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ABSTRACT 

 Strobilurin fungicide resistance threatens rice production in southwestern Louisiana. 

Strobilurins are the often relied upon method of managing sheath blight development due to 

the lack of strong genetic resistance to this disease in the currently available rice germplasm. 

However, isolates of Rhizoctonia solani AG 1-IA causing sheath blight were reported resistant to 

azoxystrobin near Mowata, LA in 2011. To determine the geographic distribution and severity 

of azoxystrobin resistance, 40 commercial rice fields in southwestern Louisiana were sampled 

for isolates of R. solani. Sensitivity to pyraclostrobin and trifloxystrobin was also assessed to 

investigate cross-resistance. A genetic test was used to confirm that all isolates belonged to AG 

1-IA. One isolate from each field was tested using a traditional fungicide-amended solid 

medium assay measuring radial mycelial growth. A second, higher-throughput assay was 

developed to accommodate all 162 collected isolates. This assay used fungicide-amended 

liquid medium and measured light absorbance through suspended mycelium. Both assays 

were used to determine the EC50 (the effective concentration to inhibit mycelial growth 

halfway between an observed maximum and minimum response of individual dose-response 

curves) separately for the three strobilurins. Azoxystrobin resistance was found in a greater 

area than previously reported. Cross-resistance was only weakly supported between 

azoxystrobin and the other fungicides due to few significant differences in pyraclostrobin and 

trifloxystrobin responses across the isolate population. However, the sensitivity distributions 

were bimodal for both azoxystrobin and pyraclostrobin, while unimodal for trifloxystrobin. 

This clustering of higher-sensitivity and lower-sensitivity individuals at opposite ends of the 

spectrum suggests the presence or development of isolates resistant to azoxystrobin and 

pyraclostrobin, respectively. Fungicide resistance management will continue to be vital for rice 

production, and fungicide rotations utlizing trifloxystrobin may be useful against even 

azoxystrobin-resistant and possibly pyraclostrobin-resistant isolates of R. solani. 
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CHAPTER 1. INTRODUCTION AND REVIEW OF LITERATURE 

Rice is the quintessential staple food across the globe. More than 20% of the calories 

eaten by humans are derived from rice (Smith 1998). Rice is also an important cultural staple 

and economic asset in Louisiana. In 2014, rice was the second most valuable row crop grown 

with a farm value of over $492 million (compared with soybeans, over $988 million) and the 

second most widely planted row crop in Louisiana with over 449,000 acres planted (compared 

with soybeans, at almost 1,3921,000 acres) (Louisiana Ag Summary, 2014 State Totals 2014). 

1.1 SHEATH BLIGHT IN LOUISIANA 

Sheath blight is a major, chronic, and in most years, the most yield limiting disease for 

rice growers in Louisiana (Louisiana Rice Production Handbook 2014). It was the most severe 

disease recorded in a 1984 state-wide Louisiana rice disease survey (Groth and Hollier 1985) 

and continues to be a serious threat today. Untreated, sheath blight has been shown to cause 

up to 40% yield loss. This loss can be reduced with a strobilurin fungicide application (Groth 

2008) if the sheath blight is caused by R. solani that is strobilurin-sensitive.  

1.1.1 CAUSAL ORGANISM. Sheath blight is caused by Rhizoctonia solani Kühn, a 

basidiomycete anamorph fungus (Kühn 1858). Its mycelia display characteristic right angle 

branching with a slight constriction near the origin of the branching hypha usually followed 

by septation. Rhizoctonia solani is multinucleate and not known to produce asexual spores. The 

teleomorph, Thanatephorus cucumeris (Frank) Donk, is known to produce basidiospores (Donk 

1956; Frank 1883). Traditionally, the perfect state has been scarcely reported in rice fields (Rao 

1995) and is thought to play little role in the disease cycle (Rush and Lee 1992). Recent 

population genetic studies found certain allele distributions that suggest sexual reproduction 

might be more common than originally thought (Padasht-Dehkaei et al. 2013; Rosewich et al. 

1999). Basidiospore production can be induced from vegetative mycelia in vitro (Oniki, Ogoshi, 

and Araki 1986). 

Rhizoctonia solani can be subdivided into anastomosis groups (AGs). Members of each 

AG will typically fuse (anastomose) with each other, signifying recognition of ‘self ’or a near 

clonal isolate. Different AGs often preferentially infect different host plants, causing disparate 
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diseases (González García, Portal Onco, and Rubio Susan 2006). Rhizoctonia solani from AG-1 

Intraspecific Group A (IA) causing sheath blight on rice is the specific focus of this study. 

1.1.2 DISEASE CYCLE. Unlike most other AGs, sheath blight-causing R. solani typically 

infects aerial parts of the rice plant. Symptoms first appear on rice sheaths or leaves at the 

flood waterline where inoculum floats in the form of sclerotia and mycelia-infected plant 

tissue from previous crops or weeds. Hyphae then grow over the surface of the rice tissue, 

forming infection cushions to draw nutrients from the plant cells (Rush and Lee 1992). A toxin 

is released from the mycelium (Vidhyasekaran et al. 1997) that causes oblong, rounded lesions 

with gray-green or straw-colored centers and yellow to brown margins. Initial lesions are often 

elliptical, while a snakeskin pattern emerges as the disease progresses and lesions coalesce. 

The fungus progressively grows along the plant’s surface, infecting tissues up to and including 

the flag leaf and panicle. The pathogen can spread to an adjacent plant through leaf-to-leaf 

contact. Dark sclerotia are produced on leaves and sheaths as overwintering structures, 

forming from ovular monilioid cells (Rush and Lee 1992).  

1.1.3 MANAGEMENT. Management of R. solani can be difficult for several reasons. 

Being a soilborne organism, R. solani can persist in the soil as sclerotia for multiple years and is 

now endemic to most areas where rice is produced (Rush and Lee 1992). Crop rotation is 

generally not effective because of a wide host range that spans many crops and weeds. 

Rhizoctonia solani causes aerial blight on soybeans, which are often rotated with rice in 

southwestern Louisiana fields. It also infects other leguminous crops including mung and 

common bean (Rush and Lee 1992). Under disease-favoring environmental conditions, R. 

solani can also infect corn, sorghum, and sugarcane (Louisiana Rice Production Handbook 

2014). 

Several other modern production practices contribute to sheath blight severity. The 

global demand for greater crop yield has driven the development of more input intensive 

agricultural techniques. Fertilizers and densely grown crops have subsequently increased 

yields. Higher nitrogen content in rice leaves due to fertilizers can increase sheath blight 

severity. Dense rice stands with early-closing canopies can also contribute to greater disease 
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pressure by increasing microclimate humidity, as high humidity favors pathogen development 

(Louisiana Rice Production Handbook 2014; Rush and Lee 1992). 

Another factor in disease severity is the type of rice being grown in southern Louisiana. 

In a controlled experiment in 2008, unsprayed, inoculated rice fields in Louisiana resulted in 

grain yield losses of 22-34% for cultivars susceptible or very susceptible to sheath blight, 14-

16% for unsprayed moderately susceptible cultivars, and 5% for a moderately resistant cultivar 

(Groth 2008). Short- and medium-grain rice cultivars tend to be more resistant to sheath blight 

than long-grain cultivars (Louisiana Rice Production Handbook 2014; Rush and Lee 1992), but 

long-grain cultivars dominate Louisiana production. Only 5.8, 9.5, 5.5, and 4.3% of rice acreage 

during 2010, 2011, 2012, and 2013, respectively, produced medium-grain rice; the remaining 

rice acreage was dedicated to long-grain rice cultivars (Salassi, Webster, and Wilson 2014; 

Salassi, Wilson, and Walker 2012). Fortunately, several modern long-grain cultivars, such as 

Arkansas’ ‘Taggart’ and ‘Roy J’ and RiceTec’s ‘CLXL745’ and ‘XL753’, have an improved 

sheath blight resistance rating of moderately resistant instead of the susceptible or very 

susceptible ratings typical of long grain rice (Saichuk et al. 2014). Taggart and Roy J have not 

seen much use in Louisiana, but CLXL745 has been planted on about 11, 15, 10, and 14% of all 

Louisiana rice production acreage during 2010-2013, respectively (Salassi, Webster, and Wilson 

2014; Salassi, Wilson, and Walker 2012). Currently, there are no highly resistant rice cultivars 

available, as the greatest available sheath blight resistance is only moderately resistant. 

There have been meager successes using biocontrol methods to manage sheath blight. 

Two prominent examples are commercial formulations of Bacillus subtilis: Integral™ (BASF) 

and Serenade Max™ (Bayer CropScience). Integral™ was applied three times to rice plants 

and resulted in higher grain yields than a single-application fungicide control under 

transplanted field conditions (Vijay Krishna Kumar et al. 2012). Serenade Max™ applied at the 

boot stage consistently protected rice yield, though no fungicide control was compared (Zhou 

and McClung 2013). Non-commercial biocontrol formulations are less supported by research. 

Culture filtrates of Chaetomium aureum reduced sheath blight disease as much as a fungicide 

application, but yield effects were not assessed (Wang et al. 2013). Three foliar applications of 
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Desmos chinensis plant extract were shown to reduce sheath blight severity in transplanted pot 

conditions, while three applications of fungicide reduced severity further (Plodpai et al. 2013). 

Three formulations of the chemical chitosan were shown to reduce sheath blight incidence of 

potted rice plants, but comparison to a fungicide treatment was not provided (Liu et al. 2012). 

Investigations have been done on other R. solani-plant interactions including the use of 

compost, other organic amendments, and Streptomyces spp. (Blok et al. 2000; Kanini et al. 2013; 

Tuitert, Szczech, and Bollen 1998). One final potential mode of biocontrol is associated with 

“Rhizoctonia decline”, a disease that shrivels mycelia of R. solani and severely reduces 

pathogenicity on plant hosts. However, this method has limited efficacy unless a near-clonal R. 

solani isolate infected with Rhizoctonia decline can be located, maintained, and deployed in 

each field (Castanho and Butler 1978a, b; Castanho, Butler, and Shepherd 1978; Lakshman, 

Jian, and Tavantzis 1998).  

Often the most effective and recommended management of this disease is application of 

strobilurin fungicides. When appropriately timed around the boot stage of rice development to 

50% heading (Groth 2005; Saichuk et al. 2014), a strobilurin fungicide application can reduce 

strobilurin-sensitive sheath blight’s impact on a crop. Yield losses of 8% to 40% were 

demonstrated when comparing inoculated field plots with an application of azoxystrobin or 

no application across six rice cultivars ranging from very susceptible to moderately resistant to 

sheath blight (Groth 2008). 

1.2 STROBILURINS AND FUNGICIDE RESISTANCE  

 Strobilurins are a class of fungicides first released for sale in 1996, the year that 

Syngenta and BASF released azoxystrobin and kresoxim-methyl, respectively (Bartlett et al. 

2002). Strobilurins affect plant pathogenic fungi by inhibiting cellular respiration (Bartlett et al. 

2002; Becker et al. 1981). Fungicide molecules occupy the Qo (quinol oxidation) site on the 

mitochondrial membrane’s cytochrome bc1 complex. This occupation blocks electron flow 

and, consequently, respiration. This inhibition starves fungal cells of adenosine triphosphate 

(ATP), thus slowing their cellular activity and growth. Due to blocking the Qo site, strobilurins 

are considered QoI’s (Qo Inhibitors), which are classified as Fungicide Resistance Action 
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Committee (FRAC) code C3 fungicides (FRAC 2015). Strobilurins have useful activity against 

many pathogens from diverse fungal groups, including oomycetes, basidiomycetes, and 

ascomycetes, giving them the greatest activity spectrum of any agricultural fungicide (Carlile 

2012). Strobilurins are used on monocot, dicot, agricultural, and horticultural crops. In 1999, 

azoxystrobin had the distinction of being “the world’s biggest selling fungicide”, having labels 

for 84 different crops in 72 countries (Bartlett et al. 2002). In 1998, however, Blumeria graminis f. 

sp. tritici samples resistant to trifloxystrobin were collected from northern Germany, marking 

the first recorded incidence of a plant pathogenic fungus displaying resistance to a strobilurin 

fungicide (Sierotzki, Wullschleger, and Gisi 2000). 

 1.2.1 CYTOCHROME B MUTATIONS. A cytochrome b mutation was identified in the 

fungal mitochondrial DNA (mtDNA) from samples of the first strobilurin-resistant plant 

pathogen (Blumeria graminis f. sp. tritici), indicating that this mutation strongly influences 

resistance. The 143rd amino acid in the cytochrome b protein had been changed into an alanine 

(A) instead of a glycine (G) (Sierotzki, Wullschleger, and Gisi 2000). This point mutation is 

known as G143A, and it is one of several known mitochondrial mutations that can alter 

strobilurin sensitivity by changing the active site. Almost all field resistant plant pathogenic 

fungi are reported with having a cytochrome b mutation. FRAC (FRAC QoI Working Group 

2006) and Ishii (Ishii 2010) agreed that three prominent cytochrome b point mutations confer 

QoI resistance: G143A, F129L, and G137R. As of 2012, the G143A mutation is most often 

reported according to FRAC (30 out of 40 plant pathogenic fungal species on FRAC’s species 

list), which confers a strong resistance, typically requiring more than 100 times the fungicide 

concentration to provide equivalent control in vitro (FRAC QoI Working Group 2012). Fewer 

pathogens have the F129L mutation (8 out of 40 listed), which accompanies a typically weaker 

(partial) resistance, usually requiring less than 50 times the fungicide concentration. Even 

fewer pathogens possess the G137R mutation (1 out of 40 listed), which forms a partial 

resistance similar to that of the F129L mutation. 

There are a number of other known cytochrome b mutations that have been identified 

in conjunction with reduced QoI sensitivity in organisms beyond plant pathogens. Molecular 
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studies regarding the natural resistance of strobilurin-producing basidiomycete fungi (Kraiczy 

et al. 1996) and other organisms, including ascomycete yeasts (Di Rago, Coppee, and Colson 

1989), showed differences in the cytochrome b genes, each changing one amino acid in the 

cytochrome b protein. In 1996, a collection of these known cytochrome b point mutations and 

their effects was published (Brasseur, Saribaş, and Daldal 1996). This collection includes 77 

point mutations in the prokaryotic cytochrome b as well as the corresponding eukaryotic 

mutations, highlighting the vast amount of work being done on cytochrome b and the bc1 

complex at the time. Generally, mutations beyond G143A, F129L, and G137R have not been 

shown to reduce plant pathogenic fungi’s field sensitivity to QoI’s.  

Identification of a cytochrome b mutation can help explain fungal insensitivity to 

strobilurin and QoI fungicides, but the simple presence or absence of mitochondrial mutation 

is not the only important consideration. Certain structures of the cytochrome b gene could 

prevent the G143A mutation in an organism, but some isolates of a fungal species may or may 

not have this nucleic acid structure. Different amounts of mutant mitochondrial DNA due to 

heteroplasmy can affect the fungal sensitivity to QoI’s. Further, some QoI-resistant organisms 

do not possess a mitochondrial mutation at all.  

Though the G143A mutation generates strong resistance, this mutation can be 

precluded by an intron located between codons 143 and 144 of the cytochrome b gene (FRAC 

QoI Working Group 2011). An investigation by Grasso, et al. (2006) sequenced 23 plant 

pathogen cytochrome b genes including basidiomycetes, ascomycetes, and an oomycete. The 

study found that the G143A mutation was never included in an organism that also possessed 

an intron directly after codon 143. The codon change from glycine to alanine in the presence of 

the intron is thought to interfere with pre-mRNA splicing, which would result in a fatal lack of 

cytochrome b (Grasso et al. 2006). Further studies have supported this pattern, such as one 

examining Monilinia fructicola, the causal agent of stone fruit brown rot (Luo et al. 2010), and 

Podosphaera leucotricha, which causes apple downy mildew (Koch, Felsenstein, and Stammler 

2015). While this intron may prevent the G143A mutation in a fungal isolate, all isolates within 

a species may not share the same intron pattern. For example, isolates of gray mold (Botrytis 
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cinerea) were found to have either three or four introns in the cytochrome b gene: the former 

being susceptible to the G143A mutation and the latter possessing the intron that restricts 

G143A (Banno et al. 2009). Pestalotiopsis longiseta, grey blight on tea, also has multiple different 

intron structures within the cytochrome b gene, though not at the 143 position (Yamada and 

Sonoda 2012). Thus, detection of an intron at position 143 can be used to discuss the 

susceptibility of the specific isolate identified, but caution must be exercised when 

extrapolating to the entire pathogen species population. 

Mitochondrial heteroplasmy as well as mechanisms outside of mtDNA have been 

investigated as sources of differing QoI sensitivity within a single pathogen species. 

Mitochondrial heteroplasmy can produce varying levels of fungicide sensitivity. For example, 

in grapevine powdery mildew samples, the proportion of azoxystrobin-resistant oospores 

correlated with the proportion of mutant mitochondrial alleles compared with the wild-type 

(Toffolatti et al. 2007).  Similarly, samples of the pistachio Alternaria late blight pathogen 

displayed high levels of the mutant cytochrome b allele (greater than 70% and often greater 

than 90%) in azoxystrobin-resistant isolates (Ma and Michailides 2004). This suggests that 

typically not all of the mitochondria within a fungal isolate share the same cytochrome b 

mutation, or lack thereof, even in fungicide-resistant isolates. Thus, among multiple caveats, 

nucleic acid molecular methods must be interpreted with caution and should not be the sole 

method used to screen for QoI resistance in plant pathogens.  

1.2.2 OTHER MODES OF RESISTANCE. It must be noted that not all field-resistant 

pathogens can be linked to a mitochondrial mutation. Some strobilurin-resistant isolates of 

cucurbit powdery mildew (Podosphaera fusca) and apple scab (Venturia inaequalis) have been 

found to lack cytochrome b mutations (Fernández-Ortuño et al. 2008; Köller et al. 2004; 

Steinfeld et al. 2001) while other resistant isolates possess the mutations (Ishii et al. 2001; Köller 

et al. 2004; Zheng, Olaya, and Köller 2000). Two suggested causes of the QoI resistance are a 

possible alteration of the Reiske iron-sulfur protein (ISP) that also forms part of the Qo pocket 

(Fernández-Ortuño et al. 2008) and an as of yet unknown respiratory pathway (Steinfeld et al. 

2001), but neither hypothesis has been substantiated.  
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Alternative oxidase (AOX) can be involved in QoI resistance in plant pathogens. AOX 

provides an alternative route for electrons when the main mitochondrial electron transport 

chain is broken, whether by a QoI (mitochondrial complex III inhibitor) or another respiratory 

inhibitor, such as cyanide (complex IV inhibitor) or rotenone (complex I inhibitor). Oxidative 

phosphorylation through AOX can only produce a fraction of the cellular energy generated 

through the cyanide-sensitive pathway given the same electron flow (Siedow and Berthold 

1986). Despite this, AOX activity has been shown to increase the amount of fungicide 

necessary to suppress several pathogens in vitro. Pyricularia grisea (gray leaf spot on turf) and 

Venturia inaequalis require less fungicide to suppress growth when treated with 

salicylhydroxamic acid (SHAM, an AOX inhibitor) (Kim et al. 2003; Steinfeld et al. 2001). 

Pyricularia grisea appears to be less sensitive to fungicide and SHAM combinations during 

mycelial growth, as compared to conidial germination, while V. inaequalis mycelia are more 

sensitive than conidia.  

Certain efflux transporters in Mycosphaerella graminicola (septoria leaf blotch) have been 

shown to increase resistance to trifloxystrobin in a wild-type cytochrome b strain, but 

resistance based on efflux transporters alone seems to be of lesser magnitude than resistance 

based on the G143A cytochrome b mutation (Roohparvar et al. 2008). Transporters in 

Pyrenophora tritici-repentis (wheat tan spot) have been shown to allow disease development on 

wheat leaves treated with strobilurin fungicide, but it is unknown if the isolates tested have 

any cytochrome b mutations (Reimann and Deising 2005). 

1.3 STROBILURIN FUNGICIDES FOR RHIZOCTONIA SOLANI IN LOUISIANA  

Rhizoctoni solani with low response to azoxystrobin fungicide treatments was first 

reported in 2011 from rice plants exhibiting sheath blight in Acadia Parish, Louisiana (Olaya et 

al. 2012). A follow-up study in 2012 found the strobilurin-insensitive fungus only in fields 

within 40 km of the original location (Olaya et al. 2013). The F129L mutation was present in 

these Louisiana isolates, suggesting this mutation led to the decreased strobilurin sensitivity. 

Strobilurin resistance was also found in R. solani AG 1-IA isolates collected from Arkansas 

(Castroagudin et al. 2013) and in AG 3 isolates from Tunisia (Djébali et al. 2014). The present 
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study will investigate the current strobilurin insensitivity situation in southwestern Louisiana 

rice. 

At the epicenter where strobilurin-resistant R. solani was first reported in Louisiana, 

strobilurins no longer reduce sheath blight damage to acceptable levels. While only the F129L 

cytochrome b mutation has been identified in R. solani, development of other cytochrome b 

mutations is possible, potentially worsening the problem. A limited number of R. solani entries 

in public gene databases provide information about this fungus’ cytochrome b gene structure. 

GenBank has one R. solani entry, a specimen from AG 3. Its cytochrome b gene appears to 

possess six exons and five introns- one intron after the 68th, after the 132nd, within the 166th, 

after the 273rd, and within the 290th codon (GenBank Gene ID 16029565). If all R. solani 

isolates follow this intron structure, development of G143A causing strong strobilurin 

resistance is possible due to lacking an intron following codon 143. 

Other fungicides are labeled for use on rice in Louisiana. At the advent of azoxystrobin 

resistance in Louisiana, there were propiconazole, flutolanil, and strobilurin chemistries 

available. Propiconazole had the least activity; flutolanil, trifloxystrobin, 

trifloxystrobin/propiconazole and propiconazole/azoxystrobin mixtures had intermediate 

activity; and azoxystrobin alone had the best activity on sheath blight, barring fungicide 

resistant isolates (Groth and Hollier 2014). Fluoxastrobin is also labeled for aerial blight 

management on soybeans. As azoxystrobin efficacy deteriorated in certain production areas, a 

FIRFA Section 18 request was filed in early 2012 for emergency chemical relief from sheath 

blight damage (Rossi 2012a). Fluxapyroxad use was then permitted temporarily for sheath 

blight management on rice in 2012 and 2013 (Rossi 2012b,  2014) as a result of Section 18 

petitioning and was subsequently granted a full label in 2014 (Environmental Protection 

Agency 2014a,  2014b). 

This survey will illustrate the geographic reach of R. solani resistant to strobilurin 

fungicides. Development of resistance to sheath blight has not been highly successful in rice 

cultivars, and rice production currently relies on fungicide use to manage sheath blight. 

Management techniques will need to be implemented to combat sheath blight’s impact on rice 
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crops in southwest Louisiana. The geographical extent of resistance will highlight the 

importance of minimizing the spread of contaminated materials and the need for resistance 

management. For example, farm equipment will need to be cleaned after use in fields known 

to harbor resistant sheath blight to remove pathogen propagules before use in other fields. Use 

of strobilurins in fields with known resistance must also be carefully managed to reduce 

further resistance development. This can also reduce the use of fungicide that is no longer 

effective. This research will increase the knowledge base necessary to help prolong the life of 

strobilurin fungicides and begin the quest for other long-term solutions for managing this 

important rice disease.  

1.4 PROJECT OBJECTIVES 

 This Master’s project will study Rhizoctonia solani causing sheath blight disease on rice 

crops in southwest Louisiana and investigate the current situation of strobilurin insensitivity. 

Pathogenic fungal isolates will be collected, stored, and tested for fungicide resistance to 

strobilurins. The first major objective is to collect and preserve R. solani AG 1-IA samples from 

commercial fields. Second, isolates will be characterized by strobilurin sensitivity to develop a 

geographic distribution of fungicide resistance. The third objective is to determine if known 

cytochrome b point mutations correlate with strobilurin sensitivity levels. 
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CHAPTER 2. AMENDED MEDIA FUNGICIDE SENSITIVITY ASSAYS 

2.1 INTRODUCTION 

 The basidiomycete anamorph fungus Rhizoctonia solani Kühn, belonging to anastomosis 

group (AG) 1-IA, causes sheath blight of rice (Kühn 1858; Yang and Li 2012). The teleomorph, 

Thanatephorus cucumeris (Frank) Donk, is known but thought to be relatively unimportant in 

the disease cycle (Dath 1990; Donk 1956; Frank 1883). Inoculum can readily overwinter in the 

form of sclerotia and infected plant tissue, and the fungus is known to infect many weed and 

crop plant species. Inoculum can persist across multiple growing seasons and is naturally 

found virtually wherever rice is grown, making sheath blight one of the most severe diseases 

for rice growers around the world (Dath 1990; Rao 1995; Rush and Lee 1992). 

  Rice in an economically important crop in Louisiana, with over 181,000 hectares 

planted in 2014 (Louisiana ag summary, 2014 state totals 2014). It is often rotated with 

soybeans, on which R. solani causes aerial web blight (Louisiana Rice Production Handbook 

2014). Sheath blight is frequently the most severe disease affecting rice in Louisiana, and yield 

losses of 14-34% have been demonstrated on moderately to very susceptible cultivars (Groth 

2008; Groth and Hollier 1986; Rush and Lee 1992). During the 2010 through 2013 growing 

seasons, 74-80% of the rice acreage in Louisiana was planted with cultivars rated as very 

susceptible, susceptible, or moderately susceptible to sheath blight (Salassi, Webster, and 

Wilson 2014; Salassi, Wilson, and Walker 2012). While there are some moderately resistant 

cultivars available, such as RiceTec’s CLXL745, they are not widely planted. There are no 

cultivars rated as resistant or very resistant to sheath blight presently available (Saichuk et al. 

2014).  

Sheath blight management then relies on fungicide treatment. The best fungicide for 

sheath blight management was found to be azoxystrobin alone (Quadris™) when comparing 

fungicides with active ingredients of propiconazole, trifloxystrobin, azoxystrobin, flutolanil, or 

propiconazole mixed with either azoxystrobin or trifloxystrobin (Groth and Hollier 2014). An 

application of azoxystrobin can prevent demonstrated yield losses of 8 to 40% when applied 

during the boot to 50% heading growth stages (Groth 2005, 2008). However, azoxystrobin 
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protection has been challenged by the 2011 discovery of R. solani exhibiting low fungicide 

response in Acadia Parish, Louisiana. Resistant isolates were then shown in 2012 to exist only 

within 40 km of the original detection field (Olaya et al. 2012,  2013). Strobilurin-resistant 

sheath blight isolates were also reported in Arkansas (Castroagudin et al. 2013).  

A new fungicide active ingredient, fluxapyroxad, was given an emergency label for 

Louisiana in response to the azoxystrobin resistance in R. solani isolates and has since received 

a full use label. This is an effective tool for sheath blight management. However, fluxapyroxad 

may not provide the same protection from a number of diseases that strobilurin fungicides can 

manage. Specifically, trifloxystrobin (and azoxystrobin to a slightly lesser extent) has excellent 

efficacy on rice blast, another major rice disease, while fluxapyroxad has little to no effect. 

Cross-resistance among the azoxystrobin and trifloxystrobin was investigated for this reason. 

Pyraclostrobin was also included because it can be used to manage aerial web blight on 

soybeans. 

Cytochrome b is the fungal protein targeted by strobilurin fungicides. Also known as 

QoI’s, or quinol outside inhibitors, these fungicides act at and occupy the mitochondrial Qo 

site of cytochrome b, impairing fungal respiration by preventing electron transport (Becker et 

al. 1981). Cytochrome b mutations have been shown to contribute field resistance to strobilurin 

fungicides in plant pathogens and are thought to alter the shape of the Qo active site (FRAC 

QoI Working Group 2006; Ishii 2010). Only the F129L, G137R, and G143A mutations have been 

shown to cause field-level resistance. The resistance with F129L and G137R mutations is 

considered less severe than with the G143A mutation. The azoxystrobin-resistant isolates of R. 

solani from Louisiana were found to have the F129L cytochrome b mutation (Olaya et al. 2012). 

Alternative oxidase (AOX) activity can also be related to strobilurin resistance. Some 

plants and fungi express the AOX mitochondrial membrane protein, which provides an 

alternate route for mitochondrial electron transport that bypasses cytochrome b (Henry and 

Nyns 1975). This potential avoidance of cytochrome b blockage could contribute to mitigation 

of strobilurin efficacy in plant pathogens (Affourtit, Heaney, and Moore 2000; Xu et al. 2013). 

The AOX pathway is often thought to be suppressed in planta by the plant’s flavone 
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production yet active in vitro, confounding strobilurin sensitivity measurements (Mizutani et 

al. 1996; Wood and Hollomon 2003). Inhibitors of AOX, such as salyicylhydroxamic acid 

(SHAM) and propyl gallate (PG), are thus often added to fungicide-amended media to prevent 

strobilurin circumnavigation in vitro (Parrish and Leopold 1978; Schonbaum et al. 1971). One 

report suggests that while R. solani mycelia can be highly sensitive to azoxystrobin, this 

inhibition is not highly sensitive to SHAM, even though AOX appears to be expressed 

constitutively (Jin et al. 2009).  

This study explored both AOX inhibitor and strobilurin effects on mycelial growth of R. 

solani collected from southwestern Louisiana rice fields. An existing DNA test was adapted for 

isolate verification and compared against traditional methods. Inhibitors of AOX were 

evaluated for potential use in fungicide sensitivity assays. Sensitivity to strobilurins 

azoxystrobin, pyraclostrobin, and trifloxystrobin was examined for isolates from 

geographically diverse fields to guide future sheath blight management decisions. 

Conventional solid media fungicide sensitivity assays were conducted on a subset of isolates, 

and a liquid medium assay was developed to test more isolates with the goal of reducing 

materials, labor, and time. 

2.2 MATERIALS AND METHODS 

2.2.1 ISOLATE COLLECTION AND STORAGE. Commercial rice production fields 

spanning southwestern Louisiana were sampled based on a 5-mile grid. Portions of Acadia, 

Evangeline, Jefferson Davis, and Vermillion parishes were extensively sampled with 11, 9, 8, 

and 6 sites respectively; one site from each of Allen, Calcasieu, Cameron, and St. Landry 

parishes were also sampled, composing a total of 38 sites (Figure 2.1). Samples were also 

included from a known resistant field. One particularly insensitive isolate was used as a 

positive (resistant) control. The samples described were collected in the summers of 2013 and 

2014. An isolate collected from the LSU AgCenter H. Rouse Caffey Rice Research Station in 

1972, before the introduction of strobilurins, served as a negative (sensitive) control. It has 

been maintained on rice nodes and is routinely used to screen rice germplasm for sheath blight 

resistance, confirming the isolate’s continued virulence. 



 

 20 

Figure 2.1. Isolate sampling sites. Purple dots represent rice fields sampled based on a 5-mile 

grid. The red dot marks the location of the resistant control field, and the green dot marks the 

sensitive control field.  

Upon arriving at a selected field, the GPS coordinates were recorded. Two collectors 

entered from different points on the edge of the field and proceeded on non-intersecting paths 

until symptomatic tissue could be located. Symptomatic leaf and sheath tissue containing both 

a sheath blight lesion and surrounding healthy tissue were hand collected and placed in 1 

quart volume plastic zip-closure bags. Multiple tissue samples were taken if possible, from the 

initial and adjacent plants, at each stop and pooled into one sample bag. Ten paces were 

required before stopping again to collect a new sample. No more than 10 samples were 

collected from one field, but in extreme cases as few as one sample was located. Sample bags 

were chilled on ice in a cooler for transport.  
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For isolation, lesions were scanned under a stereomicroscope. If large, characteristic 

right-angle mycelia were located, the lesion was excised and soaked in a 10% bleach solution 

for 30 seconds. The tissue was then submerged in three successive sterilized distilled water 

baths and dried on sterile filter paper. The dried lesion was sectioned, placed on the surface of 

2% water agar, and incubated at room temperature. If no mycelia were found on a sample, 

symptomatic tissue was incubated in a small, moist chamber for up to several days and 

inspected for mycelial growth. Water agar cultures were scrutinized daily for characteristic 

mycelia, and selected hyphal tips were transferred to full strength potato dextrose agar (PDA, 

39 g powder liter-1). If bacterial contamination was present, hyphal tips were transferred to 

1.8% water agar media containing streptomycin (as streptomycin sulfate at 100 mg liter-1) and 

penicillin (as penicillin-G sodium salt at 100 mg liter-1) (Gutierrez, Shew, and Melton 1997) 

before being transferred again to PDA. All 162 isolates were tested for the presence of bacterial 

contamination before storage by placing three 8.5 mm diameter agar plugs into 5 ml of 

nutrient broth and incubating for at least 18 hours at 28°C.  

Isolates were stored as sclerotia, mycelia-colonized filter paper circles, and on rye seeds. 

Mature, dark sclerotia were harvested from colonies, dried with sterile filter paper, and stored 

in 2 ml hermetically-sealed vials placed inside a room temperature desiccator. Filter paper 

circles (15-mm-diameter) were autoclave sterilized and placed flat on the surface of PDA 

plates. An agar plug was placed in the center of the PDA plate, and mycelia were allowed to 

grow across the circles. Once sclerotia matured on the plate, the circles were dried in empty 

petri dishes in a room temperature desiccator before being stored inside sterile aluminum foil 

envelopes in the same desiccator. To infest rye seed, agar squares from the actively growing 

colony margins were incubated with approximately 15 ml of sterile winter rye seeds (which 

had been soaked overnight in distilled water and autoclaved with 90 minute sterile time on 

two successive days) in a narrow-mouthed flask and agitated daily for 5 days. The mycelia-

infested seeds were then spread on open Petri dishes and allowed to dry in a laminar flow 

hood for 5 days before being frozen in 15 ml centrifuge tubes at -20°C (M. L. Lewis Ivey, 

personal communication).  
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2.2.2 ISOLATE VERIFICATION. A polymerase chain reaction (PCR) assay was utilized 

to verify each isolate as R. solani belonging to anastomosis group 1-IA (sheath blight). Aerial 

mycelia collected with sterile toothpicks were used to extract DNA from each isolate using a 

modified version (S. Albu, personal communication) of the Promega Wizard Purification Kit 

for Cultures and Mushrooms (Promega Corporation, Madison, WI). Briefly, aerial mycelia 

were placed in 1.5 ml sterile microcentrifuge tubes with 300 μl of Nuclei Lysis Solution 

(Promega) and macerated with plastic pestles. Once ground, an additional 300 μl of Nuclei 

Lysis Solution was added to each tube. Tubes were incubated in a 65°C heat block for 60 

minutes, agitated every 15 min, then centrifuged at 1300 rpm for 10 min. About 500 μl of 

supernatant was transferred to a new tube, and 200 μl of Protein Precipitation Solution 

(Promega) was subsequently added. Tubes were agitated for 30 s and incubated at 4°C for 2 

min. After centrifuging at 1300 rpm for 10 min, approximately 600 μl of supernatant was 

transferred to a final tube, and 600 μl of 100% isopropanol was added. Tubes were gently 

agitated and centrifuged at 1300 rpm for 10 min again. Liquid was decanted and pellets were 

washed by adding 600 μl of 70% ethanol, gently agitating, and centrifuging a final time at 1300 

rpm for 10 min. Liquid was again decanted, and tubes were inverted and left to dry in a dark 

drawer for 60 min before DNA pellets were dissolved in 30 μl of T10E1 buffer (10 mM tris-HCl 

and 1 mM ethylenediaminetetraacetic acid). As needed, tubes were gently heated in a 50°C 

heat block with agitation at 15 min intervals to aid in dissolving DNA pellets. 

Extracted DNA was diluted to 30 ng ml-1 with sterile water and tested using primers 

Rs1F and Rs2R developed by Sayler and Yang to specifically amplify an ITS fragment found 

only in R. solani 1-IA group members (Sayler and Yang 2007). For each isolate tested, the PCR 

cocktail consisted of 8.5 μl sterile water, 1.5 μl of both the forward and reverse primers (10 μM 

each), 12.5 μl GoTaqColorless Master Mix (Promega), and 1 μl of template DNA (30 ng/μl). 

Thermocycler conditions were an initial melting phase at 95°C for 4 minutes, 35 cycles of 94°C 

melting phase for 45 seconds, 50°C annealing for 45 seconds, and 72°C extension for 45 

seconds. A final extension period at 72°C was used for 7 minutes before holding the tubes at 

4°C. PCR products were visualized under ultraviolet light on a 1.5% agarose gel run at 112 
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volts for 25 minutes. Presence of a band approximately 140 bp in size was considered a 

positive result.  To further verify the identification, one isolate from each collection site was 

sent to Dr. Craig Rothrock and David Winters, Department of Plant Pathology, University of 

Arkansas for traditional anastomosis identification using known tester isolates. 

2.2.3 ALTERNATIVE OXIDASE INHIBITOR TOXICITY ASSAYS. One isolate from each 

of five collection sites (including azoxystrobin-resistant and strobilurin-sensitive control 

isolates) was selected to assess the effect of AOX inhibitors PG and SHAM on R. solani mycelial 

growth. For both inhibitor assays, PDA was autoclaved and cooled for handling. Propyl 

gallate was dissolved directly into molten PDA, whereas serial dilutions of SHAM were made 

in methanol and added to molten PDA, with an equal amount of methanol added to the 

unamended SHAM control plates. Final agar media concentrations of both SHAM and PG 

were 0, 50, 100, and 150 μg ml-1. An agar plug, 5.4 mm in diameter, taken from the growing 

margin of an isolate was then transferred, mycelia side down, to each of the unamended and 

amended PDA plates and photographed after 30 hours of incubation at 25°C in the dark. Three 

replicate plates were used for each isolate-chemical concentration. Assess software (ver. 2.0; 

American Phytopathological Society) was used to measure colony diameter digitally (Figure 

2.2). The average of two perpendicular measurements per plate was used in subsequent 

analyses. The entire experiment was completed twice. 

Analysis of variance (ANOVA) was conducted on the colony diameters using the 

MIXED procedure in SAS software (ver. 9.4, SAS Institute, Inc.) to determine if each chemical 

significantly inhibited colony growth and to determine if there were differential responses 

among the five isolates tested. Fixed effects of isolate, concentration, and the interaction were 

analyzed separately for both chemicals, and experiment was considered a block variable. 

Significance was evaluated at α=0.05 using Dunnett’s adjustment for colony growth inhibition 

and Tukey’s adjustment for isolate differences. The assumption of residual normality was 

analyzed using the Shapiro-Wilk test in SAS’s PROC UNIVARIATE. Homoscedasticity was 

investigated using the ‘group=’ option in the random statement of PROC MIXED. The ‘group=’ 

option, or none at all, that produced the lowest AIC value was used. 
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Figure 2.2. Assess 2.0 (American Phytopathological 

Society) software interface showing the outline of a fungal 

colony measured digitally. 

2.2.4 SOLID MEDIUM FUNGICIDE SENSITIVITY ASSAYS. An AOX inhibitor was not 

used in any of the fungicide sensitivity assays because the AOX inhibitors had significant 

effects on mycelial growth.  One isolate from each collection site was randomly selected to test 

the effects of strobilurin fungicides. Serial dilutions of commercial Quadris™ (250 FL, 

Syngenta), Headline™ (250 FL, BASF), and Gem™ (500 SC, Bayer CropScience) were made in 

sterile double-distilled water to achieve active ingredient concentrations 0.005, 0.01, 0.05, 0.1, 

0.5, 1, 5, and 10 μg ml-1 for azoxystrobin while 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, and 0.0005, 

0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1 μg ml-1 were selected for pyraclostrobin and trifloxystrobin, 

respectively. Different fungicide concentrations were used for each of the three fungicides 

based on preliminary sensitivity ranges tested on a subset of the isolate population. As in the 

AOX inhibitor assay, stock fungicide solutions were added to molten PDA after autoclaving 

and cooling, and a 5.4 mm diameter agar plug was placed in the center of the plate for 
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incubation at 25°C in the dark for 28 hours. Two replicate plates were used for each isolate-

fungicide concentration combination, and image analysis was conducted in Assess as per the 

AOX inhibitor assay. For each fungicide, the experiment was conducted twice. 

Colony diameters were normalized by dividing each mean diameter by the mean 

diameter of the unamended PDA control plates after subtracting the plug diameter (5.4 mm). 

The NLIN procedure in SAS statistical software was used to analyze the nonlinear dose 

response curve of normalized colony diameter versus log10-transformed fungicide 

concentration for each isolate. A general, three parameter logistic equation of  

      
       

                  
 

was fitted to determine the EC50, the effective concentration of fungicide (ug ml-1) that inhibits 

the colony growth 50% between the maximum and minimum colony diameter. Starting values 

of -1, 0, and 1 were supplied to the NLIN procedure for log10EC50, Min, and Max values 

respectively. 

To determine if isolates differed from the sensitive and resistant control isolates, 

ANOVA was conducted on the log10 EC50 values using the MIXED procedure of SAS software, 

with the fungicide, isolate, and the interaction as fixed effects and experiment within fungicide 

as a random effect. Significance was evaluated at α=0.05 using Fisher’s least significant 

difference for Fungicide*Isolate groups. Isolates were considered resistant if their EC50 values 

were not significantly different from the resistant control isolate within each fungicide, 

sensitive if they were not different from or more sensitive than the sensitive control, or 

intermediate if they were significantly different than the two control isolates or grouped with 

both controls. Fungicide means were separated using α=0.05 and Bonferroni’s correction. 

Assumptions of residual normality and homogeneity of variance were checked with the 

Shapiro-Wilk test in PROC UNIVARIATE and the ‘group=’ option in the random statement of 

PROC MIXED, respectively. 

2.2.5 LIQUID MEDIUM FUNGICIDE SENSITIVITY ASSAYS. In order to test more 

isolates more quickly using less materials and labor, a 96-well microtiter assay was developed. 
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This assay could reasonably accommodate multiple isolates from the 40 sampled fields, unlike 

the solid medium assay. The number of isolates successfully collected from each field ranged 

from one to eight (average of four), and all 162 isolates were tested using the liquid medium 

assay. As in the amended solid medium assay, serial dilutions were made of Quadris™, 

Headline™, and Gem™, but diluted in potato dextrose broth (PDB, 24 g powder liter-1) with a 

broader concentration range: 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, and 5 μg ml-1 for 

azoxystrobin; 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, and 5 μg ml-1 for pyraclostrobin; and 

0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, and 1 for μg ml-1 trifloxystrobin. A blank well 

(200 μl of unamended PDB), two control wells (150 μl of unamended PDB), and nine wells 

containing one of the fungicide concentrations above (150 μl of fungicide-amended PDB) were 

prepared for each isolate-fungicide combination in clear 96-well microtiter plates. 

Mycelia served as inoculum in the form of six agar plugs (4-mm-diameter) taken from 

the growing margin of each isolate. The bottom half of the plug (away from the mycelial 

surface) was removed using a flamed scalpel, and the plugs were placed inside a 1.5 ml 

microcentrifuge tube containing 500 μl of unamended PDB. Plugs were comminuted by hand 

using mated plastic pestles. The mycelial suspension was then transferred to a 15 ml centrifuge 

tube containing 5.5 ml PDB with repeated pipetting in the 1000 μl pipet tip to aid in 

homogenization. For each isolate, 50 μl aliquots of mycelial suspension were added to the 

appropriate wells for a total volume of 200 μl in each well. This final well volume accurately 

reflected the fungicide concentrations previously stated. Triplicate wells on separate plates 

were used for each isolate-concentration combination. The plates were sealed with specialized 

adhesive plastic, and initial absorbance measurements were taken using a 96-well plate reader. 

After incubating for 48 hours in the dark at 25°C, a second absorbance measurement was 

taken. For the second absorbance reading, the plastic seals were replaced to remove 

overgrown mycelia and to ensure that all absorbance values reflected growth of the liquid-

suspended mycelia only. The experiment was conducted twice. 

Relative growth (RG) was calculated for each fungicide-amended well using the 

equation 
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where A0 and A48 represent the absorbance values for the inoculated, fungicide-amended wells 

at the initial and 48 hour readings, respectively, and U0 and U48 for the inoculated, unamended 

control wells at the same time points (Seyran, Brenneman, and Stevenson 2010). Regression on 

RG versus log10 fungicide concentration was conducted for each row on each microtiter plate, 

yielding six EC50 values for each fungicide-isolate combination after both experiments were 

conducted. The same three parameter logistic equation and starting values were used as in the 

solid medium assay.  The ANOVA was conducted using the MIXED procedure in SAS with a 

fixed effects of isolate, fungicide, and the interaction. The individual microtiter plates within 

each experiment served as a blocking variable. Tukey’s adjustment was used to compare 

Fungicide*Isolate groups at the α=0.05 level, while Bonferroni’s adjustment separated 

Fungicide groups (α=0.05). Testing of residuals was conducted again with SAS’s PROC 

UNIVARIATE to assess normality using the Kolmogorov-Smirnov test, but testing 

homogeneity of variance was more complicated. Due to the large number of isolate groups, 

using the ‘group=’ option in the random statement could not be completed successfully. 

Instead, the Bartlett test was used in PROC GLM. As Bartlett’s test is used for one-way 

ANOVA’s, analysis was done separately for the effect of Isolate, Fungicide, and 

Fungicide*Isolate. 

 To compare the EC50 values between the solid and liquid medium assays, simple linear 

regression was used to analyze responses from the 40 isolates present in both assays. PROC 

REG in SAS was used on the log10EC50 values generated from the solid and liquid medium 

assays. PROC UNIVARIATE was used to assess regression residuals for normality, and 

residuals were plotted against predicted values to check for homoscedasticity using PROC 

PLOT. 

2.3 RESULTS 

2.3.1 ISOLATE VERIFICATION. Initially, 39 of the 40 isolates selected for the solid 

medium assay amplified appropriately, indicating these isolates did indeed belong to AG I-1A 
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(Figure 2.3). One isolate failed to amplify, and a different random isolate was selected that 

amplified as expected. These results were corroborated by traditional anastomosis tester  

 

 
Figure 2.3. Typical results from the PCR assay to verify isolate 

anastomosis group. Lane L, DNA ladder. Lanes 1-11, positive result 

from collection site isolates. Lane 12, positive control. Lane 13, 

negative control (Colletotricum fructivorum). Lane 14, water control.  

isolate classification, with the aberrant isolate being classified as a binucleate Rhizoctonia sp. 

Similarly, all other isolates used for the liquid medium assay amplified as expected, for all 162 

isolates of R. solani AG 1-IA used in this study.  

2.3.2 ALTERNATIVE OXIDASE INHIBITOR TOXICITY ASSAYS. Both AOX inhibitors 

had demonstrable effects on mycelial growth. For PG, the chemical concentration effect was 

highly significant at P = < 0.0001, while neither the effect of isolate nor the interaction was 

significant at P = 0.2028 and P = 0.0583, respectively. Therefore, the results for the five isolates 

were combined for the analysis. Concentrations of 100 and 150 μg PG ml-1 had significantly 

different means from the unamended control treatment, but the 50 μg ml-1 concentration did 

not after Dunnett’s adjustment (Figure 2.4). 

The chemical concentration (P = <0.0001) was highly significant in the SHAM trial, and 

the effect of isolate (P = 0.2035) and the interaction (P = 0.2751) were again not significant. All 

three concentrations of SHAM tested were significantly different than the control based on 

Dunnett’s adjustment (Figure 2.4). 

2.3.3 SOLID MEDIUM FUNGICIDE SENSITIVITY ASSAYS. Analysis of variance was 

conducted on log10EC50 values to uphold assumptions of normality. The effect of experiment 

was not significant (P = >0.05) so experiments were combined. The effects of fungicide, isolate, 
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Figure 2.4. Colony growth as affected by alternative 

oxidase inhibitors. A, propyl gallate (PG); B, 

salicylhydroxamic acid (SHAM). Columns marked 

with an asterisk (*) are significantly different than the 

zero-concentration control at α=0.05 based on 

Dunnett’s adjustment. Error bars represent 95% 

confidence intervals based on the mean. 

and the interaction were significant (Table 2.1). For each fungicide, EC50 value means were 

back-transformed and reported in the experimental concentration (Table 2.2). The 

pyraclostrobin treatment had a greater mean (0.0642 μg ml-1) than those for azoxystrobin 

(0.0587 μg ml-1) and trifloxystrobin (0.0061 μg ml-1) in the solid medium assays. Pyraclostrobin 

grouped with azoxystrobin as not significantly different, while both means were significantly 

higher than the trifloxystrobin treatment mean.  

A 

B  
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Table 2.1. Main and interaction effects in analysis of variance for both solid and liquid medium 

strobilurin sensitivity assays. 

 Solid medium  Liquid medium 

Effect d.f. F P  d.f. F P 

Fungicide 2 114.51 0.0015  2 2603.63 <0.0001 

Isolate 39 4.32 <0.0001  161 60.73 <0.0001 

Fungicide x Isolate 78 3.38 <0.0001  322 18.31 <0.0001 

 

Table 2.2. Treatment means of effective concentrations that inhibited mycelial growth to 50% 

between the maximum and minimum responses (EC50) for tested fungicides in both solid and 

liquid medium strobilurin sensitivity assays.  

 EC50 (μg ml-1)z 

Fungicide Solid medium  Liquid medium 

Headline™ (pyraclostrobin) 0.0642 a  0.0341 a 

Quadris™ (azoxystrobin) 0.0587 a  0.0106 b 

Gem™ (trifloxystrobin) 0.0061 b  0.0035 c 
z Means in the same column marked with the same letter are not significantly different after 

Bonferroni adjustment (α=0.05). 

The azoxystrobin EC50 values (averaged across experiments for each isolate and back 

transformed) were log-normally distributed (W= 0.9858, P= 0.5241 for the log10EC50 value 

distribution), had a median of 0.0486 μg azoxystrobin ml-1, and ranged from 0.0029 to 0.6352 

μg ml-1 (Figure 2.5). The distribution was weakly bimodal with positive skewness towards 

higher EC50 values (and consequently lower sensitivity). As expected, the resistant and 

sensitive control isolates had significantly different EC50 values for azoxystrobin. An isolate 

was considered resistant if it shared a significance group with the resistant control only, 

sensitive if it shared a significance group with the sensitive control only, and intermediate if it 

matched both controls. Out of the 40 isolates tested, each representing a collection site, 11 were 

resistant (27.5%), three were intermediate (7.5%), and 26 were sensitive (65%, including six 

isolates significantly more sensitive than the sensitive control). Six resistant isolates clustered 
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Figure 2.5. Distributions of effective concentrations to inhibit mycelial growth by 

50% (EC50, n=40 isolates) using the solid medium assay. R and S mark the bins 

that contain the resistant (to azoxystrobin) and sensitive control isolates, 

respectively. A, azoxystrobin; B, pyraclostrobin; C, trifloxystrobin. 

near the resistance origin, along with the three intermediate isolates (Figure 2.6). However, 

two resistant isolates were located more than 40 km away from the resistance origin. 

 Pyraclostrobin EC50 values were sufficiently normally distributed (W=0.9585, P= 0.1490), 

with a range from 0.0213 to 0.1547 μg pyraclostrobin ml-1 with a median of 0.0712 μg ml-1 

(Figure 2.5). The distribution showed slight positive skewness. The resistant and sensitive 

control isolates had significantly different EC50 values for pyraclostrobin. There were three 

isolates (7.5%) that grouped with the resistant control isolate (field-resistant to azoxystrobin), 

28 intermediate isolates (70%) that grouped with both the resistant and sensitive control, and 

nine isolates (22.5%) that grouped only with the sensitive isolate indicating sensitivity. The 

A 

R 

  S 
B 

   R 

  S 

C 
S 

R 
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Figure 2.6. Isolate locations representing azoxystrobin sensitivity reaction. Colored circles 

mark fields where isolates were collected. Green coloration indicates sensitive response, 

yellow indicates intermediate, and red, resistant. Red star marks resistance origin, and black 

circle marks the 40 km radius from this area. Green star marks sensitive isolate collection field. 

resistant isolates were clustered around the resistance origin, while the intermediate isolates 

were more widely distributed, with 14 outside the 40 km range from the resistance origin 

(Figure 2.7). 

Trifloxystrobin EC50 values only ranged from 0.0016 to 0.0209 μg trifloxystrobin ml-1, 

had a median of 0.0057 μg ml-1, and were log-normally distributed (W=0.9848, P= 0.4658 for 

log10EC50 distribution) (Figure 2.5). The azoxystrobin-resistant control isolate grouped with the 

strobilurin-sensitive control isolate as not significantly different. This lack of clear differences 

in EC50 values across the control isolates and narrow range prevented sensitivity categorization 
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Figure 2.7. Isolate locations representing pyraclostrobin sensitivity reaction. Colored circles 

mark field where isolates were collected. Green coloration indicates sensitive response, yellow 

indicates intermediate, and red, resistant. Red star marks resistance origin, and black circle 

shows 40 km radius from this area. Green star marks sensitive isolate collection field. 

in the trifloxystobin assay, possibly indicating sensitivity across the isolate population.  

2.3.4 LIQUID MEDIUM FUNGICIDE SENSITIVITY ASSAYS. The number of isolates 

successfully collected from each field ranged from one to eight (average of four). Because the 

effect of Isolate was found to be homoscedastic based on Bartlett’s test while Fungicide and 

Isolate by Fungicide were heteroscedastic, the ANOVA model was fitted using a 

‘group=Isolate’ option in the random statement of PROC MIXED. The effects of Fungicide, 

Isolate, and Fungicide by Isolate were all significant in the liquid medium assay (Table 2.1). 

Unlike in the solid medium assay, all three fungicide treatment means were significantly 
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different. The means retained the same relative order, however, with pyraclostrobin having 

the highest mean (0.0341 μg ml-1) and trifloxystrobin having the lowest (0.0035 μg ml-1) (Table 

2.2).  

The azoxystrobin EC50 values ranged from 0.0006 to 0.2923 μg ml-1, with a median of 

0.0024 μg ml-1. The distribution was strongly bimodal (modes within 0 to 0.015 and 0.09 to 

0.105 μg ml-1) and was heavily skewed towards higher EC50 values (Figure 2.8). The EC50 

values of the resistant and sensitive control isolates were significantly different. Significantly 

grouping with the resistant control, 63 isolates (38.9%) tested resistant to azoxystrobin, while 

91 (56.2%) were sensitive including the sensitive control, leaving eight intermediate isolates 

(4.9%) that were significantly different than both controls. Resistant isolates were identified in 

22 of the 40 collection sites (55%), sensitive isolates were found in 30 sites (75%), and 

intermediate in 8 (20%) (Table 2.3). Eight and 15 sites contained sampled isolates that were 

only resistant or only sensitive, respectively. Intermediate-response isolates were only found 

in conjunction with isolates from other sensitivity categories. Many of the resistant isolates 

were located near the resistance origin, but 20 were located greater than 40 km away 

distributed over seven collection sites (Figure 2.9). There were also three intermediate isolates 

(in three sites) beyond 40 km from the resistance origin.  

For pyraclostrobin sensitivity using the liquid medium assay, EC50 values ranged from 

0.0096 to 0.2534 μg ml-1, having a median of 0.0245 μg ml-1 (Figure 2.8). The pyraclostrobin 

distribution was more weakly bimodal than the azoxystrobin distribution with less separation 

between the modes. The pyraclostrobin modes were located between 0.013 to 0.026 and 0.052 

to 0.065 μg ml-1. This distribution also displayed extreme high EC50 values causing positive 

skewness. The EC50 values of the resistant and sensitive control isolates did not significantly  

differ in the pyraclostrobin assay, preventing explicit sensitivity categorization of the isolates. 

Only one isolate out of 162 differed significantly from the resistant control, while 14 differed 

from the sensitive control. 

The distribution of trifloxystrobin sensitivity responses was more unimodal than the 

other two fungicides, with a prominent mode between 0.003-0.00375 μg ml-1 and a possible 
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Figure 2.8. Distributions of effective concentrations to 

inhibit mycelial growth by 50% (EC50, n=162 isolates) 

using the liquid medium assay. R and S mark the bins 

that contain the resistant (to azoxystrobin) and sensitive 

control isolates, respectively. A, azoxystrobin; B, 

pyraclostrobin; C, trifloxystrobin. 
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Table 2.3. Azoxystrobin sensitivity breakdown of isolates in the 40 collection sites based on the 

liquid medium assay. 

Collection 

sitez 

Resistant Intermed-

iate 

Sensitive Collection 

site 

Resistant Intermed-

iate 

Sensitive 

1* 3 0 2 21* 2 0 3 

2* 0 0 2 22 0 0 6 

3* 0 0 1 23 2 0 0 

4* 0 1 4 24 4 0 4 

5 0 0 6 25* 0 0 6 

6 1 0 1 26* 1 0 2 

7 2 1 2 27 0 0 7 

8 0 1 5 28 3 0 2 

9 0 0 2 29 1 0 0 

10 5 1 0 30 1 0 3 

11 0 0 1 31 3 0 0 

12* 1 0 1 32 1 1 3 

13* 2 0 4 33 1 0 0 

14* 0 0 1 34 0 0 5 

15* 8 0 0 35* 0 1 4 

16* 0 0 5 36 (S) 0 0 1 

17* 3 1 2 37 (R) 7 1 0 

18 0 0 2 38 6 0 0 

19 0 0 2 39 4 0 0 

20* 0 0 2 40 2 0 0 
z  R represents the resistance origin and S represents the site where the sensitive control isolate 

was collected in 1972. Sites marked with an asterisk (*) are located more than 40 km away 

from the resistance origin. 

second mode between 0.00825-0.009 μg ml-1. This distribution was again positively skewed. 

Ranging from 0.0011 to only 0.0127, the trifloxystrobin EC50 values decidedly had the smallest 
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Figure 2.9. Map showing proportional breakdown of isolate sensitivity to azoxystrobin at   

each collection site as determined by the liquid medium assay. Black indicates resistant 

response, diagonal hatching indicates an intermediate response, and white is sensitive. The 

black circle marks a 40 km radius from the resistance origin, within which is the only area 

formerly known to have azoxystrobin-resistant isolates of R. solani in Louisiana. 

range. The median was 0.0035 μg ml-1. Almost 60% of the isolates (96/162) had EC50 values 

within the 0.003-0.00375 μg ml-1 mode or lower. The sensitive and resistant control isolates did 

not differ in the trifloxystrobin assay, again precluding categorization of isolate sensitivity to 
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this fungicide. Only four isolates out of 162 had significantly different EC50 values than the 

resistant control, and only three differed from the sensitive control. 

The correlation of the solid and liquid medium log10EC50 values varied by fungicide for 

the 40 isolates of R. solani (Figure 2.10). The log10EC50 values were strongly correlated for 

azoxystrobin. The regression was significant (P = <0.0001), with an R2 value of 0.7611 and a 

slope of 1.36 log10(μg ml-1). The pyraclostrobin regression was also significant (P = 0.0066), but 

R2 was much lower at 0.1784, with a slope of 0.55 log10(μg ml-1). For trifloxystrobin, however, 

the regression was not significant (P = 0.5740).  

2.4 DISCUSSION 

 Testing strobilurin sensitivity is often conducted with the addition of AOX inhibitors 

(Amiri, Heath, and Peres 2013; Wood and Hollomon 2003; Zhang 2012) to mimic in vivo 

conditions where plant flavones are thought to suppress AOX activity (Mizutani 1996; Olaya, 

Zheng, and Köller 1998). However, in this study, AOX inhibitors were toxic to mycelial growth 

of five isolates of R. solani AG 1-IA in vitro. Adding 20 μg SHAM ml-1 reduced pyraclostrobin 

EC50 values during both in vitro and in planta assays using Sclerotinia sclerotiorum, prompting 

the authors to conclude that SHAM should not be added to pyraclostrobin in vitro assays with 

this pathogen due to SHAM deflating the true EC50 value (Liang et al. 2015). Toxicity in vitro 

has been found with other inhibitor-pathogen systems. Up to 60% reduction in mycelial 

growth of Magnaporthe oryzae was found when 150 μg SHAM ml-1 was added to azoxystrobin 

in vitro assays (Kunova et al. 2013), compared with 38% inhibition in our R. solani-SHAM 

assays at the same concentration. Toxicity of PG and SHAM was shown for Fusicladium effusum 

in both liquid and solid media (Seyran, Brenneman, and Stevenson 2010). A concentration of 1 

mM PG (212 μg ml-1) alone inhibited colony growth of 11 Botrytis cinerea isolates more than a 

combination of azoxystrobin and PG or azoxystrobin alone (Ishii et al. 2009). 

These inhibitors also lack uniform effects across fungicides and isolates of interest. 

Addition of an AOX inhibitor may not affect EC50 values of a certain fungicide but alter that of 

another, as found in the case of unaffected azoxystrobin EC50 values but altered pyraclostrobin  
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Figure 2.10. Correlation plots of log10EC50 values derived from the solid and liquid 

medium assays for each of three fungicides tested. If the regression showed a 

significant improvement over a slope of 0, the regression equation and R2 value are 

shown. A, azoxystrobin; B, pyraclostrobin; C, trifloxystrobin. 

EC50 values when testing Guignardia citricarpa with the addition of SHAM (Hincapie et al. 

2014). Isolates of Alternaria alternata were differentially affected by SHAM (Vega et al. 2012). 

The five isolates of R. solani AG 1-IA were not differentially affected by AOX inhibitors in this 

study, but other isolates may have different responses. AOX inhibitors were not suitable for 

use in R. solani AG 1-IA in vitro strobilurin sensitivity assays because of confirmed toxicity.  

The correlation of solid medium strobilurin sensitivity assay results with liquid 

medium results exhibited variability among the three fungicides evaluated. The azoxystrobin 

log10EC50 values were highly correlated between both assays (R2 = 0.76), indicating the liquid 

medium assay is a suitable replacement for the more time- and resource-intensive solid 

A B 

C 
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medium assay. Correlations as high as R2 = 0.962 (Rampersad 2011) and 0.9943 (Cox et al. 2009) 

were found between growth inhibition of solid and liquid medium assays using resazurin dye, 

though EC50 value correlations were not reported. Media preparation for the solid medium 

assay reported herein requires five work days, while liquid medium requires only two. Using 

the liquid assay, 24 isolates were evaluated in triplicate at once, across three fungicides. 

Comparatively, 40 isolates in duplicate for only one fungicide at a time could be evaluated 

using the traditional solid medium assay. Digital measurement of the solid medium 

photographs can take a week or more, while the liquid medium data is ready for regression 

analysis immediately. 

An interchangeable relationship was less supported for the two methods in 

pyraclostrobin and trifloxystrobin trials because the liquid assay log10EC50 values were not 

strongly related to the solid medium log10EC50 values for these two fungicides. The strength of 

correlation between liquid and solid assays varied among fungicides also for Verticillium 

dahliae (Rampersad 2011). Within the solid medium results presented herein, the 

pyraclostrobin values did not contain large differences, resulting in many intermediate 

sensitivity ratings, and the trifloxystrobin assay did not show a difference even between the 

sensitive and resistant control. This absence of distinct differences among isolates also held 

true in the liquid medium results and could help explain the lack of correlation between the 

solid and liquid medium assays. If there are no distinct differences among the isolates, the 

assays may fail to predict EC50 values accurately due to isolate similarities. However, the EC50 

value distributions for each fungicide were similar in both the solid and liquid medium assays, 

suggesting a similar trend in isolate population sensitivity regardless of assay type used. For 

this reason, if a 96-well plate reader is accessible, the liquid medium assay described herein 

can be used for high-throughput processing of R. solani samples for in vitro strobilurin 

sensitivity testing, especially if azoxystrobin is the fungicide of interest. The liquid medium 

assay also revealed a broader range of pyraclostrobin sensitivity, rivaling the range of the 

azoxystrobin sensitivity distribution, whereas the solid medium assay reported a restricted 

pyraclostrobin sensitivity range. This increased sensitiveness combined with the added depth 
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of information provided with the ability to identify multiple isolate sensitivity-types in one 

collection site make the liquid medium assay preferable for a more complete pathogen 

sensitivity picture. 

The nonlinear regression method used herein to determine EC50 values did not require 

growth parameters, such as colony diameter or light absorbance (in this study), to fall below 

half the unamended value. For example, if the colony diameter of the unamended PDA plate 

measured 100 mm, EC50 could still be determined if the diameters of the fungicide-amended 

plates ranged from 60 to 100 mm by evaluating the dose response curve. This method relies on 

growth plateaus at the lowest and highest fungicide concentrations tested rather than 

complete growth inhibition. In fact, the fungicides tested failed to completely inhibit mycelial 

growth at the concentrations tested as evidenced by non-zero growth parameters at the 

highest concentrations used (data not shown). This method of EC50 determination allows 

isolates from different sensitivity ranges to be tested using a relatively small range of fungicide 

concentrations. The protocol also allows more specific EC50 values to be assigned in the 

absence of reaching half the unamended growth parameter if growth plateaus are 

demonstrated. Azoxystrobin EC50 values were found to be 20 or > 30 μg ml-1 in four isolates of 

R. solani AG 3 (potato pathogen) using a solid medium assay (Djébali et al. 2014), which are 

about 30 fold or greater than the highest azoxystrobin EC50 value on solid medium of 0.6352 μg 

ml-1 presented herein. These high EC50 values could be partially attributed to the fungicides 

failing to reduce growth parameters by half. 

An EC50 of 0.008 μg azoxystrobin ml-1 on solid medium was reported for an R. solani 

isolate of unknown AG (Jin et al. 2009), which falls within the azoxystrobin EC50 values of the 

AG 1-IA isolates tested. Sugarbeet isolates of R. solani AG 2-2 were tested with a solid medium 

assay, and contrary to our results, pyraclostrobin was found to have the lowest EC50 value 

(means of 0.3 and 0.6 μg ml-1 for baseline and non-baseline isolates) and trifloxystrobin the 

highest (97.1 and 341.7 μg ml-1), with azoxystrobin falling between (4.8 and 296.0 μg ml-1) 

(Arabiat and Khan 2014). 
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The distribution of EC50 values across a sampled pathogen population can illustrate 

sensitivity shifts. For example, one instance of benomyl resistance was made apparent by field 

level management problems of eyespot disease of cereals and also by the increasingly bimodal 

distribution of numeric sensitivity ratings across isolates of Oculimacula yallundae and O. 

acuformis (Parnell et al. 2008). Methyl benzimidazole carbamates, such as benomyl, are single 

action site fungicides like strobilurins. This increases the risk of fungicide resistance 

development as pathogen populations quickly accumulate the necessary point mutations to 

avoid fungicide activity, manifesting as qualitative resistance. Fungal isolates that have 

developed qualitative resistance can have distinctly higher EC50 values than sensitive isolates, 

creating a bimodal distribution. The distribution of azoxystrobin responses was strongly 

bimodal. The azoxystrobin assays benefited from inclusion of a known field-resistant isolate, 

and thus the resulting sensitivity categories are reasonably reliable. While the field-level 

pyraclostrobin and trifloxystrobin sensitivity of our resistant control isolate is unknown, it can 

be inferred that resistance to pyraclostrobin is developing among the R. solani population in 

southwestern Louisiana due to the bimodal distribution of sensitivity responses and positive 

skew apparent in the liquid medium results. Accordingly, resistance to trifloxystrobin is not 

supported by these results due to the tightly clustered distribution.  

Cross-resistance, then, is more strongly supported between azoxystrobin and 

pyraclostrobin than between azoxystrobin and trifloxystrobin in this case. While cross-

resistance is often assumed for strobilurins, it is not always empirically supported. Isolates of 

Alternaria solani were shown to be resistant (could grow on solid media amended with 507 μg 

ml-1) to azoxystrobin, pyraclostrobin, and trifloxystrobin; resistant to azoxystrobin and 

trifloxystrobin but sensitive (could not grow on fungicide-amended solid media) to 

pyraclostrobin; or resistant to only azoxystrobin (Fairchild, Miles, and Wharton 2013). 

Trifloxystrobin could still manage Pyricularia grisea with the F129L mutation at the field level 

while azoxystrobin could not (Vincelli and Dixon 2002), and pyraclostrobin generally resulted 

in increased yield compared to azoxystrobin when applied to Pyrenophora teres populations on 

barley also known to exhibit the F129L cytochrome b mutation (Semar et al. 2007). These 
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results suggest that trifloxystrobin might still be viable on azoxystrobin-resistant isolates of R. 

solani on rice, but field testing is required to determine if this is the case.  

There are no publicly available mitochondrial genomes of R. solani AG 1-IA, and this 

makes rapid, inexpensive, genetic characterization of mitochondrial mutations difficult. 

Primers are being developed to amplify regions containing the codons for the 129, 137, and 

143th amino acids in the cytochrome b gene to determine the presence or absence of known 

strobilurin resistance mutations at these sites.  

A different molecular method was successfully used to confirm the identity of collected 

isolates. The described PCR procedure produced AG assignments in 100% agreement with the 

traditional anastomosis tester isolate method. This DNA procedure can be used to quickly 

check the identity of R. solani AG 1-IA isolates, especially among scientists that lack the 

technical expertise and tester isolates required by the traditional method. 

 Evidence is presented that there are isolates of R. solani resistant to azoxystrobin more 

than 40 km west, southwest, and south from the resistance origin. From this finding, it is 

concluded that the geographic distribution of azoxystrobin-resistant isolates is greater than 

previously known. Based on field results at the resistance origin, azoxystrobin applications 

will be highly ineffective for managing these resistant isolates. The mode of increased 

distribution is unknown. Resistant isolates could be disseminating to new fields via 

contaminated field equipment or crop debris, or resistance could be developing de novo. 

Genetic studies could address this question. It is also presently unknown if the azoxystrobin-

resistant isolates display any sort of fitness cost compared to sensitive isolates, or if resistant 

isolate proportions remain unchanged in the pathogen population after fungicide selection 

pressure is removed. 

There is also evidence of pyraclostrobin resistance in the tested population of R. solani 

as indicated by some significant EC50 differences among isolates in the solid medium assay and 

the bimodal and positively skewed EC50 distribution in the liquid medium assay. The low level 

of significant differences among isolate responses could be reevaluated if an isolate with field 
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resistance to pyraclostrobin could be included in the assays for comparison. Isolates with high 

pyraclostrobin EC50 values identified in this study could be potential candidate isolates. 

Strobilurin resistance among the R. solani population causing sheath blight on rice will 

continue to be a problem in southwestern Louisiana. Evidence supports possible cross 

resistance between two fungicides but not a third. The isolates and results described herein 

will serve as a baseline for testing sensitivity to strobilurins and other fungicides, allow 

continual monitoring of fungicide efficacy, and guide management decisions for sheath blight 

on rice in Louisiana. 
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CHAPTER 3. SUMMARY 

 In 1858, Julius Kühn gave the name Rhizoctonia solani to a plant pathogen causing 

disease on potatoes. Rhizoctonia means ‘death to roots’ and solani refers to the plant family that 

potatoes belong to. Today, a rice pathogen bearing the name Rhizoctonia solani causes damage 

to rice stems, leaves, and seeds via the disease sheath blight. Sheath blight is a major disease 

on rice grown in the southeastern United States causing grain loss annually. Many, if not most, 

rice fields have a history of this disease. The pathogen, Rhizoctonia solani AG 1-IA, has high 

overwintering ability as sclerotia and mycelia-infested crop debris. To reduce the damage 

caused by this disease, growers will typically apply a fungicide to their fields. An application 

of azoxystrobin is recommended for sheath blight management as reliable genetic resistance to 

sheath blight in the rice germplasm is presently lacking. 

 In 2011, the advent of fungicide resistance to azoxystrobin in Rhizoctonia solani AG 1-IA 

prompted fungicide sensitivity testing. A total of 162 R. solani isolates were collected from 40 

rice production fields in southwestern Louisiana to assess sensitivity to azoxystrobin and also 

to trifloxystrobin (also labeled for rice) and pyraclostrobin (labeled for soybeans - Rhizoctonia 

solani AG 1-IA can also cause aerial blight on soybeans, and rice and soybeans are often 

rotated).  

 Collected isolates were checked for proper identity using PCR, and stored on frozen rye 

seed. The use of alternative oxidase inhibitors was rejected due to toxicity. A fungicide-

amended solid medium assay was used to test one isolate from each of the 40 fields, and 

azoxystrobin resistance was clearly represented by large, significant differences between 

resistant and sensitive control isolates. Results for pyraclostrobin were less distinct, and even 

less differences among isolates were seen in trifloxystrobin sensitivities. 

 All 162 isolates were tested with a higher-throughput fungicide-amended liquid 

medium assay, which supported strong isolate differences in azoxystrobin responses. Strong 

significant differences were not found among isolate responses to pyraclostrobin or 

trifloxystrobin. However, the sensitivity distributions in both the solid and liquid medium 

assays indicate resistance to azoxystrobin and emerging resistance to pyraclostrobin among R. 
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solani in southwestern Louisiana. The liquid medium assay increased isolate throughput and 

provided insight into within-field sensitivity variation.  

 Azoxystrobin resistance was found in a greater geographic area than reported 

previously, and azoxystrobin management of sheath blight is predicted to be highly ineffective 

in these areas. Evidence for developing pyraclostrobin resistance was also demonstrated. 

Trifloxystrobin could potentially remain effective on azoxystrobin- or pyraclostrobin-resistant 

isolates of R. solani on rice. This information can be used to develop new fungicide rotations 

for rice disease management. 

 Continued monitoring and field-testing of pathogen populations will inform 

management recommendations for sheath blight in southwestern Louisiana. The isolates, 

information, and protocols recorded herein can serve as baselines and guides for future 

studies. 
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