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ABSTRACT 

Mosaic is a viral disease of sugarcane caused primarily by Sorghum mosaic virus (SrMV) in 

Louisiana. Low mosaic incidence has resulted from successful breeding for resistance. However, 

mosaic was detected in breeding program experimental clones and a new cultivar, HoCP 09-

804.Therefore, multiple research approaches were undertaken to assess the current status of 

mosaic in Louisiana sugarcane and prevent it from re-emerging as an important problem. Field 

surveys conducted during 2016-2018 of breeding program yield trials and experimental clone 

seed-cane increases determined disease incidence and distribution. Mosaic was detected in three 

of five sugarcane production areas and incidence ranged from 0 to 10% in HoCP 09-804. 

Symptomatic and asymptomatic leaves were tested for SrMV with reverse transcription 

polymerase chain reaction (RT-PCR). All symptomatic leaves tested positive for SrMV 

confirming it is the current causal virus species. A low percentage of asymptomatic leaves 

(0.3%) tested positive for SrMV.  Runs analysis detected aggregation of infected plants in rows 

of surveyed fields. The geographic and within field distribution suggested the source of disease 

was infected seed-cane. Subsequent surveys of the same locations detected incidence increases 

and decreases in first ratoon, but incidence decreased for all in second ratoon. The results suggest 

high rates of disease increase due to aphid transmission are not occurring under current 

conditions. Recovery from mosaic was evaluated as the emergence of asymptomatic plants from 

symptomatic stalks. L 10-147 had a higher frequency of recovery (9.4-18.9%) than HoCP 09-804 

(0.9-2.3%) across two experiments. RT-PCR failed to detect SrMV in 83% of HoCP 09-804 and 

97% of L 10-147 of recovered plant samples. Comparison of asymptomatic and symptomatic 

stalk plantings found mosaic reduced yield in HoCP 09-804 but not L 10-147. Sources of 

susceptibility were evaluated in the basic and commercial parent populations by mechanical 
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inoculations. Mosaic susceptible parents were identified within both populations. The level of 

susceptibility within the basic parent population was low indicating it will continue to be a 

resource for continued introgression of mosaic resistance. The results will allow the elimination 

of sources of susceptibility and informed crossing to continue successful management of mosaic 

with host plant resistance.  
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CHAPTER I. LITERATURE REVIEW 

1.1. History of Mosaic Disease of Sugarcane 

Mosaic is one of the most widely distributed diseases of sugarcane (interspecific hybrids of 

Saccharum L.) (Abbott 1961b;  Grisham 2000). The disease was first described by 

Musschenbroek in 1892, calling it ‘gelestrepenziekte’ or the yellow stripe disease (Agnihotri 

1990). The term “mosaic” was not used until 1918 (Earle 1918). The exact origin of mosaic is 

unknown, but it was suggested that the virus likely originated from the same location as its host 

(Agnihotri 1990). The first Saccharum officinarum L. cultivars known as the “noble canes” 

originated from New Guinea where the disease is endemic, but the movement of seed-cane from 

Java (modern-day Indonesia) likely disseminated mosaic throughout the world before it was 

recognized as a disease (Agnihotri 1990). Dutch investigators at the time had erroneously 

concluded the disease to be a bud mutation, and other theories considered the symptoms to have 

genetic origins due to the inability of inoculation techniques at the time to transmit the disease 

(Abbott 1961b). Brandes (1919) first provided information on the disease’s viral nature 

comparing it to that of mosaic in tobacco and other crops, along with the first evidence of aphid 

transmission by Rhopalosiphum maidis (syn. Aphis maidis) (Brandes 1919, 1920). The desire for 

new cultivars brought the disease to the United States and other countries, and from 1916 to 

1925, outbreaks of mosaic were reported in Louisiana, Cuba, Puerto Rico, and Brazil  (Agnihotri 

1990). The Louisiana sugarcane industry nearly collapsed in the 1920s due to yield losses from 

mosaic in combination with Pythium root rot and red rot, a seed-cane rot caused by 

Colletotrichum falcatum, bringing attention to the need to breed for resistance (Koike and 

Gillaspie 1989). Replacing the noble cane cultivars, D 74, Louisiana Purple, and Louisiana 

Striped, with tolerant interspecific hybrids, POJ 36, POJ 213, and POJ 234, and then later 

resistant interspecific hybrids, Co 281 and Co 290, temporarily brought mosaic under control 
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(Koike and Gillaspie 1989).  Incidence of mosaic in Louisiana was low in the 1940s and early 

1950s due to destruction of heavily infected fields and rogueing to provide mosaic-free seed-

cane. However, mosaic incidence increased with the emergence of a new strain, H, and became 

widespread with the cultivation of two cultivars with tolerance to the virus, NCo 310 and CP 65-

357 (Koike and Gillaspie 1989). The breeding program initiated efforts to introgress resistance to 

mosaic  into the sugarcane germplasm through breeding new interspecific hybrids using wild 

relatives of sugarcane (Grisham et al. 1992). Saccharum spontaneum and Erianthus clones were 

identified to have the highest levels of resistance (Grisham et al. 1992), and the release of a 

series of cultivars with mosaic resistance reduced mosaic to very low incidence. However, 

mosaic symptomatic plants were observed in an advanced experimental clone being considered 

for release, HoCP 09-804, and other advanced experimental clones during 2016. The history of 

mosaic in Louisiana reveals how the disease continues to remain a potential threat through a 

continuous cycle of evolution in virus strains and replacement of resistant cultivars (Koike and 

Gillaspie 1989).  There was uncertainty as to whether the current mosaic outbreak was the result 

of another change in the virus.  

1.2. Disease Characteristics of Mosaic 

Mosaic is named after the primary symptom it causes which is diffuse mottling of contrasting 

shades of green and yellow resulting from varying concentrations of chlorophyll in the leaf blade 

(Figure 1.1). Some cultivar responses include reddening or necrosis on the leaf blade, and midrib 

reddening discoloration has been reported in certain cultivar and virus strain combinations 

(Grisham 2000;  Koike and Gillaspie 1989). Symptoms are most visible in the basal portion of 

young, rapidly growing leaves (Grisham 2000). The host range of the virus is restricted to the 
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Poaceae, including sugarcane, maize, sorghum, and other cultivated and uncultivated grasses 

(Pirone 1972).  

 

Figure 1.1. Characteristic symptoms of mosaic in a sugarcane leaf. 

Mosaic is primarily spread from plant to plant by aphid vectors, as first shown by 

Brandes using the corn leaf aphid (Rhopalosiphum maidis) (Brandes 1920). Several additional 

aphid species have since been identified as virus vectors, including Dactynotus ambrosiae, 

Hysteroneura setariae, Longiuguis  saccari, and Toxoptera graminum (Grisham 2000). The virus 

is acquired and transmitted by vectors in a non-persistent manner, meaning that the aphid’s 

acquisition of the virus, as well as loss of infectivity, occurs rapidly within seconds to minutes 

(Hull 2002a). Aphids use a method of short probing with their stylet when testing suitability of a 

plant host (Hull 2002a). As they sample leaf sap from the epidermal cells of the leaf, virus 

particles can be acquired or transmitted into the plant (Hull 2002a). In addition, many aphids that 

vector non-persistent viruses are non-colonizers of the host plant of the virus, favoring spread of 
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the virus as the aphid searches for a host it can colonize, particularly during seasonal migrations 

(Hull 2002a).  

Mechanical inoculation can be used for effective artificial transmission of the virus, but 

early attempts often failed (Koike and Gillaspie 1989). There are several conditions that must be 

favorable in order for an inoculation to be successful which include: infectivity of the leaf sap 

used, the susceptibility of the host, the method of inoculation used, and the growing conditions 

for the plants (Koike and Gillaspie 1989). Different extraction buffers can be used to facilitate 

transmission during the inoculation, and phosphate buffers are commonly used due to their 

ability to increase the virus’ infectivity  (Hull 2002b).  Phosphate, sulfite, and combinations were 

found to enhance infectivity, but the donor plant used seemed to have a greater effect on the 

overall success of the inoculation (Dean 1978). This is supported by additional reports that 

mosaic is more readily transmitted to or from maize or sorghum than it is to or from sugarcane 

(Pirone 1972). Because of this, maize or sorghum are often used as the donor plants due to their 

higher virus titer and ease of cultivation (Koike and Gillaspie 1989). However, the method used 

to perform the inoculation can also influence the success of the inoculation. There are three 

different methods commonly used: pinpricking, air brush, and abrasive rubbing (Bird 1961;  

Brandes 1920;  Koike and Gillaspie 1989;  Srisink et al. 1994). The condition of the plants is also 

important since younger sugarcane plants are more susceptible to infection. Good growing 

conditions are needed to see symptoms quickly and easily and so that stress symptoms do not 

mask mosaic symptoms (Koike and Gillaspie 1989).  

 While aphids are mainly responsible for the spread of mosaic from plant to plant, the 

spread of mosaic from field to field may be caused by planting infected seed-cane (Grisham 

2000). Harvesting methods, such as using knives or mechanical harvesters, are not considered to 
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significantly spread mosaic within fields (Koike and Gillaspie 1989). True seed transmission of 

mosaic has not been reported in sugarcane (Grisham 2000).  

1.3. Virus Species and Strains  

Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) are the virus species (genus 

Potyvirus) that are currently considered the primary causal agents of sugarcane mosaic (Grisham 

1994, 2000;  Grisham and Pan 2007). These viruses are members of the potato virus Y group 

(Family: Potyviridae), and they consist of particles that are flexuous filaments 750 nm in length 

and 13 nm in diameter (Pirone 1972). Members of the Potyviridae contain genomes with 

positive-sense single-stranded RNA that are 8.5-10 kb in size (Hull 2002c). All genera of 

Potyviridae have a 5’ VPg (viral protein genome linked) protein and a polyadenylated 3’ end of 

their genomes (Hull 2002c). Potyviruses contain a single open reading frame which codes for a 

polyprotein. The polyprotein then self cleaves to produce the proteins necessary for replication 

(Hull 2002c).  

  Multiple strains of SCMV were identified, but recent taxonomic studies placed some 

previously described SCMV strains into the SrMV virus taxon (McKern et al. 1991;  Shukla et 

al. 1989). Virus strains are designated by alphabetical letters, and strains A, B, D, E, H, I, and M 

have been described in Louisiana (Koike and Gillaspie 1989). Strain E is considered to have 

been the first strain in Louisiana and was responsible for the devastating infection of the noble 

cane cultivars (Koike and Gillaspie 1989). Following the introduction of POJ interspecific hybrid 

cultivars, strain D appeared in 1925, and strain B became common after 1930 (Koike and 

Gillaspie 1989). These two strains would continue to prevail in the POJ and Co cultivars grown 

in the 1930s to 1940s (Koike and Gillaspie 1989). Strain A was next discovered and was 

responsible for isolated outbreaks, but the destruction of infected fields and planting of mosaic 
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free seed-cane kept mosaic incidence low during this time (Koike and Gillaspie 1989). Strains H, 

I and M were described in Louisiana in 1956 (Abbott 1961a), 1966 (Tippett and Abbott 1968), 

and 1973 (Koike and Gillaspie 1976), respectively, and have since remained the predominant 

virus strains. These strains were considered members of SCMV at the time of their discovery. In 

1989, it was proposed that 17 known strains of SCMV be placed into four distinct potyvirus 

groups (Johnsongrass mosaic virus, maize dwarf mosaic virus, Sorghum mosaic virus, and 

sugarcane mosaic virus) based on the analysis of the N-termini of the coat protein by electro-bot 

immunoassay with cross-absorbed polyclonal antibodies (Shukla et al. 1989). Additionally, 

based on this evidence, it was proposed that the previously described SCMV strains H, I, and M 

actually represent a distinct group of their own leading to their reclassification as SrMV (Shukla 

et al. 1989).  High performance liquid chromatographic (HPLC) peptide profiling provided 

confirmation for the designation previously proposed by Shukla et al. (McKern et al. 1991). In 

recent field surveys, strains A, B, and D were not recovered in field samples, and this was 

attributed to resistance to these strains, which has been sufficient to eliminate them (Grisham 

1994;  Grisham and Pan 2007). Work conducted from 1978 to 1995 determined strain H to be the 

predominant strain in Louisiana by using host differentials to test collected leaf samples 

(Grisham 1994). However, in follow-up field surveys from 2001-2003, a shift in the strains 

causing sugarcane mosaic to strain I was confirmed by using reverse transcription polymerase 

chain reaction (RT-PCR) methods (Grisham and Pan 2007). Additionally, some samples from 

this study had mosaic symptoms, but did not test positive for either SCMV, SrMV or other 

identifiable strains (Grisham and Pan 2007). These detections of unidentified viruses associated 

with mosaic infections in the Louisiana sugarcane breeding program have led to concern that 

another strain shift might have occurred.  
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1.4. Detection Methods for Sugarcane Mosaic Virus and Sorghum Mosaic Virus 

The visual observation of characteristic symptoms is considered the primary detection method 

for sugarcane mosaic (Grisham 2000). When inoculated with different strains of SCMV and 

SrMV, some cultivars were found to have specific reactions to virus strains, making them 

indicator plants of occurring strains (Summers et al. 1948). Host differentials were based on 

multiple symptoms, including the severity of mosaic, the presence of necrosis, and the stunting 

of growth (Summers et al. 1948). As new strains were detected, host differential methods were 

modified over time, but early molecular methods could not distinguish strains of SCMV and 

SrMV (Abbott and Tippett 1966;  Grisham 1994). The first molecular detection method that 

could distinguish strains was a reverse transcription polymerase chain reaction with restriction 

fragment length polymorphism (RT-PCR RFLP) analysis (Yang and Mirkov 1997). The RT-

PCR RFLP analysis was developed so that it would be possible to detect each virus species by 

RT-PCR and then determine strains with enzyme digests from RFLPs. Recent surveys in 

Louisiana collected samples with strains that were unidentifiable using the described RT-PCR 

RFLP method. If the presence of a new strain of SCMV or SrMV were to become predominant, 

a new primer set or method would need to be developed (Grisham and Pan 2007). To remove the 

time-consuming step of gel electrophoresis, a reverse transcription loop mediated isothermal 

amplification (RT-LAMP) assay was developed (Keizerweerd et al. 2015). This method was 

found to be less sensitive than the RT-PCR method developed by Yang and Mirkov, but it may 

be useful in large scale sampling where the lack of sensitivity is less of an issue (Keizerweerd et 

al. 2015).  
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1.5. Yield Loss from Mosaic and Disease Interactions 

Yield loss from mosaic is variable and depends on the combination of cultivar and virus strain 

involved (Grisham 2000). When high levels of infection from SCMV strain D were present, 

sucrose yield was reduced in the cultivars NCo 376 and N 12 primarily by a reduction in stalk 

mass and population (Bailey and Fox 1987). Similarly, in the cultivars Co 740 and CoC 671, 

mosaic reduced bud germination, stalk populations, and sucrose yield (Viswanathan and 

Balamuralikrishnan 2005).  

 The yield loss impact of mosaic can be further amplified with synergistic or additive 

effects from interactions with other sugarcane diseases. The devastating losses from the 1920s 

mosaic outbreak were due to coinfections with Pythium rot and red rot (Koike and Gillaspie 

1989). Later greenhouse studies on the interaction of SrMV strain H and Pythium graminicola 

observed an additive effect on the reduction in stalk height and weight in some cultivars, 

suggesting the presence of both pathogens could cause a greater reduction in yield under field 

conditions (Koike and Yang 1971). A combination of mosaic and ratoon stunting disease (RSD) 

in susceptible cultivars caused a reduction in bud germination, and the combination reduced 

stand in ratoon crops following freezing conditions (Steib and Chilton 1967). Mosaic and RSD 

coinfections in other field studies caused greater reductions in yield in the cultivars CP 61-37 and 

L 62-96, suggesting some cultivars may experience greater yield losses from additive or 

synergistic effects (Koike 1974).  

1.6. Recovery from Mosaic 

It was first thought in early work with mosaic that planting an infected stalk  would yield only 

infected, symptomatic plants (Agnihotri 1990). The observation of the loss of symptoms in 

previously symptomatic plants was reported in early work by Brandes (1920). Research by 



11 

 

Summers et al. (1948) confirmed the observations previously made and even used the occurrence 

of recovery from mosaic as part of the host differentials (Summers et al. 1948). There are two 

types of recovery that have been described for mosaic in sugarcane. One termed “germination 

recovery” is the phenomenon in which an asymptomatic shoot develops from an axillary bud of 

an infected stalk. In contrast, “foliar recovery” occurs when a previously symptomatic plant loses 

symptoms in new developing leaves during the growing season (Agnihotri 1990;  Benda 1970;  

Summers et al. 1948). Early research into recovery from mosaic focused on the frequency of its 

occurrence among cultivars and characteristics of recovery within an individual plant. Incidence 

of mosaic was found to decrease over crop cycles in cultivars known to recover; however, with 

the occurrence of secondary infections (due to aphids) in the field, it could be more difficult to 

determine the extent of recovery (Summers et al. 1948). The extent of recovery was evaluated 

from cuttings, and it was found that cultivars also varied in the extent of recovery for plants 

developing from the buds of a stalk (Summers et al. 1948). In older literature, these recovered 

plants are often described as uninfected, but sensitive molecular assays could provide additional 

evidence of whether recovered plants are no longer infected by the virus. Bio-assays have been 

used to test the infectivity of recovered plants, and most of the plants were not capable of 

producing symptoms in uninfected plants when sap was used as inoculum for mechanical 

inoculation (Benda 1974). It is still unclear whether the virus is no longer present or if there are 

undetectable titers of virus in mosaic recovered plants, and the frequency and characteristics of 

recovery in modern cultivars being grown today is unknown.  

 Recovery from plant virus symptoms has been reported with a variety of crops and viral 

diseases. The selection of asymptomatic planting material that is ideally virus-free is important 

for perennial crops, such as sugarcane and sweetpotato. When sweetpotato cultivars were tested 
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for the presence of sweet potato feathery mottle virus (SPFMV) over a 10-week-period, some 

cultivars eventually tested negative for SPFMV by graft inoculation (Gibson et al. 2014). These 

results show similarity to the characteristics of recovery in sugarcane, in that there is a difference 

in the frequency of recovery among cultivars. The detection of virus in recovered plants is 

variable when comparing different plant species. In the perennial crop, cranberry, plants infected 

with tobacco streak virus (TSV) with symptomatic fruits that tested virus-positive in one year 

produced asymptomatic fruits in subsequent years. However, the plants still tested virus-positive 

through ELISA and RT-PCR methods in the second year (Wells-Hansen and McManus 2016). In 

both the SPFMV and TSV recovery situations, recovered plants can still have detectable amounts 

of virus.  

 The underlying mechanisms for recovery from virus infection are likely due to the same 

mechanisms utilized by the plant defense system against viruses. RNA silencing has become 

recognized as an adaptive plant defense system that can respond systemically to virus infections 

(Voinnet 2001). RNA silencing is the process of post-transcriptional control of gene expression 

that is initiated by double-stranded RNA which is degraded into smaller fragments of RNA 

(Voinnet 2001). Further justification that RNA silencing is the plant defense system against 

viruses includes that the majority of plant viruses can also produce proteins capable of 

suppressing RNA silencing, which would be necessary for the virus to continue to spread 

throughout the plant and to other plants (Voinnet 2001).  

1.7. Objectives  

Recent detections of mosaic in cultivars and advanced experimental clones of the Louisiana 

sugarcane breeding program caused mosaic to become a research priority. Mosaic has been 

recently been detected in breeding program clones solely through natural infection, but inoculum 
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pressure has been reduced by the widespread cultivation of resistant cultivars. An evaluation of 

the status of the disease in Louisiana and resistance frequency and levels in the current breeding 

parental germplasm would help ensure that mosaic does not re-emerge as an important problem. 

The objectives of this investigation were as follows: 

a) To determine the current distribution and incidence for sugarcane mosaic using field 

surveys and determine the causal virus species by RT-PCR. Changes in incidence and 

rates of increase will then be determined in fields with infected plants during subsequent 

surveys of ratoon crops in the following two seasons.  

b) To further investigate the yield impact and frequency of recovery from mosaic in two 

modern clones and determine if virus is detectable in recovered plants by RT-PCR. 

c) To evaluate the current commercial and basic recurrent parents of the sugarcane breeding 

program for susceptibility to mosaic using mechanical inoculations in a greenhouse 

setting.  
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CHAPTER II. SUGARCANE MOSAIC DISTRIBUTION, INCIDENCE, 

INCREASE, AND SPATIAL PATTERN IN LOUISIANA 

 

2.1. Introduction 

Mosaic is a viral disease of sugarcane (interspecific hybrids of Saccharum L.) with worldwide 

distribution (Grisham 2000). The disease is caused by strains of sugarcane mosaic virus (SCMV) 

and Sorghum mosaic virus (SrMV), both members of the Potyviridae (Grisham 1994;  Grisham 

and Pan 2007). Originally, all virus strains were described as strains of SCMV, but taxonomic 

analyses of serological and chemical properties reassigned strains H, I, and M to SrMV (McKern 

et al. 1991;  Shukla et al. 1989).     

 Mosaic has a long history in Louisiana and is known for nearly bankrupting the state’s 

sugar industry in the 1920s (Koike and Gillaspie 1989). Since then, there has been an active 

effort to manage mosaic through breeding and selection for host plant resistance. The 

introduction of interspecific hybrids to replace the original S. officinarum cultivars resuscitated 

the industry. However, periodic outbreaks of mosaic have occurred due to virus strain changes 

associated with the cultivars being grown (Koike and Gillaspie 1989). Virus tolerant cultivars 

were grown with high incidence of mosaic from the 1950s to the mid-1990s. Annual surveys for 

mosaic strains were discontinued after it was determined that SrMV strain H had been the 

predominant strain from 1985-1995 until susceptibility was detected for clones in the later stages 

of the Louisiana sugarcane breeding program in the early 2000s (Grisham and Pan 2007). 

Surveys conducted from 2001-2003 concluded another strain shift had occurred and that SrMV 

strain I had become the predominant strain (Grisham and Pan 2007).  

Currently grown commercial cultivars are rated as resistant to mosaic. However, in 2016, 

symptoms of mosaic were observed in an advanced experimental clone, HoCP 09-804, that was 
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being considered for commercial release and other advanced experimental clones in later stages 

of the sugarcane breeding program. Because sugarcane is clonally propagated, it is necessary to 

vegetatively increase experimental clones prior to release of a new cultivar to farmers. In this 

process in Louisiana, seed-cane increase fields are planted initially at three Primary Increase 

Stations and then 42 Secondary Increase Stations on cooperating commercial farms. 

Experimental clones also are evaluated by the breeding program in multiple-year yield trials at 

12 commercial farms in different regions of the industry. The widespread presence of mosaic in 

experimental clone evaluation and seed-cane increase plots could pose a threat for spread of the 

virus into commercial plantings and the re-establishment of the disease in the industry. The 

detection of mosaic symptomatic plants suggested a need to evaluate the current incidence and 

distribution of mosaic in Louisiana in order to assess the threat to the sugarcane industry and 

determine an appropriate management strategy.   

Field surveys of mosaic incidence in HoCP 09-804 and other experimental clones were 

needed to determine the incidence and distribution of the disease and then potential rates of 

increase could be determined in subsequent ratoon crops. Surveys to determine mosaic incidence 

are based on visual observation of characteristic symptoms consisting of patterns of contrasting 

shades of green in young leaves (Grisham 2000). The reliability of symptom expression as an 

indication of virus infection is thought to be high, but the degree of correlation between symptom 

expression and virus infection is uncertain. A reverse transcription polymerase chain reaction 

(RT-PCR) method capable of differentially detecting the two viruses associated with mosaic 

(Yang and Mirkov 1997) could be used to determine the virus species causing the current 

outbreak and determine the degree of reliability of survey results.  
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Mosaic is transmitted in a non-persistent manner by aphids and also spread from field to 

field through the planting of infected seed-cane (Grisham 2000). Determining whether the source 

of mosaic was due to aphid transmission or from planting infected seed-cane could be pertinent 

for developing an effective management response to the current outbreak. Sugarcane is planted 

as whole stalks in Louisiana, so planting of infected seed-cane would result in aggregation of 

infected plants. Therefore, an evaluation of the degree of within-row aggregation in fields at 

multiple locations could provide information concerning the relative importance of infection due 

to virus-infected seed-cane or aphid transmission. Ordinary runs analysis (Madden et al. 1982) 

would be appropriate to determine the randomness or aggregation of infected plants within 

sugarcane rows in a field and evaluate the potential role of seed-cane in disease spread.  

2.2. Objectives 

The objectives of the study were to determine the current distribution and incidence of mosaic in 

Louisiana sugarcane by field surveys, to determine changes in incidence and rates of increase in 

the same fields over two subsequent seasons in ratoon crops, to determine the causal virus 

species and reliability of visual symptoms as an indicator of virus infection using RT-PCR, and 

to evaluate the degree of within row aggregation of infected plants. 

2.3. Materials and Methods 

In 2016, fields of experimental clones in plant cane (first year crop) and first ratoon located at 

three Primary and 34 Secondary Stations managed by the American Sugar Cane League Variety 

Release Program and nine Outfield yield trials of the Louisiana sugarcane breeding program 

located on commercial farms were surveyed for incidence of mosaic. Geographic distribution 

was evaluated by monitoring mosaic incidence in five production areas: Bayou Teche (western), 

North, Upper Mississippi River, Lower Mississippi, and Bayou Lafourche. HoCP 09-804 was the 
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only clone surveyed at the Secondary Stations, 35 experimental clones were surveyed at each 

Primary Station, and 22 experimental clones were surveyed at each Outfield trial. All fields were 

planted with whole stalks with a two running stalk planting rate.  

 Surveys were based on the visual observation of characteristic mosaic symptoms in the 

young leaves of young plants prior to stalk elongation during May. Consistency in the ability to 

detect symptomatic plants by survey personnel was provided by assessing a common row at 

locations prior to conducting field surveys. The number of symptomatic plants was recorded for 

different arbitrarily selected rows at each location in “runs” (single plants and aggregations of 

more than one symptomatic plant). Total area surveyed was determined, and the overall 

percentage of infection was calculated for each location by dividing the total number of 

symptomatic plants recorded by the plant population in fields using an estimate of 6.6 plants per 

meter of row. 

 HoCP 09-804 fields at seven Secondary Stations (Raceland, Cedar Grove, Alma, 

Glendale, Glenwood, Little Texas, and Blackberry) where mosaic was detected were resurveyed 

in 2017 in first ratoon and 2018 in second ratoon by repeating the survey in the same rows as the 

first year. Disease rates of increase were determined by calculating the percent change in initial 

incidence from plant cane to first ratoon and from plant cane to second ratoon.  

 Symptomatic plant runs within rows were evaluated for aggregation using ordinary runs 

analysis (Madden et al. 1982). Z aggregation statistic values were calculated for each row at a 

location. Significant aggregation was considered at Z aggregation values less than -1.64 (p = 

0.05). The percentage of rows exhibiting aggregation was then calculated for each location, and 

the frequency of runs for categories of increasing numbers of symptomatic plants per run was 

compared (Campbell and Madden 1990).  
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Single young leaf samples were arbitrarily collected from individual mosaic symptomatic 

and asymptomatic plants at each location for SrMV and SCMV detection by RT-PCR (Yang and 

Mirkov 1997). Samples were placed in a plastic bag on ice to return to the lab and stored at -

70°C until RNA extraction was performed. Total RNA was extracted using the Plant Total RNA 

Kit (Spectrum™, Sigma Aldrich) with modifications to the tissue homogenization steps. 

Approximately 300 mg of tissue was homogenized in a BIOREBA extraction bag (BIOREBA 

AG, Switzerland) with 2 ml prepared lysis buffer from the Plant Total RNA Kit (Spectrum™, 

Sigma Aldrich) using a BIOREBA standard rack tissue homogenizer. RT-PCR was carried out in 

two steps using a modification of the RT-PCR method described by Yang and Mirkov (1997). 

Complementary DNA synthesis was performed using the SuperScript™ First-Strand Synthesis 

System (Invitrogen™, Thermo Fisher Scientific), and RNA was primed with 1 µl (2 µM stock) 

of SrMV-R3 or SCMV-R3. The 2 µl of diluted cDNA product in nuclease free water (1:50) was 

added to a 25 µl PCR solution. The PCR solution consisted of 12.5 µl of GoTaq® Green Master 

Mix, 2X (Promega), 11.86 µl of nuclease free water, 0.25 µl (10 µM stock) of SrMV-F3 and 

SrMV-R3 or SCMV-F3 and SCMV-R3, 0.14 µl of bovine serum albumin V (100 µg/µl). The 

PCR program used for SrMV was 95°C for 2 min; 35 cycles of 95°C for 30 s, 55°C for 30 s, 

72°C for 1 min; and final extension at 72°C for 5 min. The PCR program used for SCMV was 

95°C for 2 min; 35 cycles of 95°C for 30 s, 51°C for 30 s, 72°C for 1 min, and final extension at 

72°C for 5 min. RT-PCR products were electrophoresed in 2.0% agarose gel containing ethidium 

bromide (final concentration 0.35 µg/ml) for 1 h, and bands were visualized using a UV 

transilluminator. Presence of a visible band in an electrophoresis gel at 871 bp for SrMV and 

either 873, 885, or 897 bp for SCMV was considered a positive test result.  
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Symptomatic samples were tested for SrMV from nine clones: HoCP 09-804 (193 total 

samples), L 10-147 (24), L 11-183 (15), Ho 11-532 (21), Ho 11-573 (1), Ho 12-626 (1), Ho 12-

671 (3), L 13-242 (2), and L 13-269 (4).  Asymptomatic samples were tested for SrMV from 

eight clones: HoCP 09-804 (250 total samples), L 10-147 (14), L 11-183 (13), Ho 11-532 (23), 

Ho 11-573 (1), Ho 12-626 (1), Ho 12-671 (4), and L 13-242 (2).  The assay for SCMV was 

performed for a subsample of symptomatic HoCP 09-804 (84) and a subsample of asymptomatic 

samples from all clones (306) (two asymptomatic samples from 2018 were not tested for 

SCMV).  

2.4. Results 

Incidence of mosaic in the 2016 survey for HoCP 09-804 in Secondary Station increase fields 

ranged from 0 to 3.5%, except for two fields at Little Texas that had incidences of 9.0 and 10.4% 

(Table 2.1). In the Bayou Teche and North areas, no mosaic was detected, whereas three areas 

along the Mississippi River and Bayou Lafourche had locations with and without mosaic 

incidence (Table 2.1). In fields at the three Primary Stations, mosaic was detected in a total of six 

of the 35 (17.1%) experimental clones. Percent symptomatic plants was calculated for each clone 

when mosaic was detected: L 10-147 (10.1% at one of three locations), L 11-183 (0.4% at one 

location), Ho 11-512 (0.5% at one location), Ho 11-532 (1.4% at one location and 0.6% at a 

second location), Ho 12-626 (0.1% at two locations), and HoCP 12-671 (0.2% at one location). 

In the breeding program yield trials, mosaic was detected in four of the 22 (18.2%) experimental 

clones across nine locations, and the percent infected plants was calculated in each case: L 10-

147 (2.2, 11.6, 11.6, 23.9, 27.2, 28.2, and 31.9%), L 13-263 (3.6%), L 13-242 (1.4%), and Ho 

13-769 (4.3%).  
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Table 2.1. Mosaic incidence detected by field surveys of HoCP 09-804 in Secondary Station seed-cane increase fields for the 

American Sugarcane League Variety Release Program during 2016. 

Area/parish Crop cycle 

year 

Location Field area 

(ha) 

Area 

surveyed 

Symptomat

ic plants 

Estimated 

incidence 

Bayou Teche and North       

Iberia Parish First ratoon Hebert 0.1 100% 0 0% 

Rapides Parish Plant cane Harper 2.0 30% 0 0% 

St. Martin Parish First ratoon Berard 0.1 100% 0 0% 

St. Martin Parish First ratoon Levert St. John 0.2 100% 0 0% 

St. Mary Parish First ratoon Adeline 0.6 56% 0 0% 

St. Mary Parish First ratoon Breaux Brothers 0.2 90% 0 0% 

St. Mary Parish First ratoon Judice 0.1 100% 0 0% 

St. Mary Parish First ratoon North Side 0.1 100% 0 0% 

St. Mary Parish First ratoon Sterling 0.2 100% 0 0% 

Vermilion Parish First ratoon Domingues 0.2 67% 0 0% 

Vermilion Parish First ratoon Duplantis 0.2 100% 0 0% 

       

Upper Mississippi River       

Pointe Coupee Parish Plant cane Alma 0.6 23% 569 2.5% 

Pointe Coupee Parish Plant cane LaCour 0.8 44% 55 0.2% 

West Baton Rouge Parish Plant cane Morris 1.0 50% 74 0.2% 

Pointe Coupee Parish First ratoon Beaud 0.3 100% 15 <0.1% 

Iberville Parish First ratoon Landry 0.3 67% 0 0% 

Iberville Parish First ratoon Pearce 0.4 52% 0 0% 

Iberville Parish First ratoon St. Louis 0.3 100% 0 0% 

       

Lower Mississippi River 

and Bayou Lafourche 

      

Lafourche Parish Plant cane Little Texas 1 0.4 24% 1,627 10.4% 

Lafourche Parish Plant cane Little Texas 2 0.4 100% 1,231 9% 

Assumption Parish Plant cane Glenwood 1 1.6 100% 411 1.4% 

Assumption Parish Plant cane Cedar Grove 0.5 27% 228 1.3% 

(table cont’d) 
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Area/parish Crop cycle 

year 

Location Field area 

(ha) 

Area 

surveyed 

Symptomat

ic plants 

Estimated 

incidence 

Lafourche Parish Plant cane Raceland 0.6 44% 264 1.2% 

Assumption Parish Plant cane Thibodaux Brothers Goldmine 0.6 48% 214 0.9% 

St. John Parish Plant cane Glendale 0.6 28% 188 0.9% 

Lafourche Parish Plant cane McCloud 1.8 33% 334 0.6% 

St. James Parish Plant cane Blackberry 1.0 30% 171 0.5% 

Assumption Parish Plant cane Glenwood 2 0.2 30% 21 0.3% 

Terrebonne Parish Plant cane Naquin 0.6 29% 54 0.2% 

Ascension Parish Plant cane Palo Alto 0.6 29% 34 <0.1% 

Lafourche Parish Plant cane Knight 0.7 33% 21 <0.1% 

Assumption Parish Plant cane Belle Alliance 1.2 - 12 <0.1% 

St. James Parish Plant cane Martin and Poche 0.6 25% 8 <0.1% 

Assumption Parish Plant cane Glenwood 0.2 57% 4 <0.1% 

St. James Parish First ratoon Bon Secour 0.2 100% 0 0% 
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Leaf samples from HoCP 09-804, L 10-147, L 11-183, Ho 11-532, Ho 11-573, Ho 12-

626, Ho 12-671, L 13-242, and L 13-269 were tested for SrMV by RT-PCR. The number of 

samples collected and results from each surveyed location is provided in Appendix A.1. All 264 

symptomatic leaf samples from all experimental clones tested across three seasons were positive 

for SrMV. Only one of 250 (0.4%) asymptomatic samples from HoCP 09-804 tested positive; all 

other asymptomatic samples were negative for SrMV (Table 2.2). A total of 306 asymptomatic 

samples from multiple experimental clones and 84 symptomatic samples from HoCP 09-804 

tested negative for SCMV by RT-PCR. 

The runs analysis of 17 fields of HoCP 09-804 detected aggregation of symptomatic 

plants within at least 70% of the rows for 16 out of the 17 (94.1%) locations, and the mean 

number of plants in a run ranged from 1.2 to 4.7 (Table 2.3). Six categories of numbers of plants 

per run (1, 2, 3-6, 7-12, 13-24, and >24 symptomatic plants per run) were used to evaluate the 

occurrence of runs with increasing numbers of plants (Table 2.3). The percentages for single 

plants ranged from 11 to 79%, two plants per run ranged from 16 to 40%, 3-6 plants per run 

ranged from 5 to 68%, 7-12 plants per run ranged from 0 to 23%, 13-24 plants per run ranged 

from 0 to 10%, and more than 24 plants ranged from 0 to 2% (Table 2.4). Overall, symptomatic 

plants occurred in runs of more than one plant 64% of the time, but only 12% of runs consisted 

of more than six plants and 4% more than 12 plants (Table 2.4).  
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Table 2.2. RT-PCR results for SrMV detection in mosaic symptomatic and asymptomatic leaves 

collected from advanced experimental sugarcane clones during field surveys conducted from 

2016 - 2018. 

Year Clone  Number of 

asymptomatic 

samples 

Number 

SrMV 

positive (%) 

Number of 

symptomatic 

samples 

Number 

SrMV 

positive (%) 

2016 HoCP 09-804 168 0 (0) 115 115 (100) 

2016 L 10-147 14 0 (0) 24 24 (100) 

2016 L 11-183 5 0(0) 5 5 (100) 

2016 Ho 11-532 12 0 (0) 11 11 (100) 

2016 Ho 12-626 1 0 (0) 1 1 (100) 

2016 Ho 12-671 4 0 (0) 3 3 (100) 

2016 L 13-242 2 0 (0) 2 2 (100) 

2016 L 13-269 - - 4 4 (100) 

      

2017 HoCP 09-804 82 1 (1.2) 78 78 (100) 

2017 L 11-183 6 0 (0) 6 6 (100) 

2017 Ho 11-532 11 0 (0) 10 10 (100) 

2017 Ho 11-573 1 0 (0) 1 1 (100) 

      

2018 L 11-183 2 0 (0) 4 4 (100) 

      

Total HoCP 09-804 250 1 (0.4) 193 193 (100) 

Total All clones 308 1 (0.3) 264 264 (100) 
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Table 2.3. Results of runs analysis to evaluate aggregation of mosaic symptomatic plants within rows of HoCP 09-804 in fields 

surveyed during 2016. 

Parish Location Cultivar Mean plants 

per run 

Rows with 

aggregation 

Za range 

Assumption  Little Texas L 11-532 4.7 6/7 (86%) -38.4 to 1.5 

Pointe Coupee Alma 1 HoCP 09-804 4 5/5 (100%) -29.4 to -10.2 

Pointe Coupee LaCour HoCP 09-804 4 7/7 (100%) -35.4 to -14.2 

Assumption Thibodaux Brothers French HoCP 09-804 3.9 8/8 (100%) -37.5 to -11.8 

St. John Glendale HoCP 09-804 3.3 8/8 (100%) -34.8 to -14.9 

Assumption Little Texas 1 HoCP 09-804 3.2 7/7 (100%) -33.9 to -14.1 

Assumption Little Texas 2 HoCP 09-804 3.1 8/8 (100%) -33.4 to -23.0 

Pointe Coupee Alma 2 HoCP 09-804 3 13/15 (87%) -31.6 to 1.3 

Terrebonne Naquin HoCP 09-804 2.8 8/8 (100%) -32.7 to -21.9 

Assumption Little Texas L 11-183 2.5 7/7 (100%) -30.1 to -15.1 

Lafourche McCloud HoCP 09-804 2.4 23/28 (82%) -35.6 to 1.6 

St. James Blackberry HoCP 09-804 2.2 12/14 (86%) -31.9 to 1.6 

West Baton 

Rouge 

Morris HoCP 09-804 2.2 6/6 (100%) -45.2 to -15.6 

Lafourche Raceland HoCP 09-804 2.1 10/11 (91%) -24.8 to 1.2 

Assumption Glenwood 1 HoCP 09-804 1.8 25/33 (76%) -22.4 to 1.2 

Assumption Cedar Grove HoCP 09-804 1.5 7/10 (70%) -27.6 to 0.50 

Assumption Glenwood 2 HoCP 09-804 1.2 3/9 (33%) -14.4 to 1.1 
a Z aggregation statistic values were calculated for each row at a location; values less than -1.64 (p = 0.05) were considered to 

exhibit significant aggregation. 
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Table 2.4. Runs of mosaic symptomatic plants recorded by categories with increasing numbers of plants per run in HoCP 09-804 field 

surveys conducted during 2016. 

Parish Location Clone Runs grouped by categories for number of symptomatic plants per run 

(%) 

1 2 3-6 7-12 13-24 >24 

Assumption Cedar Grove HoCP 09-804 43 (64) 14 (21) 9 (13) 1 (2) 0 (0) 0 (0) 

Assumption Glenwood 1 HoCP 09-804 74 (58) 25 (20) 27 (21) 1 (1) 0 (0) 0 (0) 

Assumption Glenwood 2 HoCP 09-804 15 (79) 3 (16) 1 (5) 0 (0) 0 (0) 0 (0) 

Assumption Little Texas HoCP 09-804 157 (34) 104 (23) 140 (30) 46 (10) 16 (4) 0 (0) 

Assumption Little Texas HoCP 09-804 99 (35) 58 (20) 73 (25) 34 (12) 19 (7) 4 (1) 

Assumption Thibodaux Brothers 

French 

HoCP 09-804 42 (27) 31 (20) 58 (37) 19 (12) 5 (3) 0 (0) 

Lafourche McCloud HoCP 09-804 48 (36) 33 (25) 45 (34) 7 (5) 0 (0) 1 (1) 

Lafourche Raceland HoCP 09-804 63 (54) 31 (27) 16 (14) 5 (4) 1 (1) 0 (0) 

Pointe Coupee Alma 1 HoCP 09-804 15 (16) 23 (25) 39 (42) 11 (12) 4 (4) 2 (2) 

Pointe Coupee Alma 2 HoCP 09-804 31 (26) 26 (22) 39 (33) 16 (13) 6 (5) 2 (2) 

Pointe Coupee LaCour HoCP 09-804 3 (23) 3 (23) 4 (31) 3 (23) 0 (0) 0 (0) 

St. James Blackberry HoCP 09-804 33 (41) 23 (28) 23 (28) 2 (3) 0 (0) 0 (0) 

St. John Glendale HoCP 09-804 21 (38) 14 (26) 16 (29) 3 (6) 1 (2) 0 (0) 

Terrebonne Naquin HoCP 09-804 2 (11) 4 (21) 13 (68) 0 (0) 0 (0) 0 (0) 

West Baton 

Rouge 

Morris HoCP 09-804 7 (25) 11 (40) 9 (32) 0 (0) 1 (4) 0 (0) 

Assumption Little Texas L 11-183 7 (26) 8 (30) 12 (44) 0 (0) 0 (0) 0 (0) 

Assumption Little Texas L 11-532 10 (20) 5 (10) 20 (41) 9 (18) 5 (10) 0 (0) 

 Total 
 

669 (36) 416 (23) 544(29) 157(8) 58 (3) 9 (1) 
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In first ratoon during 2017, disease incidence in different fields both increased and 

decreased, but in second ratoon during 2018, all locations experienced a decrease in disease 

levels from the 2016 initial infection incidence (Table 2.5 and Figure 2.1). Changes in mosaic 

incidence from plant cane to first ratoon for the seven locations ranged from -8.8% to +98% and 

from -44% to -100% in second ratoon (Table 2.5). The greatest increase of disease was observed 

in 2017 at Raceland, where the initial incidence increased from 4.0 to 7.9%.  

Table 2.5. Change in incidence of mosaic symptomatic plants in fields of HoCP 09-804 from 

plant cane to first and second ratoon. 

Parish (location) 2016 Initial 

infection incidence 

in plant canea 

2017 Infection 

incidence and 

percent change in 

first ratoon 

2018 Infection 

incidence and 

percent change in 

second ratoonb 

Assumption (Cedar Grove) 1.0% 1.6% (+60%) 0.3% (-70%) 

Assumption (Glenwood) 1.0% 0.7% (-30%) 0.0% (-100%) 

Assumption (Little Texas) 6.8% 4.1% (-39%) 1.0% (-85%) 

Lafourche (Raceland)  4.0% 7.9% (+98%) 2.0% (-50%) 

Pointe Coupee (Alma) 6.8% 6.2% (-8.8%) 2.6% (-62%) 

St. James (Blackberry) 0.9% 0.4% (-56%) 0.5% (-44%) 

St. John (Glendale) 1.6% 1.2% (-25%) 0.2% (-88%) 
a Initial infection percentages calculated only from rows that were resurveyed.  
b Percent change is calculated from the change in incidence from plant cane to second ratoon. 
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Figure 2.2. Changes in mosaic incidence in fields of HoCP 09-804 from plant cane (2016) to first 

ratoon (2017) to second ratoon (2018) at seven locations. 

2.5. Discussion 

Field observations of mosaic symptomatic plants in advanced experimental clones in the 

sugarcane breeding program during 2016 prompted concern about a possible re-emergence of the 

historically important disease in Louisiana. Field surveys successfully determined the current 

distribution and incidence of mosaic in different areas of the industry. Mosaic incidence was 

either low or absent in the locations that were surveyed during 2016, except for two fields of 

HoCP 09-804 at the Little Texas Primary Station with incidences of 9.0 and 10.4%. The 

distribution of mosaic incidence was variable across the geographic areas of the industry. Mosaic 

symptomatic plants were not detected in the Bayou Teche (western) and North areas, whereas 

mosaic was detected in some locations but not others in the Upper Mississippi River, Lower 

Mississippi River, and Bayou Lafourche areas.  

0

1

2

3

4

5

6

7

8

9

2016 2017 2018

P
er

ce
n
t 

in
fe

ct
io

n

Raceland Cedar Grove Alma Glendale

Glenwood Little Texas Blackberry



28 

 

 The Louisiana Cooperative Sugarcane Breeding Program is conducted at facilities 

associated with the Louisiana State University Agricultural Center and the USDA-ARS 

Sugarcane Research Unit and on cooperating commercial farms. Seed-cane from experimental 

clones is obtained from the respective agency research farms and planted at three Primary 

Stations and 42 Secondary Stations of the American Sugar Cane League Variety Release 

Program located on commercial farms. Chance distribution of virus-free or systemically infected 

seed-cane to these locations could be the cause of the pattern of geographic distribution and 

incidences detected in the surveys. Mosaic was not detected at Secondary Stations in the Bayou 

Teche and North areas that were supplied with seed-cane increased at the Primary Station in the 

Bayou Teche area in contrast to the detection of mosaic at the Secondary Stations in other areas 

planted with seed-cane from the two Primary Stations in the Bayou Lafourche area, in particular 

the Little Texas Primary Station that had the highest disease incidence. These results support the 

hypothesis that infected seed-cane was the origin for the new disease outbreak, rather than spread 

by migrating aphids. 

 All symptomatic leaf samples tested positive for SrMV using the RT-PCR detection 

method developed by Yang and Mirkov (1997). These results indicate that SrMV is the virus 

species responsible for the current outbreak. Additional confirmation is needed to determine 

whether the strain occurring in recent mosaic infections is SrMV strain H, I, or M (Yang and 

Mirkov 1997). There were no samples for which the causal virus was unidentifiable using the 

Yang and Mirkov primers in contrast to a previous survey (Grisham and Pan 2007). In addition, 

there were no symptomatic samples that tested positive for SCMV, so it is unlikely that there are 

frequent occurrences of SrMV and SCMV co-infections. The lack of samples that tested positive 

for SCMV also suggests a continuance of the absence of this virus species that was indicated by 



29 

 

the field surveys conducted by Grisham and Pan (2007). The low percentage (0.3%) of 

asymptomatic samples that tested positive for SrMV suggests a rarity of asymptomatic infections 

and provides support for the reliability of field surveys based on observation of visual symptoms. 

 Runs analysis of the incidence results from surveyed fields in plant cane showed that 

most of the fields exhibited extensive aggregation of symptomatic plants within rows. The 

occurrence of single symptomatic plants could suggest aphid spread of mosaic into and within 

fields, and local aphid movement to adjacent plants could then result in runs of infected plants. 

The planting of whole infected stalks would result in multiple symptomatic plants occurring 

together. The consistent aggregated disease spatial pattern detected within rows planted with 

whole stalks across locations considered along with the geographic distribution pattern detected 

supports the hypothesis that the initial occurrence of mosaic was due to the planting of infected 

seed-cane. The spatial pattern of other non-persistent virus species has differed within a crop. A 

spatial pattern analysis of plum pox virus strain M concluded that a range from no aggregation to 

high levels of aggregation could be observed in symptomatic peach trees (Prunus persica) 

(Dallot et al. 2003).  Studies in narrow-leafed lupin (Lupinus angustifolius) observed different 

types of spatial patterns due to aphid transmission for cucumber mosaic virus (CMV) and bean 

yellow mosaic virus (BYMV) from primary inoculum sources, in which CMV spread occurred in 

large aggregations while BYMV spread exhibited diffuse patterns (Jones 2005).   

 Repeat surveys of multiple locations in first and second ratoon provided information on 

potential rates of disease increase due to aphid transmission. Mosaic incidence increased at some 

locations and decreased at others in first ratoon then incidence decreased at all locations in 

second ratoon.  The greatest increase in incidence occurred in first ratoon at Raceland where the 

number of infected plants increased 97%, but with an initial incidence of 4%, the change in 
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infection did not result in a high level of disease. A higher rate of initial incidence, 6.8% at Little 

Texas, did not result in a higher rate of increase, as incidence was progressively lower at this 

location in two subsequent ratoon crops.  The low rates of disease increase and decreases in 

incidence observed in the majority of cases, suggest that disease spread by migrating aphids was 

not effective during the two additional survey years. The low initial incidence in plant cane and 

lack of other inoculum sources were likely additional contributing factors. Informal surveys 

conducted in commercial fields surrounding the surveyed fields did not detect any mosaic 

symptomatic plants. The lack of disease increase at multiple locations suggested that the 

potential for rapid rates of mosaic increase are currently unlikely in Louisiana. However, the 

explanation for disease decreases from one crop year to the next is uncertain. The occurrence of 

recovery from mosaic has been documented in sugarcane in Louisiana (Benda 1974;  Summers 

et al. 1948), and this may have contributed to the decreases in the number of symptomatic plants 

observed in ratoon crops. It also is possible that mosaic-infected plants are less able to survive 

winter freezes than healthy plants as has been documented for smut-infected plants (Hoy et al. 

1987).  

 In summary, mosaic incidence was found to be generally low or absent in the surveyed 

locations of the Louisiana sugarcane breeding program. RT-PCR results for field-collected leaf 

samples indicated that SrMV continues to be the virus species causing mosaic and confirmed the 

accuracy of using the visual observation of symptoms in plants for determining disease 

incidence. The geographic distribution, consistent aggregation, and numbers of plants in runs 

suggest that the source of the initial infection in the current outbreak was the planting of infected 

seed-cane. The lack of disease increase over two seasons and the continued failure to detect 
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mosaic in fields of current commercial cultivars suggest mosaic is not likely to rapidly re-emerge 

under the current conditions in Louisiana.  
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CHAPTER III. RECOVERY FROM MOSAIC IN SUGARCANE AND 

IMPACT OF THE DISEASE ON YIELD 

3.1. Introduction 

Mosaic is a viral disease of sugarcane (interspecific hybrids of Saccharum) that is named after 

the symptoms it causes. Symptoms consist of diffuse intermixing of light and dark green tissue 

most readily seen in the basal portion of young, rapidly growing leaves of young plants prior to 

stalk development (Agnihotri 1990;  Grisham 2000). The causal viruses, sugarcane mosaic virus 

(SCMV) and Sorghum mosaic virus (SrMV) of the Potyviridae, are vectored by multiple species 

of aphids in a non-persistent manner (Brandes 1920;  Grisham 2000). Strains of SrMV were 

previously considered to be strains of SCMV, but taxonomic studies reclassified these strains as 

a separate virus species based on serological and molecular characteristics (McKern et al. 1991;  

Shukla et al. 1989). Field surveys conducted in Louisiana during the early 2000s concluded that 

SrMV is currently the causal species of mosaic (Grisham and Pan 2007).   

 Mosaic caused a near collapse of the sugar industry in Louisiana during the 1920s. 

Fortunately, resistance was obtained through the importation of the first interspecific hybrids 

between S. officinarum (susceptible) and S. spontaneum (resistant). However, occasional 

outbreaks have continued to occur due to changes in the virus strain. This necessitated an on-

going effort to breed for resistance to mosaic, and sugarcane breeding efforts have focused on 

additional introgression of resistance to SrMV strains from the wild relatives of sugarcane, in 

particular S. spontaneum (Grisham et al. 1992). Susceptibility considered as the severity of yield 

loss is variable and dependent on the sugarcane cultivar and virus strain combination (Bailey and 

Fox 1987;  Grisham 2000;  Viswanathan and Balamuralikrishnan 2005). 

 Sugarcane clones can have variable responses to mosaic, and one additional trait that has 

been noted in addition to yield loss is the recovery from symptom expression and possibly virus 
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infection (Benda 1974;  Summers et al. 1948). Recovery can be broadly defined as the loss of 

disease symptoms and virus accumulation within an infected plant, and this phenomenon has 

been studied in other virus-crop pathosystems, such as sweetpotato feathery mottle virus 

(SPFMV) in sweetpotato and tobacco streak virus (TSV) in cranberry (Gibson et al. 2014;  

Wells-Hansen and McManus 2016). Observations of the loss of mosaic symptoms in early work 

contradicted the previous notion that planting an infected stalk would yield only infected, 

symptomatic plants (Agnihotri 1990;  Bailey and Fox 1987;  Brandes 1920;  Summers et al. 

1948). Two types of recovery from mosaic have been described: germination and foliar recovery. 

Germination recovery refers to recovery that occurs when an asymptomatic shoot develops from 

the axillary bud of an infected stalk, while foliar recovery occurs when a previously symptomatic 

plant loses symptoms over time during the growing season (Benda 1974;  Summers et al. 1948).  

Sugarcane is a perennial crop that is vegetatively propagated by planting stalks or stalk 

sections. In Louisiana, sugarcane is grown with multiple annual crops obtained from a single 

planting: a plant cane crop (first year) and 2-3 ratoon crops. Early research on recovery from 

mosaic in sugarcane primarily focused on determining the frequency of its occurrence over crop 

cycles, characteristics in individual plants, and how it can influence mosaic incidence (Benda 

1974;  Summers et al. 1948). Cultivars that displayed traits of recovery were compared across 

crop cycles, and mosaic incidence decreased when symptomatic stalks were planted. However, 

secondary spread of the virus by aphid transmission can make it difficult to determine levels of 

recovery in field experiments (Summers et al. 1948). The extent of recovery assessed as whether 

buds on a stalk produced either a portion or all asymptomatic plants was found to be variable 

when comparing cultivars (Summers et al. 1948). Bio-assays testing the infectivity of recovered 
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sugarcane plants usually failed to produce symptoms in inoculated plants (Benda 1974). The 

frequency of recovery occurring in modern sugarcane cultivars is unknown. 

 At times, cultivation of mosaic susceptible cultivars for other desirable traits is attempted, 

so any factor that can limit disease increase, such as recovery, could play a role in disease 

management considerations (Summers et al. 1948). A mosaic susceptible cultivar, HoCP 09-804, 

was released for commercial production in 2016. It was released despite some level of mosaic 

susceptibility indicated by a low incidence of disease detected in some seed-cane increase fields. 

Mosaic was observed at the same time in other high yielding, advanced experimental clones in 

the breeding program. Repeated field surveys of HoCP 09-804 detected decreases in disease 

incidence in ratoon crops of HoCP 09-804 (Chapter 2). Therefore, further evaluation of recovery 

in modern cultivars was initiated.  

A reverse transcription polymerase chain reaction (RT-PCR) method capable of the 

specific detection of SrMV was developed (Yang and Mirkov 1997), and a comparative study 

determined it is the most sensitive test available (Keizerweerd et al. 2015;  Yang and Mirkov 

1997). Thus, a molecular assay could provide additional evidence concerning whether virus is 

present in recovered plants. Finally, recovery experiments would offer the opportunity to further 

evaluate the impact of mosaic on bud germination success and sugarcane yield.  

3.2. Objectives  

To further investigate recovery from mosaic in two modern sugarcane clones, to determine if 

virus is detectable in recovered plants by RT-PCR, and to evaluate the impact of disease on bud 

germination and crop yield. 
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3.3. Materials and Methods 

Field experiments were conducted to evaluate recovery from mosaic at the Louisiana State 

University Agricultural Center Sugar Research Station (St. Gabriel, LA) from 2016 to 2018. In 

May 2016, individual plants were identified and tagged as mosaic symptomatic or asymptomatic 

for one cultivar HoCP 09-804 and one experimental clone L 10-147. Stalks were collected from 

previously identified symptomatic plants during September, and each stalk was assessed for 

foliar recovery, defined as loss of visible symptoms of mosaic in the leaves. Stalks were then 

planted as individual stalks in single-row plots. Separate rows were planted with either 

previously asymptomatic or symptomatic stalks, with two rows planted in between with a mosaic 

resistant cultivar, HoCP 96-540, to minimize natural spread by aphids. In the first experiment, 46 

stalks from asymptomatic plants and 63 stalks from symptomatic plants of HoCP 09-804 were 

planted, and 67 stalks from asymptomatic plants and 82 stalks from symptomatic plants of L 10-

147 were planted. Stalks from previously identified asymptomatic and symptomatic plants were 

taken from plots in the first experiment and used to plant a second experiment during September 

2017. Seventy stalks from symptomatic plants and 70 stalks from asymptomatic plants were 

planted of each cultivar. Each stalk collected from a previously symptomatic plant was assessed 

for foliar recovery before planting.  

 Prior to planting during September, the number of buds on each stalk was recorded to 

determine bud germination success assessed as primary shoots that emerged from each stalk after 

planting. The number of emerged primary shoots was recorded for each plot in October 2016 for 

the plant cane year of experiment one and in November 2017 for plant cane in experiment two. 

Percent germination was estimated by dividing the number of emerged primary shoots by the 

recorded number of buds for each planted stalk. Spring shoot counts were then taken in March 

2016 and 2017 of the plant cane crop for each experiment to evaluate re-emergence after winter. 
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Stalk counts were taken for each single-stalk plot in August 2017 for the first experiment and in 

August 2018 for the first experiment in first ratoon and second experiment in plant cane. To 

estimate additional yield components, eight 10-stalk samples were taken for each clone and 

symptom combination in November 2017 for the first experiment. Stalk weight (kg) was 

determined for each sample. The stalks were shredded, and sucrose content was determined by 

fourier transformed near-infrared spectral reflectance (SpectraCane, Bruker). Sucrose content (kg 

per metric ton of cane), cane yield (kg per metric ton), and sucrose yield (kg per ha) were then 

calculated.  

 To assess germination recovery from mosaic, defined as an asymptomatic plant emerged 

from a bud on a symptomatic stalk, a visual evaluation of mosaic symptoms was conducted for 

each single-stalk plot of each clone prior to stalk elongation during May 2017 for the first 

experiment in plant cane and during June 2018 for the first experiment in first ratoon and plant 

cane of the second experiment. The number of asymptomatic plants and total number of plants 

was recorded for each plot, and the mean percent recovery per plot was calculated for each clone. 

The total number of plots exhibiting germination recovery was recorded, and it was determined 

whether recovery was partial or complete for affected stalks. Partial recovery was considered to 

be single stalk plots that contained both symptomatic and asymptomatic plants. The total number 

of recovered plants also was recorded for each clone, and the overall percent recovery was 

calculated for each clone in each crop. In addition, plots of both cultivars planted with 

asymptomatic stalks were visually assessed for mosaic symptomatic plants to evaluate the extent 

of aphid spread of mosaic.  

 During the symptom evaluations in 2017 and 2018, a single asymptomatic leaf sample 

was taken from each germination recovered plant to evaluate SrMV infection by RT-PCR. In 
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2017, three asymptomatic samples were collected from HoCP 09-804 and 55 asymptomatic 

samples were collected from L 10-147. Symptomatic leaf samples were also collected from 

plants exhibiting symptoms in rows with plots planted with asymptomatic stalks. Five 

symptomatic samples were collected from HoCP 09-804 and 10 samples were collected from L 

10-147 to confirm infection by SrMV by RT-PCR. In 2018, leaf samples were taken from 

germination-recovered plants developing from planted symptomatic stalks and from 

symptomatic plants developing from planted asymptomatic stalks (one sample collected per 

asymptomatic plot) for the first experiment in first ratoon and second experiment in plant cane. 

In 2018, samples were collected from one apparently recovered asymptomatic plant for HoCP 

09-804 and 48 L 10-147 plants in first ratoon, and asymptomatic leaf samples were also collected 

from the second experiment in plant cane for HoCP 09-804 (2 samples) and L 10-147 (38). 

Three symptomatic samples were collected for previously asymptomatic HoCP 09-804 and 11 

samples were collected for L 10-147 in first ratoon, and two HoCP 09-804 and one L 10-147 

samples were collected from the second experiment plant cane to confirm aphid spread of SrMV.  

 Leaf samples were tested for SrMV by RT-PCR as follows. Samples were stored at -70°C 

until RNA extraction was performed. Total RNA was extracted using the Plant Total RNA Kit 

(Spectrum™, Sigma Aldrich) with modifications to the tissue homogenization steps. 

Approximately 300 mg of tissue was homogenized in a BIOREBA extraction bag (BIOREBA 

AG, Switzerland) with 2 ml prepared lysis buffer from the Plant Total RNA Kit (Spectrum™, 

Sigma Aldrich) using a BIOREBA standard rack tissue homogenizer. RT-PCR was carried out in 

two steps and using a modification of the RT-PCR method described by Yang and Mirkov 

(1997). Complementary DNA synthesis was performed using the SuperScript™ First-Strand 

Synthesis System (Invitrogen™, Thermo Fisher Scientific), and RNA was primed with 1 µl (2 
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µM stock) of SrMV-R3. The 2 µl of diluted cDNA product (1:50) in nuclease free water was 

added to a 25 µl PCR solution. The PCR solution consisted of 12.5 µl of GoTaq® Green Master 

Mix, 2X (Promega), 11.86 µl of nuclease free water, 0.25 µl (10 µM stock) of SrMV-F3 and 

SrMV-R3, 0.14 µl of bovine serum albumin V (100 µg/µl). The PCR program used was 95°C for 

2 min; 35 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 1 min; and final extension at 72°C for 

5 min. RT-PCR products were electrophoresed in 2.0% agarose gel containing ethidium bromide  

(final concentration 0.35 µg/ml) for 1 h, and bands were visualized using a UV transilluminator. 

Positive results were concluded when a visible band was present at 871 bp.  

 Recovery and yield data were analyzed using Proc GLM (SAS 9.4). Interactions 

determined how treatment results should be compared for the dependent variables. Arcsin 

transformations of percentage means were analyzed to determine significance (p<0.05). Mean 

separations were determined by least significant difference (LSD).  

3.4. Results 

The number of recovered plants assessed as asymptomatic plants that emerged from planted 

stalks of symptomatic plants varied between the two clones for experiment one in plant cane and 

first ratoon and plant cane in experiment two (Table 3.1). Recovery assessed as the number of 

plots with asymptomatic plants, total number of asymptomatic plants, and mean percentage of 

asymptomatic plants per plot were all higher for L 10-147 than for HoCP 09-804 in plant cane 

and first ratoon in experiment one and plant cane in experiment two (Table 3.1). The mean 

percentages of asymptomatic plants per plot of HoCP 09-804 were 2.3, 0.9, and 1.2% compared 

to 19.8, 15.9, and 9.4% for L 10-147 in experiment one plant cane and first ratoon and 

experiment two plant cane, respectively (Table 3.1). The rate of recovery was numerically higher 

for both clones in experiment one than experiment two (Table 3.1).  
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 The total numbers and percentages of symptomatic plants that were observed in the 

asymptomatic stalk planted plots in plant cane and first ratoon of experiment one and plant cane 

of experiment two were generally low ranging from 0.2-6.3% (Table 3.2). Incidence did not 

increase in first ratoon of experiment one and was lower in the plant cane of the second 

experiment. The numbers and percentages of plots with symptomatic plants observed for the 

asymptomatic stalk planted plots were higher ranging from 1.4-16.4% (Table 3.2). The same 

pattern was evident with little or no increase in first ratoon and lower incidence in plant cane of 

the second experiment.  

Table 3.1. Comparison of mosaic recovery evaluated as asymptomatic plants developing from 

single stalk plots of HoCP 09-804 and L 10-147 that were planted with individual mosaic 

symptomatic stalks. 

 

  

Crop year and 

experiment a  

Clone Plots with 

asymptomatic 

plants 

Total number of 

asymptomatic 

plants 

Percent 

asymptomatic 

plants per plotb 

Plant cane exp 1 HoCP 09-804 2/58 (3.4%) 3/152 (2.0%) 2.3 b 

 L 10-147 26/81 (32.1%) 55/291 (18.9%) 19.8 a 

     

First ratoon exp 1 HoCP 09-804 1/54 (1.9%) 1/160 (0.6%) 0.9 b 

 L 10-147 24/80 (30%) 48/294 (16.3%) 15.9 a 

     

Plant cane exp 2 HoCP 09-804 2/70 (2.9%) 2/291 (0.7%) 1.2 b 

 L 10-147 11/70 (15.7%) 

 

38/384 (9.9%) 9.4 a 

a Two experiments (exp) were conducted. Results in experiment one were determined in both 

plant cane and first ratoon. In experiment two, results were determined only in plant cane. 
b Mean percentages of asymptomatic plants were transformed with arcsin for statistical 

analyses separately comparing clones within each individual crop year and experiment. Means 

followed by different letters were significant at p<0.05. 



40 

 

Table 3.2. Comparison of mosaic symptomatic plants that occurred due to aphid transmission in 

single stalk plots of HoCP 09-804 and L 10-147 that were planted with individual asymptomatic 

stalks. 

 

 

A comparison of the extent of recovery within single stalk plots, where complete 

recovery was defined as all plants produced from a single stalk being asymptomatic, did not 

detect large differences between the two clones and between crop years. Across experiments, 

partial and complete recovery were both observed for single-stalk plots of both clones (Table 

3.3). No plots of HoCP 09-804 exhibited complete recovery in first ratoon of experiment one and 

plant cane of experiment two and, the number of plots with recovered plants was low (Table 

3.3). The average percentage of recovery within plots that exhibited recovery across both 

experiments ranged from 42 to 67% in HoCP 09-804 and 53 to 62% in L 10-147 (Table 3.3). The 

range for percent asymptomatic plants within plots was variable for both clones (Table 3.3). 

 

 

 

  

Crop year and 

experiment a 

Clone Total 

plants 

Number of 

symptomatic 

plants (%) 

Total 

plots 

Number of 

symptomatic 

plots (%) 

Plant cane exp 1 HoCP 09-804 204 7 (3.4) 46 5 (10.9)  
L 10-147 286 18 (6.3) 67 10 (14.9) 

First ratoon exp 1 HoCP 09-804 230 1 (1.3) 46 3 (6.5)  
L 10-147 338 21 (6.3) 67 11 (16.4) 

Plant cane exp 2 HoCP 09-804 400 5 (1.3) 70 2 (2.9)  
L 10-147 442 1 (0.2) 70 1 (1.4) 

a Two experiments (exp) were conducted. Results in experiment one were determined in both 

plant cane and first ratoon. In experiment two, results were determined only in plant cane.  
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Table 3.3. Comparison of the extent of mosaic recovery within single stalk plots of HoCP 09-804 

and L 10-147 that were planted with individual symptomatic stalks. 

Crop year and 

experiment a 

Clone Plots 

exhibiting 

100% 

recovery 

from 

mosaic 

Plots 

exhibiting 

less than 

100% 

mosaic 

recovery 

Mean 

percent 

recovery 

within 

plots 

Range in 

percent 

recovery 

within 

plots 

Plant cane exp 1 HoCP 09-804 1 1 67% 33-100%  
L 10-147 10 16 62% 14-100% 

First ratoon exp 1 HoCP 09-804 0 1 50% 50% 

 L 10-147 5 19 53% 20-100% 

Plant cane exp 2 HoCP 09-804 0 2 42% 33-50%  
L 10-147 2 9 60% 14-100% 

      

Total HoCP 09-804 1 4 53% 33-100% 

 L10-147 17 44 58% 14-100% 
a Two experiments (exp) were conducted. Results in experiment one were determined in both 

plant cane and first ratoon. In experiment two, results were determined only in plant cane. 

 

 The frequency of detection of SrMV by RT-PCR was generally low for leaf samples 

collected from each plant considered recovered (an asymptomatic plant that emerged from a 

symptomatic stalk). Six total plants were tested for HoCP 09-804 and 143 total plants were tested 

for L 10-147 across both experiments, and most samples tested negative for SrMV: 83 and 97% 

for HoCP 09-804 and L 10-147, respectively (Table 3.4). No samples collected from first ratoon 

of experiment one tested positive for SrMV for either clone (Table 3.4).  

 Stalks collected from mosaic symptomatic and asymptomatic plants varied in the amount 

of foliar recovery observed for each cultivar in both experiments. In the first experiment, no 

foliar recovery was observed for any stalk collected from multiple symptomatic plants of HoCP 

09-804. In contrast, extensive foliar recovery was observed for plants and collected stalks of L 

10-147. For the first experiment, mosaic symptoms were only observed for stalks collected from 

one of six previously symptomatic plants. For the second experiment, similar differences were 
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detected between the two clones. Only four of 70 (5.7%) stalks of HoCP 09-804 exhibited foliar 

recovery compared to 44/70 (62.9%) stalks of L 10-147.  

 The subsequent determination of germination recovery during experiment two revealed 

an association between foliar and germination recovery for L 10-147. No germination recovery 

was detected in the four plots planted with stalks of HoCP 09-804 exhibiting foliar recovery. 

However, for L 10-147, 37/38 (97.4%) of the plants exhibiting germination recovery were from 

plots planted with stalks exhibiting foliar recovery. Ten of the 44 (22.7%) plots planted with 

stalks exhibiting foliar recovery produced plants with germination recovery compared to 1/26 

(3.8%) of plots planted with symptomatic stalks. For the 10 plots planted with foliar recovery 

stalks that produced plants exhibiting germination recovery, two plots (20%) exhibited complete 

recovery and eight (80%) had partial recovery.      

Table 3.4.  Detection of Sorghum mosaic virus (SrMV) by RT-PCR in recovered (asymptomatic) 

plants developing from single stalk plots of HoCP 09-804 and L 10-147 planted with individual 

mosaic symptomatic stalks. 

Crop year and 

experiment a 

Clone Total plants tested Number of plants 

positive for SrMV 

Plant cane exp 1 HoCP 09-804 3 1 (33.3%)  
L 10-147 55 3 (5.5%) 

First ratoon exp 1 HoCP 09-804 1 0 (0%)  
L 10-147 49 0 (0%) 

Plant cane exp 2 HoCP 09-804 2 0 (0%)  
L 10-147 39 2 (5.1%) 

a Two experiments (exp) were conducted. Results in experiment one were determined in both 

plant cane and first ratoon, but results in experiment two were determined only in plant cane. 

  

The impact of mosaic on bud germination and yield was different for HoCP 09-804 and L 

10-147 in two experiments from 2016 to 2018 (Table 3.5). The germination and yield impact 

results for L 10-147 differed between years for some components, so the results are reported 

separately for years and crops. The mean numbers of buds per stalk determined prior to planting 
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were similar for the two clones and for symptomatic and asymptomatic stalks. In experiment 

one, bud number per stalk was 12 (range = 5-16 buds) in asymptomatic HoCP 09-804, 12 (4-17) 

in symptomatic HoCP 09-804, 11 (5-15) in asymptomatic L 10-147, and 11 (7-18) in 

symptomatic L 10-147. In experiment two, the mean number of buds per stalk recorded was 14 

(range = 10-17 buds) for asymptomatic HoCP 09-804, 13 (8-16) for symptomatic HoCP 09-804, 

13 (9-18) for asymptomatic L 10-147, and 14 (8-18) for symptomatic L 10-147.  Bud 

germination for mosaic asymptomatic stalks of HoCP 09-804 (28%) and L 10-147 (33%) was 

similar in experiment one, but in experiment two, buds on asymptomatic stalks of HoCP 09-804 

(38%) had lower germination than buds on asymptomatic stalks of L 10-147 (46%) (Table 3.5). 

Bud germination was adversely affected by mosaic for HoCP 09-804 in both experiments, 

whereas germination was unaffected for L 10-147 in both experiments (Table 3.5).  

 Spring shoot populations following winter were similar for plots planted with 

asymptomatic stalks of both cultivars in both experiments (Table 3.5). Shoot populations in plant 

cane were lower in plots planted with symptomatic compared to asymptomatic stalks for both 

clones in experiment one; however, the reduction in population (61%) was greater in HoCP 09-

804 than in L 10-147 (29%) (Table 3.5). In experiment two, the spring shoot population in HoCP 

09-804 was 42% lower in the symptomatic plots than in asymptomatic plots, but the L 10-147 

spring shoot population was higher in the symptomatic plots than in asymptomatic plots by 11% 

(Table 3.5).  

 Stalk populations were similar in plots planted with asymptomatic stalks for both 

cultivars in plant cane and first ratoon (Table 3.5). In the plant cane and first ratoon crops of the 

first experiment and plant cane of the second experiment, HoCP 09-804 had a lower population 

of stalks in plots planted with previously symptomatic than asymptomatic stalks, whereas L 10-
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147 only had a lower stalk population in the first ratoon crop of experiment one (Table 3.5). The 

reduction in stalk population for symptomatic compared to asymptomatic plots was greater for 

HoCP 09-804 (36%) compared to L 10-147 (8%) in plant cane of experiment one.  

Table 3.5. Comparison of bud germination, spring shoot populations, and stalk populations for 

single stalk plots of HoCP 09-804 and L 10-147 that were planted with individual mosaic 

asymptomatic or symptomatic stalks. 

Crop cycle and 

experiment a 

Clone b Bud 

germination c 

Spring shoots 

per hectare d 

Stalks per hectare e 

Plant cane exp1 HoCP 09-804 A 28% a 57,363 a 83,630 a 

  HoCP 09-804 S 15% b 22,346 c 53,822 c 

  L 10-147 A 33% a 63,430 a 80,956 ab 

  L 10-147 S 33% a 45,101 b 74,748 b 

      
First ratoon exp 1 HoCP 09-804 A na - 90,699 a 

  HoCP 09-804 S na - 61,728 b 

  L 10-147 A na - 82,319 a 

  L 10-147 S na - 66,146 b 

      
Plant cane exp 2 HoCP 09-804 A 38% b 31,607 ab 86,385 a 

  HoCP 09-804 S 30% c 18,489 c 75,773 c 

  L 10-147 A 46% a 29,304 b 83,010 ab 

  L 10-147 S 46% a 33,040 a 79,047 bc 
a Two experiments (exp) were conducted. Results in experiment one were determined in both 

plant cane and first ratoon. In experiment two, results were determined only in plant cane. 
b Asymptomatic (A) and symptomatic (S) stalks were planted for each clone. 
c The percentage of buds that germinated out of the total number of buds on a single stalk was 

estimated from primary shoot emergence. Means within an experiment followed by different 

letters were significantly different at p<0.05. Na = not applicable. 
d Shoot populations were counted during the following spring. Means within an experiment 

followed by different letters were significantly different at p<0.05. Spring shoot counts were 

not determined in first ratoon of experiment one.  
e Stalk populations were determined during late summer. Means within an experiment and 

crop year followed by different letters were significantly different at p<0.05. 

 

 The yield components of stalk weight, sucrose content, cane yield, and sucrose yield 

varied among treatments in experiment one for the plant cane crop (Table 3.6). All four yield 

components were similar for plots planted with asymptomatic stalks of both clones (Table 3.6). 
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Individual stalk weight was similar in plots planted with asymptomatic and symptomatic stalks 

for both clones, but stalk weight was lower for symptomatic stalk plots of HoCP 09-804 

compared to L 10-147 (Table 3.6). Sucrose content in stalks of cane was less in asymptomatic 

stalk plots of HoCP 09-804 (90.5 kg/ton) than symptomatic plots of HoCP 09-804 (94.8 kg/ton), 

while sucrose content was similar in asymptomatic (88.5 kg/ton) and symptomatic (87.4 kg/ton) 

plots of L 10-147 (Table 3.6). Cane yield and sucrose yield were lower in symptomatic 

compared to asymptomatic plots of HoCP 09-804 but were similar in asymptomatic and 

symptomatic plots of L 10-147 (Table 3.6).  

Table 3.6. Comparison of stalk weight, sucrose content, cane yield, and total sucrose yield 

estimated for plant cane from single stalk plots of HoCP 09-804 and L 10-147 of experiment one 

that were planted with individual mosaic symptomatic or symptomatic 

Clone a Stalk weight 

(kg)b 

Sucrose per ton 

of cane (kg) b 

Cane yield 

(tons/ha) b 

Sucrose yield 

(kg per ha)b 

HoCP 09-804 A 1.03 ab 90.5 b 103.1 a 9,368.8 a 

HoCP 09-804 S 0.96 b 94.8 a 55.8 b 5,335.7 b 

L 10-147 A 1.18 a 88.5 b 116.5 a 10,325.3 a 

L 10-147 S 1.16 a 87.4 b 107.2 a 9,347.5 a 
a Mosaic asymptomatic (A) and symptomatic (S) stalks were planted for each clone. 
b Means within a column followed by different letters were significantly different at p < 0.05.   

3.5. Discussion 

The frequency of recovery from mosaic differed for the two sugarcane clones included in this 

study. Previous research on the frequency of recovery in sugarcane also found differences among 

cultivars (Summers et al. 1948). The frequencies of foliar and germination recovery varied 

between HoCP 09-804 and L 10-147 in a similar manner. L 10-147 exhibited higher frequencies 

of both foliar and germination recovery than HoCP 09-804. HoCP 09-804 exhibited a lower 

frequency of germination recovery for plants developing from previously symptomatic planted 

stalks, with recovery ranging from 0.9%-2.3% compared to 9.4-19.8% for L 10-147 in the two 

plant cane and one first ratoon crops. Most germination recovery (97%) occurred with stalks that 
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exhibited foliar recovery for L 10-147. However, additional research is needed to verify this 

association.  

 Variation in the rate of germination recovery was detected between two crops in different 

seasons, particularly for L 10-147 that exhibited a lower rate of recovery in the plant cane crop of 

experiment two compared to experiment one. For a perennial crop like sugarcane with multiple 

annual cuttings of stalks obtained from initial planting, there are opportunities for additional 

changes in recovery in ratoon growth. In this study, a decreased frequency of recovery was 

detected in the first ratoon growth of L 10-147 and HoCP 09-804. Results where the frequency 

of recovery increased in ratoon growth was reported by Summers et al. (1948) in three cultivars, 

POJ 234, POJ 36-M, and POJ 213. However, secondary infections due to aphid transmission 

increased mosaic incidence in one location of the study, so in this event, they were unable to 

determine an increase in the frequency of recovery (Summers et al. 1948). The percentage of 

symptomatic plants in plots planted with asymptomatic stalks that occurred due to aphid 

transmission was low in the current study, so it is likely that secondary spread did not affect the 

recovery results.  

 It is uncertain what other conditions would affect the extent of recovery for different 

clones and variability in the rate of recovery between year and crop. Environmental factors, such 

as temperature, might influence the occurrence and rate of recovery from year to year. Sugarcane 

in Louisiana is planted in late summer. Primary shoots begin to grow but then die back when 

freezing temperatures occur during the winter months. Severe freezing temperatures with 

multiple nights with temperatures below -8oC occurred during January 2018, and a lower 

frequency of recovery occurred during that season. Summers et al. (1948) compared the 

frequency of recovery in different cultivars following a freeze that killed shoots to the ground 
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surface. The cultivar POJ 36-M exhibited similar levels of recovery as previous experiments, and 

POJ 234 exhibited less recovery than reported in previous experiments. Cryotherapy in liquid 

nitrogen is capable of producing virus-free rootstock planting materials in different fruit crops 

(Brison et al. 1997;  Wang et al. 2003). Temperature dependent recovery from virus symptoms 

has been demonstrated in tomato ringspot virus infected plants, where higher temperatures were 

associated with an increased amount of symptom recovery (Ghoshal and Sanfaçon 2015). 

Thermotherapy, a method where plant material in tissue culture is subjected to elevated 

temperatures, has been demonstrated to at least partially eliminate viruses in different virus-crop 

combinations (Cieslinska 2000, 2007;  Conci and Nome 1991;  Nascimento et al. 2003). Serial 

hot water treatments (57°C) of mosaic infected sugarcane stalks resulted in plants that bio-

assayed negative for SCMV (Benda 1971).  

The extent of recovery from mosaic determined as partial or complete recovery of plants 

produced from a previously symptomatic stalk varied similarly for both clones with both 

exhibiting more partial than complete recovery. The overall percentage of plots exhibiting partial 

recovery was 80% for HoCP 09-804 and 72% for L 10-147. Summers et al. (1948) reported that 

cultivars can differ in the extent of recovery exhibited; POJ 36-M exhibited either no recovery or 

complete recovery while POJ 234 exhibited partial recovery.   

 When testing recovered sugarcane plants for detectable levels of SrMV by RT-PCR, most 

samples tested negative for the virus. The SrMV detection rates were 17% for HoCP 09-804 and 

only 3% for L 10-147. It is possible that there is a low virus titer that was undetectable by RT-

PCR in recovered plants, despite the sensitivity of this assay. It was not possible to precisely 

identify the same plants from plant cane into first ratoon. However, the frequency of recovered 

plants did not increase in first ratoon, so it is likely that the same recovered plants tested negative 
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for SrMV in two subsequent crops.  Similar results were found in bio-assays of mosaic, where 

the titer of virus present was shown to be incapable of mechanical transmission (Benda 1974).  

Testing for virus detection in recovered plants has been documented in other plant-virus 

pathosystems of vegetatively propagated crops, including sweetpotato and cranberry (Gibson et 

al. 2014;  Wells-Hansen and McManus 2016). In sweetpotato, recovery responses to SPFMV 

were reported in graft inoculated cultivars that were tested for 10 weeks using quantitative 

polymerase chain reaction (qPCR) (Gibson et al. 2014). East African cultivars were reported to 

assay negative for SPFMV 10 weeks after graft inoculation, but some cultivars from North and 

South American still assayed positive for SPFMV (Gibson et al. 2014). In the perennial crop 

cranberry, plants exhibiting recovery from TSV can produce asymptomatic fruit in subsequent 

years that still test positive for TSV (Wells-Hansen and McManus 2016). When different parts of 

recovered plants were tested, TSV was additionally detected in leaves, roots, stems, and terminal 

buds (Wells-Hansen and McManus 2016).  

 The failure to detect SrMV using the sensitive RT-PCR assay suggests recovered 

sugarcane plants may no longer be virus infected. The mechanism by which this could occur is 

uncertain, but this phenomenon might be explained by an RNA silencing mechanism that results 

in the degradation of viral RNA (Ghoshal and Sanfaçon 2015;  Voinnet 2001).   

Mosaic was found to have varying effects on yield components in HoCP 09-804 and L 

10-147. In general, mosaic had fewer adverse effects on L 10-147 than on HoCP 09-804. Mosaic 

reduced shoot emergence resulting from bud germination for HoCP 09-804 in two subsequent 

plant cane crops but did not affect bud germination and stand establishment for L 10-147 in 

either year. Mosaic also resulted in reduced shoot populations the following spring for HoCP 09-

804 during both plant cane crops, while spring shoot population was lower in L 10-147 during 
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experiment one but not experiment two. Similarly, mosaic adversely affected stalk populations 

for HoCP 09-804 in plant cane and first ratoon in experiment one and plant cane of experiment 

two, while stalk population was only lower for L 10-147 in first ratoon. In addition, mosaic had 

no effect on L 10-147 plant cane yield components of stalk weight, sucrose content, cane yield, 

and sucrose yield, while HoCP 09-804 exhibited variable effects of mosaic with lower cane yield 

and sucrose yield but higher sucrose content. These results are consistent with previously 

reported variable effects of mosaic on yield in different cultivars (Bailey and Fox 1987;  Grisham 

2000;  Viswanathan and Balamuralikrishnan 2005). Mosaic can cause significant yield loss in the 

cultivar HoCP 09-804 due to the reduction of initial stand establishment leading to reduced stalk 

populations. In contrast, L 10-147 exhibited tolerance to the disease, and its aggregate yield 

components, cane yield and sucrose yield, were not affected which was similar to two cultivars 

NCo 310 and CP 65-357 cultivated extensively in Louisiana from the mid-1950s to the 1990s 

(Breaux and Koike 1978;  Grisham 1994;  Koike and Gillaspie 1989).  

 The results from the single stalk plot experiments comparing mosaic recovery and impact 

of the disease on yield confirmed that these traits vary by clones. Rates of recovery and yield 

impact had a different but similar pattern for each of the two clones included in the study with 

low recovery and higher yield loss in HoCP 09-804 and higher recovery with little yield loss in L 

10-147. Additional research is needed to determine if there is an association between recovery 

potential and yield loss across multiple sugarcane genotypes and seasons. Similarly, the potential 

association between foliar and germination recovery requires further study. Low rates of disease 

increase and decreases in incidence in ratoon crops were observed in field surveys of plantings of 

HoCP 09-804 conducted in plant cane and two subsequent ratoon crops during the same seasons 

as this study (Chapter 2).  Considered altogether, the results suggest that recovery could affect 
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mosaic incidence in commercial sugarcane plantings and the rate of disease increase over the 

crop cycle for some sugarcane cultivars.  
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CHAPTER IV. EVALUATION OF SUSCEPTIBILITY TO MOSAIC IN 

LOUISIANA’S SUGARCANE BREEDING GERMPLASM 

 

4.1. Introduction 

Mosaic is a widely distributed, economically important disease of sugarcane (interspecific 

hybrids of Saccharum) controlled primarily through cultivation of resistant cultivars (Grisham 

2000). Resistance breeding in sugarcane has remained important for the management of mosaic 

in Louisiana since the disease nearly bankrupted the sugar industry in the 1920s. Mosaic is a 

viral disease caused by either sugarcane mosaic virus (SCMV) or Sorghum mosaic virus 

(SrMV), both members of the Potyviridae. Strains of SrMV were previously described as SCMV 

strains, but taxonomic studies reclassified them as representatives of a distinct virus species 

(McKern et al. 1991). Reverse transcription polymerase chain reaction (RT-PCR) assays were 

developed for the specific detection of SCMV and SrMV (Yang and Mirkov 1997). Testing of 

samples collected during field surveys determined that SrMV is now the primary causal agent of 

mosaic in Louisiana, and the current predominant strain is I (Grisham 1994;  Grisham and Pan 

2007). Mosaic is spread from plant to plant by migratory aphids in a non-persistent manner but 

also can be spread from field to field by planting infected seed-cane (Grisham 2000).Yield loss 

from mosaic is cultivar and virus strain dependent (Grisham 2000). 

Historic yield losses from mosaic in the ‘noble cane’ (S. officinarum) cultivars were 

alleviated by the introduction of the first interspecific hybrids that provided resistance in the 

sugarcane germplasm through the introgression of genes from wild relatives, S. spontaneum and 

S. barberi. Since that time, periodic outbreaks have occurred due to virus strain changes. Cultivar 

responses to mosaic, in addition to susceptibility or resistance, can include tolerance where 

plants are susceptible to infection but yield losses are not significant (Grisham 2000). Two 
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tolerant cultivars, NCo 310 and CP 65-357, were grown during the mid-1950s until the early 

1990s due to their ability to yield more than resistant cultivars grown at the time (Grisham 1994). 

After the appearance of SrMV strain H, sugarcane breeders undertook a sustained basic breeding 

effort to introgress additional sources of resistance from S. spontaneum (Grisham et al. 1992). 

Due to success in breeding for resistance to mosaic caused by SrMV and widespread cultivation 

of resistant cultivars, incidence of the disease has decreased to undetectable levels in commercial 

fields.  

 Sugarcane is vegetatively propagated and has a multiple year crop cycle with a plant cane 

(first year crop) and 2-3 ratoon crops obtained in Louisiana. As a result, the commercial 

sugarcane breeding program requires 12 years to produce a new cultivar. The commercial 

breeding program utilizes primarily recurrent selection with a continuous infusion of accessions 

used as parents from the basic breeding program. Early stage selection occurs on two 

experimental farms where mosaic is endemic and concludes with three multiple-crop-year yield 

trials located on 12 commercial farms in different regions of the industry. Identification of 

mosaic susceptibility currently relies on the observation of symptoms resulting from natural 

infection by aphids during the course of cultivar development. Natural infection requires 

available inoculum in the form of virus-infected plants and the presence of aphid vectors to 

successfully transmit mosaic to other susceptible plants. Because of a high frequency of 

resistance in the parents and selection population and cultivation of resistant commercial on 

farms where yield trials are conducted, inoculum pressure may be insufficient to result in 

infection and detection of susceptible clones during the selection process. In addition, mosaic 

symptoms are most obvious in young developing leaves at the shoot apex, and these leaves are 

most easily observed in young plants prior to stalk elongation. Field surveys to detect plants with 
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mosaic symptoms have not been conducted recently at times of the year when plant growth is 

most favorable for observation of symptoms. These factors could result in escape of mosaic 

susceptible experimental clones from infection or failure to detect low levels of infection, and 

mosaic susceptible clones could potentially continue to advance in the program undetected.  

 During 2016, symptoms of mosaic were detected in multiple experimental clones that 

were well advanced in the breeding program, including one being considered for commercial 

release, HoCP 09-804. These observations caused recognition of the uncertainty about current 

levels of resistance in the commercial and basic breeding parent populations and made it 

apparent that research was urgently needed to assess the degree of mosaic incursion in the 

breeding program and the threat of re-emergence of this important disease in the industry.   

 Both SrMV and SCMV can be mechanically transmitted, and previously, greenhouse 

inoculation experiments were used to screen for disease resistance (Grisham 2000). Renewed 

mechanical inoculations were needed to evaluate mosaic resistance levels in the current basic 

and commercial breeding parent populations to enable breeders to eliminate susceptible parents 

and make informed crosses. 

4.2. Objectives 

To evaluate the current basic and commercial sugarcane selection parent populations for 

resistance to mosaic using mechanical inoculations in a greenhouse setting and to verify the 

association of virus infection with symptom expression by reverse transcription polymerase 

chain reaction (RT-PCR).  

4.3. Materials and Methods 

Four mechanical inoculations were performed during 2017: two at the USDA-ARS Sugarcane 

Research Unit (Houma, LA) and two at Louisiana State University (Baton Rouge, LA). Clones 
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of current and potential parents were tested from the USDA basic and commercial breeding 

programs (211 in experiment one and 153 in experiment two) and from the LSU Agricultural 

Center commercial breeding program (109 in experiment one and 9 in experiment two). To test 

for repeatability of the results, 20 clones were inoculated twice (two replicates of six plants) in 

the second USDA experiment. Five of the 20 repeat clones in the second USDA experiment were 

also inoculated in experiment one, and nine clones (the entire experiment) were repeated in the 

second LSU inoculation. Experimental clones/cultivars with known susceptibility levels were 

included as checks in each inoculation, including mosaic resistant HoCP 96-540, highly 

susceptible L 08-088, and moderately susceptible HoCP 09-804, and a highly susceptible 

Sorghum bicolor cultivar ‘Rio’ was included as an additional susceptible check. At least three 

replicates of six plants were inoculated and a single replicate was left uninoculated for the checks 

in each experiment.  

Single-node stalk cuttings were heat-treated in water at 50oC for 45 min, and six single-

node cuttings were planted per clone in 18-cell styrofoam trays (Speedling Inc., Ruskin, FL) in 

soil-less potting mix. Plants were maintained throughout the experiment in greenhouses located 

either at the USDA research station or LSU campus greenhouses. Plants were watered daily and 

24-8-16 N-P-K fertilizer (Scotts Miracle Gro, Marysville, OH) was applied once a week. 

Inoculations were performed once plants had approximately 5-6 leaves.  

Inoculum preparation followed modified instructions from Bureau of Sugarcane 

Experiment Stations mosaic trial guidelines. Inoculation stock buffer consisted of 0.1 M 

potassium phosphate buffer (pH 7) that was diluted to 0.01 M buffer for use. Mosaic-infected 

plants were cultivated at the LSU AgCenter Sugar Research Station to provide a source of 

inoculum consisting of young symptomatic leaves. One kg of leaf tissue was combined with 4 L 
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of 0.01 M buffer in a food processor. The homogenized mixture was then incubated for 1 h at 

4°C to allow virions to diffuse out of the leaf tissue. Leaves were strained from the buffer 

mixture using cheese-cloth or insect-netting. The filtered inoculum was kept on ice throughout 

the inoculation. Carborundum (600 grit) was applied as an abrasive onto the leaves. Inoculum 

was applied using a Scotch-BriteTM scouring pad (3M, Maplewood, MN) in an upward motion 

maintaining contact with both sides of the leaf. The three youngest leaves were inoculated on 

each plant. Plants were rinsed with tap water briefly after inoculum was applied, kept in the 

headhouse of the greenhouse overnight, and then placed in the greenhouse the next morning. The 

prior fertilizer and watering schedules were maintained until plants were evaluated 5 wk after 

inoculation.  

Plants were evaluated for mosaic by visual observation of symptoms, and the number of 

plants with symptoms out of the total number of plants that germinated for each clone was 

recorded. The recorded numbers were then converted to percent infection and grouped into 

percentage intervals of 0, 1-24, 25-49, 50-74, and 75-100%. These infection percentage intervals 

were then assigned ratings as 0% = highly resistant, 1-24% = moderately resistant, 25-49% = 

moderately susceptible, 50-74% = susceptible, and 75-100% = highly susceptible. Due to 

variability in the success of germination from the single-node cuttings, results are only reported 

for those clones that had at least four plants to evaluate, so 203 of 211 clones are reported for the 

first USDA inoculation, 117 of 153 clones for the second USDA inoculation, 73 of 109 clones 

from the first LSU inoculation, and 8 of 9 clones from the second LSU inoculation. In addition, 

chlorosis due to nutritional deficiency was extensive in the first LSU experiment, and it was 

necessary to remove plants that were too chlorotic to accurately evaluate for mosaic from the 

total number of plants evaluated for a clone. 
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A total subsample of 55 leaves of three types (12 from USDA experiment one, 15 from 

USDA experiment two, 17 from LSU experiment one, and 11 from LSU experiment two) was 

collected arbitrarily to test for SrMV using reverse transcription polymerase chain reaction (RT-

PCR). The types of collected samples included asymptomatic (19 total), symptomatic (22), and 

uncertain leaf samples for which symptom expression was difficult to evaluate (14). Leaves were 

collected in plastic bags and placed on ice until return to the lab and stored at -70°C until RNA 

extraction.  

Total RNA was extracted using the Plant Total RNA Kit (Spectrum™, Sigma Aldrich) 

with modifications to the tissue homogenization steps. Approximately 300 mg of tissue was 

homogenized in a BIOREBA extraction bag (BIOREBA AG, Switzerland) with 2 ml prepared 

lysis buffer from the Plant Total RNA Kit (Spectrum™, Sigma Aldrich) using a BIOREBA 

standard rack tissue homogenizer. RT-PCR was carried out in two steps and using a modification 

of the RT-PCR method described by Yang and Mirkov (1997). Complementary DNA synthesis 

was performed using the SuperScript™ First-Strand Synthesis System (Invitrogen™, Thermo 

Fisher Scientific), and RNA was primed with 1 µl (2 µM stock) of SrMV-R3. Then 2 µl of 

diluted cDNA product (1:50) in nuclease free water was added to a 25 µl PCR solution. The PCR 

solution consisted of 12.5 µl of GoTaq® Green Master Mix, 2X (Promega), 11.86 µl of nuclease 

free water, 0.25 µl (10 µM stock) of SrMV-F3 and SrMV-R3, 0.14 µl of bovine serum albumin 

V (100 µg/µl). The PCR program used was 95°C for 2 min; 35 cycles of 95°C for 30 s, 55°C for 

30 s, 72°C for 1 min; and final extension at 72°C for 5 min. RT-PCR products were 

electrophoresed in 2.0% agarose gel containing ethidium bromide (final concentration 0.35 

µg/ml) for 1 h, and bands were visualized using a UV transilluminator. Positive results were 

concluded when a visible band was present at 871 bp.  
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4.4. Results 

Mechanical inoculations detected variable mosaic resistance levels for the sugarcane breeding 

program basic and commercial parent populations (USDA and LSU programs). Six single-node 

cuttings were planted per clone, but not all cuttings germinated for each. The results are reported 

for clones with a total of at least four plants. All clone responses, including those with less than 

four plants and check cultivars are provided in Appendix B.1. The inoculation of the checks L 

08-088, Rio sorghum, HoCP 09-804, and HoCP 96-540 gave expected results of 67-100, 100, 0-

40, and 0% infection for each, respectively, across the two USDA experiments indicating the 

inoculations were successful in mechanically transmitting the virus to susceptible clones. In both 

LSU experiments, the inoculated HoCP 09-804 plants did not express symptoms, and some 

repetitions of L 08-88 did not express over 75% symptomatic plants.  Nutritional deficiency 

symptoms in the first LSU experiment made it difficult to evaluate symptom expression in some 

parents and check sugarcane cultivars, and the Rio sorghum check plants could not be evaluated.  

 No symptoms were observed in 69.5, 70.9, and 79.5% of the clones following the first 

and second USDA inoculations and first LSU inoculation, respectively, and were rated as highly 

resistant (Table 4.1). Inclusion of clones rated as moderately resistant increased the total 

percentage of resistant clones in each experiment to 73.9, 78.6, and 86.3%, respectively. In each 

of the experiments, varying levels of susceptibility indicated as different proportions of 

symptomatic plants were observed for the other clones (Table 4.1). When comparing the basic 

versus the commercial breeding program parents in the first and second USDA experiments and 

LSU experiment one overall, susceptibility was detected in 13.5, 18.7, and 0%, respectively, of 

the basic parents compared to 32.3, 24.2, and 14.4%, respectively, of the commercial parents 

(Table 4.1). Variability in frequency of susceptibility was detected among the different year-of-

assignment series for USDA commercial parents. For the different series in the two USDA 



58 

 

experiments, the frequency of susceptibility for all the clones in the more advanced 2011 -2013 

series (in experiment two) combined was 33.3%, and the frequencies for the 2014, 2015, 2016 

series from experiment one and the 2017 series from experiment two were 31.0, 21.2, 40.0, and 

15.8%, respectively (Table 4.1).  

Repeatability of mosaic infection reactions resulting from mechanical inoculation was 

evaluated for five clones that were included in both USDA experiments, two replicates of 20 

clones inoculated in the second USDA experiments, and nine clones repeated in the second LSU 

experiment. The results reported included only clones with four or more plants. For the five 

clones included in both USDA experiments, three had no infection in both, while the other two 

had infected plants in both but were rated as moderately susceptible and susceptible in 

experiment one and moderately resistant in experiment two (Table 4.2). For the clones repeated 

as two replicates in USDA experiment two, 4 of 13 (30.8%) received a different rating for the 

two replicates; however, only 2 (15.4%) varied enough to change from a resistant to susceptible 

rating (Table 4.2). Both of these clones developed no infected plants in one replicate and 40-50% 

infection in the second replicate. For the clones repeated in the two LSU experiments, 3 of 9 

(33%) had infection percentage changes sufficient to change from a susceptible to resistant rating 

(Table 4.2). Two of the clones had infected plants in the first experiment but none in the second.
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Table 4.1. Mosaic mechanical inoculation results for experiments conducted at the USDA-ARS Sugarcane Research Unit and LSU 

Agricultural Center during 2017. 

Experiment 

and parent 

population a 

Series b Number of 

clones 

Number of clones (percentage) categorized by resistance rating c 

   
HR MR MS S HS 

USDA 1 
       

Basic 2016 67 56 2 1 3 5  
B total 67 56 (83.6) 2 (3) 1 (1.5) 3 (4.5) 5 (7.5) 

Commercial 2014 29 19 1 1 3 5  
2015 52 37 2 2 7 2  
2016 55 29 4 1 9 12  

C total 136 85 (62.5) 7 (5.1) 4 (2.9) 19 (14) 21 (15.4)  
Total 203 141 (69.5) 9(4.4) 5 (2.5) 22 (10.8) 26 (12.8)         

USDA 2 
       

Basic 2017 59 48 0 8 1 2  
B total 59 48 (81.4) 0 (0) 8 (13.6) 1 (1.7) 2 (3.4) 

Commercial 2011 2 0 1 0 1 0  
2012 3 3 0 0 0 0  
2013 4 2 0 1 0 1  
2014 7 4 2 0 1 0  
2015 4 0 0 2 1 1  
2017 38 26 6 1 0 5  

C total 58 35 (41.2) 9 (15.5) 4 (6.9) 3 (5.2) 7 (12.1)  
Total 117 83 (70.9) 9 (7.7) 12 (10.3) 4 (3.4) 9 (7.7) 

        

(table cont’d) 
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Experiment 

and parent 

population a 

Series b Number of 

clones 

Number of clones (percentage) categorized by resistance rating c 

   
HR MR MS S HS 

LSU 1 
       

Basic 2009 2 2 0 0 0 0  
2011 1 1 0 0 0 0  
2012 1 1 0 0 0 0  

B total 4 4 (100) 0 (0) 0 (0) 0 (0) 0 (0) 

Commercial 1981 1 1 0 0 0 0  
1983 1 0 0 0 1 0  
1985 1 1 0 0 0 0  
1986 1 0 1 0 0 0  
1992 2 2 0 0 0 0  
1994 1 1 0 0 0 0  
1995 2 2 0 0 0 0  
1996 1 1 0 0 0 0  
1997 2 2 0 0 0 0  
1998 2 1 0 0 0 1  
1999 2 1 1 0 0 0  
2001 4 3 1 0 0 0  
2002 1 1 0 0 0 0  
2004 1 1 0 0 0 0  
2005 3 3 0 0 0 0  
2006 6 4 1 1 0 0  
2008 3 2 0 0 0 1  
2009 8 7 0 1 0 0  
2011 4 4 0 0 0 0  
2012 3 3 0 0 0 0 

(table cont’d) 
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Experiment 

and parent 

population a 

Series b Number of 

clones 

Number of clones (percentage) categorized by resistance rating c 

   
HR MR MS S HS  

2013 7 5 0 1 1 0  
2014 8 6 1 0 0 1  
2015 5 3 0 2 0 0  

C total 69 54 (78.3) 5 (7.2) 5 (7.2) 2 (2.9) 3 (4.3)  
Total 73 (100) 58 (79.5) 5 (6.8) 5 (6.8) 2 (2.7) 3 (4.1) 

a Three experiments were conducted: two with clones from the USDA-ARS basic breeding (Basic) and commercial (Com.) parent 

populations and one from the LSU AgCenter commercial parent population.   
b Series refers to clone groupings by year of assignment of permanent identification number. B = basic parent population and C = 

commercial parent population. 
c Results are reported for clones that had at least four inoculated plants. Assigned ratings were HR = highly resistant (0% mosaic 

infection), MR = moderately resistant (1-24%), MS = moderately susceptible (25-49%), S = susceptible (50-74%), and HS = highly 

susceptible (75-100%). 
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Table 4.2. Repeated clone inoculation results from greenhouse mosaic mechanical inoculation 

experiments conducted at the USDA-ARS Sugarcane Research Unit and LSU during 2017. 

  Number of symptomatic plants (percent infection) a 

Experiment and clone Experiment one Experiment two 

USDA experiments 
 

Replicate one Replicate two 

Ho 12-615 - 0 (0) 0 (0) 

Ho 13-739 - 0 (0) 0 (0) 

HoL 14-841 - 4 (67) 4 (80) 

HoCP 13-740 - 0 (0) 0 (0) 

Ho 11-573 - 0 (0) 2 (40) 

HoCP 14-801 4 (67) 1 (17) - 

HoCP 15-510 - 0 (0) 3 (50) 

Ho 15-921 - 5 (100) 6 (100) 

HoCP 14-826 0 (0) 0 (0) 0 (0) 

Ho 14-864 2 (40) 1 (17) 0 (0) 

HoCP 14-885 - 0 (0) 0 (0) 

HoL 15-508 - 1 (25) 1 (25) 

HoCP 14-802 0(0) 0 (0) 0 (0) 

HoCP 14-867 0(0) 0 (0) 0 (0)     

LSU experiments 
   

Ho 08-730 4 (100) 0 (0) - 

Ho 09-832 2 (33) 1 (20) - 

L 12-201 0 (0) 0 (0) - 

L 13-251 0 (0) 0 (0) - 

L 14-267 0 (0) 0 (0) - 

L 14-282 0 (0) 0 (0) - 

L 15-305 2 (33) 0 (0) - 
a Percent infection of the plants with mosaic symptoms in the inoculation. - = clone not 

included in the inoculation. 

 

Leaf samples from 55 total clones were tested for SrMV by RT-PCR when the 

inoculations were evaluated. Across experiments, all 22 symptomatic samples were positive for 

SrMV, whereas 2 of 19 (10.5%) asymptomatic samples (both from the first LSU experiment) and 

8 of 14 (57.1%) uncertain samples tested positive for SrMV (Table 4.3).  
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Table 4.3. Detection of SrMV by RT-PCR in leaf samples collected from greenhouse mosaic 

mechanical inoculation experiments conducted at the USDA-ARS Sugarcane Research Unit and 

LSU during 2017. 

Clones in four experiments Mosaic symptoms (A,S,?)a SrMV result (+,-)b 

USDA experiment one 
  

HoL 15-511 A - 

HoCP 15-548 A - 

HoH15-927 A - 

Ho 15-943 A - 

Ho 15-954 A - 

Ho 16-663  ? - 

Ho 16-9013 ? + 

L 08-88 S + 

Ho 14-863 S + 

HoCP 15-525 S + 

HoCP 15-543 S + 

Ho 15-921 S +    

USDA experiment two  
  

HoCP 96-540 A - 

HoCP 17-703 A - 

Ho 17-724 A - 

Ho 17-738 A - 

Ho 17-9113 A - 

HoCP 09-804 ? + 

HoL 15-508 ? + 

Ho 17-159 ? - 

HoCP 17-702 ? + 

Ho 17-727 ? - 

L 08-88 S + 

L 11-183 S + 

HoCP 13-758 S + 

Ho 17-723 S + 

Ho 17-732 S +    

LSU experiment one 
  

HoCP 95-951 A + 

HoCP 96-540  A - 

L 06-038 A - 

L 12-201 A - 

L 14-282  A + 

US 01-040  ? - 

Ho 07-617 ? + 
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(table cont’d) 

   

Clones in four experiments Mosaic symptoms (A,S,?)a SrMV result (+,-)b 

L 08-88  ? + 

L 11-183 ? - 

L 13-234  ? + 

L 14-265  ? - 

L 14-266  ? + 

L 98-209  S + 

Ho 06-563 S + 

L 08-88  S + 

Ho 08-730  S + 

L 14-275  S +    

LSU experiment two 
  

HoCP 96-540 A - 

L 08-88 A - 

HoCP 09-804 A - 

L 11-183 A - 

L 08-88 #1 S + 

L 08-88 #2 S + 

Ho 09-832 S + 

HoCP 13-723 #1 S + 

HoCP13-723 #2 S + 

Sorghum 'Rio' #1 S + 

Sorghum 'Rio' #2 S + 
a Leaf samples were recorded as asymptomatic (A), symptomatic (S), or uncertain (?) for mosaic 

symptoms.  
b Leaf samples were tested for SrMV using RT-PCR. A positive result = + and a negative result 

= -. Presence of a visible band in electrophoresis gel at 871 bp size = +; absence of expected 

band = -.  

 

4.5. Discussion 

The observation of mosaic symptoms in advanced experimental clones of the sugarcane breeding 

program indicated that susceptibility in some cases had not been detected during early stages of 

selection. This finding further suggested that there could be some level of undetected 

susceptibility in the current parent populations in the breeding program. The long-term absence 

or low percentage of mosaic in experimental clones has made detection more difficult, 



65 

 

particularly as new personnel work in the breeding program. The disease is difficult to detect at 

low levels, and symptoms are readily seen only in young leaves of plants at immature stages of 

growth. The current outbreak indicated a need for greater scrutiny of mosaic resistance in parents 

and subsequent evaluation of progeny in selection.  

 Mechanical inoculations were conducted in the greenhouse to obtain mosaic resistance 

reactions for the commercial and basic breeding recurrent parents in order to determine whether 

mosaic susceptibility was unknowingly permeating these populations. The inoculations of the 

USDA commercial and basic populations were successful and detected varying levels of mosaic 

susceptibility in both populations. The check clones (resistant HoCP 96-540, moderately 

susceptible HoCP 09-804, and highly susceptible L 08-088 and S. bicolor ‘Rio’) included in the 

inoculations responded as expected, indicating that the mechanical inoculations were capable of 

accurately detecting different levels of susceptibility in the clones with unknown levels of 

susceptibility.  

 Clones with varying levels of susceptibility were detected in all series of both basic and 

commercial breeding populations. The frequency of susceptibility varied some among different 

series of the commercial parent population but occurred at undesirably high levels throughout. 

An evaluation of mosaic susceptibility in the parentage of susceptible clones indicated that 

approximately 40% of these clones had two of the same parents, HoCP 01-517 and Ho 09-831, 

in common. Mosaic susceptibility was detected in the basic breeding population, but the 

frequency of susceptibility was lower than for the commercial parent population. This result 

indicates that the basic breeding program will continue to be a valuable resource for the 

continued incorporation of resistance to mosaic.  
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Because mechanical inoculations had not been conducted in years, it was necessary to 

evaluate the reliability of the method and repeatability of the results. Further optimization of the 

methodology related to plant production, source of inoculum, virus extraction, and inoculation 

method may be possible. Due to a low bud germination rate, a few clones could not be assigned a 

rating due to an inadequate number of plants to provide confidence in the results. The evaluation 

of infection in six plants per clone allowed enough infection percentage intervals to assign 

resistance reaction types capable of distinguishing a range of ratings from highly resistant to 

highly susceptible. The degree of correlation of these ratings with responses in the field due to 

natural infection will need to be determined over time.  

Repeatability of clone resistance reactions is also an important concern. In this study, 

repeatability was only evaluated in a small number of clones, but it was shown to be variable for 

some clones. Twenty of 27 (74%) clones did not vary between a resistant and susceptible rating 

in the repeat inoculations, but 5 of 27 (18.5%) of the clones developed some level of mosaic 

infection following one inoculation but not the other demonstrating that escapes are possible. 

Therefore, clone resistance ratings will need to come from multiple inoculations to ensure the 

assignment of accurate ratings, particularly highly resistant ratings. 

A final consideration potentially affecting accurate determination of clonal resistance 

levels by inoculation would be how reliably virus-infected plants develop visible mosaic 

symptoms. To evaluate this, leaf samples were collected from a subsample of clones to 

determine SrMV infection association with visible symptom expression by RT-PCR. All samples 

classified as symptomatic tested positive for SrMV. All samples classified as asymptomatic from 

the USDA experiments tested negative. In the LSU experiments, 2 of 9 (22.2%) asymptomatic 

samples tested positive, but leaf symptoms of nutrient deficiency made it difficult to evaluate 
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mosaic symptoms. Overall, a small proportion of plants were considered uncertain as to whether 

they were symptomatic or asymptomatic (1.4% across the USDA experiments and 5.9% across 

the LSU experiments that exhibited nutrient deficiency symptoms). Testing of leaf samples from 

these plants found that 1 of 2 (50%), 3 of 5 (60%), and 4 of 7 (57%) of these samples tested 

positive for SrMV within the first and second USDA and first LSU experiments, respectively. 

These results indicate confusion is possible in visual evaluation of mild mosaic symptoms for 

some clones, and the possibility of a low level of error exists in the evaluations. Providing 

optimal growing conditions for the inoculated plants to allow symptoms to develop is therefore 

very important for insuring the most accurate visual evaluation possible.  

The results from the mechanical inoculations to screen for mosaic susceptibility in the 

commercial and basic breeding programs’ recurrent parents of the sugarcane breeding program 

indicate that this method is needed to accurately monitor and maintain mosaic resistance when 

natural disease pressure is low during the selection program. Resistance ratings determined by 

mechanical inoculation do not take into account host interactions with aphid vectors that could 

affect disease in the field. However, the mechanical transmissibility of the virus provides the 

opportunity to obtain valuable information concerning host resistance to the virus. Information 

gained from these inoculations provided a current status of mosaic susceptibility in the breeding 

germplasm. This information will allow breeders to eliminate some obvious sources of 

susceptibility then make informed crosses with agronomically desirable parents with moderate 

susceptibility that will minimize the impact of mosaic on the program. Many clones in the 

breeding germplasm exhibited resistance, so successful control of mosaic through the 

deployment of host plant resistance should be maintainable in the future. 
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CHAPTER V. CONCLUSIONS 

Following the detection of mosaic infections in advanced experimental clones of the breeding 

program and a recently released cultivar, HoCP 09-804, multiple research objectives were 

undertaken to address the extent and causes of the outbreak and prevent it from re-emerging as 

an important problem in the Louisiana sugarcane industry. The research undertaken led to the 

following conclusions:  

• Field surveys determined that mosaic was irregularly distributed in the Primary and 

Secondary Stations of the American Sugar Cane League Variety Release Program and 

breeding program Outfield trials, occurring in only three of five production areas, and that 

the incidence of mosaic at the locations where it was detected was generally low.  

• The reverse transcription polymerase chain reaction (RT-PCR) assay demonstrated that there 

is an association between visual mosaic symptoms and virus infection, and this finding 

provided confidence in the survey incidence results that were based on visual observation of 

symptomatic plants. The RT-PCR results also determined that Sorghum mosaic virus (SrMV) 

is the current causal virus species of mosaic in Louisiana.  

• A runs analysis of infected plants within rows at surveyed locations detected frequent 

aggregation of infection, and these results along with the geographic distribution of mosaic 

suggest that the mosaic infections detected during the surveys resulted from planting infected 

seed-cane. 

• Disease incidence did not increase across three crop years, so high rates of disease increase 

due to aphid transmission of the virus are not likely under current conditions.  

• Foliar and germination recovery from mosaic was determined to be variable in modern 

clones. L 10-147 exhibited a higher frequency of both foliar and germination recovery than 
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HoCP 09-804. The extent of recovery observed was more often partial than complete for 

both clones. The frequency of germination recovery decreased in one ratoon crop for both 

HoCP 09-804 and L 10-147, but the expression of recovery in ratoon crops needs further 

study. 

• L 10-147 exhibited more germination recovery in plants produced from buds on planted 

stalks that exhibited foliar recovery, but additional research is needed to determine if there is 

a consistent association between foliar and germination recovery.  

• Negative RT-PCR assay results suggested that most recovered plants may no longer be 

infected by SrMV, suggesting that recovery from mosaic is not only a loss of symptoms.  

• Mosaic impact on yield varied between the two study clones, negatively affecting bud 

germination and yield components in the cultivar HoCP 09-804 but not L 10-147. 

•  L 10-147 exhibited both a higher frequency of recovery and a lower yield loss than HoCP 

09-804. However, additional research is needed to determine if there is an association 

between recovery potential and yield loss.  

• Recovery could be a factor affecting disease management since it may decrease mosaic 

incidence in commercial plantings.  

• Mechanical inoculations revealed variable levels of susceptibility to mosaic within the basic 

and commercial breeding program’s parent populations and allowed detection of sources of 

resistance and susceptibility in the sugarcane breeding program.  

• Limited inoculation repeatability results suggested infection escapes are possible and 

additional optimization of the mechanical inoculations is needed to improve the repeatability 

of results and to determine the correlation between resistance ratings assigned from 

inoculations and field responses.   
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• A considerable level of resistance to mosaic is present in the current breeding germplasm, 

particularly the basic breeding parent population, so it should be possible to continue the 

management of mosaic through host plant resistance. The information gained from these 

inoculations will allow sugarcane breeders to remove stays in the program and make 

informed crosses when using susceptible parents.  
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APPENDIX A. SRMV RT-PCR RESULTS FROM FIELD SURVEY LOCATIONS 

APPENDIX A.1: Locations from which leaf samples were collected and tested for Sorghum mosaic virus (SrMV) by RT-PCR, the number 

of samples collected, and the percentage of virus positive samples. a 

Year Parish Location 
Crop cycle 

year 
Clone 

Number of 

asymptomatic 

samples 

Percent 

positive 

SrMV 

Number of 

symptomatic 

samples 

Percent 

positive 

SrMV 

2016 Assumption Cedar Grove First ratoon HoCP 09-804 - - 4 100 

2016 Assumption Lula First ratoon HoCP 09-804 8 0 - - 
2016 St. Martin Huey Dugas First ratoon HoCP 09-804 5 0 - - 
2016 Assumption Carmouche Plant cane HoCP 09-804 5 0 - - 
2016 Assumption Cedar Grove Plant cane HoCP 09-804 - - 8 100 

2016 Assumption Glenwood Plant cane HoCP 09-804 27 0 9 100 

2016 Assumption Little Texas Plant cane HoCP 09-804 10 0 11 100 

2016 Assumption Thibodaux Brothers Plant cane HoCP 09-804 14 0 10 100 

2016 Assumption Thibodaux Brothers Plant cane HoCP 09-804 10 0 13 100 

2016 Lafourche McCloud Plant cane HoCP 09-804 10 0 10 100 

2016 Pointe Coupee John Good Plant cane HoCP 09-804 12 0 7 100 

2016 St. James Bon Secour Plant cane HoCP 09-804 10 0 9 100 

2016 St. James Martin & Poche Plant cane HoCP 09-804 9 0 8 100 

2016 St. John Glendale Plant cane HoCP 09-804 18 0 - - 
2016 Terrebonne Naquin Plant cane HoCP 09-804 13 0 11 100 

2016 
West Baton 

Rouge 
Robert Morris Plant cane HoCP 09-804 17 0 15 100 

2016 Assumption Landry Introduction L 10-147 5 0 5 100 

2016 Assumption Little Texas Introduction L 10-147 3 0 - - 
2016 Assumption Little Texas Introduction L 10-147 - - 3 100 

2016 Pointe Coupee Beaud Introduction L 10-147 3 0 3 100 

2016 Rapides Harper Introduction L 10-147 - - 5 100 

2016 St. Martin Levert St. John Introduction L 10-147 - - 5 100 

2016 Terrebonne Naquin Introduction L 10-147 3 0 3 100 

2016 Assumption Little Texas Plant cane L 11-183 5 0 5 100 
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2016 Assumption Little Texas Plant cane L 11-532 12 0 11 100 

2016 Assumption Little Texas Plant cane Ho 12-626 1 0 1 100 

2016 Assumption Little Texas Plant cane Ho 12-671 4 0 3 100 

2016 Assumption Landry Introduction L 13-242 2 0 2 100 

2016 Assumption Glenwood Introduction L 13-269 - - 4 100 

2017 Assumption Cedar Grove First ratoon HoCP 09-804 8 0 8 100 

2017 Assumption Glenwood First ratoon HoCP 09-804 4 0 4 100 

2017 Assumption Little Texas First ratoon HoCP 09-804 8 0 7 100 

2017 Assumption Thibodaux Brothers French First ratoon HoCP 09-804 12 8 6 100 

2017 Lafourche McCloud First ratoon HoCP 09-804 5 0 5 100 

2017 Lafourche Raceland First ratoon HoCP 09-804 7 0 10 100 

2017 Pointe Coupee Alma First ratoon HoCP 09-804 10 0 10 100 

2017 St. James Blackberry First ratoon HoCP 09-804 5 0 5 100 

2017 St. John Glendale First ratoon HoCP 09-804 5 0 6 100 

2017 Assumption Cedar Grove Plant cane HoCP 09-804 5 0 5 100 

2017 Pointe Coupee Alma Plant cane HoCP 09-804 8 0 8 100 

2017 St. James Blackberry Plant cane HoCP 09-804 5 0 4 100 

2017 Assumption Little Texas First ratoon L 11-183 5 0 5 100 

2017 Pointe Coupee Alma Plant cane L 11-183 1 0 1 100 

2017 Ascension Palo Alto First ratoon L 11-532 5 0 5 100 

2017 Assumption Little Texas First ratoon L 11-532 6 0 5 100 

2017 Assumption Little Texas Plant cane L 11-573 1 0 1 100 

2018 Assumption Little Texas Plant cane L 11-183 - - 1 100 

2018 Pointe Coupee Alma Plant cane L 11-183 2 0 2 100 

2018 Assumption Little Texas Second ratoon L 11-183 - - 1 100 
a - = no samples collected 
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APPENDIX B. MOSAIC MECHANICAL INOCULATION RESULTS FOR 

ALL CLONES 

APPENDIX B.1. Mosaic infection results from four greenhouse mechanical inoculation 

experiments of the basic and commercial recurrent parents for the sugarcane breeding program 

conducted in cooperation with the USDA-ARS Sugarcane Research Unit and the LSU 

Agricultural Center Sugar Research Station. 

Experiment and 

cultivar/experimental 

clone a 

Total plants b Symptomatic plants b Percent 

symptomatic 

plants b 

USDA experiment one    

HoL 14-841 4 4 100 

HoCP 14-843 6 5 83 

HoCP 14-801 6 4 67 

Ho 14-863 6 4 67 

HoCP 14-890 5 3 60 

HoCP 14-865 6 3 50 

Ho 14-864 5 2 40 

HoCP 14-876 3 1 33 

Ho 14-827 5 1 20 

HoCP 14-901 5 1 20 

HoCP 14-853 6 1 17 

HoCP 14-802 4 0 0 

HoCP 14-803 6 0 0 

HoCP 14-814 5 0 0 

Ho 14-819 6 0 0 

HoCP 14-823 6 0 0 

HoCP 14-826 4 0 0 

HoCP 14-828 5 0 0 

HoCP 14-829 6 0 0 

HoCP 14-830 6 0 0 

HoCP 14-831 5 0 0 

Ho 14-832 5 0 0 

Ho 14-836 4 0 0 

HoCP 14-844 6 0 0 

HoCP 14-855 5 0 0 

HoCP 14-867 6 0 0 

HoCP 14-878 4 0 0 

HoCP 14-885 5 0 0 

HoCP 14-892 6 0 0 

HoCP 14-897 5 0 0 
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HoCP 14-902 2 0 0 

HoCP 15-915 6 6 100 

Ho 15-921 6 6 100 

Ho 16-607 6 6 100 

HoCP 15-510 6 5 83 

Ho 16-605 5 4 80 

HoL 15-547 6 4 67 

HoCP 15-543 6 3 50 

Ho 15-918 6 3 50 

HoCP 15-991 6 3 50 

HoCP 15-525 5 2 40 

Ho 15-975 5 2 40 

Ho 15-962 6 2 33 

HoCP 15-987 6 2 33 

HoCP 15-519 5 1 20 

Ho 15-963 5 1 20 

Ho 16-609 5 1 20 

HoL 15-501 6 1 17 

Ho 15-971 6 1 17 

HoL 15-502 5 0 0 

HoCP 15-503 6 0 0 

HoCP 15-504 6 0 0 

HoCP 15-506 5 0 0 

HoL 15-508 6 0 0 

HoL 15-511 6 0 0 

HoL 15-513 6 0 0 

Ho 15-531 5 0 0 

HoL 15-534 3 0 0 

HoCP 15-537 6 0 0 

Ho 15-538 6 0 0 

HoL 15-539 6 0 0 

HoCP 15-548 6 0 0 

Ho 15-916 6 0 0 

HoH 15-926 5 0 0 

HoH 15-927 6 0 0 

Ho 15-930 6 0 0 

Ho 15-936 4 0 0 

Ho 15-938 4 0 0 

Ho 15-943 5 0 0 

Ho 15-944 6 0 0 

Ho 15-945 6 0 0 
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Ho 15-954 5 0 0 

Ho 15-957 6 0 0 

Ho 15-958 5 0 0 

Ho 15-959 3 0 0 

Ho 15-960 6 0 0 

Ho 15-964 6 0 0 

Ho 15-965 4 0 0 

Ho 15-970 6 0 0 

Ho 15-972 5 0 0 

Ho 15-979 6 0 0 

Ho 15-984 6 0 0 

Ho 15-985 5 0 0 

HoCP 15-986 5 0 0 

HoCP 15-990 5 0 0 

HoL 15-993 5 0 0 

HoL 15-994 6 0 0 

HoCP 15-996 6 0 0 

Ho 16-619 5 5 100 

Ho 16-621 6 6 100 

Ho 16-623 5 5 100 

Ho 16-631 6 6 100 

Ho 16-651 5 5 100 

Ho 16-656 6 6 100 

Ho 16-677 5 5 100 

Ho 16-9033 5 5 100 

Ho 16-9070 6 6 100 

Ho 16-9013 6 5 83 

Ho 16-9018 6 5 83 

Ho 16-9020 5 4 80 

Ho 16-638 4 3 75 

Ho 16-634 6 4 67 

Ho 16-636 5 3 60 

Ho 16-628 6 3 50 

Ho 16-641 6 3 50 

Ho 16-645 2 1 50 

Ho 16-649 6 3 50 

Ho 16-654 6 3 50 

HoCP 16-672 6 3 50 

Ho 16-9014 6 3 50 

Ho 16-9054 6 3 50 

Ho 16-648 5 2 40 
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Ho 16-666 5 2 40 

Ho 16-9049 5 2 40 

Ho 16-632 6 2 33 

Ho 16-652 6 2 33 

Ho 16-9061 4 1 25 

Ho 16-650 6 1 17 

Ho 16-653 6 1 17 

Ho 16-678 6 1 17 

Ho 16-680 6 1 17 

Ho 16-9034 6 1 17 

Ho 16-9042 6 1 17 

Ho 16-600 6 0 0 

Ho 16-601 6 0 0 

Ho 16-603 5 0 0 

Ho 16-604 5 0 0 

Ho 16-606 4 0 0 

Ho 16-608 6 0 0 

Ho 16-610 6 0 0 

Ho 16-612 3 0 0 

Ho 16-617 6 0 0 

Ho 16-618 5 0 0 

Ho 16-622 6 0 0 

Ho 16-624 6 0 0 

Ho 16-625 6 0 0 

Ho 16-626 6 0 0 

Ho 16-627 6 0 0 

Ho 16-635 6 0 0 

Ho 16-639 6 0 0 

Ho 16-642 6 0 0 

Ho 16-644 6 0 0 

Ho 16-646 5 0 0 

Ho 16-647 6 0 0 

Ho 16-657 3 0 0 

Ho 16-658 4 0 0 

Ho 16-662 5 0 0 

Ho 16-663 5 0 0 

Ho 16-664 6 0 0 

Ho 16-667 6 0 0 

HoCP 16-669 5 0 0 

HoCP 16-670 6 0 0 

HoCP 16-674 4 0 0 
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HoCP 16-675 5 0 0 

Ho 16-9003 5 0 0 

Ho 16-9004 6 0 0 

Ho 16-9005 6 0 0 

Ho 16-9006 6 0 0 

Ho 16-9007 6 0 0 

Ho 16-9008 5 0 0 

Ho 16-9009 6 0 0 

Ho 16-9010 6 0 0 

Ho 16-9011 6 0 0 

Ho 16-9012 6 0 0 

Ho 16-9015 4 0 0 

Ho 16-9016 4 0 0 

Ho 16-9017 5 0 0 

Ho 16-9019 6 0 0 

Ho 16-9021 6 0 0 

Ho 16-9022 2 0 0 

Ho 16-9023 5 0 0 

Ho 16-9024 6 0 0 

Ho 16-9025 6 0 0 

Ho 16-9026 6 0 0 

Ho 16-9027 6 0 0 

Ho 16-9028 5 0 0 

Ho 16-9029 6 0 0 

Ho 16-9030 5 0 0 

Ho 16-9031 6 0 0 

Ho 16-9032 5 0 0 

Ho 16-9035 6 0 0 

Ho 16-9036 6 0 0 

Ho 16-9037 6 0 0 

Ho 16-9038 6 0 0 

Ho 16-9039 5 0 0 

Ho 16-9040 5 0 0 

Ho 16-9041 6 0 0 

Ho 16-9043 6 0 0 

Ho 16-9044 6 0 0 

Ho 16-9045 6 0 0 

Ho 16-9046 5 0 0 

Ho 16-9047 6 0 0 

Ho 16-9048 4 0 0 

Ho 16-9050 6 0 0 
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Ho 16-9051 5 0 0 

Ho 16-9052 4 0 0 

Ho 16-9053 6 0 0 

Ho 16-9055 4 0 0 

Ho 16-9056 6 0 0 

Ho 16-9057 6 0 0 

Ho 16-9058 5 0 0 

Ho 16-9059 6 0 0 

Ho 16-9060 6 0 0 

Ho 16-9062 6 0 0 

Ho 16-9063 5 0 0 

Ho 16-9064 6 0 0 

Ho 16-9065 6 0 0 

Ho 16-9066 6 0 0 

Ho 16-9067 5 0 0 

Ho 16-9068 6 0 0 

Ho 16-9069 6 0 0     

USDA experiment two 
   

L 11-183 4 3 75 

L 11-183 1 0 0 

Ho 11-573 5 2 40 

Ho 11-573 6 0 0 

L 12-201 4 0 0 

L 12-201 3 0 0 

Ho 12-615 6 0 0 

Ho 12-615 5 0 0 

Ho 12-630 3 0 0 

Ho 12-630 4 0 0 

Ho 13-708 2 2 100 

Ho 13-708 4 3 75 

HoCP 13-758 3 1 33 

HoCP 13-758 4 1 25 

Ho 13-739 5 0 0 

Ho 13-739 6 0 0 

HoCP 13-740 6 0 0 

HoCP 13-740 5 0 0 

HoL 14-841 5 4 80 

HoL 14-841 6 4 67 

Ho 14-864 6 1 17 

Ho 14-864 6 0 0 
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HoCP 14-801 6 1 17 

HoCP 14-801 3 0 0 

HoCP 14-802 4 0 0 

HoCP 14-802 4 0 0 

HoCP 14-826 6 0 0 

HoCP 14-826 6 0 0 

HoCP 14-867 6 0 0 

HoCP 14-867 5 0 0 

HoCP 14-885 6 0 0 

HoCP 14-885 5 0 0 

HoCP 15-915 2 2 100 

HoCP 15-915 5 3 60 

Ho 15-921 5 5 100 

Ho 15-921 6 6 100 

HoL 15-508 4 1 25 

HoL 15-508 4 1 25 

HoCP 15-510 5 0 0 

HoCP 15-510 6 3 50 

HoCP 17-709 5 5 100 

Ho 17-725 1 1 100 

Ho 17-734 1 1 100 

Ho 17-756 3 3 100 

Ho 17-775 5 5 100 

Ho 17-717 5 4 80 

Ho 17-764 5 4 80 

Ho 17-9122 5 4 80 

Ho 17-9143 4 3 75 

Ho 17-768 2 1 50 

Ho 17-9150 2 1 50 

Ho 17-9155 4 2 50 

Ho 17-9161 6 3 50 

Ho 17-9160 5 2 40 

Ho 17-726 3 1 33 

Ho 17-727 3 1 33 

HoCP 17-767 3 1 33 

Ho 17-9135 3 1 33 

HoCP 17-702 4 1 25 

Ho 17-723 4 1 25 

Ho 17-748 4 1 25 

Ho 17-9157 4 1 25 

HoCP 17-715 5 1 20 
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Ho 17-743 5 1 20 

Ho 17-9114 5 1 20 

Ho 17-9149 5 1 20 

Ho 17-731 6 1 17 

Ho 17-732 6 1 17 

Ho 17-9146 6 1 17 

Ho 17-9159 6 1 17 

HoCP 17-700 5 0 0 

HoCP 17-701 2 0 0 

HoCP 17-703 5 0 0 

HoCP 17-704 6 0 0 

HoCP 17-705 6 0 0 

HoCP 17-706 2 0 0 

HoCP 17-707 3 0 0 

HoCP 17-710 4 0 0 

HoCP 17-711 6 0 0 

HoCP 17-712 6 0 0 

HoCP 17-713 5 0 0 

HoCP 17-714 4 0 0 

HoCP 17-716 4 0 0 

Ho 17-718 2 0 0 

Ho 17-720 6 0 0 

Ho 17-722 3 0 0 

Ho 17-724 4 0 0 

HoCP 17-728 4 0 0 

HoCP 17-730 4 0 0 

Ho 17-733 6 0 0 

Ho 17-737 2 0 0 

Ho 17-738 3 0 0 

Ho 17-741 2 0 0 

Ho 17-742 4 0 0 

Ho 17-744 6 0 0 

Ho 17-745 2 0 0 

Ho 17-746 3 0 0 

Ho 17-747 4 0 0 

Ho 17-749 6 0 0 

HoCP 17-750 2 0 0 

Ho 17-752 4 0 0 

Ho 17-753 3 0 0 

Ho 17-754 4 0 0 

Ho 17-755 6 0 0 
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Ho 17-757 6 0 0 

Ho 17-759 3 0 0 

Ho 17-760 5 0 0 

HoCP 17-761 6 0 0 

Ho 17-762 6 0 0 

Ho 17-763 4 0 0 

HoCP 17-765 3 0 0 

Ho 17-774 6 0 0 

Ho 17-776 4 0 0 

Ho 17-777 2 0 0 

Ho 17-9101 6 0 0 

Ho 17-9102 5 0 0 

Ho 17-9103 1 0 0 

Ho 17-9104 5 0 0 

Ho 17-9105 6 0 0 

Ho 17-9106 6 0 0 

Ho 17-9107 4 0 0 

Ho 17-9108 2 0 0 

Ho 17-9109 4 0 0 

Ho 17-9110 6 0 0 

Ho 17-9111 4 0 0 

Ho 17-9112 6 0 0 

Ho 17-9113 3 0 0 

Ho 17-9115 5 0 0 

Ho 17-9116 4 0 0 

Ho 17-9117 5 0 0 

Ho 17-9118 6 0 0 

Ho 17-9119 5 0 0 

Ho 17-9120 5 0 0 

Ho 17-9121 5 0 0 

Ho 17-9123 6 0 0 

Ho 17-9124 6 0 0 

Ho 17-9125 5 0 0 

Ho 17-9126 6 0 0 

Ho 17-9127 5 0 0 

Ho 17-9128 6 0 0 

Ho 17-9129 6 0 0 

Ho 17-9130 6 0 0 

Ho 17-9131 6 0 0 

Ho 17-9132 3 0 0 

Ho 17-9133 6 0 0 
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Ho 17-9134 6 0 0 

Ho 17-9136 6 0 0 

Ho 17-9137 6 0 0 

Ho 17-9138 6 0 0 

Ho 17-9139 6 0 0 

Ho 17-9140 5 0 0 

Ho 17-9141 6 0 0 

Ho 17-9142 4 0 0 

Ho 17-9144 5 0 0 

Ho 17-9145 5 0 0 

Ho 17-9147 5 0 0 

Ho 17-9148 6 0 0 

Ho 17-9151 6 0 0 

Ho 17-9152 5 0 0 

Ho 17-9153 4 0 0 

Ho 17-9154 5 0 0 

Ho 17-9156 4 0 0 

Ho 17-9158 3 0 0 

Ho 17-9162 1 0 0 

Ho 17-9163 5 0 0 

Ho 17-9164 6 0 0 

Ho 17-9165 6 0 0 

Ho 17-9166 1 0 0 

Ho 17-719 0 0 - 

Ho 17-721 0 0 - 

Ho 17-735 0 0 - 

Ho 17-736 0 0 - 

HoCP 17-751 0 0 -     

LSU experiment one  
   

N 27 1 1 100 

LCP 81-030 6 0 0 

LCP 81-010 0 0 - 

CP 83-644 4 2 50 

HoCP 85-845 4 0 0 

LCP 85-384 1 0 0 

LCP 86-454 5 1 20 

HoCP 91-552 2 0 0 

HoCP 92-624 6 0 0 

HoCP 92-618 4 0 0 

L 94-428 3 0 0 
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L 94-433 6 0 0 

L 94-426 0 0 - 

Ho 95-988 6 0 0 

HoCP 95-951 6 0 0 

HoCP 96-561 6 0 0 

HoCP 97-609 6 0 0 

L 97-128 5 0 0 

L 98-209 5 4 80 

L 98-207 6 0 0 

L 99-226 6 1 17 

L 99-233 6 0 0 

HoCP 00-950 2 0 0 

US 01-040 5 1 20 

L 01-283 5 0 0 

L 01-299 3 0 0 

L 01-315 5 0 0 

HoCP 01-517 1 0 0 

HoCP 01-523 5 0 0 

HoCP 02-618 6 0 0 

L 03-371 0 0 - 

HoCP 04-838 3 0 0 

HoCP 04-847 6 0 0 

L 05-306 4 0 0 

L 05-448 6 0 0 

L 05-457 1 0 0 

HoCP 05-902 5 0 0 

Ho 06-563 5 2 40 

L 06-001 5 1 20 

L 06-038 6 0 0 

L 06-040 4 0 0 

Ho 06-530 4 0 0 

Ho 06-537 6 0 0 

Ho 07-613 1 1 100 

Ho 07-617 2 1 50 

L 07-057 1 0 0 

Ho 08-717 3 3 100 

Ho 08-730 4 4 100 

L 08-090 4 0 0 

Ho 08-711 6 0 0 

Ho 09-832 6 2 33 

L 09-099 6 0 0 
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L 09-112 4 0 0 

L 09-123 1 0 0 

L 09-131 6 0 0 

HoCP 09-814 5 0 0 

Ho 09-827 4 0 0 

Ho 09-840 5 0 0 

HoCP 09-846 5 0 0 

Ho 09-9401 6 0 0 

Ho 09-9402 4 0 0 

L 10-146 1 1 100 

L 11-183 1 1 100 

L 11-147 5 0 0 

L 11-187 6 0 0 

Ho 11-532 6 0 0 

Ho 11-573 6 0 0 

Ho 11-9406 6 0 0 

Ho 11-9405 0 0 - 

L 12-218 1 1 100 

L 12-201 6 0 0 

L 12-202 4 0 0 

L 12-227 2 0 0 

Ho 12-615 6 0 0 

Ho 12-9410 6 0 0 

L 13-234 2 1 50 

L 13-242 2 1 50 

HoCP 13-726 6 3 50 

HoCP 13-723 5 2 40 

L 13-243 6 0 0 

L 13-251 6 0 0 

L 13-253 2 0 0 

Ho 13-720 4 0 0 

HoCP 13-738 6 0 0 

Ho 13-705 1 0 0 

Ho 13-755 6 0 0 

L 14-275 4 3 75 

L 14-266 3 1 33 

L 14-265 5 1 20 

L 14-264 5 0 0 

L 14-267 5 0 0 

L 14-269 2 0 0 

L 14-270 5 0 0 
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L 14-273 6 0 0 

L 14-276 6 0 0 

L 14-282 6 0 0 

L 15-337 1 1 100 

L 15-311 5 2 40 

L 15-305 6 2 33 

L 15-298 6 0 0 

L 15-300 6 0 0 

L 15-301 4 0 0 

L 15-304 1 0 0 

L 15-317 2 0 0 

L 15-319 2 0 0 

L 15-303 0 0 - 

L 15-312 0 0 - 

L 15-320 0 0 -     

LSU experiment two 
   

L 08-88 3 4 75 

HoCP 96-540 0 5 0 

Ho 08-730 0 5 0 

Ho 09-832 1 5 20 

L 11-183 0 5 0 

L 12-201 0 6 0 

L 13-251 0 6 0 

HoCP 13-723 1 3 33 

L 14-267 0 6 0 

L 14-282 0 6 0 

L 15-305 0 4 0     

Check Clones 
   

USDA experiment one 
   

HoCP 96-540 #1 0 6 0 

HoCP 96-540 #2 0 5 0 

HoCP 96-540 #3 0 6 0 

L 08-88 #1 6 6 100 

L 08-88 #2 5 5 100 

L 08-88 #3 6 6 100 

HoCP 09-804 #1 2 5 40 

HoCP 09-804 #2 2 6 33 

HoCP 09-804 #3 0 6 0 

Sorghum 'Rio' #1 6 6 100 
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Sorghum 'Rio' #2 6 6 100 

Sorghum 'Rio' #3 5 5 100 

HoCP96-540 UI 0 6 0 

L08-88 UI 0 6 0 

HoCP09-804 UI 0 6 0 

Sorghum 'Rio' UI 0 6 0     

USDA experiment two 
   

HoCP 96-540 #1 0 5 0 

HoCP 96-540 #2 0 5 0 

HoCP 96-540 #3 0 5 0 

L 08-88 #1 4 6 67 

L 08-88 #2 5 5 100 

L 08-88 #3 5 5 100 

HoCP 09-804 #1 1 4 25 

HoCP 09-804 #2 0 3 0 

HoCP 09-804 #3 1 6 17 

Sorghum 'Rio' #1 6 6 100 

Sorghum 'Rio' #2 6 6 100 

Sorghum 'Rio' #3 6 6 100 

HoCP 96-540 UI 0 3 0 

L 08-88 UI 0 5 0 

HoCP 09-804 UI 0 5 0 

Sorghum 'Rio' UI 0 6 0     

LSU experiment one 
   

HoCP 96-540 #1 6 0 0 

HoCP 96-540 #2 5 0 0 

HoCP 96-540 #3 5 0 0 

HoCP 96-540 #4 4 0 0 

HoCP 96-540 #5 4 0 0 

L 08-88 #1 3 3 100 

L 08-88 #2 2 2 100 

L 08-88 #3 5 5 100 

L 08-88 #4 6 6 100 

L 08-88 #5 5 4 80 

HoCP 09-804 #1 - - - 

HoCP 09-804 #2 6 0 0 

HoCP 09-804 #3 6 0 0 

HoCP 09-804 #4 5 0 0 

HoCP 09-804 #5 4 0 0 
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Sorghum 'Rio' #1 0 0 - 

Sorghum 'Rio' #2 0 0 - 

Sorghum 'Rio' #3 0 0 - 

Sorghum 'Rio' #4 - - - 

Sorghum 'Rio' #5 - - - 

HoCP 96-540 UI 6 0 0 

L 08-88 UI 1 0 0 

HoCP 09-804 UI 5 0 0 

Sorghum 'Rio' UI 0 0 -     

LSU experiment two  
   

HoCP 96-540 #1 4 0 0 

HoCP 96-540 #2 4 0 0 

HoCP 96-540 #3 5 0 0 

L 08-88 #1 5 2 40 

L 08-88 #2 3 0 0 

L 08-88 #3 4 3 75 

HoCP 09-804 #1 5 0 0 

HoCP 09-804 #2 5 0 0 

HoCP 09-804 #3 5 0 0 

Sorghum ‘Rio’ #1 6 6 100 

Sorghum ‘Rio’ #2 6 6 100 

Sorghum ‘Rio’ #3 6 6 100 
a UI = uninoculated 
b - = unable to evaluate 
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Jancee Rice is from the town of Arnaudville, Louisiana. She attended Beau Chêne High School 

in Arnaudville and graduated in 2012. Afterwards, she began her undergraduate studies at the 

University of Louisiana at Lafayette. While there, she participated in undergraduate research 

under the supervision of Dr. Caryl Chlan investigating the antimicrobial activity of chitinases 

using Agrobacterium-mediated plant transformations. She graduated with a B.S. in Biology in 

the fall of 2015. The following spring, she began her graduate studies at Louisiana State 

University under the supervision of Dr. Jeff Hoy. She anticipates graduating with her master’s 

degree in Plant Pathology in December 2018.  
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