In the onion bulb scale assays, ΔtepR exhibited a wider maceration area than the 

wild type strain, 336gr-1(Figure 2.6). The size of maceration area caused by a B. glumae 

strain is thought to reflect its virulence activity. The maceration area on an onion bulb 

scale was in elliptical shape, so the size of each maceration area was measured by using 

the formula A= π (R1*R2); where R1 and R2 are radius of ellipse in horizontal and 

vertical directions, respectively, and A is the maceration area. 
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The statistical analysis suggested that LSUPB401 macerated the onion scale 

significantly better than its parental strain, 336gr-1 (Figure 2.7) on the moisture chamber 

at 30°C when observed after 48 h. 

 

 
Figure 2.6. Maceration on onion scales caused by different strains of B. glumae 336gr-1. 

A tepR deletion mutant of B. glumae, LSUPB401, showed a larger maceration area than 

its parental wild type strain, 336gr-1, on onion scales.  

 

 

 

 

Figure 2.7. A tepR deletion mutant of B. glumae, LSUPB401, showed larger maceration 

areas on onion scales. Data were analyzed by using of Tukey’s honest significant 

difference (HSD) test at P value 0.05. Means with the same letter are not significantly 

different. 
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2.3.5 Virulence assay on rice 

 

In the rice virulence test performed in the greenhouse, LSUPB401 showed more 

severe disease symptoms than the wild type, 336gr-1 (Figure 2.8). Statistical analysis of 

the disease scores confirmed the significantly higher virulence of LSUPB401 compared 

with the wild type and complemented strains (Figure 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Disease symptoms on rice panicles caused by different B. glumae strains in 

the greenhouse. LSUPB401 is more aggressive than the parental strain, 336gr-1, in 

causing bacterial panicle blight symptoms. 
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Figure 2.9. A tepR deletion mutant of B. glumae, LSUPB401, showed more severe 

disease symptoms in rice panicles compared with the wild type and complemented 

strains. Data were analyzed by using of Tukey’s honest significant difference (HSD) test 

at P value 0.05. Means with a same letter are not significantly different. 

2.3.6 Hypersensitive responses (HRs) in tobacco leaves 

 

Unlike the wild type 336gr-1, its ΔtepR derivative, LSUPB401, did not elicit any 

HR in tobacco leaves when the bacterial cells were infiltrated in a fully expanded tobacco 

leaf in the greenhouse condition (Figure 2.10). 
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Figure 2.10. Hypersensitivity response (HR) in tobacco leaf, where the ΔtepR 

strain, LSUPB401, does not elicit HR.  
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2.3.7 Protease activity  

 

Protease is also known to be an important factor of plant pathogens to cause 

disease. LSUPB401 showed higher protease activity in comparison to its wild type parent 

on the surface of nutrient yeast glycerol agar (NYGA) plate containing 1% skimmed milk 

powder (Figure 2.11). 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.8 AHL signal production assay 

 

In AHL assays using the biosensor, Chromobacterium violaceum CV026, 

LSUPB401 (ΔtepR) was negative in AHL production, while the culture extract of the 

wild strain, 336gr-1, caused the production of the purple pigment (violacein) by the 

biosensor indicating the presence of AHL (Figure 2.12). 
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LSUPB401 
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Figure 2.11. Protease activities of B. glumae strains on NYGA 

containing 1% skimmed milk. Photo was taken after 24 h of incubation 

at 37°C.  
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2.3.9 Swimming and swarming activity 

  

In LB agar media with 0.3% agar, ΔtepR showed no swimming activity (Figure 

2.13). Similarly, ΔtepR did not show any swarming activity on LB with 0.7% agar 

(Figure 2.14). However, wild strain, 336gr-1 showed both swimming and swarming 

activities. 

 

 

 

 

 

 

 

Figure 2.12. Production of AHL compounds by B. glumae strains. AHL 

production is indicated by the purple pigment produced by the biosensor, 

Chromobacterium violaceum CV026. 336gr-1: wild type. LSUPB401: ΔtepR. 

LSUPB145: ΔtofI. Photo was taken after 48 h of incubation at 30°C.      
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Figure 2.13. Swimming activities on 0.3% LB agar plates at 37°C. Photo 

was taken after 20 h of incubation at 37°C. 
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2.3.10 Electron microscopy of bacterial cells for the observation of flagella 

 

Electron microscopy observation of showed that ΔtepR did not show flagella, 

where as the wild type and the complemented strain of the tepR deletion mutant showed 

distinguishable flagella (Figure 2.15). 

    

2.4 Discussion 

B. glumae is one of the major bacterial pathogens of rice plant, which causes 

bacterial panicle blight and reduces the yield up to 75 % in severe infestation.  B. glumae 

has several known virulence factors. Major known virulence factors of the bacteria are 

toxoflavin, lipase and flagellar motility. The major objective of this study was to 

characterize the σ54-dependent response regulator, tepR (Locus_tag= “bglu_1g09700”), 

336gr-1 
(wild type) 

LSUPB401 

(ΔtepR) 

LSUPB401 (pBB5-tepR) 

Figure 2.15.  Flagella observed under electron microscope. The wild type strain, 

336gr-1 (left), and LSUPB401 (pBB5-tepR) (right) show flagella formation but the 

tepR deletion mutant, LSUPB401 (center), did not. 

 

Figure 2.14. Swarming activities on 0.7% LB agar plates at 37°C. Photo 

was taken after 20 h of incubation at 37°C. 

 

336gr-1 
LSUPB401 

 

LSUPB401 

(pBB5-tepR) 
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which was assumed to be a negative regulator for the toxoflavin production in B. glumae. 

In a genome-wide search of regulatory factors by using of transposons (Tn5) for random 

mutagenesis, some mutants showed higher toxoflavin production and some showed no 

toxoflavin. One of the mutants showing higher toxoflavin production was further 

analyzed and found that the transposon was inserted on a putative gene encoding a σ54-

dependent response regulator. The gene where the transposon was inserted was named 

tepR (toxoflavin and extracellular polysaccharides regulotor). Those tasks were already 

completed in our laboratory before this study. 

TepR (protein id= “ACR28150.1”) of B. glumae was found to be homologous 

with the LuxO of Vibrio spp. It was already known that in V. harveyi, luxO, along with 

sigma-54, acts as a negative regulator for the luminescence (Lilley and Bassler, 2000). 

Based on the known luxO function, the luxO homolog tepR was hypothesized to be a 

negative regulator and studied further by creating a markerless tepR deletion mutant, 

LSUPB401. The ΔtepR strain, LSUPB401, along with its wild type parental strain, 336gr-

1, and the complemented strain with a functional tepR clone, LSUPB401 (pBB5-tepR), 

was further characterized in terms of various phenotypes. 

Toxins are major components of plant pathogenic bacteria to cause disease in 

plants (Durbin, 1991) through either injuring the plant organelles or disrupting normal 

metabolic processes of the host. Toxoflavin is an important toxin produced by B. glumae 

and considered a crucial virulence factor for the symptoms development in plant by 

producing superoxide and hydrogen peroxide (Latuasan and Berends, 1961; Jung et al., 

2011). In this study the tepR deletion mutant of B. glumae showed higher toxoflavin 

production than the wild type in both liquid and solid medium conditions. In both 
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conditions, LSUPB401 complemented with a functional tepR clone showed the similar 

amount of the toxoflavin production to the wild type.  Those results suggested that tepR 

negatively regulates the toxoflavin production in B. glumae. 

Lipase is another important microbial enzyme, which is involved in virulence 

activity of various plant pathogens including fungi and bacteria. Lipase was found to be 

involved actively in the pathogenicity of the rice blight pathogen Xanthomonas oryzae 

pv. oryzae (Rajeshwori et al., 2005). According to Devescovi et al., (2007) lipA mutants 

of B. glumae AU6208 showed almost no disease symptoms in rice, suggesting an 

important role of lipase in the virulence of B. glumae. In this study, the higher lipase 

activity shown by LSUPB401 indicated the negative regulatory role of tepR in lipase 

activity. Devescovi et al., (2007) described that lipase production in B. glumae is 

regulated by the AHL- dependent quorum sensing system. However, LSUPB401 did not 

show AHL production even though it showed higher lipase activity. In some species of 

Burkholderia, such as B. thailandensis, lipase production was controlled by the AHL- 

dependent quorum sensing in both negative and positive ways (Ulrich et al., 2004). So, it 

is interesting that tepR represses toxoflavin production and lipase activity even if it 

positively regulates the AHL production. Studying how toxoflavin production and lipase 

activity of B. glumae increase in the ΔtepR background without AHL would be an 

important part of the future study on TepR function. Regarding this question, it is 

noteworthy that ΔtofI and ΔtofR strains of B. glumae did not produce AHL signals but 

they were able to produce high levels of toxoflavin when grown on LB agar (Chen et al., 

2012). 
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Interestingly, the tepR deletion mutant showed a higher protease activity on the 

surface of NGYA plates containing 1% skimmed milk, suggesting a negative regulatory 

role of tepR in the protease activity of B. glumae. This result was similar to the result 

obtained by Raychaudhuri et al., (2006) with V. cholera strain PL91, where deletion of 

luxO enhanced the protease activity than the wild type and a constitutively active LuxO 

caused protease-deficient phenotype.  Taken together, the obtained results indicated that 

tepR negatively regulates some important virulence factors of B. glumae. 

The HR test in this study indicates that the tepR positively regulate the type III 

secretion system of B. glumae. Motility by flagella is an important virulence activity of 

bacteria. Flagella are complex molecular machines, which allow the cell movement 

(McCarter, 1988). Flagella are essential parts developed by the pathogenic bacteria for 

the movement and attachment on host tissue during the establishment phase of the 

infection (Davey and O'toole, 2000). A single polar flagellum is involved in swimming 

activity in less viscous medium, whereas numerous lateral flagella are responsible for the 

swarming over the more viscous surface (Yang and Defoirdt, 2014). It was very 

interesting that LSUPB401 lost the flagellum-mediated swimming and swarming 

activities at 37°C. This result was further validated by electron microscopy observations, 

in which the tepR deletion mutant did not show flagella but its complemented strain 

having the functional tepR clone retained flagella. Those results suggest that tepR plays a 

positive role in flagellar biogenesis and flagellum-mediated motility even if it negatively 

regulates other major virulence factors including toxoflavin and lipase. Furthermore, 

LSUPB401 was more virulent on rice and showed higher disease severity than its wild 

type strain. Similar results were obtained in onion virulence assays, in that the tepR 
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deletion mutant showed larger maceration areas on onion bulb scales than the wild type 

strain. 

Virulence of B. glumae in relation to the toxoflavin production, lipase activity and 

flagella-dependent motility is an important part of the B. glumae study. Kim et al, 2007 

observed that a non-motile mutant of B. glumae produced toxoflavin but failed to cause 

disease in rice. This study reveals a very interesting fact that deletion of tepR caused 

increased virulence of the pathogen in spite of the lost flagellum-mediated motility and 

the deficiency in AHL production. It might be possible that tepR regulates B. glumae 

positively for the initial colonization on the host tissue but does negatively for the 

production of major virulence factors at later infection stages. This speculation may be 

reasonable because bacteria need to manage proper amounts of virulence factors after 

being established in host for long-term survival. 

The newly found functions of the luxO-type regulatory gene tepR would provide 

insights into the regulatory/signaling network of B. glumae and related bacteria, and this 

study would be the foundation for further mechanistic studies of the tepR function. 

 
 
 
 
 
 
 
 



 37 

CHAPTER 3. ISOLATION OF RICE RHIZOSPHERIC BACTERIA TO FIND 

OUT POTENTIAL BIO-CONTROL AGENTS FOR BACTERIAL PANICLE 

BLIGHT IN RICE 

3.1 Introduction and literature review 

 

Rice is one of the most important staple food crop in the world because it is a 

source of abundant carbohydrates and more than 3.5 billion people are dependent on it 

for their daily energy consumption (Spence et al., 2014). Rice diseases are major limiting 

factors in the productivity of rice. Bacterial panicle blight is an important bacterial 

disease of rice and no effective management system has been established to control this 

disease. 

Pathogenic microorganisms affecting plant health and surrounding environment 

are major threats for agriculture and food science. To maintain the intense agricultural 

production, producers use different agrochemicals for crop protection (Compant et al., 

2005). However usage of agricultural chemicals may not be good for the environment. 

The possibility of developing resistance by plant pathogens to the applied chemicals in 

the field and non- target impacts of those chemicals in an environment suggest the need 

of an alternative way for plant disease management. Endophytic bacteria are used as 

important biocontrol agents used against different pathogenic bacteria of crops (Jacobsen 

et al., 2004). Nowadays, biological control is considered as an alternative way of 

reducing the chemical usage and minimizing environmental pollution (De Weiger et al., 

1995). Free-living bacteria and some endophytic bacteria use different mechanisms to 

promote the plant growth and to control plant pathogens (Glick, 1995). Antibiosis, lytic 

enzyme production, detoxification and degradation of virulence factors are some 

important bases of biocontrol mechanism of plant-associated bacteria and these 

mechanisms are increasingly studied over the past decades (Compant et. al., 2005). A 
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plant growth-promoting bacterium Delftia tsuruhatensis, strain HR4, which was isolated 

from rhizosphere of rice in North China, showed a suppression activity on the growth of 

major rice pathogens; Xanthomonas oryzae pv. oryzae, Rhizoctonia solani and 

Pyricularia oryzae Cavara on in vitro antagonistic assay (Han et al., 2005). Ji et al., 

(2008) isolated a novel strain of Lysobacter antibioticus (named as L. antibioticus strain 

13-1) from the rhizosphere of rice in Yunan Province of China and the isolated bacteria 

inhibited growth of the bacterial leaf blight pathogen, Xanthomonas oryzae pv. oryzae, 

suggesting its value as a potential biocontrol agent. 

In nature many bacteria produce different antibiotics along with some other 

chemical compounds. Along with antibiotics, pseudomonads produce a variety of 

chemical compounds such as amphisin, 2,4- diacetylphloroglucinol, hydrogen cyanide, 

oomycin A, phenazine, pyoluteorin, pyrrolnitrin, tensin, tropolone and cyclic lipopeptides 

(Défago, 1993; de Souza et al. 2003; Nielsen et al. 2002, Nielsen and Sørensen, 2002). In 

a similar way, oligomycin A, kanosamine, zwittermicin A and xanthobaccin are produced 

by Bacillus, Streptomyces and Stenotrophomonas spp. (Hashidoko et al., 1999; Kim et 

al., 1999; Milner et al., 1995; Milner et al., 1996; Nakayama et al., 1999). Detoxification 

of bacterial virulence factors is another way to control pathogenic bacterium. During the 

detoxification, certain proteins produced by biocontrol agents binds to the toxin of 

pathogenic bacterium to deactivate its toxicity. Esterase of Pantoea dispersa detoxifies 

the albicidin toxin produced by Xanthomonas albilineans (Zhang and Birch, 1996, 1997). 

Moreover, some bacteria can control fungal toxins too. For example, Burkholderia 

cepacia and Ralstonia solanacearum can hydrolyze the fusaric acid of Fusarium spp. 

(Toyoda and Utsumi, 1991). It was also reported that some plant growth promoting 
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bacteria disturb the quorum sensing signals by degrading auto-inducers (Dong and 

Zhang, 2005).  

The rhizosphere is a small and narrow zone of soil around the root system of 

plants, which is very rich in nutrients due to the accumulation of different plant exudates 

like amino acids and sugars. These are an important source of energy and nutrients for 

diverse microorganisms including bacteria (Gray and Smith, 2005). Bacteria residing in 

the rhizosphere are called rhizobacteria and they can be differentiated into beneficial, 

deleterious and neutral groups based on their effects on plants (Dobbelaere et al., 2003). 

The interaction between plant roots and their rhizospheric microbiome are crucial to plant 

fitness and important driving forces for both growth promotion and disease suppression 

(Spence et al., 2014). Rhizospheric bacteria are potential biological control agents against 

different plant diseases and also efficient promoters of plant growth, therefore providing 

additional benefits (Narayanasamy, 2013). 

Rhizospheric microbial communities not only get benefit from the plants exudates 

but also aid in nutrient accumulation in the plants, control different soil pathogens by 

producing antimicrobial compounds, and through the competition with pathogens for 

nutrients (Lugtenberg and Kamilova, 2009). In most cases, gram-positive bacteria within 

the genus Bacillus are used as biocontrol agents and studies have shown that these 

bacteria produce surfactins with antimicrobial activity (Vitullo et al., 2012). Similarly, 

some well-studied gram-negative bacteria as biocontrol agents, such as Pseudomonas 

species, have also been shown to secrete a large number of antimicrobial metabolites 

(Silby et al., 2011). It is known that certain plant-associated strains of fluorescent 

Pseudomonas spp. produce the antimicrobial antibiotic 2,4-diacetylphloroglucinol 
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(DAPG), which has antibacterial, antifungal, antiviral and antihelminthic properties. 

Velusamy et al., (2006) reported that DAPG inhibited the growth of rice bacterial blight 

pathogen Xanthomonas oryzae pv. oryzae in laboratory assays and also suppressed the 

bacterial blight up to 60% in greenhouse and field experiments. 

Host immunity and defense responses are important governing factors in a host 

pathogen interaction. Through the alteration of defense responses of host, different 

biocontrol agents act as a priming factor on host to recognize pathogens earlier and 

ultimately make hosts immune against the pathogen (Van Loon, 2007). For the induced 

systemic resistance (ISR) response of plants, jasmonic acid (JA) and ethylene (ET)-

mediated plant signaling systems are active in most cases. Microbial cell components, 

volatile substances and secretions are recognized by the plants as priming factors for the 

rapid cellular defense responses (Van der Ent et al., 2009: Ryu et al., 2004: Van Wees et 

al., 2008). 

The objective of this study was to isolate and characterize rhizospheric rice 

bacteria in order to identify potential bio-control agents for controlling bacterial panicle 

blight. 

3.2 Materials and Methods 

3.2.1 Isolation of bacteria from rice rhizosphere 

 

Rice plants with root and soil adhering to the root surface were collected from the 

rice fields at the Rice Research Station (Crowley, LA). The soil adhering the root surface 

was used to isolate rhizospheric bacteria. Each soil sample was suspended in double 

distilled water and filtered through a filter paper. Then the filtrate was diluted to 1/10 and 

1/100 and spread (100 µl) on Nutrient agar (NA) plates containing cyclohexamide (50 
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µg/ ml). The plates were incubated at 30°C overnight. Bacterial colonies growing on the 

plates were picked with sterile toothpicks and transferred to another nutrient agar plate 

where Burkholderia glumae (OD600 = 0.1) was spread. Those plates were further 

incubated at 30°C overnight. The bacterial colonies showing the antagonistic 

characteristics (inhibition zones) against B. glumae were used for further studies. 

3.2.2 In vitro screening 

The bacterial isolates showing inhibition regions on B. glumae plate were tested 

further to check antagonistic characteristic against the B. glumae. For this experiment a 

bacterial suspension of the Burkholderia glumae 336gr-1(OD600 = 0.1) was spread on 

nutrient agar plates. One ml culture of each selected rice rhizospheric bacteria grown 

overnight in LB broth at 37°C was centrifuged to obtain a pelleted bacterial cells. The 

cells were washed with equal volume of fresh LB broth two times and re-suspended in 

100 µl LB broth. Ten µl of each bacterial sample was spotted in the center of a plate 

spread with B. glumae. Those plates were incubated overnight at 30°C. Next day, the 

areas of inhibition region were measured and analyzed using Tukey’s honest significance 

difference (HSD) test with P value, 0.05 (Tukey, 1975). 

3.2.3 Characterization of the bacteria 

The isolated bacteria were differentiated into gram positive and gram negative on 

the basis of KOH test (Powers, 1995). For this test 3% KOH solution was prepared and a 

drop (50 µl) of KOH was put on clean glass slide. The bacterial cells grown overnight on 

nutrient agar plates were transferred to the slide aseptically with a flat toothpick into the 

drop of KOH solution and resuspended by rapid and circular agitation. After 5-8 seconds, 

the toothpick was alternately raised and lowered from the slide surface. The observation 



 42 

was made to determine whether viscous and mucoid string is formed or not. 

Those bacteria showing the antagonistic characteristics against B. glumae were 

proceed for genomic DNA extraction. The 16S-rDNA region of each bacterium was 

amplified by using universal primers (the forward primer 

5’CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG 3’ and the reverse 

primer 5’CCCGGGATCCAAGCTTAAGGAGGTGATCCAGCC 3’) (Weisburg et al., 

1990). The amplified DNA samples were sent to a genome service facility for DNA 

sequencing. The sequence result was evaluated by using Basic Local Alignment Search 

Tool (BLAST) of the National Center for Biotechnology Information (NCBI). 

3.2.4 Greenhouse study 

The antagonistic bacteria were tested against bacterial panicle blight in the rice 

plants (Trennase cultivar) grown in the greenhouse in pots containing clay, commercial 

soil and sand in the ratio of 4:2:1 in the greenhouse. Bacterial suspensions of antagonistic 

bacteria were prepared from the overnight grown bacterial culture in NA plates with the 

OD600 value 0.1 and sprayed on the rice plants at the 20-30% heading stage. On the 

following day, B. glumae suspension (OD600=0.1) was sprayed on the pretreated rice 

plants. More than 85% relative humidity and around 37°C temperature were maintained 

inside the greenhouse to develop the bacterial panicle blight disease on the rice plants. 

Disease scoring was done one week after inoculation of isolated bacteria. The resulting 

disease ratings were evaluated by using Tukey’s honest significance difference (HSD) 

test with P value, 0.05 (Tukey, 1975). The disease severity on rice panicles was 

determined by the following scale: healthy panicle, 0; 1%–10% symptomatic area, 1; 

11%– 20% symptomatic area, 2; 21%–30% symptomatic area, 3; 31%–40% symptomatic 
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area, 4; 41%–50% symptomatic area, 5; 51%–60% symptomatic area, 6; 61%–70% 

symptomatic area, 7; 71%–80% symptomatic area, 8; >81% symptomatic area, 9 

(Nandakumar et al., 2007). 

3.2.5 Field test 

Bacterial suspensions of antagonistic bacteria were prepared with the OD600 value 

0.1 and sprayed on the rice plants at the 20-30% heading stage, which were grown in the 

Rice Research Station at Crowley, Louisiana. On the following day, B. glumae 

suspension (OD600=0.1) was sprayed on the pretreated rice plants. Only the antagonistic 

bacteria showing the decreased symptoms in the greenhouse and having very strong 

antagonism in the in vitro test were selected for the field test rather than using all the 

antagonistic bacteria. One of the bacteria (RRB1045), which significantly minimized the 

disease symptoms in the greenhouse and had a strong antagonism in in vitro assays, was 

tested in the field by making different combinations with another strain of Bacillus spp. 

(RAB9), an antagonistic bacteria agaisnt B. glumae and Rhizoctonia solani in the 

laboratory condition. The RRB1045 was also combined with ascorbic acid (100 µM) in 

one treatment. 

Disease scoring in the field was made 10 days after treatment of the antagonistic 

bacteria. Same scales as described in greenhouse test were used to determine the disease 

severity on rice panicles. Disease ratings were statistically analyzed by Tukey’s honest 

significance difference (HSD) test (Tukey, 1975). 
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3.3 Results 

3.3.1 Isolation of bacteria from rice rhizosphere and in vitro test against B. glumae 

About 10,000 bacterial colonies were obtained from the rice rhizospheres, which 

were collected in June-August, 2013 from the Rice Research Station.  Among them, 10 

bacterial isolates showed inhibition regions when grown with B. glumae. Bacteria 

isolated from the rice rhizosphere were named as rice rhizospheric bacteria (RRB). In the 

medium plates, inhibition regions were clearly observed around the spot of the RRB, 

which blocked the growth of B. glumae (Figure 3.1). Area of growth inhibition zones of 

B. glumae on the medium plates were considered as the degree of antagonism of the 

corresponding antagonistic bacteria. All the bacteria tested showed significant 

antagonistic activities (Figure 3.2).  

 

Figure 3.1. RRBs exhibit antagonistic characteristics against B. glumae by showing 

inhibition zones in laboratory condition. 
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Figure 3.2. Growth inhibition area (mm2) of B. glumae made by rice rhizospheric bacteria 

(RRB) on the medium plates in the laboratory condition. Data were analyzed by using of 

Tukey’s honest significant difference (HSD) test at P value 0.05. Means with the same 

letter are not significantly different. 

3.3.2 Identification of the antagonistic bacteria 

 

Among 10 RRBs, seven were gram-positive and three were gram-negative 

bacteria, which were differentiated on the basis of KOH test. The 16S rDNA sequencing 

results reveled that six were members of Bacillus, one was Paenibacillus and three were 

Pseudomonas (Table 3.1). Identities of the bacteria listed in Table 3.1 were based on the 

16S rDNA sequences, which were analyzed through Basic Local Alignment Search Tool 

(BLAST) of National Center for Biotechnology Information (NCBI). In this study, 

RRB982, RRB983, RRB984, RRB985 and RRB1042 showed moderate antagonism 

against B. glumae in laboratory condition. However, in the same condition RRB1043, 

RRB1044, RRB1045, RRB1046 and RRB1047 showed strong antagonism against B. 
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glumae. In the phylogenetic analysis, bacteria were grouped on the basis of their identity 

and nearest ancestor (Figure 3.3). In the phylogenetic tree, bacilli (RRB982, RRB983, 

RRB984, RRB985 and RRB1043) were clustered in one group and the pseudomonads 

(RRB1044, RRB1046 and RRB1047) were clustered in one group. One Paenibacillus 

(RRB1045) was separated in a different group. 

 

 

 

Figure 3.3. Phylogenetic tree resulted from analysis with the partial sequence information 

of 16S rDNA, which grouped the antagonistic RRBs into three major clusters. 

Phylogenetic tree was made by using neighbor-joining method and genetic distances 

were calculated using Kimura 2-parameter method. 
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Table 3.1. Rice Rhizospheric Bacteria (RRB), their identity, properties and degree of 

antagonism against B. glumae in laboratory condition. Species name in the bracket 

indicates the nearest species with higher identity percentage  

Bacteria Properties Antagonism Identity 

RRB982 Gram positive Moderate Bacillus subtilis. 

RRB983 Gram positive Moderate Bacillus sp. 

(amyloliquefaciens) 

RRB984 Gram positive Moderate Bacillus amyloliquefaciens 

RRB985 Gram positive Moderate Bacillus subtilis 

RRB1042 Gram positive Moderate Bacillus sp. 

(amyloliquefaciens) 

RRB1043 Gram positive Strong Bacillus subtilis 

RRB1044 Gram negative Strong Pseudomonas spp. 

(plecoglossicida) 

RRB1045 Gram positive Strong Paenibacillus sp. (alvei) 

RRB1046 Gram negative Strong Pseudomonas putida 

RRB1047 Gram negative Strong Pseudomonas sp. (Putida) 

 

3.3.3 Greenhouse tests 

 

In the greenhouse condition, all of the isolated RRBs suppressed the bacterial 

panicle blight in rice significantly. Some of the bacterial strains such as RRB983, 

RRB985 and RRB1047 reduced the disease rate up to 50 % as compare to the non-

inoculated (Figure 3.4.). However, the disease suppression was not significant between 

RRBs.  
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Figure 3.4. Rice rhizospheric bacteria suppressed bacterial panicle blight disease of rice 

in the greenhouse condition. Data were analyzed by using of Tukey’s honest significant 

difference (HSD) test at P value 0.05. Means with the same letter are not significantly 

different. 

3.3.4 Field test 

 

RRBs showing disease suppression in the greenhouse also suppressed the panicle 

blight disease in the field. RRB1045, which was combined with other known suppressive 

bacteria and elicitors for the field treatment had a promising effect on the reduction of 

bacterial panicle blight in rice. RRB1045 in combination with ascorbic acid (AA) with 

the rate of 100 µM and Rice Associated Bacterium (RAB9, a bacterium isolated from rice 

plant, which was previously identified as an antagonistic bacterium against B. glumae in 

our laboratory) reduced the disease symptoms in rice panicles in comparison with the 

disease symptoms observed in the plants treated with only RRB1045 (Figure 3.5). 

Treatment of RRB1045 combined with AA (100 µM) suppressed the disease 

development better than the treatment of RRB1045 alone. But treatment of AA only 
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showed a similar level of disease suppression to the combined treatment of RRB1045 and 

AA, suggesting that RRB1045 does not add much to the disease suppression activity of 

AA (Figure 3.5). The combined treatment of RAB9 and RAB 6 (both bacteria were 

isolated from rice plants and were previously identified as antagonistic bacteria against B. 

glumae in our laboratory) did not show significant difference from individual treatments 

of RAB6 and RAB9 alone (Figure 3.5). As a whole in the field condition, RRB1044 

showed highest disease suppression activity for rice bacterial panicle blight. 

 

Figure 3.5. Suppression of bacterial panicle blight by rice rhizospheric bacteria in the 

field condition. Here, Ascorbic Acid (AA) was treated with 100 µM concentration and in 

co-treatment it was mixed with the respective bacterium culture and sprayed to the 

panicles of rice. Data were analyzed by using of Tukey’s honest significant difference 

(HSD) test at P value 0.05. Means with the same letter are not significantly different. 
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3.4 Discussion 

 

The interest in biological control of major crop diseases is increasing in 

agricultural enterprises as an alternative to chemical controls (Whipps, 2001). Research 

on biological control of rice pathogens started in the1980s with the identification, 

evaluation, and formulation of potentially important biological agents (Gnanamanickam, 

2002). Among different biological agents, bacteria are considered as the best option 

because of their rapid growth, easy handling and good host-colonizing ability. 

In most of the biological control strategies for crop diseases, bacterial antagonists 

Bacillus and Pseudomonas were considered as effective biocontrol agents for rice disease 

management (Desai et al., 2002). Bacilli are heat and desiccation tolerant, which is an 

important feature for useful biological agents to survive well in field conditions 

(Hokkanen et al., 2003). Similarly, pseudomonads are gram-negative bacteria having the 

ability to survive in low nutritional conditions and have excellent colonizing ability 

(Hokkanen et al., 2003). In our laboratory, Rice-associated bacteria showing antagonism 

against bacterial panicle blight and sheath blight have previously isolated and identified. 

Those bacteria belonged to the Bacillus group (Shrestha and Ham, unpublished). In this 

study, pseudomonads were isolated in addition to strains of Bacillus spp. as antagonistic 

bacteria from the rice rhizosphere. Those pseudomonads showed very distinct B. glumae 

growth inhibition zones in in vitro assay and significant suppression of panicle blight 

disease in greenhouse and field experiments. 

In most cases, naturally occurring biological control in a field crop is likely to be 

the result of the interaction of multiple antagonists rather than from higher populations of 

a single antagonist (Raupach and Kloepper, 1998). In most of the investigations 
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conducted so far, mixtures of multiple biocontrol agents mimics natural system and 

enhanced the efficacy and reliability of disease control (Duffy and Weller, 1995) by 

allowing the combination of various mechanisms (Janisiewicz, 1988). In the field 

experiment conducted in this study, one of the treatments was the combination of 

RRB1045 and RAB9 to determine the effect of interaction on the disease suppression. In 

addition to that RAB9 and RAB6 were also combined and treated to the rice plants. 

Interestingly, it was observed that bacterial panicle blight was not significantly reduced in 

the rice plants treated with the combination of the antagonists in comparison to the 

treatments done singly (Figure 3.5). 

Ascorbic acid (AA) is an important antioxidant and cellular reductant molecule, 

which is required for essential metabolic functions in animals and plants (Khan et al., 

2011). In the plant, AA acts as immune-modulator and when it is applied in an 

appropriate concentration at the proper stage of plant development; many diseases are 

suppressed (Khan et al., 2011). It was hypothesized that the disease suppression would be 

higher in the plants treated with the combination of antagonists and AA than in the plants 

treated with an antagonist or AA alone. The result in this study suggests that the efficacy 

of disease suppression caused by antagonistic bacteria was enhanced by adding AA 

(Figure 3.5). However, the disease suppression was similar to the treatment of AA only. 

So, the effect of AA and antagonistic bacteria in the disease suppression was found to be 

independent. 

It is very important to understand the mechanism of disease suppression for the 

successful application of biocontrol agents in disease management strategies. In this 

study bacteria belonging to genus Bacillus, Pseudomonas and Paenibacillus were 
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identified as potential source of biocontrol agents for management of bacterial panicle 

blight of rice. In addition, AA suppressed bacterial panicle blight as previously observed 

(Shrestha and Ham, unpublished). In future the selected antagonistic bacterial strains 

showing the strong antimicrobial activities can be used in genetic studies to identify the 

chemical compounds and bacterial gene responsible for their regulation. It is also the 

possible that the compound identified from those bacterial strains may have high 

commercial value for the crop disease management. 
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CHAPTER 4. CONCLUSIONS 

 

Many research projects are being conducted to find out different management 

aspects to control bacterial panicle blight disease in rice. Chemical companies are seeking 

effective chemical formulations to control this disease in the field. However, no effective 

management practice has been identified for this disease. Molecular studies of the causal 

organism are very important to understand mechanisms related to the pathogenicity and 

virulence activities and to develop effective disease management tools. Similarly, 

physiological and genetic study of a causal organism will be helpful to make a foundation 

for the disease management.  

Quorum sensing (QS) system, which is mediated by lux type tofI and tofR genes 

in B. glumae, is known to regulate its major virulence factors. However, most of the 

important virulence mechanisms, host resistance mechanism, and epidemiology of this 

pathogen are not well understood. Study on the negative regulatory systems of plant 

pathogenic bacteria will be a new kind of study even though it is not new for the animal 

pathogenic bacteria. In this study, tepR was identified as a negative regulator of major 

virulence factors in B. glumae, and it was characterized and confirmed through genetic 

approach and phenotypic observation. This study will be foundation for functional study 

of negative regulatory genes of B. glumae and other species of Burkholderia. For the 

management of disease in rice caused by this bacterium, different approaches such as 

development of the disease resistant varieties, chemical trials are being on study but 

effective management option is not identified yet. So, identification of rice rhizospheric 

bacteria having potential biocontrol ability to manage the bacterial panicle blight may be 

the good contribution from this thesis research for disease management. 
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In this study, we identified that the LuxO homolog, TepR, negatively regulates 

the production of the major phytotoxin of B. glumae, toxoflavin. The ΔtepR derivative of 

B. glumae 336gr-1 produced more toxoflavin than its parental strain and showed higher 

lipase and protease activities, indicating negative regulatory function of tepR on these 

phenotypes. However, the mutant did not produce any flagellar motility on the soft agar 

medium plate nor showed any flagellar structure under Transmission Electron 

Microscopy (TEM). Thus, tepR positively regulates the genes responsible for the flagella 

formation and flagellum-mediated motility in B. glumae. 

Although the mechanism of TepR function still remains to be studied more, it 

may be possible that this gene regulates the virulence factors of B. glumae in the same 

way as LuxO proteins doe for bioluminescence and virulence in Vibrio spp. Since 

phosphorylated LuxO activates small RNAs (sRNAs) in Vibrio spp. and these sRNAs are 

responsible for repressing some important virulence gene expression, similar type of 

mechanism may exist in B. glumae. In-depth study of the TepR activities from 

phosphorylation to the production of sRNAs will be very important to understand the 

mechanism of its regulatory functions on different virulence factors. Since the tepR 

deletion mutant in our study did not show any AHL production, the tepR gene may also 

be related to the signal production and transduction system for the quorum sensing of B. 

glumae. AHL is known to be the major signaling factor of B. glumae for the production 

and transportation of toxoflavin. The result from this study suggests the presence of an 

unknown regulatory mechanism for toxoflavin production because the tepR deletion 

mutant produced more toxoflavin even if it does not produce AHL molecules. So, this 

result warrants a future study about the functional relationship of tepR with the quorum-
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sensing gene, tofI, responsible for AHL molecule synthesis. It would be also useful to see 

the relationship between tepR and other known regulatory genes for bacterial virulence. 

The phenotypic characterization of a tepR deletion mutant performed in this study will be 

the foundation for the future studies of the regulatory network for the virulence of B. 

glumae. 

Study on biological control agents for the management of bacterial panicle blight 

of rice is very important part of this thesis research. Adverse effects of agrochemicals can 

be minimized through the promotion of biological control methods for the crop disease 

management. In this study, different types of bacteria were isolated from the rice 

rhizospheric region and selected based on antagonistic characteristics against B. glumae. 

It is obvious that those bacteria are potential biocontrol agents to manage bacterial 

panicle blight and there is possibility that those bacteria may also have antagonistic 

activities against other plant pathogenic microbes (i.e. fungi and bacteria). So those 

bacteria can be a source of potential biocontrol agents for the management of other crop 

diseases. Future studies with the antagonistic bacteria may include identification of the 

genetic or chemical elements responsible for the antagonism to pathogenic microbes. 

Besides the disease suppression, those bacteria may be used to enhance the crop 

production because they might have some plant growth promoting ability. 

In this way, better understanding of the virulence related genetic study of the rice 

pathogenic bacterium B. glumae and study of the potential biocontrol agents for 

controlling bacterial panicle blight disease of rice can help to develop effective disease 

management strategies for bacterial panicle blight. 
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APPENDIX A. RNA EXTRACTION FOR REVERSE TRANSCRIPTION (RT) 

PCR 

 

The bacterial cultures were prepared by growing at 370C overnight. 1 ml of each 

bacterial culture was washed down by LB broth and resuspended in the equal volume of 

LB broth. About 10 µl of the suspension was inoculated in 10 ml of LB broth and 

incubated at 37°C. One ml of bacterial culture have optical density 1 at OD600 was 

centrifuged to make pellet and then it was frozen in liquid nitrogen for 5-10 s. The 

bacterial pellet was resuspended in an equal volume of TRIzol® Reagent (Invitrogen) 

and then, incubated in room temperature for 5 minutes. About 200 µl of chloroform was 

added to the mixture and allowed to incubate in room temperature for 3 minutes after 

thoroughly vortexing for 15 seconds. Then the phases were separated by centrifugation at 

a full speed for 15 minutes at 4°C. Then the upper aqueous layer was transferred to a 

fresh tube and incubated at the room temperature for 5 minutes after adding 500 µl of 

isopropanol. Then, the mixture was centrifuged at 4°C in full speed for 10 minutes. The 

supernatant was carefully removed and the RNA pellet was washed with 75% ethanol. 

The RNA pellet was dried and then the pellet was resuspended in 22 µl of RNase free 

water. 

To remove residual DNA, DNA-free™ DNase Treatment and Removal Reagents 

(Ambion®) was used. To the RNA samples, 5 µl 10X DNase I Buffer and 1 µl DNase I 

was added and then the mixture was centrifuged shortly before incubating at 370C for 

about 20 min. Then 5µl inactivation reagent was added to the reaction mixture and then 

incubated at room temperature for 2 min. After that, the total RNA samples were spun 

down through centrifugation. The supernatant from the centrifugation contained total 

RNA, which was stored at -80°C. Removal of DNA was verified by PCR by using for the 
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rDNA spacer regions with specific primers of B. glumae (Takeuchi et al., 1997). For RT-

PCR, cDNA, was generated by using a ProtoScript® First Strand cDNA Synthesis Kit 

(New England Biolabs, Ipswich, MA, USA). 
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APPENDIX B. 16S DNA SEQUENCES OF ANTAGONISTIC BACTERIA 

 

>Consensus: RRB_982-fD1.ab1, RRB_982-rD1.ab1 

CCAGATTCCTTACGGGAAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAA

GTCTGACGGAGCAACGCCCGCGTGATGATGAAGGTTTTTCGGATCGCCAAGC

TCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGCTTGGCTCTTGATCCG

GTACCTAACCAAAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATAC

GTAGGTGGCAAGCGTTGTCCGTAATTATTGGGCGTAAAGGGCTCGCAGGGCG

GTATTCTTAAGTATGATGTGAAAGCCCCCCGGTTCAACCCGGGGATGGGTCA

TGTAAATTGGGGGGGATCTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGT

AGCGGTGAAATGCGTAGAGATGTGGAGGAACACCCGTGGCGAAGTTGCGAC

TCTCTGGTCTGTAACTGACGCTGAGGAGCTGAAAGCGTGGTGAGCGATACAG

GATTAGATCCCTGGTAGTCCACGCCGTACACGACTGAGTGCTAAGTGTTAGG

CGGTTTCCGCACCTTAGTGCTGCATGTCTAACGCATTGAAGCACTCCGCCTGG

GGAGTACGGTCGCAAGATTGAAACTCAAAGGAATTGGCGGGGGCCCGCACA

AGCGGTGGAGCATGAGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGT

CGTGACATCCTCGACAATCCTAGAGATACGGACGTCCCCTTCCGGGGGCAGA

GTGACAGTTGGTGCATGGTTGTCGTCAGCTCGTGTAGTGAGATGTTGGGTAA

GTCCCGCAACGAGCGCAACCCTTGATAGTGCCAGCATTCGGCACAAGGTGAC

TGCCGGTCAAACCGGAGGAAGGTGGGGATGACGTCATCATCATGCCCCTTAT

GACCTGG 

 

>Consensus: RRB_983-fD1.ab1, RRB_983-rD1.ab1 

TGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACG

GGTGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAA

CCGGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGG

TGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTTGGTGAGG

TAACGGCTCACCAAGGCGACGATGGTAGCCGACCTGAGAGGGTGATCGGCC

ACACTGGTGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGG

AATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGA

AGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAA

ATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTG

CCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGC

GTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCA

ACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGT

GGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTG

GCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGG

AGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTA

AGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAACACTCCG

CCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCC

GCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTAC

CAGGTCTTGACATCCTCTGACTAATCCTAGAGATAGGACGTCCCCTTCGGGGG

CAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGG

GTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTG

GGCACTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACG

TCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGACA
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GAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCT

CAGTTCGGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTA

ATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCG

CCCGTCACACCACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTA

GGAGCCAGCCGCCGAAGG 

 

>Consensus: RRB_984-fD1.ab1, RRB_984-rD1.ab1 

CAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGG

TGAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACC

GGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTG

GCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAG

GTAACGGCTCACCAAGGCGACGATGCGTACCGACCTGAGAGGGTGATCGGCC

ACACTGGGACTGAACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAA

TCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAG

GTTTTNGGATGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATA

GGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCA

GCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTA

AAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACC

GGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGA

ATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCG

AAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGC

GAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGT

GTTAGGGGGTTTCCGCCCCTTATGCTGCAGCTAACGCATTAAGCACTCCGCCT

GGGGAGTACGGTCGCAAGACTGAAACTCAAGGAATTGACGGGGGCCCGCAC

AAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGG

TCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGGGGCAGA

GTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAA

GTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGTTGGGCA

CTCTAAGGTGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAA

ATCATCATGCCCCTTATGCTGGGCTACACACGTGCTACAATGGACAGAACAA

AGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTTCTCAGTTC

GGATCGCAGTCTGCAACTCGACTGCGTGAAGCTGGAATCGCTAGTAATCGCG

GATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC

ACACACGAGAGTTTGTAACACCCGAAGTCGGTGAGGTAACCTTTATGGAGCC

AGCCGCCGAAGGGGGACAGATGATTGGG 

 

>Consensus: RRB_985-fD1.ab1, RRB_985-rD1.ab1 

TTGTTAGGGAAGACAAGTGCCGTTCAAATAGGGGCACCTTGACGGTACCTAA

CCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGG

CAAGCGTTGCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAG

TCTGATGTGAAAGCCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGA

ACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGT

AGAATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGAC

GCTGACGGAGCGAAAGCGTGGGGATGCGGACAGGATTAGATACCCTGGTAG

TCCACGCCGTAAACCGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGT

GCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGACTG
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AAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA

ATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGACAATCC

TAGAGATAGGACGTCCCCTTCGGGGGCAGAGTGACAGGTGGTGCATGGTTGT

CGAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTT

GATCTTAGTTGCCAGCATTCAGTTGGGCACTCTAAGGTGACTGCCGGTGACA

AACCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGACCTGG

GCTACACACGTGCTACAATGGACAGAACAAAGGGCAGCGAAACCGCGAGGT

TAAGCCAATCCCACAAATCTGTTCTCAGTTCGGATCGCAGTCTGCAACTCGAC

TGCGTGAAGCT 

 

>Consensus: RRB_1042-fD1.ab1, RRB_1042-rD1.ab1 

GGCATGAACCAGATCTGGAAGGAGCATCCGCCGCGTGAGAGTGATGACAGG

TTTTTAGGATCGTAAAAGTCTCTGGAGTATCGCCAGGGAAGTCGTCTAGGAT

GGAGTACTGCTCTTAAGGTTGACGTCACCTGGGAAGAAAGCCCCGGCTAACT

ACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCGAGCGTTGTCCGGAATTAT

TGGGCGTAAAGCGCGCGCAGGCGGCAATGTAAGTTGGGTGTTTAAACCTAGG

GCTCAACCTTGGGTCGCATCCAAAAACTGCATAGCTTGAGTACAGAAGAGGA

AAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACC

AGTGGCGAAGGCGACTTTCTGGGCTGTAACTGACGCTGAGGCGCGAAAGCGT

GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCTGTAAACGACTGA

ATGCTAGGTGTTAGGGGTTTCGATACCCCTTGGTGCCGAAGTTAACACATTAA

GCATTCCGCCTGGGGAGTACGGTC 

 

>Consensus: RRB_1043-fD1.ab1, RRB_1043-rD1.ab1 

AAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGT

GAGTAACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCG

GGGCTAATACCGGATCTGTTTGAACCGCATGGTTCAAACATAAAAGGTGGCT

TCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTA

ATGGCTCACCAAGGCAACGATGCGTTAGCCGACCTTGAGAGGGTGATCGGCC

CACACTGGGACTGAGACCACGGCCCAGACTCCTACGGGAGGCAGCAGTAGG

GAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATG

AAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTACCGTTCG

AATAGGGCGGTACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGT

GCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGG

CGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCCGGCT

CAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGA

GTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAG

TGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGG

GGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGC

TAAGTGTTAGGGGGTTTCCGCCCCTTAGGCTGCAGCTAACGACATTAAGCACT

CCGCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGG

CCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCT

TACCAGGTCTTGACATCCTCTGACAATCCTAGAGATAGGACGTCCCCTTCGGG

GGCAGAGTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTT

GGGTTAAGTCCCGCAACGAGCGCAACCCTTGATCTTAGTTGCCAGCATTCAGT

TGGGCACTCTAAGGTGCTGCCGGTGACAAACCGGAGGAAGGTGGGGATGAC
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GTCAAATCATCATGCCCCTTATGACCTGGGCTACACACGTGCTACAATGGAC

AGAACAAAGGGCAGCGAAACCGCGAGGTTAAGCCAATCCCACAAATCTGTT

CTCAGTTCGGATCGCA 

 

>Consensus: RRB_1044-fD1.ab1, RRB_1044-rD1.ab1 

AGTGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGT

GTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGTTGT

AGATTAATACTCTGCAATTTTGACGTTACCGACAGAATAAGCACCGGCTAAC

TCTGTGCCAGCAGCCGCGGTAATACAGAGGGGTGCAAGCGTTAATCGGAATT

ACTGGGCGTAAAGCGCGCGTAGGTGGTTTGTTAAGTTGGATGTGAAAGCCCC

GGGCTCAACCTGGGAACTGCATCCAAAACTGGCAAGCTAGAGTACGGTAGAG

GGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAAC

ACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAAA

GCGTGGGGAGCAAACAAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGA

TGTCACTACCGTTGGAATCCTTGAGATTTTAGTGGCGCAGCTAACGCATTAAG

TTGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATAATTGACGGG

GGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAACAACGCGAAGAACC

TTACCAGGCCTTGACATGCAGAGAACTTTCTAGAGATGGATTGGTGCCTTCGG

GAACTCTGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTT

GGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTAT

GGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGAT

GACGTCAAGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTACAATG

GTCGGTACAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAATCTCACAAAACCG

ATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAC 

 

>Consensus: RRB_1045-fD1.ab1, RRB_1045-rD1.ab1 

CGGACCGCGGACGCCAATAAGGCACGGGGCGCAGCTCCACCGGGCGGGCGA

GGCACTCTCACGCCGCAGAGCCAGATCCGGTAGCGTATCCTCCGCTCGCAAG

ATCCTCCATAACTATGAATACGCACTACTGGCCCTCTAGCGCTCGGTGCTCAA

CTGACTTCGGCTTTTTAGATTTGGCTCCCTCGATTTCTCTTTCCTTCTACTTCCA

TTGTATTACGCGTGTTGACTTAGTCATTAGGCGCGTGCTGATTTGACCTCAGC

CACCGTCCTCCCATTTAGCTCCGGCTGCTTTCTATAGTGACAATGCACGGCTT

CTACCTTTTCGGTGTGCGCTCCTTACCTGACTTGCCATCATCTTGCGACATCTC

CCTGATCAGAATCCCCCTTCTCTGCATTGAATGTCGCATGATATGTCCATCTC

CTTCAATGTCACTGTTCTGGATCTTCGCGTTGCTTGTTTCATTCTCTGCTTGAG

CGGGTCCCCGTCACTCCATTGAGTCGGTCTTGCAACCGTACTCCCCAGGCGGA

ATGCTTAATGTGTTAACTTCCGCACCAAGGGTATCGAAACCCCTAACACCTAG

CATTCGTTTACGGCGTGGACTACCAGGGTATTTCCTGTTTGCTCCCCACCCTTT

CGCGCCTCACCGTCAGTACAACCCAGAAGTCACCTTCCCCGGTGTTCCTCTCT

ACTCTTTTTACCCCTCCCCTCACTTTCCTTTTTTTTTCCGCTTTGTTTTTTTTACT

TGACTTTTAACTCCCTTACATTTTTTTTTGTCCTTTTTTCTCTCCTATTTCAAAA

ACAT 

 

 

 

>Consensus: RRB_1046-fD1.ab1, RRB_1046-rD1.ab1 
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CAAGTCGAGCGGATGACGGGAGCTTGCTCCTTGATTCAGCGGCGGACGGGTG

AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGGAAC

GCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGC

GCTATCAGATGAGCCTAGGTCGGATTAGCTAGTAGGTGAGGTAATGGCTCAC

CTAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACT

GAGACACGGTTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACA

ATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGA

TTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGCTAATACCTTGCTGT

TTTGACGTTACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCG

GTAATACAGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCG

TAGGTGGTTCGTTAAGTTGGATGTGAAAGCCCCGGGCTCAACCTGGGAACTG

CATCCAAAACTGGCGAGCTAGAGTATGGTAGAGGGTGGTGGAATTTCCTGTG

TAGCGGTGAAATGCGTAGATATAGGAAGGAACACCAGTGGCGAAGGCGACC

ACCTGGACTGATACTGACACTGAGGTGCGAAAGCGTGGGGAGCAAACAGGA

TTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCTTGGAATCC

TTGAGATTTTAGTGGCGCACTAACGCATTAAGTTGACCGCCTGGGGAGTACG

GCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGG

AGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACAT

GCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCTGACACAGGT

GCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGTAA

CGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTTATGGTGGGCACTCTAAGG

AGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCAT

GGCCCTTACGGCCTGGGCTACACACGTGCTACAATGGTCGGTACAGAGGGTT

GCCAAGCCGCGAGGTGGAGCTAATCTCACAAAACCGATCGTAGTCCGGATCG

CAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCAAATCAG

AATGTTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCAT

GGGAGTGGGTTGCACCAGAAGTAGCTAGTCTAACCTTCGGGGGGACGGTTAC

CACGGTGTGATTCATGAC 

 

>Consensus: RRB_1047-fD1.ab1, RRB_1047-rD1.ab1 

CAAGTCGAGCGGATGACGGGAGCTTGCTCCTTGATTCAGCGGCGGACGGGTG

AGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAACGTTTCGAAAGGAAC

GCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGC

GCTATCAGATGAGCCTAGGTCGGATTAGCTAGTAGGTGAGGTTAATGGCTCG

ACCTAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGAGA

ACTGAGACACGGTCTCAGACTCCTACTGGAGGCAGCAGTGGGGAATATTGGA

CAATGGAGCGAAAGCCTGATCCAGCCATGAACCGCGTGGTGACACGTAAGGT

CTTCGGCAATTGTAAACGCACTTTAAGTTGGGAGGAAGGGCAGTAAGCTAAT

ACCTTGCTGTTTGATGGACGTTACCGACAGAATAACTTACCGGCTAACTCTGT

GCCAGCAGCCGCGGTAACTTTCCACAGATGGGTTGCAAGCGTTAATCGGGAA

TTACTGGGCGTAAAGCGCGCTGTAGGCTGGTTCGTCAAGTTGTGATCGTGAG

AAGCCCCGGGCTAACCTGGGAACTGCATCGCAACCCTGGCGTCCTAGAGTAT

GGTAGCACGTGGTGGTGGGCATTTCTTTGGTGGCTGTCGGTGACCCACCGGA

GGAAGGTGGGGATGAGGTCAAGTCATCATGGCCCCCTCGGCCTGGGCTACAC

ACGTGCTCCAATGGTCGGTCCAGAGGGTTGCCAAGCCGCGAGGTGGAGCTAC

TCTCATCAAACCGCTCAGTAGTCACGGATCGCGTAAGCAACTGGCCTCGCCC
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GCGGTCGGAATCGCTAGTAATTTTCAAATCAGAATGTCTGCTTGGTGAACTAC

GTCTCTCC 
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APPENDIX C. SOME OF THE BACTERIA SHOWING ANTAGONISTIC 

ACTIVITY AGAINST B. GLUMAE SHOWED ANTAGONISM AGAINST RICE 

SHEATH BLIGHT CAUSING FUNGI RHIZOCTONIA SOLANI IN 

LABORATORY CONDITIONS. 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Control RRB982 RRB983 

RRB984 RRB985 RRB1044 

Figure. Rice rhizospheric bacteria showing antagonistic characteristics against 

Rhizoctonia solani in laboratory condition. RRB982, RRB983, RRB984, RRB985 and 

RRB1044 exhibited the inhibition zone in PDA plates when grew with R. solani. 
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APPENDIX D. RELATIVE VALUE OF TOXOFLAVIN PRODUCTION  

 

 

Strains 
OD260  Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 0.212 0.213 0.312 0.246 0.0574 

LSUPB401 0.538 0.602 0.550 0.563 0.0340 

LSUPB401 

(pBB5-tepR) 0.237 0.240 0.301 0.259 0.0361 

 LB broth 0.001 0.000 0.000 0.000 0.0006 

 

 

 

Strains 
OD260  Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 0.630 0.640 0.570 0.613 0.0379 

LSUPB401 0.847 0.923 0.863 0.878 0.0401 

LSUPB401 

(pBB5-tepR) 0.691 0.708 0.667 0.689 0.0206 

 LB broth 0.000 0.000 0.000 0.000 0.0000 

 

 

 

 

Strains 

OD260 Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 0.431 0.45 0.393 0.425 0.0290 

LSUPB401 0.864 0.852 0.762 0.826 0.0557 

LSUPB401 

(pBB5-tepR) 0.451 0.400 0.436 0.429 0.0262 

LB broth 0.001 0.000 0.001 0.001 0.0006 
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APPENDIX E. RELATIVE VALUE OF LIPASE ACTIVITIES  

 

 

Strains 
OD410 Standard 

deviation Rep I Rep II Rep III Average  

336gr-1 0.450 0.470 0.500 0.473 0.0252 

LSUPB401 0.980 0.900 0.950 0.943 0.0404 

LSUPB401 

(pBB5-tepR) 
0.510 0.470 0.440 0.473 

0.0351 

LB broth 0.000 0.000 0.001 0.000 0.0006 

 

 

Strains 
OD410 (Undiluted) Standard 

deviation Rep I Rep II Rep III Average  

336gr-1 0.655 0.650 0.651 0.652 0.0026 

LSUPB401 1.900 1.800 1.910 1.870 0.0608 

LSUPB401 

(pBB5-tepR) 
0.651 0.660 0.680 0.664 

0.0148 

LB broth 0.001 0.000 0.002 0.001 0.0010 
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APPENDIX F. MACERATION AREA ON ONION SCALES 

 

Strains 

Maceration area (mm2) Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 91.85 105.98 60.45 86.09 23.30 

LSUPB401 197.82 129.53 87.92 138.42 55.49 

LSUPB401 

(pBB5-tepR) 84.78 117.75 75.36 92.63 22.26 

Control 0.00 0.00 0.00 0.00 0.00 

 

 

Strains 

Maceration area (mm2) Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 54.95 42.39 54.95 50.76 7.25 

LSUPB401 75.36 138.16 117.75 110.42 32.03 

LSUPB401 

(pBB5-tepR) 60.45 60.45 65.94 62.28 3.17 

Control 0.00 0.00 0.00 0.00 0.00 
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APPENDIX G. VIRULENCE ASSAY IN RICE IN GREENHOUSE 

 

Strains 
Disease score (0-9) Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 5.7 6.0 6.7 6.1 0.51 

LSUPB401 9.0 8.7 9.0 8.9 0.19 

LSUPB401 

(pBB5-tepR) 
7.0 6.7 7.3 7.0 0.33 

Control 0.0 0.0 0.0 0.0 0.00 

 

 

 

 

 

Strains 
Disease score (0-9) Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 6.3 6.0 7.3 6.6 0.69 

LSUPB401 8.3 8.3 8.7 8.4 0.19 

LSUPB401 

(pBB5-tepR) 
6.7 6.0 7.0 6.6 0.51 

Control 0.0 0.0 0.0 0.0 0.00 

 

 

 

 

 

Strains 
Disease score (0-9) Standard 

deviation Rep I Rep II Rep III Average 

336gr-1 3.71 4.00 3.50 3.74 0.25 

LSUPB401 6.33 5.33 4.67 5.44 0.84 

LSUPB401 

(pBB5-tepR) 
4.50 3.83 3.75 4.03 0.41 

Control 0.00 0.00 0.00 0.00 0.00 
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APPENDIX H. HOMOLOGY OF TEPR AND LUXO 

 

 

 
 

 

11/18/13 Alignment < EMBOSS Needle < EMBL-EBI

www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobId=emboss_needle-I20131119-012116-0323-59791593-pg&context=protein 1/1

B.glumae           1 MPHALIVEDDPNSLSGLTALLAADGFTVDTATSLAEARAALARTIPDVVL     50

                          :|||..:..:...:.|...|..::...:..:|..:|...|||::|

Vibrio             1 -----MVEDTASVAALYRSYLTPLGIDINIVGTGRDAIESLNHRIPDLIL     45

B.glumae          51 VDLNLPDGSGFDLLQHLPQPQQPNGGLPVIVLTGNATVESAIEGLRYGIW    100

                     :||.|||.:|.|:| |..:...|:  :|:|.:|.:.::::|:|.:|:|..

Vibrio            46 LDLRLPDMTGMDVL-HAVKKSHPD--VPIIFMTAHGSIDTAVEAMRHGSQ     92

B.glumae         101 DYLLKPVNIPRLRSLLARIPRPYELIEEVQALRTTLRKLG--RFGPLIGR    148

                     |:|:||....|||..:      ...|.:...|:......|  .:...||.

Vibrio            93 DFLIKPCEADRLRVTV------NNAIRKATKLKNEADNPGNQNYQGFIGS    136

B.glumae         149 SNAVQHVYDMIERNARSEAAVLVWGEAGTGKETTARALHDLSRRRKGPFI    198

                     |..:|.||..|:..|.|:|::.:.||:|||||..|.|:|..|:|...|||

Vibrio           137 SQTMQQVYRTIDSAASSKASIFITGESGTGKEVCAEAIHAASKRGDKPFI    186

B.glumae         199 KFDCRAALQLPRVMELGNIVIESMLFGRERGSYGGAERREPGLFEQASGG    248

                     ..:|.|   :|:.:      |||.|||..:|::.||.....|..|.|.||

Vibrio           187 AINCAA---IPKDL------IESELFGHVKGAFTGAANDRQGAAELADGG    227

B.glumae         249 TLLLKDITALPLPIQESLLRALDSQSFRRIEGTTEVATDFRLI-ATSRRP    297

                     ||.|.::..:.|.:|..|||.:.:.:|:::..:...:.|.|.: ||:|.|

Vibrio           228 TLFLDELCEMDLDLQTKLLRFIQTGTFQKVGSSKMKSVDVRFVCATNRDP    277

B.glumae         298 SREALDHGTLREDLWMRLDAASIALPPLRARDDDMLQIAQAFVDDLNRQA    347

                     .:| :..|..||||:.||....:.|||||.|..|:::||.:.   |...:

Vibrio           278 WKE-VQEGRFREDLYYRLYVIPLHLPPLRERGKDVIEIAYSL---LGYMS    323

B.glumae         348 HDAGLGAVAKRIAPDFIRECLAYDWPGNVRELRDRVR------LAYEASG    391

                     |:.|...|  |.|.|.|....:|:||||||:|::.:|      ...|.:.

Vibrio           324 HEEGKSFV--RFAQDVIERFNSYEWPGNVRQLQNVLRNIVVLNNGKEITL    371

B.glumae         392 DFIES------LRANDGVFVPGAALSGSSVQVRVGTPLSDVEDLLIRATL    435

                     |.:..      :|.:...|:....::.|.:.     ||...|.:.|...:

Vibrio           372 DMLPPPLNQPVVRQSVAKFIEPDIMTVSDIM-----PLWMTEKMAIEQAI    416

B.glumae         436 DAVGGTRHRAAALLGISPKTLYNKLQRMKMN------    466

                     .|..|...|||..|.:||.|:|.|||.....      

Vibrio           417 QACEGNIPRAAGYLDVSPSTIYRKLQAWNSKDEKQNV    453

 

EMBOSS Needle

Tools > Pairwise Sequence Alignment > EMBOSS Needle

Results for job emboss_needle-I20130405-013800-0214-79047611-oy

########################################

# Program: needle

# Rundate: Fri  5 Apr 2013 01:38:01

# Commandline: needle

#    -auto

#    -stdout

#    -asequence emboss_needle-I20130405-013800-0214-79047611-oy.asequence

#    -bsequence emboss_needle-I20130405-013800-0214-79047611-oy.bsequence

#    -datafile EBLOSUM62

#    -gapopen 10.0

#    -gapextend 0.5

#    -endopen 10.0

#    -endextend 0.5

#    -aformat3 pair

#    -sprotein1

#    -sprotein2

# Align_format: pair

# Report_file: stdout

########################################

#=======================================

#

# Aligned_sequences: 2

# 1: B.glumae

# 2: V.

# Matrix: EBLOSUM62

# Gap_penalty: 10.0

# Extend_penalty: 0.5

#

# Length: 487

# Identity:     151/487 (31.0%)

# Similarity:   242/487 (49.7%)

# Gaps:          55/487 (11.3%)

# Score: 581.5

# 

#

#=======================================

Alignment Submission Details

View Alignment File

Cookies  on  EMBL-EBI  website

This  website  uses  cookies  to  store  a  small  amount  of  information  on  your  computer,  as  part  of  the

functioning  of  the  site.  Cookies  used  for  the  operation  of  the  site  have  already  been  set.

To  find  out  more  about  the  cookies  we  use  and  how  to  delete  them,  see  our  Cookie  and  Privacy

statements.

Dismiss  this  notice

B. glumae 

V. harveyi 
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