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ABSTRACT 

 The infection and colonization of maize (Zea mays L.) by the necrotrophic fungal 

pathogen Aspergillus flavus results in contamination of kernel tissues with carcinogenic 

mycotoxins known as aflatoxins, resulting in severe economic losses as well as negative effects 

on human and animal health. Resistance to A. flavus is mediated by both inducible and 

constitutively expressed defense proteins; however the mechanism regulating the expression of 

these defenses is poorly understood.  This study examined the potential roles of six maize 

WRKY transcription factors, ZmWRKY19, ZmWRKY21, ZmWRKY53, ZmWRKY53.1, 

ZmWRKY67, and ZmWRKY68, in regulating defense responses against A. flavus. The responses 

of these WRKY transcription factors to A. flavus inoculation were examined over a time course 

in the immature kernel tissues of two maize lines, B73 (susceptible) and TZAR101 (resistant) 

using real-time quantitative PCR. Three defense genes, Nonexpressor of Pathogenesis-Related 

Protein 1 (ZmNPR1), Pathogenesis-Related Protein 1 (ZmPR-1), and Ethylene Responsive Factor 

1 (ZmERF1), were also examined in order to determine whether salicylic acid, jasmonic acid, or 

ethylene-mediated defense mechanisms were induced in response to A. flavus inoculation. The 

genes ZmWRKY19, ZmWRKY53, and ZmWRKY67 were found to be induced by inoculation and 

constitutively expressed at higher levels in the resistant maize line. Both the putative 

ZmWRKY19 and ZmWRKY53 are homologs of Arabidopsis WRKY53 and WRKY33, 

respectively, with ZmWRKY53 also being homologous to rice and wheat WRKY53. These 

genes may function in promoting antioxidant enzymes to sequester reactive oxygen species 

(ROS) during pathogen infection or abiotic stress. ZmWRKY67 is homologous to AtWRKY50 

and may function in the suppression of jasmonic acid-regulated defenses in the resistant maize 

line. The expression of ZmNPR1 was also induced by inoculation in the resistant variety without 
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concurrent induction of ZmPR-1, possibly due to the observed induction of ZmERF1 and, 

therefore, ethylene-based defenses.  These findings indicate that resistant maize lines may 

possess elevated oxidative stress tolerance potentially conferring resistance to programmed cell 

death as part of the hypersensitive response induced by ROS during necrotrophic pathogen 

infections. Future studies of these WRKY transcription factors are necessary to better understand 

their regulation and involvement in resistance to A. flavus infection and aflatoxin production.  
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1. INTRODUCTION 

The infection of maize (Zea mays L.) by the fungal pathogen Aspergillus flavus results in 

the contamination of kernel tissues with carcinogenic mycotoxins produced during fungal 

secondary metabolism known as aflatoxins (Scully et al. 2009). The contamination of maize 

kernels with aflatoxin poses a significant threat to human and livestock health and results in 

substantial economic losses annually (Payne and Widstrom, 1992; Schmale and Munkvold, 

2011; Shephard 2008). Maize resistance to A. flavus infection is mediated by various defense 

proteins including β-1,3-glucanases, chitinases, glyoxalase I (GLX-I), pathogenesis-related 

proteins 10 and 10.1 (ZmPR10 and ZmPR10.1), ribosome inactivating proteins, and zeamatin 

(Chen et al. 2004, 2006, 2010; Huynh et al. 1992; Guo et al. 1997; Lozovaya et al. 1998; Mauch 

et al. 1988; Walsh et al. 1991; Xie et al. 2010). In addition, maize varieties resistant to A. flavus 

infection have also been found to accumulate various antioxidant proteins including ascorbate 

peroxidase and superoxide dismutase (Pechanova et al. 2011), peroxiredoxin antioxidant (PER1) 

protein (Chen et al., 2007), and drought tolerance proteins such as late embryogenesis abundant 

proteins (LEA 3 and LEA 14) and osmo/salt-stress related proteins such as WSI18 (Chen et al. 

2004). The presence of these potential abiotic stress resistance proteins corresponds to the 

observed correlation between abiotic stress tolerance and A. flavus resistance in maize (Kebede 

et al. 2012). 

Although the identities of many defense proteins are currently known, the mechanism 

regulating their expression has yet to be fully understood. In plants, several signaling pathways 

mediated through phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene 

regulate the expression of various defense genes against biotic and abiotic stress (Glazebrook, 

2005). Many components of these pathways are regulated by transcription factors of a type 
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known as WRKY transcription factors (Rushton et al. 2010). These transcription factors are 

characterized by their distinctive DNA binding domains which consist of approximately 60 

residues containing an amino acid sequence of WRKY at the N-terminus of the domain, and a 

zinc finger structure at the C-terminus (Rushton et al. 1996, 2010). This binding domain binds 

promoter regions referred to as W-boxes with sequence of C/TTGACC/T (Euglem and 

Somssich, 2007). Based on key structural features and phylogenetic analyses, WRKY 

transcription factors can be compiled into seven unique groups with varying functions (Chen et 

al. 2012b; Rushton et al. 2010; Zhang and Wang, 2005).  

Several WRKY transcription factors have been found to regulate the expression of 

defense in the model plant species Arabidopsis thaliana. Examples of this include AtWRKY33, 

which is required for the induction of JA-promoted defense genes such as defensins (PDF1.1 and 

PDF1.2) and in ethylene biosynthesis (Birkenbihl and Somssich, 2011; Birkenbihl et al. 2012; Li 

et al. 2012), AtWRKY11 and AtWRKY17, which promote JA biosynthesis and suppress SA-

induced basal defenses (Journot-Catalino et al. 2006),  and AtWRKY50 and AtWRKY51, which 

suppress JA-based defenses (e.g. PDF1.2) and promote SA-based defense genes in the presence 

of reduced levels of oleic acid (Gao et al. 2011). WRKY transcription factors have also been 

found to be involved in plant responses to abiotic stresses such as heat stress and oxidative stress, 

such as AtWRKY25, -26, -33, -39, and -53 (Li et al. 2010, 2011; Miao et al. 2004).  

In order to better understand the mechanism of defense gene induction in maize in 

response to A. flavus infection, particularly the role of WRKY transcription factors, we examined 

the findings of a recent series of microarray analyses by Luo et al. (2011) of a resistant and a 

susceptible maize line derived from a cross between 1638 and GT-MAS:gk, Eyl25 and Eyl31, 

respectively (Menkir et al. 2006, 2008), to identify WRKY transcription factors differentially 
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regulated by between the two lines. We selected several candidate WRKY genes based on the 

above microarray study and examined their expression in the resistant and susceptible maize 

varieties TZAR101 and B73 over a time course of infection in Louisiana field conditions using 

real-time/quantitative polymerase chain reaction (qPCR). In addition, the expression levels of 

several indicator genes, NPR1 and PR-1, which regulate SA-based defenses (Spoel et al. 2007; 

Zhang et al. 1999), and ethylene responsive factor1 (ERF1), which regulates JA and ethylene-

based defenses (Lorenzo et al. 2003), were also examined in order to determine which major 

phytohormone defense pathways were regulated by A. flavus infection. 
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2. REVIEW OF LITERATURE  

2.1 Aspergillus flavus and Aflatoxins 

Maize (Zea mays L.) is an important crop not only in Louisiana and the United States as a 

whole, but also for the world. Maize is a staple food crop for many developing countries, and 

also serves as a major component of livestock and animal feeds. It is also utilized in industrial 

and energy production applications. The infection and colonization of maize kernels by the 

opportunistic fungal pathogen Aspergillus flavus (Anamorph; Petromyces flavus, Teleomorph) 

(Horn et al. 2009) may result in the accumulation and subsequent contamination of maize kernel 

tissues with aflatoxins (Scully et al. 2009). Contamination of crops with aflatoxins is a serious 

agricultural problem resulting in a high degree of economic losses.  Aflatoxins are carcinogenic 

mycotoxins known to cause numerous diseases in both humans and domesticated animals 

including aflatoxicosis, cirrhosis, hepatitis, liver cancer, and reproductive defects (Shephard 

2008); as a result, interstate commerce of grains contaminated with aflatoxins higher than 20 ppb 

is prohibited (Payne and Widstrom, 1992). In the United States, aflatoxin contamination results 

in approximately $225 million in losses in maize annually (Schmale and Munkvold, 2011). 

 Aflatoxins are secondary polyketide-derived furanocoumarin metabolites produced 

mainly by A. flavus and Aspergillus parasiticus (Bennett and Klich, 2003; Chanda et al. 2009). 

There are six structural variations of aflatoxins including AFB1, AFB2, AFG1, AFG2, AFM1, and 

AFM2. Only aflatoxins AFB1 and AFB2 are produced naturally by A. flavus, and these B 

aflatoxins account for 90% of the observed aflatoxins in samples collected from naturally 

infected maize (Diener et al. 1987). Both AFB1,2 and AFG1,2 are produced through a common 

biosynthetic pathway with the diversion into either class occurring later in the process 

(Cleveland et al. 2004). Recent studies have determined that both early and late stages of 
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production of AFB1 occur in vesicles in A. parasiticus within the fungal mycelia termed 

aflatoxisomes and that such structures may serve as the basis for the exocytosis and secretion of 

aflatoxins from A. parasiticus and, presumably, A. flavus (Chanda et al. 2009, 2010; Linz et al. 

2011). Such secreted aflatoxins contaminate maize and other susceptible grain crops during the 

process of infection by A. flavus and subsequent colonization.  

2.2 Life Cycle and Infection Strategy 

 Aspergillus flavus primary inoculum is typically produced from sclerotia which 

overwinter in the soil or debris following harvest in the previous season (Wicklow et al. 1984). 

Conidiophores produced by the proliferating sclerotial mycelia in favorable environmental 

conditions provide conidia as primary inocula. These conidia can be transmitted to maize by 

several means including wind, rain splash, or insects such as corn earworm (Helicoverpa zea), 

maize weevil (Sitophilus zeamais), or brown stink bug (Euschistus servus) (Diener et al. 1987; 

McMillian et al. 1980; Ni et al. 2011). Conidia introduced to maize silks by artificial inoculation 

techniques have been shown to germinate and grow rapidly down the silk from the ear tip to the 

base in as little as 4 to 13 days after inoculation (Marsh and Payne, 1984a).  

Upon reaching the kernels after growing down silks, the mycelia begin the process of 

invading the kernels. Earlier studies seem to indicate that A. flavus can infect maize kernels 

through the stylar canal and cross the stylar abscission zone into the kernel (Jones, 1979). A 

study by Marsh and Payne (1984b) using scanning electron microscopy (SEM) noted localized 

conidiation around the silk tip region of kernels. However, SEM results did not show any signs 

of infection within the kernel below this region (Diener et al. 1987; Marsh and Payne, 1984b).  A 

more recent study by Windham and Williams (2007) of various inoculation methods indicated 

that silk-based routes are not the primary methods of infection of maize kernels by A. flavus. 
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They determined that this was due to a lower degree of success in fungal colonization and 

aflatoxin accumulation using silk inoculation methods in comparison to pinbar and side injection 

inoculation techniques, which also damage the pericarp allowing for direct entry of fungal 

mycelia. These observations are supported by earlier findings which showed that although later 

stage, yellow-brown silk are the best medium allowing for A. flavus mycelial growth, senescence 

and detachment of these silks may reduce the probability of silk scar infection (Marsh and Payne, 

1984a; Payne 1986).  

Aspergillus flavus mycelia were also found to grow along the surface of the pericarp to 

the pedicel region, and are then able to infect the kernel through the adaxial zone of the rachilla 

at the glume insertion site of the kernel. This resulted in the invasion of the maize kernel 

intercellular spaces within the rachis, rachilla, and pericarp followed by inter- and intracellular 

invasion of the floral axis up to the testa (seed coat). Mycelia are then able to penetrate the testa 

allowing access to the embryo. Conidia are also formed in air spaces within the rachis allowing 

for the possibility of additional overwintering capability of the fungus (Smart et al. 1990).  

Colonization of the embryo has also been found to occur prior to the colonization of the 

endosperm (Brown et al. 1995; Keller et al. 1994). Subsequently, aflatoxin has been found to be 

produced in higher concentrations in the embryonic and aleurone tissues of the maize kernels up 

until germination. Following germination, aflatoxin is no longer produced in the embryo but 

rather in the endosperm which is invaded by mycelia through the aleurone or scutellum (Keller et 

al. 1994). A likely explanation for the higher degree of aflatoxin production in embryonic tissue 

rather than endosperm tissue is the higher concentration of lipids found in the embryo (31% 

lipids) than in the endosperm (< 1% lipids) (Earle et al. 1946; Brodhagen and Keller, 2006).   
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2.3 Virulence Proteins and Maize Defenses 

Upon successful colonization, A. flavus begins to employ several hydrolytic enzymes to 

break down the maize tissue. Such hydrolytic enzymes include amylases (α-amylase), cellulases, 

chitinases, cutinases, lipases, pectinases (P2c), proteases such as alkaline protease, and xylanases 

(Brown et al. 2001; Chen et al. 1998, 1999, 2009; Cleveland and Cotty, 1991; Cleveland et al. 

2004; Fakhoury and Woloshuk, 1999; Mellon et al. 2000; Pechanova et al. 2013). These proteins 

facilitate nutrient uptake for fungal metabolism. These enzymes are also targets of constitutive 

and inducible defenses in maize. For example, α-amylase produced by A. flavus to breakdown 

complex carbohydrates and starches found in the kernel tissue has been found to be inactivated 

by a 14-kDa trypsin inhibitor produced in maize kernels (Chen et al. 1998). Several other 

defense proteins have been shown to be produced in response to A. flavus infection of healthy 

kernel tissues including β-1,3-glucanases and chitinases, which have been shown to function in 

the lysis of hyphal tip cells to halt fungal growth, zeamatin, and ribosome inactivating proteins 

(Guo et al. 1997; Huynh et al. 1992; Lozovaya et al. 1998; Mauch et al. 1988; Walsh et al. 1991).  

It is also noteworthy that the successful colonization of maize tissues by A. flavus along 

with significant aflatoxin accumulation generally occurs during stress conditions, particularly 

drought and heat stress conditions, and contributes to the classification of A. flavus as an 

opportunistic pathogen (Payne 1998). Specifically, drought stress conditions have been shown to 

negatively affect the expression of genes coding for some resistance associated proteins possibly 

resulting in reduced accumulation of these proteins in mature maize kernels (Fountain et al. 

2010; Guo et al. 2008; Scully et al. 2009; Wang et al. 2008).  

Some of the proteins produced in response to stress conditions have been shown to be 

involved in resistance. In a series of proteomics studies by Chen et al. (2002), by comparing the 
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protein profiles of susceptible and resistant maize germplasm, a number of proteins related to a 

variety of stresses were differentially expressed. These proteins included storage proteins such as 

globulin 1 and globulin 2, proteins involved in drought and desiccation stress such as late 

embryogenesis abundant proteins (LEA 3 and LEA 14), water and osmo/salt-stress related 

proteins such as WSI18 and aldose reductase, and heat stress related proteins such as HSP16.9 

(Chen et al. 2004). Also, Pechanova et al. (2011) examined the proteome of resistant and 

susceptible maize rachis during maturation and in response to infection by A. flavus. They found 

that resistant varieties accumulated high levels of abiotic stress mediating proteins, such as heat 

shock proteins, and antioxidant proteins, such as APx1-cytosolic ascorbate peroxidase and 

superoxide dismutase ([Cu-Zn]-4 and -4AP), early in development and accumulated 

pathogenesis-related proteins to an elevated level over time indicating that abiotic stress 

tolerance may play an important role in resistance to A. flavus.  

In later studies, other proteins were also found to be up-regulated by A. flavus infection 

including glyoxalase I (GLX-I) and Zea mays pathogenesis-related proteins 10 and 10.1 

(ZmPR10 and ZmPR10.1) (Chen et al. 2004, 2006, 2010; Xie et al. 2010). The proteins ZmPR10 

and ZmPR10.1 are of particular interest as they have been shown to be inducible by both biotic 

and abiotic sources including pathogen infection, salicylic acid (SA) or H2O2 treatment of plants, 

or wounding (Xie et al. 2010). In pepper (Capsicum annum), PR10 has also been shown to be 

involved in programmed cell death by forming a complex with leucine-rich repeat protein1 

(LRR1), (Choi et al. 2012). The amino acid sequences of both ZmPR10 (AAY29574.1) and 

ZmPR10.1 (ADA68331.1) also revealed that they both possess PYR/PYL/RCAR-like domains 

(Marchler-Bauer et al. 2013) which, like the closest homologs of these proteins in A. thaliana, 
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function in abscisic acid (ABA) signal transduction (Melcher et al. 2010; Nishimura et al. 2010; 

Santiago et al. 2009; Yin et al. 2009). 

2.4 Systemic Plant Defense Regulation 

Recent research has focused on the biological pathways involved in inducing the 

expression of such defense genes in plants in response to pathogen infection. Many defense 

genes have been found to be expressed through the process of systemic acquired resistance 

(SAR) which can be regulated through many chemical messengers in plants including auxins 

(e.g. indole-3-acetic acid, IAA), azeliac acid, dehydroabietinal, ethylene, (E)-2-hexenal, (Z)-3-

hexenal, jasmonic acid (JA), salicylic acid (SA), reactive oxygen species, and lipid-based signal 

molecules (Durrant and Dong, 2004; Shah,  2009; van Loon et al. 2006).  

Different classes of plant pathogens elicit defense signaling through different chemical 

messengers. Of particular interest are biotrophic and necrotrophic pathogens. Biotrophic 

pathogens are classified as those that survive by absorbing nutrients from living host tissue and 

secretes elicitors to suppress host cell death while necrotrophic pathogens, secrete elicitors into 

the host resulting in localized cell death, after which the pathogen acquires nutrients from the 

necrotic tissue (Glazebrook, 2005; Spoel et al. 2007). For example, biotrophic plant pathogens 

such as Peronospora parasitica have been found to induce SA-responsive defense gene 

expression in Arabidopsis thaliana (Glazebrook, 2005; Thomma et al. 1998), while necrotrophic 

plant pathogens such as Botrytis cinerea have also been found to induce JA- and ethylene-

responsive defense gene expression in A. thaliana (Birkenbihl et al. 2012; Birkenbihl and 

Somssich, 2011; Glazebrook, 2005). 

Salicylic acid (SA) has been shown to play a predominant role in the global activation of 

SAR in response to the infection of several pathogens throughout many plant species (Durrant 
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and Dong, 2004). SA is transported throughout the plant in a methylated form, methyl salicylate, 

through the phloem before being hydrolyzed in systemic tissues resulting in SA accumulation 

leading to heightened resistance, such as in the case of Tobacco mosaic virus (TMV) infection of 

tobacco (Park et al. 2009; Shah, 2009). Mechanisms related to the production of SA in response 

to pathogen infection, as well as the transduction of such signals to directly induce the expression 

of defense genes or indirectly through transcription factors to regulate defense gene expression, 

have been the focus of recent studies (Van Verk et al. 2011; Wang et al. 2005).  

One of the primary signaling proteins identified for the induction of pathogenesis-related 

(PR) gene expression is the non-expressor of pathogenesis-related genes 1 (NPR 1) (Pieterse and 

Van Loon, 2004). NPR1 has been shown to be directly involved in SA induced defense 

responses through the use of mutant A. thaliana plants with a single recessive mutation of npr1 

resulting in insensitivity to SA, leading to highly increased susceptibility to pathogen infection, 

and greatly reduced expression of PR genes (Cao et al. 1994; Shah et al. 1997). NPR1 is 

translocated across the nuclear membrane due to the accumulation of SA in the cytoplasm. Upon 

entering the nucleus, NPR1 binds to members of the transcription factor (TGA) subclass of the 

basic leucine zipper (bZIP) family of proteins, specifically TGA2 and TGA3. These transcription 

factors bind to DNA at SA-responsive promoter regions (TGACG), which results in the 

expression of PR genes such as PR-1 (Pieterse and Van Loon, 2004; Spoel et al. 2009; Zhou et 

al. 2000). Recent studies have also shown that the regulation of NPR1 levels in the nucleus is 

mediated by the ubiquitinylation of NPR1 by the Cullin3-based E3 ubiquitin ligase (CUL3), with 

the NPR1 paralogues NPR3 and NPR4 serving as adaptors, and subsequently degraded by the 

26S proteosome (Fu et al. 2012; Pintard et al. 2004; Spoel et al. 2009). This process is necessary 
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for maintaining and preventing pre-mature activation of NPR1 mediated SAR responses (Fu et 

al. 2012; Spoel et al. 2009) 

2.5 WRKY Transcription Factors and Their Regulation 

NPR1/TGA has also been found to promote the expression of additional transcription 

factors involved in resistance to pathogen infections, such as WRKY transcription factors (Wang 

et al. 2006). WRKY transcription factors, first described by Ishiguro and Nakamura (1994), 

represent a complex network of defense gene expression regulators. These transcription factors 

are characterized by their distinctive structural features and DNA binding affinity. The WRKY 

transcription factor DNA binding domain consists of approximately 60 residues with an almost 

invariant amino acid sequence of WRKY at the N-terminus of the domain, and a zinc finger 

structure at the C-terminus (Rushton et al. 1996, 2010). This domain binds highly conserved 

promoter regions referred to as W-boxes with sequence of C/TTGACC/T (Euglem and 

Somssich, 2007). Based on key protein structural features and sequence analysis, WRKY 

transcription factors can be grouped into Group I, IIa, IIb, IIc, IId, IIe, and III classifications with 

not all Group II subgroups being monophyletic (Chen et al. 2012b; Rushton et al. 2010; Zhang 

and Wang, 2005).  

The expression of WRKY transcription factors can be influenced by a wide range of 

defense-related pathways including SA response through NPR1/TGA (Euglem and Somssich, 

2007). In addition to this, mitogen-activated protein kinase (MAP kinase; MAPK) cascades 

resulting from pathogen recognition by pathogen associated molecular pattern (PAMP) receptors 

leading to PAMP-triggered immunity (PTI) can also play a role in regulating WRKY 

transcription factor expression. PTI is initiated by the binding of PAMPs to receptor-like kinase 

(RLK) proteins which results in the initiation of a signaling cascade through phosphorylation 
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from MAP kinase kinase kinase (MAP3K) to MAP kinase kinase (MAP2K), and finally to 

MAPK (Chisholm et al. 2006). For some group I WRKY transcription factors, such as 

AtWRKY25 and AtWRKY33, the signals are then passed to the nuclear localized coupling factor 

MKS1 which promotes the expression of the target gene(s) (Andreasson et al. 2005; Euglem and 

Somssich, 2007; Li et al. 2011; Qiu et al. 2008; Rushton et al. 2010). WRKY transcription factor 

expression can also be modulated by effector triggered immunity (ETI) in which recognizing 

avirulence effector proteins secreted by pathogens into the plant cell results in signaling cascades 

to initiate defense gene expression. For example, resistance to barley powdery mildew (Blumeria 

graminis f.sp. hordei), requires the recognition of the avirulence effector protein AVR10 by the 

defense protein mildew-resistance locus A (MLA). The association of MLA with HvWRKY1 

and HvWRKY2 then functions to initiate ETI   (Euglem and Somssich, 2007; Padney and 

Somssich, 2009; Shen et al. 2007; Rushton et al. 2010).  

Several WRKY transcription factors (TF) have been shown to have marked effects on the 

expression of genes associated with defense. For example, in Arabidopsis, following SA-

concentration dependent nuclear translocation of NPR1 as previously described, NPR1 binds to 

TGA transcription factors resulting in the expression of numerous WRKY TFs capable of either 

promoting or repressing defense-related gene expression including AtWRKY18, -38, -53, -54, -

58, -59, -66, and -70 (Wang et al. 2006; Euglem and Somssich, 2007). In particular, AtWRKY70 

has been shown to be involved in the expression of SA-responsive defense related genes 

including PR1, PR2, and PR5 that are involved in SAR. In addition, AtWRKY70 has been shown 

to function in crosstalk between SA and JA pathways in a concentration-based manner. Elevated 

levels of AtWRKY70 tend to suppress JA-responsive genes and promote SA-responsive genes. 

Conversely, reduced levels of AtWRKY70 tend to promote JA-responsive genes and suppress 
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SA-responsive genes (Li et al. 2004). Also, AtWRKY58 has been shown to assist in the 

regulation of SAR by acting as a negative regulator of resistance at SA levels below a certain 

threshold. This characteristic may lend to prevention of unwarranted activation of SAR defenses 

as well as the deactivation of SAR once the pathogen challenge has subsided (Wang et al. 2006). 

Another group of examples includes several key WRKY TFs regulated by a MAP-kinase 

cascade triggered during PTI as previously described such as, AtWRKY28, AtWRKY33, 

AtWRKY46, AtWRKY53, and parsley PcWRKY1. AtWRKY28 and AtWRKY46 regulate the 

expression of genes coding for isochorismate synthase (ICS1) and AVRPPHB Susceptible 3 

(PBS3), respectively. These two enzymes function in the production of SA utilized in 

NPR1/TGA mediated SAR (Euglem and Somssich, 2007; Van Verk et al. 2011). AtWRKY33 is 

negatively regulated by MPK4 when it is bound to the complex of the AtWRKY33 protein and 

MKS1 (Andreasson et al. 2005; Eulgem and Somssich, 2007; Ishihama and Yoshioka, 2012; Qiu 

et al. 2008; Rushton et al. 2010). In addition, MPK3 and MPK6 have been found to interact with 

AtWRKY33 and phosphorylate the protein in response to pathogen infection (Ishihama and 

Yoshioka, 2012; Mao et al. 2011). In addition to NPR1/TGA, AtWRKY53 can also be regulated 

through MAPK pathway components, specifically MEKK1 (Eulgem and Somssich, 2007; Miao 

et al. 2004, 2007; Rushton et al. 2010). Finally, PcWRKY1 has been shown to function in 

autoregulation as well as in the transcriptional activation of PcPR10 expression (Ülker and 

Somssich, 2004).  

Given the high degree of association of WRKY TFs with key SA-based defense 

pathways such as SAR, it is possible that key maize defense genes and proteins may be regulated 

directly by W-box promoter elements, or indirectly through regulation of SA-responsive defense 

pathway elements. However, a recent review discussing the role of NPR1 in maize indicated that 
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the knockout or over-expression of the maize ortholog of A. thaliana NPR1 resulted in no change 

in disease responses (Balint-Kurti and Johal, 2009; Johal et al. Unpublished). Conversely, studies 

by Chern et al. (2001, 2005) have shown that NPR1 in rice functions similarly to that described 

for A. thaliana and that overexpression of rice NPR1 results in constitutive activation of defense 

responses. Therefore, since transformants involving rice NPR1 modulate host resistance while 

those using maize NPR1 do not, it is possible that mechanisms and pathways involved in induced 

defense responses may vary between monocot species (Balint-Kurti and Johal, 2009), but further 

studies are needed to identify specific causes for any functional dissimilarity.   

Host defenses mediated by jasmonic acid and ethylene can also be modulated by WRKY 

transcription factors. In a recent series of studies by Birkenbihl and Somssich (2011) and 

Birkenbihl et al. (2012), it was clearly demonstrated that AtWRKY33 is required for the 

induction of JA-promoted defense genes such as defensins (PDF1.1 and PDF1.2). Aspects of JA 

biosynthesis and defenses can also be influenced by WRKY transcription factors, such as 

AtWRKY11, -17, -50, and -51. AtWRKY11 and AtWRKY17 are functionally redundant and 

serve to promote JA biosynthesis genes, such as lipoxygenase 2 (LOX2) and allene oxide 

synthase (AOS), while simultaneously suppressing AtWRKY70, which, as previously discussed, 

promotes SA-induced basal defenses (Journot-Catalino et al. 2006). AtWRKY17 may also 

function in bacterial pathogen resistance; however, a recent study found that silencing 

AtWRKY17 increases A. thaliana susceptibility to Agrobacterium tumefaciens (Lacroix and 

Citovsky, 2013). In addition, reduced levels of oleic acid (18:1), a biological precursor to JA 

(Heldt and Piechulla, 2010; León and Sánchez-Serrano, 1999), results in the induction of 

AtWRKY50 and AtWRKY51 which function to suppress JA-based defenses (e.g. PDF1.2) and 

promote SA-based defense genes (Gao et al. 2011). Through a MPK3/6 signal transduction 



15 
 

pathway, AtWRKY33 has also been shown to promote the expression of 1-amino-cyclopropane-

1-carboxylic acid (ACC) synthase genes ACS2 and ACS6, enzymes involved in ethylene 

biosynthesis (Li et al. 2012). 

WRKY transcription factors have also been found to be involved in plant responses to 

environmental stresses. Responses to abiotic stresses such as heat stress and salt stress have been 

shown to be mediated by pathways under the regulation of WRKY transcription factors (Chen et 

al. 2012b). For example, AtWRKY25, -26, -33, and -39 have been shown to promote 

thermotolerance under heat stress conditions (Li et al. 2010, 2011). Functional orthologs of 

AtWRKY33 in other species have also been shown to be involved in abiotic stress responses 

such as its homolog in maize (annotated as ZmWRKY53 in the Genebank and in this study), 

which enhances salt stress tolerance when overexpressed transiently in A. thaliana and is induced 

by drought, salt, and cold stress as well as by ABA application (Li et al. 2013). Abiotic stress 

responses can be mediated by interactions between ABA and calcium signaling through 

calmodulins (Hu et al. 2006; Reddy et al. 2011). Calmodulins have been found to bind to several 

transcription factors including TGA3 and TGA6, as well as several WRKYs including 

AtWRKY7, -21, -43, -45, -50, and -53 (Chi et al. 2013; Popescu et al. 2007). Given these 

findings, it is probable that the orthologs of some of these WRKY transcription factors in maize 

serve dual roles and are involved not only in pathogen defense signaling, but also in abiotic 

stress response. This has recently been demonstrated to be the case in drought stress responses 

(Wei et al. 2012). 

2.6 Present Study 

Some maize defense genes have been shown to be up-regulated by phytohormone 

application. Examples of this are ZmPR10 and ZmPR10.1, which were up-regulated in response 
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to applied SA and in response to A. flavus infection (Chen et al. 2006, 2010; Xie et al. 2010). 

ZmPR10 and ZmPR10.1, both of which possess anti-fungal and RNase activities and function in 

maize resistance to A. flavus infection, have also been found to possess W-box elements in their 

promoter regions strongly indicating the possible involvement of WRKY transcription factors in 

regulating the expression of these genes (Chen et al. 2006; Liu and Ekramoddoullah, 2006; Xie 

et al. 2010; Xie et al. unpublished). However, no studies have confirmed the involvement of 

SAR in maize defense to A. flavus infection or aflatoxin accumulation. Therefore, in order to 

better understand the mechanism of defense gene induction in maize in response to A. flavus 

infection, transcriptional regulators, such as WRKY TFs, need to be examined. In addition, 

recent microarray analyses of a resistant and a susceptible maize line derived from a cross 

between 1638 and GT-MAS:gk, Eyl25 and Eyl31, respectively (Menkir et al. 2006, 2008), 

revealed varying levels of expression of several WRKY TFs between the two lines. This 

indicates that WRKY TFs may play an important role in coordinating transcriptional 

reprogramming for defense responses in maize to A. flavus infection and/or aflatoxin 

contamination (Luo et al. 2011).  

In this study, therefore, we examined available microarray data for possible candidate 

WRKY TFs involved in resistance to A. flavus colonization of maize kernels, and compared the 

expression of these candidate WRKY genes in resistant and susceptible maize lines in response 

to A. flavus inoculation under field conditions using real-time/quantitative polymerase chain 

reaction (qPCR) techniques. In addition, the expression of several indicator genes was used to 

determine which major defense pathways, SA or JA/Ethylene, are used in conjunction with 

WRKY transcription factors to regulate maize defense to A. flavus infection, specifically the 

maize homologs of NPR1 and PR-1, which regulate SA-based defenses (Spoel et al. 2007; Zhang 



17 
 

et al. 1999), and ethylene responsive factor1 (ERF1), which regulates JA and ethylene-based 

defenses (Lorenzo et al. 2003). In addition, expression variation over time was examined in order 

to reveal possible variations in WRKY TF expression over the course of A. flavus infection. The 

identification of maize WRKY TFs specifically induced or repressed by A. flavus infection and 

subsequent aflatoxin accumulation with homologies to WRKY TFs in other plant species, such 

as rice (Oryza sativa) or A. thaliana, will allow for a better understanding of the possible maize 

defense mechanisms involved in producing the resistance phenotype. In addition, the 

identification of specific maize WRKY TFs regulated by A. flavus infection may allow for their 

use in marker assisted selection (MAS) in breeding applications. 
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3. MATERIALS AND METHODS 

3.1 WRKY Transcription Factor Identification and Selection 

 Maize putative WRKY transcription factor sequences, 202 in total, were obtained from 

the Plant Transcription Factor Database v3.0 (Pérez-Rodríguez et al. 2010). In order to determine 

which of these many putative WRKY TFs to examine in this study, the sequences obtained from 

the database were then searched using the National Center for Biotechnology Information 

(NCBI) Basic Local Alignment Search Tool (BLAST) for the database of the Maize 

Oligonucleotide Microarray Project (http://www.maizearray.org). Having identified the available 

WRKY transcription factors available on the array and their correlating annotations (Maize 

Array Annotations v.1.0), we examined the results of a previously performed microarray study 

by Luo et al. (2011; Unpublished data) in which the expression profiles in kernels of maize 

genotypes Eyl25 (Resistant) and Eyl31 (Susceptible) upon infection with A. flavus in kernel 

screening assay (KSA) conditions described by Brown et al. (1995). Maize WRKY TF 

annotations showing significant up- or down-regulation by A. flavus infection were selected for 

examination in the present study (Table 3.1). In addition, a maize WRKY TF, PTZm631 

(NM_001196138.1), which was found to be significantly induced by A. flavus infection in a 

susceptible commercial hybrid N83-N5 (Syngenta, Basel, Switzerland) in immature kernel 

tissue, by Han et al. (2010, Unpublished data) was also included in the present study.   

3.2 Plant Materials 

In 2010, 2011, and 2012, two inbred maize lines, B73 and TZAR101, were grown in field 

conditions with adequate irrigation at the Burden Research Center, Baton Rouge, LA, USA. B73 

is a standard inbred line which is known to be susceptible to A. flavus colonization and aflatoxin 

accumulation (Chen et al. 1998; Scully et al. 2009). TZAR101 is a relatively new inbred line 
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developed by the United States Department of Agriculture – Agricultural Research Service 

(USDA-ARS) and the International Institute of Tropical Agriculture (IITA) which is resistant to 

A. flavus colonization and aflatoxin accumulation (Menkir et al. 2008).  

In each year, plots of each variety were planted in a randomized block design along with 

other IITA lines and inbreds utilized in concurrently running experiments.  In 2010, two plots of 

B73 and one plot of TZAR101 were grown to serve as two and one biological replicates 

respectively. In 2011 and 2012, one plot of B73 and two plots of TZAR101 were grown and 

serve as one and two biological replicates, respectively. This variation in plot numbers is due to 

seed availability in each year. This study, therefore, consists of at least four biological replicates 

for each line over three years. All ears used in this study were self-pollinated in order to ensure 

homozygosity in the kernel tissues used for expression analysis as follows. Immature ear shoots 

were covered prior to anthesis with a no. 217 shoot bag (Lawson, Northfield, IL, USA). Upon 

Annotation Putative gene function
1

Eyl25
3

Eyl31
4

MZ00019797 Putative WRKY transcription factor, Oryza sativa 

(japonica cultivar-group)

N/A 13.78

MZ00021479 Putative WRKY transcription factor, Oryza sativa 

(japonica cultivar-group)

1.2 1.7

MZ00026377 WRKY1, Zea mays 1.5 2.62

MZ00042391 N/A, Oryza sativa  (japonica cultivar-group) 1.7 3.1

MZ00042508 Putative WRKY transcription factor, Oryza sativa 

(japonica cultivar-group)

N/A 3.7

1
Putative gene function obtained from maize array annotation v4.0; 58k maize microarray

2
Fold change in gene expression shown by qPCR during A. flavus  infection in comparison to 

 non-treated controls (Luo et al. 2011, Luo et al. Unpublished data). N/A indicates no detectible 

 variation in expression.

3
Resistant variety

4
Susceptible variety

Fold Change
2

Table 3.1 Prospective maize WRKY transcription factor annotations identified from maize 

microarray and quantitative/real-time PCR.
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anthesis and the emergence of fully developed anthers on the tassel, the entire tassel was covered 

with a no. 404 tassel bag (Lawson) and secured with paper clips. The following day, pollen was 

transferred to the emerged silk using the tassel bag and placing the bag around the emerged ear. 

The shoot bag was discarded during the process and the tassel bag was left in place and secured 

to the plant to prevent contamination with additional pollen. Tassel bags were labeled using a 

permanent marker with the pollination date to facilitate sample collection over a time course. 

3.3 Inoculation and Sample Collection 

At 14 days after pollination (DAP), the experimental treatments were applied. For 

inoculated samples, the maize ears were inoculated with 5.0 mL per ear (divided evenly across 

four injection sites) of A. flavus (Strain AF13; ATCC 96044, SRRC 1273) conidial suspension  

(4 x 10
6
 conidia/mL in 0.01% (v/v) tween 20) directly through husks using a 60.0-mL 

hypodermic syringe with an 18-gage hypodermic needle. To simulate the physical damage 

resulting from inoculation, wounded control samples were stabbed with a sterile 18-gage 

hypodermic needle which was used to wound multiple plants without additional sterilization 

while having no contact with A. flavus inoculum. Remaining ears in the plot served as non-

treated controls. Self-pollinated ears were then collected over a time course from 0 to 18 days 

after inoculation (DAI). 

In 2010, two replicate samples were collected at 1, 2, 4, 6, 10, 14, and 18 DAI from each 

treatment, with the exception of wounded controls, which were collected up to 10 DAI.  In 2011, 

two replicate samples were collected at 0, 1, 3, 6, 10, 14, and 18 DAI from each treatment, with 

the exception of wounded controls, which were collected up to 6 DAI. In 2012, three replicate 

samples were collected at 0, 1, 4, 6, 10, 14, and 18 DAI from each treatment with the exception 

of non-treated controls which were not collected. Changes in sample collection timing and 
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treatment applications were due to limited availability of plants in some plots as well as 

preliminary data suggesting that gene expression variations in response to wounding tend to 

occur before 6 to 10 DAI. All samples were collected, stored on ice and transported to the 

laboratory. Kernels (12-16, approx. 5g) surrounding the inoculation or wounding sites on treated 

ears were then removed from the ears and placed into 50-ml conical tubes and flash-frozen in 

liquid N2. The samples were then homogenized into a fine powder using a chilled mortar and 

pestle, and stored at -80°C until further use. This homogenized tissue was then used for nucleic 

acid extractions in preparation for expression analyses using quantitative/real-time polymerase 

chain reaction (qPCR). 

3.4 Field-Based Assay for Aflatoxin Accumulation Resistance 

In addition to plants inoculated for use in qPCR applications, additional ears for both B73 

and TZAR101 for each treatment were collected at full maturity (~ 60 DAP, seed moisture level 

< 15%) for aflatoxin analysis in order to confirm their resistance under Louisiana field conditions 

in 2012. In each biological replicate, up to 10 plants each were used as non-treated controls, 

wounded, and inoculated treatments. Kernels surrounding the inoculation sites, approximately 

20g, were removed and sent to Dr. Robert L. Brown’s laboratory at the Southern Regional 

Research Center (SRRC), USDA-ARS in New Orleans, LA, for aflatoxin analysis using an 

AgraQuant total aflatoxin ELISA test kit (Romer Labs, Union, MO, USA) according to the 

manufacturer’s instructions (Zheng et al. 2005). 

3.5 Total RNA Isolation and Complementary DNA Synthesis 

Total RNA was extracted from 100 mg of homogenized kernel tissue from each sample 

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s 

instructions. Isolated total RNA was then treated with DNase (Qiagen, Valencia, CA, USA). In 
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addition, given the high concentration of carbohydrates within the immature maize kernel tissue, 

an additional centrifugation step of three minutes at 12,000 x g was included following DNase 

digestion in order to remove any un-dissolved starch from the solution. The supernatant was then 

transferred to a separate 1.5mL microfuge tube and purified using a cleanup column from an 

RNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions. The quantity of 

purified total RNA were estimated based absorbance values at 230, 260, and 280 nm measured 

using a Nano-Drop ND-1000 Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) 

(Fountain et al. 2010). 

Complimentary DNA (cDNA) was then synthesized from the isolated total RNA using a 

TaqMan Reverse Transcription Reagents Kit (Applied Biosystems, Warrington, UK) according 

to the manufacturer’s instructions. For reverse transcription, a 20.0 µl reaction volume contained 

the following components and final concentrations of:  25 ng/µl total RNA, 1.0 X TaqMan RT 

buffer, 5.5 mM MgCl2, 500 µM for each dNTP, 2.5 µM random hexamers, 0.4 U/µl RNase 

inhibitor, and 1.25 U/µl MultiScribe Reverse Transcriptase. The reverse transcription reaction 

was performed using a MyCycler Thermal Cycler (Biorad, Hercules, CA, USA) with the 

following cycling parameters: 25°C for 10 min, 48°C for 30 min, and 95°C for 5 min. The 

synthesized cDNA was then stored at -20°C until use in qPCR. 

3.6 Primer Design and Amplification Efficiency Analysis 

The cDNA sequences of the candidate WRKY genes were retrieved from Genebank and 

analyzed using Beacon Designer Software (Biorad) to design gene specific qPCR primers with 

an amplicon size of 80 – 150 bp and a melting temperature (Tm) of 60°C ± 1°C. In order to 

prevent off-target amplification, BLAST was used to identify the ten most homologous 

sequences to the WRKY TF cDNA sequence. These sequences were then aligned using 
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ClustalW2 (EMBL-EBI; http://www.ebi.ac.uk/Tools/msa/clustalw2/). Primer suggestions from 

the Beacon Designer software were then compared to the alignments and those primer pairs that 

possessed the least homology to off-target sequences, particularly at the 3’ end of the primer 

sequences, were selected.   

The amplification efficiency for each set of real time PCR primers was determined using 

serial diluted genomic DNA extracted from newly emerged leaf tissue of a commercial hybrid, 

N83-N5 (Syngenta), isolated using a GenElute Plant Genomic DNA Miniprep Kit (Sigma 

Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions. If primer 

dimerization was observed, corresponding cDNA was used instead to determine whether this 

could resolve the primer dimerization issue. In cases when primer dimerization levels or 

amplification efficiency was not ideal, a new set of primers were designed. A concentration 

gradient of five, ten-fold serial dilutions from 110 ng to 11 pg was used in the experiment. For 

the primers of the SA and JA/ethylene-based defense pathway indicator genes (ZmNPR1, ZmPR-

1, and ZmERF1), a concentration gradient of five-fold serial dilutions from 29 ng to 46.4 pg was 

used for amplification efficiency determination. 

For amplification efficiency analysis, qPCR was performed in a 25 µl reaction volume 

containing the following: 1X SYBR Green PCR Master Mix (Applied Biosystems), 0.4 µM 

forward primer, 0.4 µM reverse primer, and template from the dilution series with  the 

previously indicated concentrations. Three technical replicates were included for each sample. 

qPCR was performed in an ABI Prism 7000 Sequence Detection System (Applied Biosystems) 

using the following parameters: 50°C for 2 min, 95°C for 10 min, and 40 amplification cycles of 

95°C for 15 sec, and 60°C for 1 min. Dissociation curve analysis was performed at the end of the 

amplification cycles to examine for the occurrence of primer dimerization. Standard curve 
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analysis resulting from plotting observed cycle threshold (CT) values versus Log(concentration) 

followed by linear regression analysis was then used in conjunction with the equation Efficiency 

= 10
(-1/Slope)

 – 1 (Pfaffl, 2001) to calculate amplification efficiency for each primer pair. Primers 

with amplification efficiency of >87% (E+1 = 1.87) are used in this study (Pfaffl, 2004). A full 

list of the primer sequences used in this study, their corresponding amplification efficiencies, and 

the database accessions for each gene can be found in Table 3.2.  

3.7 Gene Expression Analysis  

The expression levels of the selected maize WRKY TF and pathway component genes in 

each line in response to each treatment was analyzed through qPCR using the following setup in 

a 15µl reaction volume: 1X SYBR Green PCR Master Mix (Applied Biosystems), 0.4 µM 

forward primer, 0.4 µM reverse primer, and 25 ng template cDNA. Three technical replicates 

were done for each sample. qPCR was then performed using an ABI Prism 7000 Sequence 

Detection System (Applied Biosystems) with cycling parameters: 50°C for 2 min, 95°C for 10 

min, and 40 amplification cycles of 95°C for 15 sec, and 60°C for 1 min. Dissociation curve 

analysis was performed at the end of the amplification cycles to test for primer dimerization. 

Threshold cycle (Ct) values were then calculated using a fluorescence threshold of 0.3 with a 

baseline automatically calculated by the equipment software. Relative gene expression levels 

were then determined by comparing the Ct of the target gene to that of the internal reference 

gene, Zm18S rRNA, using the following equation: relative gene expression = [(E+1)
(Ct

 
Zm18S rRNA)

 

/ (E+1)
(Ct

 
target gene)

], where E is the target gene primer amplification efficiency derived from 

equation Efficiency = 10
(-1/Slope)

 – 1 (Chen et al. 2010; Jiang et al. 2012; Pfaffl, 2001).
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Table 3.2 Gene accession numbers and primer sequences for qPCR analysis.

Gene ID
Microarray   

Accession

Plant TFD     

Accession

Genebank   

Accession*
MReg. E(%)

Zm WRKY19 MZ00019797 GRMZM2G063880_P01 AFW81188.1 Zm WRKY-F 5'-CGCCGACTTCCCGCTCTTC-3' -3.41 0.96

Zm WRKY-R 5'-CGAACTCCACGCCGATGCC-3'

Zm WRKY21 MZ00026377 GRMZM2G117394_P01 NP_001150830.1 Zm WRKY21-F 5'-CGCTCGTCGTCACCACCAC-3' -3.22 1.05

Zm WRKY21-R 5'-CTCTCCACTGCCGTCCTGTTG-3'

Zm WRKY53 MZ00021479 GRMZM2G012724_P01 NP_001147949.1 Zm WRKY53.1-F 5'-GCGGCGACTTCTCCTTCCAC-3' -3.32 1.00

Zm WRKY53.1-R 5'-CACTTGCTGCTCTTGCTCCTTG-3'

Zm WRKY53.1 MZ00042508 GRMZM2G150441_P03 NP_001147551.1 Zm WRKY53-F 5'-CCACACGGCTACCTCCAACG-3' -3.33 1.00

Zm WRKY53-R 5'-CTTGCTGCTCTGCTCCTCCTC-3'

Zm WRKY67 PTZm631** GRMZM2G076878_P01 NP_001148599.1 Zm WRKY67-F 5’-TCAGAACGAGATCAGAGGTGGA-3’ -3.16 1.07

Zm WRKY67-R 5’-TCTTGACAGCCTTCTTGCCAT -3’

Zm WRKY68 MZ00042391 GRMZM2G071907_P01 ACG45417.1 Zm WRKY68-F 5'-TAGAAAGAGGGAGAGGAGGACACC-3' -3.24 1.04

Zm WRKY68-R 5'-AGCCTGAGCGAGCACCAATC-3'

Zm ERF-1 . . NP_001105270.1 Zm ERF1-F 5'-TCGTCCTAGTCGGTGTGATGTGAT-3' -3.12 1.09

Zm ERF1-R 5'-TCTTGATTCCTCATCAACTTGCGAGT-3'

Zm NPR-1 . . ACG45791.1 Zm NPR1-F 5'-TCGCGCTTGCAGATGTCAATCA-3' -3.55 0.91

Zm NPR1-R 5'-TCAAATGTGAGGTCTGATGGCCGA-3'

Zm PR-1 . . NP_001152581.1 Zm PR1-F 5'-GCCACTACACCCAGATCATG-3' -3.67 0.87

Zm PR1-R 5'-AAAGGAACGGTGTCAGTACG-3'

Zm 18S . . AF168884.1 Zm 18S-F 5'-GAGAAACGGCTACCACATCCA-3' -3.11 1.10

Zm 18S-R 5'-ACGCGCCCGGTATTGTTAT-3'

M Reg. = Slope of linear regression in standard curve analysis.

E(%) = Amplification efficiency calculated from the equation E = 10
(-1/Slope)

 – 1 

*NCBI Genebank accession of gene product. Protein amino acid sequences for WRKY transcription factors obtained by BLASTp of PlantTFD sequences.

**From Han et al. 2010

Primer Sequences
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 3.8 Statistical Analysis 

 The relative expression data from the three years of the study were combined for analysis 

for all available time points and treatments. The relative expression levels were transformed by 

taking the natural logarithm of the relative expression levels after they had been multiplied by 

1.0 x 10
9
 to allow for the absence of negative values in the data set. Log transformation was used 

to compensate for variation among the yearly replications of the experiment. Examination of 

significant interactions between fixed effects and the determination of averages and standard 

error of the three-way interactions of variety, treatment, and time point were done using a 

factorial analysis of variance (ANOVA) using Proc Mixed in SAS (Statistical Analysis System, 

SAS Institute, Cary, NC, USA). Compensations in Proc Mixed were made to correct for any 

non-normal distributions using the Kenward-Rogers adjustment to the denominator degrees of 

freedom (Kenward and Roger, 1997). These analyses used modified marginal means to 

compensate for any missing points that would confound least square means calculations for type 

III fixed effects (Saxton, 1998; Searle et al. 1980). For aflatoxin level analysis, an ANOVA with 

modified marginal means in conjunction with Tukey’s LSD for post-hoc analysis was used 

(Saxton, 1998). Significance in this study was defined by a confidence interval ≥95% (α = 0.05). 
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4. RESULTS 

4.1 Aflatoxin Accumulation in Maize Lines B73 and TZAR101  

The detectable aflatoxin levels in the mature kernels of the two maize lines used in this 

study were examined in order to evaluate their potential resistance to Aspergillus flavus 

colonization and subsequent aflatoxin contamination. In 2012, B73, the known susceptible line 

(Chen et al. 1998; Scully et al. 2009), showed significantly greater aflatoxin accumulation in the 

inoculated samples with an average aflatoxin level of 2042.5 ± 122.6 ppb (±SE; Range = 320.0 – 

4200.0 ppb) compared to the resistant line, TZAR101 (Menkir et al. 2008), with an average 

aflatoxin level of 203.0 ± 89.8 ppb (Range = 0.0 – 650.0 ppb) in inoculated samples (Figure 4.1). 

As expected, the non-treated controls and wounded samples in both lines contained low levels of 

aflatoxin: 12.5 ± 115.2 ppb (Range = 0.0 – 79.0 ppb) and 10.9 ± 131.7 ppb (Range = 0.0 – 40.0 

ppb), respectively, for B73; and 1.6 ± 86.7 ppb (Range = 0.0 – 8.3 ppb) and 4.9 ± 99.0 ppb 

(Range = 0.0 – 34.0 ppb), respectively, for TZAR101 (Figure 4.1). The large standard error 

present in the non-treated control and wounded samples is likely due to natural infection of the 

ears by A. flavus in the environment possibly through the wounding site created by the 

inoculation technique or insect damage.  

4.2 Selection and Identification of Prospective WRKY Transcription Factor Genes 

 Two hundred and two (202) putative maize WRKY transcription factor sequences were 

obtained from the Plant Transcription Factor Database v3.0 (Pérez-Rodríguez et al. 2010). These 

sequences were searched using BLAST against the database of the Maize Oligonucleotide 

 Microarray Project (http://www.maizearray.org) to identify specific annotations for the putative 

WRKY transcription factors in maize. These annotations were then searched in maize microarray 

data obtained by Luo et al. (2011; unpublished data) in which kernels of resistant and susceptible  
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Figure 4.1 Field assay for resistance to aflatoxin accumulation in maize lines B73 and 

TZAR101.Aflatoxin levels were detected in analyses performed by USDA-ARS SRRC. Black 

bars (  ) represent the average aflatoxin level in ppb for the susceptible line, B73, for the 2012 

field assay in non-treated control, wounded, and inoculated samples. White bars (  ) represent the 

average aflatoxin level in ppb for the resistant line, TZAR101, for the 2012 field assay in non-

treated control, wounded, and inoculated samples. Post-hoc analysis was performed using 

Tukey’s LSD with α = 0.05. Error bars represent the standard error. 

   

maize genotypes Eyl25 (R) and Eyl31 (S) were inoculated with A. flavus using the kernel 

screening assay (KSA) protocol described by Brown et al. (1995). 

Comparison of the maize WRKY TF sequences from the Plant Transcription Factor 

Database (Pérez-Rodríguez et al. 2010) with annotations in the microarray database with the 

microarray data obtained by Luo et al. (2011; unpublished data) led to the identification of five 

candidate WRKY TFs for use in the present study. These genes can be identified by the 

following annotations: MZ00019797, MZ00021479, MZ00026377, MZ00042391, and 

MZ00042508 (Table 3.2). Of these annotations, MZ00021479, MZ00026377 and MZ00042391 
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were up-regulated in Eyl25 1.2, 1.5, and 1.7 fold respectively in comparison to non-treated 

controls of the same variety. For Eyl31, annotations MZ00019797, MZ00021479, MZ00026377, 

MZ00042391, and MZ00042508 were up-regulated by 13.78, 1.7, 2.62, 3.1, and 3.7 fold 

respectively, in comparison to non-treated controls of the same variety with the expression of 

MZ00019797 and MZ00042508 appearing only in this line and not in the resistant line, Eyl25. 

These identified WRKY TFs and their relative fold changes found by Luo et al. (2011; 

unpublished data) in KSA conditions are summarized in Table 3.1. In addition to these WRKY 

TFs identified from the microarray study, examination of data obtained by Han et al. (2010; 

unpublished data) yielded the identification of an additional WRKY TF, PTZm631, which was 

found to be significantly up-regulated, >20 fold, compared to non-treated controls in response to 

A. flavus inoculation in immature kernel tissues of the susceptible commercial hybrid N83-N5 

(Syngenta). Given the degree of up-regulation of this particular WRKY TF, this gene was added 

to the list of candidate WRKY TFs for further examination in the present study. 

The identity of the specific maize WRKY TFs the microarray accessions described were 

obtained by searching the corresponding amino acid sequences from the Plant Transcription 

Factor Database of the microarray accessions using BLASTx, a protocol which searches the 

amino acid sequence database for proteins using a nucleotide query sequence. MZ00019797 does 

not have high homology to currently characterized maize WRKY TFs, but does to an available 

putative WRKY TF (AFW81188.1; Coverage = 69%, ID = 46%). This putative WRKY TF is 

homologous to OsWRKY19 (DAA05084.1; Coverage = 94%, ID = 51%), therefore this putative 

WRKY transcription factor was annotated ZmWRKY19 in this study. MZ00021479 and 

MZ00042508 were homologous to two entries for ZmWRKY53, NP_001147949.1 (Coverage = 

99%, ID = 64%) and NP_001147551.1 (Coverage = 60%, ID = 100%), respectively, with these 
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two sequences sharing only 83% homology at the protein level. This indicates that these two 

accessions are isoforms or distinct WRKY transcription factors and may possess different 

biological functions. MZ00026377 was found to be homologous to ZmWRKY21 

(NP_001150830.1; Coverage = 65%, ID = 95%), MZ00042391 was found to be homologous to 

ZmWRKY68 (ACG45417.1; Coverage = 56%, ID = 100%), and PTZm631 from Han et al. 

(2010) was found to be homologous to ZmWRKY67 (NP_001148599.1; Coverage = 71%,       

ID = 97%). 

4.3 Expression Analysis of WRKY Transcription Factor Genes 

 The expression levels of the selected maize WRKY TF genes in each line were examined 

for responses in immature maize kernel tissue to each treatment (non-treated control, wounded, 

and inoculated with A. flavus) over a time course ranging from 0 to 18 DAI across three years of 

study using qPCR. The relative expression data were combined for analysis for all available time 

points and treatments, and transformed as described in Materials and Methods. The transformed 

data were then analyzed for individual maize WRKY TFs by factorial ANOVA using a Proc 

Mixed procedure with SAS (SAS Institute). 

 The expression levels of the gene annotated MZ00019797, identified as a putative maize 

WRKY19 TF, were analyzed over the time course in both the susceptible B73 line (Figure 4.2; 

Graph A) and the resistant TZAR101 line (Figure 4.2; Graph B). In B73, this putative 

ZmWRKY19 gene was found to be induced by inoculation from 0 to 6 DAI compared to non-

treated control with the exception of 3 DAI, which had only one year of biological data (2011) 

and may be the result of environmental variation between years. The expression levels of this 

induction by inoculation and suppression in the non-treated control are significantly different 

from each other, but neither is significantly different from the expression levels of the wounded 
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Figure 4.2 Relative expression levels of the putative ZmWRKY19 gene (Microarray Accession: 

MZ00019797). Plotted values were calculated by taking the natural logarithm of the product of 

the relative expression of the putative ZmWRKY19 gene by 1.0x10
9
 over the time course. Data 

points represent the average of the relative expression levels for each treatment and time point 

for all available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error.  

 



32 
 

treatment. Expression in the wounded sample increased slightly from 1 to 6 DAI but did not 

show any variation at later time points. In TZAR101, there was no significant induction of 

expression at 1 and 4 DAI in response to inoculation or in the wounded treatment from 6 to 18 

DAI. However, the level of expression for all treatments was lower at time points between 4 and 

18 DAI in B73 in comparison to TZAR101, giving significance to the difference between the 

varietal responses (p = 0.0181). Treatments were found to result in significant changes in gene 

expression (p < 0.0001), and there was a significant two-way interaction of treatment x DAI (p = 

<0.0001). There was also a significant three-way interaction of variety x treatment x DAI (p = 

0.0012) (Appendix A: Table A.1).  

The expression levels of the gene annotated MZ00021479, identified as a ZmWRKY53 

isoform, were also analyzed over the time course in both the susceptible B73 line (Figure 4.3; 

Graph A) and the resistant TZAR101 line (Figure 4.3; Graph B). In B73, this ZmWRKY53 gene 

was significantly induced by inoculation at 4 DAI and in conjunction with wounding at 10 DAI 

in comparison to the non-treated control. Expression levels were not significantly in the 

inoculated treatment compared to the non-treated control at 18 DAI. In TZAR101, there was an 

induction in expression at 2, 4, and 10 DAI in response to inoculation, beginning earlier than that 

in B73. No significant difference in expression levels between the treatments at the other time 

points was detected. Overall, the expression levels for all treatments in B73 and TZAR101 were 

similar, indicated by a marginally significant varietal effect in the statistical analysis (p = 

0.0648). There was a significant treatment effect (p = 0.0057), two-way interaction of treatment 

x DAI (p = 0.0361), and three-way interaction of variety x treatment x DAI (p = 0.0046) 

(Appendix A: Table A.2).  
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Figure 4.3 Relative expression levels of the ZmWRKY53 gene (Microarray Accession: 

MZ00021479). Plotted values were calculated by taking the natural logarithm of the product of 

the relative expression of the ZmWRKY53 gene by 1.0x10
9
 over the time course. Data points 

represent the average of the relative expression levels for each treatment and time point for all 

available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error.  
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Expression levels of the gene annotated MZ00026377, identified as the ZmWRKY21 

gene, were also compared between the susceptible B73 line (Figure 4.4; Graph A) and the 

resistant TZAR101 line (Figure 4.4; Graph B) over the time course of A. flavus inoculation. In 

B73, the ZmWRKY21 expression was significantly reduced in response to wounding and 

inoculation at 3 DAI compared to the non-treated control. However, this is likely due to the lack 

of enough replications since the gene expression data at 3 DAI was from only one year of 

sampling (2011) and high year to year variation may be present. In TZAR101, there was a slight 

suppression in the wounded and inoculated treatment expression levels at 3 DAI compared to the 

non-treated control, but not significantly. For all remaining time points in both B73 and 

TZAR101, there were no significant differences in expression levels in response to any 

treatment. This resulted in no significant varietal effect in the statistical analysis (p = 0.5153). 

There were significant effects caused by treatment (p = 0.0057) and DAI (p = 0005). The two-

way interactions between variety x treatment (p = 0.0733) and variety x DAI (p = 0.0681) were 

marginally significant, while that of treatment x DAI was significant (p = 0.0071). The three-way 

interaction between variety, treatment, and DAI was also significant (p = 0.0159) (Appendix A: 

Table A.3).  

Expression levels of ZmWRKY68 gene (MZ00042391) over the time course were 

analyzed in both the susceptible B73 line (Figure 4.5; Graph A) and the resistant TZAR101 line 

(Figure 4.5; Graph B). The ZmWRKY68 gene displayed an expression pattern similar to that of 

ZmWRKY21 in the non-treated control. It showed elevated expression levels at 0 and 3 DAI in 

B73. However, there were some differences in that there was a slight, induction in response to 

inoculation at 4 DAI, though marginally significant, in B73. In TZAR101, there was a significant 

suppression of the ZmWRKY68 gene in responding to wounding, and A. flavus inoculation  
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Figure 4.4 Relative expression levels of the ZmWRKY21 gene (Microarray Accession: 

MZ00026377). Plotted values were calculated by taking the natural logarithm of the product of 

the relative expression of the ZmWRKY21 gene by 1.0x10
9
 over the time course. Data points 

represent the average of the relative expression levels for each treatment and time point for all 

available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error. 
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Figure 4.5 Relative expression levels of the ZmWRKY68 gene (Microarray Accession: 

MZ00042391).Plotted values were calculated by taking the natural logarithm of the product of 

the relative expression of the ZmWRKY68 gene by 1.0x10
9
 over the time course. Data points 

represent the average of the relative expression levels for each treatment and time point for all 

available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error.  
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appeared to increase its expression level back to that in the control at 14 DAI, though only 

marginally significant. There was no significant difference between the varieties (p = 0.7105) 

and no significant effect of DAI on expression levels (p = 0.8587), likely due to high variation 

between time points. The application of the treatments had a significant effect on expression     

(p = 0.0084), and all two- and three-way interactions between variety, treatment, and DAI were 

significant (p < 0.009) except for the two-way interaction between variety x DAI which was 

marginally significant (p = 0.0766) (Appendix A: Table A.4). 

 Expression levels of the second ZmWRKY53 gene (MZ00042508) over the time course 

were also analyzed in both the susceptible B73 line (Figure 4.6; Graph A) and the resistant 

TZAR101 line (Figure 4.6; Graph B). This isoform of ZmWRKY53 displayed a different pattern 

of expression than that of MZ00021479. This ZmWRKY53 gene, hence designated 

ZmWRKY53.1, displayed a slight induction in response to inoculation at 2 and 4 DAI in both B73 

and TZAR101, marginally significant only at 4 DAI in B73. No significant variation in 

expression among the treatments was observed for B73 at the other time points. In TZAR101, 

expression was induced to a similar degree in response to both wounding and inoculation and 

significantly at 14 DAI above the non-treated control, suggesting the induction was due to 

wounding rather than A. flavus inoculation. Overall, the expression levels of ZmWRKY53.1 in 

B73 were significantly higher than in TZAR101 for all treatments and time points (p < 0.0001). 

Treatments were shown to have a significant effect on expression levels (p = 0.0165), and there 

was a significant interaction between treatment x DAI (p = 0.0002). All other two- and three-way 

interactions were insignificant (Appendix A: Table A.5).  

 Finally, the expression levels of the ZmWRKY67 gene (PTZm631 from Han et al. 2010) 

were analyzed over the time course in both the susceptible B73 line (Figure 4.7; Graph A) and  
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Figure 4.6 Relative expression levels of the ZmWRKY53.1 gene (Microarray Accession: 

MZ00042508). Plotted values were calculated by taking the natural logarithm of the product of 

the relative expression of the ZmWRKY53.1 gene by 1.0x10
9
 over the time course. Data points 

represent the average of the relative expression levels for each treatment and time point for all 

available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error.  
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Figure 4.7 Relative expression levels of the ZmWRKY67 gene (Accession: PTZm631, from Han 

et al. 2010). Plotted values were calculated by taking the natural logarithm of the product of the 

relative expression of the ZmWRKY67 gene by 1.0x10
9
 over the time course. Data points 

represent the average of the relative expression levels for each treatment and time point for all 

available years and plots. A. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the susceptible line, B73. B. 

Relative expression levels over the time course in non-treated controls (●), wounded (○), and 

inoculated (▲) treatments for the resistant line, TZAR101. PROC Mixed factorial analysis of 

variance with α = 0.05 was used to determine contrasts of type 3 fixed effects for data 

interpretation. Error bars represent the standard error.  
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the resistant TZAR101 line (Figure 4.7; Graph B). The ZmWRKY67 gene showed early induction 

from 0 to 6 DAI in both B73 and TZAR101. The initial induction in expression in response to 

inoculation was greater in B73 compared to TZAR101. Expression of the ZmWRKY67 gene in 

the non-treated control exhibited a gradual developmental increase over the time course in both 

B73 and TZAR101; however, this occurred more rapidly in TZAR101 with a sharp increase at 4 

DAI. Expression levels in the inoculated treatment returned to initial levels and remained 

constant following an early induction in B73, whereas the expression in TZAR101 returned to 

initial levels then increased to a higher level later in the time course from 10 to 18 DAI. This 

increase was comparable to that of the early induction observed in B73 and was significantly 

greater than that of the non-treated control and wounded treatments in TZAR101 at 14 DAI. 

Overall, there was no significant difference between the two varieties (p = 0.8995), or in the two-

way interactions between variety x treatment (p = 0.8426) and variety x DAI (p = 0.7451). 

However, the two-way interaction between treatment x DAI (p = 0.0048), the three-way 

interaction between variety x treatment x DAI (p = 0.0225), the application of the treatments (p < 

0.0001), and DAI (p = 0.0033) were all significant (Appendix A: Table A.6).  

4.4 Expression Analysis of Prospective Pathway Genes 

In addition to the maize WRKY TF genes, the expression levels of several defense 

pathway genes were also examined. The expression levels of the ZmPR-1 gene in both the 

susceptible B73 line (Figure 4.8; Graph A) and the resistant TZAR101 line (Figure 4.8 Graph B) 

were analyzed over the time course of A. flavus inoculation. The ZmPR-1 gene displayed a 

significant similar suppression in expression at early time points in the wounded and inoculated 

treatments compared to the non-treated control from 0 to 4 DAI in B73, suggesting the observed 

suppression in ZmPR-1 expression was due to wounding rather than A. flavus inoculation.  
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Figure 4.8 Relative expression levels of the ZmPR-1 gene. Plotted values were calculated by 

taking the natural logarithm of the product of the relative expression of the ZmPR-1 gene by 

1.0x10
9
 over the time course. Data points represent the average of the relative expression levels 

for each treatment and time point for all available years and plots. A. Relative expression levels 

over the time course in non-treated controls (●), wounded (○), and inoculated (▲) treatments for 

the susceptible line, B73. B. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the resistant line, TZAR101. 

PROC Mixed factorial analysis of variance with α = 0.05 was used to determine contrasts of type 

3 fixed effects for data interpretation. Error bars represent the standard error.  
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ZmPR-1 expression in the wounded and inoculated treatments was not significantly different 

from the non-treated control in B73 from 6 to 14 DAI. At 18 DAI, there was an increase in 

expression in the inoculated samples; however, control samples were not available for 

comparison at this time point. In contrast, ZmPR-1 expression levels in TZAR101 were not 

significantly induced or suppressed in response to any treatment at all time points except at 14 

DAI where there was a marginally significant increase in expression in inoculated samples 

compared to wounding or the non-treated control. The contrasting patterns of ZmPR-1 

expression between B73 and TZAR101 indicated a significant difference in the responses of the 

two varieties to wounding (p = 0.0155). Treatment application (p = 0.0225) as well as the time 

course (p = 0.0263) had significant effects on expression levels. In addition, the two-way 

interactions between variety x DAI (p = 0.0160) and treatment x DAI (p = 0.0029) were 

significant, while the two-way interaction between variety x treatment (p = 0.3315) and the 

three-way interaction between variety x treatment x DAI (p = 0.3306) were not significant 

(Appendix A: Table A.7). 

Expression levels of the ZmNPR1 gene were also analyzed in this study (Figure 4.9). The 

expression levels of ZmNPR1 mimicked that of ZmPR-1 for the non-treated control and 

inoculated treatments at all time points in B73 (Figure 4.9; Graph A), showing significant 

suppression in gene expression in the wounded and inoculated treatments compared to the non-

treated control from 0 to 3 DAI. The inoculated treatment did not cause any significant variation 

in ZmNPR1 expression compared to the wounding treatment in B73 until 18 DAI where there 

was a similar increase in expression as observed for ZmPR-1. Again, no control samples were 

available for comparison at the 18 DAI time point for ZmNPR1. However, in TZAR101 (Figure 

4.9; Graph B), ZmNPR1 expression was induced at later time points by inoculation compared to  
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Figure 4.9 Relative expression levels of the ZmNPR1 gene. Plotted values were calculated by 

taking the natural logarithm of the product of the relative expression of the ZmNPR1 gene by 

1.0x10
9
 over the time course. Data points represent the average of the relative expression levels 

for each treatment and time point for all available years and plots. A. Relative expression levels 

over the time course in non-treated controls (●), wounded (○), and inoculated (▲) treatments for 

the susceptible line, B73. B. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the resistant line, TZAR101. 

PROC Mixed factorial analysis of variance with α = 0.05 was used to determine contrasts of type 

3 fixed effects for data interpretation. Error bars represent the standard error.  
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wounding or non-treated controls, a pattern which is different from that observed for ZmPR-1. 

The expression of ZmNPR1 in response to inoculation was significantly higher than the non-

treated control in TZAR101 from 4 to 10 DAI and significantly higher than the wounded 

treatment beginning at 6 DAI. Expression of ZmNPR1 was also suppressed at 14 and 18 DAI in 

the wounded treatment in comparison to the non-treated control. 

Overall, the expression levels of ZmNPR1 in the non-treated control and inoculated 

treatments remained elevated in TZAR101 over the duration of the time course, particularly later 

than 3 DAI, in comparison to those observed in B73, resulting in a significant effect of variety on 

expression levels (p = 0.0051). Treatment application was shown to have a significant effect on 

expression levels (p = 0.0264), while the time course had no significant effect on expression 

levels (p = 0.2324). In addition, the two-way interactions between variety x treatment (p = 

0.0043) and treatment x DAI (p = 0.0414) were significant. The remaining two-way interaction, 

variety x DAI (p = 0.5056), and the three-way interaction between variety x treatment x DAI (p 

= 0.1569) were not significant (Appendix A: Table A.8). 

 Finally, the expression levels of the ZmERF1 gene, a marker gene representing the JA 

and ethylene signal transduction pathways (Lorenzo et al. 2003), were analyzed over the time 

course in both the susceptible B73 line (Figure 4.10; Graph A) and the resistant TZAR101 line 

(Figure 4.10; Graph B). The ZmERF1 gene displayed a decreasing trend in expression levels 

developmentally in the non-treated controls from 0 to 10 DAI in B73 followed by an increase in 

expression at 14 DAI to initial levels. Neither wounding nor inoculation by A. flavus 

significantly affected its expression, except at 3 DAI when suppression of ZmERF1 expression 

by inoculation was observed. ZmERF1 expression levels in TZAR101, in contrast, remained 

consistent for the duration of the time course with a slight elevation in expression in response to  
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Figure 4.10 Relative expression levels of the ZmERF1 gene. Plotted values were calculated by 

taking the natural logarithm of the product of the relative expression of the ZmERF1 gene by 

1.0x10
9
 over the time course. Data points represent the average of the relative expression levels 

for each treatment and time point for all available years and plots. A. Relative expression levels 

over the time course in non-treated controls (●), wounded (○), and inoculated (▲) treatments for 

the susceptible line, B73. B. Relative expression levels over the time course in non-treated 

controls (●), wounded (○), and inoculated (▲) treatments for the resistant line, TZAR101. 

PROC Mixed factorial analysis of variance with α = 0.05 was used to determine contrasts of type 

3 fixed effects for data interpretation. Error bars represent the standard error.  
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inoculation at 14 DAI compared to the wounding. Despite the observed different patterns of 

ZmERF1 expression between the two varieties, no significant difference was detected between 

the two varieties (p =0.1522). This is likely due to the high degree of variability observed 

between time points as indicated by the standard error. The time course did have a significant 

effect on expression levels (p = 0.0032), while treatment application did not (p = 0.1067). In 

addition, the two-way interactions between variety x treatment (p = 0.0017) and variety x DAI (p 

= 0.0410) were significant, while the remaining two-way interaction, treatment x DAI (p = 

0.1034), was not significant. The three-way interaction between variety x treatment x DAI (p = 

0.0729) was found to be marginally significant (Appendix A: Table A.9). 
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5. DISCUSSION 

5.1 Potential Functions of WRKY Transcription Factor Genes 

Resistance of maize to colonization by Aspergillus flavus is a quantitative trait expressed 

by the combined effects of multiple defense mechanisms mediated through various signaling 

pathways (Brooks et al. 2005; Kelley et al. 2012; Paul et al. 2003). This has been shown through 

the examination of both the proteome and expression profiles of resistant and susceptible maize 

varieties, along with studies showing the environmental influences on colonization and 

subsequent aflatoxin production (Chen et al. 2012a; Kelly et al. 2012; Luo et al. 2008; Scully et 

al 2009). Several studies have uncovered the function of several proteins such as β-1,3-

glucanases, chitinases, glyoxalase I (GLX-I), ZmPR10, ZmPR10.1, ribosome inactivating 

proteins, and zeamatin which play partial roles in the overall resistance phenotype (Chen et al. 

2004, 2006, 2010; Huynh et al. 1992; Guo et al. 1997; Lozovaya et al. 1998; Mauch et al. 1988; 

Walsh et al. 1991; Xie et al. 2010). It has also been found that drought and heat stress can either 

enhance or diminish the resistance of some maize varieties to A. flavus infection indicating the 

potential involvement of abiotic stress response pathways in regulating resistance responses 

(Kebede et al. 2012).  In addition, recent transcriptional profiling studies have shown that 

components of signaling pathways mediated by several phytohormones including abscisic acid 

(ABA), ethylene, jasmonic acid (JA), and salicylic acid (SA) are also regulated in maize in 

response to A. flavus infection (Kelley et al. 2012; Luo et al. 2010, 2011).  

Luo et al. (2011) examined the expression profiles of resistant and susceptible maize 

kernels and showed that the expressions of several ZmWRKY transcription factors were 

significantly regulated in response to A. flavus infection. In recent studies, WRKY transcription 

factors have been found to be involved in defense regulation in model plant species against 
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several different classes of plant pathogens including hemibiotrophs, such as Pseudomonas 

syringae pv. tomato (Higashi et al. 2008), which alternate from biotrophic lifestyles early in 

infection to necrotrophic lifestyles later (Glazebrook, 2005),  and necrotrophs, such as Botrytis 

cinerea (Birkenbihl et al. 2012), which kill host tissues to derive nutrients (Glazebrook, 

2005).WRKY transcription factors have also been found to be involved in regulating responses 

to abiotic stress including cold stress, drought stress, heat stress, herbivore feeding, oxidative 

stress, and wounding (Chen et al. 2012b).  

In this study, we examined the expression of several of identified ZmWRKY transcription 

factors in both resistant (TZAR101) and susceptible (B73) maize varieties in response to A. 

flavus inoculation under field conditions. We also examined the expression of the maize 

orthologs of several A. thaliana genes known to be associated with some hormone signaling 

pathways, AtPR-1 and AtNPR1 which are associated with SA-mediated defense pathways (Spoel 

et al 2007; Zhang et al. 1999) and AtERF1 which serves as the intersection of JA- and ethylene-

mediated defense pathways (Lorenzo et al. 2003), to determine which signaling pathways are 

regulated in response to A. flavus inoculation.  

The expression levels of the selected WRKY transcription factors and pathway indicator 

genes were analyzed in both varieties over the time course of the experiment. In the resistant 

variety, TZAR101, the putative ZmWRKY19 (AFW81188.1), ZmWRKY67, ZmWRKY68, 

ZmNPR1, and ZmERF1 were expressed at higher levels, both constitutively and upon inoculation 

than in the susceptible line, B73, particularly after 4 to 6 DAI. The remaining genes showed 

significant differences in expression in response to treatments across the time course in both 

TZAR101 and B73 with the exception of ZmWRKY21 (Figure 4.4; MZ00019797). This gene 

showed no significant regulation in response to the treatments in the resistant line except at 3 
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DAI. Some variation was observed at 3 DAI in several of the other genes examined in this study, 

most likely due to lack of sufficient replications since these data for 3 DAI were from a single 

year, 2011.   

However, variation in ZmWRKY21 expression as the result of environmental effects can’t 

be ruled out.  The homolog of ZmWRKY21 in A. thaliana, as determined by a BLASTp search, 

AtWRKY39 (NP_566236.1), functions in regulating thermotolerance (Li et al. 2010). 

AtWRKY39 has been demonstrated to interact with calmodulin, to be induced by H2O2 

accumulation, and potentially be regulated by ethylene-dependent signaling pathways (Hass et 

al. 2004; Li et al. 2010; Park et al. 2005; Popescu et al. 2007; Vanderauwera et al. 2005). The 

expression of AtWRKY39 was also found not to be induced in response to inoculation by virulent 

strains of Pseudomonas syringae (Journot-Catalino et al. 2006). This, combined with the lack of 

significant induction observed in response to A. flavus inoculation may indicate that 

ZmWRKY21 may respond primarily to environmental stress and not to pathogen infections.  

ZmWRKY19 showed sequence homology to AtWRKY53 (NCBI: NP_194112.1; TAIR: 

AT4G23810.1; BLASTp: Coverage = 43%, ID = 47%; BLASTx: Coverage = 14%, ID = 80%) in 

the BLAST search. AtWRKY53 has been shown to function in response to oxidative stress and 

its expression can be regulated either through the action of NPR1/TGA transcription factor 

complexes or through MAPK pathway components, such as MEKK1 (Eulgem and Somssich, 

2007; Rushton et al. 2010; Miao et al. 2007). The expression of AtWRKY53 and AtWRKY33 are 

also both regulated by MPK3 and MPK6 in response to chitin perception (Wan et al. 2004), and 

AtWRKY53 has been shown to interact with calmodulin (Popescu et al. 2007). AtWRKY53 can 

also bind to the promoters of genes encoding antioxidant enzymes including several isoforms of 

catalase (Miao et al. 2004). In B73, the ZmWRKY19 gene (Figure 4.2; Graph A) was induced by 



50 
 

wounding but to a greater extent by A. flavus inoculation from 0 to 6 DAI. An induction in 

expression levels in response to wounding and inoculation was also observed from 6 to 14 DAI, 

though to a lesser degree than that observed from 0 to 6 DAI. In contrast, in TZAR101 (Figure 

4.2; Graph B), the gene was induced to levels comparable to that of B73 by inoculation; 

however, no decrease in expression was observed at later time points. In addition, the expression 

of ZmWRKY19 was higher during normal developmental conditions in TZAR101 than in B73 

over the time course.  

If ZmWRKY19 functions in a similar manner as AtWRKY53, it is possible that resistant 

varieties of maize similar to TZAR101 may accumulate antioxidant enzymes to a greater extent 

than susceptible lines like B73. Evidence supporting this speculation has been observed in 

several recent studies. Magbanua et al. (2007) found that resistant maize varieties Mp313E and 

Mp420 possessed greater catalase activity and accumulated lower levels of H2O2 in response to 

A. flavus infection compared to the intermediate variety Tx601 or the susceptible varieties 

Mp339, SC212m, or SC229. They also found that the resistant varieties also accumulated higher 

levels of SA than the susceptible lines, although infection by A. flavus tended to reduce the 

accumulation of SA. In two additional studies, Pechanova et al. (2011) and Chen et al. (2012a), 

isoforms of superoxide dismutase have been found to be induced in resistant varieties. Chen et 

al. (2007) also found that a homolog to the barley 1-Cys peroxiredoxin antioxidant (PER1) 

protein was expressed at higher levels in resistant maize varieties.  With this, the increase in 

expression of the AtWRKY53 homolog in maize, ZmWRKY19, may be regulating the expression 

of genes encoding such antioxidant enzymes and be caused by a similar regulatory response as 

AtWRKY53 and AtWRKY33 through MPK3 and MPK6 in response to chitin (Wan et al. 2004). 

The accumulation of these antioxidant proteins may confer resistance to abiotic stresses that 
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cause negative effects through the production of ROS, such as drought or heat stress (Hu et al. 

2008, 2010; Volkov et al. 2006), which correlates to enhanced A. flavus resistance (Kebede et al. 

2012; Pechanova et al. 2011).  

In maize, both ZmWRKY53 and ZmWRKY53.1 displayed significant induction in response 

to A. flavus inoculation from 0 to 6 DAI. However, ZmWRKY53.1 (Figure 4.6) was expressed at 

significantly higher levels regardless of treatment in B73 (Figure 4.6; Graph A) than in 

TZAR101 (Figure 4.6; Graph B). For ZmWRKY53 (Figure 4.3), the overall expression levels 

were similar between the two varieties. However, there were variations in the expression patterns 

between the two varieties. In TZAR101 (Figure 4.3; Graph B), there was an earlier, more 

pronounced induction in ZmWRKY53 expression at 2 DAI continuing to 4 DAI, earlier than that 

observed in B73 (Figure 4.3; Graph A).  Also, the constitutive level of ZmWRKY53 expression in 

the TZAR101 non-treated control was higher than that of B73 at 10 DAI. When taken together, 

the overall patterns within the individual varietal responses for both genes are similar with the 

exception of later induction of ZmWRKY53.1 in response to wounding in TZAR101. This may 

indicate that these two genes may possess similar promoters. The reason, however, for the 

elevated level of expression of ZmWRKY53.1 in B73 may simply be the presence of multiple 

functional copies of the gene in the genome of B73. Based on sequence homology search of 

maize genome, at least two regions showing partial homology to this gene may be present in 

B73.  The number of copies may be fewer in TZAR101; however, a complete sequencing of the 

genome of TZAR101 will be necessary to confirm this hypothesis (See Appendix C). 

The two WRKY homologs named ZmWRKY53 (MZ00021479) and ZmWRKY53.1 

(MZ00042508), which showed differential expression in an earlier microarray study (Luo at el. 

2011), both exhibited similar levels of homology to AtWRKY33 (AAM34736.1; BLASTx: 44% 
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and 45% identity, respectively) and OsWRKY53 (NP_001055252.1; 68% and 69% identity, 

respectively) in a BLASTp search. In order to determine which ZmWRKY53 isoform is 

functionally similar to AtWRKY33 and OsWRKY53, the amino acid sequences from the 

Genebank for each isoform were searched using BLASTp in the Plant Transcription Factor 

Database (Perez-Rodriguez et al. 2010) resulting in the identification of accessions 

GRMZM2G012724_P01 corresponding to ZmWRKY53 and GRMZM2G150441_P03 

corresponding to ZmWRKY53.1. These were then compared to the findings of a recent study by 

Wei et al. (2012) who determined the functional orthologs of maize WRKY transcription factors 

based on homology analysis and gene structure. Their findings indicate that the accession 

GRMZM2G012724_P01, which they designated as ZmWRKY70.1 and is referred to as 

ZmWRKY53 in this study, is the putative functional ortholog of AtWRKY33 and OsWRKY53. 

These findings combined with the dramatic difference in the varietal expression patterns of 

ZmWRKY53.1 compared to ZmWRKY53 observed in this study, and the relatively low level of 

homology between the putative amino acid sequences of these proteins (83%) may indicate that 

ZmWRKY53.1 possesses a different function than ZmWRKY53 and is in need of further 

characterization.  

AtWRKY33 is a key regulator in promoting the expression of JA-based defenses in 

response to necrotrophic pathogen infections while suppressing the expression of SA-based 

defenses, such as PR proteins, which classically counter biotrophic pathogens (Birkenbihl and 

Somssich, 2011; Birkenbihl et al.2012; Chujo et al. 2007; Kishi-Kaboshi et al. 2010; Yu et al. 

2010). Conversely, the overexpression of OsWRKY53 has been shown to enhance the expression 

of PR genes such as OsPR-5 and OsPR-14 as well as other defense genes including chitinase and 

peroxidase encoding genes (Chujo et al. 2007; van Eck, 2011). AtWRKY33 is regulated by a 
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MAP Kinase pathway responding to PAMP-triggered immune signals through those downstream 

of MEKK1,MPK4 and MKS1, which function to negatively regulate the expression of 

AtWRKY33-regulated genes by complexing with the AtWRKY33 protein (Andreasson et al. 

2005; Eulgem and Somssich, 2007; Qiu et al. 2008; Rushton et al. 2010). Additional MAP 

Kinases, MPK3 and MPK6, also directly interact with AtWRKY33 and activate it through 

phosphorylation in response to pathogen infection (Mao et al. 2011). A similar regulatory 

pathway involving MPK3 and MPK6 as found in A. thaliana for the regulation of phytoalexin 

biosynthesis has also been reported in rice (Kishi-Kaboshi et al. 2010). In addition, MPK3 and 

MPK6 have been implicated in the production of  ROS in hypersensitivity induced cell death 

(Liu et al. 2007; Mao et al. 2011), and are responsive to chitin percepton independent of SA, JA, 

or ethylene signalling pathways (Wan et al. 2004; Zhang et al. 2002). 

Expression of a maize homolog of AtWRKY33, ZmWRKY53, may, given the described 

role of AtWRKY33 (Birkenbihl and Somssich, 2011), enhance the expression of JA-based 

defenses. If true, elevated expression levels of JA-responsive defense-related genes would be 

expected with increased JA accumulation in the resistant variety compared to the susceptible 

variety. This was not observed by Magbanua et al. (2007) who saw no significant difference in 

JA content between immature kernels from varieties resistant and susceptible to A. flavus 

infection during kernel development at time points corresponding to the time course used in this 

study. This may indicate that the function of ZmWRKY53 may be similar to that of other 

orthologous proteins in other species such as the rice homolog, OsWRKY53 or the wheat 

homolog, TaWRKY53 (AGF90798.1). A series of recent studies by van Eck (2011) 

characterized the function and regulation of TaWRKY53 in response to aphid feeding and found 

that this gene was regulated by multiple proteins including a calmodulin-related calcium sensor 
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protein, an ultraviolet-B repressible protein, and a DUF584 protein, and propose the role of 

MAPK signalling in regulating the expression of TaWRKY53 as seen in AtWRKY33 and 

OsWRKY53 due to homology between these orthologs (Kishi-Kaboshi et al. 2010; Mao et al. 

2011; van Eck, 2011). van Eck (2011) also found that the TaWRKY53 protein interacts with 

glutathione S-transferase (GST), which functions in conjunction with other antioxidant enzymes 

to counter stress-induced ROS (Gill and Tuteja, 2010), and was co-expressed along with a 

chitinase and a peroxidase, although they were unable to detect any interaction of TaWRKY53 

with the promoters of those genes.  

Given these apparent functions of TaWRKY53 and OsWRKY53, it is possible that 

ZmWRKY53 is regulated in a similar fashion and may have similar downstream targets such as 

chitinase or peroxidase genes. This seems plausible given the amino acid sequence homology 

observed among these WRKY transcription factors (Figure 5.1) and since chitinase and 

peroxidase proteins have been found to accumulate in the kernels of resistant maize lines in 

response to A. flavus infection (Chen et al. 2007; Moore et al. 2004). ZmWRKY53 may also play 

a role in phytoalexin biosynthesis given its orthology to AtWRKY33 which is involved in 

camalexin biosynthesis in A. thaliana and regulated by MPK3 and MPK6 in a similar fashion 

observed for phytoalexin production OsWRKY53 (Kishi-Kaboshi et al. 2010; Mao et al. 2011).  

In addition, van Eck et al. (2010) suggests a potential role for TaWRKY53 in regulating the 

expression of phenylalanine ammonia-lyase, which is involved in phytoalexin biosynthesis 

(Dixon et al. 2002). ZmWRKY53 may also promote the production of phytoalexins in maize, 

which, in the case of zealexin A1, has been shown to inhibit the growth of A. flavus in culture 

(Huffaker et al. 2011). However, further studies will be required to validate this potential role. 
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Figure 5.1 Alignment of amino acid sequences of homologs of ZmWRKY53 from other species. 

The amino acid sequences of the homologs of ZmWRKY53 from A. thaliana (AAM34736.1), 

rice (DAA05118.1), and wheat (AGF90798.1) as well as the ZmWRKY53.1 isoform were 

aligned using Clustal Omega (EMBL-EBI; http://www.ebi.ac.uk/ Tools/msa/clustalo/). The 

highlighted region indicates the positions of the WRKY DNA binding domains in the sequences. 
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ZmWRKY53        MASSTGSLEHGGFTFTPPPFITSFTELLSGAAADMVGAAGADHQERSPRGLFHRGATRGG 

ZmWRKY53.1      MASSTGSLEHGGFTFTPPPFITSFTELLSSAG-DMLG-AGADQERSSPRGLFHRGA---- 

OsWRKY53        MASSTGGLDH-GFTFTPPPFITSFTELLSGGGGDLLGAGG---EERSPRGFSRGGARVG- 

TaWRKY53        MSSSTGSLDHAGFTFTPPPFITSFTELLSGSGA--------GDAERPPRGFNR-----GG 

AtWRKY33        -------------------MDN------SRTRQNMNGSANWSQQ------SGRTSTSSLE 

                                   : .      *                       :        

 

ZmWRKY53        GVGVPKFKSAQPPSLPISPPPMSPSSYFSIPPGLSPAELLDSPVLLHSSSNFFASPTTGA 

ZmWRKY53.1      -RGVPKFKSAQPPSLPISPPPMSPSSYFAIPPGLSPAELLDSPVLLHSSSNILASPTTGA 

OsWRKY53        -GGVPKFKSAQPPSLPLSPPPVSPSSYFAIPPGLSPTELLDSPVLLS-SSHILASPTTGA 

TaWRKY53        RAGAPKFKSAQPPSLPISS----PFSCFSVPAGLSPAELLDSPVLLN-YSHILASPTTGA 

AtWRKY33        DLEIPKFRSFAPSSISISPSLVSPSTCFS------PSLFLDSPAFVSSSANVLASPTTGA 

                    ***:*  * *: :*     * : *:      *: :****.::   :..:******* 

 

ZmWRKY53        IPAQRFDWKHAADLIASQSQQDDSRAAVGSAFNDFSFHAPTMP-------------AQTT 

ZmWRKY53.1      IPAQRFDWKKAADLIASQSQQDGDSRAAAGGFDDFSFHTATSNAVRAH--------TTTT 

OsWRKY53        IPAQRYDWKASADLIASQQDDS---------RGDFSFHTNSDA---MA--------AQPA 

TaWRKY53        IPAQRCDWQASADLNTFQQDEL--------GLSGFSFHAVKSNA-TVN--------AQAN 

AtWRKY33        LITNVTNQKGINEG--------DKSNNNNFNLFDFSFHTQSSGVSAPTTTTTTTTTTTTT 

                : ::  : :   :                     ****: .               :    

 

ZmWRKY53        SFPSFKEQQQQQVEAAT----KSAVPSSNKASGGG-GGTKLEDGYNWRKYGQKQVKGSEN 

ZmWRKY53.1      SLPSFEEEQQQQVEK-------AAVPSSNRASGGGNGNTKLEDGYNWRKYGQKQVKGSEN 

OsWRKY53        SFPSFKEQEQQVVESSK----NGAAAASSNKS-GGGGNNKLEDGYNWRKYGQKQVKGSEN 

TaWRKY53        CLPLFKEQQEQQQEEV--------VQVSNKSSSSSGNNKQVVDGYNWRKYGQKQVKGSEN 

AtWRKY33        NSSIFQSQEQQKKNQSEQWSQTETRPNNQAVSYNGREQRKGEDGYNWRKYGQKQVKGSEN 

                    *:.:::*  :             ..  *  .    :  ****************** 

 

ZmWRKY53        PRSYYKCTYHSCSMKKKVERSLADGRVTQIVYKGAHNHPKPLSTRRNSSGGVAAAEEQAA 

ZmWRKY53.1      PRSYYKCTYHSCSMKKKVERALADGRITQIVYKGAHNHPKPLSTRRNSSGGGAAEELQAG 

OsWRKY53        PRSYYKCTYNGCSMKKKVERSLADGRITQIVYKGAHNHPKPLSTRRNASSCATAAACAD- 

TaWRKY53        PRSYYKCTYNNCSMKKKVERSLADGRITQIVYKGAHDHPKPLSTRRNSSGCAAVVAEDHT 

AtWRKY33        PRSYYKCTFPNCPTKKKVERSL-EGQITEIVYKGSHNHPKPQSTRRSSSSSSTFHSAVY- 

                ********:  *  ******:* :*::*:*****:*:**** ****.:*.  :        

 

ZmWRKY53        NN----SSLSGCGG---------PEHSGG-ATAENSSVTFGDDEAENGSQ------RSGG 

ZmWRKY53.1      NSSLSAVAAAGCTG---------PEHSG--ATAENSSVTFGDDEAENGSQ------RSDG 

OsWRKY53        -----DLA-APGAG---------ADQYSA-ATPENSSVTFGDDEADNASH------RSEG 

TaWRKY53        ------------NG---------SEH-SG-PTPENSSVTFGDDEAD-------------- 

AtWRKY33        NASLDHNRQASSDQPNSNNSFHQSDSFGMQQEDNTTSDSVGDDEFEQGSSIVSRDEEDCG 

                                        :  .     :.:* :.**** :               

 

ZmWRKY53        DEPDAKRWKAEDG---ENEGSSGAGGGKPVREPRLVVQTLSDIDILDDGFRWRKYGQKVV 

ZmWRKY53.1      DEPDAKRWKQEDG---ENEGSSAGGGGKPVREPRLVVQTMSDIDILDDGFRWRKYGQKVV 

OsWRKY53        DEPEAKRWKEDADNEGSSGGMGGGAGGKPVREPRLVVQTLSDIDILDDGFRWRKYGQKVV 

TaWRKY53        -KPETKRRKEHGDNEGSSGGT--GGCGKPVREPRLVVQTLSDIDILDDGFRWRKYGQKVV 

AtWRKY33        SEPEAKRWKGDNETNGG-----NGGGSKTVREPRIVVQTTSDIDILDDGYRWRKYGQKVV 

                 :*::** * .            .. .* *****:**** *********:********** 

 

ZmWRKY53        KGNPNPRSYYKCTTAGCPVRKHVERACHDARAVITTYEGKHNHDVPVGRGAASRAAAAAP 

ZmWRKY53.1      KGNPNPRSYYKCTTAGCPVRKHVERASHDKRAVITTYEGKHNHDVPVGRGAASRAAAAAA 

OsWRKY53        KGNPNPRSYYKCTTVGCPVRKHVERASHDTRAVITTYEGKHNHDVPVGRGGGGGRAPAPA 

TaWRKY53        KGNPNPRSYYKCTTVGCPVRKHVERASHDNRAVITTYEGKHSHDVPIGRGRALPASSSS- 

AtWRKY33        KGNPNPRSYYKCTTIGCPVRKHVERASHDMRAVITTYEGKHNHDVPAARGSGYATNRAPQ 

                ************** ***********.** ***********.**** .** .     :   

 

ZmWRKY53        L------LGSGGGQMD---HRHQQPYTLEMLSGGGG-----------------------G 

ZmWRKY53.1      AAGSGALMATGGGQLGYHHQQQQQPYTLEMLSSGSY-----------------------G 

OsWRKY53        PPTSGAIRP------SAVAAAQQGPYTLEMLPNPAGLYGGYGAG---------------A 

TaWRKY53        ----------DSSAVIWPAAAVQAPCTLEMLAGHPG------------------------ 

AtWRKY33        DSSSVPIRPAAIAGHSNYTTSSQAPYTLQMLHNNNTNTGPFGYAMNNNNNNSNLQTQQNF 

                                      * * **:**                              

 

ZmWRKY53        YGGGYA-AKDEPRDD-LFVDSLLC 

ZmWRKY53.1      GGGGYAAAKDEPRDD-LFVDSLLC 

OsWRKY53        GGAAFPRTKDERRDD-LFVESLLC 

TaWRKY53        ----Y-AAKDEPRDD-MFVESLLC 

AtWRKY33        VGGGFSRAKEEPNEETSFFDSFMP 

                    :  :*:* .::  *.:*::  
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 If ZmWRKY53 is regulated by MPK3 and MPK6 as observed for AtWRKY33, this 

maize homolog may also promote the expression of ACC synthase genes, such as ASC2 and 

ASC6, which are involved in ethylene biosynthesis (Li et al. 2012). This would indicate that 

ZmWRKY53 may promote ethylene production and subsequent activation of ethylene-based 

defenses in resonse to A. flavus infection. In addition, a more recent study by Li et al. (2013) 

found that ZmWRKY53, which they designated as ZmWRKY33, was found to enhance salt stress 

tolerance when overexpressed in A. thaliana and was induced in response to cold, drought, and 

salt stress as well as by ABA application. This would also suggest that ZmWRKY53 may serve a 

dual role in promoting defenses against abiotic stress as well as pathogen infection. 

The other candidate WRKY gene examined in this study, ZmWRKY68 (MZ00042391), 

has homology to AtWRKY11 (NP_849559.1) and OsWRKY68 (NP_001053792.1). Journot-

Catalino et al. (2006) reported that AtWRKY11 has partial functional redundancy to AtWRKY17, 

and that both genes function to promote the expression of JA-based defenses while suppressing 

SA-based defenses, although they also report that, for certain genes, AtWRKY11 is a negative 

regulator of AtWRKY17 due to an increase in AtWRKY17 expression in response to silencing of 

AtWRKY11. However, both OsWRKY68 and AtWRKY11 have been found to be homologous  

to the common grape vine (Vitis vinifera) WRKY11 (Liu et al. 2011), which was found to 

enhance resistance to Pseudomonas syringae, increase manitol-induced water stress tolerance, 

and enhance the expression of the stress response genes AtRD29A and AtRD29B when 

VvWRKY11 is expressed in A. thaliana. They also found that VvWRKY11 expression could  

also be rapidly induced by application of SA. In the present study, however, the expression of 

ZmWRKY68 seems to indicate functional similarity with VvWRKY11 given the suppression of 

expression observed in response to wounding in the resistant variety (Figure 4.5; Graph B),  
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a treatment which typically induces JA- and ethylene-based defenses (Ankala et al. 2009; Howe 

and Jander, 2008).  

The final WRKY transcription factor examined in this study, PTZm631 (MZ00048386), 

which showed homology to ZmWRKY67 (BLASTx: Coverage = 71%, ID = 97%), was also 

found to have significant variation in expression patterns between the two varieties. In the 

susceptible line B73 (Figure 4.7; Graph A), ZmWRKY67 was found to be heavily induced by 

inoculation early in the time course, reaching a maximum level at 4 DAI. Its expression in 

TZAR101 was induced by inoculation early from 2 to 4 DAI, but not to the same degree as in 

B73. A similar induction of this gene was noted in a previous study by Han et al. (2010, 

unpublished data) in which ZmWRKY67 expression levels peaked at 4 DAI in the susceptible 

maize hybrid N83-N5 (Syngenta) in response to A. flavus inoculation.  

A database search using BLASTp indicated that ZmWRKY67 is homologous to 

AtWRKY50 (NP_197989.2). This gene was found to suppress JA-based defenses and promote 

SA-based defenses in response to reduced levels of oleic acid (18:1; Gao et al. 2011). In 

addition, Gao et al. (2009) found that silencing the gene encoding maize lipoxygenase 3 

(ZmLOX3) resulted in an increase in oleic acid content, JA accumulation, and aflatoxin 

contamination. Also, studies performed by Severns et al. (2003) found that maize varieties with 

kernels containing high oil levels were more heavily contaminated with aflatoxin than those with 

lower levels of oil (Maggio-Hall et al. 2005). Zeringue et al. (1996) also observed that a higher 

ratio of linoleic acid (18:2) to oleic acid, and therefore lower levels of oleic acid, correlated to 

resistance to aflatoxin contamination in maize kernels. High oleic acid content has also been 

reported to correlate with susceptibility to aflatoxin contamination in peanut (Gao and 

Kolomiets, 2009; Xue et al. 2003). Since reduced oleic acid content correlates with reduced 
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aflatoxin levels in infected kernels and induction of AtWRKY50 expression, ZmWRKY67 may 

function to suppress JA-based defenses and promote SA-based defenses later in infection in 

response to lower levels of oleic acid accumulation in the resistant line, while elevated 

expression early in infection in susceptible lines in response to infection may suppress initial JA-

based defense gene expression.   

5.2 Phytohormone Signaling Pathways  

In addition, we also examined the expression of three pathway indicator genes to 

determine which major defense pathways are induced upon A. flavus inoculation of immature 

maize kernels. Two genes known to be induced as a part of SA-based defense responses, ZmPR-

1 and ZmNPR1 (Spoel et al. 2007; Zhang et al. 1999), and one gene known to be induced by both 

JA- and ethylene-based defense responses, ZmERF1 (Lorenzo et al. 2003), were examined. The 

expression of both ZmPR-1 (Figure 4.8) and ZmNPR1 (Figure 4.9) was suppressed by 

inoculation and wounding at earlier time points in comparison to the levels observed during 

normal development in B73.  ZmNPR1 expression was also found to be suppressed and induced 

by wounding at 6 DAI and 10 DAI, respectively, with no corresponding changes in ZmPR-1 

expression. In TZAR101, the expression of ZmPR-1 did not significantly vary over the time 

course except at 14 DAI where a significant induction in response to inoculation and a slight 

suppression in response to wounding. The expression of ZmNPR1, however, did not show 

suppression as observed in B73.  

  Homologs of ZmPR-1 and ZmNPR1 in A. thaliana have been shown to respond to SA-

mediated defense signals (Zhang et al. 1999). In addition, AtNPR1 has been shown to function 

upstream of AtPR-1 and regulates its expression indirectly through interaction with TGA 

transcription factors (Pieterse and van Loon, 2004). The expression of defense genes such as 
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AtPR-1 through AtNPR1 mediated mechanisms is essential to the induction of systemic required 

resistance (SAR) in response to invading pathogens, particularly biotrophic plant pathogens 

(Glazebrook, 2005). In this study, we observed that, despite highly elevated levels of ZmNPR1 

expression in the resistant variety, TZAR101, there was no induction in ZmPR-1 expression as 

expected. This may be due to varied expression of intermediate components in the pathway 

required for the expression of PR proteins, such as TGA transcription factors. TGA transcription 

factors are utilized for both SA and JA-induced defenses upstream of PR-1and may be 

responsible for regulating the activation of appropriate pathways (Kesarwani et al. 2007; 

Windram et al. 2012; Zander et al. 2010). ZmNPR1 activity may also be regulated in the nucleus 

by proteosome-mediated degradation after ZmNPR1 is tagged with ubiquitin by the CUL3 

ubiquitin ligase along with the maize homologs of the adaptor proteins AtNPR3 and AtNPR4 (Fu 

et al. 2012; Pintard et al. 2004; Spoel et al. 2009).  

 In A. thaliana, AtERF1 has been shown to be induced by both JA and ethylene (Lorenzo 

et al. 2003). Because of this, AtERF1 functions as an intersection of the JA and ethylene 

signaling pathways and is responsible for the regulation of several downstream genes such as 

defensin (PDF1.2) (Berrocal-Lobo et al. 2002; Lorenzo et al. 2003). Induced expression of 

AtERF1 upon infection by necrotrophic pathogens, such as Botrytis cinerea, has been noted, as 

well as the conference of enhanced resistance to such pathogens by overexpression of this gene 

(Berrocal-Lobo et al. 2002; Berrocal-Lobo and Molina, 2004). In the present study, it was found 

that the AtERF1 homolog, ZmERF1, was expressed at higher levels in the resistant variety, 

TZAR101, constitutively and in response to inoculation with A. flavus, than the susceptible 

variety, B73. This indicates that stimulation of JA or ethylene-based defenses in response to 

infection may play an important role in resistance, a characteristic of resistance to necrotrophic 
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pathogens (Glazebrook, 2005; Lorenzo et al. 2003). These findings concur with the results of 

microscopic studies of the host-pathogen interaction performed by Smart et al. (1990) which 

showed that A. flavus killed cells in advance of extending hyphae during infection of maize 

kernels indicating that A. flavus is a necrotrophic pathogen (Mideros et al. 2009). For both the 

pathway indicator genes and the examined WRKY transcription factor genes, the major patterns 

observed in their expression levels and putative functions of their respective orthologs in various 

species are summarized in Table 5.1. 

5.3 Integration of WRKY Transcription Factors and Phytohormone Signaling 

 In contrast the concept of A. flavus as a necrotrophic pathogen, the expression levels of 

negative regulators of JA-based defenses were found to be induced in the resistant variety, 

though at later time points. In response to inoculation, ZmWRKY67, the homolog of AtWRKY50, 

was found to be expressed at increasing levels in the resistant variety over time, and, conversely, 

at higher levels at earlier time points in the susceptible variety which decreased over time. This 

may correlate with a lower accumulation of oleic (18:1) acid in resistant maize kernels (Zeringue 

et al. 1996), a condition which has been shown to induce the expression of AtWRKY50 and 

AtWRKY51 resulting in downstream induction of SA-responsive genes and the suppression of 

JA-responsive genes in A. thaliana (Gao et al. 2011). Therefore, ZmWRKY67 may function in a 

similar fashion as AtWRKY50/51 during A. flavus infection (Figure 5.2; Diagram A). Also, 

since oleic acid is a precursor in JA biosynthesis (Heldt and Piechulla, 2010; León and Sánchez-

Serrano, 1999), the reduction in oleic acid may be due to the production of JA with no 

subsequent synthesis of replacement oleic acid, and may result in lower levels of JA and oleic 

acid in the resistant maize kernels during maturation. This is in agreement with previous studies 

which found that oleic acid accumulation in maize kernels is associated with susceptibility to
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Table 5.1 Summary of gene expression analyses of maize WRKY transcription factors and pathway indicator genes.

Gene Accession* Observed Expression Pattern Reported Ortholog Function References

Zm WRKY19 

(MZ00019797)
AFW81188.1

Induced by infection early, but expressed at higher levels 

in the resistant variety at later time points.

Calmodulin Interaction, MAP-Kinase 

Regulated, Oxidative Stress Response, 

Antioxidant Enzyme Promotion

Eulgem and Somssich, 2007;  Miao et al. 2004, 

2007; Popescu et al. 2007; Rushton et al. 2010

Zm WRKY21 

(MZ00026377)
NP_001150830.1

No significant variation in expression in either the 

resistant or susceptible variety.

Calmodulin Interaction, H2O2-Induced, 

Potentially Ethylene-Regulated, 

Thermotolerance

Hass et al. 2004; Li et al. 2010; Park et al. 

2005; Popescu et al. 2007; Vanderauwera et al. 

2005

Zm WRKY53 

(MZ00021479)
NP_001147949.1

Induced by infection, yet earlier in the resistant variety 

than in the susceptible variety.

Zm WRKY53.1 

(MZ00042508)
NP_001147551.1

Much higher expression in the susceptible variety than in 

the resistant variety at all t ime points under both control 

and inoculation conditions.

Zm WRKY67 

(P TZm631)
NP_001148599.1

Induced by infection early in both varieties, but 

constitutively and inducibly higher in response to 

infection at later timepoints in the resistant variety.

Early Induction in a Susceptible Maize 

Hybrid; SA-Based Defense Induction in 

Response to Low Oleic Acid

Gao et al. 2011; Han et al. 2010

Zm WRKY68 

(MZ00042391)
ACG45417.1

Variable expression in response to treatments; Suppressed 

in response to wounding in the resistant variety.

Hemibiotroph Resistance, Ethylene and 

JA-Based Defense Gene Expression, 

Water-Stress Tolerance

Ankala et al. 2009; Howe and Jander, 2008; 

Journot-Catalino et al. 2006; Liu et al. 2011

Zm ERF-1 NP_001105270.1
Higher constitutive levels of expression in the resistant 

variety than in the susceptible variety.

PR-Gene Regulation; Responsive to 

Ethylene and JA Defense Signalling

Berrocal-Lobo and Molina, 2004; Berrocal-

Lobo et al. 2002; Lorenzo et al. 2003; 

Takeuchi et al. 2011; Van der Does et al. 2013

Zm NPR-1 ACG45791.1

Early suppression of expression in response to wounding 

in the susceptible variety; Induced by infection and 

expressed at constitutively higher levels in the resistant 

variety, though suppressed at later timepoints by 

wounding.

Biotroph Resistance; Regulation of 

WRKY Transcription Factor Expression; 

Responsive to SA Defense Signalling

Glazebrook, 2005; Fu et al. 2012; Pieterse and 

van Loon, 2004; Pintard et al. 2004; Spoel et 

al. 2007, 2009; Zhang et al. 1999

Zm PR-1 NP_001152581.1

Early suppression of expression in response to wounding 

in the susceptible variety; No significant variation in 

expression in the resistant variety except at 14 DAI.

Biotroph Resistance; Responsive to SA 

Defense Signalling

Glazebrook, 2005; Kesarwani et al. 2007; 

Pieterse and van Loon, 2004; Spoel et al. 

2007; Windram et al. 2012; Zander et al. 

2010; Zhang et al. 1999

*NCBI Genebank accession of gene product. 

ABA Responsive, Ethylene Biosynthesis, 

MAP-Kinase Regulated, Necrotrophic 

Resistance, Phytoalexin Production,    

PR-Gene Regulation

Andreasson et al. 2005; Birkenbihl and 

Somssich, 2011; Birkenbihl et al.2012; Chujo 

et al. 2007; Eulgem and Somssich, 2007; Kishi-

Kaboshi et al. 2010; Li et al. 2012, 2013; Mao 

et al. 2011; Qiu et al. 2008; Rushton et al. 

2010; van Eck, 2011; van Eck et al. 2010;     

Yu et al. 2010
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Figure 5.2 Putative pathway of defense gene activation in resistant maize lines. A: The putative pathway of defense gene activation in 

immature maize kernel tissue following inoculation with Aspergillus flavus. B: The possible effects of ethylene and antioxidant 

enzyme accumulation on the production of aflatoxin in A. flavus during infection. 
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aflatoxin contamination (Gao et al. 2009; Zeringue et al. 1996). Other studies have also reported 

that methyl jasmonate (MeJA) increased levels of aflatoxin production in A. flavus depending on 

culture conditions (Goodrich-Tanrikulu et al. 1995; Meimaroglou et al. 2009; Vergopoulou et al. 

2001). 

 With regard to SA-regulated defenses, Magbanua et al. (2007) observed that there was a 

greater accumulation of SA in resistant varieties in comparison to susceptible varieties. This, 

taken in light of the present study, may indicate that greater SA accumulation in the resistant line 

may be the cause of the increase in expression of the upstream, SA-responsive gene, ZmNPR1 

(Zhang et al. 1999).  These findings, though, somewhat conflicting with the convention that JA 

promotes defense against necrotrophic pathogens (Glazebrook, 2005). However, a recent study 

by Van der Does et al. (2013) found that the application of SA does not significantly affect the 

expression of AtERF1, but does suppress the expression of the transcription factor octadecanoid-

responsive Arabidopsis AP2/ERF-domain protein 59 (ORA59)  leading to the suppression of JA-

induced defense genes. Given these findings and the elevated level of expression of ZmERF1 

observed in this study in the resistant variety, ethylene-based defense components may also be 

active at this time and may partially suppress the expression of ZmPR-1 downstream of ZmNPR1 

through the regulation of TGA transcription factor expression (Kesarwani et al. 2007; Windram 

et al. 2012; Zander et al. 2010). Therefore, this accumulation of SA in resistant varieties as 

suggested by Magbanua et al. (2007), though not resulting in ZmNPR1-mediated defense gene 

activation, such as in the case of ZmPR-1, may contribute to resistance in an alternative manner.  

Increases in SA have been found to result in the accumulation of reactive oxygen species 

(ROS), such as H2O2, leading to the stimulation of ROS sequestering enzyme activity 

(Larkindale and Kinght, 2002; Rao at al. 1997). It has been shown that AtWRKY53 expression is 
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regulated either through the action of NPR1/TGA transcription factor complexes or independent 

of SA-regulated signaling mechanisms through MAPK pathway components, such as MEKK1, 

and can and it can bind to the promoters of genes encoding antioxidant enzymes including 

several isoforms of catalase (Eulgem and Somssich, 2007; Miao et al. 2004, 2007; Rushton et al. 

2010). If ZmWRKY19, the homolog of AtWRKY53, functions in a similar manner, it is possible 

that resistant varieties may display greater antioxidant enzyme accumulation and activity to a 

greater extent than susceptible lines, allowing for enhanced tolerance of SA or pathogen induced 

ROS accumulation. This may be plausible considering that such increases have been reported in 

resistant maize lines (Chen et al. 2012a; Magbanua et al. 2007; Pechanova et al. 2011).  

The accumulation of antioxidant proteins may also be due to the function of ZmWRKY53 

and the signaling pathway mediated through MPK3 and MPK6, which have been implicated in 

the production of  ROS in hypersensitivity induced cell death, and chitin perception independent 

of phytohormone signalling pathways (Liu et al. 2007; Mao et al. 2011; Wan et al. 2004; Zhang 

et al. 2002).The wheat homolog of ZmWRKY53, TaWRKY53, has also been shown to interact 

with the antioxidant enzyme GST (Gill and Tuteja, 2010; van Eck, 2011), and both the wheat 

and rice homologs of ZmWRKY53, TaWRKY53 and OsWRKY53, have been found to 

potentially regulate the expression of chitinases, peroxidases, and various PR genes (Chujo et al. 

2007; van Eck, 2011). Therefore, both ZmWRKY19 and ZmWRKY53 may function 

independently of SA, JA, or ethylene-mediated signaling pathways through MAP Kinase to 

confer both ROS tolerance and resistance to A. flavus (Figure 5.2; Diagram A). 

 The potential increase in antioxidant enzyme levels in response to elevated ZmWRKY19 

and ZmWRKY53 levels in resistant varieties has four potential implications. First, increased 

accumulation of these proteins in a constitutive fashion may confer resistance to abiotic stresses 
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that cause negative effects through the production of ROS, such as drought or heat stress (Hu et 

al. 2008, 2010; Volkov et al. 2006). This may explain the apparent correlation between abiotic 

stress tolerance and A. flavus resistance (Kebede et al. 2012; Pechanova et al. 2011). Second, 

constitutive accumulation of these proteins may result in the prevention of host cell death caused 

by the necrotroph-induced accumulation of ROS in colonized tissue, a potential mechanism for 

resistance to the necrotroph, A. flavus (Glazebrook, 2005; Mideros et al. 2009; Smart et al. 

1990). Third, the increase in antioxidant enzyme levels, combined with an increase in SA levels, 

may lead to a change in cytoplasmic reduction potential resulting in the breakdown of NPR1 

oligomers into individual monomers facilitating their translocation into the nucleus, as observed 

in A. thaliana (Brosché and Kangasjärvi, 2012; Mou et al. 2003; Peleg-Grossman et al. 2010). 

Finally, this reduction in ROS, in conjunction with the potential increase in ethylene production 

as indicated by increased ZmERF1 expression in the resistant variety, may cause reduced 

oxidative stress on A. flavus itself causing a reduction of AflD and AflR expression, which in turn 

lead to reduced aflatoxin accumulation in the resistant variety (Figure5.2; Diagram B), (Huang et 

al. 2009).  

In addition, increased ZmERF1 expression may result in the accumulation in various PR 

genes, such as ZmPR10 or ZmPR10.1 (Chen et al. 2006, 2010; Xie et al. 2010), since recent 

studies have indicated that OsERF1 regulates the expression of the root specific PR10 gene, 

RSOsPR10 (Takeuchi et al. 2011). This may be plausible since the expression of genes encoding 

these isoforms of ZmPR10-like proteins has been shown to be induced in maize lines resistant to 

A. flavus infection and aflatoxin accumulation (Chen et al., 2010), and ZmERF1 was found to be 

expressed at a higher level in the resistant variety, TZAR101, in the present study. A conserved 

domain search (Marchler-Bauer et al. 2013) of the amino acid sequences of both ZmPR10 
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(AAY29574.1) and ZmPR10.1 (ADA68331.1) revealed that they both possess PYR/PYL/RCAR-

like domains which function in ABA signal transduction (Melcher et al. 2010; Nishimura et al. 

2010; Santiago et al. 2009; Yin et al. 2009). Since ZmWRKY53 was also recently found to be 

induced in response to ABA application (Li et al. 2013), it is possible that ABA can modulate the 

expression of key defense components in A. flavus resistance, a trend which has been observed in 

previous studies under drought conditions (Jiang et al. 2012).  Additional studies of the 

interaction of these factors may allow for a possible explanation for the correlation of A. flavus 

resistance and abiotic stress tolerance (Kebede et al. 2012).  

5.4 Conclusions and Suggestions for Future Research 

Contamination of maize kernels with aflatoxins resulted from pre- and post-harvest 

colonization of Aspergillus flavus causes not only economic losses due to crop lost, but also 

poses a serious threat to human and animal health (Payne and Widstrom, 1992; Schmale and 

Munkvold, 2011; Shephard 2008). To date, however, no single protein or gene has been 

identified as a major source of resistance in any of the aflatoxin-resistant maize genotypes. In 

addition, the mechanism of how genes regulating defense responses are controlled has not been 

well understood. Therefore, a better understanding of the molecular signaling pathways and the 

transcription factors involved in the promotion, suppression, or overall regulation of defense 

gene expression is essential. 

 In the present study, we identified that the expression of several maize WRKY 

transcription factors and pathway indicator genes. We found that several WRKY transcription 

factor-coding genes were significantly regulated by A. flavus inoculation. These WRKY 

transcription factors, particularly ZmWRKY53, in conjunction with stimulation of phytohormone 

signaling pathways, may play key roles in the regulation of defenses in response to A. flavus 
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infection and subsequent aflatoxin accumulation. In addition, ZmWRKY53.1, which was 

consistently expressed at significantly higher levels in the susceptible line than the resistant one 

at either control or under A. flavus inoculation conditions, may be a potential marker to be used 

in future marker assisted breeding studies to enhance maize aflatoxin resistance.  However, 

further studies examining the precise functional characteristics of these WRKY transcription 

factors will be necessary given the limitations of the present study. For both the WRKY 

transcription factor coding genes and the pathway component genes, a high degree of variation 

was noted in the expression levels over the course of the study. This may be due to 

environmental influences as well as the present study’s use of whole kernel tissues. To remedy 

this, future studies should examine the expression of these selected WRKY transcription factors 

in individual kernel tissues, particularly embryo tissue where clearer treatment effects and higher 

expression levels may be observed. In addition, wounded controls in future studies should also 

be applied by injecting sterile inoculum base, in this instance 0.01% tween 20 buffer, to examine 

any possible effects of tween 20 on the expression of maize WRKY transcription factors. 

In addition, since the present study does not examine the proteomic responses of the 

examined maize varieties, and several of the WRKY transcription factors examined in this study 

including ZmWRKY19, -21, -67, and -68 have yet to be fully characterized at the protein level, 

future studies of their expression at protein level are encouraged in order to better understand the 

precise functions of the examined WRKY transcription factors following A. flavus inoculation. 

These functional analyses and, especially, the quantification of the levels of individual WRKY 

proteins using proteomics approaches are critical given the potential for a lack of correlation of 

transcript and protein levels in the host tissues. The identification of the promoter regions in the 

maize genome targeted by these WRKYs is also needed to validate the proposed model and 
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could be performed using chromatin immunoprecipitation analyses (ChIP) (Abdalla et al. 2009; 

Weinmann and Farnham, 2002; Wyrick and Young, 2002). The effect of aflatoxin biosynthesis 

or A. flavus strain on the expression of WRKY transcription factors could also be examined by 

infecting maize with toxigenic and atoxigenic strains of the fungus. Additional WRKY 

transcription factors should also be examined since the initial selection of the candidate genes 

analyzed in the present study was based on data obtained by Luo et al. (2011) under KSA 

conditions which may result in the exclusion of other key WRKY genes that may be only 

expressed in immature kernels under field conditions. 

Overall, however, the present study provides a basis on which to build a working model 

(Figure 5.2) for the partial regulation of A. flavus resistance. It also provides a framework from 

which to design and plan future experiments. By better understanding these regulatory 

mechanisms through transcript and protein level analyses, additional tools will be made available 

for incorporation through breeding and genetic engineering to improve maize resistance to A. 

flavus and aflatoxin contamination. 
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APPENDIX A 

CONTRASTS OF TYPE III FIXED EFFECTS FOR ZmWRKY TRANSCRIPTION 

FACTOR AND PATHWAY GENE RELATIVE EXPRESSION ANALYSES 

 

 

 

 

 

 

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 5.48 11.07 0.0181

TNT 2 217 9.82 <.0001

VAR*TNT 2 217 2.36 0.0973

DAI 8 28.2 1.14 0.3699

VAR*DAI 8 29.2 0.68 0.7082

TNT*DAI 16 215 3.18 <.0001

VAR*TNT*DAI 14 210 2.69 0.0012

Table A.1 Contrasts of type III fixed effects for the putative ZmWRKY19 

(MZ00019797) gene relative expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 5.87 5.14 0.0648

TNT 2 217 6.82 0.0013

VAR*TNT 2 218 1.67 0.1899

DAI 8 32.5 0.87 0.5502

VAR*DAI 8 33 0.59 0.7763

TNT*DAI 16 219 1.77 0.0361

VAR*TNT*DAI 14 216 2.36 0.0046

Table A.2 Contrasts of type III fixed effects for the ZmWRKY53  (MZ00021479) 

gene relative expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 4.89 0.49 0.5153

TNT 2 224 5.29 0.0057

VAR*TNT 2 223 2.64 0.0733

DAI 8 40 4.61 0.0005

VAR*DAI 8 41.9 2.02 0.0681

TNT*DAI 16 223 2.16 0.0071

VAR*TNT*DAI 14 221 2.04 0.0159

Table A.3 Contrasts of type III fixed effects for the ZmWRKY21  (MZ00026377) 

gene relative expression levels.
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Label Numerator dF Denominator dF F Value Pr > F

VAR 1 5.07 0.15 0.7105

TNT 2 214 4.88 0.0084

VAR*TNT 2 217 4.89 0.0084

DAI 8 31.2 0.48 0.8587

VAR*DAI 8 31.9 2.01 0.0766

TNT*DAI 16 215 2.8 0.0004

VAR*TNT*DAI 14 212 2.93 0.0004

Table A.4 Contrasts of type III fixed effects for the ZmWRKY68  (MZ00042391) 

gene relative expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 4.99 370.64 <.0001

TNT 2 222 4.18 0.0165

VAR*TNT 2 216 0.16 0.8525

DAI 8 27.7 1.79 0.1222

VAR*DAI 8 28.9 0.98 0.4714

TNT*DAI 16 218 2.91 0.0002

VAR*TNT*DAI 14 216 1.29 0.2174

Table A.5 Contrasts of type III fixed effects for the ZmWRKY53.1 

(MZ00042508) gene relative expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 5.47 0.02 0.8995

TNT 2 218 19.84 <.0001

VAR*TNT 2 212 0.17 0.8426

DAI 8 31.4 3.78 0.0033

VAR*DAI 8 32.5 0.63 0.7451

TNT*DAI 16 219 2.25 0.0048

VAR*TNT*DAI 14 215 1.95 0.0225

Table A.6 Contrasts of type III fixed effects for the ZmWRKY67  (PTZm631) 

gene relative expression levels.
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Label Numerator dF Denominator dF F Value Pr > F

VAR 1 3.4 20.38 0.0155

TNT 2 124 3.91 0.0225

VAR*TNT 2 127 1.11 0.3315

DAI 7 21.4 2.92 0.0263

VAR*DAI 7 22.4 3.23 0.016

TNT*DAI 13 146 2.59 0.0029

VAR*TNT*DAI 11 147 1.15 0.3306

Table A.7 Contrasts of type III fixed effects for the ZmPR-1  gene relative 

expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 4.03 30.56 0.0051

TNT 2 144 3.73 0.0264

VAR*TNT 2 146 5.65 0.0043

DAI 7 21.3 1.47 0.2324

VAR*DAI 7 22.2 0.93 0.5056

TNT*DAI 13 147 1.84 0.0414

VAR*TNT*DAI 11 149 1.45 0.1569

Table A.8 Contrasts of type III fixed effects for the ZmNPR1  gene relative 

expression levels.

Label Numerator dF Denominator dF F Value Pr > F

VAR 1 3.05 3.61 0.1522

TNT 2 155 2.27 0.1067

VAR*TNT 2 156 6.66 0.0017

DAI 7 22.1 4.45 0.0032

VAR*DAI 7 23.2 2.57 0.041

TNT*DAI 13 142 1.56 0.1034

VAR*TNT*DAI 11 148 1.73 0.0729

Table A.9 Contrasts of type III fixed effects for the ZmERF1  gene relative 

expression levels.
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APPENDIX B 

TABULAR PRESENTATION OF DATA FOUND IN FIGURES 

 

This appendix contains tabular forms of the data which appear in figures. Table B.1 

contains the aflatoxin data obtained for the varieties examined in the present study during a field 

screening assay conducted in 2012. The varieties B73 (susceptible) and TZAR101 (resistant) 

were inoculated with a conidial suspension with a concentration 4.0 x 10
6
 conidia/mL in a 0.01% 

tween 20 buffer, wounded to simulate the physical injury incurred during inoculation, or non-

treated. At kernel maturity (~ 60 DAP, seed moisture level < 15%), aflatoxin analysis of kernels 

surrounding the inoculation sites, approximately 20g, were performed by Dr. Robert L. Brown 

(USDA-ARS: SRRC) using an AgraQuant total aflatoxin ELISA test kit (Romer Labs, Union, 

MO, USA) according to the manufacturer’s instructions (Zheng et al. 2005).The reported values 

in Table B.1 are the average aflatoxin levels (ppb) ± standard error. Statistical groupings are 

based on Tukey’s LSD analysis with α = 0.05. 

Table B.2 through Table B.10 contain tabular forms of the data which appear in figures 

displaying the relative expression data for the examined WRKY transcription factors and the 

pathway indicator genes. The relative expression levels of these genes over the time course in the 

resistant and susceptible varieties in response to treatments were determined using qPCR 

analysis. The data present in these tables are the average relative expression values for the three-

way interactions between variety x treatment x DAI ± standard error. The values were obtained 

using the equation relative gene expression = [(E+1)
(Ct

 
Zm18S rRNA )

/ (E+1)
(Ct

 
target gene )

], where E is 

derived from the equation E = 10
(-1/Slope)

 – 1, followed by data transformation performed by 

multiplying the relative gene expression by 1.0 x 10
9
 followed by natural logarithm 

transformation (Chen et al. 2010; Jiang et al. 2012; Pfaffl, 2001). 
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Variety Treatment Average ± Std. Error
1

Group
2

B73 Non-Treated Control 12.5171 ± 115.2 B

Wounded 10.8667 ± 131.73 B

Infected 2042.49 ± 122.64 A

TZAR101 Non-Treated Control 1.5623 ± 86.7167 B

Wounded 4.8543 ± 99.0375 B

Infected 202.98 ± 89.7604 B

1
Values represent the average aflatoxin levels in ppb ± standard error. 

2
Statistical grouping based on Tukey's LSD analysis, α = 0.05.

Table B.1 Average aflatoxin accumulation in maize lines B73 and TZAR101 during the   

2012 field assay (Tabular presentation of data found in Figure 4.1).
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Variety Treatment DAI

B73 NTC 0 3.4769 ± 0.7098

B73 NTC 1 3.0441 ± 0.6911

B73 NTC 2 1.905 ± 0.847

B73 NTC 3 3.9838 ± 0.9058

B73 NTC 4 1.5244 ± 0.824

B73 NTC 6 2.5845 ± 0.6924

B73 NTC 10 2.3484 ± 0.7235

B73 NTC 14 2.6675 ± 0.7046

B73 NTC 18 4.8867 ± 0.849

B73 Infected 0 3.4769 ± 0.7098

B73 Infected 1 4.3788 ± 0.6209

B73 Infected 2 4.6506 ± 0.739

B73 Infected 3 2.6851 ± 0.9058

B73 Infected 4 4.8174 ± 0.6661

B73 Infected 6 3.1953 ± 0.626

B73 Infected 10 3.226 ± 0.621

B73 Infected 14 2.8724 ± 0.636

B73 Infected 18 3.127 ± 0.6827

B73 Wounded 0 3.4769 ± 0.7098

B73 Wounded 1 2.7866 ± 0.6209

B73 Wounded 2 3.7009 ± 0.7401

B73 Wounded 3 3.7262 ± 0.9058

B73 Wounded 4 3.5154 ± 0.6576

B73 Wounded 6 3.0386 ± 0.626

B73 Wounded 10 2.9554 ± 0.6509

B73 Wounded 14 3.2876 ± 0.9868

TZAR101 NTC 0 3.784 ± 0.6149

TZAR101 NTC 1 3.7075 ± 0.6372

TZAR101 NTC 2 4.2685 ± 0.9029

TZAR101 NTC 3 4.2011 ± 0.7324

TZAR101 NTC 4 4.4134 ± 0.8342

TZAR101 NTC 6 3.8766 ± 0.6507

TZAR101 NTC 10 4.9128 ± 0.6412

TZAR101 NTC 14 4.5806 ± 0.6426

TZAR101 NTC 18 4.6453 ± 0.6606

TZAR101 Infected 0 3.784 ± 0.6149

TZAR101 Infected 1 4.9276 ± 0.5941

TZAR101 Infected 2 4.3254 ± 1.0308

TZAR101 Infected 3 4.3779 ± 0.7324

TZAR101 Infected 4 4.9476 ± 0.6526

TZAR101 Infected 6 4.0632 ± 0.5941

TZAR101 Infected 10 4.7618 ± 0.5942

TZAR101 Infected 14 4.8038 ± 0.6

TZAR101 Infected 18 5.0369 ± 0.6606

TZAR101 Wounded 0 3.784 ± 0.6149

TZAR101 Wounded 1 4.2324 ± 0.6174

TZAR101 Wounded 3 3.8744 ± 0.7324

TZAR101 Wounded 4 3.8246 ± 0.6808

TZAR101 Wounded 6 3.9372 ± 0.613

TZAR101 Wounded 10 3.7601 ± 0.7228

TZAR101 Wounded 14 3.7816 ± 0.6778

TZAR101 Wounded 18 4.4284 ± 0.8585

Average RE ± Std. Error

Table B.2 Relative expression levels of the ZmWRKY19  gene (Tabular 

presentation of data found in Figure 4.2).
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Variety Treatment DAI

B73 NTC 0 3.7948 ± 0.4171

B73 NTC 1 4.115 ± 0.4033

B73 NTC 2 3.9122 ± 0.574

B73 NTC 3 4.3755 ± 0.6207

B73 NTC 4 3.4219 ± 0.5485

B73 NTC 6 3.3011 ± 0.4048

B73 NTC 10 2.7684 ± 0.4436

B73 NTC 14 3.5428 ± 0.4191

B73 NTC 18 4.2818 ± 0.5762

B73 Infected 0 3.7948 ± 0.4171

B73 Infected 1 4.2834 ± 0.3136

B73 Infected 2 4.1143 ± 0.456

B73 Infected 3 3.3971 ± 0.6207

B73 Infected 4 4.8597 ± 0.3709

B73 Infected 6 3.8038 ± 0.3206

B73 Infected 10 3.8241 ± 0.3134

B73 Infected 14 3.2943 ± 0.3345

B73 Infected 18 3.233 ± 0.3928

B73 Wounded 0 3.7948 ± 0.4171

B73 Wounded 1 3.3305 ± 0.3132

B73 Wounded 2 3.9634 ± 0.456

B73 Wounded 3 3.7118 ± 0.6207

B73 Wounded 4 3.7901 ± 0.3597

B73 Wounded 6 3.3557 ± 0.3206

B73 Wounded 10 3.8972 ± 0.3545

B73 Wounded 14 3.0517 ± 0.7146

TZAR101 NTC 0 3.8147 ± 0.3087

TZAR101 NTC 1 3.8173 ± 0.3393

TZAR101 NTC 2 4.1217 ± 0.6185

TZAR101 NTC 3 3.6329 ± 0.45

TZAR101 NTC 4 3.9438 ± 0.561

TZAR101 NTC 6 4.0347 ± 0.3583

TZAR101 NTC 10 4.6126 ± 0.3442

TZAR101 NTC 14 3.9422 ± 0.3466

TZAR101 NTC 18 4.4463 ± 0.3661

TZAR101 Infected 0 3.8147 ± 0.3087

TZAR101 Infected 1 4.7463 ± 0.2792

TZAR101 Infected 2 5.497 ± 0.7487

TZAR101 Infected 3 4.3024 ± 0.45

TZAR101 Infected 4 4.8725 ± 0.3556

TZAR101 Infected 6 3.712 ± 0.2792

TZAR101 Infected 10 4.2816 ± 0.2793

TZAR101 Infected 14 4.9137 ± 0.2884

TZAR101 Infected 18 4.7064 ± 0.3661

TZAR101 Wounded 0 3.8147 ± 0.3087

TZAR101 Wounded 1 4.2896 ± 0.3137

TZAR101 Wounded 3 4.3076 ± 0.45

TZAR101 Wounded 4 3.9678 ± 0.3917

TZAR101 Wounded 6 4.0428 ± 0.3073

TZAR101 Wounded 10 3.9936 ± 0.446

TZAR101 Wounded 14 3.9711 ± 0.3915

TZAR101 Wounded 18 4.2021 ± 0.5729

Average RE ± Std. Error

Table B.3 Relative expression levels of the ZmWRKY53  gene (Tabular 

presentation of data found in Figure 4.3).
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Variety Treatment DAI

B73 NTC 0 5.4143 ± 0.87

B73 NTC 1 4.7061 ± 0.8599

B73 NTC 2 3.3018 ± 0.9276

B73 NTC 3 6.0754 ± 0.9578

B73 NTC 4 3.2735 ± 0.9145

B73 NTC 6 4.0651 ± 0.8604

B73 NTC 10 3.4714 ± 0.8733

B73 NTC 14 3.5507 ± 0.8662

B73 NTC 18 3.2215 ± 0.9277

B73 Infected 0 5.4143 ± 0.87

B73 Infected 1 3.6924 ± 0.8337

B73 Infected 2 3.605 ± 0.8812

B73 Infected 3 3.4978 ± 0.9578

B73 Infected 4 3.5255 ± 0.851

B73 Infected 6 3.7253 ± 0.8355

B73 Infected 10 3.5501 ± 0.8337

B73 Infected 14 3.4962 ± 0.8393

B73 Infected 18 3.1615 ± 0.8576

B73 Wounded 0 5.4143 ± 0.87

B73 Wounded 1 3.8526 ± 0.8337

B73 Wounded 2 3.66 ± 0.8812

B73 Wounded 3 4.1152 ± 0.9578

B73 Wounded 4 4.2051 ± 0.8478

B73 Wounded 6 3.6196 ± 0.8356

B73 Wounded 10 3.3255 ± 0.8448

B73 Wounded 14 3.6939 ± 0.9924

TZAR101 NTC 0 3.9779 ± 0.8319

TZAR101 NTC 1 4.2185 ± 0.8395

TZAR101 NTC 2 4.586 ± 0.9566

TZAR101 NTC 3 4.1651 ± 0.8789

TZAR101 NTC 4 3.9969 ± 0.9214

TZAR101 NTC 6 3.778 ± 0.8447

TZAR101 NTC 10 3.7332 ± 0.841

TZAR101 NTC 14 3.7903 ± 0.8417

TZAR101 NTC 18 3.6885 ± 0.8494

TZAR101 Infected 0 3.9779 ± 0.8319

TZAR101 Infected 1 3.8455 ± 0.824

TZAR101 Infected 2 3.498 ± 1.0182

TZAR101 Infected 3 3.7261 ± 0.8789

TZAR101 Infected 4 4.1542 ± 0.8463

TZAR101 Infected 6 3.7931 ± 0.824

TZAR101 Infected 10 3.8831 ± 0.8241

TZAR101 Infected 14 3.6468 ± 0.8261

TZAR101 Infected 18 3.6818 ± 0.8494

TZAR101 Wounded 0 3.9779 ± 0.8319

TZAR101 Wounded 1 4.0501 ± 0.8323

TZAR101 Wounded 3 3.9665 ± 0.8789

TZAR101 Wounded 4 3.6753 ± 0.8571

TZAR101 Wounded 6 3.7094 ± 0.8308

TZAR101 Wounded 10 3.3636 ± 0.873

TZAR101 Wounded 14 3.0547 ± 0.8551

TZAR101 Wounded 18 3.0667 ± 0.9368

Average RE ± Std. Error

Table B.4 Relative expression levels of the ZmWRKY21  gene (Tabular 

presentation of data found in Figure 4.4).



93 
 

 

 

Variety Treatment DAI

B73 NTC 0 4.6436 ± 0.7564

B73 NTC 1 5.2093 ± 0.7391

B73 NTC 2 3.9295 ± 0.8473

B73 NTC 3 5.917 ± 0.8956

B73 NTC 4 3.6364 ± 0.8257

B73 NTC 6 3.9104 ± 0.7408

B73 NTC 10 2.8923 ± 0.7606

B73 NTC 14 3.3903 ± 0.7493

B73 NTC 18 4.2647 ± 0.8471

B73 Infected 0 4.6436 ± 0.7564

B73 Infected 1 3.8809 ± 0.6966

B73 Infected 2 3.9433 ± 0.7758

B73 Infected 3 2.8141 ± 0.8956

B73 Infected 4 4.788 ± 0.7257

B73 Infected 6 3.7092 ± 0.6994

B73 Infected 10 3.6243 ± 0.6964

B73 Infected 14 3.1688 ± 0.7056

B73 Infected 18 3.3567 ± 0.7365

B73 Wounded 0 4.6436 ± 0.7564

B73 Wounded 1 3.7071 ± 0.6964

B73 Wounded 2 4.3353 ± 0.7758

B73 Wounded 3 3.2813 ± 0.8956

B73 Wounded 4 3.9847 ± 0.7208

B73 Wounded 6 3.4894 ± 0.6997

B73 Wounded 10 3.9744 ± 0.7148

B73 Wounded 14 3.4366 ± 0.9427

TZAR101 NTC 0 3.6807 ± 0.6879

TZAR101 NTC 1 3.7682 ± 0.7005

TZAR101 NTC 2 4.6916 ± 0.8898

TZAR101 NTC 3 3.9708 ± 0.7668

TZAR101 NTC 4 3.995 ± 0.8324

TZAR101 NTC 6 4.3572 ± 0.7088

TZAR101 NTC 10 4.3101 ± 0.7027

TZAR101 NTC 14 4.6751 ± 0.7041

TZAR101 NTC 18 4.5485 ± 0.7181

TZAR101 Infected 0 3.6807 ± 0.6879

TZAR101 Infected 1 3.9033 ± 0.6742

TZAR101 Infected 2 4.0419 ± 0.9791

TZAR101 Infected 3 3.8902 ± 0.7676

TZAR101 Infected 4 4.5757 ± 0.7127

TZAR101 Infected 6 4.1495 ± 0.6742

TZAR101 Infected 10 4.4743 ± 0.6745

TZAR101 Infected 14 4.6739 ± 0.6781

TZAR101 Infected 18 4.9613 ± 0.7185

TZAR101 Wounded 0 3.6807 ± 0.6879

TZAR101 Wounded 1 3.8682 ± 0.6882

TZAR101 Wounded 3 3.9695 ± 0.7668

TZAR101 Wounded 4 3.5453 ± 0.7308

TZAR101 Wounded 6 3.7868 ± 0.6858

TZAR101 Wounded 10 3.9353 ± 0.755

TZAR101 Wounded 14 3.2679 ± 0.7266

TZAR101 Wounded 18 3.7762 ± 0.8595

Average RE ± Std. Error

Table B.5 Relative expression levels of the ZmWRKY68  gene (Tabular 

presentation of data found in Figure 4.5).



94 
 

 

 

Variety Treatment DAI

B73 NTC 0 8.0883 ± 0.5206

B73 NTC 1 8.5159 ± 0.5068

B73 NTC 2 7.8892 ± 0.68

B73 NTC 3 8.4358 ± 0.7296

B73 NTC 4 7.6218 ± 0.6558

B73 NTC 6 7.5829 ± 0.51

B73 NTC 10 7.1713 ± 0.5478

B73 NTC 14 7.7107 ± 0.5224

B73 NTC 18 8.3581 ± 0.6847

B73 Infected 0 8.0883 ± 0.5206

B73 Infected 1 8.8423 ± 0.4182

B73 Infected 2 9.0537 ± 0.5546

B73 Infected 3 7.7235 ± 0.7319

B73 Infected 4 9.257 ± 0.4719

B73 Infected 6 8.2822 ± 0.4249

B73 Infected 10 7.9816 ± 0.4181

B73 Infected 14 7.6775 ± 0.4381

B73 Infected 18 7.8876 ± 0.4943

B73 Wounded 0 8.0883 ± 0.5206

B73 Wounded 1 7.8794 ± 0.4182

B73 Wounded 2 8.4068 ± 0.5546

B73 Wounded 3 8.492 ± 0.7319

B73 Wounded 4 8.1887 ± 0.4609

B73 Wounded 6 7.9918 ± 0.4257

B73 Wounded 10 8.1523 ± 0.4575

B73 Wounded 14 7.6959 ± 0.8358

TZAR101 NTC 0 3.1224 ± 0.4132

TZAR101 NTC 1 3.658 ± 0.4441

TZAR101 NTC 2 4.1679 ± 0.7279

TZAR101 NTC 3 3.8973 ± 0.5489

TZAR101 NTC 4 2.9404 ± 0.6708

TZAR101 NTC 6 3.4097 ± 0.4625

TZAR101 NTC 10 3.6632 ± 0.4488

TZAR101 NTC 14 3.24 ± 0.451

TZAR101 NTC 18 3.5148 ± 0.468

TZAR101 Infected 0 3.1224 ± 0.4132

TZAR101 Infected 1 3.8267 ± 0.3868

TZAR101 Infected 2 4.6715 ± 0.8697

TZAR101 Infected 3 3.5247 ± 0.5489

TZAR101 Infected 4 4.0489 ± 0.4576

TZAR101 Infected 6 2.8451 ± 0.3868

TZAR101 Infected 10 3.6673 ± 0.3872

TZAR101 Infected 14 4.283 ± 0.3954

TZAR101 Infected 18 4.1041 ± 0.468

TZAR101 Wounded 0 3.1224 ± 0.4132

TZAR101 Wounded 1 3.5559 ± 0.4189

TZAR101 Wounded 3 3.417 ± 0.5489

TZAR101 Wounded 4 3.1355 ± 0.4924

TZAR101 Wounded 6 3.1544 ± 0.4129

TZAR101 Wounded 10 3.2588 ± 0.5503

TZAR101 Wounded 14 4.4425 ± 0.4943

TZAR101 Wounded 18 4.1445 ± 0.6782

Average RE ± Std. Error

Table B.6 Relative expression levels of the ZmWRKY53.1  gene (Tabular 

presentation of data found in Figure 4.6).



95 
 

 

 

Variety Treatment DAI

B73 NTC 0 4.5741 ± 0.6268

B73 NTC 1 5.7112 ± 0.5749

B73 NTC 2 4.129 ± 0.8165

B73 NTC 3 4.7706 ± 0.9168

B73 NTC 4 4.6949 ± 0.7666

B73 NTC 6 4.8832 ± 0.5777

B73 NTC 10 4.98 ± 0.6245

B73 NTC 14 5.7672 ± 0.6002

B73 NTC 18 7.0945 ± 0.8116

B73 Infected 0 4.5741 ± 0.6268

B73 Infected 1 6.3025 ± 0.4661

B73 Infected 2 6.8137 ± 0.6722

B73 Infected 3 5.1759 ± 0.9168

B73 Infected 4 7.3331 ± 0.5477

B73 Infected 6 6.0848 ± 0.4745

B73 Infected 10 6.0976 ± 0.4665

B73 Infected 14 5.6676 ± 0.4916

B73 Infected 18 5.8053 ± 0.5746

B73 Wounded 0 4.5741 ± 0.6268

B73 Wounded 1 4.7322 ± 0.4661

B73 Wounded 2 5.1016 ± 0.6722

B73 Wounded 3 5.2648 ± 0.9168

B73 Wounded 4 5.4353 ± 0.535

B73 Wounded 6 5.1992 ± 0.4745

B73 Wounded 10 5.923 ± 0.5155

B73 Wounded 14 5.0197 ± 0.9838

TZAR101 NTC 0 4.1569 ± 0.4649

TZAR101 NTC 1 4.1229 ± 0.4917

TZAR101 NTC 2 4.3681 ± 0.9154

TZAR101 NTC 3 4.1477 ± 0.666

TZAR101 NTC 4 5.6183 ± 0.7907

TZAR101 NTC 6 5.5078 ± 0.5142

TZAR101 NTC 10 6.186 ± 0.4993

TZAR101 NTC 14 5.8948 ± 0.5027

TZAR101 NTC 18 6.6692 ± 0.5438

TZAR101 Infected 0 4.1569 ± 0.4649

TZAR101 Infected 1 5.6744 ± 0.42

TZAR101 Infected 2 5.9055 ± 1.0699

TZAR101 Infected 3 5.378 ± 0.666

TZAR101 Infected 4 6.1492 ± 0.5324

TZAR101 Infected 6 5.2516 ± 0.4199

TZAR101 Infected 10 6.0901 ± 0.4206

TZAR101 Infected 14 7.107 ± 0.4304

TZAR101 Infected 18 6.987 ± 0.5442

TZAR101 Wounded 0 4.1569 ± 0.4649

TZAR101 Wounded 1 4.6559 ± 0.46

TZAR101 Wounded 3 4.6637 ± 0.666

TZAR101 Wounded 4 5.1384 ± 0.577

TZAR101 Wounded 6 5.0922 ± 0.4535

TZAR101 Wounded 10 5.5064 ± 0.6263

TZAR101 Wounded 14 5.6901 ± 0.5603

TZAR101 Wounded 18 6.4557 ± 0.8674

Average RE ± Std. Error

Table B.7 Relative expression levels of the ZmWRKY67  gene (Tabular 

presentation of data found in Figure 4.7).
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Variety Treatment DAI

B73 NTC 0 5.8688 ± 0.2979

B73 NTC 1 6.4165 ± 0.4086

B73 NTC 3 5.9306 ± 0.4606

B73 NTC 6 5.4143 ± 0.4116

B73 NTC 10 4.4013 ± 0.5276

B73 NTC 14 4.2734 ± 0.4324

B73 Infected 0 5.8688 ± 0.2979

B73 Infected 1 4.9694 ± 0.3007

B73 Infected 3 4.946 ± 0.4606

B73 Infected 4 5.1933 ± 0.4606

B73 Infected 6 5.1084 ± 0.3159

B73 Infected 10 4.6459 ± 0.3033

B73 Infected 14 4.3853 ± 0.3473

B73 Infected 18 7.0384 ± 0.5592

B73 Wounded 0 5.8688 ± 0.2979

B73 Wounded 1 5.1527 ± 0.3007

B73 Wounded 3 4.9854 ± 0.4664

B73 Wounded 4 5.0533 ± 0.4227

B73 Wounded 6 4.9262 ± 0.3159

B73 Wounded 10 4.8751 ± 0.4217

B73 Wounded 14 4.3593 ± 0.5362

TZAR101 NTC 0 4.5215 ± 0.2095

TZAR101 NTC 1 4.5672 ± 0.2902

TZAR101 NTC 3 4.8458 ± 0.3261

TZAR101 NTC 6 4.8557 ± 0.2901

TZAR101 NTC 10 4.6424 ± 0.3

TZAR101 NTC 14 4.2867 ± 0.3003

TZAR101 NTC 18 4.1691 ± 0.3261

TZAR101 Infected 0 4.5215 ± 0.2095

TZAR101 Infected 1 4.6815 ± 0.2127

TZAR101 Infected 3 4.8892 ± 0.3281

TZAR101 Infected 4 5.0258 ± 0.3129

TZAR101 Infected 6 5.0573 ± 0.2127

TZAR101 Infected 10 4.5159 ± 0.2131

TZAR101 Infected 14 4.8832 ± 0.2234

TZAR101 Infected 18 4.549 ± 0.3261

TZAR101 Wounded 0 4.5215 ± 0.2095

TZAR101 Wounded 1 4.6129 ± 0.2258

TZAR101 Wounded 3 4.5011 ± 0.3261

TZAR101 Wounded 4 4.8884 ± 0.2993

TZAR101 Wounded 6 4.6092 ± 0.2204

TZAR101 Wounded 10 4.2809 ± 0.3279

TZAR101 Wounded 14 3.7831 ± 0.2844

TZAR101 Wounded 18 4.7306 ± 0.4332

Average RE ± Std. Error

Table B.8 Relative expression levels of the ZmPR-1  gene (Tabular 

presentation of data found in Figure 4.8).
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Variety Treatment DAI

B73 NTC 0 6.0584 ± 0.2824

B73 NTC 1 6.5945 ± 0.375

B73 NTC 3 6.5668 ± 0.4262

B73 NTC 6 5.8436 ± 0.3778

B73 NTC 10 5.2878 ± 0.4774

B73 NTC 14 5.7506 ± 0.3995

B73 Infected 0 6.0584 ± 0.2824

B73 Infected 1 5.4462 ± 0.2839

B73 Infected 3 5.4847 ± 0.4262

B73 Infected 4 5.8725 ± 0.4262

B73 Infected 6 5.7178 ± 0.2965

B73 Infected 10 5.4938 ± 0.2846

B73 Infected 14 5.6825 ± 0.3232

B73 Infected 18 6.829 ± 0.51

B73 Wounded 0 6.0584 ± 0.2824

B73 Wounded 1 5.6083 ± 0.2839

B73 Wounded 3 5.7014 ± 0.4262

B73 Wounded 4 5.7662 ± 0.3944

B73 Wounded 6 5.2284 ± 0.2965

B73 Wounded 10 5.9126 ± 0.3886

B73 Wounded 14 5.3407 ± 0.4863

TZAR101 NTC 0 6.5175 ± 0.1998

TZAR101 NTC 1 6.4928 ± 0.2664

TZAR101 NTC 3 6.5431 ± 0.3014

TZAR101 NTC 6 6.1594 ± 0.2663

TZAR101 NTC 10 6.3347 ± 0.2734

TZAR101 NTC 14 6.6816 ± 0.2765

TZAR101 NTC 18 6.6981 ± 0.3014

TZAR101 Infected 0 6.5175 ± 0.1998

TZAR101 Infected 1 6.8313 ± 0.201

TZAR101 Infected 3 6.7246 ± 0.302

TZAR101 Infected 4 7.2242 ± 0.2893

TZAR101 Infected 6 7.0299 ± 0.2015

TZAR101 Infected 10 7.0257 ± 0.2013

TZAR101 Infected 14 7.1697 ± 0.2099

TZAR101 Infected 18 7.0968 ± 0.3014

TZAR101 Wounded 0 6.5175 ± 0.1998

TZAR101 Wounded 1 6.9024 ± 0.2121

TZAR101 Wounded 3 6.7681 ± 0.3014

TZAR101 Wounded 4 6.8637 ± 0.2789

TZAR101 Wounded 6 6.4655 ± 0.2069

TZAR101 Wounded 10 6.6437 ± 0.2991

TZAR101 Wounded 14 6.0666 ± 0.2627

TZAR101 Wounded 18 6.4509 ± 0.3975

Average RE ± Std. Error

Table B.9 Relative expression levels of the ZmNPR1  gene (Tabular 

presentation of data found in Figure 4.9).
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Variety Treatment DAI

B73 NTC 0 4.3055 ± 0.8682

B73 NTC 1 4.4044 ± 0.9142

B73 NTC 3 3.9553 ± 0.9258

B73 NTC 6 3.4253 ± 0.9154

B73 NTC 10 2.5569 ± 0.9758

B73 NTC 14 3.7904 ± 0.9215

B73 Infected 0 4.3055 ± 0.8682

B73 Infected 1 3.3784 ± 0.8688

B73 Infected 3 2.7046 ± 0.9258

B73 Infected 4 3.7813 ± 0.9258

B73 Infected 6 3.258 ± 0.8747

B73 Infected 10 2.879 ± 0.869

B73 Infected 14 3.6386 ± 0.8868

B73 Infected 18 4.8315 ± 0.9827

B73 Wounded 0 4.3055 ± 0.8682

B73 Wounded 1 3.5866 ± 0.8688

B73 Wounded 3 3.7697 ± 0.9258

B73 Wounded 4 3.5666 ± 0.9061

B73 Wounded 6 3.0519 ± 0.8747

B73 Wounded 10 3.6043 ± 0.9185

B73 Wounded 14 4.0822 ± 0.9786

TZAR101 NTC 0 4.2514 ± 0.8169

TZAR101 NTC 1 4.129 ± 0.8419

TZAR101 NTC 3 4.2088 ± 0.8478

TZAR101 NTC 6 4.6031 ± 0.8419

TZAR101 NTC 10 4.2869 ± 0.8439

TZAR101 NTC 14 4.617 ± 0.8444

TZAR101 NTC 18 4.849 ± 0.8478

TZAR101 Infected 0 4.2514 ± 0.8169

TZAR101 Infected 1 4.3453 ± 0.8172

TZAR101 Infected 3 4.5187 ± 0.8478

TZAR101 Infected 4 4.8219 ± 0.8417

TZAR101 Infected 6 4.6597 ± 0.8173

TZAR101 Infected 10 4.6186 ± 0.8173

TZAR101 Infected 14 5.4602 ± 0.8204

TZAR101 Infected 18 5.3733 ± 0.8478

TZAR101 Wounded 0 4.2514 ± 0.8169

TZAR101 Wounded 1 4.3566 ± 0.8209

TZAR101 Wounded 3 4.2447 ± 0.8478

TZAR101 Wounded 4 3.8761 ± 0.837

TZAR101 Wounded 6 3.9377 ± 0.8192

TZAR101 Wounded 10 4.1502 ± 0.8561

TZAR101 Wounded 14 3.8792 ± 0.8384

TZAR101 Wounded 18 4.8136 ± 0.8772

Average RE ± Std. Error

Table B.10 Relative expression levels of the ZmERF1  gene (Tabular 

presentation of data found in Figure 4.10).
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APPENDIX C 

GENOMIC LOCI HOMOLOGOUS TO THE MAIZE WRKY53.1 TRANSCRIPTION 

FACTOR IN B73 

 

 

Figure C.1 Graphical representation of loci homologous to ZmWRKY53.1 in the B73 genome. 

This graphic represents the whole genome view of homologous regions to ZmWRKY53 in the 

B73 genome and was generated using the BLAST function for the Maize Genome Database 

(http:// http://blast.maizegdb.org/). The relative locations of homologous regions of the B73 

genome to the nucleotide sequence of the ZmWRKY53 gene are displayed by colored boxes. Red 

boxes represent regions highly similar (e-value < 1.0 x 10
-100

) to the ZmWRKY53 coding 

sequence. Yellow/orange and green boxes represent regions with moderate (e-value < 1.0 x     

10
-40

) and low homology (e-value > 1.0 x 10
-40

), respectively.  
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APPENDIX D 

SAS PROGRAMMING FOR STATISTICAL ANALYSIS OF REAL-TIME PCR DATA 

 

Where the dataset labeled “one” is an imported spreadsheet containing the qPCR results and 

corresponding labels, and DV indicates the Dependent Variable, the gene examined in the 

analysis… 

 

dm'log;clear;output;clear'; 

OPTIONS nodate nocenter pageno=1 ls=78 ps=55; 

 

/* 

Proc Print data=one; 

Run; 

Proc Mixed data=one; 

Class Yr Var Plot Tnt DAI Plant; 

Model DV2 = Var|Tnt|DAI / ddfm=kr; 

Random Yr Plot(Yr Var) DAI*Plot(Yr Var) Plant(Yr Var Plot Tnt DAI); 

Lsmeans Var|Tnt|DAI; 

Run; Quit; 

*/ 

 

%include "C:\Users\jfount4\Desktop\pmmix macro.sas"; 

%include "C:\Users\jfount4\Desktop\pdmix900.sas"; 

 

*PDMIX900 outm = means outd = diffs; 

 

%PMMIX9v2(%nrbquote(Proc Mixed Data = one; 

                    Classes Yr Var Plot Tnt DAI Plant; 

                    Model DV2 = Var|Tnt|DAI / E3 ddfm = KR; 

                    Random Yr Plot(Yr Var) DAI*Plot(Yr Var) Plant(Yr Var Plot Tnt DAI); 

                    PMMTEST Var|Tnt|DAI / E BYLEVEL OM = OMDATA; 

                    PMMOPTIONS NOEALL;)); 
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