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ABSTRACT 
 

Aspergillus flavus is a saprophytic ascomycete that can also actively invade the seed of crops and 

potentially contaminate them with harmful aflatoxins. Management of A. flavus currently relies 

mostly on biocontrol. However, there is still a lot to learn about its biology and ecology so the 

current approach can be improved. An A. flavus population survey was undertaken during the fall 

of 2014 across eight Mississippi River states to determine population diversity and geographic 

distribution of VCGs. Isolates from corn and soil were also characterized for VCG, sclerotial 

morphotype, mating type, cyclopiazonic acid, and aflatoxin production in order to determine trait 

uniformity within VCGs and those VCGs traits which may be associated with corn infection. From 

a collection of 339 soil and 204 kernel isolates, 18 multiple-isolate VCGs were determined. Four 

VCGs accounted for 54% of soil and 48% of total kernel populations and these were the only ones 

recovered from both niches. Nine VCGs were only recovered from the soil population and 5 from 

corn kernels. Two VCGs were widely distributed across the 8-state transect and they were the 

same most frequently isolated from corn kernels in Louisiana in 2007. Results also indicate that 

the A. flavus metapopulation along the Mississippi River was highly genetically diverse as 

reflected by the diversity of VCGs. Southern populations were more diverse, and the northern 

region showed higher clonal fractions. Mating type MAT1-2 and high CPA production were 

associated with corn infectors, which were mainly of the L-morphotype. The soil niche had both, 

S and L-sclerotial morphotypes and although ~70% of isolates from both niches produced CPA, 

kernel isolates produced higher concentrations and support the report that CPA is a pathogenicity 

factor for A. flavus. These results give insight into important traits for corn infection, for both 

toxigenic and atoxigenic strains, which may be key in the improvement of biological control 

strategies. Characterizing the diversity of VCGs and their distribution over a 1500 km transect 

spanning important corn growing areas in the US, has allowed creation of a quantitative baseline 

of VCGs which can be used for monitoring changes in biodiversity over time.
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Chapter 1. INTRODUCTION 

 

Aspergillus flavus Link, Teleomorph: Petromyces flavus (Horn et al., 2009) is a filamentous 

ascomycete placed in the class Eurotiomycetes and order Eurotiales due to the production of 

ascospores within asci, and asci within a cleistothecial-type ascocarp (Moore et al., 2010). 

Aspergillus flavus was long considered an asexually reproducing fungus but with the discovery of 

mating type loci and subsequent mating experiments at the lab and field level, its sexual cycle was 

verified (Ramirez-Prado et al., 2008; Horn et al., 2009; and Horn et al., 2016). Aspergillus flavus 

belongs to section Flavi within the Aspergilli, a section that comprises economically important 

organisms such as the industrially beneficial Aspergillus oryzae but also harmful ones such as A. 

flavus itself, Aspergillus nomius and Aspergillus parasiticus. These Aspergilli produce 

carcinogenic aflatoxins, very detrimental secondary metabolites that threaten human and animal 

health as contaminants of important agricultural commodities (Fountain et al., 2014). Strict 

regulation and enforcement exists for aflatoxin in developed countries such as the US and 

European Union (Ehrlich, 2014). However in developing countries, most agricultural products 

move through local and informal markets, making regulation and enforcement difficult to apply. 

For example, recent aflatoxin contamination events have occurred in sub-Saharan countries, where 

aflatoxin contaminated grains are responsible for acute and chronic poisoning, aflatoxicosis and 

death (Atehnkeng et al., 2015). 

 

Aspergillus flavus represents a good portion of soil mycobiota and is responsible for nutrient 

cycling by decaying a diversity of organic materials through the release of specialized enzymes 

that degrade multiple plant components, such as cellulose, lignin, pectin, and lipids (Cotty et al., 

1990 and Horn, 2003). The A. flavus reservoir in the soil consists of sclerotia, conidia, and mycelial 

networks, all of which can serve as primary inoculum for continuing propagation. Aspergillus 

flavus is found in virtually any soil that has been sampled around the world and is considered to 

have a ubiquitous and cosmopolitan distribution (Horn, 2003). The fungus has been found to be 

more abundant in subtropical and tropical warm climates, conditions that favor its growth and 

development. It has even been naturally and abundantly found infecting the seeds of wild 

leguminous trees in the Sonoran desert (Cotty et al., 1994).  
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In addition to its important saprophytic role in nature, A. flavus can also actively invade the seed 

of crops through its facultative parasitic capabilities (Horn, 2003) and become a problem rather 

than a beneficial agent in the ecosystem. The infection of corn occurs when conidia from the soil 

reservoir become airborne or insect vectored onto the silks of developing corn ears. Conidia 

germinate and the fungal mycelium grows down into the kernels through the naturally dying silks 

during or just after pollination (Wicklow, 1991). The presence of A. flavus in the crop seeds does 

not represent a problem since the amount of infection causes no significant impact on yield.  Its 

presence becomes an issue with the contamination of grain with harmful aflatoxins (Fountain et 

al., 2014), secondary metabolites whose biological or physiological significance for the fungus is 

not completely clear. However, they represent a serious issue for global food safety, human and 

animal health, and agricultural trade.  

 

It has been suggested that crop composition and crop history influences the relative abundance and 

persistence of this fungus in the soil of agricultural settings (Garber and Cotty, 2014). Many strains 

of A. flavus increase their populations by producing huge amounts of inoculum when they find 

rich carbon and nitrogen sources. This regularly replenishes soil populations, especially after 

harvest seasons with hot and dry environmental conditions (Horn, 2003). This type of stress 

normally predisposes crop plants (they can even cause seed cracks) and compromises them for 

opportunistic pathogen invasion due to the lowering of their defense mechanisms (Orum et al., 

1997), but it also creates just the right conducive conditions for the fungus to grow and thrive.  

 

Aspergillus flavus is associated with contaminating oil-rich seed crops such as corn, cottonseed, 

peanuts, and tree nuts, but also rice and peppers (CAST, 2003). It was first recognized as a major 

issue during post-harvest and storage, but it also affects crops during pre-harvest scenarios when 

conditions are conducive for its development. Mycotoxin contamination of crops in the United 

States alone has been estimated to account for a loss of nearly $932 million annually, to which 

$466 million are added for regulatory enforcement, testing, and quality control measures (CAST, 

2003). In addition to direct economic loss, it threatens our global food supplies and health, so 

management actions and strategies must be developed to counteract A. flavus.  
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In terms of management, growing aflatoxin-resistant hybrids is the most desirable potential 

approach. Unfortunately, it has not been possible because resistance to A. flavus is a quantitative 

trait controlled by multiple loci of small effect with significant environment-genotype interactions 

(Fountain et al., 2014), and it has not been incorporated into commercial hybrids. Certain genetic 

lines with resistance to insect damage and abiotic stresses seem to be more tolerant of aflatoxin 

contamination. Cultural practices such as proper fertilization and irrigation have a limited positive 

effect. The use of conventional fungicides is impractical and ineffective. An alternate biological 

control strategy is the use of atoxigenic strains based on the intraspecific competition concept 

among different A. flavus individuals (Abbas et al., 2009). Non-toxigenic strains outcompete 

toxigenic ones in the field without causing an increase in the overall A. flavus populations, but 

shifts in the population structure by increasing abundance of the non-toxigenic strain. The 

population structure shift translates to reduction of total aflatoxin contamination and risk (Bayman 

and Cotty, 1993). Although the competition or displacement concept is more easily seen in the 

soil, it has also been demonstrated that cryptic or more complex mechanisms regulate the 

biocontrol effect of non-toxigenic strains against toxigenic ones during co-infection of crop 

materials (Huang et al., 2011; and Mehl and Cotty, 2013).  

 

The use of non-toxigenic strains has yielded positive results in several parts of the US as well as 

in Africa (Atehnkeng et al., 2015). Cotton and corn growers in Arizona and Texas have used a US 

EPA approved commercial formulation of atoxigenic A. flavus (strain AF36) for reducing aflatoxin 

contamination since the 1990s (Cotty and Bhatnagar, 1994). Growers have accepted the 

technology and over 50,000 ha of cotton in the southwestern US have been treated with AF36 and 

successfully reduced aflatoxin levels in cotton seed (Das et al., 2008). Peanut and corn growers in 

the southern US have two special formulations, one first created for peanut fields and sold as the 

Syngenta product Aflaguard (NRRL 21882), and a second one, K49, created specifically for corn 

(Abbas et al., 2011). The United States Department of Agriculture - Agricultural Research Service 

(USDA-ARS) and the International Institute for Tropical agriculture (IITA) in Africa have also 

fostered initiatives (and continue doing so) that help growers fight this problematic situation that 

has not only created production issues and threats, but has also taken lives in Kenya and Nigeria 

due to severe aflatoxicosis, acute poisoning, and continuing effects on children’s growth and 

development (Lewis et al., 2005). Nigerian corn growers have an IITA product called Aflasafe 
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that consists of four locally adapted atoxigenic strains that have shown positive results in reducing 

aflatoxin contamination during pre-harvest, but also during storage of grain. Efforts to expand the 

technology to other sub-Saharan countries using locally adapted non-toxigenic strains are 

underway and are expected to contribute to solving one of the agricultural issues that African 

countries are currently dealing with (Aflasafe.com/IITA). 

 

Although biocontrol has had beneficial effects in the field in the reduction of aflatoxin 

contamination, the actual antagonistic mechanisms behind the competition interactions are not 

completely clear and require elucidation. A better understanding of the ecology of A. flavus, its 

biology, and the structure of its populations at the local, regional, and global scales is also needed 

so biocontrol strategies can be improved (Damann 2015; and Atehnkeng et al., 2015). 

 

1.2 Population biology of Aspergillus flavus 

 

In addition to its wide distribution, Aspergillus flavus has a high diversity within its populations 

as determined by phenotypic and genotypic studies (Horn et al., 1996; Giorni et al., 2007; and 

Pildain et al., 2004), including: mycotoxin profiles (Giorni et al., 2007; and Horn et al., 1996) 

vegetative compatibility grouping (Bayman and Cotty, 1991; Horn and Greene, 1995; Pildain et 

al., 2004; and Sweany et al., 2011), and population genetic studies using other molecular markers 

such as RFLP and SSR fingerprints (McAlpin et al., 2002; and Sweany et al., 2011). 

 

As a species, A. flavus is considered a very complex system and its populations have been 

subdivided in several ways. One of the most common ways to categorize its populations is based 

on morphology and the type and amounts of toxins they produce. Strains are either assigned to the 

typical L-strain (large sclerotia) morphotype that produce sclerotia >400 μm in diameter or as the 

S-strain (small sclerotia) that produce sclerotia <400 μm. Some strains appear incapable of 

sclerotia formation, but more resemble L-strains (Horn, 2003). Beyond sclerotial size, these two 

morphotypes also differ in colony morphology and general aflatoxin-producing potential. L-

morphotype strains produce relatively few or no sclerotia but copious amounts of conidia, while 

S-strains produce abundant small sclerotia but few or no conidia (Bayman et al., 1994; and Sweany 

et al., 2011). L-morphotype strains range in their aflatoxin production from non-producers to 
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highly toxigenic ones, while S-strains are predominantly high toxin producers. Non-toxigenic S-

type strains are rarely found in nature and consequently S-strain individuals are thought to be the 

major source of aflatoxin contamination in corn and cotton in agricultural fields (Zhang and Cotty, 

2007). In addition, L-strains may produce only B-type aflatoxins plus cyclopiazonic acid (CPA), 

whereas S-strains may produce both B and G-type aflatoxins in addition to CPA (Horn, 2003), 

something that has caused a lot of controversy in the taxonomy of this fungus. A phylogenetic 

analysis in 1998, based on the sequences of 5 genes determined that A. flavus is non-monophyletic 

and isolates are segregated into two cryptic groups that are morphologically distinct. Group I 

consists of L and S-type strains that produce only B-type aflatoxins whereas S-type Group II 

produces both B and G aflatoxins (Geiser et al., 1998). Some scientists refer to S-trains that 

produce B-type aflatoxin only as A. flavus var. parvisclerotigenus and as A. minisclerotigenes 

(Pildain et al., 2008) if they produce B and G aflatoxins (Moore et al., 2010). A closely related 

fungus in section Flavi, Aspergillus parasiticus resembles A. minisclerotigenes, as it produces both 

types of aflatoxins but it does not produce CPA (Horn, 2003). Aspergillus flavus fails to produce 

G-type aflatoxins due to a partial or total deletion of the cypA gene that encodes a P-450 

cytochrome monooxygenase, important for the production of G-type aflatoxins (Ehrlich et al., 

2004). Generally, non-toxigenic individuals lack the ability to produce mycotoxins due to non-

synonymous mutations or deletions in part or the whole aflatoxin gene cluster (Adhikari et al., 

2016). To make matters more interesting, some authors suggest that B and G producers of the S-

strain morphotype could be hybrids between A. flavus and A. parasiticus, a strategy that would 

provide evolutionary advantage through the hybrid vigor and increased capabilities for adaptation 

(Moore et al., 2010).  

 

The high variability in aflatoxin production coupled with different combinations of other 

secondary metabolites produced by A. flavus (chemotype diversity) has also been useful in the 

characterization of its populations. Several studies have attempted to characterize populations 

based solely on chemotype diversity (Giorni et al., 2007), and although it has been informative, 

the non-monophyletic distribution of toxin producers and the high profile variability has not 

provided much understanding of genotype diversity and population structure of this problematic 

fungus. The same is actually the case for morphotype determination. The broad encompassing of 
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isolates within few categories does not provide information to identify closely related individuals 

or identify genotype diversity within the whole population. 

 

A classification system that is definitely more informative for subdividing A. flavus populations is 

vegetative compatibility typing. Vegetatively compatible individuals together form sub-clades or 

assemblages within a population called vegetative compatibility groups (VCGs) (Leslie, 1993). 

The vast majority of phenotypic diversity in A. flavus populations can be attributed to differences 

between VCGs (Horn, 2003). Vegetative compatibility is one of the self/non-self-recognition 

systems that filamentous fungi have and presumably acts as a mechanism to restrict the exchange 

of genetic material (gene flow) between vegetatively incompatible individuals. It may also restrict 

the transmission of deleterious viruses, plasmids and parasitic nuclei (Grubisha and Cotty, 2010). 

More importantly, vegetative compatibility or incompatibility is controlled by a series of unrelated 

and unlinked loci collectively termed het loci, for heterokaryon formation. Heterokaryon formation 

in vegetatively compatible individuals results in interchange of their cytoplasmic and genetic 

materials (Leslie, 1993). It has been suggested that in A. flavus at least 12 het loci govern vegetative 

(in) compatibility (Ehrlich, 2014) and because 100% identity in those loci must exist for successful 

fusion, vegetative compatibility tests within a population is an important tool for grouping of 

closely related individuals. This multi-locus base of VCG subgroupings allows determining 

identities with a simple phenotypic test (Leslie, 1993). Vegetative compatibility allows 

determination of genetic diversity, genotype frequency, and distribution in the whole A. flavus 

population. 

 

As discussed earlier, morphological and physiological traits such as morphotypes and chemotypes 

on their own are not very informative, but when collated with VCGs they provide greater 

resolution. Genetic relatedness between isolates is most consistent within VCGs, meaning that 

morphotypes and chemotypes (type, and level of toxins produced) are more uniform within VCGs 

rather than among them, even non-toxigenic and toxigenic individuals tend to segregate into 

different VCGs (Horn, 2003; and Pildain et al., 2004). VCG relatedness is also supported by DNA-

RFLP fingerprint analysis, where individuals belonging to the same VCG show the same or almost 

identical band pattern, whereas individuals in different VCGs show their own unique RFLP 

fingerprint pattern (McAlpin and Wicklow, 2002). VCGs are considered a synonym of “strain” in 
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this system. The predominantly asexual reproduction or clonality of A. flavus may explain the 

strong correlation of VCGs with morphology, physiology, and other molecular features. 

Individuals in the same VCG have been shown to possess the same mating type idiomorph 

(Sweany et al., 2011). However, substantial genetic diversity and variation exists within the whole 

A. flavus population as shown by the presence of multiple VCGs and occasionally slight 

differences among individuals within the same VCG.  Sexual recombination along with random 

genetic mutations at het loci may explain the within VCG genetic diversity, although the rates at 

which they occur are still unknown. Before discovery of mating type loci in A. flavus, this genetic 

variability was attributed mainly to parasexuality (Batt, 2014). 

 

The VCG classification system, though laborious, has been used to characterize diversity and 

assess population structure for A. flavus. VCG diversity has been widely studied during the last 

two decades in different agricultural settings, regions, and countries because it represents a way of 

classifying A. flavus populations (Bayman and Cotty, 1991; 1993; Horn and Greene, 1995; and 

Sweany et al., 2011). VCG diversity is commonly observed by relative abundance in the field, 

meaning that few VCGs comprise the majority of sampled isolates with many additional VCGs of 

small representation within the population (Papa, 1986; and Horn et al., 1996). Diversity indices 

(DI) have been calculated for Aspergillus species to compare among different populations. DIs are 

calculated by dividing the number of VCGs by the total number of isolates identified in a certain 

region (Horn and Greene, 1995). More informative diversity indices are often used to determine 

diversity in fungi whose genotypic/phenotypic units are VCGs or similar markers. The Shannon-

Wiener and Simpson diversity indices are often used to measure the genotypic richness (number 

of observed VCGs) and their relative frequencies (evenness) within a population. Although these 

indices are a composite of richness and evenness, these latter two can also be calculated separately 

for comparison among populations. Aspergillus flavus population studies have been mainly done 

by using VCGs as genotype identifiers, which are useful to determine population structure. 

Diversity indices allow a comparison of all these population characteristics with other sympatric 

or allopatric populations (Milgroom, 2015). 

 

VCG diversity and composition have been associated with different cropping systems, including 

association and prevalence of certain VCGs from a particular Aspergillus species with different 
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crops. Aspergillus species have been found to be non-randomly distributed. Aspergillus parasiticus 

and A. tamarii for example have been frequently associated with peanut in the peanut growing 

areas, whereas A. flavus VCGs have been consistently found in corn and cotton growing fields 

(Horn and Dorner, 1999). However, no VCG had been described or reported to have a particular 

association infecting specific crop plants. The lack of VCG association with a particular host led 

to the belief that virtually any strain has the same capabilities to infect a host if the environmental 

conditions are conducive (Sweany et al., 2011). Strong plant-pathogenic organisms such as 

Fusarium oxysporum have shown correlation between VCG and pathogenicity (specificity) 

(Bosland and Williams, 1987). 

 

This lack of specificity for A. flavus is being questioned. In a three-year Arizona cotton field study, 

only 5 VCGs  out of 11 from the whole collection were sampled from both soil and cotton bolls, 

giving evidence of specialization (Bayman and Cotty, 1991). A second and more detailed work, 

from a soil and corn kernels collection in 2007 from Louisiana fields revealed specialization of 

certain VCGs within the A. flavus population for infecting corn. In this comparison 16 VCGs were 

identified in the soil from which only 6 were determined to infect corn. Interestingly corn infecting 

individuals were predominantly of the L-morphotype and/non-sclerotia producers and highly 

skewed for the mating-type MAT1-2 idiomorph. These characteristics were significantly different 

from the soil population individuals and tightly correlated and dependent of VCG. VCGs and 

individuals confined to the soil niche were predominantly of the S-morphotype and their mating-

type ratio approximated 1:1. Aflatoxin production was variable among VCGs, but soil populations 

had a greater proportion of toxigenic representatives than the corn-kernel population overall 

(Sweany et al., 2011). 

 

A profile for individuals with better infecting abilities within this “opportunistic” pathogen 

population has not been determined. Although the mechanisms underlying traits that seem to make 

certain VCGs or strains more fit to infect crops are not clear, it is likely that these traits may confer 

certain advantages to the VCGs that possess them over their counterparts. In biological and 

ecological terms, the ability to infect is important for both the toxigenic and atoxigenic strains. 

Having insight into how the infection process works or what features confer its ability to infect 
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would play a critical and important role for the implementation or improvement of current 

biocontrol strategies against A. flavus (Damann, 2015). 

 

Sweany et al.’s results in 2011 encouraged a series of follow up studies to look at differences 

between individuals from both soil and plant subpopulations (niches) to better understand what 

the infecting strains have that their counterparts lack. Besides morphotype and mating-type 

idiomorph, corn-infecting strains have been shown to have higher growth rates in vivo (corn 

kernels) as determined by biomass marker expression (Chalivendra et al., 2016). Corn infectors 

have greater conidial fecundity that gives them increased dissemination potential (Sweany et al., 

2016), and they also produce more cyclopiazonic acid (CPA) (Chalivendra et al., 2017). CPA is 

an indole-tetramic acid toxin produced by A. flavus and other related fungi that interferes with 

calcium pumps (Ca2+ ATPase), enzymes involved in calcium transport and signal transduction in 

plants (Kabala and Klobus, 2005) and proper muscle contractions in vertebrates (Ehrlich, 2014). 

CPA as plant-cell killing toxin has been determined to work as a pathogenicity factor in A. flavus¸ 

so its production would give the fungus an advantage at the moment of colonization of plant tissue 

(Chalivendra et al., 2017). VCGs with higher levels of CPA production would be expected to more 

easily infect a crop, so selection would favor them and their frequency should be higher than low 

or non-CPA producers.  

 

Based on the information gained in previous studies and in search of a better understanding of the 

biology of A. flavus, a population study from 17 fields across eight states along the Mississippi 

river was undertaken in the fall of 2014. A profile for every VCG/strain identified was created and 

a comparison made between the soil and corn populations to determine if a correlation holds 

between VCG specificity and niche.  The idea was to determine the characteristics associated with 

each VCG and the corn-kernel infecting abilities of such VCGs. This should allow identification 

of traits that the best corn-infecting strains have and that the soil inhabitants lack.  Furthermore 

and no less important, objectives of the work involved determining the population genetic 

composition and structure utilizing VCGs (genotypes) as a measure of richness and diversity along 

with other population parameters such as diversity indices, observed and expected genotypic 

richness, and clonal fractions. Knowing and understanding the ambient diversity and distribution 

of VCGs at the local, state, and regional levels provides information to implement the best-fit 
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aflatoxin biocontrol strategies (Cotty 1994; and Pildain et al., 2004). It is important to know the 

distribution of toxigenic and non-toxigenic individuals to understand the risks associated with 

them if environmental conditions become conducive (Atehnkeng et al., 2015). More importantly, 

knowing the population structure and VCG richness is adequate for the appropriate selection of 

biocontrol strains (Abbas et al., 2009). So, in these regards, a major goal in this study was also to 

construct a quantitative baseline of the more frequent ambient strains from the soil and corn kernels 

along the nearly 1500 km transect from Minnesota to Louisiana, and document the diversity of 

toxigenic and atoxigenic VCGs spanning some of the more important corn growing areas in the 

US. 
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Chapter 2. MATERIALS AND METHODS 

 

2.1 Sample collection 

 

Ten corn ears and 5 scoops of soil were randomly collected from each of 17 different fields from 

eight Mississippi-river states and provided by collaborators during the fall of 2014 (See list in 

Appendix 1). Two fields from MN, WI, IA, MO and IL, 3 fields from LA and MS and 1 field from 

AR were sampled. Soil samples were air dried in a fume hood before shipment, although some 

required drying for a longer time in an oven at 40 °C. Soil samples were stored in paper bags at 

room temperature and mature corn ear samples were individually shelled and stored in zip-lock 

bags at room temperature as well.  

 

2.2 Fungal culture isolation and identification 

 

Soil (50g) was suspended in 100 ml of sterile distilled water in a 250 ml Erlenmeyer flask (original 

dilution) and shaken for 10 minutes in an Eberbach reciprocal shaker (Ann Arbor, MI). A 1-ml 

aliquot of the suspension was spread onto 5-7 petri dishes containing Aspergillus flavus/parasiticus 

amended medium (AFPA) (Bothast and Fennell, 1974); amended with 50 μg/ml hygromycin, 1.5 

μg/ml chlortetracycline, 30 μg/ml streptomycin and 0.04 μg/ml Avermectin (Sweany et al., 2011; 

and Bayman and Cotty, 1991b). The use of this selective medium allowed rapid identification of 

A. flavus colonies by the bright-orange reverse colony color, indicating the production and release 

of aspergillic acid, a characteristic of Aspergillus flavus (Bothast and Fennell, 1974; Pitt et al., 

1983; and Sweany et al., 2011). Another good feature of this medium is that each inoculum unit 

present in the sample germinates and shows an independent colony due to the scarce or null 

sporulation of the fungus, which facilitates picking multiple isolates from a plate. Isolations were 

also attempted with 1:10 and 1:100 serial dilutions from the original suspension but yielded too 

few isolates per plate in many of the samples, so only 1-ml aliquots from the original dilution were 

used in further isolation attempts. Plates were incubated at 30 °C for 3-5 days until colonies were 

visible and well developed. Plugs from the active growing border of each colony were transferred 

onto V8 medium plates (5% V8 juice, 2% agar, pH adjusted to 5.2 and amended with 0.04 μg/ml 

Avermectin) and grown for 6-7 days, also at 30 °C. From these cultures, single spore colonies were 

made by streaking conidia onto PDA plates and leaving them overnight at 30 °C. A single 
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germinating conidium was transferred onto a new V8 medium-containing plate and grown for 7 

more days at 30 °C. Spores from each single spore culture were harvested in 50:50 (v/v) 

glycerol/water in 2-ml Eppendorf tubes and stored at 8 °C for short term usage and -20 °C for long 

term storage (Sweany et al., 2011). 

 

One hundred corn kernels from each ear were surface sterilized with 6% bleach solution (plus 400 

μg/L of Tween 20 surfactant) in 50 ml plastic centrifuge tubes for 1.5 min and rinsed with sterile 

distilled water three times for 15 sec. Twenty-five intact corn kernels per 100x15 mm petri dish 

were plated on AFPA amended medium. Plates were incubated at 30 °C for 3-5 days in the light 

and examined for the orange-bottom colonies that characterize A. flavus in this medium. Plugs 

from the border of every colony were transferred onto V8-avermectin amended medium and grown 

for 6-7 days. Single spore colonies were also made in the same way as for soil isolates, and conidial 

stocks were kept in 50/50 (v/v) glycerol/water at -20C. Isolation attempts were performed 4X for 

corn samples from the northern states IA, IL, WI, and MN, due to a low frequency of recovery. 

 

2.3 VCGs determination 

 

VCG determination was performed through the creation of nitrate non-utilizing (nit) mutants and 

pairings set up between complementary mutant types within and between locations. The use of 

nitrate non-utilizing (nit) mutants for complementation tests between several strains is a very 

useful and well-known technique that has been used for population grouping and characterization 

of A. flavus by several investigators (Bayman and Cotty, 1991; Horn and Greene, 1995; Papa, 

1986; Pildain et al., 2004; and Sweany et al., 2011). 

 

During this study, nit mutants for every isolate were induced by placing 2 μl of conidial suspension 

onto the center of chlorate amended (nit induction) agar plates (Czapek Dox with 25 g of potassium 

chlorate per liter) and exposed to short wave (254 nm) UV light for 40 seconds at 20 cm of distance 

from a UV lamp (Spectroline Model XX15G, Westbury, NY). Plates were incubated at 30 °C in 

the dark and frequently checked, until mutations had occurred. Mutants were identified by the 

appearance of sparse hyaline hyphae branching out from the main central colony. True mutant 

sectors normally take around 3-4 weeks to develop (Sweany et al., 2011), but with the exposure 
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of inoculated plates to short wave ultraviolet radiation, induction of nit mutants appeared from day 

three onward (Papaioannou and Typas, 2015). 

 

Once a mutant sector was identified with the aid of a light microscope, medium plugs containing 

chlorate-resistant hyphae were transferred onto Czapek Dox (CD) medium (nitrate medium) to 

confirm that they had actually mutated (true mutants continue sparse growth on nitrate medium 

and false or poor mutants usually revert to the wild type growth habit). True mutant plugs from 

CD plates were transferred onto V8 medium plates to produce spores, which after 7 days in the 

dark at 30 °C were harvested and stored in 50:50 (v/v) glycerol/water solution for further use and 

kept as conidial stocks.  

 

Nit mutants (2-3 per isolate) were plated onto Czapek Dox medium modified with alternate 

nitrogen sources to sodium nitrate (NaNO3) in order to identify and characterize the type of mutant 

created. Alternate nitrogen sources to sodium nitrate were sodium nitrite (NaNO2), hypoxanthine 

(C5H4N4O), and ammonium tartrate ((NH4)2C4H4O6). Mutants were classified as niaD if they were 

nitrate non-utilizing only (showing robust growth in the three alternate nitrogen sources), nirA if 

they were nitrate and nitrite non-utilizing (sporulating on ammonium tartrate and hypoxanthine, 

but not on nitrite medium), and cnx mutants if they were nitrate and hypoxanthine non-utilizing 

mutants (Not sporulating on hypoxanthine medium) (Cove, 1976; Pildain et al., 2004; and Sweany 

et al., 2011). Cnx mutants were considered the best candidates for testers because they performed 

better in complementation pairings (Horn and Greene, 1995; and Sweany et al., 2011), but niaD 

and nirA mutants were also selected as testers, because they are also needed to test vegetative 

compatibility. Cnx’s needed to be paired against complementary niaD or nirA mutants since some 

mutant types are self-incompatible and it was not possible to produce all three types of mutants 

from every single isolate.  

 

Once mutants from every isolate were identified and characterized, vegetative compatibility tests 

were performed. Pairings of potential complementary mutants were made on starch modified 

Czapek Dox medium in order to look at the interaction or border zone between two mutants and 

confirm whether they complemented each other or not. Mutants from isolates complementing each 

other are said to be vegetatively compatible because they were able to form a heterokaryon and 
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were assigned to the same vegetative compatibility group or VCG (Sweany et al., 2011; Leslie, 

1993; and Pildain et al., 2004). 

 

Complementation tests between unknown VCG isolates from this collection and the different nit 

mutant testers from the 16 VCGs identified in Louisiana soil and kernel populations in 2007 were 

also carried out in an effort to try to identify if any of these VCGs was still present in the general 

population, not only in LA fields but all along the sampled Mississippi river transect. Positive 

matches for any of these 16 VCG testers were also intended to reduce the number of crosses or 

complementation pairings between all isolates from the two sampled subpopulations. 

 

2.4 Aflatoxin production determination and quantification  

 

Screening for aflatoxin and measurement was done for aflatoxin B1 since this is the most 

abundantly produced by Aspergillus flavus. Aflatoxin B1 is the most potent carcinogen known to 

be produced by natural means. It is second just after the synthetic derived polychlorinated 

biphenyls (Batt, 2014).  

 

Aflatoxin production for all A. flavus isolates was determined and quantified by growing every 

isolate on rice as a substrate, a carbohydrate rich medium that allows A. flavus isolates to express 

their maximum aflatoxin producing potential. Five ml (g) of rice was soaked overnight in 5 ml of 

water in a 20-ml scintillation vial, autoclaved for 20 minutes at 20 psi-121°C and allowed to cool. 

Cooled rice was stirred with a sterile spatula to aerate it and break up the compacted mass left after 

autoclaving. Vials were inoculated with 10 μl of conidial suspension from every isolate, vial caps 

were left loosely fitted for oxygen and gas exchange and incubated at 30 °C for 7 days in the dark. 

Vials were filled with chloroform and left to soak overnight in a fume hood. The extract was 

filtered through Whatman no. 1 (100 mm) filter paper in a funnel and into a 100-ml glass beaker. 

Chloroform was allowed to evaporate overnight in the fume hood and aflatoxins contained in the 

solid residue were re-suspended in 1.2 ml of 80:20 (v/v) methanol/water. Methanol-resuspended 

extract was filtered through a cleanup column packed with 200 mg of basic aluminum oxide and 

collected into a 2-ml glass autosampler vial (Sweany et al., 2011). Approximately one ml of 

methanol containing aflatoxins was recovered after filtering the samples and represented a 
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sufficient volume for the HPLC system to pick up a 10-μl aliquot for proper measurement. The 

extracted samples in glass vials were screened for blue fluorescence in a UV light box in order to 

make dilutions (10 or 100 fold) when necessary before quantification in the HPLC system. 

 

Aflatoxin was quantified using reversed-phase high performance liquid chromatography with a 

Waters Alliance HPLC system (Waters Corporation, Massachusetts USA) equipped with a 2695 

separation module and a 2475 dual FLR Detector; a fluorescence detector with 365 nm of 

excitation wavelength and 440 nm of emission wavelength. The mobile phase for sample 

separation was 62.5% HPLC-grade and degasified water and 37.5% HPLC-grade degasified 

methanol, set to run in mixture at flow rate of 0.8 ml/min. Aflatoxin B1 peak appeared at ~12 

minute in a 16-min run per sample and data was collected using the software Empowered 3 (Waters 

Corporation, Massachusetts USA).  

 

2.5 Cyclopiazonic acid production determination   

 

Isolates were grown in YES + soytone liquid medium (2% yeast extract, 15% sucrose and 1% 

soytone) with pH adjusted to 6.0 with HCl before autoclaving. Ten μl of conidial suspension from 

each isolate was inoculated into 5 ml liquid medium in a 20-ml glass vial. Stationary cultures were 

grown at 30 °C in the dark for 7 days for maximal CPA production. Two milliliters of chloroform 

were added to each vial to extract metabolites, fast frozen (incubated at -80 °C for three hours) to 

break down fungal cells and recover as much CPA as possible from the medium (99% of CPA is 

recovered with this procedure). A 1 ml aliquot was collected into a new Eppendorf microcentrifuge 

tube, vortexed for a few seconds and spun at 10,000 rpm for 5 min to separate the aqueous and 

organic phases. Six hundred μl of the organic layer were transferred to a clean microcentrifuge 

tube and left to air dry in a fume hood until average volumes reached 50-60 μl. Fifteen μl of 

chloroform was used to resuspend the CPA per sample which was then spotted onto thin layer 

chromatography (TLC) silica gel 60 plates (Merck, Darmstadt, Germany) for detection. TLC plates 

were dip-treated in 2% oxalic acid in methanol before spotting of samples. Plates were run in a 

glass tank containing ethyl acetate/methanol/ammonium hydroxide (85:15:10) for 40-45 min, left 

to dry, and sprayed with Ehrlich’s reagent (1 g of 4-dimethylaminobenzaldehyde dissolved in 75 

ml methanol and 25 ml concentrated HCl). CPA appeared as blue-purple spots as confirmed by 
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proper CPA standards (Chang et al., 2009). CPA was qualitatively recorded in a scale of Negative, 

Low, Medium and High production for every isolate based on the intensity of the spots in 

comparison to standards of known quantity (5, 10 and 20 μl of CPA at [336.38 g/mol]). 

 

2.6 Sclerotia production, sclerotia size measurement, and sclerotial density 

 

All A. flavus isolates from the collection were grown on 15mm x 100mm petri dishes containing 

modified Wickerham medium, a special medium for induction of sclerotia production  (Chang et 

al., 2012), at 30 °C in the dark and for 30 days (Sweany et al., 2011). Ability to produce sclerotia 

was first observed and annotated, separating sclerotia producers from non-producers. Sclerotia size 

and diameters were measured with the aid of an ocular micrometer under a conventional light 

microscope. Sclerotia were classified as large if the diameter surpassed 400 μm in diameter and 

small if less than 400 μm (Horn, 2003). A. flavus colony morphotypes were designated for every 

isolate based on the production and type of sclerotia; which were designated either as L-

morphotype or S-morphotype. L-morphotype comprise non-producers and large sclerotia 

producers, and S-morphotype the small sclerotia producers.  

 

Density of sclerotial production was determined by counting sclerotia per square centimeter from 

five randomly selected squares per plate. Sclerotia within them were counted and the sum divided 

by 5 to estimate the number of sclerotia produced per square centimeter per isolate.  

 

2.7 Mating type determination  

 

2.7.1 DNA extraction  

 
Isolates were grown on potato dextrose agar (PDA) in petri dishes at 30 °C for 7 days in order to 

get an abundant production of conidia. Conidia were then scraped into a 1.5 ml Eppendorf micro-

centrifuge tube containing 600 μl of Promega lysis solution, ground with a micropestle, vortexed, 

and incubated at 65 °C for 20-60 minutes. This solution was centrifuged for 5 min at 14,000 rpm 

and the aqueous layer was transferred into a new 1.5-ml micro-centrifuge tube. Proteins were 

precipitated using 200 μl of Promega protein precipitation solution plus another centrifugation step 

for 5 minutes at 14,000 rpm. The aqueous layer was collected into a new micro-centrifuge tube 
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and DNA was precipitated by the addition of 600 μl of room temperature isopropanol (Promega, 

Wisconsin). DNA was washed in a final step with 70% ethanol and allowed to dry overnight. DNA 

was rehydrated using 50 μl of pH 8 TE buffer and quantified using a Nanodrop spectrophotometer 

for subsequent dilutions and standardization to 10-ng/μl for PCR reactions (Sweany et al., 2011).   

 

2.7.2 DNA Amplification and mating type determination 

 

DNA was amplified using a multiplex polymerase chain reaction (PCR) in order to determine 

mating type loci from the whole isolate collection. 

 

Twenty-five μl of total solution for each reaction were used, and composed of:  

12.5 μl of Hot Start PCR-to-gel TAQ Master Mix 2X 

5.5 μl of sterile Milli-Q water 

1.25 μl of each of 4 primers:  

2, 10-μM Mat 1-1 Aspergillus oryzae (Forward and Reverse) primers (Wada et al., 2012)  

2, 10-μM Mat 1-2 Aspergillus flavus (Forward and Reverse) primers (Ramirez -Prado, 2008) 

2 μl (10 ng/μl) DNA solution for a total of 20 ng of DNA needed for reaction. 

 

Reaction mixtures were kept at 4 °C. PCR amplification was performed in a Perkin Elmer Cetus 

DNA thermal cycler, with an initial denaturation step at 95°C for 5 minutes, and 25 cycles that 

include 30 s at 94°C denaturation step, a 30 s at 53°C annealing step and a 60 s at 72°C extension 

step. PCR products were separated in an agarose gel electrophoresis system. A mixture of 10 μl of 

DNA and 2 μl of a tracking dye were loaded into each well in a 2% agarose gel. Ten μl of a 100 

bp ladder (Omega bio-tek, Norcross, GA) with 2 μl of tracking dye (EZ Vision Three, Amresco, 

Solon, OH) were also loaded into the gel to be able to size the PCR products separated in the gel 

system. Gels were run at 100 volts for 5 minutes and then at 70 volts for 1 hour. As dyed DNA 

bands fluoresce when exposed to UV light, images of the gel were captured with a Gel Doc 

Imaging System equipped with a fluorescence camera from UVP Company (Upland CA) and 

edited with Vision Works LS analysis software. Presence of Mat1-1 mating type was indicated by 

an amplicon of ~780-800 bp (Wada et al., 2012) and Mat1-2 by an amplicon of 273 bp (Ramirez 

Prado et al., 2008).  
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2.8 Statistics and indices of genotypic diversity 

 

Ecological based approaches and the “vegan” R package were used to calculate diversity indices 

and performed using the R statistical software (www.r-project.org; version 3.3.3). Diversity 

indices of VCGs for the whole population were estimated in three different scenarios for 

comparison; first, diversity indices for individual state populations; second, diversity indices for 

southern and northern state populations, where states were sub-grouped according to the region 

they belong to (South ~29 – 37o N latitude, LA, MS and AR) and North (~38 - 49o N latitude, MO, 

IA, IL, MN and WI); and third, diversity indices for niche comparisons, soil versus corn kernel 

populations. Shannon’s diversity index was estimated by the formula: H' = [−Σ (ni/N) × ln (ni/N)], 

where ni is the number of isolates in the ith VCG, and N is population size (total number of isolates) 

(Shannon and Weaver, 1949). VCG richness was expressed as both observed richness (G obs), the 

number of observed VCGs per population, and the expected richness (E(Gn), which was the 

expected number of VCGs in a random sample equivalent to the smallest population size, in this 

case AR (N=29) and calculated by rarefaction analysis. Evenness (E1), the measure of relative 

abundance of genotypes (frequency of each VCG per population) was calculated by dividing H′ 

by the natural logarithm of corresponding maximum genotypic richness in that population E1= (H' 

/ Ln(gMax)) (Grünwald et al., 2003). Simpson’s diversity indices were estimated using the formula 

G'= 1/[Σ(ni/N)2] where again, ni/N is the frequency of the ith VCG in N, the total population size 

(Grünwald et al., 2003). A simple diversity index used in previous studies was also calculated for 

comparison, where the VCG diversity index (DI) was estimated as the VCG observed richness 

divided by their correspondent population size (Mauro et al., 2013). DIs have values ranging 

between 0 and 1, where a value of 1 indicates a maximum diversity, whereby each isolate 

represents a distinct VCG. The clonal fraction per population was also calculated by the formula 

(1-g/N) (Milgroom, 2015). Aflatoxin and cyclopiazonic acid, sclerotia production and sclerotial 

density produced by VCGs were subjected to statistical analysis using the MIXED procedure of 

SAS (version 9.2; Cary, NC, USA). For clustering analysis and identification of variables 

conferring the most variation among the morphological and physiological variables, a Pearson (n) 

type principal component analysis was performed using XLSTAT 2016.07.38968. 
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Chapter 3. RESULTS 

 

3.1. Isolate / Culture Collection 

 
The complete collection consisted of 543 A. flavus isolates, 339 recovered from 17 soil samples 

across the 8 Mississippi River states and 204 isolates from corn kernels from 170 corn ears (10 

from each of the 17 sampled locations). The frequency of A. flavus recovery from all soil samples 

was uniform across the 17 locations and averaged 42 (±12 SD) isolates per state comprising the 

eight subpopulations. The mean number of isolates recovered from corn kernel samples was 26 

(±11 SD) isolates per state. Isolates from different fields from the same state were grouped together 

to form eight state populations and were also separated by niche, soil and corn kernels (Figure 1). 

 

 

Figure 1. Number of isolates of Aspergillus flavus by state populations, for soil and corn kernels 

 

3.2 Sclerotial morphotype and sclerotial density 

 
In total, 36% of isolates from the 8 states did not produce sclerotia, 54% produced large and 10% 

produced small sclerotia, so ~90% of the whole population is the L-morphotype (Figure 2). More 

importantly and looking at different niche populations, isolates from the corn kernels were 100% 

L-morphotype (including 25% of non-sclerotia producers).The soil population is comprised of 
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16% small sclerotia producers, 42% large and 42% non-producers of sclerotia. Differences of least 

square means (LSM) between subpopulations measured at the 0.05 level of significance for 

sclerotia production varied significantly across the three different levels of comparison (niche, 

state, and region). Differences among states were mainly attributed to differences between 

southern and northern regions, where Iowa and Illinois populations were the most significantly 

different from Louisiana and Mississippi in regards to sclerotial type production. Northern state 

populations were more similar to one another (predominantly L-type strains) and not statistically 

different but significantly different from the whole southern states population, which had a greater 

representation of S-types (Table 1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Total proportions of sclerotial morphotypes of Aspergillus flavus among the eight MS 

River states 

 

The mean number for sclerotial density for soil isolates across the whole population was 44.2 

sclerotia/cm2 and 35.7 sclerotia/cm2 for kernel isolates. Kernel isolates are consistent with the type 

and amount of sclerotia produced across the different states, however MS and AR have the 

representatives with higher density values of sclerotia/cm2 than any other state. The density means 

for the soil isolate population are affected by density of sclerotial production per state. For 

example, the mean sclerotial density produced for Louisiana soil isolates is 78 sclerotia/cm2 and 

136 sclerotia/cm2 for Mississippi (Table 1). These two states have representatives of the small 

sclerotia producing isolates (15% of total soil population in LA and MS) whose average density is 

457.2 small sclerotia/cm2. If these unusual small sclerotia producers from the soil of LA and MS 

are excluded, the mean sclerotial density for the soil population across the eight states is 46.9 

sclerotia/cm2, actually similar to the total population mean. 
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Table 1. Percentage of sclerotial morphotypes of Aspergillus flavus isolated by state and niche 

(soil or kernel) and density of sclerotial production. 

 

  Population 
  Percentage of Sclerotial Morphotypes per State    Density 

  Small Large No-sclerotia   No. / cm2 

Kernel N= 204 0.0 74.5 25.5  35.7 

Louisiana         44 0.0 72.7 27.3  29 

Mississippi 37 0.0 78.4 21.6  68 

Arkansas 9 0.0 66.7 33.3  62 

Missouri 15 0.0 80.0 20.0  18 

Iowa 24 0.0 83.3 16.7  29 

Illinois 27 0.0 92.6 7.4  29 

Minnesota 21 0.0 71.4 28.6  34 

Wisconsin 27 0.0 48.1 51.9  18 

Soil N= 339 15.6 42.5 41.9  44.2 

Louisiana 60 56.7 25.0 18.3  78 

Mississippi 60 23.3 73.3 3.3  138 

Arkansas 20 10.0 20.0 70.0  15 

Missouri 40 0.0 77.5 22.5  14 

Iowa 39 0.0 17.9 82.1  2 

Illinois 40 2.5 62.5 35.0  14 

Minnesota 40 0.0 12.5 87.5  2 

Wisconsin 40 5.0 32.5 62.5  11 

Total 100.0 9.8 54.5 35.7   41.0 

 

3.3 Aflatoxin production and distribution of aflatoxigenicity 

 
Aflatoxin B1 was extracted with chloroform from isolates after seven days growth on rice and 

quantified using reversed-phase high performance liquid chromatography (HPLC). Out of the 339 

soil and 204 corn kernel isolates from the eight states, 41.2% of the soil and 36.5% of the kernel 

isolates were non-aflatoxigenic (Table 2). An additional 24.2% of the soil isolates produced less 

than 20 ppb of aflatoxin while only 3.3% of corn isolates produced less than 20 ppb. The other 

34.5% of soil and 60.2% of corn kernel isolates were producers of aflatoxin at different levels 

(low, medium or high) with production ranging from slightly more than 20 ppb to close to 80,000 

ppb per gram of rice. The soil population has a good representation of highly toxigenic individuals, 

~20% of the total population produce more than 10,000 ppb, but the corn kernel population has a 

total proportion of 41.8 % of highly toxigenic individuals. By looking at differences between 

southern and northern populations (Table 2), a higher proportion of toxigenic individuals occurred 

in the northern states both from soil and corn kernels (41% and 70% respectively), than in the 

southern states. The total toxigenic proportion of individuals from the south consisted of 24% and 

43% for soil and corn kernel isolates, respectively. Absolute non-aflatoxigenicity was in higher 
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proportions for the soil and kernel populations in the southern region (55% and 51%), than in the 

northern region (33% and 28%). 

Table 2. Proportion of aflatoxin producing isolates of Aspergillus flavus from soil and kernel 

populations, per state and region. Aflatoxin classes: Zero; U20 under 20 ppb; Low 20-300 ppb; 

Medium 300-10K ppb; High 10K-80K ppb. 

 

3.4 VCG composition and distribution  

 

In total, 1371 mutants were induced from both soil and kernel isolates, 836 from soil and 535 from 

corn kernels that represents an average of 2-3 mutants per isolate. Out of the 543 isolates only 33 

isolates did not yield any nit mutant. The proportion of mutants produced from the whole 

population was 27 % cnx, 11% nirA and 62% niaD. VCG was determined by pairing tests between 

complementary mutant types. In total, eighteen (18) multiple-isolate VCGs were identified. From 

the whole isolate collection ~70% of soil isolates were assigned to VCGs as well as ~57% of the 

kernel isolates. Morphological, physiological and molecular trait comparisons between VCGs 

were confined to the 18 multiple-isolate VCGs, however these data were generated for all 543 

isolates. Measures of genotypic diversity included the remaining 188 singleton VCGs not assigned 

to any multiple-isolate VCG group.  

 

VCG naming in this study was a continuation of the 16 VCGs identified by Sweany et al. 

throughout LA fields in 2007 (2011). Fifteen (15) new VCGs were determined from the eight-state 

study, (VCG-17 through VCG-31). Three VCGs previously identified in Louisiana (VCG-1, VCG-

State 

Percentage of aflatoxin producing isolates by Class / State / Niche / Region 

Soil Population   Kernel Population 

Zero U2O Low Medium High   Zero U2O Low Medium High 

Louisiana     (s) 16.7 61.7 10.0 5.0 6.7  15.9 6.8 11.4 15.9 50.0 

Mississippi   (s) 68.3 1.7 5.0 3.3 21.7  73.0 8.1 2.7 2.7 13.5 

Arkansas     (s) 80.0 0.0 0.0 10.0 10.0  66.7 0.0 11.1 0.0 22.2 

Missouri      (n) 15.0 10.0 2.5 27.5 45.0  0.0 0.0 0.0 20.0 80.0 

Illinois         (n) 30.0 0.0 0.0 40.0 30.0  25.9 0.0 0.0 22.2 51.9 

Iowa             (n) 84.6 2.6 2.6 2.6 7.7  20.8 4.2 0.0 20.8 54.2 

Minnesota   (n) 27.5 55.0 7.5 0.0 10.0  38.1 0.0 4.8 23.8 33.3 

Wisconsin   (n) 7.5 62.5 2.5 2.5 25.0  51.9 7.4 0.0 11.1 29.6 

Total 41.2 24.2 3.8 11.4 19.5   36.5 3.3 3.7 14.6 41.8             
South =   (s) 55.0 21.1 5.0 6.1 12.8   51.8 5.0 8.4 6.2 28.6 

North =   (n) 32.9 26.0 3.0 14.5 23.5   27.3 2.3 1.0 19.6 49.8 
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4 and VCG-10) were also found across the 8-state population by doing complementation tests with 

known testers. These 3 VCGs alone accounted for 44% of the total population, VCG-1 and VCG-

4 being the more abundant and found in all eight states (Table 3). These 3 VCGs accounted for 

46% of the total soil subpopulation and 42% of the corn kernel subpopulation. The fifteen newly 

identified VCGs accounted collectively for 21.4% of the total population. These VCGs were not 

widely distributed across the whole geographic area but rather they were only sampled at the local 

or state level, in a very specific fashion. The 35% of isolates of undetermined VCG (188) were 

identified at different proportions across the whole area under study but were more frequent in the 

southern region. 

 

Table 3. The number of isolates of Aspergillus flavus from each VCG by state 

 

 

The most widely distributed VCGs, VCG-1 and VCG-4, were found in all 8 states in both, soil and 

corn kernel subpopulations. VCG-1 had the higher representation in the soil population at 34% 

whereas it was only found in 3.5% in the kernel population. VCG-4 on the other hand was mostly 

associated with the corn kernel population at 35% and only at 11% from the soil.  VCG-10 was 

scarcely recovered from both subpopulations and represented 1% and 3% for the soil and kernel 

populations respectively. The rest of VCGs of small representation were recovered from their 

respective niche (soil or kernel) in a very low proportion, with the exception of VCG-22 that was 

recovered predominantly from Mississippi in 9% and 6% from the soil and corn kernel respectively 

(Figure 3). 

VCG 1 4 10 22 17 18 19 20 21 23 24 25 26 27 28 29 30 31 ND T 

LA 5 20 1  2 11 6 2 12     3     42 104 

MS 2 7  40               48 97 

AR 13 1 1                14 29 

MO 1 17 3       5 5        24 55 

IA 31 13              2 3  14 63 

IL 11 23 3         10   5    15 67 

MN 34 12  2         2    3 3 5 61 

WI 25 16                 26 67 

Total 122 109 8 42 2 11 6 2 12 5 5 10 2 3 5 2 6 3 188 543 

  % 22.5 20 1.5 8 0.4 2 1.1 0.4 2.2 0.9 0.9 1.8 0.4 0.6 1 0.4 1.1 0.6 35 100 
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Figure 3. Proportion of different VCGs among isolates of Aspergillus flavus obtained from soil 

(outer circle) or corn kernels (inner circle) across the eight states sampled in 2014. 

 

VCG-1 and VCG-4 were highly represented in northern (MO, IA, IL, MN and WI) (~38 - 49o N 

latitude) and southern (LA, MS, AR) (~29 - 37o N latitude) state populations. VCG-1 occurred in 

the soil population at 68% in the northern states, but 33% in the overall northern population and it 

was only recovered at 9% in the southern population. VCG-4 was mostly recovered from corn 

kernels at 26% in the northern and 12% in the southern populations (Figure 4).  

 

3.6 VCG profiles and VCG-associated traits 

 

A profile for every multiple-isolate VCG identified in this study was created and a comparison 

made between the soil and corn populations to determine if a correlation holds between VCG 

specificity and niche.  The idea was to determine the characteristics associated with each VCG and 

the relation of these characteristics to the frequency of recovery of those VCGs from A. flavus-

infected corn kernels. Sclerotial morphotype, mating type, aflatoxin, and cyclopiazonic acid 

production were characterized and compared among different VCGs and niches.   

 

Close to 70% of soil (238) and 57% (117) of corn-kernel isolates were assigned to one of the 18 

multiple-isolate VCGs. Four VCGs (VCG-1, VCG-4, VCG-10 and VCG-22) accounted for 54% 

of the total soil population and 48% of the total corn kernel population. Interestingly, these four 

VCGs were the only ones isolated from both the soil and corn kernel samples (Figure 4). 
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Figure 4. Frequency of different vegetative compatibility groups (VCGs) of Aspergillus flavus 

by state and niche. 

 

VCGs of small representation were isolated from either soil or corn kernels but not from both 

niches. Including the 4 previously mentioned VCGs, 13 out of 18 VCGs were isolated from the 

soil whereas only 9 were identified from corn kernels. Nine VCGs were strictly recovered only 

from the soil population and 5 only from the kernel population. Out of the 4 most represented 

VCGs identified from both niches, 2 VCGs were widely distributed across the 8 states (VCG-1 

and VCG-4).  

 

The soil population included three sclerotial morphotypes; 3 VCGs did not produce any sclerotia 

at all (VCG-1, VCG-17 and VCG-26), 7 were of the L-morphotype (VCG-4, 10, 19, 22, 23, 24, 
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and VCG-25), and 3 of the S-morphotype (VCG-18, VCG-20, and VCG-21); however, VCG-20 

sclerotia were extremely small and copious. Kernel isolate VCGs were strictly non-sclerotia 

producers or of the L-morphotype. Isolates that weren’t assigned to any of the 18 VCGs also 

showed the same trend for sclerotial morphotype characteristics; soil isolates had a combination 

of all the previously described morphotypes whereas kernel isolates were strictly of the non-

sclerotial or of L-sclerotial morphotype.  

 

The mating type composition was skewed toward the mating type idiomorph MAT1-2 for both, 

total soil and corn kernel populations. The soil population consisted of 90 % MAT1-2 individuals 

and the kernel population of 85 % of the same type (Figure 5). From the 18 identified VCGs, and 

from the 13 strictly soil and 9 kernel VCGs, only 3 from each niche were found of the mating type 

MAT1-1. These six VCGs represented, however, just a small proportion of the population 

comprised of multiple isolate VCGs (~5%), so accounting only for the population comprised of 

multiple-isolate VCGs, ~95 % of both populations consisted of MAT1-2 individuals across the 

eight states.  

 

 

 

 

 

 

 
Figure 5. Frequency of the MAT1-2 mating type, cyclopiazonic acid production (CPA %s) and 

aflatoxin B1 production (AFB1 Prod.) for soil and corn kernel populations of Aspergillus flavus. 

 

Aflatoxin production was VCG dependent and variable across niches, states and regions. VCGs 

from both subpopulations, soil and corn kernel ranged from 0 ppb of aflatoxin production up to 

close to 80,000 ppb. Aflatoxin-producing VCGs from soil exhibited more diversity in aflatoxin 

levels which reflects the greater soil VCG diversity.  It is interesting to point out that the isolate 

portion not assigned to VCGs from the soil population had higher mean aflatoxin values than the 

corn kernel population. Aflatoxin was also variable between VCGs of the different mating types, 
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MAT1-2 VCGs are very variable in aflatoxin production ranging again from non-producers up to 

highly toxigenic individuals; however VCGs of the MAT1-1 were generally high aflatoxin 

producers in this study (Table 4). Mean aflatoxin values for isolates of unknown VCG can be seen 

as well for mating types (Table 4). Isolates of the MAT1-1 mating type have higher mean aflatoxin 

values than their counterparts of the MAT1-2 idiomorph. No clear inferences were possible in 

regards to aflatoxin and morphotype in this study, since most of the population was of the L-

morphotype and aflatoxin production very variable.  

 

Cyclopiazonic acid (CPA) production was rated on a scale ranging from non-producers, through 

low, medium and high CPA producers. In total, 69% of the soil population and 65% of the corn 

kernel population produced CPA at different levels and with no evident correlation with aflatoxin 

production and mating type. Different aflatoxin levels, from no-aflatoxin to high aflatoxin 

production was observed for each class or level of CPA (Figure 6). Some VCG examples in these 

regards are: VCG-1, a low aflatoxin producer, produced high amounts of CPA whereas VCG-4, a 

high aflatoxin producer, produced medium levels of CPA. The kernel-only VCGS with mating 

type MAT1-1 (VCG-27, VCG-30 and VCG-31) and mating type MAT1-2 (VCG-28 and VCG-30), 

all produced high levels of CPA.   Interestingly, despite similar proportions of isolates recovered 

from both niches being positive for CPA production, the kernel isolates and VCGs in general 

tended to produce higher amounts of CPA than soil-isolate VCGs (Table 4). Out of the four more 

abundant VCGs and the total 9 kernel-isolate VCGs, only VCG-22 was found not to produce any 

detectable CPA. This VCG is also a non-aflatoxigenic VCG recovered mainly from 2 Mississippi 

fields in soil (29 isolates) and corn(11 isolates) and found scarcely (2 isolates) in MN corn. 

 

 

 

 

 

 

 

 

Figure 6. Correlation plot of aflatoxin production (AFS_ppb_log) versus levels of CPA 

production (cero: no CPA; 1: low; 2: medium; 3: high levels of CPA). 
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Aflatoxin and CPA production was variable among VCGs and statistical differences were found 

at the 0.001 level of significance for populations across states and regions. These differences were 

attributed to the different VCGs recovered from every state, with the exception of VCG-1 and 

VCG-4 that were present in all states. No clear correlation was observed between CPA and 

aflatoxin production and although close to 67% of the whole population produced CPA and ~62% 

produced aflatoxin B1, different chemotypes or combinations of aflatoxin and CPA levels were 

observed. Aflatoxin production varied a lot across niches because aflatoxigenic VCGs were 

recovered at different frequencies from both, soil and corn kernels. However, despite that CPA 

was also produced with variation across niches and VCGs as well, corn-kernel isolates from 

multiple-isolate VCGs exhibited higher amounts of CPA (Table 4). 

Each of the 18 identified VCGs are shown in Table 4 with their respective phenotypic trait profile, 

aflatoxin and CPA production, sclerotial morphotypes, mating types, and their distribution. 
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Table 4. VCG profiles for Aspergillus flavus isolates based on phenotypic characteristics (morphological and physiological) and their 

distribution across states. Mating type (1 or 2) for MAT1-1 and Mat1-2 respectively; Sclerotial type: (-): No sclerotia, L: large, S: small; 

Mean aflatoxin in ppb; Isolate numbers (counts); CPA: cyclopiazonic acid (No, low, medium or high). 

VCG 
Mat. 

Type 
Scler. 

type 

Mean 

AF 

(ppb) 

 Soil Population  Kernel Population 

 
Isol. # State distribution and No. CPA 

 
Isol. # State distribution and No. CPA 

VCG 1 2 - 3.1  115 7 LA         AR, MO, IA, IL, MN, WI Med / High  7 6 

LA, MS,            IA, IL, MN, 

WI Med / High 

VCG 4 2 L 30814.4  37 8 

LA, MS, AR, MO, IA, IL, MN, 

WI Low / Med  72 7 

LA,    AR, MO, IA, IL, MN, 

WI Med 

VCG 10 2 L 6113.4  2 2 LA,        AR,                                Low  6 2                   MO,       IL Med 

VCG 17 2 - 0.04  2 1 LA No      

VCG 18 2 S 0.1  11 1 LA No      

VCG 19 2 L 8.1  6 1 LA Low      

VCG 20 1 S 10738.8  2 1 LA Low / Med      

VCG 21 2 S 2.6  12 1 LA No      

VCG 22 2 L 0  29 1        MS No  13 2         MS,                         MN No 

VCG 23 1 L 19533.3  5 1                      MO Med      

VCG 24 1 L 1552.9  5 1                      MO Low / Med      

VCG 25 2 L 5542.8  10 1                                      IL Low      

VCG 26 2 - 0.3  2 1                                            MN Med      

VCG 27 1 - 46041.8       3 1 LA High 

VCG 28 2 L 0       5 1                                     IL High 

VCG 29 1 - 33715.7       2 1                              IA Med / High 

VCG 30 2 L 0       6 2                              IA       MN Med / High 

VCG 31 1 L 2031.6             3 1                                         MN Med  

              

UNKN. 1 MS/S/L 15325.5   22 5   Low / Med           

UNKN. 2 S/L 7170.1   79 8   No-L-M-H           

              

UNKN. 1 N/L 4353.5             22 4   Med / High 

UNKN. 2 L 4344.5             65 8   Med / High 



30 
 

Most of the diversity and variation of morphological, physiological and molecular traits in this 

study are related to specific VCGs. Morphotype characteristics, aflatoxin, CPA production and 

mating type, varies significantly among isolates from different VCGs and consequently differences 

are observed between soil and corn kernel populations, between different states, and across regions 

(Table 4). 

 

Principal component analysis (PCA) for VCGs based on these multiple variables (Figure 7) 

revealed the homogeneity of isolates within a VCG.  This PCA analysis revealed that all 

individuals belonging to the same VCG were clustered together toward the same direction and 

quadrant and set apart from individuals from different VCGs. Seven factors or components of 

variation were created from which only two were necessary to explain the higher variation among 

VCGs rather than within. Factors 1 and 2 accounted for 71.24 % of the total variation and were 

subsequently plotted for illustration (Figure 7). Aflatoxin production and sclerotial types 

accounted for most of the variation in factor 1 (Axis X in the plot) and sclerotial density and CPA 

in factor 2 (Axis Y). Aflatoxin, sclerotial type, and sclerotial density have a positive load value 

whereas CPA has a negative load value (Table 5). The lower an isolate is plotted (more negative 

values) on the F2 or Y axis, the more CPA it produces, the more to the right on the F1 or X axis, 

the more aflatoxin it produces. In the same fashion, the higher the value (positive values) on the 

F2 axis, the more sclerotia those isolates produced, and if they are to the left on the X axis (on the 

negative quadrant), they produce less or no aflatoxin. For example, VCG-1, a low aflatoxin 

producing, high CPA and no-sclerotia producer has all its isolates clustered on the lower-left 

quadrant in the plot (negative values), reflecting exactly those characteristics (blue dots). VCG-4 

on the other hand, a high aflatoxin, high CPA, L-morphotype with low sclerotial density, is located 

on the right lower quadrant of the plot (numerous dark green dots). Similarly, VCG-29 represented 

by the grey dots just below VCG-4 isolates, is a high CPA, high aflatoxin producer and it does not 

produce any sclerotia. Another interesting case is the one of VCG-22 (Red dots) in the slight left 

of zero on F1 but high positive values on F2. This VCG does not produce aflatoxin nor CPA, but 

its isolates produce reasonable amounts of large sclerotia. All active variables are also shown in 

the plot. It is important to mention that because aflatoxin and sclerotial density values vary a lot, 

their log transformed data was also used to plot this PCA analysis. However, because distribution 
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of data was observed to be the same with or without the transformed data, the original non-

transformed variables were used in the plot.  

 

Figure 7. Principal component analysis (PCA) plot for isolates of Aspergillus flavus from 

different vegetative compatibility groups (VCGs) showing clustering of isolates with other 

isolates of the same VCG. 

 

Table 5. Factor of variation loadings determined by principal components analysis from the 

different variables determined for isolates of Aspergillus flavus (* Plotted factors). 

  F1* F2* F3 F4 F5 F6 F7 

Mating type -0.287 -0.138 0.879 0.349 -0.038 -0.050 0.001 

Sclerotia 0.691 0.366 0.279 -0.137 0.529 0.110 -0.006 

Scle. density 0.165 0.940 -0.119 0.266 -0.061 -0.009 0.000 

CPA -0.408 -0.569 -0.391 0.510 0.302 0.068 -0.002 

Afs_ppb 0.833 -0.319 0.048 0.131 -0.249 0.352 -0.009 

Afs_class 0.907 -0.319 -0.060 0.113 -0.022 -0.227 -0.081 

Log_afsppb 0.927 -0.303 -0.050 0.112 -0.006 -0.158 0.091 

Log_scle. density 0.165 0.940 -0.119 0.266 -0.061 -0.009 0.000 
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3.7 Indices of genotypic diversity  

 

Ecological-based approaches and the “vegan” R package were used in this study to calculate 

diversity indices. Shannon-Wiener and Simpson diversity indices were calculated, as well as 

observed and expected genotypic richness, evenness and Jaccard distance coefficients for the 

different subpopulations under study.  

 

The overall observed genotypic richness (number of VCGs) identified across the eight states 

consisted of 206 unique genotypes. Eighteen multiple-isolate VCGs with different relative 

abundance and 188 single-isolate VCGs were observed across the sampled geographic area. The 

highest relative abundance of VCGs was represented by 3 VCGs (VCG1, VCG4 and VCG10) 

which accounted for ~43% of the whole A. flavus population. Based on the number of 206 unique 

VCGs, the overall Shannon diversity index (H') for the whole population was 3.70 and the 

maximum value observed among states was of H'= 3.29 and H'=2.90 for Louisiana (LA) and 

Mississippi (MS), respectively, representing the states with higher diversity of VCGs. These higher 

H' values for LA and MS are correlated with their highly observed (G Obs) and expected genotypic 

richness (E(Gn)) (Table 6); LA with a G Observed value of 51 and E(Gn) of 18.2 and MS with a 

G Obs of 51 and E(Gn) richness of 16.8 when rarefied to the smallest population size (Arkansas 

N= 29). The states with the lowest diversity were IA and MN with an H' value of 1.85 and 1.50 

respectively and expected number of VCGS (E(Gn)) of 10.0 and 7.6 when rarefied to the smallest 

population size. Simpson’s diversity indices (G') were consistent with the Shannon H' values 

giving the highest value to LA with 13.76 and the lowest to MN with 2.80, although the second 

highest diversity value based on G' was for MO instead of MS as with H' indices. Evenness (E1), 

which is a measure of how is the frequency of VCGs within each population and across states, 

ranged from 0.63 in MN to 0.84 in LA. The overall evenness value for the population across the 

eight states was E1= 0.70 (Table 6).  

 

Although population size and number of VCGs observed varied among states in this study, the 

rarefied richness value E(Gn) was relatively similar for LA, MS, AR and Missouri (MO) with a 

value ranging from 16.4 -18.2. E(Gn) richness values for Iowa, Illinois (IL), Minnesota (MN) and 

Wisconsin (WI) were more similar between them with an average of 10.5 (range=7.6 -13.3). These 

later values were significantly different and lower from the E(Gn) values of the 4 southernmost 
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states (LA, MS, AR and MO), reflecting a marked difference in genotypic diversity among states. 

When comparing the whole population across regions, southern versus northern collectively, 

indices of genetic diversity based on VCGs were higher for the southern states (LA, MS and AR) 

which had an H'= 3.81 and G'= 16.48. For the northern states (from MO to MN) their values were 

H'= 2.86 and G'=5.66 specifically. These differences are dependent on their observed richness of 

114 for southern and 96 for northern, and their respective evenness values of E1= 0.80 and E1= 

0.63 for southern and northern populations, respectively. The simplest diversity indices (DI) also 

reflect the lower diversity of northern state population in comparison to the south, by having the 

highest clonal fractions (Table 6). Higher clonal fractions in the north reflect that relatively few 

VCGs comprise most of the isolates identified in this study. 

 

Table 6. Indices of genotypic diversity by state for populations of Aspergillus flavus isolated from 

soil and corn kernels. (N: Population size; G Obs: number of observed genotypes (VCGs); E(Gn): 

expected number of VCGs when populations are rarefied to the lowest N (AR, 29); S.E: Standard 

Error for E(Gn); H': Shannon’s diversity index; G': Simpson’s diversity index; DI: simplest 

diversity index (g/N); E1: (H'/ Ln(gMax)) evenness value; (1-g/N): clonal fraction per population. 

 

The Jaccard distance or dissimilarity coefficient (JDC) was also calculated for population 

comparisons based on VCG diversity and across the three different scenarios; states, regions and 

niches using the “vegdist” function in the “vegan” R package. The Jaccard coefficient for 

dissimilarity between populations in most of the cases was very high ranging from 0.74 to 0.97 

genetic dissimilarity in state pairwise comparisons. Exceptions were the case of IA::WI and 

MN::WI, where the JDCs were 0.58 and 0.59 respectively being the lowest dissimilarity values 

among all the populations and state comparisons. The JDC between southern and northern state A. 

Indices Statistic 
Indices of Genotypic Diversity per State 

LA MS AR MO IA IL MN WI Total 

  N 104 97 29 55 63 67 61 67 543 

Richness G Obs 51 51 17 29 18 20 11 28 206 

  E(Gn) 18.2 16.8 17.0 17.0 10.0 11.3 7.6 13.3   

Stand. Er. S.E  E(Gn) 2.18 2.23 0 1.83 1.69 1.71 1.26 1.99  

Evenness E1 0.84 0.74 0.78 0.83 0.64 0.74 0.63 0.70 0.70 

Shannon H' 3.29 2.90 2.22 2.78 1.85 2.22 1.50 2.34 3.70 

Simpson G' 13.76 5.53 4.55 8.11 3.43 5.62 2.80 4.95 10.05 

                     

Simple DI DI 0.49 0.53 0.59 0.53 0.29 0.30 0.18 0.42 0.38 

Clonal Fr. (1-g/N) 0.51 0.47 0.41 0.47 0.71 0.70 0.82 0.58 0.62 
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flavus populations was 0.89 (0.11 similarity) and the JDC between soil and corn kernel populations 

was 0.87 (0.13 similarity) (Table 7).  

 

Table 7. Jaccard dissimilarity coefficient for state pair’s comparison of Aspergillus flavus 

populations (samples) obtained from soil and/or corn kernels. 

 
  AR IA IL LA MN MO MS 

IA    0.82       
IL 0.84 0.77      
LA 0.94 0.88 0.82     
MN 0.82 0.41 0.78 0.89    
MO 0.96 0.87 0.79 0.86 0.87   
MS 0.98 0.94 0.94 0.95 0.93 0.94  
WI 0.83 0.59 0.75 0.86 0.59 0.84 0.94 

 

The genetic (dis-)similarity between populations in state pairwise comparisons as determined by 

JDC seems to be highly correlated to geographical distance between populations. A Mantel 

correlation test @ 0.005 level of significance was performed between these two variables of 

distance (Genetic vs geographic) and returned a correlation value of 0.60. This indicates that two 

variables are not independent of each other and actually the genetic distance between state 

populations is determined and dependent on the geographical distance (Table 8) between one 

another. Two geographically closer populations show higher similarity in VCG composition and 

frequencies of VCGs.  

 

Table 8. Geographic distance in Km, state pairwise comparisons of Aspergillus flavus populations 

obtained from soil and/or corn kernels. 

  AR IA IL LA MN MO MS 

IA 896.0       
IL 615.0 390.0      
LA 234.0 1108.0 848.0     
MN 1220.0 336.0 719.0 1423.0    
MO 539.0 361.0 269.0 747.0 681.0   
MS 75.0 915.0 608.0 263.0 1244.0 566.0  
WI 1083.0 345.0 472.0 1313.0 455.0 616.0 1080.0 
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Chapter. 4. DISCUSSION  

 

One overarching goal of research on Aspergillus flavus on corn is to determine the characteristics 

associated with each VCG and the corn-kernel infecting abilities of VCGs in order to identify the 

traits that the best corn infecting strains have and that the soil-only inhabitants lack. In biological 

and ecological terms, the ability to infect is important for both the toxigenic and atoxigenic strains. 

Insight into how the infection process works and what features confer that ability would aid in 

implementation and improvement of current biocontrol strategies against A. flavus (Damann, 

2015). As a result of this study, a quantitative baseline of the most common strains of A. flavus 

from the soil and corn kernels along the nearly 1500 km transect from Minnesota to Louisiana now 

exists and the diversity of toxigenic and atoxigenic VCGs spanning an important corn growing 

area in the US has been documented. By collating different morphological, physiological and 

molecular traits between the pool of corn-infective VCGs and those VCGs that only occupy the 

soil and by comparing them with those previously determined by Sweany, I was able to confirm 

the niche specialization concept (Sweany et al., 2011) and the clear differentiation of soil and corn 

kernel-infecting populations in a broader sampled area than Louisiana. The knowledge and 

understanding of ambient diversity and distribution of VCGs at the local, state and regional levels 

provides information to implement the best fit aflatoxin biocontrol strategies (Cotty 1994; and 

Pildain et al., 2004). It is important to know the distribution of toxigenic individuals to understand 

the risks associated with them if environmental conditions become conducive (Atehnkeng et al., 

2015) and more importantly, knowing the population structure and VCG richness for the 

appropriate selection and deployment of biocontrol strains (Abbas et al., 2009) based on the 

intrinsic characteristics of the target population. 

 

Results indicate that the A. flavus population along the Mississippi river states is highly genetically 

diverse as reflected by the richness of VCGs and their associated diversity indices. Based on the 

206 unique VCGs, a high diversity within the whole A. flavus population was determined in this 

study, but especially higher for the southernmost states. The higher H' values for LA and MS were 

highly dependent on their observed and expected genotypic richness, which were higher than any 

other state. Relatively lower Shannon diversity values to those observed in this study have been 

reported for an A. flavus population in Nigeria (H'=2.60) (Atehnkeng et al., 2015) and northern 
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Italy (H' ranging from 2.4 - 3.2) (Mauro et al., 2013). Lower values are usually explained as 

consequence of population size, since diversity is known to increase with population size, and in 

order to compare different populations, rarefaction analysis to interpolate diversity to a standard 

population size is needed (Grünwald et al., 2003). Diversity indices observed in this study were in 

general similar to those reported in Arizona, DI=0.54 (Bayman and Cotty, 1991b) but relatively 

lower than those reported in Georgia, DI=0.69 (Papa, 1986) and Argentina, DI=0.64 (Pildain et 

al., 2004). 

 

The high VCG diversity in this study is also reflected in the variability of production of 

mycotoxins, particularly aflatoxin and CPA, and their distribution. A uniform trend and form of 

directional selection is observed in regards to the morphotype associated with corn fields, for both 

soil and corn kernel-infecting strains. Overall, ~90% of the whole population is of the L-

morphotype and just a small portion of the soil isolated individuals produced small sclerotia. In 

fact, 100% of the corn infectors were L-type strains. These results are similar to two studies of the 

genetic diversity and distribution of VCGs in Nigeria, (Atehnkeng et al., 2008; and Atehnkeng et 

al., 2015). In both studies they reported a >90% representation by L-type strains. Similar reports 

of dominance of L-morphotype strains for corn-associated strains were done in northern Italy 

(Giorni et al., 2007; Mauro et al., 2013), in Ghana (Perrone et al., 2014) and in the peanut growing 

areas of Argentina (Pildain et al., 2004). It is believed that these strains are the most important 

source of aflatoxin contamination in these areas and that they should be the primary target in the 

development of management strategies (Atehnkeng et al., 2008). Small sclerotia producers were 

primarily observed in Louisiana and Mississippi soils in this study; consistent with the 

observations of Sweany et al. in 2011, where ~56% of soil representatives produced small sclerotia 

and the other 44% large, however, even for fields in these states, only L-type strains were 

recovered from the corn-kernel population. Even when S-type strains are present in the soil and 

these strains tend to have higher aflatoxin producing potential than L-type strains, the higher 

incidence of L-type strains in the crop represent the largest contribution of aflatoxin contamination 

in such crops. These reports are also in concordance to that reported by Okun et al. in 2015 in a 

study looking at the distribution of toxigenicity by Aspergilli in Kenyan soils, from corn and 

peanut fields; the S-type strains represent only a small portion of the whole population and thus, 

L-type strains are the most important source of aflatoxin contamination in these crops (Okun et 
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al., 2015). However, in contrast to Okun et al., during a severe aflatoxicosis outbreak in 2004 in 

Kenya, the high S-strain incidence from corn samples collected from major agricultural markets 

and storage facilities were attributed as the cause of aflatoxin poisoning events (Probst et al., 2007). 

This could also be explained by the improper handling practices and storage conditions of grain 

after harvest, especially if grain had come in contact with soil at any point during these activities 

as occurs in African countries (Probst et al., 2011). In the southern US the L-morphotype strains 

have been documented to be more abundant and widely distributed from eastern New Mexico to 

Virginia with the exception of Louisiana, Mississippi and eastern Texas, where S-type strains are 

either in close proportion or slightly higher than L-strains. Such observations are thought to be 

associated with adaptation of S-strains to areas of cotton cultivation. L-morphotype strains seem 

to be predominant in areas historically cultivated with peanuts and corn (Horn and Dorner, 1998). 

 

Aspergillus flavus strains have been documented to be quite variable in their aflatoxin-producing 

ability. The aflatoxin producing potential of ambient strains or VCGs in this study was relatively 

high and variable, especially for the northern state populations. In this study, 41% of soil and 70% 

of kernel isolates from the northern states (MO, IA, IL, WI and MN) were highly toxigenic, 

whereas 24% and 43% were toxigenic in the southern region (LA, MS and AR) for soil and kernels, 

respectively. The vast majority of non-aflatoxigenic individuals were found in the soil populations 

of the southern states with 55% of the isolates being non-toxigenic and an additional 21% 

producing less than 20 ppb. The northern population was composed of ~58% non-aflatoxigenic 

individuals in the soil, but only 30% of the corn kernel isolates were of this type. Most of the corn-

infecting isolates from the northern states (60%) are highly toxigenic. A highly toxigenic 

population has also been documented for a transect spanning the southern U.S. from New Mexico 

to Virginia where most individuals (~80%) produced varying levels of aflatoxins (Horn and 

Dorner, 1999).  Most of the highly aflatoxigenic isolates in this study were from the highly 

aflatoxigenic VCGs, VCG-4 and VCG-10, both first described and identified in Louisiana fields 

in 2007 (Sweany et al., 2011). VCG-4 produced mean aflatoxin concentrations of 30,800 ppb and 

VCG-10 ~6,000 ppb. VCG-4 was primarily isolated from corn kernels in the states of MO, IA, IL, 

MN and WI, with proportions up to 34% of the whole kernel population. In 2007, VCG-4 

represented only ~10% of the whole Louisiana population (Sweany et al., 2011), but in this study 

represented ~20% of the LA kernel population and much higher frequencies for the northern states 
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(~35%). With its wide distribution from LA to MN, VCG-4 appears to be the single most toxigenic 

and threatening VCG along the Mississippi River corn-growing areas and its presence and 

dominance is surprisingly seen 7 years after its first identification in LA in 2007. Others have not 

been able to recover predominant strains from fields sampled over two consecutive years in a third 

year of sampling from the same field (Bayman and Cotty, 1991). It is known that high temperatures 

and dry conditions favor infection and development of A. flavus and consequently it contaminates 

corn with aflatoxins (Guo et al., 2005; Atehnkeng et al., 2008). It is curious that no serious 

aflatoxin contamination events have been reported in the last decade, in either the southern or 

northern states. It is possible that corn crops have not been subjected to highly stressful conditions 

that often predispose contamination with aflatoxins or that indigenous atoxigenic strains, similar 

to the widely distributed VCG-1 in Louisiana and along the whole MS River transect are acting as 

a natural biocontrol against toxigenic VCGs. In fact VCG-1 is also the most dominant non-

toxigenic VCG found across the eight states, although not as frequently isolated in the corn as seen 

in LA in 2007 (Sweany et al., 2011) but isolated from the soil samples in high frequencies.  

 

The knowledge of genetic diversity of A. flavus based on VCGs, especially that of non-toxigenic 

strains along with their environmental distribution generates information that may facilitate the 

selection and deployment of atoxigenic VCGs to mitigate aflatoxin contamination in corn growing 

areas (Atehnkeng et al., 2015). Of course, additional characterization of non-aflatoxigenicity and 

lab and field efficacy of selected strains for their potential use in biocontrol needs to be determined 

(Atehnkeng et al., 2014; Damann, 2015). Several successful cases exist in which non-toxigenic A. 

flavus strains are being used in the U.S. and Africa for the mitigation and control of aflatoxin 

contamination of economically important commodities (Cotty and Bhatnagar, 1994; Abbas et al., 

2011; and Bandyopadhyay and Cotty, 2013) and the identification of non-aflatoxigenic strains 

from this study has created a rich baseline of individuals that may be screened and tested for the 

potential use in biocontrol in the region.  

 

Close to 70% of soil and 57% of the kernel isolates were assigned among 18 VCGs, which varied 

in relative abundance and frequencies among the different state populations. Three of these VCGs 

(VCG-1, VCG-4 and VCG-10) had been previously identified in Louisiana in 2007 (Sweany et 

al., 2011) and accounted for ~44% of the total population in this study. The first two were found 
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widely distributed across the 8-state population and their dominance is still observed 7 years after 

their first identification and report in LA fields (Sweany et al., 2011). This may be due to the 

observation that of the 16 LA-observed VCGs, VCG-1, 4, and 10 had the greatest conidial 

fecundity in vitro (2-3X107/cm2) suggesting a greater potential for dissemination (Sweany et al., 

2016). VCG-1 accounted for 87% of the identified VCGs in the kernel population and 3% of the 

soil VCG population in 2007, but it was only 3% of kernel isolates in this study.  VCG-1 was 

found primarily in the soil population at 68% in the northern states of MN, WI, and IA and AR in 

the south; however its overall distribution included 7 of the 8 sampled states.  This observation is 

interesting because VCG-1 comprised 87% of the corn kernel population in 2007 as determined 

by Sweany et al., and although highly present in the soil it was only occasionally found in the 

kernel pool in this study. VCG-1 is also known to be highly infective and fecund VCG in field 

trials in LA (Damann, 2015). It is possible that VCG-1 had not produced sufficient inoculum due 

to low germination caused by lack of moisture, or there was not enough inoculum disseminated 

into those fields from elsewhere. It is known that VCG-1 also happens to be the same VCG as 

Syngenta’s Afla-Guard biocontrol strain NRRL 21882 (VCG-24 from Horn and Dorner, 1998) a 

widely distributed VCG in the southern US (Damann, personal communication). NRRL 21882 is 

known to be missing the whole aflatoxin gene cluster and consequently is non-aflatoxigenic, but 

many members of VCG-1 in the southern US and along the MS River produce aflatoxin in low 

levels (~3 ppb). Molecular characterization needs to be done to determine the extent of the 

relationship between these different aflatoxin phenotype individuals belonging to VCG-1 and 

whether or not they are products of recombination. Vegetative compatibility for isolates within the 

same VCG would allow non-meiotic recombination to occur between them (Leslie 1993).This 

means that atoxigenic isolates that belong to VCGs with toxigenic members should not be selected 

as biocontrol strains (Mehl et al., 2012). VCG-4 on the other hand accounted for 10% of the kernel 

population in 11 LA fields in 2007 (Sweany et al., 2011) but was found in 27% of the population 

from kernels in this study. VCG-4 was present in 7 out of the 8 states in kernels and in all 8 in the 

soil population (8%). This VCG also has a high aflatoxin producing potential in culture but to our 

knowledge there were no significant aflatoxin contamination events in the fields during 2014, 

when samples were collected, nor since a severe contamination event in 1998 in Louisiana. 

Perhaps environmental conditions in the mid-west were not conducive to aflatoxin production in 
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spite of infection or maybe other VCGs such as VCG-1 are acting as natural biocontrol against 

toxigenic VCG-4 (Damann, 2015). 

 

The fifteen VCGs (VCG-17 through VCG-31) which were identified in this study accounted 

collectively for 21.4% of the total population. These VCGs were not widely distributed across the 

whole geographic area but rather they were only sampled and recovered from their respective niche 

(soil or corn kernels) at the local or state level, in a very specific fashion. The relative abundance 

of VCGs in this study, in which few VCGs comprised the vast majority of sampled isolates and 

multiple VCGs had just a small representation within the population has been observed since Papa 

in 1986, Bayman and Cotty in 1991, Horn and Greene in 1995 and Pildain et al., 2004 and other 

research groups in western and eastern Africa during the last decade (Perrone et al., 2014 and 

Atehnkeng et al., 2015). The high diversity of VCGs identified in a region may be due to the 

widespread aerial dispersal of A. flavus. Just as Horne and Greene reported in 1995 that A. flavus 

is the dominant species within section Flavi of the Aspergilli because of its better ability to infect 

above-ground portions of crops, the dominance of certain VCGs within the A. flavus population 

may be due to the differential ability of certain VCGs to infect their associated crops as well as 

their greater potential for dispersal (Horne and Greene, 1995). Bayman and Cotty in 1991 reported 

shifts in the VCG composition of a single field from year to year in a three year-study. They 

postulated that these shifts in the population could be due to the influx of airborne conidia from 

outside the fields. If they had sampled a larger area they could have identified a potential common 

VCG to a broader area (Horn and Dorner, 1999). 

 

The multi-locus nature of genetic control of vegetative compatibility allows determination of 

identities (Leslie, 1993) and is useful in the characterization of population genetic structure and 

diversity (Bayman and Cotty, 1991). In this study the close genetic relatedness between isolates 

belonging to the same VCG was evidenced by morphotypes, mating type idiomorphs, aflatoxin, 

and CPA production just as reported by others in previous studies (Bayman and Cotty, 1991; Horne 

and Greene, 1995; and Pildain et al., 2004) and is clearly illustrated by a principal component 

analysis (PCA). Toxigenic and non-toxigenic individuals were segregated as well into different 

VCGs and represent a great feature to identify potential strains for use in biocontrol (Abbas et al., 

2009). Non-toxigenic strains outcompete toxigenic ones in the field without causing an increase 
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in the overall A. flavus populations, but shift the population structure by increasing abundance of 

the non-toxigenic genotype, that translates to reduction of total aflatoxin contamination and risk 

(Bayman and Cotty, 1993). All individuals within the same VCG in this study had the same mating 

type idiomorph, and although not significantly different from each other, slight differences were 

observed in sclerotial densities, aflatoxin, and CPA production for certain isolates. Grubisha and 

Cotty in 2010 suggested that gene flow does not occur among VCGs in nature and that the 

differences observed within VCGs are likely to be caused by genetic mutation, especially due to 

the high clonality of A. flavus (Grubisha and Cotty, 2010). These mutations can originate 

phenotypes with varying morphotype and sclerotial densities, or differences in mycotoxin 

production within VCGs just as the ones observed and reported here.  They may also change VCGs 

by mutations at the het loci (Leslie, 1993). 

 

Aspergillus flavus has been previously determined to be ubiquitous in distribution (Horn, 2003) 

and it has been suggested that crop composition and crop history influences the relative abundance 

and persistence of this fungus in agricultural soils (Garber and Cotty, 2014). Many strains of A. 

flavus  produce huge amounts of inoculum when they find rich carbon and nitrogen sources, 

thereby not only increasing their populations which regularly replenishes soil populations but also 

allowing long range dispersal (Horn, 2003). It has been reported that certain VCGs or strains are 

more fecund in inoculum production and consequently may be more widely dispersed (Sweany et 

al., 2016). Both, in this study and Sweany et al., 2011, the three more widely distributed VCGs 

along the MS River states were highly fecund and produced abundant amounts of conidia. 

However, the success of certain VCGs in infecting crops does not seem to be just about producing 

inoculum and dispersing it. In fact, as previously mentioned, ~90% of the whole population in this 

study was the L-morphotype and produced great amounts of inoculum. Still, just a few VCGs seem 

to be dominant and better adapted to infect corn and to wide dispersal. The success of these few 

VCGs has to be related to their abilities to infect the crop, establish a population, reproduce, 

disseminate, survive and continue to reproduce. These VCGs seem to be better in tissue invasion 

and ramification during infection and consequently display different life strategies (Mehl and 

Cotty, 2010), which may help explain their differential adaptive abilities (Mauro et al., 2015). The 

differential adaptation to infect plant host materials by A. flavus genotypes has been attributed to 

their different abilities in production of hydrolytic enzymes such as pectinases (Mehl et al., 2012). 
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It has also been found that L-morphotype strains produce pectinases in higher frequency and 

amounts than S-strains, which may help explain why the whole corn-associated population in this 

study is highly skewed toward the L-morphotype (Mellon et al., 2007). However, even within the 

L-morphotype population, few genotypes seem to dominate in total frequency and distribution. 

Besides the predominance of L-morphotype strains in both soil and corn kernel niches , the corn 

kernel isolates were determined to produce higher amounts of cyclopiazonic acid, an indole-

tetramic acid toxin known to interfere with calcium pumps and consequently act as plant cell 

killing toxin (Kabala and Klobus, 2005; and Ehrlich, 2014). Although ~70% of isolates from both 

niches were found to produce CPA, the corn kernel infecting VCGs were found to produce higher 

concentrations of the toxin. In fact, the highest CPA producer in this study, toxigenic VCG-4, is 

one of the most widely distributed along the transect. Recently, Chalivendra et al., in 2017 reported 

that CPA is a pathogenicity factor for A. flavus, which would also explain why in natural 

populations higher CPA producers are more fit and associated with infecting corn.  

 

Sweany et al. in 2011 also found that the MAT1-2-idiomorph isolates were more frequently 

recovered from the kernel population, accounting for ~95% of the kernel isolates whereas the soil 

population had close to a 50/50 representation of both mating types. MAT1-1 and MAT1-2 are 

transcriptional activators turning on different sets of genes, which may give relative advantage in 

infecting plant tissue to those carrying the MAT1-2 idiomorph at the mating type locus (Damann, 

2015). In this study ~90% of the whole population (corn and soil) was of the MAT1-2 mating type 

and is consistent with better fitness of MAT1-2 strains interacting with corn. 

 

Aflatoxin production has never been correlated with pathogenicity or virulence in A. flavus. 

Aflatoxin production varied a lot in this study and among different VCGs without regard to soil or 

crop-associated individuals. However, although not of importance for corn infectors, high 

aflatoxin amounts are suggested to benefit individuals residing in the soil (Fountain et al., 2014). 

Mehl et al., suggest that aflatoxin production for soil inhabitants may give these isolates better 

competing abilities against the huge array of organisms living in the soil as well as against grazing 

insects (Mehl et al., 2012). S-morphotype strains are usually high aflatoxin producers which was 

also true for the small fraction of S-type VCGs isolated in this and previous studies (Horn et al., 

1996; Horn and Dorner, 1999; Sweany et al., 2011). 
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In conclusion, from the total collection of 339 soil and 204 corn kernel isolates, 70% of soil and 

57% of kernel isolates were assigned to 18 multiple-isolate VCGs using nit mutants. Four VCGs 

accounted for 54% of the total soil and 48% of total kernel population and these 4 were the only 

ones recovered from both niches. Out of the 18 multiple-isolate VCGs determined in this study; 

15 were newly identified and 3 had been previously identified in a 2007 survey in Louisiana 

(Sweany et al., 2011). These three main corn infecting VCGs (1, 4 and 10) were found in 2014 

among the 17 corn fields in 8 states sampled across the transect and it is noteworthy that 7 years 

after their identification in Louisiana fields VCG 1 and 4 still occurred at high frequencies in the 

2014 population. There were 101 singleton VCGs from soil and 87 singleton VCGs from kernels 

which accounted for 188 of the 206 vegetative compatibility groups identified in the whole 

population. Results also indicate that the A. flavus population along the Mississippi river states is 

highly genetically diverse as reflected by the richness of VCGs and their associated diversity 

indices. Southern state populations are more diverse than northern populations and the northern 

region shows higher clonal fractions. Morphotype characteristics, aflatoxin and CPA production, 

and mating type varies significantly among VCGs and consequently differences are observed 

between the soil and corn kernel populations, across states and across regions. However, all 

individuals shown consistency in every trait when they belonged to the same VCG. Soil and corn 

populations were characterized for VCG, sclerotial morphotype, mating type, cyclopiazonic acid 

(CPA) production, and aflatoxin production, in order to determine trait uniformity within a VCG 

and those VCGs associated with corn infection. The mating type MAT1-2 and high CPA 

production were associated with corn infectors, all of which were of the L-morphotype. The soil 

niche had both S and L-sclerotial morphotypes but predominately L-type. Although ~70% of the 

isolates from both niches produced CPA, kernel isolates produced higher amounts and support the 

idea that CPA is a pathogenicity factor (Chalivendra et al., 2017).  These results give insight into 

important traits for corn infection, for both toxigenic and atoxigenic strains, which may be key in 

the improvement of biological control strategies for successful biocontrol. The aflatoxin producing 

potential of ambient strains or VCGs in this study was relatively high and variable and especially 

higher for the northern state populations. Much of the high aflatoxigenicity in this study is 

attributed to the highly toxigenic VCG-4 that comprises ~35% of the total population. The 

identification of ~55% non-aflatoxigenic strains from this study provides a pool of individuals that 

may be screened and tested for the potential use in biocontrol by region. Characterizing the ambient 
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diversity of VCGs and their distribution in a nearly 1500 km transect spanning an important corn 

growing area in the US, from Minnesota to Louisiana, has allowed us to create a quantitative 

baseline of A. flavus VCGs which can be used for improving the current aflatoxin biocontrol 

strategies and determination of the traits that confer selective advantage for corn infection within 

the A. flavus population. The distribution of toxigenic individuals will contribute to understanding 

the risks if environmental conditions become conducive. More importantly, the knowledge of the 

population structure and VCG richness will be useful for the initial selection and tests of potential 

biocontrol strains that can later be used in the efforts for aflatoxin contamination control. 
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Appendix A. List of collaborators who provided soil and corn kernel samples during the 

Fall of     2014.  
 

Sample Provider Affiliation  Location 

Harold Lambert  Lambert Ag. Consulting Batchelor, LA 

Patrick Colyer  Louisiana State University Bossier City, LA 

Ken Damann Louisiana State University Baton Rouge, LA 

Mark Weaver  USDA-ARS Stoneville, MS 

Gary Windham  USDA-ARS Starkville, MS 

Terry Spurlock  University of Arkansas Monticello, AR 

Bradley Schad  MO. Corn Growers Assoc. Jefferson City, MO 

Robert Bellm  University of Illinois Brownstown, IL 

Virgil Schmitt  Iowa State University  Muscatine, IA 

Derrick Mayfield  Iowa State University  Ames, IA 

Dean Malvick  University of Minnesota Saint Paul, MN 

Bruce Potter University of Minnesota Lamberton, MN 

Damon Smith  University of Wisconsin Madison, WI 
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