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Abstract 

 Anthracnose caused by Colletotrichum sublineolum has been an economically important 

disease of sorghum (Sorghum bicolor) globally. Silicon (Si), a beneficial element found to 

alleviate heavy metal toxicity, enhance growth under stress conditions, and reduce diseases in 

several cereal crops, was used to determine its impact on anthracnose development. To study the 

effect of Si with and without a fungicide, several experiments were conducted in the greenhouse 

and field. In the initial study, different rates of Si [0 (control), 0 (lime control), 200, 400, 600, 

800 kg Si ha-1] were used in a Typic Albaqualfs soil (Alfisol, low-Si) to determine if inoculum 

densities were affected by Si levels. No differences were observed between inoculum densities of 

1*105 and 1*106 conidia ml-1 in affecting anthracnose development in the greenhouse. 

Anthracnose severity was found to be lowest in plants treated with 800 kg Si ha-1, regardless of 

inoculum density. In the second study, the effect of Si on moderately susceptible (Pioneer 

84G62) and moderately resistant (Pioneer 84P80) hybrids was also examined with a fixed 

inoculum concentration of 1*105 conidia ml-1 under greenhouse conditions. Fungicide 

(Pyraclostrobin) was also included to suppress the anthracnose development. Silicon had a 

significant effect on plant Si concentration and anthracnose development. Anthracnose severity 

was reduced as plant and soil Si levels increased. The highest Si application rate (800 kg Si ha-1) 

reduced Final Disease Severity (FDS) and Area Under Anthracnose Progress Curve (AUAPC) 

by 18 and 36% as compared to the control for the first greenhouse experiment (p<0.05). 

Likewise, 800 kg Si ha-1 reduced FDS and AUAPC of the 2nd greenhouse experiment by 76 and 

67%, respectively (p<0.001). Pyraclostrobin effectively reduced AUAPC by 50 and 36%, 

respectively, for the two greenhouse experiments. Similar Si + pyraclostrobin experiments were 

conducted under field conditions at two locations in Louisiana (Dean Lee (Inceptisols) and 
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Winnsboro (Alfisols)) with higher soil Si levels (120 µg g-1 and 40 µg g-1 respectively). Even 

though soil Si concentration increased with higher rates of Si for both fields, no significant 

increase in Si accumulation in sorghum leaves or grains was observed. At Dean Lee, 

pyraclostrobin reduced AUAPC by 44 and 39%; respectively, for Pioneer 84G62 and Pioneer 

84P80 (p<0.001). Pyraclostrobin also reduced FDS by 50 and 48%; respectively, for the two 

hybrids (p<0.001). However, pyraclostrobin had no effect in reducing anthracnose at Winnsboro.  

Yield was higher for Pioneer 84G62 than Pioneer 84P80 at Dean Lee.  

 Silicon had a greater impact in suppressing anthracnose development on low-Si soils under 

greenhouse conditions in comparison to field experiments conducted on high-Si soils. Silicon 

application plays an important role directly or indirectly in enhancing anthracnose resistance in 

sorghum, especially in soils deemed to be low or limiting in plant-available Si. Thus, further 

research needs to be conducted in various soil types to determine the need for fertilizing with Si 

for managing anthracnose development.
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Chapter 1: Introduction 

1.1 Sorghum production in USA 

Sorghum (Sorghum bicolor (L.) Moench) is an efficient, high-energy, drought-tolerant crop, 

which is generally used for either grain or forage (www.Sorghumgrowers.com, 2015). Sorghum 

grain is used primarily as a feed for livestock and for ethanol production in the United States and 

internationally. The gluten-free characteristic of sorghum makes it a good substitute for wheat 

(Triticum aestivum) for people with celiac disease. Additionally, it is used to produce cake, 

cookies, malted beverages, porridge and syrups, and unleavened bread.  Sorghum is native to 

northeast Africa; however, it is also cultivated in Australia, China, India and United States, being 

produced in 21 states. Sorghum can tolerate growing on marginal lands under adverse 

environmental conditions and its high yielding capacity has increased its scope and importance 

worldwide. It is the fifth most important cereal crop in the world economy (Sasaki and Antonio, 

2009) and third most important crop grown in United States (USDA,  2011). Grain sorghum 

production in 2015 was estimated at 15.2 million metric tons, approximately a 38% increase over 

the previous year. Likewise, the area planted to sorghum in 2015 is estimated at 3.4 million 

hectares, which is approximately a 19% increase over the previous year. Its productivity for 2015 

was five metric tons per hectare, which is a 12% increase from the previous year (USDA, 2016). 

These data show that the production of sorghum is increasing every year, because of an 

increasing demand for sorghum products.  

 

1.2 Severity of anthracnose in sorghum and other crop species 

Many diseases limit the production of sorghum cultivation, which include anthracnose 

(Colletotrichum sublineolum), charcoal rot (Macrophomina phaseolina), downy mildew 
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(Peronosclerospora sorghi), gray leaf spot (Cercospora sorghi), head blight (many fungi) and 

zonate leaf spot (Gloeocercospora sorghi). Of all the diseases, anthracnose caused by C. 

sublineolum P. Henn. (Ngugi et al., 2000; Sherriff et al., 1995; Sutton, 1980)  affects almost all 

sorghum growing areas worldwide (Wharton et al., 2001). Anthracnose is especially prevalent in 

America, eastern Africa, China, India, Pakistan, and South America (Crouch and Beirn, 2009) 

and has been found to reduce yield in excess of 50% on susceptible cultivars (Thomas et al., 

1996) particularly under warm and humid conditions (Ali and Warren, 1987).  

The genus Colletotrichum is found to infect at least 42 genera in the grass family (Crouch 

and Beirn, 2009). Anthracnose has been an economically important disease, especially in cereal 

corps. Corn (Zea mays L.) anthracnose caused by C. graminicola, was epidemic during the early 

1970s (Wheeler et al., 1974). Likewise, red rot disease of sugarcane (interspecific hybrids of  

Saccharum officinarum L.) caused by C. falcatum is one of the most destructive diseases of 

sugarcane in Bangladesh, India, Pakistan and Taiwan (Crouch and Beirn, 2009). Similarly, 

common bean (Phaseolus vulgaris L.) anthracnose (C. lindemuthianum (Sacc. and Magnus) 

which is prevalent under warm, humid climates is an important disease in the tropical and sub-

tropical regions. The pathogen can infect at any growth stage (Kumar et al., 1999; Tu, 1988) and 

can cause yield and quality loss in susceptible varieties up to 95% (Guzman et al., 1979). 

Another economically important disease is chili (Capsicum annum L.) anthracnose, which can 

cause yield loss up to 50% (Pakdeevaraporn et al., 2005). Likewise, other economically 

important diseases caused by Colletotrichum are cucumber (Cucumis sativus L.) anthracnose (C. 

lagenarium (Eii. and Halst) with yield loss up to 60%  (Averre, 1980), cashew nut (Anacardium 

occidentale L.) anthracnose with more than 50% yield loss (Cardoso et al., 1994), pepper 

(Capsicum annum L.) anthracnose with losses up to 80% (Poonpolgul and Kumphai, 2007), 
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lentil (Lens culinaris Medik.) anthracnose (C. truncatum (Schwein.) causing 60-70% losses 

(Morrall and Pedersen, 1991; Morrall et al., 1990) and watermelon (Citrullus lanatus (Thunb.) 

Matsum. & Nakai) anthracnose (C. lagenarium) with losses up to 63% (Amin and Ullasa, 1981). 

 

1.3 Sorghum anthracnose (Symptoms and Fungal Morphology) 

Sorghum anthracnose was reported in United States for the first time in 1911 in Texas (Ali 

and Warren, 1987). This fungus occurs in its mitosporic form and is found in crop debris and 

infected seeds as mycelium, conidia or sclerotia (Casela and Ferreira, 1998; Zanette et al., 2009). 

The pathogen may overwinter in soil and decaying plant residues as acervuli, melanized 

hyphopodia, sclerotia, micro-sclerotia and mycelia. The fungus, C. sublineolum, is capable of 

surviving in crop residues for 1.5 years, and in sorghum seeds at room temperature for around 

2.5 years (Crouch and Beirn, 2009). The pathogen shows conidial dimorphism and hence 

produces two kinds of conidia, falcate and oval (Souza-Paccola et al., 2003). Transmission of the 

pathogen occurs through the transfer of falcate conidia, especially through water or rain drops 

(Crouch et al., 2009). Colletotrichum sublineolum also produces oval conidia that are smaller 

than falcate conidia (Panaccione et al., 1989). Even though oval conidia are present in the lesions 

and infected tissue, their role is unknown (Crouch and Beirn, 2009; Sukno et al., 2008).  

The pathogen infects leaves, leaf sheaths, stalks, peduncles, panicles and grains (Ali and 

Warren, 1987; Resende et al., 2009). The infection initially appears particularly in leaves as 

small tan to reddish purple circular or elliptical spots (Warren, 1986). Gradually, the spots 

enlarge and coalesce where the center of the spots turns ashy-grey as the tissue dies. The leaf 

lesions are often small but numerous. The midrib also becomes discolored. Eventually, after 

heading, the stalks and peduncle also become infected. Lesions on the stem surface generally are 
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circular with a red to black border with a greyish center, which later penetrate to the center of the 

stem. Red to white marble symptoms are observed when the stems are cut longitudinally. 

Acervuli are produced in the center of leaf and stem surface lesions (Marley et al., 2001). 

Generally, setae are scattered within the acervuli, which can be seen easily with a 10x hand lens. 

High rainfall and relative humidity, moderate temperatures and high pathogen densities are the 

conditions that favor disease epidemics (Ngugi et al., 2000). 

 

1.4 Differences in Colletotrichum species 

Correct identification of the pathogen is the basic step in developing management strategies 

against anthracnose. The confusion about the causal agent of sorghum anthracnose hinders basic 

management strategies in disease reduction and eradication (Figueiredo et al., 2006). Sorghum 

anthracnose was known to be caused formerly by Colletotrichum graminicola (Ces.), the 

pathogen responsible for causing anthracnose disease in cereals and maize. But the conidial 

morphology and rDNA sequences have  concluded that the maize pathogen does not resemble 

the one causing anthracnose in sorghum; therefore, Colletotrichum sublineolum became the 

accepted name (Souza-Paccola et al., 2003). Isolates of Colletotrichum from maize and sorghum 

have been described as two separate species (Sutton, 1980).  Maize isolates were described as C. 

graminicola whereas the sorghum isolates were referred to as C. sublineolum because the two 

species were morphologically different (Hsiang and Khan, 2003; Vaillancourt and Hanau, 1992). 

Likewise, the results of rDNA sequences, DNA fingerprints, appressorial morphology and 

mating tests showed differences between C. sublineolum and C. graminicola (Souza-Paccola et 

al., 2003; Sutton, 1968). The sclerotia of the two species also were different in shape and size. 

The species were not interfertile and could be distinguished by molecular markers (Vaillancourt 
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and Hanau, 1992). These species of Colletotrichum are found to be host specific and the isolates 

infecting maize were not pathogenic to sorghum and the sorghum isolates were not pathogenic to 

maize (Ali and Warren, 1987). Even if C. sublineolum is listed as the causal agent of anthracnose 

of several hosts, the results from molecular phylogenetic analysis show that the host range for 

this species is limited to sorghum species, both wild and cultivated (Crouch and Beirn, 2009).  

  

1.5 Silicon, its uptake, transport and deposition in plants 

Silicon (Si) is the second most abundant element in the earth’s crust after oxygen (Epstein, 

1999). Monosilicic acid/orthosilicic acid is the form of Si available for plant uptake. Silicon is 

deposited in cell walls, intercellular spaces of root and leaf cells and bracts. In sorghum, it is also 

deposited in the endodermal cells of roots and also on the outer shoot cell wall (Hattori et al., 

2003) in forms of silica gel SiO2.nH2O. Silicon is immobile and not redistributed to actively 

growing tissues; hence, older leaves accumulate more Si. Silicon is deposited below the cuticle 

as a cuticle-Si double layer and will polymerize once the concentration of monosilicic acid 

exceeds 2 mM (Gao et al., 2004).  

There are three proposed modes of Si uptake in plants: energy dependent process or the 

active mode, energy independent process or the passive mode and rejective mode which is 

slower than the water uptake (Takahashi et al., 1990). Active mode which includes the 

involvement of several transporter genes in Si uptake, accounts for the major differences in Si 

accumulators from Si excluders.  Several transporter genes which are mainly expressed in roots 

are involved in uptake and translocation of Si in Si-accumulating plants, such as barley 

(Hordeum vulgare L.), maize (Zea mays L.) and rice (Oryza sativa L.) (Ma, 2007, 2009). Ma and 

his colleagues (2006 and 2007) found two transporters (influx and efflux) in Si uptake by the rice 
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roots. An influx transporter or Low Si-1 (Lsi1) mediates passive transport of Si across the plasma 

membrane between external source and plant cells and into the xylem. Efflux transporter or Low 

Si-2 (Lsi2) facilitates active transport of Si out of the plant cells. Therefore, once absorbed by 

plant roots, subsequent Si transport from root cortex to the stele is carried out. Silicon is then 

transported as silicic acid to the shoots through transporters (Lsi6 in rice) and the transpiration 

stream in xylem. The transporter responsible for xylem loading of Si has not yet been identified. 

However, a transporter named Lsi6 (Low silicon-6) was localized at the adaxial side of xylem 

parenchyma cells of leaf blades and leaf sheaths and found responsible for xylem unloading. 

Even though the function of these genes are the same in all crops, the different expression pattern 

and cell-type specificity of localization are the key factors that determine differences in Si uptake 

capacity of these species. Apart from the active mode, passive mode of Si uptake includes 

diffusion which includes movement of ion from higher concentration to lower concentration and 

mass flow which includes transportation of nutrients along with water to the root surface 

(Elawad and Green, 1979; Yoshida, 1975). 

 

1.6 Silicon as a beneficial nutrient 

Silicon is a beneficial plant nutrient and not only suppresses diseases and pests but also 

increases the resistance to lodging, and drought as well as dry matter accumulation in rice and 

cucumber (Datnoff and Rodrigues, 2005; Vasanthi et al., 2014). Silicon application helps in 

alleviation of heavy metal stress and improves salt tolerance of a number of grain crops (Yin et 

al., 2013). 
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1.6.1 Silicon’s role in minimizing abiotic stresses  

Plants of the Poaceae family, especially grain crops, are Si accumulators (Vasanthi et al., 

2014). There are various physiological and metabolical benefits of Si application in plants.  

These include photo assimilation of carbon thus promoting the assimilation of carbon to rice 

panicles, improvement in salt tolerance and water balance of crops and reduction in the sodium 

ion accumulation and osmotic stress which are the effect of increase in salt concentration in the 

plants (Yin et al., 2013). Likewise, endodermal silicification in roots helped to prevent water 

movement from the stele and thus, ultimately increasing the drought tolerant capacity of 

sorghum (Lux et al., 2002) as well as inducing root elongation (Hattori et al., 2003). 

Furthermore, use of Si reduced carcinogen arsenic uptake in rice along with yield enhancements 

(Fleck et al., 2013).  

Apart from the physiological benefits, Si accumulation in plants also increases rigidity and 

strength of the stem, prevents lodging of the grain crops, maintains water balance and reduces 

transpiration loss (Vasanthi et al., 2014). In sorghum, Si  increases grain yield together with an 

increment in total biomass (Resende et al., 2013; Yin et al., 2013). In rice, according to Datnoff 

and his colleagues (1992), yield was increased by 53% for plants growing in silicon-amended 

soils compared to those non-amended. 

 

1.6.2 Role of silicon in minimizing biotic stress 

 Application of Si to plants will delay pathogen infection and allow more time for the plant to 

develop a mediated defense response (Resende et al., 2013). This mediated response can result in 

the production of phenolics and phytoalexins, and Pathogenesis Related (PR) proteins, which are 

associated with increase in host-resistance (Fortunato et al., 2012; Rodrigues et al., 2004;2005) 
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and can efficiently reduce disease severity of various crops (Datnoff et al., 2007). Silicon 

promotes biosynthesis of defense compounds such as terpenoids and alkaloids (Epstein, 2009). 

Accumulation of peroxidase, glucanase and PR-1 transcripts resulted in limited colonization by 

Magnaporthe grisea in epidermal cells of rice supplied with Si (Rodrigues et al., 2005). The 

deposition of Si below the cuticle forms a cuticle-Si double layer which acts as a mechanical 

barrier against pathogen penetration (Yoshida, 1975). Severity of several economically important 

rice diseases such as brown spot, leaf scald, rice blast, sheath blight and stem rot were reduced 

with Si fertilization (Datnoff et al., 1997, 1992, 1991; Nanayakkara et al., 2008a). Likewise, the 

intensity of soil-borne diseases in cucumber, bell pepper and tomato (Solanum lycopersicum L.) 

plants were also reduced by Si fertilization (Belanger et al., 1995; Cherif et al., 1994, 1992; 

Dannon and Wydra, 2004; French-Monar et al., 2010). Silicon amendments increased resistance 

against leaf spot in bermudagrass (Datnoff and Rutherford, 2004). Silicon had an active role in 

enhancing wheat resistance against powdery mildew (Belanger et al., 2003). Furthermore, 

antifungal activity of Si by damaging the plasma membrane of some fungi such as Penicillium 

digitatum, resulting in leakage of protein and sugar, was effective in controlling green mold in 

citrus fruit (Liu et al., 2010), suggesting the beneficial aspects of Si in controlling postharvest 

diseases. 

 In the banana-Fusarium pathosystem, Si increased host resistance by reducing the relative 

lesion length (RLL) and asymptomatic fungal colonized tissue (AFCT). Increased resistance was 

also associated with enzymatic activities, pigments, and hydrogen peroxide concentration.  

 Silicon amendment in the soil where perennial ryegrass (Lolium perenne L.) was grown 

resulted in decreasing disease incidence and disease severity of gray leaf spot, regardless of Si 

sources used (Nanayakkara et al., 2008b).  
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 In a study of gray leaf spot (Magnaporthe grisea (Hebert)) of St. Augustinegrass 

(Stenotaphrum secundatum (Walter) Kuntze), components of host resistance such as incubation 

period, latent period, lesion number, lesion area, daily rate of lesion expansion and number of 

conidia per lesion were studied to better understand the role of Si in disease management (Brecht 

et al., 2004). The percent leaf area diseased was also studied as a result of the components of 

disease resistance. They discovered that only the lesion number was the component of resistance 

affected by Si application, which was reduced by 61% when compared to a Si non-treated 

susceptible cultivar. Various rates (0, 0.5, 1, 2, 5 and 10 t ha-1) of calcium silicate were used in 

this experiment, which were negatively correlated with the number of lesions. Number of lesions 

decreased significantly with an increase in rate of Si from 43 to 57%. Likewise, the percent leaf 

area diseased in the susceptible cultivar was reduced significantly (18 to 57%) with increasing Si 

rates (Brecht et al., 2007). The authors thus concluded that Si fertilization especially in soils with 

low Si content is a good management strategy for reducing gray leaf spot development in St. 

Augustinegrass. 

 For rice sheath blight development, the total number of sheath blight lesions, total area under 

the relative lesion extension progress curve, lesion height on main tiller and the overall disease 

severity were found to be drastically reduced with increasing Si rates. This effect was not due to 

calcium since the calcium content in the leaf tissue did not change (Rodrigues et al., 2003).  

 Increase in Si rates significantly increased the incubation period, reduced the number  and 

size of sporulating lesions, rate of lesion expansion, diseased leaf area and number of spores per 

lesion, ultimately reducing the epidemic rate of rice blast (Seebold et al., 2001).  



	 10 

1.7 Relation of sorghum anthracnose and silicon 

Various management practices to minimize the effect of anthracnose disease in grain 

sorghum are available, including Si application, which plays a role in minimizing biotic and 

abiotic stresses (Datnoff et al., 2007). 

 Sorghum accumulates Si in its plant tissue ranging from 0.8 to 2 dag kg-1 (Resende et al., 

2013). Silicon positively affects sorghum plants by maintaining carbon fixation, enhancing the 

antioxidant system, and increasing the defense response of the plant against C. sublineolum. 

Higher Si deposition at infection sites of C. sublineolum, accumulation in extracellular spaces, 

epidermal walls, as well as the basal cells of the trichomes, has resulted in reducing fungal 

penetration. The incubation period and the latent period of sorghum anthracnose increased in 

plants amended with Si. Likewise, the relative infection efficiency and area under anthracnose 

index progress curve (AUAPC) were reduced (Resende et al., 2009). 

 Resende and colleagues (2009) studied the effects of different Si levels on various 

components of host resistance in two sorghum lines that were resistant and susceptible to C. 

sublineolum. They used an inoculum density of 1*106 conidia ml-1 and the Si application rates 

were 0, 0.06, 0.12, 0.24, and 0.30 g Si kg-1 of soil. Although Si had no effect on the components 

of host resistance for resistant lines, all components of host resistance were affected by Si 

application for the susceptible line. A hypersensitive type resistant reaction, which limits the 

lesion growth only on the leaf blades without sporulation (Ali and Warren, 1987), was shown to 

occur in the resistant lines when inoculated with the pathogen (Resende et al., 2009). Similarly, 

Si was observed to increase the incubation period and latent period in the susceptible lines, 

which had negative correlation with the area under anthracnose progress curve. Likewise, the 

study showed that the Si content in plant tissue increased by 55 to 58% for susceptible and 
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resistant lines, respectively. The incubation period and latent period were found to be delayed 

longer at the highest Si rate. Consequently, a higher rate of Si resulted in a greater reduction in 

anthracnose development.  

 The production of a complex of phenols, whose components are the 3-deoxyanthocyanidin 

flavonoids: apigeninidin, luteolinidin, arabinosyl-5-O-apigeninidin, 7-methylapigeninidin and 5-

methoxyluteolinidin phytoalexins, are the main defense response of sorghum plants reported 

against anthracnose. These complex phenols have been demonstrated to be fungitoxic to C. 

sublineolum (Nicholson et al., 1988) and phenolic compounds in general are believed to be a 

major form of resistance (Cherif et al., 1994; Fawe et al., 1998; Rodrigues et al., 2004). 

 As observed by Resende and her colleagues (2009 and 2013), Si was significant in reducing 

infection efficiency and AUAPC and delaying fungal colonization in sorghum. Santos and 

colleagues (2014) observed similar findings where Si reduced anthracnose severity in sorghum. 

Likewise, Si has been useful with and without fungicides in minimizing several diseases (Brecht 

et al., 2004, Resende et al., 2013; Seebold et al., 2004).  

 From all of the above mentioned benefits of Si, the objective of the current study was to 

evaluate its role in minimizing sorghum anthracnose under greenhouse and field conditions in 

Louisiana. One of the major concerns with anthracnose development under greenhouse 

conditions was inoculum density. There have been several pertinent studies with various 

inoculum densities. Resende and her colleagues (2009) used 1 * 106 conidia ml-1 whereas Santos 

and his colleagues (2014) used 1* 105 conidia ml-1. Therefore, this study was conducted to: 1) 

evaluate anthracnose development at various inoculum densities in the greenhouse 2) evaluate 

the relation between soil Si concentration and Si accumulation in sorghum leaf tissues and 

sorghum grain and their impact on anthracnose development in the field, and 3) evaluate the role 
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of Si with and without a fungicide on anthracnose development in moderately susceptible and 

moderately resistant hybrids in the greenhouse and at various field locations in Louisiana.  
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Chapter 2: Effect of silicon and inoculum densities of Colletotrichum sublineolum on 
anthracnose development of grain sorghum 

 

2.1 Introduction 

 Sorghum (Sorghum bicolor (L.) Moench), the fifth most important cereal crop of world 

(Sasaki and Antonio, 2009), is grown in 21 states in USA (www.sorghumgrowers.com, 2015). 

Louisiana is one of the major sorghum growing states and a number of plant diseases such as 

anthracnose, charcoal rot and grain mold affect plant development and yield. Anthracnose caused 

by Colletotrichum sublineolum P. Henn, is the most important disease accounting for economic 

yield loss up to 28% over the past ten years, (Hollier, personal communication). This pathogen 

infects leaf, leaf sheath, peduncle, panicle as well as the grain (Gwary et al., 2003). 

Colletotrichum sublineolum survives on plant debris as conidia, mycelia or sclerotia, and is the 

source of primary infection disseminated by splashing rain on host leaves and wind (De Milliano 

et al., 1992). The disease is widespread in warm and humid climates. Foliar and stalk damage 

results in poor growth and once the panicle and grains are infected, yields per head are 

significantly reduced. As the plant approaches maturity, the disease destroys grain sorghum 

rapidly reducing seed weight and grain quality.  

Various management practices to minimize the effect of anthracnose development in grain 

sorghum are available, including silicon (Si) nutrition, which plays a role in minimizing biotic 

and abiotic stresses (Datnoff et al., 2007). Silicon, a ‘quasi-essential’ element (Epstein and 

Bloom, 2005) has been found to reduce several soil-borne diseases such as root rot of banana 

(Musa acuminata) (Vermeire et. al., 2011), Phytopthora root rot of soybean (Glycine max) 

(Guerin et. al., 2014); foliar diseases such as rice (Oryza sativa L.) blast (Seebold et al., 2000), 
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powdery mildew of wheat (Triticum aestivum) (Guevel et al., 2007); bacterial blight of rice 

(Feng et al., 2010), and leaf streak of wheat  (Silva et al., 2010).  

Anthracnose development in a controlled environment, has been induced by using a foliar 

application of leaf powder or a conidial suspension of the pathogen (Dube et al., 2010). 

However, the conidial suspension was found to be more effective than leaf powder in promoting 

anthracnose development. Dube and his colleagues also found that the optimal temperature for 

fungal development was 27oC within a controlled environment. Likewise, they also found that 

even if infection occurred in all plant growth stages, optimum disease development was found 

when the plants were inoculated at boot stage [when the head is extended into flag leaf sheath 

(50 days after emergence)]. However, plants inoculated with conidial suspension and maintained 

at 27oC at 30 days after emergence had more pronounced disease development than plants 

inoculated 10 days after emergence (Dube et al., 2010).  

 In studies conducted by Singh et al. (2006) and Perumal et al. (2008), an inoculum 

concentration of 1 * 106 conidia mL-1 was used in order to evaluate anthracnose severity, under a 

controlled environment.  Likewise, Resende et al. (2009, 2013) and Li et al. (2013) used the 

same inoculum concentration to induce anthracnose on sorghum plants. However, to induce 

anthracnose in pepper (Capsicum annum L.), Hong and Hwang (1998) used 1*104 spores mL-1. 

Also, Santos and colleagues (2014) used 1*105 conidia mL-1 to induce anthracnose development 

in sorghum. Therefore, a portion of this study was evaluated to determine if 1*106 conidia mL-1 

had a significant advantage over 1*105 conidia mL-1 in enhancing anthracnose development. 

Therefore, the objectives of this study were to evaluate the effect of Si and inoculum densities of 

C. sublineolum on anthracnose development in grain sorghum 
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2.2 Materials and Methods 

2.2.1 Greenhouse setup 

 For the greenhouse study, a low-Si soil was collected from a site in Eunice, Evangeline 

Parish, LA (30o32’50”N 92o30’33”W). The soil was Crowley-Vidrine (CV) complex and is 

classified as fine, thermic, smectitic, Typic Albaqualfs (SSURGO-USDA, 2015). The soil texture 

was silt loam to silt clay with a pH of 5.5, which is considered to be low for growing sorghum. 

Composite soil samples were analyzed for plant-essential nutrient composition using Mehlich-3 

procedure, soil pH, and texture. Table 2.1 provides the soil concentration of selected plant-

essential nutrients, sodium (Na), and Si, before planting sorghum. 

Table 2.1. Initial nutrient content and pH of soil used for the greenhouse study. 

Soil pH and Nutrient Content Value Soil Test Interpretation 

pH (1:1 soil:water ratio) 5.5 Low 

Phosphorus, mg kg-1 17.4 Low 

Potassium, mg kg-1 101 Medium 

Calcium, mg kg-1 759 V. High 

Magnesium, mg kg-1 104 V. High 

Sodium, mg kg-1 28.3 Optimum 

Sulfur, mg kg-1 9.93 Low 

Copper, mg kg-1 1.36 High 

Zinc, mg kg-1 2.73 High 

†Silicon mg kg-1 8.19 Low 

Plant essential nutrient content was determined based on Mehlich-3 extraction procedure and 
inductively-coupled plasma analysis (Mehlich, 1984). 
† Determined based on 0.5 M acetic acid, 1-hr extraction procedure followed by Molybdenum 
Blue Colorimetry (Korndorfer et al., 2001). 
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 Based on the initial soil test results in Table 2.1 and LSU AgCenter fertilizer 

recommendation for sorghum, nitrogen (N), phosphorus (P), and potassium (K) were applied at 

110, 90, and 70 kg ha-1 as urea blended with ammonium sulphate (33-0-0 N), triple 

superphosphate (TSP, 0-46-0) and muriate of potash (MOP, 45-0-0), respectively. 

 For the greenhouse experiment, plastic pots (Hummert International, Earth City, MO) with 

an inside diameter of 15 cm and volume of 4 L were used. The bulk soil sample was processed 

with all debris removed. Three kg of ground, air-dried, soil was placed in each pot. Paper coffee 

filters (Brew Rite®) were used at the bottom of the pots to prevent significant soil loss through 

drainage holes. Pots were filled with 3 kg soil reaching up to 2.5 cm from the top rim of each 

pot. Lime was not recommended because the calcium (Ca) content of the soil was high. The 

following were applied per kg of soil: 0.188 g of ammonium sulfate blended with urea, 0.108 g 

of TSP, 0.0622 g of MOP to meet the requirement for N, S, P, and K. In the study, soil was 

treated with different Si levels at 200, 400, 600, and 800 kg Si ha-1, including a check (0 Si) with 

and without lime. Wollastonite (Vansil® W10, Vanderbilt Minerals, Norwalk, CT) was used as 

source of Si and applied at 0.461, 0.922, 1.383,  and 1.844 g kg-1 of soil, respectively for the 

above target rates. Wollastonite (CaSiO3) is a powder containing 24% Si and 31% Ca. In order to 

differentiate Si effects from Ca effects, lime was incorporated into the treatment structure. In 

addition, depending on wollastonite application, lime was applied as Aglime at 0, 1.66, 1.38, 

0.92, 0.46, 0 g kg-1 of soil to pots treated with 0, 0, 200, 400, 600, and 800 kg Si ha-1, 

respectively to attain the same level of Ca equivalent across Si treatments. Pre-weighed soil 

contained in each pot was placed in a clean plastic 4 liter-zipper bag (Wal-Mart). Nutrients were 

then added and thoroughly mixed with the soil. The treated soil was then placed back to the 

corresponding pot and allowed to lay idle for a week to allow proper nutrient-soil establishment. 
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Sorghum seeds of Pioneer hybrid 84G62 were sown at four seeds per pot at a depth of 2.5 cm. 

Upon establishment, plants were thinned to two per pot. Six weeks after sowing, deficiency 

symptoms of NPK and boron (B) were observed. To correct the deficiencies, a basal application 

of Hoagland nutrient solution (Tubana, personal communication) was applied to all plants. Tap 

water (pH 8.0) was used to irrigate the plants maintaining adequate soil moisture. The plants 

were inoculated with a conidial suspension of C. sublineolum four weeks after sowing. 

 

2.2.2 Isolation of the Pathogen 

 Leaves showing symptoms of anthracnose were collected from the field, and placed in a 

moist chamber for 24 hours. Two to four cm long pieces of leaf including acervuli were cut and 

washed with 10% bleach (Wal-Mart) for two minutes for surface sterilization. The surface 

sterilized leaf pieces were then washed in sterilized double distilled water (ddH2O) for five 

minutes to remove the remaining bleach. The leaf pieces were placed on unsealed plates with 

PDA media and incubated at room temperature for 72 hours. A single acervulus was isolated and 

placed in sterilized ddH2O and stirred using a sterilized needle. Few drops of water containing 

conidia were spread using a sterilized glass rod over the surface of the PDA media. Single spore 

culture was then prepared and the pathogen was grown on PDA as a pure culture which was used 

for genomic DNA extraction. Later, the fungus was cultured on PDA for 14 days to generate an 

adequate number of conidia for the inoculation test. A haemocytometer was used to standardize 

inoculum densities.    
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2.2.3 Preparation of media for culture growth 

 In vitro culture of C. sublineolum was accomplished by growing the isolates on PDA at 28oC 

for 18-20 days. Full strength PDA was used for conidial production and was prepared by adding 

19.5 g PDA to 500 ml of distilled water. Quarter strength PDA was used for culture maintenance 

and was prepared by adding 5.625 g agar to 4.875 g PDA and 500 ml of ddH2O. The medium 

was stirred with a magnet for approximately 10 minutes and was then autoclaved at 121o C for 20 

minutes at 15 psi and then poured in petri dishes at 20-25 ml plate-1. 

 

2.2.4 Molecular identification of the pathogen using quantitative Polymerase Chain Reaction 
(qPCR) and DNA sequencing 

 Colletotrichum sublineolum was grown on PDA for a week at 28oC. Mycelia was collected 

and used to extract genomic DNA using Promega Wizard Purification Kit (Promega 

Coorporation, Madison, WI), from which, the Internal Transcribes Spacer (ITS) region was 

amplified by PCR using forward primer ITS1F (CTTGGTCATTTAGAGGAAGTAA) (Gardes 

and Bruns, 1993) and reverse primer ITS4 (TCCTCCGCTTATTGATATGC) (White et al., 

1990). Each PCR reaction contained one µl of genomic DNA (250 ng µl-1), 12.5 µl of 2* PCR 

mix (GoTaq: Green Master (Ref: M782A), Promega), 1.25 µl of 10 µM forward and 1.25 µl of 

10 µM reverse primers, and nine µl of sterilized ddH2O in a total volume of 25 µl. The PCR 

program consisted of initial denaturation at 95°C for five minutes; 35 cycles of 95°C for 45 

seconds, 55°C for 45 seconds and 72°C for one minute; and the final extension at 72°C for five 

minutes. Following, the PCR product was sent Louisiana State University School of Veterinary 

Medicine’s Genelab, Baton Rouge, LA for sequencing. Upon receipt of the ITS sequence it was 

analyzed using Basic Local Alignment Search Tool (BLAST) of National Center for 

Biotechnology Information (NCBI) database to confirm that the pathogen was C. sublineolum. 
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2.2.5 Inoculation and incubation of greenhouse-grown grain sorghum 

 Two inoculum densities, 1*105 and 1*106 conidia ml-1, were used for the experiments. The 

conidia were counted using a haemocytometer and the suspensions were collected in two 1L-

spray bottle (The Bottle Crew, West Broomfield, MI) with an addition of Tween 20 at 0.05% to 

reduce surface tension. A whole plant inoculation was performed at the fourth leaf stage by 

atomizing the conidial suspension onto all treatment plants. Following inoculation, the plants 

were bagged using a 125 L-capacity white polythene bag (Berry Plastics, Evansville, IN) for 24 

hours to maintain the relative humidity and establish fungal infection.  

 

2.2.6. Anthracnose Final Disease Severity (FDS) and Area Under Anthracnose Progress Curve 
(AUAPC) 

 Final Disease Severity (FDS) which is the final proportion of area of infected plant tissue and 

Area Under Anthracnose Progress Curve (AUAPC) which is a quantitative measure of disease 

progress over time (Madden et al., 2007) were used to assess anthracnose development. 

Beginning five days after inoculation, four anthracnose severity measurements were made at 

five-day intervals. Anthracnose severity was determined as the percentage of total leaf area 

covered by symptoms of disease for all plants in each pot using the modified diagrammatic scale 

proposed by Sharma (1978). Sharma used standard visual ratings to score approximate 

percentage of leaf area affected by anthracnose. He used a scale of 0 to 9 where leaf with no 

symptoms was rated as ‘V’ (0%) and totally affected leaf as ‘9’ (100%). Intermediate ratings 

were ‘2’ (2.5%), ‘3’ (5%), ‘4’ (10%), ‘5’ (20%), ‘6’ (35%), ‘7’ (50%), and ‘8’ (75%). However, 

in this study, only the percentage measurement was used for calculation. Percentage of 

anthracnose infection was measured for each leaf and averaged for the two plants in a pot and 

used as a single value for each sample. After the final measurement (8 weeks after sowing), the 
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plants were cut at the base and left in the greenhouse for air drying. Area Under Disease Progress 

Curve was computed using the formula (Madden et al., 2007) 

 

AUAPC =  

Where,  

n= total number of observations, yi = disease severity at the ith observation, and t= time at the ith 

observation. Since the unit for y in these studies is %, and the unit for t is days, the unit of 

AUAPC here, is %-days unit.  

 

2.2.7. Post-experiment soil silicon extraction 

The main purpose of incorporating Si sources in the soil is to increase monosilicic acid in soil 

solution. Different rates of Si fertilization affect formation of different silicic acid species. The 

concentration of monosilicic acid increases with the increase in Si application up to a limit and 

then polymerizes thus being unavailable for plants (Tubana and Heckman, 2015). Therefore, to 

understand the availability of monosilicic acid in soil solution for sorghum growth, plant-

available soil Si content was measured. To extract soil Si, soil samples were collected from each 

pot, dried, and two grams were weighed and placed in a 50-mL centrifuge tubes. A modified 

Molybdenum Blue Colorimetric (MBC) procedure as outlined by Korndorfer et al. (2001) was 

used to determine plant-available soil Si from the samples after extraction.  

a) Soil silicon extraction procedure:  

Twenty mL of 0.5 M acetic acid were added to the soil samples and placed on a reciprocal 

shaker (Eberbach; model number E6010.00) for one hour set at high speed. The samples were 

filtered through Whatman No. 1 filter paper into 50 mL centrifuge tubes, immediately after 
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shaking. A 0.5 mL aliquot from the filtered solution was pipetted into 50 mL centrifuge tubes for 

colorimetric procedure (Korndorfer et al., 1999).  

b) Colorimetric procedure: 

Two sets of Si standard series (0, 0.2, 0.4, 0.8, 1.2, 1.6, and 2.0 mg L-1) were prepared using 

0, 0.5, 1, 2, 3, 4, and 5 mL of 10 mg L-1 Si, respectively. For both sets, extracting solution was 

used as background matrix. These sets of standard series were treated similarly as the samples 

for the following procedures.  Ten mL of deionized (DI) water was added into the aliquot 

followed by 0.5 mL of 1:1 HCl: DI water solution. One mL of 10% ammonium molybdate 

({NH4}6Mo7O24·4H2O) was then added to the tubes. After five minutes, one mL of 20% 

tartaric acid was added to the samples which were then hand-shaken for 10 seconds. After two 

minutes, one mL of the reducing agent, amino napthol n-sulfonic acid (ANSA) was added. 

Deionized water was then added to the samples to make the final volume of 25 mL. The tubes 

were capped and the solution was hand shaken for 10 seconds. After five minutes, the 

absorbance reading was measured using a Hach DR 5000 spectrophotometer at 630 nm.  

  

2.2.8. Plant silicon extraction 

Plants were excised at soil level and left in the greenhouse for air drying. Plant samples were 

further dried in an oven at 65oC for 96 hours to remove residual moisture and then ground into 

fine powder using a Thomas-Wroy Laboratory Mill, Model-4 grinder.  

a) Plant Digestion Procedure: 

A modified version of Kraska and Breitenbecks’ Oven-Induced Digestion (OID) procedure 

(2010) was followed to digest the plant samples. A 100 mg sample was weighed into 50-mL 
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centrifuge tubes. Weighed samples were dried at 60oC for 15 minutes in a mechanical convection 

oven (Yamato; model number DKN600). Five drops of octyl-alchohol were added to the samples 

to reduce foaming. Two mL of 30% hydrogen peroxide (H2O2) was added. The tubes were 

tightly capped and placed in oven at 95oC for 30 minutes. Four mL of 50% sodium hydroxide 

(NaOH) was added into the samples. The samples were loosely capped and placed in the oven at 

95oC for four hours. The samples were mixed every 15 minutes using a vortex mixer during the 

4-hour digestion. The samples were removed from the oven after four hours. One mL of 5 mM 

ammonium fluoride was added and the samples were vortexed. Finally, the samples were diluted 

with DI water to make up the volume to 50 mL. 

b) Plant Si colorimetric procedure: 

The Si content in the plant digest samples was determined by the modified MBC procedure 

(Hallmark et al., 1982). Two mL aliquot of the digested solution was taken into a 50 mL 

polyethylene screw-cap centrifuge tube. Ten mL of 20% acetic acid was added to the aliquot. 

The solution was then mixed by swirling the tubes for 10 seconds. Four mL of 0.26 M 

ammonium molybdate was then added to the solution. After five minutes, two mL of 20% 

tartaric acid was added. The solution was again mixed by hand swirling for 10 seconds. After 

two minutes, two mL of the reducing agent ANSA was added. Twenty percent acetic acid was 

added to the solution to bring the final volume to 30 mL. The tubes were then capped and shaken 

by hand for 10 seconds. After 30 minutes, the absorbance reading of the samples was made using 

the UV visible spectrophotometer (Hach DR 5000) at 630 nm wavelength. Likewise, Si standard 

series consisting of (0, 0.4, 0.8, 1.6, 3.2, 4.8 and 6.4 µg Si mL-1 were prepared by pipetting 0, 

0.5, 1.0, 2.0, 4.0, 6.0, and 8.0 mL of 24 µg mL-1 Si, respectively into a 50-mL centrifuge tubes 

with a digested blank as background matrix.  



	 28 

2.2.9. Experimental design and data analysis 

 The experiment was conducted once as a factorial in a completely randomized design with 

five replications. Factors were Si rates (control, lime control, 200, 400, 600, 800 kg Si ha-1) and 

inoculum densities (1*105 and 1*106 conidia ml-1). Statistical analysis was performed using SAS 

9.4 (SAS Institute, Cary, NC, 2014). Analysis of variance was performed using PROC MIXED 

to determine the effects of Si, inoculum densities, and their interactions on measured parameters 

which are soil Si, soil pH, plant Si, AUAPC, and FDS. Orthogonal polynomial contrasts (linear, 

quadratic, cubic and quartic) analysis were performed between lime control and four rates of Si. 

Also, contrast between control and lime control was analyzed to determine if any differences 

existed. Simple linear regression analysis was performed with PROC REG procedure to 

determine the relationship between soil Si and plant Si. 

 

2.3. Results 

 2.3.1 Confirmation of pathogen 

 A BLAST search of the sequence against NCBI database showed the highest sequence 

identity to Colletotrichum sublineolum (99 % homology). The sequence was deposited in the 

Genebank database with Genebank accession number AJ301978.1. 

 

2.3.2 Effect of Si rates and inoculum densities on soil Si, pH, plant Si, AUAPC and FDS 

	 Incorporation of Si into the soil as wollastonite had a significant effect (p<0.05) on soil Si 

concentration, plant Si concentration, soil pH, AUAPC, and FDS (Table 2.2). However, there 

was no effect of inoculum densities on any of these parameters. Treatment interaction was not 

significant for soil pH, plant Si, AUAPC and FDS; however, there was a significant treatment 
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interaction effect for soil Si. The two controls were significantly different for soil Si and pH. 

However, there was no significant difference between control and lime control for other 

measured parameters. All the measured parameters showed distinct linear response to Si rates. 

Furthermore, soil pH, and plant Si showed quadratic response, and soil Si and AUAPC showed 

cubic response to Si rates.  

Table 2.2. Summary of two-way factorial ANOVA analyzing the effects of Si rates and inoculum 
densities on measured parameters. 

Effect Pr>F 
Soil Si Soil pH Plant Si AUAPC FDS 

Si <0.0001 <0.0001 <0.0001 0.0017 0.0009 
Control vs lime control 0.0030 <0.0001 0.2186 0.8643 0.5927 
Linear <0.0001 <0.0001 <0.0001 0.0048 0.0040 
Quadratic 0.8761 0.0100 <0.0001 0.6361 0.7769 
Cubic 0.0156 0.9920 0.1086 0.0124 0.0517 
Quartic 0.3654 0.8282 <0.0001 0.3388 0.2322 
Inoculum densities 0.2181 0.9585 0.6642 0.7349 0.4780 
Si*Inoculum densities 0.0206 0.9205 0.7571 0.7632 0.5151 
	
 

2.3.3 Effect of Si rates on soil Si and pH 

 There was a significant increase in soil Si with increasing Si rates (Table 2.2, Figure 2.1). A 

positive linear relation described the effect of Si rates on soil Si. Soil Si was highest at the 

highest Si rate, whereas the control had the lowest concentration. The two controls were 

significantly different in terms of soil Si (Table 2.2). A positive quadratic relation described the 

effect of Si rates on soil pH and pH generally increased as the Si rate increased. 
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Figure 2.1. Relationship between Si rates on soil Si and soil pH. 
	
 

2.3.4 Relationship between soil Si and pH 

 The relationship between soil Si and pH are shown in Figure 2.2. Soil with low pH (6.0) had 

the lowest Si concentration; whereas, soil Si increased with increasing Si rate when pH was 
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between 6.8-7.8. This result suggests that the effect of Si rate to plant available Si concentration 

in an acid Alfisol is more pronounced as the soil pH becomes more alkaline.  

	

Figure 2.2. Relationship between soil Si and pH. 

	
2.3.5 Relationship between soil Si and plant Si 

 A cubic relationship was observed between plant tissue and soil Si (Figure 2.3). Plant tissue 

Si increased slowly when soil Si was below 40 µg g-1, and increased at a higher rate when soil Si 

was between 40-80 µg g-1. However, plant tissue Si began to level off at about 80 µg g-1soil Si 

level.  

	

Figure 2.3. Relationship between plant and soil Si.	
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2.3.6 Effect of Si rates on FDS and AUAPC 

 A negative linear relation was observed between Si rates with FDS and AUAPC (Table 2.2, 

Figure 2.4). The two controls were not significantly different and had the highest FDS and 

AUAPC values. Likewise, the highest Si rate had lowest FDS and AUAPC values.  

	
	
 

	

Figure 2.4. Relationship between Si rates and FDS and AUAPC. 
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2.4 Discussions 

2.4.1. Effect of Si rates on plant-available soil silicon concentration and pH 

 There was a linear relationship between Si rates and soil Si concentration. Soil treated with 

the highest Si rate (800 kg Si ha-1) obtained the highest plant available soil Si. Lime control and 

four Si rates had similar soil pH values because the calcium content of the soil with these 

treatments was adjusted to the same level. However, the two controls were significantly different 

from each other in terms of plant available soil Si and pH (Table 2.2). Even though Si was not 

applied to both of the controls, the higher pH in lime control might have contributed to an 

increase in plant available soil Si. Apart from this, a positive relationship was observed between 

soil pH and plant available soil Si (Figure 2.2). This result is in agreement with the findings of 

Miles et al. (2014) which showed a positive relationship between soil pH and Si solubility or 

extractability. Soil Si was lowest at the lowest pH and increased when pH was between 6.8-7.8. 

Monosilicic acid is mostly available in soil (pH 6.5-8.5) but low in soil with low pH because of 

leaching (Frings et al., 2014; Haynes, 2014). Korndorfer and colleagues (2005) also explained a 

negative relationship between plant available soil Si and soil acidity, due to the decrease in 

dissolution of Si in soil. This might explain the lower Si value for the control vs. the lime 

control. Even though there was no effect of inoculum densities on plant available soil Si, a 

significant treatment interaction was observed indicating that the effect of Si rate on soil Si was 

not consistent at the two inoculum densities (Table 2.2). 

 

2.4.2. Relationship between plant tissue Si concentration with Si rates and soil Si  

 Silicon rates had a significant effect on plant Si concentration. The two controls were not 

significantly different in terms of plant Si. However, a positive relationship was observed 
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between soil Si and plant Si content (Figure 2.3). Osuna-Canizalez and colleagues (1991) found 

a similar relationship between plant and soil Si where there was a significant increase in Si 

content of rice leaf blades with increasing soil Si. Similarly, Brecht and colleagues (2004) found 

1.2 to 1.3% Si in leaves of St. Augustinegrass supplied with calcium silicate whereas, the levels 

of Si in non-amended plants were from 0.6 to 0.7%. Furthermore, Nanayakkara and colleagues 

(2008) also observed increases in Si concentration in shoot tissues of perennial grass when 

grown in soil, especially with low silicon content amended with increasing rates of either 

calcium silicate slag or wollastonite. Plant tissue Si appeared to be substantially increase when 

soil Si was between 40-60 µg g-1 (Figure 2.3). Above 65 µg g-1, plant Si began to decline. 

Depending on the soil type and crop grown, plant tissue Si may not necessarily increase with 

increasing Si application (Iller et al., 1979). With the increasing levels of applied Si, dissolution 

of the fertilizer materials in silt loam soils having low adsorption capacity may have lead to 

polymerization thus reducing plant available Si (monomeric form). Hence, even though total Si 

content of soil increases, Si might become polymerized or might remain in forms unavailable for 

plant uptake.  

 

2.4.3. Effect of silicon application and inoculation on FDS and AUAPC  

 Silicon application significantly reduced sorghum anthracnose in this study. There was a 

negative relation between Si rates and FDS as well as AUAPC. Both FDS and AUAPC values 

were lowest for sorghum treated with the highest Si rate. Anthracnose was reduced by 41% when 

compared with the control (Figure 2.4). This result is in agreement with those found by Resende 

et al. (2009; 2012) and Santos et al. (2014) who found a significant reduction in AUAPC values 

of sorghum anthracnose when plants were grown in soil amended with different levels of Si. 
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Resende et al. (2009) also found that Si rates reduced FDS along with AUAPC indirectly, 

suggesting that fungal colonization was affected with some kind of resistance mechanism of the 

host. Furthermore, Seebold et al. (2001) reported that relative rice blast infection efficiency 

reduced in a linear manner with increasing Si rates. Grey leaf spot on St. Augustinegrass was 

also significantly linearly reduced by Si application (Brecht et al., 2007).  

 Even if the application of Si to sorghum resulted in reduction in anthracnose, the mechanism 

behind the suppression was not elucidated in this study. Silicon might have acted as a physical 

barrier to prevent pathogen penetration (Yoshida, 1975). Silicon might have enhanced the 

production of phenolics and phytoalexins which would have improved the defense mechanism of 

sorghum against C. sublineolum (Resende et al., 2013). 

 No significant difference in anthracnose development was observed between the two 

inoculum densities used in this study. Resende et al. (2009, 2013) and many other researchers 

had used 1 * 106 conidia ml-1 to promote anthracnose development under controlled 

environments. However, Santos et al. (2014) used 1* 105 conidia ml-1 for infecting sorghum 

plants in Brazil. This study demonstrated that either inoculum density was effective for 

promoting anthracnose development in sorghum. 

 

2.5 Conclusions 

 This study supported other studies concerning Si’s impact on managing diseases. Increasing 

Si rates significantly reduced anthracnose of sorghum. Furthermore, a negative linear relation 

between Si rates and anthracnose development was observed in this study supporting the 

findings from previous studies. Even though other studies have used different inoculum densities 

to induce disease development, this study found no differences in inoculum densities suggesting 
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that lower inoculum densities may be used. This study aimed to evaluate Si’s role in disease 

management, however the mechanism behind the observable negative impact of Si on sorghum 

anthracnose was not elucidated. Thus, future research should focus in understanding the 

mechanism of resistance mediated by Si.  
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Chapter 3: Influence of silicon and fungicides on anthracnose development in grain 
sorghum 

 
3.1 Introduction 

Silicon is a beneficial plant nutrient that helps in minimizing several abiotic and biotic 

stresses (Datnoff et al., 2007). Silicon application helps in alleviation of heavy metal stress and 

improves salt tolerance of a number of grain crops (Yin et al., 2013). It also increases resistance 

to lodging, and drought as well as dry matter accumulation in rice and cucumber (Datnoff and 

Rodrigues, 2005; Vasanthi et al., 2014). Likewise, Si has been found to reduce severity of 

several economically important diseases of rice such as brown spot, leaf scald, rice blast, sheath 

blight and stem rot (Datnoff et al., 1997; Datnoff et al., 1991; Datnoff et al., 1992). It also 

reduced incidence and severity of gray leaf spot in perennial ryegrass (Lolium perenne L.) 

(Nanayakkara et al., 2008). Furthermore, Si application increased host-resistance against 

Fusarium wilt of banana (Musa sp.) (Fortunato et al., 2012). Silicon amendments increased 

resistance against leaf spot in bermudagrass (Datnoff and Rutherford, 2004); powdery mildew in 

wheat (Belanger et al., 2003). Silicon has been found to reduce diseases either by delaying fungal 

infection to allow more time for the plants to develop defense mechanisms or by acting as a 

mechanical barrier against pathogen penetration. (Yoshida, 1975; Polanco et al., 2012).  

 Sorghum is a Si-accumulator with Si concentrations ranging from 0.8 to 2 dag kg-1 (Resende 

et al., 2013). In sorghum plants infected by anthracnose, Si application helps in maintaining 

carbon fixation, enhancing the antioxidant system and increasing the defense response of the 

plant against C. sublineolum. Higher Si deposition at infection sites of C. sublineolum, its 

accumulation in extracellular spaces, epidermal walls as well as the basal cells of the trichomes, 

ultimately helps in inhibiting fungal penetration. The incubation period and the latent period of 
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sorghum anthracnose increased in plants amended with silicon. Likewise, the relative infection 

efficiency and area under anthracnose index progress curve were reduced (Resende et al., 2013).  

 Silicon, when applied to fungicide-treated and untreated plants, has shown significant effect 

alone or in combination in reducing diseases of beans (Phaseolus vulgaris L.), rice, and sorghum 

(Rodrigues et al., 2015; Seebold et al., 2004; Resende et al., 2012). Datnoff et al. (1997) showed 

reduction in rice blast incidence from 73% to 36% in presence of Si without fungicide (benomyl) 

and from 27% to 13% with fungicide.  Likewise, Seebold et al. (2004) found that Si alone and in 

combination with edifenphos reduced severity of leaf blast of rice by 22% and 75% when 

compared with the untreated controls. They also found that Si alone was equally or more 

effective than full rate of edifenphos in suppressing leaf blast. Furthermore, Resende et al. (2013) 

also found that Si alone and in combination with fungicide Opera effectively reduced area under 

anthracnose progress curve in sorghum by 37 and 44%, respectively.  

There has been an increasing trend of using foliar fungicides on grain sorghum over the past 

few years in most parts of Louisiana (Fromme et al., 2014). From all of the above mentioned 

benefits of Si, the objective of the current study was to evaluate the role of Si alone and in 

combination with fungicide for suppressing anthracnose development under greenhouse and field 

conditions in Louisiana.  

 

3.2 Materials and Methods 

3.2.1. Greenhouse studies 

 For the greenhouse studies, a low-Si soil was collected from a site in Evangeline Parish, LA 

(30o32’50”N 92o30’33”W). The soil was Crowley-Vidrine (CV) complex and is classified as 

fine, thermic, smectitic, Typic Albaqualfs (SSURGO-USDA, 2015). The soil texture was silt 
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loam to silt clay with a pH of 5.5, which is low for growing sorghum. Soil samples collected 

were analyzed for pH, plant-essential nutrients, sodium (Na) composition based on Mehlich-3 

procedure, and Si content based on 0.5 M acetic acid extraction procedure (Table 3.1), before 

planting sorghum. 

Table 3.1. Initial nutrient content and pH of soil used for the greenhouse study  

Soil pH and Nutrient Content Value Soil Test Interpretation 

pH (1:1 soil: water ratio) 5.5 Low 
Phosphorus, mg kg-1 20 Low 
Potassium, mg kg-1 165 Very High 
Calcium, mg kg-1 546 Very High 
Magnesium, mg kg-1 96 Very High 
Sodium, mg kg-1 41 Optimum 
Sulfur, mg kg-1 22 Medium 
Copper, mg kg-1 2.4 High 
Zinc, mg kg-1 2.1 Medium 
†Silicon (mg kg-1) 25.2 Low 

Plant essential nutrient content was determined based on Mehlich-3 extraction procedure and 
inductively-coupled plasma analysis (Mehlich, 1984). 
† Determined based on 0.5 M acetic acid, 1-hr extraction procedure followed by Molybdenum 
Blue Colorimetry (Korndorfer et al., 2001). 
 
 Based on the initial soil test results in Table 3.1 and LSU AgCenter fertilizer 

recommendation for sorghum, nitrogen (N) and phosphorus (P) were applied at 110 and 90 kg 

ha-1 as urea blended with ammonium sulphate (33-0-0 N) and triple superphosphate (TSP, 0-46-

0), respectively. Lime and potassium were not recommended because calcium (Ca) and 

potassium (K) content of the soil were high.  

 For the greenhouse experiment, plastic pots (Hummert International, Earth City, MO) with 

an inside diameter of 15 cm and volume of 4 L were used. The low-Si soil was air-dried and 

processed with all debris removed. Paper coffee filters (Brew Rite®) were placed at the bottom of 

each pot to prevent significant soil loss through the drainage holes. Pots were filled with 3 kg soil 
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reaching up to 2.5 cm from the top rim of each pot. The following were applied per kg of soil: 

0.188 g of ammonium sulfate blended with urea and 0.108 g of TSP to meet the requirement for 

N, S, and P. In the study, soil was treated with different Si rates at 200, 400, 600, 800 kg Si ha-1 

applied as wollastonite (Vansil® W10, Vanderbilt Minerals, Norwalk, CT) as source of Si at 

0.46, 0.92, 1.38, and 1.84 g kg-1 of soil, respectively. A check (0 Si) with and without lime was 

also included. Wollastonite (CaSiO3) is a powder containing 24% Si and 31% Ca. In order to 

differentiate Si effects from Ca effects, lime was incorporated into the treatment structure. In 

addition, depending on wollastonite application, lime was applied as Aglime at 0, 1.66, 1.38, 

0.92, 0.46, 0 g kg-1 of soil to pots treated with 0, 0, 200, 400, 600, and 800 kg Si ha-1, 

respectively to attain the same Ca equivalents and lime effect across Si treatments. Pre-weighed 

soil contained in each pot was placed in a clean plastic 4 L-zipper bag (Wal-Mart). Nutrients 

were then added and thoroughly mixed with the soil. The treated soil was then placed back into 

the corresponding pot and allowed to lay idle for a week to allow proper nutrient-soil 

establishment. Sorghum seeds of Pioneer hybrid 84G62 and 84P80 were sown at four seeds per 

pot at a depth of 2.5 cm. Upon establishment, plants were thinned to two per pot. Six weeks after 

sowing, deficiency symptoms of NPK, and boron (B) and zinc (Zn) were observed. To correct 

the deficiencies, a basal application of Hoagland nutrient solution (Tubana, personal 

communication) was applied to all plants. Zinc sulfate at 0.0186 g kg-1 of soil as a Zn source and 

0.618 g L-1 of boric acid was as a stock solution for B. Tap water (pH 8.0) was used to irrigate 

the plants maintaining adequate soil moisture. The plants were inoculated with a conidial 

suspension of C. sublineolum at 1*105 conidia mL-1 four weeks after sowing. 

 



	 44 

3.2.2. Field Design 

 Field experiments were conducted at two locations during June-September, 2015 in 

Louisiana. Dean Lee Research Station, Alexandria (field coordinate: 31o10’21’’ N 92o24’16’’ 

W) and Macon Ridge Research Station, Winnsboro (field coordinate: 32°08'33.0"N 

91°42'23.8"W). The soil at Dean Lee was Coushatta silty clay loam: fine-silty, mixed, 

superactive, thermic Fluventic Eutrudept (Inceptisol), whereas Winnsboro was a Gigger-Gilbert 

silt loam: fine-silty, mixed, active, thermic, Typic Glossaqualfs (Alfisol) (Weindorf, 2008).  Two 

sorghum hybrids were used at each location. Each field was divided into two parts for each 

hybrid. There were five replicates for each Si rates and the fungicide (Pyraclostrobin) (12 

treatment combinations) for each hybrid, yielding 120 plots at each location. Each plot was 

9.15*3.05 m2 at Dean Lee and 10.67*3.05 m2 at Winnsboro. Experimental design was a 

randomized complete block. There were four rows in each experimental unit. The outer rows 

acted as a border to prevent interplot interference.  Silicon was broadcasted by hand as 

wollastonite for each plot. However, only the two middle rows were used to measure disease, 

sample collection and fungicide application. Standard sorghum cultivation practices 

(www.lsuagcenter.com) were followed at each field (Table 3.2).  

Table 3.2. Sorghum cultivation practices at Dean Lee and Winnsboro, 2015. 

Cultivation Practices Dean Lee Winnsboro 
Fertilized (10/22/14) 0:18:36 NPK @ 170 kg ha-1  
Planted (6/5/15) 170,000 seeds ha-1  105,000 seeds ha-1 

Pre-emergence herbicide 
(6/5/15) 

Atrazine @ 2.93 L ha-1 
Dual II Mac @ 1.12 L ha-1 

Atrazine @ 2.34 L ha-1 

Roundup @ 2.34 L ha-1 
Charger Basic @ 1.17 L ha-1 

Fertilized (6/18/15) 30:0:0:2 NPKS @ 561 kg ha-1 120:50:50:8 NPKS before 
planting 

Insecticide (7/16/15) Transform @ 0.073 L ha-1 Baythroid XL@ 0.095 L ha-1 
Insecticide (7/30/15) Sivanto @ 0.37 L ha-1 Sivanto @ 0.23 L ha-1 
Insecticide (8/5/15) Grizzly Z @ 0.22 L ha-1 Belt @ 0.22 L ha-1 
Insecticide (8/28/15) Transform @ 0.073 L ha-1 Baythroid XL @ 0.095 L ha-1 
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3.2.3. Selection of hybrids 

 The hybrids used in both greenhouse and field studies were Pioneer 84G62 and Pioneer 

84P80. Pioneer 84G62 is high yielding hybrid, and is moderately susceptible to sorghum 

anthracnose (Mascagni et al., 2012, Kruse et al., 2012). This hybrid is short-statured with plant 

height up to 133 cm, and is resistant to lodging and drought. It was declared as the best 

performing sorghum hybrid of the Pioneer team according to National Grain Sorghum Producer 

(www.myplainview.com, 2003). Pioneer 84P80 is slightly taller and moderately resistant to 

anthracnose. The yield capacity for both hybrids is almost similar (www.lsuagcenter.com,	

2013). Due to similarities in growth and yield, but with differences in anthracnose susceptibility, 

these hybrids were chosen for the current study. 

 

3.2.4. Inoculation, incubation and fungicide application for greenhouse study 

 Based on previous research reported in Chapter 2, inoculum density had no significant effect 

on anthracnose development. Hence, in this greenhouse study, plants were inoculated with 1*105 

conidia ml-1. The conidia were counted using a haemocytometer and the suspensions were 

collected in two 1L-spray bottle (The Bottle Crew, West Broomfield, MI) with an addition of 

Tween 20 at 0.05% to reduce surface tension. A whole plant inoculation was performed at fourth 

leaf stage by atomizing the conidial suspension onto all treatment plants. Following inoculation, 

the plants were covered with a white polythene bag of 125 L (Berry Plastics, Evansville, IN) for 

24 hours to maintain relative humidity and establish fungal infection.  Headline, a suspension 

concentrate (SC) fungicide (ai: pyraclostrobin) (BASF EPA Reg. No. 7969-289) was applied in 3 

mL L-1 water using a 1L-spray bottle (The Bottle Crew, West Broomfield, MI), two days after 
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inoculation in the greenhouse. Half of the plants in the greenhouse were left untreated. However, 

in the field study, pyraclostrobin was applied once at 0.44 L ha-1 at grain sorghum heading stage 

(25% flowering), to plants in middle two rows in each experimental unit using a CO2 backpack 

sprayer-40 psi@ 3.22 km hr-1 (R and D Sprayers) with a TeeJet 8002 nozzle.  

 

3.2.5. Anthracnose severity measurement, final disease severity (FDS) and area under 
anthracnose progress curve (AUAPC) calculation 

 Final Disease Severity (FDS) which is the final proportion of area of infected plant tissue and 

Area Under Anthracnose Progress Curve (AUAPC) which is a quantitative measure of disease 

progress over time (Madden et al., 2007) were evaluated. Symptoms were observed five days 

after inoculation. Hence, starting five days after inoculation, four anthracnose severity 

measurements were made at five-day intervals in the greenhouse whereas in the field, severity 

was measured twice before and twice after fungicide applications. The first assessment in the 

field was done at 53 days after planting and then at 2 week intervals. Anthracnose severity was 

determined as the percentage of total leaf area covered by anthracnose symptoms for all plants in 

each pot in the greenhouse using a modified diagrammatic scale proposed by Sharma (1978). 

Sharma used standard visual ratings to score approximate percentage of leaf area affected by 

anthracnose. He used a scale of 0 to 9 where leaf with no symptoms was rated as ‘V’ (0%) and 

totally affected leaf as ‘9’ (100%). Intermediate ratings were ‘2’ (2.5%), ‘3’ (5%), ‘4’ (10%), ‘5’ 

(20%), ‘6’ (35%), ‘7’ (50%), and ‘8’ (75%). However, in this study, only the percentage 

measurement was used for calculating anthracnose severity. Percentage of anthracnose infection 

was measured for each leaf and averaged for the two plants in a pot and used as a single value for 

each sample. After the final anthracnose assessment (8 weeks after sowing), the plants were 

excised at the soil line and left in the greenhouse for air drying.  
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 For the field study, only the top 3 leaves of the plant canopy were used for anthracnose 

assessment because of their better exposure to fungicide application. The plants were harvested 

after final anthracnose assessment. Area Under Disease Progress Curve was determined using 

the formula (Madden et al., 2007) 

 

AUAPC = 

 

Where  

n= total number of observations, yi = disease severity at the ith observation, and t= time at the ith 

observation. Since the unit for y in these studies is %, and the unit for t is days, the unit of 

AUAPC is %-days unit.  

 

3.2.6. Yield measurement and plant, grain, and soil sample collection 

 To measure soil Si, one sample of soil from the furrow between the middle two rows of each 

experimental unit was taken at a depth of 15-20 cm using a soil probe (AMS, Forestry suppliers, 

Inc., MS) at both field locations. The soil was dried before extraction. The third leaf from the top 

of the plant was collected from 5 randomly selected plants from the middle two rows to 

determine leaf Si content. All heads of the respective 5 plants were excised and used to 

determine grain Si content. Yield was measured as weight of sorghum grains harvested from all 

plants of the middle two rows of each plot.  

 For the greenhouse studies, a 15 cm- soil depth sample was collected using a soil probe from 

each pot. Whole plants were used to determine plant Si content.  
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3.2.7. Post-experiment soil Si extraction 

Plant-available soil Si content was measured based on 0.5 m acetic acid procedure 

(Korndorfer et al., 2001). Two grams of air-dried soil were weighed in 50-ml centrifuge tubes. A 

modified Molybdenum Blue Colorimetric (MBC) procedure was used to determine plant-

available soil Si. 

a) Soil Si extraction procedure:  

Twenty mL of 0.5 M acetic acid were added to the 2 g air dried soil samples and placed on a 

reciprocal shaker (Eberbach; model number E6010.00) for one hour set at high speed. The 

samples were filtered through Whatman No. 1 filter paper into 50 mL centrifuge tubes 

immediately after shaking. A 0.5 mL aliquot from the filtered solution was pipetted into 50 mL 

centrifuge tubes for colorimetric procedure (Korndorfer et al., 1999).  

b) Colorimetric procedure: 

Two sets of Si standard series (0, 0.2, 0.4, 0.8, 1.2, 1.6, and 2.0 mg L-1) were prepared using 

0, 0.5, 1, 2, 3, 4, and 5 mL of 10 mg L-1 of reagent grade Si (Fisher Scientific), respectively. For 

both sets, extracting solution was used as background matrix. These sets of standard series were 

treated similarly as the samples for the following procedures:  Ten mL of deionized (DI) water 

was added into the aliquot followed by 0.5 mL of 1:1 HCl: DI water solution. One mL of 10% 

ammonium molybdate ({NH4}6Mo7O24·4H2O) was then added to the tubes. After five 

minutes, one mL of 20% tartaric acid was added to the samples which were then hand-shaken for 

10 seconds. After two minutes, one mL of the reducing agent, amino napthol n-sulfonic acid 

(ANSA) was added. Deionized water was then added to the samples to make the final volume of 

25 mL. The tubes were capped and the solution was hand-shaken very well. After five minutes, 

the absorbance reading was measured using a Hach DR 5000 spectrophotometer at 630 nm.  
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3.2.8. Plant and grain Si extraction 

To extract plant Si, plants were excised at soil level and left in the greenhouse for air drying. 

The plant samples were further dried in an oven (Yamato; model number DKN600) at 65oC for 

96 hours to remove residual moisture. The plants were then ground into fine powder using a 

Thomas-Wroy Laboratory Mill, Model-4 grinder. A one hundred milligram sample was used for 

the plant digestion procedure (Kraska and Breitenbeck, 2010). Likewise, the grains harvest from 

the field study were ground using a coffee grinder (Sunbeam Products©). 

a) Plant Digestion Procedure:  

A modified version of Kraska and Breitenbecks’ Oven-Induced Digestion (OID) procedure 

(2010) was followed to digest the weighed plant samples. Weighed samples were dried at 60oC 

for 15 minutes in a mechanical convection oven (Yamato; model number DKN600).  Five drops 

of octyl-alcohol were added to the samples to reduce foaming. Two mL of 30% hydrogen 

peroxide (H2O2) was added. The tubes were tightly capped and placed in oven at 95oC for 30 

minutes. Four mL of 50% sodium hydroxide (NaOH) was added into the samples. The samples 

were loosely capped and placed in oven at 95oC for 4 hours. The samples were mixed every 15 

minutes using a vortex mixer during the 4-hour digestion. The samples were removed from the 

oven after four hours and one mL of 5 mM ammonium fluoride was added and the samples were 

vortexed (Fisher Vortex Mixer, Fisher Scientific) for 5 seconds. Finally, the samples were 

diluted with DI water to make up the volume to 50 mL. 

b) Plant Si colorimetric procedure: 

The Si content in the plant digest samples was determined by the modified Molybdenum 

Blue Colorimetric (MBC) procedure (Hallmark et al., 1982). Two mL aliquot of the digested 

solution was placed into a 50 mL polyethylene screw-cap centrifuge tube. Ten mL of 20% acetic 
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acid was added to the aliquot. The solution was then mixed by swirling the tubes by hand for 10 

seconds. Four mL of 0.26 M ammonium molybate was then added to the solution. After five 

minutes, two mL of 20% tartaric acid was added. The solution was again mixed by hand swirling 

for 10 seconds. After two minutes, two mL of the reducing agent ANSA was added. Twenty 

percent acetic acid was added to the solution to bring the final volume to 30 mL. The tubes were 

then capped and shaken by hand for 10 seconds. After 30 minutes, the absorbance reading of the 

samples was made using the UV visible spectrophotometer (Hach DR 5000) at 630 nm 

wavelength. Likewise, Si standard series consisting of 0, 0.4, 0.8, 1.6, 3.2, 4.8 and 6.4 µg Si mL-1 

were prepared by pipetting 0, 0.5, 1.0, 2.0, 4.0, 6.0 and 8.0 mL of 24 µg mL-1 Si, respectively, 

into a 50-mL centrifuge tubes with a digested blank as background matrix. These sets of Si 

standard series were treated similarly as the plant digested samples.  

 

3.2.9. Experimental design and data analysis 

 For greenhouse studies, the experiment was repeated once and each experiment had 2 x 2 x 6 

factorial treatment structure arranged in a completely randomized design with five replications. 

Factors were Si rates (control, lime control, 200, 400, 600, 800 kg Si ha-1), hybrid (Pioneer 

84G62 and Pioneer 84P80) and pyraclostrobin (with and without). Therefore, there were 24 

treatment combinations and five replications yielding 120 pots. Statistical analysis was 

performed using SAS 9.4 (SAS Institute, Cary, NC, 2014). Analysis of variance was performed 

using PROC MIXED to determine the effects of Si, hybrids, pyraclostrobin and their interactions 

on the following measured parameters: soil Si, soil pH, plant Si, AUAPC, and FDS. Since lime 

control and four Si rates had same Ca equivalents, but had differences in Si, orthogonal 

polynomial contrasts (linear, quadratic, cubic and quartic) analysis were performed between lime 
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control and four rates of Si. Control was not included in orthogonal polynomial contrasts. Also, 

contrast between control and lime control was analyzed to determine if differences existed 

between these two treatments. Simple linear regression analysis was performed with PROC REG 

procedure to determine the relationship between soil Si and plant Si. Coefficient of determination 

denoted by r2 was used as a measure of goodness of fit of the trend line to the data. Value of r2 as 

1, determined a perfect fit of the trend line.  

 For the field studies, treatments consisting of six Si rates, two hybrids, and two 

pyraclostrobin rates (with and without) replicated five times and laid out in randomized block 

design. Fixed effects were hybrids, pyraclostrobin, and Si rates and their interactions. Statistical 

analysis was performed in a similar manner as the greenhouse experiments. Furthermore, yield 

and grain Si were also measured as parameters apart from those listed above. Student’s t-test was 

used to identify if differences existed for fungicide and hybrids. Tukey’s test was used for 

multiple comparision of means. Pdmix800 was used to show the significant level between the 

treatments. 

 

3.3 Results  

a. Greenhouse studies 

3.3.1 Effect of Si rates, hybrids, and fungicide on soil Si and pH 

 Increasing Si rates had a significant effect (p<0.05) on both soil Si and pH. No effects of 

hybrids or a fungicide was observed for soil Si and pH. Control and lime control were 

significantly different from each other for soil pH for both experiments, however, significant 

differences were observed between the two controls only for soil Si for the first experiment. 
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Lime control and four rates of Si showed significant linear (p<0.001), and quadratic (p<0.05) 

response for soil Si and pH except for pH in experiment 2 (Table 3.3).  

Table 3.3. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
a fungicide on soil Si and pH.  

Effect Pr>F 
Experiment 1 Experiment 2 

Soil Si Soil pH Soil Si Soil pH 
Hybrid 0.0575 0.8385 0.6345 0.1840 
Fungicide 0.1105 0.0940 0.5412 0.7718 
Fungicide*hybrid 0.9814 0.8112 0.0123 0.0744 
Si levels <.0001 <0.0001 <0.0001 <0.0001 
Control vs lime control 0.1034 <0.0001 0.0002 <0.0001 
Linear <0.0001 <0.0001 <0.0001 <0.0001 
Quadratic 0.0123 <0.0001 0.0025 0.7903 
Cubic 0.0034 <0.0001 0.7700 0.0453 
Quartic 0.1903 0.0992 0.4610 0.7214 
Si levels*hybrid 0.5944 0.4188 0.7987 0.0002 
Si*fungicide 0.7688 0.9747 0.4899 0.0006 
 
 The highest Si rate had the highest soil Si concentration for both experiments (Figure 3.1). 

Soil Si increased gradually with increasing Si rates. There was a highly positive quadratic 

relation between soil Si and pH for both experiments for all six Si rates. There was a very 

positive quadratic relation between soil Si and pH for the greenhouse experiments (Figure 3.2). 

Soil Si was lowest for soil pH<6.0. However, soil Si appeared to drastically increase when the 

pH was between 6.5-7.5. 
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Figure 3.1. Effect of Si rates on (A) soil Si (B) soil pH for two experiments in the greenhouse. 
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Figure 3.2. Relationship between soil Si and pH. 
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of Si had significant linear and cubic response for plant Si content for the first experiment 

(p<0.05); whereas there were significant linear and quadratic responses for the second 

experiment (p<0.05). Treatment interaction had no effect on plant Si content. 

Table 3.4. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
a fungicide on plant tissue Si content  

Effect Pr>F 
Experiment 1 Experiment 2 

Plant Si Plant Si 
Hybrid 0.4992 <0.0001 
Fungicide 0.0984 0.9048 
Fungicide*hybrid 0.9879 0.1195 
Si levels <.0001 <0.0001 
Control vs lime control 0.2199 0.2903 
Linear <0.0001 <0.0001 
Quadratic 0.9121 0.0046 
Cubic 0.0128 0.3097 
Quartic 0.1074 0.7541 
Si levels*hybrid 0.0915 0.1903 
Si*fungicide 0.5014 0.6164 
 

 A linear relation (p<0.0001) best described the relationship between soil Si concentration and 

plant tissue Si content for both experiments (Figure 3.3). The hybrids were not significantly 

different for plant Si in first experiment. A linear relationship best described the relationship 

between plant Si and Si rates for the first experiment (Figure 3.4). However, Pioneer 84G62, the 

moderately susceptible hybrid, had a higher plant Si content for all Si rates than Pioneer 84P80 

for second greenhouse experiment only (Figure 3.4).  
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Experiment 1 

 
 
Experiment 2  

 

Figure 3.3. Relationship between soil Si concentration and plant Si tissue content. 
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Figure 3.4. Effect of Si rates on plant Si accumulation for the two hybrids combined (1st 
experiment) and separated (2nd experiment) in the greenhouse. 
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experiment (p<0.05) but were not significantly different for the second experiment. Although a 

significant linear response was observed to AUAPC in the first experiment, the cubic response 

was the best fit for AUAPC and FDS. A significant linear response was observed for AUAPC 

and FDS in second experiment. 

Table 3.5. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
fungicide on AUAPC and FDS. (* Student’s t-test used for mean comparison) 

Effect Pr>F 
Experiment 1 Experiment 2 

AUAPC FDS AUAPC FDS 
Hybrid 0.1093 0.9463 0.8052 0.4167 
*Fungicide <0.0001 <0.0001 <0.0001 0.0002 
Fungicide*Hybrid 0.0319 0.0391 0.1926 0.0869 
Si levels 0.0018 0.0255 <0.0001 <0.0001 
Control vs lime control 0.0440 0.2696 0.4090 0.5733 
Linear 0.0437 0.1084 <0.0001 <0.0001 
Quadratic 0.8102 0.5972 0.1052 0.1815 
Cubic 0.0134 0.0054 0.4122 0.1677 
Quartic 0.5624 0.3114 0.0813 0.0741 
Si levels*hybrid 0.1437 0.4144 0.0285 0.6372 
Si*fungicide 0.3784 0.6211 0.1177 0.2612 
 
 AUAPC and FDS values declined as Si rates increased for both experiments (Figure 3.5). 

The highest Si rate reduced FDS and AUAPC by 18 and 36% for first greenhouse experiment, 

whereas, FDS and AUAPC were reduced by 76 and 67% for second greenhouse experiment, 

respectively. 
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Figure 3.5. Effect of Si rates on FDS and AUAPC. 
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experiments (p<0.001 and p<0.05). Even though Si and fungicide were both effective in 

reducing disease, no interaction existed between these two factors (Table 3.5). 

 
 

  

Figure 3.6. Effect of fungicide on AUAPC and FDS. Bars with different letters under same case 
are significantly different based on Student’s t-test (p≤0.05). 
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b. Field studies 

3.3.4 Effect of Si rates, hybrids, and fungicide on soil Si and pH 

 There was a significant effect of Si rates on soil Si and pH (Table 3.6). Fungicide had a 

significant effect on both soil Si and pH at Winnsboro but not at Dean Lee. Likewise, soil pH 

was significant for hybrids at Dean Lee. Control and lime control had no significant difference in 

soil Si concentration. However, they had pH differences at Winnsboro. Lime control and the four 

Si rates had linear response to Si application rates for soil Si and pH (p<0.05).  

Table 3.6. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
fungicide on soil Si and pH. 

Effect	 Pr>F 
Winnsboro Dean Lee 

Soil Si Soil pH Soil Si Soil pH 
Hybrid 0.4067 0.1952 0.9962 0.0002 
Fungicide 0.0030 0.0222 0.7114 0.3197 
Fungicide*hybrid 0.9289 0.8630 1.0000 0.6362 
Si levels <.0001 <0.0001 <0.0001 0.0128 
Control vs lime control 0.2514 0.0027 0.2505 0.3648 
Linear <0.0001 0.0107 <0.0001 0.0171 
Quadratic 0.0962 0.1935 0.5524 0.8302 
Cubic 0.5411 0.5691 0.2331 0.4078 
Quartic 0.1849 0.4228 0.5516 0.3614 
Si levels*hybrid 0.9304 0.7196 0.9666 0.7144 
Si*fungicide 0.5590 0.7134 0.5495 0.6913 
 

 Soil Si increased in a linear manner with increasing Si rates for both locations. It was highest 

at the highest Si rate (800 kg Si ha-1) and lowest for the controls at both locations (Figure 3.7). 

Similarly, there was a linear trend for soil pH as Si rates increased. Soil pH was highest at the 

highest Si rate. Controls had the lowest pH at both locations. The relationship between soil pH 

and soil Si was more pronounced in Winnsboro and it was observed that soil Si increases 

dramatically between pH 7.5-8.2 (Dean Lee) and 6.5-7.5 (Winnsboro) (Figure 3.8). The soil Si- 

soil pH relation in Winnsboro was similar to that of greenhouse experiments (Figure 3.2).  
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Figure 3.7. Effect of Si rates on soil Si and pH at two field locations. 
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Figure 3.8. Relationship between soil Si and pH for the two field locations. 
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tissue and grain in comparison to Pioneer 84P80 (Figure 3.9). Since there was no Si effect, 

orthogonal polynomial contrast was not measured for leaf and grain Si content. No relationship 

was observed between leaf Si and soil Si at both locations (Figure 3.10). 

Table 3.7. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
fungicide on leaf and grain Si content. (* Mean comparison conducted using Student’s t-test). 

Effect Pr>F 
Winnsboro Dean Lee 

Leaf Si Grain Si Leaf Si Grain Si 
*Hybrid <0.0001 <0.0001 0.0607 0.8984 
Fungicide 0.9856 0.9404 0.5869 0.9712 
Fungicide*hybrid 0.1299 0.9660 0.1616 0.2988 
Si levels 0.5626 0.5387 0.5429 0.9566 
Control vs lime control - - - - 
Linear - - - - 
Quadratic - - - - 
Cubic - - - - 
Quartic - - - - 
Si levels*hybrid 0.7844 0.6979 0.2764 0.1867 
Si*fungicide 0.7070 0.6234 0.9542 0.3881 
 

  

Figure 3.9. Differences in leaf and grain Si content among two hybrids at Winnsboro. Bars with 
different letters under same case are significantly different based on student’s t- test (p≤0.05).  
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Figure 3.10. Relationship between soil Si and leaf tissue Si at both field locations. 
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Table 3.8. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
fungicide on AUAPC and FDS (* Student’s t-test used for mean comparison). 

Effect Pr>F 
Winnsboro Dean Lee 

AUAPC FDS AUAPC FDS 
*Hybrid <0.0001 <0.0001 <0.0001 0.0394 
Fungicide 0.6302 0.8358 <0.0001 <0.0001 
Fungicide*hybrid 0.1360 0.9559 0.0002 0.0455 
Si levels 0.7044 0.1317 0.0473 0.0048 
Control vs lime control - - 0.7775 0.8993 
Linear - - 0.0147 0.0036 
Quadratic - - 0.3151 0.0504 
Cubic - - 0.2670 0.0957 
Quartic - - 0.5407 0.3162 
Si levels*hybrid 0.8934 0.3609 0.5310 0.5175 
Si*fungicide 0.6977 0.8802 0.1983 0.0024 
 

 The moderately susceptible hybrid (Pioneer 84G62) had a higher AUAPC compared to the 

moderately resistant hybrid (Pioneer 84P80) (Figure 3.11). Pioneer 84P80 had a lower AUAPC 

with and without a fungicide. Similarly, fungicide- treated plants had lower AUAPC in 

comparison to those non-treated. Pioneer 84P80 with fungicide had the lowest AUAPC value. 

Fungicide reduced AUAPC by 44 and 39%; respectively, for Pioneer 84G62 and Pioneer 84P80. 

Similar effect of fungicide and hybrid were observed for FDS on both hybrids too (Figure 3.11). 

Fungicide reduced FDS by 48 and 50% for Pioneer 84P80 and Pioneer 84G62, respectively.  
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Figure 3.11. Effect of fungicide and hybrid on AUAPC and FDS at Dean Lee. Bars with 
different letters are significantly different based on Tukey’s test (p≤0.05). 
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Figure 3.12. Relationship between Si rates and AUAPC and FDS at Dean Lee. 
 
 The two hybrids were significantly different for anthracnose development at Winnsboro 

(p<0.001). The moderately resistant hybrid Pioneer 84P80 had 13 and 33% lower FDS and 

AUAPC values; respectively, in comparison to Pioneer 84G62 (Figure 3.13).  

y = -14.002x + 520.78
r² = 0.76397

360
380
400
420
440
460
480
500
520

Control Lime 
control

200 400 600 800

A
U

A
PC

 (%
 d

ay
s u

ni
t)

Si rates (kg Si ha-1)

y = -0.6071x + 21.417
r² = 0.50926

0

5

10

15

20

25

Control Lime 
control

200 400 600 800

FD
S 

(%
)

Si rates (kg Si ha-1)



	 69 

 

Figure 3.13. Anthracnose development (FDS and AUDPC) on the two hybrids at Winnsboro. 
Bars with different letters are significantly different based on student’s t-test (p≤ 0.05). 
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Table 3.9. Summary of two-way factorial ANOVA analyzing the effects of Si rates, hybrids and 
fungicide on grain yield at Dean Lee. 

Effect Pr>F 
Dean Lee 

Yield 
Hybrid <0.0001 
Fungicide 0.4575 
Fungicide*hybrid 0.9281 
Si levels 0.0244 
Control vs lime control 0.0523 
Linear 0.1866 
Quadratic 0.1934 
Cubic 0.0525 
Quartic 0.0160 
Si levels*hybrid 0.2950 
Si*fungicide 0.0922 
 

 

Figure 3.14. Relationship between Si rates and yield of the two hybrids at Dean Lee. 

 

y = -0.1557x + 9.2178
r² = 0.32032

y = 0.0561x3 - 0.574x2 + 1.7387x + 8.1673
r² = 0.35846

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
10.5

Control Lime 
control

200 400 600 800

Y
ie

ld
 (k

g 
ex

pt
. u

ni
t-1

)

Si rates (kg Si ha-1)

84P80 84G62



	 71 

3.4 Discussions 

3.4.1 Effect of Si rates on plant available soil Si and pH 

Soil Si and pH increased gradually with increasing Si rates for both experiments in 

greenhouse and field. Even though the control and lime control had a significant difference in 

soil Si levels for the second greenhouse experiment (Table 3.3), no differences between these 

two treatments were observed in first greenhouse experiment as well as for the field experiments. 

A quadratic relationship was observed between soil pH and soil Si for both experiments in the 

greenhouse and field. Since initial soil pH at Dean Lee was higher (>7.5) than at Winnsboro (pH 

6.0), the addition of lime (lime-control) at Dean Lee had no impact on soil pH. Hence, the 

control and lime control treatments had no pH differences at Dean Lee, but had a significant 

difference at Winnsboro. Likewise, these treatments were significantly different for soil pH in 

both greenhouse experiments where the initial soil pH was low (5.5). Initial soil Si levels were 

lower in the greenhouse (25.2 µg g-1) and at Winnsboro (40 µg g-1) and both had a low soil pH. 

However, at Dean Lee the soil Si level was greater (120 µg g-1) and had higher soil pH. These 

results are in agreement with the findings of Haynes (2014) who reported that soils with a high 

pH will have a higher soil Si level in comparison to soils having pH of 6 or lower. Low pH soils 

are believed, in part, to be lower in plant-available Si due to leaching (Haynes, 2014).  

Even though soil Si levels increased with increasing Si rates for both greenhouse experiments 

and field experiments, there was no relationship between soil Si levels and plant Si content for 

the field experiments. At Dean Lee, the soil type was an Inceptisol with high soil Si level (120 

µg g-1) while at Winnsboro, it was an Alfisol with higher soil Si level (40 µg g-1) than the low-Si 

Alfisol (25.2 µg g-1) used in the greenhouse studies. The low-Si Alfisol used in the greenhouse 

studies had a better response to Si fertilization in terms of increasing plant tissue Si content and 
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reducing anthracnose development in comparison to the Alfisol in Winnsboro. Similar results 

were observed for Histosol with low soil Si at South Florida, where sugarcane, rice and citrus 

production benefitted from Si fertilization (Elawad et al., 1982; Matichenkov et al., 1999). 

Furthermore, in India, Ultisols having low (~20.53 µg g-1) to medium (~35.76 µg g-1) soil Si 

responded better to Si fertilization than the soils having a higher (~60.0 µg g-1) Si content 

(Narayanaswamy et al., 2009). Korndorfer and his colleagues (2001) also noticed similar results 

in organic soils (Histosol) of Florida. Likewise, Si fertilization of rice grown in low Si soils 

offered promising results in terms of reducing disease susceptibility and improving yields 

(Datnoff and Rodrigues, 2005).  

Thus, different soil types may have a different response to Si application and even within the 

same soil order; soils with low Si levels will response better to Si fertilization than a soil with a 

high Si level. Apart from soil order, soil texture and cropping duration are other criteria that may 

provide information about plant-available Si status (Tubana et al., 2016). Furthermore, 

continuous farming for decades results in soils with low quantities of plant-available Si (Datnoff 

et al., 1997). 

 

3.4.2 Effect of Si rates on plant and grain Si concentration 

 A significant effect of Si rates was observed on plant Si concentration in both experiments 

conducted in the greenhouse. Moreover, a positive linear trend best described the relation 

between soil Si and plant Si content (Figure 3.3). However, no such results were observed in the 

field; there was no relationship between soil Si and leaf tissue Si content. The application of Si 

had no effect on grain Si content. This could be due to high initial soil Si level in the field 

compared to the greenhouse soil. Initial soil Si level in the fields were 40 and 120 µg g-1 for 
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Winnsboro and Dean Lee, respectively. Consequently, because of higher initial soil Si level, 

application of increasing rates of Si had no effect on both leaf and grain Si content. With this 

result, we can assume that increasing Si application rates probably has a greater influence on 

plants when grown in low-Si soil. With the increasing levels of Si application, the dissolution of 

the fertilizer materials in silt loam soils having low adsorption capacity may lead to 

polymerization thus reducing plant available Si (monomeric form) (Iller et al., 1979). Hence, 

even though total Si content of soil increases, Si might get polymerized or may remain in forms 

unsuitable for plant uptake. 

 

3.4.3 Effect of Si rates, fungicide and hybrids on anthracnose development (AUAPC, FDS) 

 The application of Si significantly reduced both AUAPC and FDS over the control in both 

greenhouse experiments (Figure 3.5). This result is in agreement with those found by Resende et 

al. (2012) and Santos et al. (2014) who found significant reduction in AUAPC values of sorghum 

anthracnose when plants were grown in low-Si soil incorporated with different Si levels. 

Resende et al. (2009) also found that Si rates reduced FDS along with AUAPC indirectly 

suggesting that, fungal colonization was affected with some kind of resistance mechanism of the 

host. Even though Si and fungicide were noted effective in reducing anthracnose in both 

greenhouse experiments, there was no significant interaction effect observed. This result 

contrasts the results of Datnoff et al. (1997) who showed reduction in rice blast incidence from 

73% to 36% in presence of Si without fungicide (benomyl) and from 27% to 13% with 

fungicide.  Likewise, Seebold et al. (2004) found significant interaction effect of Si and 

edifenphos in reducing rice leaf blast severity. They also found that Si alone was equally as 

effective as full rate of fungicide edifenphos. Furthermore, Resende et al. (2013) also found that 
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Si alone and in combination with fungicide Opera effectively reduced area under anthracnose 

progress curve in sorghum.  

 The two hybrids had no significant differences in anthracnose development in the greenhouse 

whereas, the moderately susceptible hybrid (Pioneer 84G62) had higher anthracnose 

development at both field locations (Figure 3.11, Figure 3.13). Plants were grown for a shorter 

period in greenhouse than in the field. This could be one of many possible reasons for no 

differences among hybrids in the greenhouse in terms of anthracnose development. Furthermore, 

there was a significant effect of fungicide and hybrid interaction at Dean Lee where, moderately 

susceptible hybrid without fungicide had higher anthracnose development than the susceptible 

hybrid (Figure 3.11). Similar results were observed for FDS. Final disease severity was greater 

for moderately susceptible hybrid at Dean Lee. However, fungicide was not effective in 

minimizing anthracnose at Winnsboro. The field at Winnsboro had various environmental 

challenges such as heavy aphid infestation. 

 For the field experiments, increasing Si rates were found to significantly reduced the disease 

only at Dean Lee (Figure 3.12). However, since no relationship was observed between leaf Si 

and plant available Si for both field locations, it is doubtful that Si had any influence on 

anthracnose development in the field. Application of Si in soil was found to increase availability 

of plant essential nutrients such as Calcium (Ca) and Magnesium (Mg) (Ferreira et al., 2015). 

Even though wollastonite has ideal composition of Ca and Si, some minor amounts of aluminum 

(Al), iron (Fe), manganese (Mn), magnesium (Mg), potassium (K), sodium (Na) are also found 

in wollastonite (Virta, 2004). So, Si application might have also increased availability of Ca and 

Mg. Silicate fertilizers improve soil fertility (Matichenkov and Calvert, 2002) and hence, 

improvement of soil fertility and increased availability of nutrients, might have improved 
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performance in host resistance to anthracnose. Furthermore, increase in pH with Si application 

(Figure 3.7) might have also aided the availability of Ca and Mg. Unfortunately, Ca and Mg 

were not measured in this study so it would be difficult to know whether Ca or Mg minimized 

anthracnose development.  

 

3.4.4 Effect of silicon and fungicide on yield 

 There was no yield obtained for the greenhouse experiment because the plants were grown 

for only eight weeks. There was no yield for Pioneer 84G62 in Winnsboro because of heavy 

aphid infestation which could not be controlled even with insecticide application. Furthermore, 

as mentioned earlier, because of higher initial soil Si status, and no differences in plant Si 

concentration among various Si rates, Si had no such pronounced effect on grain yield (Figure 

3.14). This result is in contrast with the research by Resende and colleagues (in 2012) on 

sorghum where yield increased with Si application. Furthermore, Pioneer 84G62 had higher 

yield than Pioneer 84P80 at Dean Lee. There was no effect of fungicide in grain yield at both 

locations. 

 

3.5 Conclusions 

	 Silicon application increased plant available Si in the greenhouse experiments. Silicon and 

fungicide were effective in reducing both AUAPC and FDS, however, no interaction effect was 

observed in reducing anthracnose development. Although soil Si had a linear relation with Si 

application for both field experiments, Si had no significant effect on leaf tissue Si, grain Si, and 

yield at both locations. There was a significant effect of fungicide and hybrid interaction on 

anthracnose development. However, fungicide had no effect on minimizing anthracnose at 
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Winnsboro. Even though statistically, anthracnose development was lower for higher rates of Si 

at Dean Lee, since there was no relation between plant available Si and leaf Si content, Si might 

have enhanced availability of beneficial nutrient such as Ca and Mg which might have ultimately 

improved performance of sorghum plants against anthracnose. Furthermore, Si showed a better 

impact on the low-Si soil used in the greenhouse along with controlled environmental conditions 

than under field conditions with soil testing higher in Si content(40-120 µg g-1). Since Si has 

been found beneficial for minimizing diseases of various crops under different soil types, future 

studies should be conducted at various field locations with different soil Si levels to determine 

which would be best for receiving Si fertilizer for minimizing anthracnose development in 

sorghum.  
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Chapter 4: Conclusions 

 Low-silicon (Si) soil, (low pH Alfisol) when amended with wollastonite, increased soil Si 

levels which increased plant tissue Si content and ultimately reduced sorghum anthracnose 

development in the greenhouse. A negative linear relationship between Si rates and anthracnose 

development also was observed in the greenhouse. Soil Si had a significant linear relationship 

with plant tissue Si only in the greenhouse. No relation was observed between soil and plant 

tissue Si in the field. This is probably due to the high-Si soils found in the fields at Dean Lee and 

Winnsboro. For the greenhouse study, no differences in inoculum densities were observed 

between 105 and 106 conidia ml-1 suggesting that a lower concentration may be used.  

 Silicon and fungicide were effective in reducing both AUAPC and FDS; however, no 

interaction effect was observed in reducing anthracnose development. A linear relationship was 

observed for soil Si and pH for both field experiments. Silicon application had no significant 

effect on leaf tissue Si, grain Si, and grain yield at both field locations. However, soil Si levels 

were observed to have a negative linear relationship with anthracnose development at Dean Lee. 

However, since no relationship between plant tissue and soil Si was observed at either field 

location, wollastonite might have enhanced soil fertility and improved availability of other 

important nutrients such as Ca and Mg. These elements might have improved the host’s ability to 

resist anthracnose development. Furthermore, there was significant interaction effect of fungicide 

and hybrids on anthracnose development. However, fungicide had no effect on minimizing 

anthracnose at Winnsboro.  

 Based on the findings obtained from these studies, future research should be conducted at 

various field locations with different Si soil levels to determine when to use Si for managing 

anthracnose development in sorghum.  
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