
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2016

Identification of Genes Associated with Resistance
to Brown Rust in Sugarcane and Prevalence of One
Major Gene
Mavir Carolina Avellaneda Barbosa
Louisiana State University and Agricultural and Mechanical College, mcavellaneda@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Plant Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Avellaneda Barbosa, Mavir Carolina, "Identification of Genes Associated with Resistance to Brown Rust in Sugarcane and Prevalence
of One Major Gene" (2016). LSU Doctoral Dissertations. 3645.
https://digitalcommons.lsu.edu/gradschool_dissertations/3645

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/3645?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


IDENTIFICATION OF GENES ASSOCIATED WITH RESISTANCE TO 

BROWN RUST IN SUGARCANE AND PREVALENCE OF ONE  

MAJOR GENE 
 

 

 

 

 

 

 

 

 

 

 

 

 

A Dissertation 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

 

in 

 

The Department of Plant Pathology and Crop Physiology 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Mavir Carolina Avellaneda Barbosa 

B.S. Pontificia Universidad Javeriana, 2002 

M.S. Louisiana State University, 2014 

May 2016 



  

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my beloved son Nicolás. 

 

 

 

 

 

 

 

 

 

 

 

 



  

iii 
 

ACKNOWLEDGMENTS  

Thanks to God for granting me so many blessings and giving me the health, strength and 

discernment to pursue a research career.  

I would like to sincerely and deeply thank Dr. Jeff Hoy for giving me the opportunity of 

pursuing graduate studies and accepting me as his student. His knowledge, guidance, supports 

and patience through the research project and course work has been fundamental for their 

completion. I would like to extend my gratitude to the members of my committee, Dr. Niranjan 

Baisakh, Dr. Lawrence Datnoff and Dr. Thomas Reagan. Their knowledge and advice have been 

very important for the success of the project. Without the economic support of the Louisiana 

State University Agricultural Center and the American Sugar Cane League, it never would have 

been possible to earn my degree.  

I want to extend my gratitude to Carolyn Savario from the Sugarcane Lab for the support 

and friendship, Nathaniel Fickett who helped me with the WCSRG information, to my office 

mates from the Sugarcane Genetics Lab, especially to Andrés Felipe Gutiérrez for his companion 

during the MS and PhD process where we shared unforgettable moments for more than five 

years. Thank you, Andrés for always being there and bearing with my mood swings.  

I must thank Dr. Chris Clark for being supportive and teaching me the basics of plant 

pathology. I need to thank my mentor, Dr. Jorge I. Victoria, who left a deep impression in my 

scientific career to follow in his footsteps by encouraging me to enjoy sugarcane pathology. I am 

thankful to all my roommates during the last five years: Dr. Tran Tran, Mrs. Deboráh Xavier-

Mis, Maryam Shahrtash, Kimberly Avellaneda, Cecilia Freitas, Rachel Sabat and Alejandra 

Jiménez who always found time to listen to me, hug me, and encourage me to follow my goals.  



  

iv 

 

Also, thanks to my brother-in-law, Luis Alfaro, and friends, Dr. Sandra Galeano and 

Renesh Bedre, for the best coffee chats and memories in Baton Rouge. I would like to thank my 

friends that shared with me unforgettable moments but now are not near to me, Dr. Dina 

Gutiérrez, Dr. Margie Sánchez, Dr. Yamid Sanabria, Dr. Eduardo Sánchez and especially to my 

best friend Dr. Maria del Rocio Vega who despite the distance never let me lose my way, calmed 

my fears with a skype call, and had the time to answer a text immediately when I was in my 

worst moments. Thanks also to the Hoy’s family for the hospitality and delicious Thanksgiving 

dinners that made me feel at home being away from my home. Thanks to fellow graduate 

students of the Plant Pathology and Crop Physiology Department and the friends from Zamorano 

Agricultural Society. To my friends from the Catholic Youth Pastoral Group from Christ the 

King: Jenny Moore, Alejandra Miranda, Erika Romero, Ghedy Matus, Mónica Tobón, Juan 

Rodríguez, César Escalante, Dr. Franklin Vacca, Carlos Escamilla, Ludwing Piña, Bro. César 

Muñoz, Bro. Renzo Alvarado, Fr. Eliécer Montañez Grimaldos M.C.M and auntie Rita Rangel - 

Thanks for your unconditional friendship, support and for being the best cheerleaders group.  

I want to thank my entire “Barbosa family” for supporting me. I need to deeply thank my 

parents, Yolanda Barbosa and Silvio Avellaneda, who care for and educate my son Nicolás. 

Without their inexhaustible love, unconditional support, and dedication, it would be impossible 

to achieve my dreams. Thanks for letting me fly. I especially want to thank my sister, Kimberly 

Avellaneda, for always having time for me and for caring for my son as her own child. To my 

brother Silvio Avellaneda, thanks for always believing in me and reminding me not to forget my 

goals. Finally, I want to thank the most important person in my life, my son, who despite the 

distance, with every word, every look, and every smile fills me with energy, encouragement and 

strength to move forward. Thanks Nicolás for being the engine and joy of my life.  



  

v 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................. iii 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

ABSTRACT ................................................................................................................................... ix 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

   1.1 OVERVIEW ........................................................................................................................... 1 

   1.2 SUGARCANE RESISTANCE TO BROWN RUST ............................................................. 4 

   1.3 SUGARCANE BROWN RUST MAPPING AND GENE EXPRESSION ........................... 6 

   1.4 REFERENCES CITED ........................................................................................................ 12 

CHAPTER 2: IDENTIFICATION OF GENES ASSOCIATED WITH RESISTANCE TO 

BROWN RUST IN SUGARCANE .............................................................................................. 18 

   2.1 INTRODUCTION ................................................................................................................ 18 

   2.2 MATERIALS AND METHODS .................................................................................................. 21 

2.2.1 Plant materials .............................................................................................................. 21 

2.2.2 Plant inoculation ........................................................................................................... 21 

2.2.3 Total RNA isolation...................................................................................................... 22 

2.2.4 SSH library construction .............................................................................................. 22 

2.2.5 Sequence processing and bioinformatics analysis ........................................................ 23 

2.2.6. Expression analysis by semiquantitative RT-PCR ...................................................... 24 

2.2.7 Mining of brown rust responsive ESTs for microsatellite markers .............................. 25 

   2.3 RESULTS ........................................................................................................................................ 25 

2.3.1 Identification of responsive genes in cultivar L 99-233 ............................................... 25 

2.3.2 Expression analysis of brown rust responsive genes .................................................... 30 

2.3.3 Simple sequence repeat (SSR) markers derived from brown rust responsive genes.... 33 

   2.4 DISCUSSION ...................................................................................................................... 34 

   2.5 REFERENCES CITED .................................................................................................................. 37 

CHAPTER 3: DISTRIBUTION AND PREVALENCE OF Bru1, A MAJOR BROWN RUST 

RESISTANCE GENE, IN THE SUGARCANE WORLD COLLECTION ................................ 42 

   3.1 INTRODUCTION ................................................................................................................ 42 

   3.2 MATERIALS AND METHODS ......................................................................................... 46 

3.2.1 Plant materials .............................................................................................................. 46 

3.2.2 Genomic DNA Isolation and PCR Genotyping ............................................................ 46 

3.3.3 Genotype identifications ............................................................................................... 47 

   3.3 RESULTS ............................................................................................................................. 47 

3.3.1 Classification of WCSRG Genotypes........................................................................... 47 

3.3.2 Detection of Bru1 in WCSRG ...................................................................................... 48 

3.3.3 Geographical Distribution of Bru1 in the World Collection of Sugarcane and     

Related Grasses...................................................................................................................... 51 



  

vi 
 

   3.4 DISCUSSION ...................................................................................................................... 54 

   3.5 REFERENCES CITED ........................................................................................................ 57 

CHAPTER 4: CONCLUSIONS ................................................................................................... 62 

VITA ............................................................................................................................................. 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

vii 
 

LIST OF TABLES 

Table 2.1 Sequences of primers used in reverse transcription PCR-mediated  

expression profiling………………………………………………………………….………...24 

 

Table 2.2 Sequence statistics of the cDNAs isolated from suppressive subtraction library  

of L 99-233 in response to infection by Puccinia melanocephala……………………………..26 

 

Table 3.1 Distribution and prevalence of Bru1 molecular markers in the World Collection  

of Sugarcane and Related Grasses………………………………………………………….…..50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

viii 
 

LIST OF FIGURES 

Figure 2.1 KEGG Pathway analysis (a) and gene ontology (b) of the brown rust resistance  

unigenes…………………………………………………………..……………………………..26 

 

Figure 2.2. Mapping of rust-responsive unigenes in sorghum genome..….…………………….28  

Figure 2.3 Temporal expression pattern of 11 selected rust-responsive unigenes in rust- 

resistant (L01-299, L99-233) and rust-susceptible (Ho95-988, L09-125) cultivars  

using semiquantitative RT-PCR. Sugarcane gene coding for elongation factor 1α (SoEF1α)  

used as an internal control…………………………………………………………………….....30 

 

Figure 2.4 Temporal expression pattern of 11 selected rust-responsive unigenes in rust- 

resistant (L 01-299, L 99-233) and rust-susceptible (Ho 95-988, L 09-125) cultivars  

using densitometry analysis of semiquantitative RT-PCR results. Sugarcane gene coding for  

elongation factor 1α (SoEF1α) was used as an internal control…...………………..…………...31 

 

Figure 2.5 Distribution of simple sequence repeat (SSR) motifs in brown rust responsive     

genes in cultivar L 99-233...............................................................................…………………..34 

 

Figure 3.1 Genotypic classification of the World Collection of Sugarcane and Related  

Grasses.……………………………………………………………………………………….….48 

 

Figure 3.2 Representative gel images showing presence of Bru1 detected by diagnostic PCR 

amplification products for R12H16 (570 bp product) and 9020-F4-RsaI (200 bp product) in 

Saccharum species or interspecific hybrid cultivars. Genotypes with positive Bru1 detection 

provided by presence of either one or both markers are indicated by (+). Saccharum   

spontaneum: #1-7 represent ‘Unknown 2009:R433P78’, ‘IranSpont’, ‘SH3013’ (R12H16  

marker only), ‘IND81161’, ‘US4625’, ‘SPONT 84089’, ‘WI 8711+2’. Saccharum      

officinarum: #1-6 represent̒̒̒̒  ̒̒PMAG8428(221),̒̒Puri’ ̒̒Pundi’, IJ76316’,̒̒IJ76324’,̒̒IJ76319’. 

Saccharum hybrids: #1-5 represent ‘MEX856196’, ‘MOL6427’, ‘R570’, ̒̒B37161’,     

‘Mesangen’ (R12H16 marker only). Other Saccharum species: #1-10 represent: 

‘Merthi’(S.sinense), ‘Unknown’ (S. sp), ‘Nepal3’(S.sinense), ‘DB58661’(S. sp),’ 

‘Mcilkrum’(S.sinense) (9020-F4 marker only), ‘Maneira’(S.barberi), ‘Kavangeri’(S. 

officinarum), ‘Merthizell’(S.sinense), ̒̒IK6340’ (S. robustum) (9020-F4 marker only), ̒̒        

IJ6480’(S.robustum)……………………………………………………………………………..49 

Figure 3.3 Geographical distribution of  Bru1 markers in World Collection of  

Sugarcane and Related Grasses………………………………………………………………….52 

 

 

 



  

ix 

 

ABSTRACT 

Development of resistant cultivars is the main control measure against sugarcane brown 

rust caused by Puccinia melanocephala. Durability is uncertain, since the pathogen possesses 

adaptive ability to overcome host plant resistance. A differential gene expression study utilizing 

suppressive subtraction hybridization was conducted to improve understanding of brown rust 

resistance mechanisms in sugarcane. The expression patterns of 11 unigenes representing 

biosynthetic pathways, defense-related genes, and signaling genes were analyzed in L 99-233, a 

cultivar exhibiting quantitative resistance, L 01-299, a resistant cultivar with the major resistance 

gene Bru1, and two susceptible cultivars, Ho 95-988 and L 09-125, at 24 h, 48 h, 72 h, and 1 

week after inoculation with P. melanocephala using (semi)quantitative RT-PCR. All genes 

analyzed for their expression showed message accumulation upon infection in susceptible and 

resistant cultivars, but the maintenance of high amounts of mRNAs of the genes for a prolonged 

time period appeared to be the most important factor contributing to brown rust resistance. 

Differences in the time-course of gene expression were detected between L 01-299 and L 99-233 

suggesting variable mechanisms for resistance between the cultivars. Molecular markers were 

used to screen the World Collection of Sugarcane and Related Grasses (WCSRG) for Bru1 to 

determine its distribution and frequency in Saccharum species and related genera. A total of 

1,282 clones were screened. Bru1 was distributed across the Saccharum complex, but the 

frequency varied among species. Bru1was more prevalent in S. robustum clones (59.1%), 

whereas it occurred in low frequency and exhibited the highest level of variability in clones of S. 

spontaneum (18.8%). Bru1 frequency was highest in the two secondary cultivated species, S. 

barberi (79.3%) and S. sinense (71.8%). The frequency of Bru1 detection was 26.4% and 21.0% 

for S. officinarum and interspecific hybrid clones, respectively. The characterization of the 
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WCSRG for Bru1 distribution and prevalence will complement efforts to characterize diversity 

in the Saccharum complex for the expected expanded use of marker-assisted selection in the 

future. Selection for quantitative resistance in combination with Bru1 could allow breeding 

programs to develop sugarcane cultivars with effective and durable resistance against brown rust.
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CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

Sugarcane (inter-specific hybrids of Saccharum species) is an important crop in tropical 

and sub-tropical regions of the world. It was cultivated on 23.8 million hectares in more than 110 

countries with an annual yield of 1.77 billion tons of cane in 2012 (FAOSTAT, 2012). Brazil 

produces the most sugarcane, with 670 million tons harvested in 2012, followed by India, China 

and Thailand (FAOSTAT, 2012). The United States produced 27.9 million tons (8
th

 place) on 

approximately 350,000 hectares. Sugarcane occupies 5
th

 place in the U.S. after maize, soybean, 

wheat and sugar beet. Sugarcane is commercially produced in Florida, Louisiana, Hawaii, and 

Texas.  

Sugarcane is the most economically important field crop in Louisiana. It is grown on 

nearly 182,000 ha, with annual production averaging 14 million tons of cane and 1.4 million tons 

of sucrose. The total value to the farmers and processors is more than $800 million with a total 

economic impact of $2.2 billion. The sugarcane industry provides approximately 27,000 jobs 

(American Sugar Cane League, 2010). Louisiana produces about 20% of the total sugar 

produced in the U. S. (beet and cane combined).  

Brown rust is caused by the fungus Puccinia melanocephala Syd. & P. Syd. It is an 

economically important disease in many sugarcane production regions (Ryan and Egan, 1989; 

Raid and Comstock, 2000). Brown rust was first reported in the continental U.S. in Florida 

(Dean et al., 1979). The disease was then reported shortly thereafter in Louisiana (Koike, 1980).  

 Puccinia melanocephala belongs to the phylum Basidiomycota, class Pucciniomycetes, 

order Pucciniales, family Pucciniaceae and the genus Puccinia (Dixon et al., 2010). Two species, 

P. melanocephala Syd. & P. Syd and P. kuehnii E. J. Butler, occur in the U.S. The characteristics 
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of the uredinial and telial stages can distinguish the two species that are phylogenetically distinct 

(Virtudazo et al., 2001). Puccinia melanocephala has a simple life cycle with the urediniospore 

being the only known infectious spore.  

The initial symptoms of brown rust are small, elongated, yellowish spots that are visible 

on both surfaces of the leaf. The spots develop into brown to orange-brown or red-brown lesions 

that range from 2 to 10 mm in length occasionally reaching 30 mm. The lesions are raised and 

are sometimes surrounded by a slight yellow halo (Raid and Comstock, 2000).  

The lesions become pustular on the abaxial side of the leaf, and red-brown urediniospores 

are produced and released. Urediniospores have dense echinulation with darker brown and 

uniformly thick walls, and there are abundant capitate paraphyses in the uredinia. Spore 

production occurs 8-18 days after infection, depending on cultivar susceptibility and 

environmental conditions (Arya and Perello, 2010). Teliospores as well as urediniospores have 

been reported (Purdy et al., 1983). Teliospores are occasionally found at the end of the season. 

Telia are dark brown to blackish and contain brown to dark brown teliospores with apically 

thickened walls (Virtudazo et al., 2001).  Basidiospores have been observed but do not initiate 

infection on sugarcane (Purdy et al., 1983).  

Once pustules rupture through the lower epidermis, urediniospores are exposed and 

passively released for aerial dispersal. Wind dispersal is the primary means of disease spread. 

The movement of diseased sugarcane stalks and contaminated equipment could also provide a 

means of spread.   

On susceptible cultivars, numerous lesions coalesce resulting in premature leaf 

senescence and death. Plants of susceptible cultivars heavily infected with brown rust have a 

reddish-brown tinge that is visible outside the field (Comstock et al., 1992). Infection by P. 
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melanocephala causes reduced growth of the plant due to reduced stalk height and weight, and 

stalk population may be reduced (Hoy and Hollier, 2009; Victoria et al., 1984). Brown rust can 

reduce tonnage yield by 10-20 tons per hectare depending on the length of time brown rust is 

affecting the crop; however, fungicide applications can minimize losses (LSU AgCenter, 2010). 

Losses in total sucrose yield up to 22 % have been documented in Louisiana (Hoy and Hollier, 

2009). 

Puccinia urediniospores germinate then germ tubes typically form appressoria to enter 

through stomata (Sotomayor et al., 1983). Appressoria form a penetration peg then a substomatal 

vesicle, infection hypha, haustorial mother cell, and haustorium that are produced in sequence to 

colonize the host (Sotomayor et al., 1983).  

 Disease severity is determined primarily by an interaction of host genetic and 

physiological (plant age) factors and environmental conditions (primarily temperature and leaf 

wetness) with some effects from edaphic conditions. Spore germination may occur within a 

temperature range of 5-34 
o
C (Sotomayor et al., 1983); however, the optimal temperatures for 

infection ranged between 17 and 27 
o
C (Barrera, 2010; Barrera et al., 2012). Heavy rains can 

wash spores from leaves and the atmosphere (Comstock and Ferreira, 1986). Soil factors can also 

affect rust infection levels. Rust severity is higher for sugarcane growing on low pH soils and 

when soil moisture and levels of phosphorous and potassium in the soil are high (Anderson and 

Dean, 1986; Anderson et al., 1990; Johnson et al., 2007). Brown rust is more severe in younger 

plants between 2 and 6 months of age (Raid and Comstock, 2000). 

 Brown rust control is largely achieved through the use of resistant cultivars. However, 

fungicide programs to minimize losses have been developed with strobilurin fungicides 

providing the highest level of control (Hoy and Savario, 2007).  
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1.2 SUGARCANE RESISTANCE TO BROWN RUST 

Brown rust is controlled primarily through the development and cultivation of resistant 

cultivars (Purdy et al., 1983; Raid and Comstock, 2000). Selection for brown rust resistance 

results in the elimination of agronomically promising cultivars; however, breeding has provided 

control for the disease and reduced economic losses (Asnaghi et al., 2001; Raid and Comstock, 

2000). 

The durability of resistance to brown rust is uncertain because P. melanocephala 

possesses the ability to adapt and overcome host plant resistance.  This ability can cause a “boom 

and bust” cycle that results in periodic severe epidemics. The extent of cultivation of a resistant 

cultivar is one factor affecting resistance durability. Extensive cultivation of one cultivar can 

create a selection pressure on the pathogen population and increase the likelihood of a more 

rapid emergence of a genetic variant.  Diversification of cultivars under cultivation may hold 

down the overall area-wide disease pressure and reduce the natural selection pressure leading to 

the emergence of new races.  

Shifts from resistance to susceptibility have been reported in several cultivars in Florida, 

including CP 78-1247 (Raid, 1989), CP 79-1580 (Dean and Purdy, 1984), CP 74-2005 and CL 

73-239 (Shine et al., 2005). In Louisiana, the cultivar LCP 85-384 was ultimately grown on 91 % 

of the production area. In 2000, when the LCP 85-384 acreage had increased to over 40%, a 

severe epidemic of brown rust occurred in this cultivar that had previously been rated as a 

resistant (Hoy and Savario, 2007).  

Resistant cultivars can be identified during selection, but resistance has not been durable 

on some cultivars, usually due to adaptation by the pathogen (Purdy et al., 1983, Raid and 

Comstock, 2000). Previous studies evaluating variability in the pathogen population and 
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resistance responses in different cultivars demonstrated pathogenic variability related to host 

genotype. The reported shifts from resistance to susceptibility for cultivars in different regions 

(Dean and Purdy, 1984; Hoy and Grisham, 2005; Purdy et al., 1983; Raid, 1989) were suggested 

to be due to pathogenic specialization. Differential cultivar reactions resulting from inoculation 

have been evaluated in four studies. It was concluded that specialization within the pathogen 

population to cultivar was not evident in Australia (Taylor, 1992), but studies in Florida (Shine et 

al., 2005) and India (Srinivasan et al., 1965) found differential reactions in cultivars inoculated 

with urediniospores collected from the same cultivars. In Louisiana, pathogenic specialization to 

cultivar was also detected (Avellaneda et al., 2013; Hoy et al., 2014). In addition, quantitative 

resistance was detected in one cultivar L 99-233 that could be very useful in on-going resistance 

research to ultimately improve breeding and selection for effective, durable resistance to brown 

rust. The lack of resistance durability is a very important aspect of brown rust epidemiology, 

worthy of study with the objective to improve the understanding of expression and basis for 

resistance in order to develop resistant cultivars with more durable resistance. 

Sugarcane cultivars are complex interspecific aneuploids with chromosome numbers 

ranging from 2n=100-130 (Sreenivassan et al., 1987). Chu et al., (1982) assumed that rust-

susceptible genes of modern commercial cultivars are derived from S. officinarum clones which 

account for 85-90% of the genome of commercial cultivars, and it has been suggested that 

resistance was not likely to be determined by a single gene (D’Hont et al., 1996). Tai et al., 

(1981) observed marked transgressive segregation towards susceptibility in bi-parental crosses 

and selfed families and suggested that resistance to rust was partially dominant. Intermediate 

heritabilities for rust resistance were reported by Tai et al., (1981) and Gonzales et al., (1987). 

High narrow-sense and broad-sense heritability values of 0.84 and 0.73 determined by mid-
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parent offspring regression were reported by Comstock et al., (1992), and 0.84 and 0.78 

heritability values were reported by Hogarth et al., (1993). Daugrois et al., (1996) attributed 

resistance to rust in the progeny of selfed cultivar R570 to a major resistance gene Bru1 with 

dominant effect. A second major brown rust resistance gene, Bru2 (Costet et al., 2012; Raboin et 

al., 2006), was then identified. Bru1 was shown to provide resistance to all the rust isolates 

collected from several, diverse geographic regions (Asnaghi, 2000). 

Brown rust resistance has been evaluated in sugarcane cultivars primarily by assessing 

natural infection severity. However, natural infection may not identify resistant cultivars due to 

variable environmental conditions and uneven inoculum exposure. Artificial inoculation exposes 

all plants under disease-favorable conditions to a high concentration of urediniospores. 

Inoculation has been conducted under field conditions by introducing inoculum into the leaf 

whorl (Sood et al., 2009). Inoculation under controlled conditions could provide information 

about resistance levels in potential parents or seedlings, and this approach has shown potential 

(Avellaneda et al., 2013). The identification of clones resistant to brown rust without relying on 

natural infection could help in the breeding program to accurately characterize resistance in 

potential parents and determine appropriate crosses and thereby enhance the ability to produce 

new cultivars resistant to the disease. 

1.3 SUGARCANE BROWN RUST MAPPING AND GENE EXPRESSION 

Sugarcane probably has the most complex of all crop genomes due to its very high degree 

of polyploidy (as much as 12x) and interspecific nature (D’Hont, 2005). Cultivated sugarcane 

varieties are complex interspecific aneuploids with chromosomes numbers ranging from 2n=100-

130 (Sreenivassan et al., 1987). Modern sugarcane cultivars are derived from the combination of 

two polyploid species: S. officinarum, the domesticated sugar-producing species with 2n=8x=80, 
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and S. spontaneum, a vigorous, grassy, wild species with 2n=5x=40 to 2n=16x=128 and many 

aneuploid forms (Sreenivasan et al., 1987; D’Hont et al., 1998). Both species are thought to have 

an autopolyploid origin (Sreenivasan and Ahloowalia, 1987; Grivet et al., 1996). 

Saccharum is a complex genus of mostly tall perennial bunch grasses that are highly 

polyploid. Morphology, chromosome number, and geographic distribution have traditionally 

been used for taxonomic classification, but ever since DNA markers became available, genomic 

data have been used to clarify the relationships among Saccharum species and accessions (Zhang 

et al., 2014).  The first inherited gene reported in sugarcane was for resistance to brown rust 

(Daugrois et al., 1996). Rust resistance was generally considered to be a quantitatively inherited 

trait with high heritability (Hogarth et al., 1993; Tai et al., 1981). However, Bru1 was identified 

in the French cultivar, R570 (Daugrois et al., 1996) using a population consisting of selfed 

progeny. Brown rust resistance was observed to clearly and significantly segregate in a 3: 1 ratio, 

which is indicative of a single dominant resistance gene. Bru1 was linked to a RFLP probe, 

CDSR29, which was initially not integrated in any linkage group (LG) in the R570 map. 

Subsequent additional mapping in R570 by Asnaghi (2000) indicated that Bru1 was located on 

linkage group VII–1a in homology group (HG) VII (HGVII) of R570. Asnaghi refined the 

genetic map around Bru1 on the basis of existing maize, rice and sorghum genetic maps. This 

approach revealed that the targeted region is orthologous to one end of sorghum consensus LG4, 

the end of the short arm of rice chromosome 2, and part of maize LG4 and LG5. It also enabled 

localization of Bru1 at the end of one cosegregation group of the R570 HGVII (Le Cunff et al., 

2008). Further fine mapping of Bru1 confirmed strong linkage disequilibrium due to the 

reduction in recombination in the Bru1 region (Le Cunff et al., 2008). This subsequently led to 
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the development of two PCR markers, R12H16 and 9020-F4, that can provide efficient 

molecular diagnosis for Bru1 (Costet et al., 2012).  

A second major rust resistance gene was then identified by Raboin et al., (2006) in 

MQ76–53 using a biparental cross between R570 and MQ76–53. The new rust resistance gene, 

Bru2, mapped to a linkage group in HGVIII, a different HG to the location of Bru1. Rust 

resistance has been analyzed in a third sugarcane population (McIntyre et al., 2005), but in this 

population, rust resistance was quantitatively inherited with several QTLs identified that 

explained < 20 % of the phenotypic variation. 

Bru1 as a source of resistance is of particular interest since it has been durable. Bru1 

resistance breakdown has not been detected despite intensive cultivation of R570 for >20 years 

in various regions of the world (Le Cunff et al., 2008). Moreover, inoculation tests demonstrated 

that this gene provides resistance against diverse rust isolates collected in Africa and the 

Americas (Asnaghi et al., 2001). In Colombia, 1,139 cultivars from local germplasm were 

screened, and 596 (48 %) contained Bru1 and exhibited resistance to brown rust. In 412 (36 %) 

of these cultivars, both markers, R12H16 and 9020-F4, were detected. However, 5 (0.4 %) of the 

cultivars that contained Bru1 exhibited susceptibility to brown rust (J. Victoria, personal 

communication).  

The markers R12H16 and 9020-F4 were shown to be efficient in molecular diagnosis for 

Bru1 (Costet et al., 2012). Bru1 was associated with resistance in 86 % of 194 clones from 

diverse locations (Costet et al., 2012). Glynn et al., (2013) detected a high frequency (42 %) of 

Bru1 among Florida clones, while Bru1 was detected in only 7 % of a limited collection of 

Louisiana clones. Racedo et al., (2013) evaluated 129 clones in Argentina under natural field 

infection for resistance and subsequently screened for the presence or absence of the Bru1 gene. 
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A total of 49 genotypes (38 %) were phenotyped as resistant to brown rust but only eight (16.3 

%) harbored Bru1. To determine overall frequency of Bru1 in the local sugarcane germplasm 

collection from Argentina, 190 additional genotypes were examined. Presence of Bru1, as 

determined by the diagnostic markers, was detected in only 7 % of the genotypes evaluated. In 

Guatemala, approximately one-third of the resistant clones contained Bru1 (Molina et al., 2013).  

A marker-assisted screening of Louisiana sugarcane germplasm was performed with 506 

clones, including 117 cultivars and elite breeding clones, 208 early generation progeny of crosses 

with wild/exotic germplasm, and 181 wild/exotic germplasm clones. Cultivars and advanced 

breeding clones showed a low frequency of detection with 5 out of 117 (4.3 %) testing positive 

for Bru1. In progeny from crosses involving wild/exotic germplasm, only 14 of 208 clones (6.7 

%) tested Bru1 positive. However, Bru1 frequency was higher (28.7 %, 52 of 181 clones) in 

wild/exotic germplasm, which indicated that diverse genetic resources are available for Bru1 

introgression (Parco et al., 2014). The low frequency (4.3 %) of Bru1 found in the Louisiana 

commercial sugarcane breeding population concurred with the earlier report of Glynn et al., 

(2013). The low frequency of Bru1 in Louisiana commercial cultivars and elite clones may be 

related to the fact that a number of Louisiana sugarcane cultivars have become susceptible to 

brown rust while under cultivation (Parco et al., 2014).  

A high number of sugarcane expressed sequence tags (ESTs) have been generated from 

subtractive or cDNA libraries of plants subjected to different biotic or abiotic stresses 

(Sävenstrand et al., 2000; Khan et al., 2013). Oloriz et al., (2012) described some aspects of the 

molecular basis of a brown rust resistant host reaction. This study utilized a complementary 

DNA (cDNA) subtraction method involving hybridization of cDNA from one population (tester) 

to excess of mRNA (cDNA) from another population (driver) and then separation of the 
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unhybridized fraction (target) from hybridized common sequences. It found that 88 % of 89 non-

redundant sequences had similarity to functional genes. Genes involved in glycolysis, C4 carbon 

fixation and some transcription factors were identified during this study and 13 of these 

sequences were selected for transcript profiling in the resistant mutant and the susceptible donor 

clone. Differentially expressed genes can be studied using multiple methods, including 

representational difference analysis of cDNA (RDA) (Hubank and Schatz, 1994), serial analysis 

of gene expression (SAGE) (Yamamoto et al., 2001), suppression subtractive hybridization 

(SSH) (Diatchenko et al., 1996), cDNA microarray (Anahori and Vorst, 2002), cDNA-amplified 

fragment length polymorphism (AFLP) (Bachem et al.,1998) and next generation sequencing 

such as RNA-Seq (Bedre et al., 2015). 

Suppression subtractive hybridization (SSH) is more effective than mRNA differential 

display and representational difference analysis. SSH is a technique that selectively amplifies 

cDNA fragments (differentially expressed) and also suppresses nontarget DNA amplification. 

SSH technique is simple and efficient for generating cDNAs highly enriched for differentially 

expressed genes of both high and low abundance. The high level of enrichment of rare transcripts 

has been achieved by the inclusion of a normalization step in the subtraction procedure. The 

normalization step equalizes the abundance of cDNA fragments within the target population, and 

the subtraction step excludes sequences that are common to the susceptible/resistant or 

uninfected/infected populations being compared. SSH has low false positive rates and is a less 

complex procedure. The technique is widely used to analyze genes related to plant disease 

resistance, abiotic stresses or genes expressed at different developmental stages (Diatchenko et 

al., 1996). 
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The development and release of resistant cultivars is the best strategy to manage 

sugarcane brown rust.  Multiple breeding programs in different parts of the world have 

inadvertently selected for Bru1 because of the effective resistance it confers. Even though Bru1 

has exhibited durability, it is inadvisable to rely on one source of resistance against an adaptable 

pathogen. The availability of marker-assisted screening for Bru1 will allow breeding programs to 

monitor the occurrence of Bru1 during parent and offspring selection. In some cases, such as 

Louisiana and Argentina, monitoring will allow more utilization of Bru1. The ability to identify 

the presence of Bru1 will allow the detection and incorporation of additional sources of 

resistance against brown rust and prevent over reliance on Bru1. The variable situation in Bru1 

frequency in different sugarcane industries around the world and on-going efforts to incorporate 

more genes for brown rust resistance from other Saccharum species and related genera suggest 

that the sugarcane world collection should be screened to identify the occurrence and distribution 

of Bru1. It would be of interest to determine the origin of Bru1 in sugarcane germplasm.   

Breeding efforts to develop effective and durable resistance to brown rust would be aided 

by a better understanding of other genes involved in the expression of resistance. The 

identification and expression analysis of transcripts differentially expressed in response to rust 

infection in cultivar L 99-233, a host cultivar without Bru1 expressing quantitative resistance, 

could provide information about other possible mechanisms involved in brown rust resistance.  

This information could allow the development of additional marker-assisted screening tools to 

accurately and more broadly characterize resistance in potential parents, determine the most 

appropriate crosses, and thereby obtain a higher frequency of new cultivars with effective, 

durable resistant to the disease.  
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There were two objectives for this study. The first objective was to implement marker 

assisted screening of the sugarcane world collection for Bru1 to determine its distribution and 

possible origin. The second objective was to perform a differential gene expression study of the 

resistance response to brown rust in L 99-233 using SSH technology to elucidate other 

mechanisms of resistance. 
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CHAPTER 2: IDENTIFICATION OF GENES ASSOCIATED WITH 

RESISTANCE TO BROWN RUST IN SUGARCANE 

2.1 INTRODUCTION 

Brown rust, caused by Puccinia melanocephala H. & P. Syd., is an important disease of 

sugarcane (inter-specific hybrids of Saccharum L.) worldwide. Brown rust is controlled 

primarily through the development and cultivation of resistant cultivars (Purdy et al., 1983; Raid 

and Comstock, 2000). However, cultivar shifts from resistance to susceptibility while under 

commercial cultivation have been repeatedly reported (Dean and Purdy, 1984; Hoy and Grisham, 

2005; Purdy et al., 1983; Raid, 1989). The lack of durability in resistance is the most important 

aspect of the disease that warrants an investigation to improve understanding of the expression 

and genetic basis of resistance in order to develop resistant cultivars with effective and durable 

resistance. Natural infection severity has been the means of assessing rust resistance in sugarcane 

cultivars (Asnaghi et al., 2004; Raid and Comstock, 2000). Although natural infection is useful 

in assessing resistance, it is not always efficient in identifying resistant cultivars due to variable 

environmental conditions and uneven inoculum exposure.  

Resistance to brown rust is a quantitatively inherited trait with high heritability (Hogarth 

et al., 1993; Tai et al., 1981). The genetics of sugarcane is complex. Modern sugarcane cultivars 

are derived from the combination of two polyploid species: S. officinarum, the domesticated 

sugar-producing species with 2n=8x=80, and S. spontaneum, a vigorous, grassy, wild species 

with 2n=5x=40 to 2n=16x=128 and many aneuploid forms (Sreenivasan and Ahloowalia, 1987; 

D’Hont et al., 1998). As a result, modern cultivars have a complex aneuploid and polyploid 

genome consisting of 100-130 chromosomes with a total size of about 10 Gbp (D’Hont 2005). 

Brown rust susceptibility genes of modern commercial cultivars may be transmitted from S. 
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officinarum which accounts for 80-90% of the genome of interspecific hybrid clones (Chu et al., 

1982).   

A major gene for brown rust resistance, Bru1, was identified in a self-population of 

sugarcane cultivar R570 (Daugrois et al., 1996), and subsequently, a second brown rust 

resistance gene, Bru2, was reported (Raboin et al., 2006). The resistance conferred by Bru1 has 

exhibited durability under extensive cultivation of R570 and in diverse cultivars in different 

regions (Asngahi et al., 2004; Glynn et al., 2013). However, the mechanism of resistance 

associated with Bru1 is unknown. Molecular markers for Bru1 were developed (Costet et al., 

2012) that enabled monitoring of the frequency of the gene in breeding programs and detection 

of brown rust resistance in the absence of Bru1 (Glynn et al., 2013; Molina et al., 2013; Parco et 

al., 2014; Racedo et al., 2013).  Brown rust resistance that was quantitatively expressed in the 

absence of Bru1 was detected in a cultivar L 99-233 in Louisiana (Hoy et al., 2014).  

To understand the mechanisms and molecular regulation of brown rust resistance, the 

relevant subsets of differentially expressed genes of interest need to be identified, cloned, and 

studied in detail.  A number of expressed sequence tags (ESTs) have been described in sugarcane 

libraries from different metabolic pathways involved in responses to different biotic or abiotic 

stresses (Sävenstrand et al., 2000; Khan et al., 2013, Park et al., 2015). In a study of the 

interaction of P. melanocephala  with sugarcane, 88% of 89 non-redundant sequences had 

similarity to functional genes, and 13 of these genes, involved in glycolysis, C4 carbon fixation 

and some transcription factors, showed differential transcript profiles between a resistant mutant 

and the susceptible donor clone (Oloriz et al., 2012). Resistance gene analogues also have been 

shown to be associated with brown rust resistance in sugarcane (Glynn et al., 2008; McIntyre et 

al., 2005). 
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Differentially expressed genes can be studied using multiple methods, including 

representational difference analysis of cDNA (RDA) (Hubank and Schatz, 1994), serial analysis 

of gene expression (SAGE) (Yamamoto et al., 2010), suppression subtractive hybridization 

(SSH) (Diatchenko et al., 1996), cDNA microarray analysis (Anahori and Vorst, 2002), cDNA-

amplified fragment length polymorphism (AFLP) (Bachem et al.,1998), and high-throughput 

method using next generation sequencing technology, such as RNA-Seq (Bedre et al., 2015). 

SSH is simple and efficient for generating cDNAs highly enriched for differentially 

expressed genes of both high and low abundance. The high level of enrichment of rare transcripts 

is achieved by the inclusion of a normalization step in the subtraction procedure. SSH is based 

on a suppression PCR effect and combines normalization and subtraction in a single procedure. 

The normalization step equalizes the abundance of cDNA fragments within the target population, 

and the subtraction step excludes sequences that are common to the susceptible/resistant or 

uninfected/infected populations being compared. SSH has low false positive rates and is a less 

complex procedure. 

The identification of transcripts differentially expressed in response to infection by P. 

melanocephala and semi-quantitative reverse transcriptase PCR (RT-PCR) analysis in cultivar L 

99-233, a host cultivar without Bru1 expressing quantitative resistance, could provide 

information about other possible mechanisms involved in brown rust resistance. This information 

could allow the development of tools to breed and select sugarcane cultivars with effective and 

durable resistance to brown rust. Therefore, a differential gene expression study of the resistance 

response to brown rust in L 99-233 was performed using SSH technology to identify genes 

associated and elucidate mechanisms of resistance. 
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2.2 MATERIALS AND METHODS 

2.2.1 Plant materials  

 Plants of two sugarcane cultivars resistant to brown rust, L 01-299 and L 99-233, and two 

susceptible cultivars Ho 95-988 and L 09-125 were produced vegetatively from single-node 

cuttings in the greenhouse. L 01-299 was the only commercial cultivar in which Bru1 was 

detected (Parco et al., 2014), and L 99-233 was demonstrated to exhibit quantitative resistance to 

brown rust (Hoy et al., 2014). Twelve plants of each cultivar were grown in 3.8 L pots with a 1:1 

mixture of silt loam soil and sand and had approximately four fully emerged leaves at the time of 

inoculation. 

2.2.2 Plant inoculation 

 Urediniospores of P. melanocephala were collected by vacuum from the abaxial surface 

of multiple naturally infected leaves in naturally infected commercial fields of cultivar Ho 95-

988 and stored at -80 C. Ten plants of each cultivar were inoculated with a urediniospore 

concentration of 1x10
6
/ ml determined with haemocytometer and suspended in a solution of 0.1 

% Tween 20. The inoculum was applied to both sides of two fully emerged leaves per plant with 

a paint brush until a film of moisture was visible (Barrera et al., 2012). Spore germination rate 

was determined at the time of each inoculation by plating on water agar and microscopic 

observation 24 hours after inoculation. Inoculated plants were placed inside a plastic sheeting 

moist chamber for 15 h at a temperature of 23 ± 1 C. Additional distilled water was sprayed to 

the leaves with an atomizer and cool mist generators were used to create a humid atmosphere and 

maintain constant leaf wetness for the entire 15 hours. After the infection period, plants were 

placed on shelves under 12 h artificial lighting at 23 ± 1 C for 2 weeks.  
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2.2.3 Total RNA isolation  

 Two leaves per plant were collected 24, 48, 72 h and 1 week after inoculation and 

immediately frozen in liquid nitrogen. Leaf tissues collected from non-inoculated plants served 

as a control. Leaf tissue (100 mg) was ground in a mortar and pestle with liquid nitrogen, using 1 

ml of Trizol (Invitrogen, Carlsbad, CA), vortex mixed, centrifuged at 13,000 rpm for 10 min at 4 

C, precipitated with one volume of isopropanol at -70
o
C for at least 1 h and centrifuged again at 

13,000 rpm for 10 min at 4 C. Pellet of RNA was washed with 75% ethanol, air-dried and 

resuspended with 50 µl of RNase-free water. Genomic DNA was removed by digestion with 

DNAse I (Qiagen, Valencia, CA). Qualitative and quantitative assays of RNA were performed 

by both gel electrophoresis and ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).  

2.2.4 SSH library construction 

 Control RNA (33 µg) and RNA pooled over four different time points (15 µg each) of 

inoculated cultivar L 99-233 were used for cDNA synthesis. cDNA subtraction was performed 

using the PCR-select
TM

 cDNA subtraction kit (Clontech, Palo Alto, CA) following manufacturer 

instructions, except that the double-stranded cDNA was synthesized from  total RNA instead of 

mRNA using the Superscript
TM

  double-stranded cDNA synthesis kit (Invitrogen, Carlsbad, CA). 

Double-stranded cDNA was digested with RsaI. The cDNA from the inoculated plants was 

ligated with two different adaptors and used as the tester. Two rounds of forward subtractions 

were performed using cDNA from non-inoculated control plants as the driver. Differentially 

expressed, up-regulated genes were amplified using the Advantage 2 PCR Kit (Clontech, Palo 

Alto, CA). Products of subtraction were cloned into the pGEM-T Easy Vector System (Promega, 

WI, USA) and transformed into Escherichia coli DH5α competent cells following the method 
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described by Ramanarao et al., (2011) and plated onto Luria Bertani (LB) agar containing 100 

mg L
-1

 ampicillin, 1 mM isopropyl β-D-thiogalactopyranoside, and 80 mg L
-1

 5-bromo-4chloro-

3indolyl β-D-galactopyranoside. Following incubation at 37 ºC overnight, positive white 

colonies were picked and arrayed into 96-well microplates and then cultured in LB containing 

100 mg L
-1

 ampicillin. The resultant subtractive cDNA library was stored at -80 ºC with 15% 

glycerol. Three-hundred sixty-three colonies were randomly selected for PCR analysis to 

confirm the presence of inserts prior to sequencing. 

2.2.5 Sequence processing and bioinformatics analysis 

 The insert cDNAs of the selected clones were sequenced using T7 sequencing primer at 

the Washington State University high-throughput sequencing facilities using BigDye
TM

 

terminator kit on an ABI 3730xl genetic analyzer (Applied Biosystems, Foster city, CA). After 

removal of vector sequences, adapters, and low quality sequences, sequence similarity searches 

were performed against NCBI non-redundant DNA and protein database using BLASTN and 

BLASTX (www.ncbi.nlm.nih.gov/BLAST/) tools, respectively, with default parameters.  

Sequence assembly was performed using web tool CAP3 (Huang and Madan, 1999) to identify 

contigs and singlets. Functional classification of the unigenes with query coverage of more than 

50% or E-value cut-off at 1-05 was carried out according to the MIPS functional categories 

(http://mips.gsf.de/proj/thal/db/index.html). The top scoring hits were annotated for Gene 

Ontology (GO) terms according to the putative function obtained from BLASTX and using 

Blast2GO (Conesa et al., 2005). 

 Sequences of 217 unigenes were blasted against Sorghum bicolor genome sequences 

using the Blast interface of Phytozome v11.0 resource to obtain the coordinates of their location 

in the genome. The coordinates were used as input in MapChart software to generate the  

http://mips.gsf.de/proj/thal/db/index.html
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graphical linkage map of sorghum chromosomes showing the brown rust responsive unigenes. 

2.2.6. Expression analysis by semiquantitative RT-PCR  

Eleven unigenes from the subtractive library were selected to study their expression in a time-

course experiment for incompatible (resistant cultivars L 99-233 and L 01-299) and compatible 

(susceptible cultivars Ho 95-988 and L 09-125) reactions.  Primers for semiquantitative RT-PCR 

of selected genes were designed using Primer3 software (Table 2.1). All primers were 

synthesized by Integrated DNA Technologies (IDT Inc, Coralville, IA). Products of PCR were  

 

Table 2.1 Sequences of primers used in reverse transcription PCR-mediated expression profiling 

Gene Forward primer (5'-3') Reverse primer (5'-3') 

Band 

size 

(bp) 

Ran-A1 AAGCCTCCGGAAGTTACCAT GGCACAACTCCTGCTCAAGT 156 

CP TATGCAGGGGTTCCAATGTT ACATCTTTGCTGCCTTCGAT 206 

Bi1 CGTGCTGATGTTCTTCGTGT GATGGCACAGCACACTCCTA 161 

Trxh1 TTCTTTGCCAGCTCATCCTT CGCACCATAGCTCCAATCTT 194 

H2A CAGGCAAGCGTTACACAGAA GCACATTCACAAGTCCCTGA 169 

FtsH6 GAGGACATTGATTCGGCAGT GCAGGGATCTCCACAAACTC 176 

Ubiquitin 

conjugating 

enzyme 

TGTTGCTGCTGTTCTTGGTC CAGACACCGCCTTGGTAGAT 180 

Cks CGTTGCTGTGAGGCACTAAA TGTCGAATGCATCATCTGGT 181 

ALAT 2 GGGCTACTCCAGGATGTGAA ACCCACAGAAATTCCGTTCC 196 

V-ATPase 

B1 
TGCACTTCGTGAGGTTTCTG AAGGTCAGGAGTTGGGTGTG 190 

Nucleic 

binding 

protein 

AGCAGCGCTTGAAAGAGAAG TGGGATGACCGTATGACAGA 176 

Actin CTGGAATGGTCAAGGCTGGT TCCTTCTGTCCCATCCCTACC 112 
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analyzed by electrophoresis in 2% agarose gels, stained with ethidium bromide and visualized 

in a KODAK GelLogic200 documentation system (KODAK, New Haven, CT).  

2.2.7 Mining of brown rust responsive ESTs for microsatellite markers 

Three-hundred sixty-three brown rust responsive ESTs were searched for the presence of 

simple sequence repeat (SSR) motifs using the Gramene web resource SSRIT (Temnykh et al., 

2001). Criteria for SSR identification were set to the presence of at least five repeats for 

dinucleotide motifs and three repeats for tri, tetra and penta nucleotide motifs. 

2.3 RESULTS 

2.3.1 Identification of responsive genes in cultivar L 99-233  

A total of 363 ESTs from the L 99-233subtractive library were sequenced. Cleaning the 

vector sequence contamination and removal of duplicate sequences produced 357 non-redundant 

ESTs longer than 50 bp, which were used for downstream bioinformatics analysis.  Sequence 

assembly resulted in 75 contigs and 142 singlets, thereby 217 unigenes with a size ranging 

between 142 bp to 1235 bp and an average length of 444 bp (Table 2.2).  

All 217 unigenes matched to sequences in the sugarcane gene index (SoGI, release 3.0) at 

a cut off of 1e-05 and 60% similarity.  BLAST analysis with NCBI non-redundant nucleotide 

and protein database, sorghum gene index (SbGI, release 9.0) and SwissProt database assigned 

putative functions to 205 out of 217 unigenes. Unigenes without a hit may represent sequences in 

the untranslated regions, non-coding RNAs or sugarcane-specific sequences.  

Forty-five of the putative rust responsive unigenes were involved in various metabolic 

pathways with abundance of amino acid metabolism as revealed from their search against the 

KEGG database. Thirteen unigenes were involved in purine metabolism followed by 11 in 
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thiamine metabolism and six in lipopolysaccharide metabolism (Figure 2.1, a.). Gene ontology 

analysis using Blast2GO classified the unigenes into biological process (39.7%), molecular 

Table 2.2 Sequence statistics of the cDNAs isolated from suppressive subtraction library of L 99-

233 in response to infection by Puccinia melanocephala. 

Parameter Number 

Total number of sequences 363 

Number of sequences (> 50 bp) after vecscreen cleaning 358 

Number of duplicate sequence 1 

Total unique sequences (> 50 bp) used for assembly 357 

Total unigenes obtained 217 

Total contigs 75 

Total Singlets 142 

Maximum length of unigenes (bp) 1235 

Minimum length of unigenes (bp) 99 

Mean length of unigenes (bp) 444.26 (~444) 

Number of sequences annotated 205 

 

function (36.5%), and cellular component (23.7%) categories. GO enrichment analysis indicated 

that the majority of the unigenes under biological process were involved in metabolic processes 

with cellular metabolic process as the most enriched (Figure 2.1, b.).  Similarly intracellular part 

along with intracellular and membrane-bound organelle dominated the cellular component. On 

the other hand molecular function of most of the unigenes was characterized by their ion binding 

function followed by hydrolase activity (Figure 2.1, b.). 

 

 

 

 

 

Figure 2.1 KEGG pathway analysis (a) and gene ontology (b) of the brown rust responsive 

unigenes  
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 The 217 unigenes were distributed irregularly across the 10 chromosomes of Sorghum 

(Figure 2.2). Majority of the unigenes were localized in chromosomes 1, 3, 6, and 7. Unigenes 

selected for gene expression analysis were highlighted with red color while unigenes containing 

SSR motifs were highlighted in green.
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Figure 2.2. Mapping of rust-responsive unigenes on sorghum genome.  
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(Figure 2.2. continued) 
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2.3.2 Expression analysis of brown rust responsive genes 

 The expression patterns of 11 unigenes representing biosynthetic pathways and defense-

related and signaling genes were analyzed in the two resistant cultivars L 99-233 and L 01-299 

and the two susceptible cultivars Ho 95-988 and L 09-125 at different time points of the P. 

melanocephala-sugarcane interaction using semiquantitative RT-PCR (Figures 2.3 and 2.4). 

Interestingly, almost all genes in both resistant and susceptible cultivars showed message 

accumulation 24 h after infection by P. melanocephala. Variable expression patterns were 

observed among and within resistant and susceptible cultivars in controls and at later times after 

infection.  

Figure 2.3 Temporal expression pattern of 11 selected rust-responsive unigenes in rust-resistant 

(L 01-299, L 99-233) and rust-susceptible (Ho 95-988, L 09-125) cultivars using 

semiquantitative RT-PCR. Sugarcane gene coding for elongation factor 1α (SoEF1α) was used 

as an internal control. 
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Figure 2.4 Temporal expression pattern of 11 selected rust-responsive unigenes in rust- resistant 

(L 01-299, L 99-233) and rust-susceptible (Ho 95-988, L 09-125) cultivars using densitometry 

analysis of semiquantitative RT-PCR results. Sugarcane gene coding for elongation factor 1α 

(SoEF1α) was used as an internal control. 

2.3.2.1 Genes involved in primary metabolism and transport 

The gene ALAT2 coding for an enzyme that catalyzes the reversible transfer of an amino 

group from glutamate to pyruvate to form 2-oxoglutarate and alanine in the nitrogen metabolism 

was expressed in non-inoculated control plants of both resistant and susceptible cultivars, and 

expression was detected following infection until 72 h (Figure 2.4). The gene was down-

regulated by 1 week in the susceptible cultivar Ho 95-988. The unigene encoding vacuolar ATP 

synthase B1 subunit (V-ATPase B1) had a roller coaster expression pattern in both susceptible 

cultivars where the expression was induced after 24 h of infection, down-regulated at 48 h, up-

regulated at 72 h, then finally repressed at 1 week (Figure 2.4). The gene showed significant up-

regulation at all time points in resistant cultivar L 01-299. In the second resistant cultivar, L 99-
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233, basal expression was higher than for all other cultivars, the expression was maintained until  

1 week.  

2.3.2.2 Genes coding for proteases 

The genes encoding proteases, cysteine proteinase (CP) and a putative small ubiquitin-

conjugating enzyme (Ubiquitin), showed differential temporal expression in susceptible and 

resistant cultivars. Cysteine proteinase expression was almost identical to the V-ATPase B1 gene 

in the susceptible cultivars with alternate up- then down-regulation after infection with the 

fungus, whereas both resistant cultivars showed consistent high expression (Figure 2.4). 

Ubiquitin conjugating gene expression was low in the control plants of all the cultivars, except 

the resistant cultivar L 99-233. Its mRNA accumulation was then up-regulated at 24 h for all 

cultivars, and 48 and 72 h for L 99-233. Ubiquitin was still being expressed at 1 week in both the 

resistant cultivars.  

2.3.2.3 Genes involved in binding activities 

 Genes involved in binding activities were studied during the P. melanocephala-sugarcane 

interaction through the expression of four genes encoding GTP binding nuclear protein (Ran-

A1), ATP binding protein (FtsH6), Histone 2A protein (H2A), and nucleic acid binding protein. 

Ran-A1 showed a strong up-regulation at all time points in the resistant cultivar L01-299, 

whereas it was expressed basally and continuously after infection in L 99-233 (Figure 2.4). Its 

expression in the susceptible cultivars was up-regulated at 24 h. Genes H2A and FtsH6 showed 

generally similar patterns of expression in the resistant and susceptible cultivars (Figure 2.4). 

The genes were expressed basally and at all time points until 1 week after infection when the 

susceptible cultivars began to exhibit some down-regulation. Nucleic acid binding protein was 

up-regulated in all cultivars at 24 h (Figure 2.4). Expression was then down-regulated in the 
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susceptible cultivars with evidence of repression at 1 week, while expression remained high for 

the resistant cultivars.  

2.3.2.4 Gene involved in signal transduction 

  The expression of a unigene CMP-KDO synthetase (cks) involved in signal transduction  

was strongly up-regulated at 24 h in L 01-299, and expression continued in L 01-299 at 1 week 

(Figure 2.4). Expression was repressed in susceptible cultivar L 09-125 at all time points and in 

Ho 95-988 at 1 week. In L 99-233, cks expression was similar to the control at 24 and down-

regulated at 72 h and 1 week. 

2.3.2.5 Defense-related genes 

Expression analysis of sugarcane defense-related genes Bi1 (brown plant hopper induced) 

and Trxh1 (thioredoxin cytosolic) showed contrasting expression patterns between the resistant 

and susceptible cultivars (Figure 2.4). Bi1 was strongly up-regulated in all cultivars at 24 h. 

Expression was down-regulated thereafter in the susceptible cultivars, but expression was 

detected at 1 week in both resistant cultivars. Trxh-1 expression was low or not evident in the 

susceptible cultivars, whereas it was expressed at 72 h and 1 week in both resistant cultivars. 

Trxh-1 was basally expressed in L 99-233 but not in L 01-299.  

2.3.3 Simple sequence repeat (SSR) markers derived from brown rust responsive genes   

Mining of the 217 rust responsive genes identified 118 unigenes to contain SSR motifs. 

Of these, 77 unigenes had SSRs with single motif repeats (perfect SSRs), and 41 were complex 

SSRs with two or more SSR motifs separated by ≤ 100 bp. SSRs with dinucleotide repeats were 

the highest (136) in number followed by tri- (67), and tetra-nucleotide (12) motifs (Figure 2.5). 

Among the dinucleotide motifs, AT/AT type was the most abundant followed by TG/CA and 

CA/GT. Among the trinucleotide motifs, AAG/CTT was the highest followed by AGC/GCT. 
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Figure 2.5 Distribution of simple sequence repeat (SSR) motifs in brown rust responsive genes in 

cultivar L 99-233 

2.4 DISCUSSION 

 Host plant resistance to a disease is the result of a cascade of genes involved in signal 

perception and transduction, oxidative bursts, activation of defense related genes and 

transcriptional regulation. Identification of differentially expressed genes can provide vital 

information towards the understanding of molecular and biochemical bases of defense 

mechanisms of plants in response to a pathogen (Valculescu et al., 2005). Knowledge on the 

molecular backgrounds of an interaction between sugarcane and the brown rust pathogen is 

limited. Two studies evaluated differential gene expression in resistant clones generated from a 

brown rust susceptible cultivar, B4362, by somaclonal variation (Carmona et al., 2004) and 

chemical mutagenesis (Oloriz et al., 2012). Genes associated with resistance processes were 

identified in somaclonal variants by cDNA-AFLP (Carmona et al., 2004) and by SSH in a 

mutant showing a post-haustorial hypersensitive response (Oloriz et al., 2012). In the present 

study, a low-scale transcriptome analysis of a cultivar, L 99-233, expressing quantitative 
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resistance against P. melanocephala (Hoy et al., 2014), was performed through SSH as a first 

step towards  identifying resistance-associated genes in this particular cultivar.  

 The results showed that genes associated with primary metabolism, protease activity, 

nucleotide binding, defense responses, as well as signal transduction, were differentially 

expressed in response to P. melanocephala, indicating a complex interplay of an array of genes 

in sugarcane in response to pathogen infection. All genes analyzed for their expression showed 

that their messages accumulated upon infection in both susceptible and resistant cultivars, but the 

maintenance of high expression of the genes for a prolonged time period appeared to be the 

contributing factor for resistance to brown rust.  

Continuous high expression of genes involved in primary metabolism (ALAT2) and 

proton pump (V-ATPase B1) was observed in the resistant cultivars L 01-299 and L 99-233 but 

not the two susceptible cultivars Ho 95-988 and L 09-125. ALAT2 functions in breaking down 

alanine to pyruvate during recovery from hypoxia and in response to both biotic and abiotic 

stresses in several species (Kendziorek et al., 2012, Miyashita et al., 2007). Similarly, V-ATPase 

B1 acts in energizing transport of ions and metabolites, and its mRNA and protein content were 

altered in response to environmental stress (Ratajczak, 2000). Maintenance of primary metabolic 

activity by over-expression of these genes could be involved in the response of the resistant 

cultivars to prevent infection at 1 week, by which time the fungus would have invaded cells 

through haustoria in a susceptible reaction. 

 Cysteine proteinases (CP) are proteolytic enzymes that have been shown to be induced in 

response to stresses, including wounding (Linthorst et al., 1993), and in programmed cell death 

(Solomon et al., 1999; Xu and Chye, 1999). Ubiquitin-conjugating enzymes, also known as E2 

enzymes, perform the second step in the ubiquitination reaction that targets a protein for 
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degradation via the proteasome (Wang et al., 2014). Otubian-like cysteine proteases are a 

component of ubiquitin-proteasome that precisely cleaves proteins at the ubiquitin-protein bond 

(Balakirev et al., 2003). However, the expression of CP and Ubi did not follow the same pattern 

among the cultivars. While Ubi was up-regulated in all cultivars 24 h after inoculation, its 

expression was reduced in the susceptible cultivars subsequently but remained at a higher level 

in the resistant cultivars at 1 week after inoculation. In a previous study, expression of the Sumo1 

gene involved in ubiquitinylation, showed strong up-regulation between 3 days post-inoculation 

until 7 days in the compatible reaction of a brown rust susceptible mutant (Oloriz et al., 2012). 

Contrastingly, strong basal and post-infection expression of CP in the resistant cultivars may be 

related to the incompatible reaction with the fungus.  

The CMP-KDO synthetase (cks) gene involved in signal transduction activates 3-Deoxy-

D-manno-2-octulosonic acid KDO, which is an important component of the rhamnogalacturonan 

II- Boron (B-RG-II) complex that is essential for the cell wall integrity of rapidly growing tissues 

(Kobayashi et al., 2011). Significant induction of the gene 24 h after inoculation in resistant 

cultivars and its maintenance at 1 week could possibly explain the lack of successful 

colonization.  

 GTP binding protein Ras-related nuclear protein (Ran-A1) is a small GTP-binding protein 

that has been shown to be involved in the regulation of growth and metabolism of maize plants 

infected with Maize rough dwarf virus ( Li et al., 2011). Ran-A1has been implicated in abiotic 

stress responses in plants, but very little is known about its role in biotic stress response. Again, 

the gene over-expression and/or induction and subsequent maintenance for a prolonged period 

post-infection may be involved in the prevention of disease development in the resistant 

cultivars.  
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The defense related cytosolic gene thioredoxin (Trxh1) is involved in the redox regulation 

of cytosolic enzymes (Hara et al., 2006).  A thioredoxin-like 1 (TRX) transcript was also 

reported in the SSH library produced from the P. melanocephala - mutant sugarcane interaction 

(Oloriz et al., 2012).This gene appears to be an important component of the defense system of 

the resistant cultivars, especially L 01-299 based on its level of expression at 72 h and 1 week 

after inoculation.  In L 99-233, Trxh1 was basally expressed and showed moderate levels of 

expression until 1 week.  

 The present study provided first-hand information about changes in the expression 

profile of a selected set of genes in L 99-233, a sugarcane cultivar exhibiting quantitative 

resistance in response to infection by P. melanocephala. However, a more comprehensive 

genome-wide transcriptome analysis through RNA-Seq will identify the complex co-expression 

networks and will provide better clues to the quantitative resistance reaction of the cultivar in 

response to fungal infection. These genes would have a great potential in identifying resistance-

associated genes that will be useful to mine for SNPs/indels for QTL and association mapping to 

identify functional markers associated with brown rust resistance. Furthermore, gene-derived 

SSRs underlying the QTL region can directly be used as functional markers. These novel genes 

could be combined with the Bru1 gene in the breeding program to develop sugarcane cultivars 

with more durable and effective resistance against brown rust. 
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CHAPTER 3: DISTRIBUTION AND PREVALENCE OF Bru1, A MAJOR 

BROWN RUST RESISTANCE GENE, IN THE SUGARCANE WORLD 

COLLECTION 

3.1 INTRODUCTION 

Sugarcane is a perennial bunch grass that belongs to the genus Saccharum with a high 

degree of polyploidy and interspecific origin (Daniels and Roach 1987, Lu et al., 1994, D’Hont 

et al., 1998, Grivet et al., 2004). The Saccharum genus belongs to the Poaceae family and 

Andropogoneae tribe, which grows in tropical and subtropical regions and also includes other 

grasses in related genera, including two crop plants maize and sorghum (D’Hont et al., 1998). 

Until the end of the 19
th

 century, most sugarcane cultivars were the “noble canes” provided by 

Saccharum officinarum (2n=80) with S. sinense (2n=81-124) and S. barberi (2n=111-120) as 

taxonomic secondary species derived after natural hybridizations between S. officinarum and S. 

spontaneum (D’Hont et al.,1996). Modern sugarcane cultivars are inter-specific hybrids of the 

domesticated species S. officinarum (2n=8x=80, x=10), which is characterized by low fiber and 

high sucrose content, and the wild species S. spontaneum (2n=5x-16x=40-128, x=8), which is 

high in fiber and low in sucrose content but resistant to biotic and abiotic stresses (D’Hont et al., 

1996, D’Hont et al., 1998, Piperidis and D’Hont 2001). Modern sugarcane cultivars have a 

complex aneu-polyploid genome consisting of 100-130 chromosomes with a total size of about 

10 Gbp (D’Hont 2005) and estimated genome composition of 70-80% from S. officinarum and 

10-20% from S. spontaneum (D’Hont et al., 1996, Piperidis and D’Hont 2001).  

The Saccharum genus contains five major species, including two wild species, S. 

spontaneum and S. robustum (thought to be the ancestor of S. officinarum), and three cultivated 

species, S. officinarum, S. barberi, and S. sinense (Daniels and Roach 1987, Lu et al., 1994, 

D’Hont et al.,1998, Grivet et al., 2004). A controversial report suggested the existence of only 
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two Saccharum species: S. officinarum and S. spontaneum (Irvine 1999). The Saccharum genus 

together with related genera, including Erianthus, Miscanthus, Narenga, and Schlerostachya, 

were referred to as the “Saccharum complex” (Cai et al., 2005, Selvi et al., 2006).  Two 

duplicated Saccharum complex germplasm collections known collectively as the “World 

Collection of Sugarcane and Related Grasses” (WCSRG) are currently being conserved. One 

WCSRG is maintained in Coimbatore in India and the other in Miami, Florida in the United 

States (Alexander and Viswanathan 1995, Comstock et al., 1995). The WCSRG contains 

significant genetic diversity and valuable alleles for numerous morphological traits, biomass 

yield, resistance to biotic and abiotic stresses, and other quality traits (Nayak et al., 2014). 

 Brown rust caused by Puccinia melanocephala H. & P. Syd is an economically important 

disease in many regions where sugarcane is grown (Raid and Comstock 2000). Brown rust 

symptoms consist of reddish-brown lesions on the leaves, and severe infections can cause leaf 

necrosis and premature death of even young leaves (Raid and Comstock 2000). Brown rust can 

cause reductions in stalk weight and number adversely affecting yield in susceptible cultivars 

(Comstock et al., 1992, Hoy and Hollier 2009). Disease development can be affected by weather 

conditions, plant growth stage, plant nutrition, and soil characteristics (Anderson and Dean 1986, 

Anderson et al.,1991, Raid and Comstock 2000, Barrera et al., 2013), as well as genetic 

interactions between the host and pathogen.    

The development and cultivation of resistant cultivars has been the primary means of 

disease control. Unfortunately, brown rust resistance durability is uncertain, since the pathogen, 

possesses adaptive ability to overcome host plant resistance. Shifts from resistance to 

susceptibility have been reported for cultivars in different regions (Purdy et al., 1983, Dean and 

Purdy 1984, Hoy 2005, Raid 1989). Three studies have shown differential sugarcane cultivar 
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reactions resulting from inoculations with different pathogen isolates, indicating specialization in 

P. melanocephala to host genotype ( Srinivasan and Muthaiyan 1965, Shine et al., 2005, Hoy et 

al., 2014).  

Brown rust resistance has been reported to be a quantitatively inherited trait with high 

heritability (Tai et al., 1981, Hogarth et al., 1993). However, molecular genetic tools identified a 

major gene, Bru1, for brown rust resistance in a selfed population of sugarcane cultivar R570 

from the Reunion breeding program (Daugrois et al.,1996, Asnaghi et al., 2004). Resistance was 

observed to segregate in a 3: 1 ratio indicative of a single dominant resistance gene. This gene 

was linked to a RFLP probe, CDSR29, which was initially not integrated in any linkage group in 

a R570 map. Subsequent additional mapping in R570 (Asnaghi et al., 2004) indicated that Bru1 

was located on the linkage group VII–1a in homology group VII (HGVII) of R570.  Results of 

mapping of R570 revealed in an atypical RFLP profile the presence of one band cosegregating 

with Bru1 suggesting that it might originate from S. spontaneum (Le Cunff et al., 2008). Raboin 

et al., (2006) identified a second major brown rust resistance gene nonorthologous to the Bru1 of 

R570 in MQ76-53, an old Australian cultivar lacking Bru1, which came from a cross between an 

interspecific cultivar (Trojan) and a S. spontaneum clone (SES528).  

Bru1 as a source of resistance to brown rust is of particular interest since it has been 

durable. Bru1 resistance breakdown was not been detected despite intensive cultivation of R570 

for more than 20 years in different regions of the world (Le Cunff et al., 2008). Moreover, 

inoculation tests revealed Bru1 provided resistance against diverse rust isolates in Africa and the 

Americas (Asnaghi et al., 2004). 

Strong linkage disequilibrium was detected in the Bru1 region of the genome, and 22 

molecular markers used in a worldwide sample of 380 cultivars showed that the presence of 
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Bru1 was associated with brown rust resistance in 86% of resistant cultivars (Costet et al., 2012). 

Two markers, R12H16 and 9020-F4, were strongly linked to Bru1 and only found in resistant 

genotypes, and these markers subsequently enabled molecular diagnosis and marker assisted 

selection for Bru1. Glynn et al., (2013) found that 27% of 1072 clones carried the Bru1 gene 

when Canal Point Florida sugarcane germplasm was screened. In the same study, Bru1 was 

detected in 7% of Louisiana clones and 59% of Florida clones that were resistant to brown rust. 

Recently, two studies performed in Argentina and Guatemala showed that 49 of 129 (38%) and 

26 of 80 (32%) clones showed the presence of Bru1, respectively (Molina et al., 2013, Racedo et 

al., 2013). A comprehensive marker- assisted screening of Louisiana sugarcane germplasm was 

performed with 506 clones, including 117 cultivars and elite breeding clones, 208 early 

generation progeny of crosses with wild/exotic germplasm, and 181wild/exotic germplasm 

clones (Parco et al., 2014). Cultivars and advanced breeding clones showed a low frequency of 

detection with 5 out of 117 (4%) testing positive for Bru1. In progeny from crosses involving 

wild/exotic germplasm, only 14 of 208 clones (7%) tested Bru1 positive. However, Bru1 

frequency was higher (29%, 52 of 181 clones) in wild/exotic germplasm, which indicated that 

diverse genetic resources were available for Bru1 introgression. 

The variable situation in Bru1 frequency in different sugarcane industries around the 

world and increasing efforts to incorporate other sources of brown rust resistance and genes for 

additional traits from other Saccharum species and related genera suggest that the WCSRG 

should be screened to identify the distribution, prevalence, and existence of any variability for 

Bru1. It also would be of interest to determine the origin of Bru1 in the Saccharum complex. The 

objective of this study was therefore to determine the distribution and prevalence of Bru1in the 
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WCSRG to assist in the development of the most effective strategies for breeding programs to 

breed for brown rust resistance along with additional gene introgression from wild species. 

3.2 MATERIALS AND METHODS 

3.2.1 Plant materials 

 All sugarcane and related genotypes in the World Collection of Sugarcane and Related 

Grasses (WCSRG) that is part of the United States National Plant Germplasm System (NPGS) 

were included in the study. All genotypes were clonally maintained in the field or pots at the 

United States Department of Agriculture-Agricultural Research Service Subtropical Horticulture 

Research Station at Miami, Florida. A total of 1,282 clones from the WCSRG were collected as 

leaf pieces sampled for DNA extraction. 

3.2.2 Genomic DNA Isolation and PCR Genotyping 

 Total genomic DNA was extracted from approximately 100 mg of leaf tissue using 

CTAB miniprep methodology (Doyle and Doyle 1990). The quantity and quality of DNA was 

determined using a ND-100 spectrophotometer (Nanodrop Technologies Inc, Wilmington, DE, 

USA). PCR reactions were performed with 100 ng of total DNA with Bru1-specific markers, 

R12H16 and 9020-F4 (Costet et al., 2012), following the method described earlier (Parco et al., 

2014). PCR reactions were carried out in a total volume of 20 μl containing 100 ng template 

DNA, 0.4 μM of each primer; 0.4 mM of each dNTP, 2.5 mM MgCl2, and 0.5 units Taq 

Polymerase with 1X PCR buffer. The primer sequences used were: R12H16 Fw – 

CTACGATGAAACTACACCCTTCTC, R12H16 Rv – CTTCTGTAAGCGTGACCTATGGTC; 

9020-F4 Fw – TACATAATTTTAGTGGCACTCAGC, 9020-F4 Rv - 

ACCATAATTCAATTCTGCAGGTAC. Thermocycling was performed as follows: 4 min 

denaturation at 94 ºC followed by 35 cycles of 94 ºC for 30 s, 55.5 ºC for 45 s, 72 ºC for 72 s and 
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final elongation for 8 min at 72 ºC. Ten microliters of PCR product amplified with 9020-F4 

primers were digested overnight at 37 C with RsaI in a total volume of 20 μl. Restriction 

fragments were resolved on 3% agarose gels in 1X TAE buffer and stained with ethidium 

bromide for visualization and documentation in a KODAK Gel Logic 200 Imaging system 

(Kodak, New Haven, CT). Presence of Bru1 was indicated by presence of an amplification 

product of 570 bp with the R12H16 marker or a 200 bp fragment produced after RsaI digestion 

of 9020-F4 marker amplicon. 

3.3.3 Genotype identifications 

 Genotype names from the WCSRG were defined on a curator’s name system available 

from the USDA Germplasm Resources Information Network (USDA-GRIN) as part of the 

NPGS. Accession numbers and descriptors of each genotype are maintained at the National 

Germplasm Repository in Miami, Florida.  

3.3 RESULTS 

3.3.1 Classification of WCSRG Genotypes 

 A total of 1,282 genotypes from the WCSRG were screened for the presence of Bru1 

gene using two linked markers.  The species S. spontaneum and S. officinarum and Saccharum 

interspecific hybrids comprised the major portion of the collection with 40.6, 19.2, and 13.2% of 

the genotypes, respectively (Figure 3.1). Saccharum robustum, S. sinense, and S. barberi 

comprised 5.1, 3.0, and 2.2% of the genotypes. Other Saccharum species, including S. 

arundinaceum, S. bengalense, S. brevibarbe, S. edule, S. kanashiroi, S. procerum, S. ravennae 

and S. rufipilum represented 12.6% of the genotypes screened, while genotypes belonging to 

other genera such as Coix, Erianthus, Imperata and Miscanthus comprised  3.2%. Genotypes 

without classification comprised 10.9% of the collection.  
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Figure 3.1Genotypic classification of the World Collection of Sugarcane and Related Grasses  

3.3.2 Detection of Bru1 in WCSRG 

 The presence of Bru1 was indicated by the detection of amplification products for the 

R12H16 (570bp) and/or 9020-F4-RsaI (200bp) markers (Figure 3.2). A total of 280 (21.8%) of 

the 1,282 genotypes in the WCSRG tested positive for Bru1 as indicated by the detection of one 

or both markers (Table 3.1). The R12H16 marker was detected alone in 72 (25.7%) of the 280 

Bru1 positive genotypes, while marker 9020-F4-RsaI was detected alone in 70 (25%) of the 280 

Bru1 positive genotypes (Table3.1). Both molecular markers, R12H16 and 9020-F4-RsaI, 

associated with Bru1 were detected in 138 (49.3%) of 280 Bru1 positive genotypes (Table 3.1). 

The frequency of Bru1 detection for single markers alone or both markers varied among 

Saccharum species (Table 3.1). The proportion of genotypes with Bru1 was highest for S. 

barberi (79.3%), S. sinense (71.8%), and S. robustum (33.3%). Interspecific hybrids and 

Saccharum officinarum genotypes had similar lower percentages of Bru1 (26.4% and 21.0%, 

respectively), and S. spontaneum genotypes had the lowest percentage with Bru1 (13.2%). 
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Figure 3.2 Representative gel images showing presence of Bru1 detected by diagnostic PCR 

amplification products for R12H16 (570 bp product) and 9020-F4-RsaI (200 bp product) in 

Saccharum species or interspecific hybrid cultivars. Genotypes with positive Bru1 detection 

provided by presence of either one or both markers are indicated by (+). Saccharum spontaneum: 

#1-7 represent ‘Unknown 2009:R433P78’, ‘IranSpont’, ‘SH3013’ (R12H16 marker only), 

‘IND81161’, ‘US4625’, ‘SPONT 84089’, ‘WI 8711+2’. Saccharum officinarum: #1-6 

represent̒̒̒̒  ̒̒PMAG8428(221),̒̒Puri’ ̒̒Pundi’, IJ76316’,̒̒IJ76324’,̒̒IJ76319’. Saccharum hybrids: #1-5 

represent ‘MEX856196’, ‘MOL6427’, ‘R570’, ̒̒B37161’,‘Mesangen’ (R12H16 marker only). 

Other Saccharum species: #1-10 represent: ‘Merthi’(S.sinense), ‘Unknown’ (S. sp), 

‘Nepal3’(S.sinense), ‘DB58661’(S. sp),’ ‘Mcilkrum’(S.sinense) (9020-F4 marker only), 

‘Maneira’(S.barberi), ‘Kavangeri’(S. officinarum), ‘Merthizell’(S.sinense), ̒̒IK6340’ (S. 

robustum) (9020-F4 marker only), ̒̒IJ6480’ (S. robustum). 

 

The unknowns that probably include additional hybrids had 22.1% of the genotypes with 

Bru1, other Saccharum species 10.3%, and the other genera, such as Erianthus spp. and 

Miscanthus sinensis, had a low percentage of genotypes (14%, and 2.4%, respectively), that 

contained Bru1.  

 The frequencies of genotypes with both markers or only a single marker also varied 

across Saccharum species (Table 3.1). Saccharum sinense (71.4%), S. officinarum (65.4%), the 
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interspecific hybrids (62.2%), and the unknowns (64.5%) had the highest percentages of 

genotypes with both markers. Saccharum robustum and S. sinense had intermediate percentages 

of genotypes with both markers (59.1% and 43.5%, respectively). Saccharum  spontaneum 

genotypes had the lowest frequency with only 18.8 % containing both markers. None of the 

genotypes from other genera and other Saccharum species that were Bru1 positive had both 

markers.    

Table 3.1 Distribution and prevalence of Bru1 molecular markers in the World Collection of 

Sugarcane and Related Grasses 

 

Number of genotypes with positive detection of Bru1 

based on the presence of single or both markers 
 

 
Genotypes 

with only 

R12H16
c
 

Genotypes 

with only 

9020-F4
c
 

Genotypes 

with both 

markers
c
 

Total 

genotypes in 

the collection   

Bru1 + 
d
 

Total 

genotypes 

in the 

collection    

Saccharum spontaneum 23 (33.3%) 33 (47.8%) 13 (18.8%) 69 (13.2%) 521 

Saccharum officinarum 13 (25.0%) 5 (9.6%) 34 (65.4%) 52 (21.1%) 247 

Saccharum hybrids 8 (17.7%) 9 (20.0%) 28 (62.2%) 45 (26.5%) 170 

Saccharum robustum 5 (22.7%) 4 (18.1%) 13 (59.1%) 22 (33.3%) 66 

Saccharum sinense 3 (10.7%) 5 (17.8%) 20 (71.4%) 28 (71.8%) 39 

Saccharum barberi 12 (52.1%) 1 (4.3%) 10 (43.5%) 23 (79.3%) 29 

Other Saccharum species
a
 1 (33.3%) 2 (66.7%) 0 (0%) 3 (10.3%) 29 

Other Genus
b
 2 (28.6%) 5 (71.4%) 0 (0%) 7 (17.1%) 41 

Pending (Unknown) 5 (16.1%) 6 (19.3%) 20(64.5%) 31 (22.1%) 140 

Total 72 (25.7%) 70 (25%) 138 (49.3%) 280 (21.8%) 280/1,282 
a 
Other Saccharum species that included Bru1 positive genotypes: Saccharum arundinaceum (2) 

and S.edule (1).
 

b
 Other genera that included Bru1 positive genotypes: Erianthus spp. (6) and Miscanthus sinensis 

(1).  
c 
Number of genotypes Bru1 positive with percentage of the total number of genotypes Bru1 

positive for that taxonomic group in parentheses.  
d 

Total genotypes Bru1 positive for each taxonomic group with percentage of the total number of 

genotypes of that group in collection in parentheses. 
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3.3.3 Geographical Distribution of Bru1 in the World Collection of Sugarcane and Related 

Grasses  

The genotypes screened represent clonal accessions obtained from 55 locations in 48 

countries.  Countries in Southeast Asia contributed the highest proportions of genotypes to the 

WCSRG compared with the rest of the world.  India was the source of the greatest number of 

clones with 226 genotypes followed by Indonesia and Papua New Guinea with 174 and 133, 

respectively (Figure 3.3).  The majority of the genotypes in the collection were obtained from 

breeding programs and associated germplasm collections located around the world at locations 

where sugarcane does not occur naturally. The geographic origins of these genotypes within the 

natural range of Saccharum are uncertain.  

The frequency of Bru1 positive genotypes within species varied by geographic location 

from which the clones were obtained for some Saccharum species (Figure 3.3). The frequencies 

of Bru1 positive genotypes of S. officinarum were 18.1% (17 of 94) for clones with a known 

origin of Papua New Guinea compared to 36.7% (11 of 30) for clones with a known Indonesian 

origin. Across the entire collection, 21.1% (52 of 247) of S. officinarum genotypes were positive 

for Bru1. The same pattern was evident for the frequency of Bru1 positive genotypes for the 

ancestral species, S. robustum, with a higher frequency of detection for clones known to 

originate from Indonesia (31.6%, 6 of 19) compared to genotypes known to originate from Papua 

New Guinea (21.4%, 6 of 28). Saccharum spontaneum which occurs over a wider geographic 

range with more variability in climatic conditions exhibited some variation in Bru1 frequency. 

The frequencies of Bru1 were 15.4% (24 of 156) for genotypes from India, 14.8% (12 of 81) for 

genotypes from Indonesia, 9.6% (8 of 83) from the Philippines, 11.1% (1 of 9) from Sri Lanka, 

11.4% (4 of 35) from Taiwan, and 16.7% (3 of 18) from Thailand, with an overall collection.
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Figure 3.3 Geographical distribution of Bru1 markers in World Collection of Sugarcane and Related Grasses 
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(Figure 3.3 continued)  
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frequency of 13.2% (69 of 521). The accessions of species with the highest frequencies of Bru1, 

S. sinense and S. barberi, came primarily from the countries where they originated with 68.7% (6 

of 10) Bru1 positive from China with 84.8% (28 of 39) positive overall for S. sinense and 80.0% 

(20 of 25) Bru1 positive from India with 79.3% (23 of 29) positive overall for S. barberi. 

3.4 DISCUSSION 

  Molecular markers could provide a valuable tool for the evaluation of sugarcane 

germplasm to assist breeding programs in identifying the best genotypes to maximize genetic 

gain in crossing for traits, such as disease resistance.  The discovery of Bru1 (Daugrois et al., 

1996) and development of linked markers for its detection (Costet et al., 2012) have led to the 

first successful application of marker-assisted selection in sugarcane. The availability of the 

markers has allowed the characterization of germplasm collections associated with breeding 

programs in different regions to determine the frequency of occurrence of Bru1 and its 

association with resistance to brown rust (Asnaghi et al., 2004, Costet et al., 2012, Glynn et al., 

2013, Molina et al., 2013, Racedo et al., 2013, Parco et al., 2014). The present study determined 

the distribution and prevalence of Bru1 in the World Collection of Sugarcane and Related 

Grasses (WCSRG) maintained in Miami, Florida. Bru1 is distributed throughout the Saccharum 

complex represented in the collection, but its prevalence varied among species and genera. The 

proportion of genotypes containing Bru1 varied widely within the different Saccharum species. 

Bru1 occurs in both of the wild species, S. spontaneum and S. robustum (Daniels and Roach 

1987, Lu et al., 1994; Grivet et al., 2004). Bru1 is more prevalent in S. robustum clones, whereas 

it occurs in low frequency and exhibits the highest level of variability in clones of S. 

spontaneum, the Saccharum species with the highest levels of genetic diversity and phenotypic 

variability and widest geographic distribution.  
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The frequency of Bru1 was lower in the S. officinarum clones in the collection than in S. 

robustum and, as might be expected, similar to the frequency in the interspecific hybrids. The 

prevalence of Bru1 was highest in the two secondary cultivated species, S. barberi and S. 

sinense, which are derived from interbreeding among S. officinarum, S. spontaneum, and S. 

robustum ( Lu et al., 1994, Grivet et al., 2004) andBru1 was present in other related genera as 

well.  

A genetic explanation for the wide distribution of Bru1 with varying frequencies in the 

different Saccharum species and related genera is not clear. The results suggest that the Bru1 

present in S. officinarum and the interspecific hybrids may have come from S. robustum rather 

than S. spontaneum. Although, some evidence suggests S. robustum evolved from S. spontaneum 

in association with some other genera. The explanation for the high frequencies of Bru1 in both 

S. barberi and S. sinense also is unclear. These two species might provide good sources for 

brown rust resistance along with other genes for introgression into commercial sugarcane clones.  

Variability in the occurrence of Bru1 as indicated by the presence of only one of the two 

molecular markers was detected to varying degrees in different Saccharum species. Variability 

was highest in S. spontaneum for which a majority of the clones amplified only a single marker. 

However, Bru1 was detected by a single marker in eight of 14 Saccharum species while in other 

genera Bru1 was detected only by a single marker. The implications of this variability are 

uncertain. This result suggested that a possible weak (less strong) linkage disequilibrium exists 

between the two diagnostic markers (Costet et al., 2012). Another possibility is that variations in 

the sequences around Bru1 among the genotypes that may lead to changes in the priming and/or 

restriction sites (Parco et al., 2014). 
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Many sugarcane breeding programs are attempting to introgress additional genes from 

other wild Saccharum species, especially S. spontaneum, and other related genera to widen the 

narrow genetic base of commercial sugarcane cultivars (Jannoo et al., 1999). Louisiana has had 

one of the most active efforts in this area (Dunckelman and Breaux 1972, Dunckelman 1979). 

The characterization of the WCSRG for Bru1 distribution and prevalence will complement 

efforts to characterize diversity in the Saccharum complex for the expected expanded use of 

marker-assisted selection in the future. The high level of genetic variability in S. spontaneum is a 

proven valuable asset in sugarcane breeding, providing the first interspecific hybrids that allowed 

the establishment of modern industries worldwide (Daniels and Roach 1987,  Lu et al., 1994, 

Grivet et al., 2004). The more recent effort in Louisiana was successful in improving sucrose 

content and resistance to mosaic caused by Sorghum mosaic virus (Dunckelman and Breaux 

1972, Dunckelman 1979). However, in the absence of another major disease, smut, a S. 

spontaneum clone, US 56-15-8, was chosen to be utilized in the breeding effort that subsequently 

turned out to be highly susceptible to the disease. The later incursion of smut (Koike et al., 1981) 

then resulted in extensive losses of promising clones in the breeding program due to smut 

susceptibility causing serious indirect losses to the industry (J. Hoy, unpublished). The 

characterization by molecular markers of S. spontaneum clones and other potential gene 

introgression sources for brown rust resistance in the absence of the pathogen or under 

conditions of low disease pressure may prevent unanticipated disease susceptibility problems 

from limiting future success in other breeding endeavors.   

Interspecific hybrid populations under recurrent selection for resistance to brown rust 

based on natural infection ratings unknowingly increased the frequency of Bru1 (Asnaghi et al., 

2004, Glynn et al., 2013), and it was suggested that this has resulted in a potentially risky 
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dependence on Bru1, for disease resistance worldwide (Costet et al., 2012, Glynn et al., 2013). 

The prevalence of Bru1 as indicated by the two molecular markers, is much lower in two more 

isolated, related breeding populations under more subtropical conditions in Louisiana (Parco et 

al., 2014) and Argentina (Racedo et al., 2013). This difference has resulted in different breeding 

strategies utilizing marker-assisted selection for Bru1. There is a common interest in using the 

absence of Bru1 in clones exhibiting brown rust resistance to suggest possible alternative sources 

of resistance. Programs with high frequency of Bru1 are then attempting to reduce over reliance, 

while programs with low frequency of Bru1 occurrence are using marker-assisted selection to 

make bi-parental crosses that will increase the frequency of this source of demonstrated effective 

and durable resistance gene with other sources of resistance. One Louisiana genotype positive for 

Bru1 was rated susceptible to brown rust (Parco et al., 2014), and there have been unpublished 

reports of susceptibility in Bru1 positive clones in other sugarcane production areas. In 

Colombia, five brown rust susceptible cultivars showed the presence of Bru1 (J. Victoria, 

personal communication). Sugarcane breeding programs are now attempting to use the ability to 

monitor Bru1 to breed and select for cultivars with the brown rust resistance it confers in 

combination with other genes for resistance to obtain effective, durable resistance to this 

important disease.  
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CHAPTER 4: CONCLUSIONS 

 A transcriptome analysis of  L 99-233, a sugarcane cultivar with quantitative resistance to 

brown rust, using suppression subtractive hybridization found that genes associated with 

primary metabolism, protease activity, nucleotide binding, defense responses, as well as 

signal transduction, were expressed in sugarcane in response to infection by P. 

melanocephala. 

 All genes analyzed for their expression showed message accumulation upon infection in 

both susceptible and resistant cultivars, but the maintenance of high amounts of mRNAs 

of the genes for a prolonged time period appeared to be the most important factor 

contributing to brown rust resistance. 

 Differences in the time-course of expression were detected for some genes between L 01-

299 (containing Bru1) and L 99-233 (lacking Bru1) suggesting differences in the 

mechanisms for brown rust resistance between the cultivars. 

 Comprehensive genome-wide transcriptome analysis through RNA-Seq is needed to 

identify complex co-expression networks and provide a more complete explanation of the 

quantitative resistance reaction of L 99-233.  

 Identification of novel genes could be useful to mine for SNPs/indels for QTL and 

association mapping to identify functional markers associated with brown rust resistance. 

These markers in combination with those for the Bru1 gene will allow breeding programs 

to develop sugarcane cultivars with more durable and effective resistance against brown 

rust. 

 The frequency of the major brown rust resistance gene, Bru1, varies among species in the 

Saccharum complex. Bru1 occurs in both of the wild species, S. spontaneum and S. 
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robustum but the frequency of detection was much lower in S. spontaneum. The 

prevalence of Bru1 was high in the two secondary cultivated species, S. barberi and S. 

sinense, which are derived from interbreeding among S. officinarum, S. spontaneum, and 

S. robustum.  

 The characterization by molecular markers of S. spontaneum clones and other potential 

gene introgression sources for Bru1 associated brown rust resistance in the absence of the 

pathogen or under conditions of low disease pressure may prevent unanticipated disease 

susceptibility problems from limiting success in other breeding endeavors.   

 The characterization of the WCSRG for Bru1 distribution and prevalence will 

complement efforts to characterize diversity in the Saccharum complex for the expected 

expanded use of molecular marker-assisted selection in the future.  
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