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ABSTRACT 

Cercospora leaf blight (CLB) of soybean caused by Cercospora kikuchii is an important 

disease in Lousiana. Preliminary screening of foliar applications of the micronutrients Fe, 

Mn, Cu, Zn, B, Mo and Al, showed that Fe decreased CLB severity consistently. The 

objective of this work was to test the effects of commercial formulations of Fe, Manny 

Plex Fe and Fe EDTA (Brandt Consolidated, Springfield, IL) on leaf colonization by C. 

kikuchii, symptom development (blight and purple leaves), and yield. Four rates of 

Manny Plex Fe and four rates of Fe EDTA were applied to field plots at R5 growth stage. 

Leaf tissue analyses for microelements and qPCR were performed. Leaf blight and purple 

leaf symptom severity was assessed quantitatively, and yield was measured. Results 

showed there was a poor relationship between leaf colonization and symptoms (neither 

purple nor blight). Moreover, Fe concentration in leaves did not affect biomass of C. 

kikuchii. Severity of purple leaf symptoms increased as Fe concentration in leaves 

increased, but severity decreased as Fe concentrations surpassed 230 mg/kg of dry matter. 

Blight symptoms were suppressed as the Fe concentration in soybean leaves increased. 

There was no correlation between purple leaf and blight symptoms. There was a positive 

relationship between leaf concentrations of Fe and yield. Negative relationships between 

yield and Cercospora biomass and severity of blight and purple leaf symptoms were 

observed. 
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1. INTRODUCTION 

1.1. Soybeans Overview 

Soybean (Glycine max (L.) Merr.) was domesticated in northern China during 

1700-1100 B.C. (Sinclair et al. 1989). In 1765, an employee from the East India 

Company, Samuel Bowen, brought soybean from China via London to the United States 

(Sinclair et al. 1989). 

Nowadays, soybeans are grown in most parts of the world, especially Argentina, 

Brazil, China, and the United States, which has been the leading producer of soybean 

worldwide. In 2014, the U.S. planted over 34 million hectares of soybeans, with a total 

yield of 0.104 billion tonnes, which contributed $45 billion to the American economy 

(USDA, 2014). In Louisiana, soybean plays a crucial role in the economy. The state 

planted almost 0.5 million hectares in 2013, with a total yield of 1,465,172.043 tonnes, 

contributing nearly $775 million to the state's farm gate income (LSU AgCenter, 2013). 

1.2. Purple Seed Stain and Cercospora Leaf Blight  

First reported in Korea in 1921 (Suzuki, 1921), purple seed stain (PSS) was found 

to be caused by Cercospora kikuchii (Matsumoto & Tomoyasu) M. W. Gardner. 

Symptoms consisted of light to dark purple irregular blotches ranging from a tiny spot to 

the entire area of seed coat (Murakishi, 1951). PSS was first observed in the United 

States in 1924 (Gardner 1926), but now this disease has a worldwide distribution.  

Cercospora leaf blight (CLB) also is caused by C. kikuchii, the same pathogen 

that causes PSS (Walters, 1980). Symptoms of CLB begin to appear on upper leaves 

exposed to sunlight at the late stages of reproductive growth, usually after R5 (Walters, 
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1980). Leaves from the upper canopy show a leathery appearance and purple bronze 

color on the upper surface (Figure 1A). Chlorosis and blight of leaf tissue result in 

defoliation starting with the younger upper leaves (Figure 1B) (Walters, 1980). These 

symptoms are frequently mistaken for senescing defoliation, however, in the CLB-related 

defoliation, green leaves usually remain below the defoliated area (Sinclair, 1989).  

Previous publications (Walters, 1980) affirmed that the initial symptom of CLB is the 

bronzing of leaves and as the disease progresses the bronzing becomes blight. These 

symptoms appear during late reproductive stages, and all plants in a field may show 

symptoms simultaneously. However, in previous studies fungal biomass of C. kikuchii 

was detected by real time PCR in soybean leaf tissue during R2 and R3 growth stages 

(Chanda, 2014). 

 
Figure 1. A) Soybean leaves showing the purple CLB symptom. B) Soybean blighted leaf 

symptom. 
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Orth first reported latent infection (1992). It begins with fungal penetration of the 

epidermal cells followed by colonization of surrounding cells. Further work reported that 

latent infecting hyphae resumed growth followed by leaf drop and senescence and death 

of host tissue, which may contribute to inoculum load. These findings suggested that 

soybean plants are infected at early growth stages, but symptom expression is triggered 

during late reproductive growth stages.     

The optimum environmental conditions for infection of soybean by C. kikuchii are 

20 to 30
o
C and 8 to 24h of leaf wetness (Martin, 1982; Walters, 1980; Boyette, 1985; 

Schuh, 1991). Conidia of C. kikuchii germinate, and hyphae enter through stomata 

without forming appressoria; however, direct penetration of the cuticle following the 

formation of appressoria also has been observed (Fugita, 1990). Infection of young 

developing pods and seed coats were reported (Roy, 1976; Fugita, 1990; Velicheti, 1992), 

but infection of flowers is not known (Kilpatrick, 1956; Roy, 1976),  

Once infected, germination and emergence of soybean seeds are reduced (Yeh, 

1982). Germination of infected seeds can range from 0 to 49%, while seedling emergence 

may be reduced by 0 to 15% (Murakishi, 1951; Sherwin, 1952; Wilcox, 1973; Roy, 1976; 

Chen, 1979; Hepperly, 1981; Yeh, 1982). Moreover, C. kikuchii was isolated from 87 to 

99% of PSS and 3 to 11% of symptomless seeds. (Murakishi, 1951; Wilcox, 1973; 

Imazaki, 2007). 
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1.3. Importance of Purple Seed Stain and Cercospora Leaf Blight 

Cercospora kikuchii can cause significant losses in soybean fields (Wrather, 

1997). In 1994, this fungus reduced soybean yield by 930,000 metric tons in Brazil and 

74,800 metric tons in the U.S. In total, CLB/PPS reduced yield by 1,087,000 tonnes in 

the top 10 soybean producing countries during 1994 (Wrather, 1997). Among all soybean 

diseases studied by Wrather (1997) in the U.S., CLB/PPS was ranked as 11
th

 most 

important disease in 1994.     

In 1996, CLB/PPS was ranked as fifth most important disease; which caused an 

estimated 23% yield losses in the U.S. (Wrather, 2009). However, in 1999 the disease 

began to increase in severity and incidence in the Mid-South of the U.S., especially in 

Louisiana (Moore, 2000). In 2006, CLB/PPS were the most serious diseases in 

Mississippi, Texas, and Louisiana, especially (Wrather, 2009). 

The proportion of soybean cultivars that are susceptible to these diseases in the 

field increased from 1999 to 2005 (Moore, 2000; Schneider, 2003; Levy, 2013). During 

the 1999 growing season, only a small proportion of the cultivars were susceptible 

(Moore, 2000). In contrast, 59 of 62 cultivars were susceptible in 2002 (Schneider, 2003), 

and in 2005, all 285 entries were identified as susceptible to PSS and CLB (unpublished). 

Recently, no cultivars were found to be resistant in Louisiana (Levy, 2013).  

Since CLB became a serious issue in the Mid-South, investigators have been 

trying to determine the cause for increased disease severity.  Some suggested that 

Louisiana had more damaging strains of the pathogen, and unlike other fungal diseases, 

fungicides had not been as effective in controlling CLB/PPS (Schultz, 2006). Studies 
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conducted by Cai and Schneider in 2008 found that the population of C. kikuchii in 

Louisiana was dominated by a new lineage; however, this new lineage was found to be 

less aggressive (Cai, 2008; Cai, 2009).  

Since there are currently no CLB and PSS resistant cultivars, disease management 

is based on the use of fungicides such as benzimidazoles, strobilurins, and triazoles 

(Ferrin, 2013). Although these fungicides are efficient in suppressing disease 

development, Cercospora species and many other fungi can become resistant to these 

fungicides. Several examples of resistance by Cercospora species can be found in the 

literature (Table 1). These findings provide emphatic reasons for seeking alternative 

disease management strategies.  

1.4. Cercosporin: A Phytotoxin Produced by Cercospora spp. 

Cercosporin is a photoactivated toxin, which means light is required to activate its 

toxic moiety (Daub and Briggs, 1983). This compound absorbs light, and it is converted 

to an energetically activated triplet state that reacts with oxygen to produce toxic, reactive 

oxygen species (ROS) such as singlet oxygen (
1
O2), hydrogen peroxide (H2O2) and 

superoxide (O2
-
) (Daub and Briggs, 1983). These ROS are involved in peroxidation of 

membrane lipids causing membrane breakdown and death of the cells (Daub and Briggs, 

1983). Daub hypothesized that membrane damage allows for leakage of nutrients into the 

leaf intercellular spaces allowing for fungal growth and sporulation (Daub and Chung, 

2007). Through selection of genes that are highly induced by light, the first gene, 

CFP (cercosporin facilitator protein), was identified (Callahan, 1999). 
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Table 1. Cercospora species resistant to different fungicides. 

Pathogen 
Common 

name 
Crop 

Fungicide Group 

Name 
Reference 

Cercospora sojina 
Frogeye leaf 

spot 
Soybean Strobilurins Zhang, 2011 

Cercospora 

beticola 

Sugar beet 

leaf spot 

Sugar 

beet 
DMI fungicides 

Karaoglanidis , 

2000; Secor, 

2010; Kirk, 

2012 

Cercospora 

kikuchii 

Cercospora 

leaf blight 

and purple 

seed stain 

Soybean Thiophanatemethyl 
Sakai, 1999; 

Imazaki, 2006 

Cercospora apii Early blight Celery 

Methyl 

Benzimidazole 

Carbamates 

Berger, 1973 

Cercospora 

arachidicola 
Leaf spot Peanut 

Methyl 

Benzimidazole 

Carbamates 

Clark, 1974; 

Littrell, 1974 

Cercospora 

beticola 
Leaf spot 

Sugar 

Beet 

Methyl 

Benzimidazole 

Carbamates 

Georgopoulos, 

1973 

Cercospora 

musae/ 

Mycosphaerella 

musicola 

Leaf spot Banana 

Methyl 

Benzimidazole 

Carbamates 

Joya, 1982 

Cercospora sojina 
Frogeye leaf 

spot 
Soybean QoI fungicides FRAC 2011 
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This bright red, purplish toxin was first isolated and purified in 1957 (Kuyama, 

1957), and it plays a major role in pathogenicity, symptom expression, colonization of 

seed coats, and virulence (Kilpatrick and Johnson, 1956; Ilyas, 1975; Fajola 1978; 

Upchurch, 1991; Velichetti, 1994).  

Photoactivated perylenequinones are produced by a number of important fungal 

plant pathogens other than Cercospora, such as species of Alternaria, Cladosporium, 

Elsinoe, and Hypocrella, among others. Red toxins are produced by these pathogens, and 

they share a similar structure (Daub, 2007). 

The production and activity of cercosporin and many toxins are affected by 

several environmental and physiological factors, such as temperature, light and 

nutritional factors (You, 2008). Toxin synthesis may also be influenced by metal ions. 

Trace amounts of copper and manganese enhance phytotoxicity of toxins in filtrates of 

cultures of Fusicoccum amygdali, while cobalt and iron decrease toxicity. Fusarium 

solani requires traces of Zn and Mg for producing pigments in media (Wood, 1972). 

Several nonselective toxins, such as stemphyloxins, marasmins, naphtharazins, fusaric 

acid, and ascochitine, also have chelating proprieties. Iron also can affect their activity 

and biosynthesis (Barash, 1986; cited by Barton, 1993).  

1.5. Plant Nutrition and Disease Development 

In addition to affecting plant growth and development, a balanced mineral 

nutrition is essential for plant defense to pathogens and abiotic stresses (Datnoff et al, 

2007). However, in many cases the level of micronutrients necessary for suppressing 

disease may be greater than what is normally required by the plant (Elmer and Datnoff, 
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2014). This suggests that an extra dose of micronutrients may be required to reach a 

desirable management of plant diseases. The adequate levels of micronutrients necessary 

for plant growth and development are presented in Table 2. 

Table 2. Average concentrations of mineral elements in plant dry matter necessary for 

adequate growth according to Kirkby (2012). 

Element 
Chemical 

symbol 
mg/kg 

Molybdenum  Mo 0.1 

Nickel  Ni 0.1 

Copper  Cu 6 

Zinc  Zn 20 

Manganese  Mn 50 

Iron  Fe 100 

Boron  B 20 

Chlorine  Cl 100 

 

Some mineral nutrients can be absorbed not just by roots but also by leaves (Taiz, 

2010). Foliar application reduces the lag time between application and the plant uptake. 

This is especially important during the phase of rapid plant growth and if the plant is 

threatened by a pathogen. In addition, mineral nutrients (mostly metals) can easily be 

adsorbed by soil particles, and hence they will be less available for plant uptake (Taiz, 

2010).  

The mechanism by which micronutrients suppress disease development is very 

specific to the micronutrient/host/pathogen system. In order to protect the plant against a 

pathogen, micronutrients need to meet at least one of the following conditions described 

by Poschenrieder and his colleagues (2006): 
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 The micronutrient needs to be more toxic to the pathogen than to the plant; 

 The micronutrient needs to increase the resistance of the plant against the 

pathogen; 

 The micronutrient needs to hamper the growth and/or the virulence of the 

pathogen. 

One of the mechanisms by which micronutrients mediate plant resistance is by 

binding to the plant cell wall thus creating a barrier against the pathogen (Ghanmi, 2004). 

In addition, phenylpropanoids, known to have antimicrobial activity or to reduce 

pathogen growth and development, can also be trigged by some nutrients. Flavonoid and 

isoflavonoid concentrations increased in roots and root exudates in lupin (Lupinus albus 

L.) grown in low nitrogen (a macronutrient) (Graham, 1991; Wojtaszek, 1993), whereas 

low iron levels can cause increased release of phenolic acids, presumably to help 

solubilize metals and thereby facilitate their uptake (Marshner, 1991). Production of 

enzymes, such as superoxide dismutase (SOD) involved in ROS detoxification, also are 

induced by micronutrients. In addition to plant defense to oxidative stress, Cu and Zn are 

important for SOD as a virulence factor in necrotrophic fungal pathogens, (Rolke, 2004; 

Babitha, 2002). Micronutrients, such as Fe, Cu and Zn, also can be the center of 

competition between microorganisms in plants as well as between a pathogen and its 

host. Siderophores are efficient Fe chelators produced by several of microorganisms in 

order to supply themselves with Fe from other microorganisms or from the plant host 

(Dellagi, 2005).  
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The most traditional micronutrient with fungistatic effect is Cu (Poschenrieder, 2006). 

Copper sulfate inhibits growth and development of many plant pathogens, and it has been 

used since the 19
th

 century in order to prevent infections in vineyards (Poschenrieder, 

2006). Seebold (2001) demonstrated that silicon appears to delay incubation and latent 

periods of Magnaporthe grisea, the causal agent of blast in rice.  

Signal transduction pathways of biotic stress very often overlap with micronutrient 

stress signaling (Glazebrook, 2005). Jasmonate and ethylene are involved in signaling 

induced by necrotrophic pathogens and the micronutrient Cd (Glazebrook, 2005; 

Maksymiec, 2005). Micronutrient overload and biotic stress seem to share the same 

signaling molecules. Reduced glutathione, for example, appears to be the key factor for 

overload micronutrient stress tolerance and pathogen resistance (Freeman, 2005). Clearly, 

a number of plant nutrients play an important role in suppressing plant disease. 
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2. OBJECTIVES 

The main goal of this project was to develop a deeper understating of the effect 

of micronutrients on CLB, a devastating disease in soybeans, and to provide Louisiana 

soybean farmers an alternative methodology for CLB management.  

Objective 1 - Screen selected micronutrients for managing CLB under field conditions.  

Objective 2 - Select the best micronutrient that suppressed CLB for a more detailed 

study regarding its effect on CLB symptoms, C. kikuchii leaf colonization, and yield 

improvement. 
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3. MATERIALS AND METHODS 

3.1. Experimental Design 

Field experiments were performed at the Louisiana State University AgCenter 

Dean Lee Research Station during the 2013 growing season. The soybean cultivar 

Pioneer 95Y61 (late group V) was planted on June 11. Plots were three rows wide, 6.0 

meters long, and planted on 0.96-meter centers. The experimental design was a 

randomized complete block with four replications. The middle row of each experimental 

unit was harvested to assess yield losses.   

3.2. Screening of Selected Micronutrients to Manage CLB in the Field 

Seven micronutrients were used in this research: Fe, Mn, Cu, Zn, B, Mo and Al. 

These were selected based on previous research which used those nutrients in reagent 

grade form (data not published). Two commercial formulations (Brandt EDTA and 

Brandt Manni-Plex) from Brandt Consolidated Inc., Springfield, IL for foliar application 

were selected for each of the micronutrients (Table 3). Micronutrient solutions were 

applied with a 10-boom sprayer (R & D Sprayers, Opelousas, Louisiana) at R5 growth 

stage. 

Rates of application were calculated based upon the label recommendation. Doses 

above the recommended rates were used to test the effect of high concentrations of 

micronutrients on CLB severity. The treatments, label recommendations and rates are 

listed in Table 3.  

Four controls were used for this experiment. The EDTA control was formulated 

using 30.76% w/w of disodium EDTA and 69.24% w/w of water. The solution was 
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vigorously stirred and corrected to pH 8.0 using 5M KOH. The Manni-Plex and adjuvant 

controls were formulated by Brandt Consolidated Inc. for use in this research. Distilled 

water was used for the control “None”. 

Iron, one of the best micronutrients that suppressed CLB symptoms, was chosen 

for a comprehensive study regarding leaf colonization by C. kikuchii, symptom 

development and yield. The rates of iron applied using Brandt EDTA Fe were 52.54, 

105.08, 157.61 and 210.15 g/ha and Brandt Manni-Plex Fe formulations provided the 

following iron rates: 233.27, 350.25, 466.53 and 483.51 g/ha as shown on the Table 4. 

These values were chosen based upon the recommended label rates for each formulation.   

3.3. Tissue Analysis 

Ten middle leaflets from the third node from the top were collected in the middle 

row of each experimental unit 10 days after application. The leaflets were washed with a 

solution of 0.1M HCl and 0.5 ml of Liquinox
TM

 (Alconox, Inc. White Planes, NY), 

according to Wallace (1993). After washing, leaflets were placed in paper bags (Duro 

Grocery paper bag, 6#, model # 80983) and dried at 60°C for two days. The dried leaflets 

were then ground to a powder using a coffee grinder (Mr. Coffee, model IDS77) and 

stored in a paper envelope (Quality Park Products, #50162, Minneapolis, MN) in a sealed 

Ziploc
®
 quart freezer bag (S.C. Johnson & Son, Inc., Racine, Wisconsin). 

 

 

 

 



14 

 

Table 3. Micronutrient treatments used in the field trials to assess activity against 

Cercospora leaf blight on soybean. 

Chemical Label 

recommendation 

(L) 

Product rate 

(L/ha) 

Plot rate 

(ml/3L) 

Treatment 

code 

Brandt EDTA Fe 0.473- 0.946 1.169 18.45 EFe1 

2.338 36.9 EFe2 

3.508 55.35 EFe3 

4.677 73.8 EFe4 

Brandt EDTA Mn 0.946- 1.892 4.677 73.8 EMn1 

9.354 147.6 EMn2 

Brandt EDTA Cu 0.473 – 0.946 1.169 18.45 ECu1 

2.338 36.9 ECu2 

Brandt EDTA Zn 0.473 – 0.946 1.169 18.45 EZn1 

2.338 36.9 EZn2 

N-Boron 0.946  - 1.892 2.338 36.9 NB1 

4.677 73.8 NB2 

7.015 110.7 NB3 

9.354 147.6 NB4 

Manni-Plex Fe 0.946  - 1.892 4.677 73.8 MFe1 

7.015 110.7 MFe2 

9.354 147.6 MFe3 

11.692 184.5 MFe4 

Manni-Plex B 

Moly 

0.473 – 0.946 1.169 18.45 MBMo1 

2.338 36.9 MBMo2 

3.508 55.35 MBMo3 

4.677 73.8 MBMo4 

Manni-Plex Moly 0.946  - 1.892 2.338 36.9 MMo1 

4.677 73.8 MMo2 

Manni-Plex Mn 0.946  - 1.892 2.338 36.9 MMn1 

7.015 110.7 MMn2 

Manni-Plex Zn 0.946  - 1.892 2.338 36.9 MZn1 

4.677 73.8 MZn2 

Hydriclear Al x x 20.4g/3L HCAl1 

x x 61.1g/3L HCAl2 

Control EDTA x x 36.9 EC 

Control Manni-

Plex 

x 4.677 73.8 MC 

Control Adjuvant x 4.677 73.8 AC 

Control None x x x C 
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Table 4. Commercial Fe formulations and rates of application used in field trials for 

activity against Cercospora leaf blight of soybeans. 

Chemical Name Treatment Code Fe (g/ha) 

Brandt EDTA Fe EFe1 52.54 

EFe2 105.08 

EFe3 157.61 

EFe4 210.15 

Manni-Plex Fe MFe1 233.27 

MFe2 350.25 

MFe3 466.53 

MFe4 583.51 

Control EDTA EC - 

Control MC - 

Manni-Plex 

Control None C - 

  

Tissue digestion for multi-element analysis was done using the nitric acid - 

hydrogen peroxide method described by the US Environmental Protection Agency 

(USEPA method 3050B) (USEPA, 1996). Briefly, 0.5g of tissue was weighed and placed 

in a digestion tube with 5.0 ml of concentrated reagent grade HNO3 (assay 67-70%) for 

50 minutes. The samples were vortexed for five seconds and then placed in the digestion 

block at 152-155°C for five minutes to initiate vigorous boiling. The tubes were cooled 

for 10 minutes, and 3.0 ml of H2O2 (30% reagent grade) was added. The tubes were then 

covered with a small glass funnel and placed in a digestion block for two hours and 45 

minutes. After digestion, the samples were transferred to 15 ml centrifuge tubes, and the 

solution was brought to 12.5 ml using distilled water.  Samples were analyzed using 
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inductively coupled plasma-optical spectroscopy at the Soil Testing & Plant Analysis 

Laboratory in the School of Plant Environment and Soil Science, Louisiana State 

University Agricultural Center. 

3.4. Real Time PCR 

Ten days after treatments were applied; ten middle leaflets from the third node 

from the top of plants in the middle row were collected and kept on ice until frozen with 

liquid nitrogen. The leaves were stored at -80°C, ground to a powder using mortar and 

pestle, and then stored again at -80°C until qPCR was performed. The qPCR procedure 

was done as described by Chanda and his colleagues (2014) to verify leaf colonization by 

C. kikuchii.  

3.5. Disease Assessment 

Disease severity was accessed using quantitative disease severity assessments for 

purple and blighted leaves based on the template shown in Figure 2. Only the leaves of 

the upper canopy, exposed to the sun, were considered in the assessment.  



17 

 

 
Figure 2. Cercospora leaf blight rating scale (percentage of leaf area affected) used to rate 

disease severity in all field experiments. The percentage of leaf area affected was 

calculated using ASSESS (APS Press, 2002), an image analysis for plant disease 

quantification. 
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4. RESULTS  

4.1. Screening of Selected Micronutrients to Manage Cercospora Leaf Blight in 

Field Experiments 

The first step of this research was to screen selected micronutrients that might 

reduce CLB symptoms under field conditions. Results showed that the highest rate of 

iron applied using the Manni-Plex formulation (MFe4) suppressed both purple and blight 

symptoms as compared to the controls (Figures 3 and 4, respectively). Because of these 

findings, iron was chosen for further investigations. 

4.2. Tissue Analysis: Iron Accumulation in Soybean Leaves 

Results from tissue analyses showed that the highest rates of Manni-Plex 

formulations (MFe3 and MFe4) were sufficient to significantly increase the concentration 

of iron in leaves compared to the control (Figure 5). The EDTA formulations (EFe1, 

EFe2, EFe3, EFe4) did not significantly increase iron concentrations in the leaves.  
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Figure 3. Effect of micronutrients on the severity of purple leaf symptoms caused by Cercospora kikuchii in soybean. Bars indicate 

standard error between four replications. 

 

      



20 

 

 
 

 

 

 

 

 
 

 

 

Figure 4. Effect of micronutrients on the severity of blight symptoms caused by Cercospora kikuchii in soybean. Bars indicate 

standard error between four replications.
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Figure 5. Iron concentrations in soybean leaves (mg/kg dry matter) as affected by foliar 

application of commercial formulations of two iron products. Means followed by the 

same letter are not significantly different (P=0.10). LSD0.1= 58.8; LSD0.05= 70.8 

 

4.3. Effect of Iron Concentration in Soybean Leaves on Severity of Cercospora Leaf 

Blight 

There were two patterns of disease suppression for each of the symptoms 

assessed. Severity of purple leaf discoloration initially increased as the Fe concentration 

in leaves increased, but severity declined as the concentration of iron exceeded values 

above 230 mg/kg dry matter (Figure 6). The highest disease severity assessed was 10% of 

leaf affected when iron concentration was about 230 mg/kg dry matter. However, iron 

concentrations above the threshold of 230 mg/kg dry matter suppressed blight symptoms 

(Figure 6).  
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Figure 6. Relationship between severity of purple leaf symptoms (percentage of leaf area 

affected), and iron concentration in leaves (mg/kg dry matter). Bars indicate standard 

error between four replications. 

  

Blight symptoms responded differently from purple symptoms in response to 

foliar iron applications. Blight symptoms were significantly suppressed as iron 

concentrations in leaves increased (Figure 7). The highest concentration of iron, about 

350 mg/kg dry matter, completely suppressed blight symptoms. This significant negative 

correlation (R
2
= 0.761) clearly showed that relatively high levels of iron in leaves 

suppressed blight symptoms under field conditions.  
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Figure 7. Relationship between severity of blight leaf symptoms (percentage of leaf area 

affected), and iron concentration in leaves (mg/kg dry matter). Bars indicate standard 

error between four replications. 

  

Visually, soybean plants that received 483.51g Fe/ha (Figure 8B) looked 

considerably more robust and healthy as compared to the control (Figure 8A). The 

controls also had higher levels of defoliation as compared to the best treatment (MFe4) 

(Figure 8A and 8B).  

 
Figure 8. Photograph of soybean plants nontreated (A), and treated with MFe4. 

Nontreated plants showed blight and purple symptoms and were heavily defoliated. 
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The correlation between the two types of disease symptoms was investigated. The 

coefficient of determination (R
2
) between purple leaf and blight symptoms was 0.063, 

meaning that purple and blight are not correlated (Figure 9). 

Figure 9. Bubble chart showing the relationship between purple and blight symptoms 

caused in soybean by Cercospora kikuchii. The size of each bubble reflects the number of 

times each assessment rating was recorded. 

 

4.4. Biomass of Cercospora kikuchii in Soybean Leaves as Related to Leaf Iron 

Concentration and Severity of Cercospora Leaf Blight 

Biomass of C. kikuchii, as assessed by qPCR analyses, had a poor relationship 

(R
2
=0.167) with leaf iron content (Figure 10). This relationship suggests that Fe probably 

did not play a direct role on the growth of C. kikuchii in soybean leaf tissue.  
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Figure 10. Relationship between biomass of Cercospora kikuchii, as assessed by qPCR 

analysis of fungal DNA, and iron concentration in soybean leaves (mg/kg dry matter). 

Bars indicate standard error between four replications. 

 

4.5. Coefficient of Determination (R
2
) Between Biomass of C. kikuchii in Soybean 

Leaves and Severity of Purple Leaf and Blight Symptoms. 

The coefficient of determination (R
2
) between biomass of C. kikuchii in soybean 

leaves and severity of purple leaf and blight symptoms were 0.109 and 0.008 respectively 

(Figures 11 and 12). For both symptoms, soybean plants were observed and recorded as 

not being infected, but DNA of C. kikuchii was detected by qPCR analyses in the leaves 

of these plants. 
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Figure 11. Relationship of purple symptom severity (% leaf area affected) in soybean 

caused by Cercospora kikuchii compared to biomass of the pathogen in leaves. 

 

 
Figure 12. Relationship of blight symptom severity (% leaf area affected) in soybean 

caused by Cercospora kikuchii compared to biomass of the pathogen in leaves. 
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4.6. Effect of Severity of CLB and Biomass of Cercospora kikuchii in Leaves on 

Soybean Yield 

Purple symptoms in soybean leaves played a significant role in affecting yield 

(Figure 13). The negative linear model coefficient of determination was significant 

(R
2
=0.671) for this symptom and yield. Up to 21% of the yield was reduced (P<0.05) 

when the symptom of leaf purpling reached 5% (Figure 13). A similar significant 

relationship was observed for yield and blight symptoms (R
2
=0.653) (Figure 14).      

Results from qPCR analysis showed that soybean yield decreased as the biomass of C. 

kikuchii increased (R
2
=0.405) (Figure 15).           

Figure 13. Relationship between yield (tonnes/ha) and % purple leaf severity caused in 

soybean caused by Cercospora kikuchii. Bars indicate standard error between four 

replications. 
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Figure 14. Relationship between yield (tonnes/ha) and % of blight leaf symptoms in 

soybean caused by Cercospora kikuchii. Bars indicates standard error between four 

replications. 

 

 

 
Figure 15. Relationship of yield (tonnes/ha) and biomass of Cercospora kikuchii in 

soybean in leaves. Bars indicate standard error between four replications. 
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4.7. Effect of Iron Concentration in Soybean Leaves on Yield  

A positive relationship between iron concentration in leaves and soybean yield 

(Figure 16) clearly demonstrate the importance of this micronutrient not just to suppress 

disease, but to increase yield. The highest rate of Fe measured in leaves increased yield 

by 21% regardless of CLB severity and fungal biomass.  

Figure 16. Relationship between soybean yield (tonnes/ha) and iron concentration in 

soybean leaves. Bars indicate standard error between four replications. 
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5. DISCUSSION 

The field trial in which micronutrients were evaluated showed consistently that 

the highest rate of the iron-based formulation, Brandt Manni-Plex Fe (11.692 L/ha) 

significantly increased Fe concentration in soybean leaves as well as suppressed purple 

and blight symptoms of CLB. Fe-mediated CLB suppression also was documented using 

reagent grade iron compounds applied in field trials in 2012 and 2013 (data not 

published). Brandt EDTA Fe formulation did not perform was well as Manni-Plex 

considering the rates used in this experiment. Further experiments using higher rates of 

the EDTA formulation were performed during 2014 growing season. Results from this 

test confirmed the findings from 2013. 

Tissue analyses showed that plants treated with the lowest rate of Brandt Manni-

Plex Fe (MFe1, 233.27 g/ha) had the same level of Fe concentration in leaves 

(approximately 135 mg/kg of dry matter) as the control. On the other hand, the plants 

treated with MFe3 and MFe4 (466.53 g Fe/ha and 483.51 g/ha respectively) had similar 

foliar Fe concentrations, approximately 340 mg/kg dry matter. The concentration of Fe in 

plants may depend on a number of factors, including plant species, plant health, soil type 

and environmental conditions. Fe concentrations in plants also differ in different organs. 

In general, adequate tissue levels of Fe for growth and development required by plants 

such as soybeans is 100 mg/kg of dry matter (Taiz, 2010).  

Purple and blight symptoms of CLB responded differently to the Fe treatments. 

Under high levels of Fe (about 350 mg/kg of dry matter), both symptoms were 

suppressed considerably. However, purple symptoms increased when Fe concentration 
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was 230 mg/kg of dry matter. It is possible to hypothesize that this Fe concentration is 

optimum for growth of C. kikuchii or for virulence. However, concentrations below 230 

mg/kg of dry matter did not reduce biomass of C. kikuchii in leaves.  

There was a significant negative relationship between blight symptoms and Fe 

concentration in soybean leaves, and blight was completely suppressed at an Fe 

concentration of 350 mg/kg of dry matter. Since qPCR results showed that biomass of C. 

kikuchii was not affected by Fe concentration, perhaps Fe interferes with pathogen 

virulence, and the Fe concentration must be relatively high in order to maintain the 

pathogen in its endophytic state. This hypothesis is supported by the fact that biomass of 

C. kikuchii was relatively high even though there were no symptoms. This confirmed the 

result from other studies that showed that C. kikuchii was detected in soybean plants 

during early vegetative growth stages and that the pathogen has an extended latent phase, 

which may be characterized as an endophytic association (Chanda, et al., 2014). This 

suggested that C. kikuchii infects soybean plants early, but the production of elicitors and 

virulence factors by the fungus occurs after the plant reaches reproductive growth stages.  

The lack of correlation between purple and blight symptoms does not support the 

commonly held assumption that blight symptoms are a more severe stage of purple 

symptoms. These findings suggested that these symptoms may be reflective of different 

diseases or that the purple symptom is a plant defensive reaction and blight is a true CLB 

symptom. Although evidence for the former hypothesis is not presented herein, this 

finding has important consequences for management of CLB if confirmed. This 

hypothesis will be explored in further studies.  
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The plant defense hypothesis was formulated based on the knowledge that plants 

produce purple pigments in response to oxidative stress (Hahlbrock, 1981; Beggs, 1985; 

Li, 1993; Lois, 1994). This purpling is usually associated with anthocyanins, purple/red 

flavonoids, which protect plants against oxidative stresses (Li, 1993). Colorless 

flavonoids and other phenolics may also be involved. 

Recent work done by Rodríguez-Celma and his colleagues (2013) showed that 

synthesis of phenylpropanoids is tightly linked to regulation of other genes encoding 

proteins involved in Fe uptake. Reactive Fe
3+

, but not Fe
2+

, is deposited at the cell wall 

where it accumulates and mediates the oxidative burst in wheat leaves inoculated with 

Blumeria graminis f. sp. tritici. The secretion of Fe
3+

 from inside to outside of the cell 

leads to intracellular iron depletion, which promotes the transcription of pathogenesis-

related genes in concert with H2O2 (Liu, 2007).  Bitan and his colleagues (1988), cited by 

Barton (1993), found that Fe deficiency, as well as infection by Verticillium dahlia, 

induced production of phytoalexins in peanuts. Medicarpin, a phytoalexin, was 18.6, 23.8 

and 43.4 times higher in Fe-deficient healthy, Fe-sufficient infected, and iron-deficient 

infected peanuts, respectively, in comparison to the healthy control. Considering that 

pathogen infection by itself triggers production of ROS, and cercosporin also induces 

ROS production in plants (Daub, 1983), Fe may play a significant role in reducing CLB 

severity in soybeans. This brief review supports the hypothesis that the purple leaf 

symptoms may be a plant reaction to oxidative stress, and based on our results, 230 

mg/kg dry matter of Fe may be an optimum concentration for plants to produce these 

defense compounds.  



33 

 

Fe is also either a component or induces the production of several antioxidant 

enzymes that help the plant to scavenge ROS. Fe, for example, is a component of 

superoxide dismutase (SOD), which constitutes the first line of defense against ROS. 

Since phospholipids in membranes are impermeable to O2
-
 molecules, SODs are 

responsible for the removal of O2
-
 in the compartments where O2

-
 is produced, and in the 

process, produces H2O2 (Alscher, 2002).  In the absence of ferritin (proteins that 

accommodate several thousand Fe atoms in their central cavity), Arabidopsis plants had 

higher levels of ROS (Ravet, 2009). Catalase and ascorbate peroxidase also are more 

active in tomato plants exposed to high concentration of Fe (Dasgan, 2003), and bean 

roots had peroxidase activity strongly depressed under Fe-deficient media (Sijmons, 

1985). These two enzymes help to detoxify H2O2 by producing water and oxygen. 

As mentioned in the introduction, Fe can bind to some fungal toxins and reduce 

their toxicity. Cercospora beticola was reported to produce a yellow pigment that is able 

to form a stable complex with Fe
3+

,
 
and this toxin also induced necrotic lesions on sugar 

beet leaves similar to those caused by the pathogen (reported by Eckart Schlosser and 

published by Wood, 1972). Biosynthesis of several toxins also is affected by Fe 

concentrations (Barash, 1986; cited by Barton, 1993).  The cercosporin Fe-binding 

property and the effect of Fe on cercosporin production is not known, but if these 

hypothesis are confirmed in the future, it will be the first indication to suggest that 

cercosporin could be considered a siderophore.  

Moreover, it is well known that plants under Fe deficiency have low 

photosynthetic activity, but leaves absorb more light in each chlorophyll molecule than is 



34 

 

necessary for photosynthesis (Abadia, 1999). This increased light absorption results in a 

high risk of photooxidative damage in leaves exposed to high solar radiation. This plant 

damage maybe even worse in soybean plants infected with the cercosporin-producing 

fungal species C. kikuchii. This is another reason why Fe concentrations need to be high 

in soybean plants to avoid oxidative damage, and prevent yield reduction. 

Even though they were not correlated, purple and blight symptoms, as well as C. 

kikuchii biomass were associated with lower grain yields. This suggests that the 

physiological mechanism by which each disease reduces yield is different.  Results also 

showed that, regardless of the symptoms and fungal biomass, yield was greatly increased 

when Fe concentrations were high.  

Other Cercospora species have pathogenicity mechanisms similar to C. kikuchii. 

Results from this research may help to generate a general protocol to manage 

Cercospora diseases in other important crops such as banana, coffee, corn, grapes, 

peanut, rice, sugarcane and sweetpotato. 

These Fe recommendations also may be used by farmers in developing countries 

where proper plant heath management is limited because of economic constraints. While 

complete disease control may not be achieved, fungicide applications might be 

minimized, from several per season to just a single application. Moreover, 

recommendations for soybean producers that provide inexpensive and environmentally 

friendly protocols for managing CLB could be better developed.  
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