
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2008

Molecular diversity and coat protein expression of
Sweet potato leaf curl virus
Dina Lida Gutierrez Reynoso
Louisiana State University and Agricultural and Mechanical College, dgutie1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Plant Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Gutierrez Reynoso, Dina Lida, "Molecular diversity and coat protein expression of Sweet potato leaf curl virus" (2008). LSU Doctoral
Dissertations. 303.
https://digitalcommons.lsu.edu/gradschool_dissertations/303

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/102?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/303?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F303&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

 

 

MOLECULAR DIVERSITY A�D COAT PROTEI� EXPRESSIO� OF  

SWEET POTATO LEAF CURL VIRUS  

 

  

 

 

 

 

 

 

 

 

A Dissertation 

 

 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy  

  

in 

 

The Department of Plant Pathology and Crop Physiology 

 

 

 

 

 

 

 

 

 

by 

Dina Lida Gutiérrez Reynoso 

B.S. Universidad Nacional Agraria La Molina, Peru, 1998 

December 2008 



ii 

 

DEDICATIO� 
 

This dissertation is dedicated to my parents, for their love and efforts to provide me the 

best education, as well as, to my brothers and sister, for their guidance and motivation to excel in 

life. I also dedicate this work to my extended family. Their prayers and moral support gave me 

the strength to get through the tough times. 

 

 



iii 

 

ACK�OWLEDGEME�TS 
 

I would like to thank my major professor Dr. Rodrigo A. Valverde for his mentoring, 

patience, and understanding throughout my doctoral study. My appreciation is also extended to 

my committee members: Dr. Christopher A. Clark for his invaluable advice, support, and 

kindness; Dr. Norimoto Murai for his significant guidance in molecular cloning and protein 

expression; and Dr. Kenneth E. Damann, Jr., for his constructive advice and constant 

encouragement. Your efforts are greatly appreciated.  

I am very thankful to Dr. Ding S. Shih, former member of my committee, for his advice 

in the early stages of my research, Dr. Zhiyuan Chen for his constructive advice on protein 

expression, and Dr. Yurong Xie, M.S. Seokhyun Lee, and M.S. Sunjung Park for the many 

discussions shared during my research. 

This project would not be possible without the financial support of the Department of 

Plant Pathology and Crop Physiology, and the LSU Graduate School. I wish to express my 

appreciation to Dr. Gerard T. Berggren, Jr. and Dr. Lawrence E. Datnoff, as well as, the faculty, 

the staff, and the graduate students of the department of Plant Pathology and Crop Physiology at 

LSU for their support and motivation during my graduate studies. 

I would also like to thank M.S. Segundo Fuentes and Dr. Luis F. Salazar, my mentors at 

the International Potato Center, Lima, Peru; I would not be here today without their guidance, 

encouragement, and support. 

Thanks go to my dear friends Stephanie A. Gil, Ana María Sánchez de Cuadra, Mary W. 

Hoy, Alvaro M. Armas, Douglas W. Miano, Ashok K. Chanda, and Oscar I. Hurtado, for their 

friendship and encouragement. I also thank all my friends who were always there for me. 



iv 

 

TABLE OF CO�TE�TS 

DEDICATION.. ..............................................................................................................................ii 

ACKNOWLEDGEMENTS ...........................................................................................................iii 

LIST OF TABLES .........................................................................................................................vi 

LIST OF FIGURES.......................................................................................................................vii 

LIST OF ABBREVIATIONS ........................................................................................................ ix 

ABSTRACT……............................................................................................................................ x 

CHAPTER 1: INTRODUCTION ................................................................................................... 1 

1.1 Justification ....................................................................................................... 2 

1.2 Objectives.......................................................................................................... 3 

CHAPTER 2: LITERATURE REVIEW ........................................................................................ 4 

2.1 Family Geminiviridae ....................................................................................... 4 

2.2 Sweetpotato Viruses........................................................................................ 10 

2.2.1 Potyviruses ............................................................................................. 10 

2.2.2 Closteroviruses ....................................................................................... 12 

2.2.3 Geminiviruses......................................................................................... 13 

2.2.4 Sweetpotato Virus Disease Complexes.................................................. 16 

2.2.5 Diagnosis and Detection......................................................................... 17 

CHAPTER 3: MOLECULAR DIVERSITY OF SWEET POTATO LEAF CURL VIRUS IN THE 

UNITED STATES ................................................................................................ 20 

3.1 Introduction ..................................................................................................... 20 

3.2 Materials and Methods .................................................................................... 21 

3.2.1 Plant Samples and DNA Extraction ....................................................... 21 

3.2.2 Polymerase Chain Reaction (PCR) ........................................................ 22 

3.2.3 Cloning and Sequencing......................................................................... 23 

3.2.4 Sequence Analysis.................................................................................. 24 

3.3 Results ............................................................................................................. 24 

3.4 Discussion ....................................................................................................... 27 

CHAPTER 4: EXPRESSION OF THE COAT PROTEIN OF SWEET POTATO LEAF CURL 

VIRUS IN ESCHERICHIA COLI .......................................................................... 37 

4.1 Introduction ..................................................................................................... 37 

4.2 Materials and Methods .................................................................................... 38 

4.2.1 Cloning of the SPLCV Coat Protein Gene............................................. 38 

4.2.2 Overexpression Experiments.................................................................. 41 

4.2.3 Expression and Purification of the Fusion Protein................................. 41 



v 

 

4.2.4 Western Blot........................................................................................... 43 

4.2.5 Enterokinase Digestion .......................................................................... 43 

4.2.6 Mass Spectrometry................................................................................. 44 

4.3 Results ............................................................................................................. 44 

4.4 Discussion ....................................................................................................... 50 

CHAPTER 5: SUMMARY AND CONCLUSIONS .................................................................... 59 

5.1 Summary and Conclusions.............................................................................. 59 

5.2 Future Research............................................................................................... 62 

LITERATURE CITED ................................................................................................................. 63 

APPENDIX A: SEROLOGICAL EXPERIMENTS..................................................................... 75 

APPENDIX B: ANALYSIS OF THE MBP*CP FUSION PROTEIN......................................... 82 

APPENDIX C: ANALYSIS OF THE MBP*β-GAL PROTEIN.................................................. 84 

APPENDIX D: TRYPSIN DIGESTION OF SWEET POTATO LEAF CURL VIRUS COAT 

2PROTEIN............................................................................................................ 86 

APPENDIX E: MASS SPECTROMETRY ANALYSIS REPORT............................................. 88 

APPENDIX F: WHITEFLY TRANSMISSION EXPERIMENTS .............................................. 90 

VITA…………. ............................................................................................................................ 95 

 

 

 

 

 

 

 

 



vi 

 

LIST OF TABLES 
 

Table 2.1. Sweetpotato viruses (adapted from Valverde et al., 2007) .......................................... 11 

Table 3.1. Sweetpotato genotypes tested positive for Sweet potato leaf curl virus ...................... 22 

Table 3.2. Geminivirus sequences used in the analyses of the AC1 fragment and the coat protein 

gene (AV1) of sweetpotato begomoviruses ................................................................ 25 

Table 3.3. Percent nucleotide (above) and derived amino acid (below) sequence identities of the 

AC1 fragment of 11 begomoviruses found infecting sweetpotato genotypes in the US

..................................................................................................................................... 28 

Table 3.4. Percent nucleotide (above) and derived amino acid (below) sequence identities of the 

AC1 fragment and the coat protein gene (AV1) of sweetpotato begomoviruses from 

Peru and Kenya ........................................................................................................... 29 

Table 3.5. Percent nucleotide (above) and derived amino acid (below) sequence identities of the 

coat protein gene (AV1) of four selected begomoviruses found infecting sweetpotato 

genotypes in the US..................................................................................................... 29 

Table 4.1. Peptide sequences of Sweet potato leaf curl virus coat protein identified by mass 

spectrometry analysis .................................................................................................. 53 

 

 

 

 

 



vii 

 

LIST OF FIGURES 
 

Figure 2.1. Leaf curl and yellow vein symptoms caused by Sweet potato leaf curl virus on 

Ipomoea nil (A) and I. aquatica (B), respectively. ..................................................... 15 

Figure 2.2. Genome organization of the Sweet potato leaf curl virus (SPLCV) component A. 

Arrows represent the orientation of the open reading frames. The numbers represent 

the position of nucleotides on the genome (Lotrakul and Valverde, 1999). ............... 15 

Figure 3.1. Primers used for the amplification of a fragment of the AC1 and the full length coat 

protein gene (AV1) of sweetpotato begomoviruses. ................................................... 23 

Figure 3.2. Neighbor-joining tree based on the nucleotide sequence of the AC1 fragment shows 

the relationship among begomoviruses infecting sweetpotato in the US and other 

begomoviruses. Beet curly top virus (BCTV), genus Curtovirus, was used as an 

outgroup. The tree was generated with Clustal X version 1.83 and drawn with Tree 

View version 1.6.6. Numbers at each branch indicate the bootstrap values. Vertical 

and horizontal branch lengths are arbitrary. Blue labels indicate US isolates of 

SPLCV reported in this study, while green labels indicated US isolates previously 

reported........................................................................................................................ 30 

Figure 3.3. Neighbor-joining tree based on the nucleotide sequence of the coat protein gene 

(AV1) shows the relationship among begomoviruses infecting sweetpotato in the US 

and other begomoviruses. Beet curly top virus (BCTV), genus Curtovirus, was used 

as an outgroup. The tree was generated with Clustal X version 1.83 and drawn with 

Tree View version 1.6.6. Numbers at each branch indicate the bootstrap values. 

Vertical and horizontal branch lengths are arbitrary. Blue labels indicate SPLCV 

isolates reported in this study. ..................................................................................... 31 

Figure 4.1. Diagram showing the expression of the fusion protein MBP*CP [Maltose-binding 

protein (MBP) and coat protein (CP) of Sweet potato leaf curl virus (SPLCV)]. MCS: 

Multiple cloning site in pMALc-2E expression vector. mal E: gene of E. coli which 

encodes MBP. lacZα: gene of E. coli that encodes β-galactosidase α fragment......... 46 

Figure 4.2. PCR amplification of a 937 bp fragment corresponding to the coat protein (CP) gene 

of Sweet potato leaf curl virus (SPLCV) and flanking regions in the recombinant 

plasmid pMAL-CP using malE and M13/pUC primers. Lanes 1-5, recombinant 

plasmid pMAL-CP (pMAL-c2E containing the SPLCV CP). Lane 6, pMAL-c2E 

(without insert). Lane 7, water control. Lane M, DNA ladder.................................... 47 

Figure 4.3. Restriction enzyme analysis of the recombinant plasmid pMAL-CP containing the 

coat protein (CP) gene of Sweet potato leaf curl virus cloned into the pMAL-c2E 

expression vector. Lane 1, pMAL-CP (7,392 bp). Lane 2, pMAL-CP digested with 

Mfe I. Lane 3, pMAL-CP digested with (co I. Lane 4, pMAL-CP digested with (he 

I. Lane 5, pMAL-c2E digested with Mfe I. Lane 6, pMAL-c2E digested with (co I.  

Lane 7, pMAL-c2E (6,651 bp). Lane M, DNA ladder................................................ 47 

 



viii 

 

Figure 4.4. Expression of the fusion protein MBP*CP [Maltose-binding protein (MBP) and coat 

protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. Cells were induced 

with 0.3 mM IPTG, at 26 ˚C, for 1 and 3 h. Induced cells harboring the recombinant 

plasmid pMAL-CP expressed the fusion protein MBP*CP, while induced cells 

harboring the pMAL-c2E vector expressed the MBP fused with the β-galactosidase α 

fragment protein (MBP*β-gal). Total proteins were separated by 8 % SDS-PAGE and 

stained with Coomassie Brilliant Blue. Lane 1, non-induced cells harboring pMAL-

c2E. Lane 2, non-induced cells harboring pMAL-CP. Lane 3, induced cells (1 h) 

harboring pMAL-c2E. Lanes 4-7, induced cells (1 h) harboring pMAL-CP. Lane 8, 

induced cells (3 h) harboring pMAL-c2E. Lane 9, induced cells (3 h) harboring 

pMAL-CP. Lane M, molecular weight marker. .......................................................... 48 

Figure 4.5. Time course expression of the fusion protein MBP*CP [Maltose-binding protein 

(MBP) and coat protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. 

Cells were induced with 0.3 mM IPTG at 26 ˚C. Induced cells harboring the 

recombinant plasmid pMAL-CP expressed the fusion protein MBP*CP, while 

induced cells harboring the pMAL-c2E vector expressed the MBP fused with the β-

galactosidase α fragment protein (MBP*β-gal). Total proteins were separated by 10 

% SDS-PAGE and stained with Coomassie Brilliant Blue. Lane 1, non-induced cells 

harboring pMAL-CP. Lanes 2-7, induced cells (15 min, 30 min, 1 h, 2 h, 4 h, and 6 h, 

respectively) harboring pMAL-CP. Lane 8, non-induced cells harboring pMALc-2E. 

Lane 9, induced cells (2 h) harboring pMAL-c2E. Line M, molecular weight marker.

..................................................................................................................................... 49 

Figure 4.6. Elution fractions of the fusion protein MBP*CP [Maltose-binding protein (MBP) and 

coat protein (CP) of Sweet potato leaf curl virus] after amylose affinity 

chromatography........................................................................................................... 51 

Figure 4.7. Expression of the fusion protein MBP*CP [Maltose-binding protein (MBP) and coat 

protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. Cells were induced 

with 0.3 mM IPTG, at 26 ˚C, for 1 h. Induced cells harboring the recombinant 

plasmid pMAL-CP expressed the fusion protein MBP*CP, while induced cells 

harboring the pMAL-c2E vector expressed the MBP fused with the β-galactosidase α 

fragment protein (MBP*β-gal). Total proteins were separated by 8 % SDS-PAGE and 

stained with Coomassie Brilliant Blue. Lane 1, non-induced cells harboring pMAL-

c2E. Lane 2, non-induced cells harboring pMAL-CP. Lane 3, induced cells harboring 

pMAL-c2E. Lane 4, induced cells harboring pMAL-CP. Lanes 5-8, purified MBP*CP 

fusion protein, fractions # 6, 7, 8, and 9, respectively. Lane M, molecular weight 

marker.......................................................................................................................... 52 

Figure 4.8. Identification of E. coli rare codons in the peptide sequence of the fusion protein 

MBP*CP [Maltose-binding protein (MBP) and Sweet potato leaf curl virus (SPLCV) 

coat protein (CP)]. Rs are Arginine rare codons (AGG) in the positions 412, 446, 447, 

484, 531, 560, 587, and 635 of the fusion protein that correspond to the SPLCV CP 

region. The arrow head indicates the the start codon (391) and the asterisk the stop 

codon (645) of SPLCV CP.......................................................................................... 58 

 



ix 

 

LIST OF ABBREVIATIO�S 
 

bp Base pairs 

CP Coat protein 

ELISA Enzyme-linked immunosorbent assay 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

IYVV Ipomoea yellow vein virus 

MBP Maltose-binding protein 

MBP*β-gal  Fusion protein comprising the maltose-binding protein and the β- 

galactosidase α fragment protein 

MBP*CP Fusion protein comprising the maltose-binding protein and the coat 

protein of Sweet potato leaf curl virus 

PCR Polymerase chain reaction 

pMAL-CP Recombinant plasmid containing the coat protein gene of Sweet potato 

leaf curl virus cloned into the pMAL-c2E expression vector. 

SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SPLCGV Sweet potato leaf curl Georgia virus 

SPLCV Sweet potato leaf curl virus 

SPLCV CP Sweet potato leaf curl virus coat protein 

TYLCV Tomato yellow leaf curl virus 

US The United States of America 

 

  

 

 

 



x 

 

ABSTRACT 
 

Leaf curl virus diseases have been reported in sweetpotato throughout the world. One of 

the causal agents is Sweet potato leaf curl virus (SPLCV) which belongs to the genus 

Begomovirus (family Geminiviridae). In the United States, SPLCV has been found infecting an 

ornamental sweetpotato and several breeding lines but not in sweetpotatoes grown for 

commercial production. SPLCV does not cause symptoms on Beauregard, the predominant 

sweetpotato cultivar in the US, but it can reduce its yield. Since SPLCV could become an 

important constraint for sweetpotato production; diagnosis, identification, and characterization 

are essential steps to develop an effective management program.  

The variability among begomoviruses obtained from 11 sweetpotato genotypes was 

evaluated through the analysis of the nucleotide sequence of a fragment of the replication-

associated protein gene (AC1). Ten of these begomoviruses were closely related to SPLCV and 

one was closely related to Sweet potato leaf curl Georgia virus (SPLCGV). These results suggest 

that in the US, SPLCV may be more common in sweetpotato genotypes than SPLCGV. 

Phylogenetic analysis using the obtained nucleotide sequences of the AC1 and the full length 

nucleotide sequences of the coat protein gene (AV1) clustered all sweetpotato begomoviruses 

together. However, SPLCV and SPLCGV were placed in different groups supporting their status 

as different species.  

Serological detection of SPLCV is not currently available due to the difficulties in 

obtaining purified virions that can be used as antigen for antiserum production. In attempts to 

obtain the coat protein (CP) of SPLCV for antibody production, primers were designed to 

amplify the CP gene. This gene was cloned into the expression vector pMAL-c2E, and 

transformed into E. coli XL1-Blue. After gene induction, a fusion protein of 72 kDa was purified 



xi 

 

by amylose affinity chromatography. The yield of the purified fusion protein was approximately 

200 µg/liter of bacterial culture. Digestion with enterokinase cleaved the fusion protein into a 

42.5 kDa maltose-binding protein and a 29.4 kDa protein. The latter protein was identified by 

mass spectrometry analysis as the CP of SPLCV.  
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CHAPTER 1: I�TRODUCTIO� 
 

With more than 126 million metric tons (FAO, 2007) in annual production, sweetpotato 

(Ipomoea batatas (L.) Lam) is one of the most important crops worldwide; it is the third most 

important root crop after potato and cassava and is ranked seventh in global food crop production  

(Kays, 2005).  Due to its nutritional qualities (rich in carbohydrates, dietary fiber, beta carotene, 

vitamin C, and vitamin B6), sweetpotato is considered as a crop with great potential not only for 

human consumption but also for animal feeding and industrial use (Bovell-Benjamin, 2007; 

Huntrods, 2008).  

Although sweetpotato originated in Central or South America, the world production is 

centered in Asia, with China as the major producer with 109 million metric tons that counts for 

over 86 % of the sweetpotato world production (FAO, 2007). The United States is one of the few 

developed countries that produce sweetpotatoes (836,970 metric tons) with less than 1 % of the 

2007 world production (FAO, 2007). North Carolina is the leading producer with 38.5 % of the 

2007 US sweetpotato production, followed by California, Mississippi, and Louisiana with 23 %, 

19 %, and 15.9 %, respectively (USDA, 2008).  

Sweetpotato belongs to the family Convolvulaceae (the morning glory family) and grows 

widely in tropical, subtropical, and warm temperate regions. Sweetpotato is especially valued 

because it is highly adaptable, tolerates high temperatures and low fertility soils, is easy to 

propagate and maintain, and yields well in adverse conditions (Karyeija et al., 1998). Many 

diseases caused by fungi, bacteria, nematodes, viruses, and mycoplasma have been described to 

affect sweetpotato production (Clark and Moyer, 1988). Because of its vegetative propagation, 

sweetpotato is prone to accumulate systemic pathogens in propagating materials (Clark and Hoy, 

2006). 
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Yields of sweetpotato cultivars have appeared to gradually decline over the years. This 

decline in yield and quality may be caused by a combination of several factors, including 

mutations, viruses and other pathogens (Clark et al., 2002; 2003).  

For many years, there was little effort to control viruses in sweetpotato primarily because 

the specific viruses had not been identified and the effect the viruses had on production had not 

been determined. During the International Workshop on Sweetpotato Cultivar Decline Study 

(Miyakonojo, Japan, 2000), it was determined that three virus families, Potyviridae, 

Closteroviridae, and Geminiviridae, should be given particular attention in relation to 

sweetpotato cultivar decline (Nakazawa, 2001). 

 Some members of these three families occur in sweetpotato in the US. Within the family 

Potyviridae, Sweet potato feathery mottle virus (SPFMV) commonly occurs in sweetpotato fields 

(Clark and Moyer, 1988); Sweet potato virus G (SPVG) and Sweet potato virus 2 (SPV2, 

synonymous with Ipomoea vein mosaic virus), are less frequent (Souto et al., 2003; Tairo et al., 

2006). Sweet potato chlorotic stunt virus (SPCSV), a crinivirus (family Closteroviridae), was 

reported infecting in vitro plants of the cultivar White Bunch (Pio-Ribeiro et al., 1996), and 

recently it was found infecting sweetpotatoes in the field (Abad et al., 2007). Two 

begomoviruses (family Geminiviridae), Sweet potato leaf curl virus (SPLCV) and Sweet potato 

leaf curl Georgia virus (SPLCGV), have been identified and characterized from field grown 

sweetpotato breeding lines (Lotrakul et al., 1998; 2002; 2003; Lotrakul and Valverde, 1999).  

1.1 Justification 

Viruses have been suggested to cause significant yield reduction and possibly cultivar 

decline of sweetpotato; therefore, characterization of viruses that affect this crop could lead to a 

better understanding of their roles in cultivar decline and their effects on yield (Lotrakul, 2000).  
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Clark and Hoy (2006) evaluated the effect of viruses on yield and quality of Beauregard 

sweetpotato, the predominant cultivar in the US. They found that three potyviruses: SPFMV-

Russet crack, SPVG and SPV2 had little effect on yield or quality of Beauregard. SPLCV did not 

cause visible symptoms, but it reduced the yield up to 26 %. In addition, infection with SPLCV 

also resulted in production of storage roots with darker periderm color.  

In the US, SPLCV has been found infecting sweetpotato breeding lines but not in 

sweetpotato grown for commercial production. The expansion of the geographical range of 

Bemisia tabaci (vector of SPLCV) together with potential synergistic effects in mixed infections 

could become a constraint for sweetpotato production. Therefore, diagnosis, identification, and 

characterization are essential for the development of appropriate control strategies. 

1.2 Objectives 

The objectives of this investigation were: 

• To determine the molecular diversity of sweetpotato begomoviruses in the US and 

their relationship with other sweetpotato begomoviruses by analyzing the 

nucleotide sequence of a fragment of the replication-associated protein gene 

(AC1). 

• To clone and express the coat protein gene (AV1) of the US isolate of SPLCV in 

Escherichia coli for antiserum production. 
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CHAPTER 2: LITERATURE REVIEW 
 

2.1 Family Geminiviridae 

The family Geminiviridae comprises a diversity of plant viruses that infect a broad 

variety of plants and cause significant crop losses throughout the world (Hanley-Bowdoin et al., 

1999; Briddon and Stanley, 2006). Geminiviruses are made of circular single-stranded DNA 

genomes (2.5-3.0 kb) encapsidated in quasi-isometric virions of about 20-30 nm in diameter 

(Stanley et al., 2005). Geminiviruses utilize bidirectional transcription and overlapping genes for 

efficient coding of proteins. The coat protein is conserved in its capacity to form these unique 

virions, but has diverged in terms of specificity for insect transmission (Briddon et al., 1990). A 

single viral coded protein (or two related proteins in the monocot-infecting geminiviruses) is 

essential for replication: the replication associated protein that is conserved in sequence, position, 

and function (Gutierrez, 1999; Hanley-Bowdoin et al., 2004). All geminiviruses also carry one or 

more intergenic regions (IRs), one of which contains the origin of replication and the signature 

stem-loop structure containing an invariant nonanucleotide motif involved in rolling circle 

replication (Hanley-Bowdoin et al., 1999).  

Based on their type of insect vector, host range, and genome organization, geminiviruses 

are classified into four genera (Hull, 2002; Stanley et al., 2005; Fauquet et al., 2008). Viruses of 

the genus Mastrevirus (type species: Maize streak virus, MSV) have monopartite genomes (2.6-

2.8 kb circular ssDNA), generally infect monocotyledonous plants and are transmitted by 

leafhoppers. The genus Curtovirus (type species: Beet curly top virus, BCTV) include viruses 

which infect only dicotyledonous plants, also have monopartite genomes (2.9-3.0 kb circular 

ssDNA) with a different genomic organization and different leafhopper vectors. With only one 

member, the genus Topocuvirus is represented by Tomato pseudo-curly top virus (TPCTV) 
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which infects dicotyledonous plants, has a monopartite genome (2.8 kb circular ssDNA) with a 

similar organization of curtovirus genomes, but transmitted by a species of treehopper. The 

genus Begomovirus (type species: Bean golden yellow mosaic virus, BGYMV) contains the 

majority of the identified geminiviruses (117 species, Stanley et al., 2005). Begomoviruses have 

bipartite or monopartite genomes (2.5-2.8 kb circular ssDNA), infect only dicotyledonous plants, 

and are transmitted by the sweetpotato whitefly (Bemisia tabaci) (Briddon, 2002; Stanley et al., 

2005; Seal et al., 2006).  

Begomoviruses constitute a major constraint to production of economically important 

crops including beans, cassava, cotton, cucurbits, and tomato, among others (Polston and 

Anderson, 1997; Otim-Nape et al., 1997; Rybicki and Pietersen, 1999; Briddon and Markham, 

2000; Morales and Anderson, 2001; Varma and Malathi, 2003).  Symptoms on infected plants 

typically consist of leaf curling, mosaic, vein yellowing or more generalized leaf yellowing, 

often accompanied by stunting of plant growth (Harrison and Robinson, 1999). 

According to their geographical origins and based on phylogenetic analysis, 

begomoviruses can be generally divided into two groups, the Old World begomoviruses (Eastern 

Hemisphere, Africa, Asia, Europe, and the Mediterranean areas) and the New World 

begomoviruses (Western Hemisphere, the Americas) (Padidam et al., 1995; Harrison and 

Robinson, 2002). 

Most begomoviruses have two genomic components (DNA-A and DNA-B, both with an 

approximate size of 2.5-2.8 kb) although an increasing number of begomoviruses with a single 

genomic component (equivalent to DNA-A) has been reported (Fauquet et al., 2003). Even 

though the encapsidated form of the genome is ssDNA, replication and gene expression occurs 

through a super-coiled double stranded intermediate, in the nucleus of infected plant cells, and 

both strands encode gene products (Briddon, 2002; Stanley et al., 2005).   
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DNA-A encodes products involved in DNA replication, control of gene expression, and 

insect transmission. DNA-A contains six open reading frames (ORF), two in the virion sense 

(AV1 and AV2) and four in the complementary sense (AC1, AC2, AC3, and AC4). AV1 

encodes the coat protein that encapsidates the virion-sense ssDNA and may be involved in virus 

movement. AV2 has also been implicated in virus movement, and is required for virus 

accumulation and symptom development (Padidam et al., 1996; Stanley et al., 2005). This gene 

is lacking in New World begomoviruses (Harrison and Robinson, 2002). AC1, AC2 and AC3 

encode the replication-associated protein (Rep), transcriptional activator protein (TrAP), and the 

replication enhancer protein (REn), respectively. AC4 encodes a protein that is involved in host 

range determination, symptom severity, and virus movement (Stanley et al., 2005).  

DNA-B contains two ORF, one in the virion sense (BV1) and the other in the 

complementary sense (BC1). BV1 encodes the nuclear shuttle protein (NSP) which controls the 

transport of viral DNA between the nucleus and the cytoplasm, and the BC1 encodes the 

movement protein (MP) which mediates virus cell-to-cell movement (Stanley et al., 2005; Seal 

et al., 2006).  

Begomoviruses that lack a DNA-B component are called monopartite. The DNA-A 

component alone has been shown to cause wild-type diseases symptoms, as described for 

Tomato yellow leaf curl virus (TYLCV) and Tomato leaf curl virus (TLCV) (Kheyr-Pour et al., 

1991; Navot et al., 1991; Dry et al., 1993). For many other begomoviruses only DNA-A 

components have been found (Xie and Zhou, 2003), but until infectious clones are tested, it is 

not possible to conclude that such viruses have only a single DNA-A component (Seal et al., 

2006). 

Additional DNA components have been shown to be associated with some monopartite 

begomoviruses (Briddon and Stanley, 2006; Briddon et al., 2008). Ageratum yellow vein virus 
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(AYVV), Cotton leaf curl Multan virus (CLCuMV), and Tomato yellow leaf curl China virus 

(TYLCCNV) are monopartite begomoviruses. When cDNA infectious clones of these viruses 

were inoculated in their respective hosts, they were not able to induce the typical disease 

symptoms. In addition to the DNA-A, these viruses require a ssDNA satellite molecule (DNA β) 

to develop full disease symptoms (Briddon et al., 2000; Saunders et al., 2000; Zhou et al., 2003). 

Satellites are defined as subviral agents composed of nucleic acid that depend on co-infection 

with a helper virus for their replication. Satellite nucleic acids have substantially distinct 

nucleotide sequences from those of the genomes of their helper viruses. Despite their small size 

and the apparent absence of potential gene products, satellites may have a dramatic effect on the 

symptoms induced by their helper viruses (Simon et al., 2004). 

DNA β molecules are about half the size of the helper DNA-A component, ranging from 

1,247-1,374 nucleotides in length (Briddon et al., 2003). They are widespread in the Old World 

begomoviruses and all contain three conserved regions: an A-rich region, a sequence-conserved 

region (SCR), and an open reading frame termed βC1 (Briddon et al., 2003; Zhou et al., 2003; 

Briddon et al., 2008). The βC1 ORF is conserved in position and size and is involved in 

symptom induction, host range determination, and accumulation of both helper virus and satellite 

molecules (Saunders et al., 2000; Briddon et al., 2001; 2003; Zhou et al., 2003; Qian and Zhou, 

2005).  

DNA 1 constitutes another group of ssDNA satellites associated with begomoviruses. It 

has been proposed that DNA 1 molecules derive from nanovirus components that have become 

adapted to whitefly transmission by encapsidation within the begomovirus coat protein (Stanley 

et al., 2005). DNA 1 molecules are about half the size of a DNA-A molecule (Mansoor et al., 

1999; Saunders and Stanley, 1999; Briddon et al., 2004; Stanley, 2004). DNA 1 satellites differ 

from DNA β in encoding a Rep protein similar to that of nanoviruses, enabling autonomous 
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replication. DNA 1s are not required for helper virus proliferation or disease symptom induction, 

but these satellites require a helper begomovirus for their movement in plants and encapsidation 

enabling insect transmission (Seal et al., 2006). 

Begomoviruses have the facility to form new genetic variants that can arise through 

simple mutations, pseudorecombination, and recombination in their ssDNA genomes (Seal et al., 

2006; Pita and Roossinck, 2008). High mutation frequencies for begomoviruses have been 

reported to occur in wild and cultivated hosts (Ooi et al., 1997; Sanz et al., 1999). 

Pseudorecombination describes the exchange of DNA-A and DNA-B genomic components and 

has been reported for begomoviruses from both Old and New Worlds (Garrido-Ramirez, et al., 

2000; Pita et al., 2001). Recombination is the process by which segments from one nucleotide 

strand become incorporated into that of a different individual strand during replication (Seal et 

al., 2006). In geminiviruses, recombination is facilitated by a type of rolling circle replication 

referred to as recombination-dependent replication, which favors recombination and generates a 

diversity of viral DNA forms (Preiss and Jeske, 2003). Evidence for recombination events in the 

genus Begomovirus has been reported (Harrison et al., 1997; Zhou et al., 1997; Padidam et al., 

1999). For example, in Uganda, a severe form of cassava mosaic disease was caused by a 

recombinant (EACMV-UG2) between African cassava mosaic virus (ACMV) and East African 

cassava mosaic virus (EACMV) (Zhou et al., 1997; Sseruwagi et al., 2004). Similarly, it was 

reported that Tomato yellow leaf curl Malaga virus (TYLCMalV) is a recombinant derived from 

the genetic exchange between TYLCV and Tomato yellow leaf curl Sardinia virus (TYLCSV) 

(Monci et al., 2002). Recombination events have also been reported between DNA-A 

components and satellite DNAs, and between different satellite DNA β molecules (Briddon et 

al., 2001; 2003; Saunders, et al., 2001). The diverse population of begomoviruses coupled with 

the propensity of these viruses to exchange genetic material by recombination, increases the 
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probability of the emerging of new virus diseases (Mansoor et al., 2003). Seal et al. (2006) 

presented an extensive review of the factors involved in begomovirus evolution, considering the 

sources of genetic variation, mechanisms of genome rearrangements, as well as, selection of 

variants by the vector and the plant host. 

During the last few decades, many begomovirus species have emerged, and as the 

number of characterized begomoviruses increases, it is more difficult to differentiate with 

accuracy, the viruses that are strains of already described viruses from those that represent new 

virus species. In 2003, the ICTV (International Committee on Taxonomy of Viruses) 

Geminiviridae Study Group proposed new species demarcation criteria. One of the most 

important is the establishment of a threshold (89 %) for the nucleotide sequence identity of 

DNA-A. Virus isolates with a DNA-A nucleotide sequence identity below 89% will be 

considered as new species (Fauquet et al., 2003). In addition, demarcation criteria and guidelines 

to classify and name begomoviruses below the species level was recently proposed (Fauquet et 

al., 2008) to differentiate between strains and variants. Strains are defined as “viruses belonging 

to the same species that have stable and heritable biological, serological, and/or molecular 

differences.” Variants are defined as “something that differs slightly from the norm” and it can 

be used with begomoviruses with very small differences. Based on pairwise sequence analysis of 

DNA-A component, a threshold of 93 % nucleotide identity was proposed to distinguish among 

strains, and viruses with more than 94 % nucleotide identity can be considered as variants 

(Fauquet et al., 2008). 

Begomovirus species complexes are common and represent serious agricultural threats. 

Characterization of species complex diversity has substantially contributed to the understanding 

of both begomovirus evolution, and the ecological and epidemiological processes involved in the 

emergence of new viral pathogens (Rojas et al., 2005; Seal et al., 2006; Lefeuvre et al., 2007).  
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2.2 Sweetpotato Viruses 

Virus diseases are an important constraint for sweetpotato (Ipomoea batatas (L.) Lam) 

production. In some countries losses of more than half of the potential yield have been attributed 

to the effect of viruses (Hanh, 1979; Ngeve and Bouwkamp, 1991; Milgram et al., 1996; Di Feo 

et al., 2000; Gutierrez et al., 2003; Clark and Hoy, 2006). About 20 distinct viruses (Table 2.1) 

have been isolated, described, and characterized from sweetpotato (Clark and Moyer, 1988; 

Moyer and Salazar, 1989; Loebenstein et al., 2004; Valverde et al., 2007; 2008). The high 

incidence of viruses in sweetpotato is the result of using infected stem cuttings as planting 

materials and of the presence of insect vectors (aphids and whiteflies). Since sweetpotato is a 

vegetatively propagated crop, viruses have an efficient mechanism for their perpetuation and 

dissemination. Virus diseases not only cause reduction in yields but also affect quality of storage 

roots (Clark and Moyer, 1988; Clark and Hoy, 2006). 

2.2.1 Potyviruses 

Sweet potato feathery mottle virus (SPFMV) belongs to the genus Potyvirus (family 

Potyviridae) and is found everywhere sweetpotato is grown (Clark and Moyer, 1988; Moyer and 

Salazar, 1989; Loebenstein et al., 2004; Valverde et al., 2007). SPFMV has flexuous filamentous 

particles between 830-850 nm in length. Its genome consists of a single stranded, linear, positive 

RNA of about 10.6 kb (Sakai et al., 1997). SPFMV is transmitted in a non-persistent manner by 

several aphid species, including Aphis gossypii, A. craccivora, Lipaphis erysimi, and Myzus 

persicae. It can be transmitted mechanically to various Ipomoea species, although some strains 

have been reported to infect (icotiana benthamiana and Chenopodium spp. (Loebenstein et al., 

2004).  

Several strains of SPFMV have been identified based on symptoms, host range, serology, 

and nucleotide sequences (Moyer and Kennedy, 1978; Cali and Moyer, 1981; Kreuze et al.,  
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Table 2.1. Sweetpotato viruses (adapted from Valverde et al., 2007) 

Virus Family/Genus Vector 

   

   Cucumber mosaic virus (CMV) Bromoviridae / Cucumovirus Aphids 

   Ipomoea yellow vein virus (IYVV) Geminiviridae / Begomovirus Whiteflies 

   Sweet potato chlorotic stunt virus (SPCSV) Closteroviridae / Crinivirus Whiteflies 

   Sweet potato feathery mottle virus (SPFMV) Potyviridae / Potyvirus Aphids 

   Sweet potato latent virus (SwPLV) Potyviridae / Potyvirus Aphids 

   Sweet potato virus G (SPVG) Potyviridae / Potyvirus Aphids 

   Sweet potato leaf curl virus (SPLCV) Geminiviridae / Begomovirus Whiteflies 

   Sweet potato leaf curl Georgia Virus (SPLCGV) Geminiviridae / Begomovirus Whiteflies 

   Sweet potato leaf speckling virus (SPLSV) Luteoviridae / Enamovirus Aphids 

   Sweet potato mild mottle virus (SPMMV) Potyviridae / Ipomovirus ? 

   Sweet potato mild speckling (SPMSV) Potyviridae / Potyvirus Aphids 

   Tomato spotted wilt virus (TSWV) Bunyaviridae / Tospovirus Thrips? 

 

Tentative species 

 

Family / Putative genus 
 

   Sweet potato C-6 virus ? ? 

   Sweet potato caulimo- like virus Caulimoviridae ? 

   Sweet potato chlorotic fleck virus (SPCFV) Flexiviridae / Carlavirus ? 

   Ipomoea crinkle leaf curl virus (ICLCV) Geminiviridae / Begomovirus ? 

   Sweet potato ringspot virus Comoviridae / (epovirus ? 

   Sweet potato vein mosaic virus Potyviridae Aphids 

   Sweet potato virus 2 (SPV2) Potyviridae / Potyvirus Aphids? 

   Sweet potato yellow dwarf virus (SPYDV) Potyviridae / Ipomovirus ? 
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2000; Wang et al., 2007). Most sweetpotato cultivars infected with SPFMV alone show only 

mild symptoms that include vein clearing, irregular chlorotic patterns (feathering) along the leaf 

mid-rib, and chlorotic spots that sometimes have purple pigmented borders especially in the 

older leaves. Depending on sweetpotato cultivars, storage roots of infected plants may show 

external necrosis if infected with the russet crack strain of SPFMV (Moyer and Kennedy, 1978; 

Clark and Moyer, 1988). Losses due to SPFMV infection are minimal, except in highly 

susceptible cultivars (Clark and Moyer, 1988; Karyeija et al., 1998). The ubiquitous presence of 

SPFMV has often masked the presence of other potyviruses. It is clear that a potyvirus complex 

affects sweetpotatoes, but it is not clear how these potyviruses relate to one another (Clark et al., 

2002). In the US, SPFMV is universal, but two other potyviruses Sweet potato virus G (SPVG) 

and Sweet potato virus 2 (SPV2) are also common (Souto et al., 2003; Valverde et al., 2007). 

2.2.2 Closteroviruses 

Sweet potato chlorotic stunt virus (SPCSV) belongs to the genus Crinivirus (family 

Closteroviridae) and is widespread in different sweetpotato growing regions of the world 

(Winter et al., 1992; Gibson et al., 1998; Kreuze et al., 2002; Loebenstein et al., 2004; Valverde, 

et al., 2007). SPCSV has flexuous and filamentous particles, with lengths ranging from 850-950 

nm. It has a bipartite genome that consists of two single stranded, linear, positive sense RNAs 

(Kreuze et al., 2002). SPCSV is transmitted in a semipersistent, non-circulative manner by 

whiteflies (B. tabaci and Trialeurodes abutilonea) (Cohen et al., 1992; Sim et al., 2000). This 

virus is graft transmissible, but it is not transmitted by mechanical inoculation. SPCSV infects 

several Ipomoea spp. and can also infect (. benthamiana, (. clevelandii, and Amaranthus 

palmeri (Loebenstein et al., 2004).  SPCSV can be divided in two major serotypes: the East 

African serotype (occurs only in East Africa and Peru) and the West African serotype (occurs in 

US, Argentina, Brazil, West Africa, and Egypt) (Hoyer et al., 1996; Kreuze et al., 2002; IsHak et 
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al., 2003; Gutierrez et al., 2003; Abad et al., 2007). Symptoms caused by SPCSV include mild 

symptoms as slight stunting, mild interveinal chlorosis, and interveinal purpling of older leaves 

(Gibson et al., 1998; Gutierrez et al., 2003). SPCSV alone can cause significant yield reductions 

in sweetpotato yields (Gutierrez et al., 2003; Untiveros et al., 2007).  

In the US, SPCSV has first been reported infecting in vitro plants of the cultivar White 

Bunch (Pio-Ribeiro et al., 1996), and recently, it was found on sweetpotato fields (Abad et al., 

2007).   

2.2.3 Geminiviruses 

Begomoviruses have been reported infecting sweetpotato in Israel (Cohen et al., 1997), 

Taiwan (Chung et al., 1985), Japan (Onuki and Hanada, 1998), the US (Lotrakul et al., 1998; 

2003), Spain (Banks et al., 1999; Lozano et al., 2004), Italy (Briddon et al., 2006), China (Luan 

et al., 2006), Peru (Fuentes and Salazar, 2003) and Kenya (Miano et al., 2006). It is evident that 

begomoviruses are associated with sweetpotato in most of the geographical regions where 

sweetpotatoes are grown, but the prevalence and the distribution in these regions are still not 

known (Valverde et al., 2007).   

In the US, Sweet potato leaf curl virus (SPLCV) has been found infecting an ornamental 

sweetpotato and some breeding lines but not in sweetpotato grown for commercial production 

(Lotrakul et al., 1998; Clark and Valverde, 2001; Clark and Hoy, 2006). SPLCV is transmitted 

by graft inoculations but not mechanically to several Ipomoea species. In nature, it is transmitted 

by the sweetpotato whitefly (B. tabaci). Under experimental conditions, the virus is transmitted 

by this vector at relatively low rates (Valverde et al., 2004b). Various Ipomoea species are 

susceptible to SPLCV infection, causing yellow vein symptoms in some Ipomoea species (I. 

aquatica, I. fistulosa, and I. cordatotriloba) and leaf curl symptoms in other Ipomoea species (I.  
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alba, I. batatas W-285, I. lacunosa, I. lobata, I. nil, I. setosa and I. trifida) and (. benthamiana 

(Figure 2.1) (Lotrakul et al., 1998; Lotrakul and Valverde, 1999; Ling et al., 2008).  

SPLCV has a monopartite genome (DNA-A, 2,828 nucleotides) and its organization is 

typical of Old World begomoviruses, containing six open reading frames and an intergenic 

region containing a conserved stem-loop motif (Figure 2.2) (Lotrakul and Valverde, 1999). In 

Japan, SPLCV was partially purified yielding typical geminate particles, and Western blot 

analysis revealed serological relationships with Bean golden mosaic virus (BGMV) and 

Mungbean yellow mosaic virus (MYMV) (Onuki et al., 2000). 

Ipomoea yellow vein virus (IYVV), also referred as SPLCV-[Ipo], was found in I. indica 

showing yellow vein symptoms in Spain and Sicily (Banks et al., 1999; Briddon et al., 2006). 

Also, IYVV has been reported infecting sweetpotatoes in Spain (Lozano et al., 2004).  

Sweet potato leaf curl Georgia virus (SPLCGV, previously called Ipomoea leaf curl 

virus, ILCV) was found in a mixed infection with SPLCV in a breeding line from Georgia (US). 

SPLCGV causes leaf curl symptoms in several Ipomoea species. Unlike SPLCV, SPLCGV does 

not cause yellow vein symptoms in I. aquatica and I. cordatotriloba (Lotrakul et al., 2003). 

Based on sequence analysis (76.5 percent DNA-A nucleotide sequence identity) and on 

differential host range (I. aquatica and I. cordatotriloba), SPLCGV is considered a distinct 

species of SPLCV (Lotrakul et al., 2003; Fauquet et al., 2003). 

Recently, SPLCV has been reported in Peru, Kenya, and China. Sequence comparison 

analysis suggests that the isolates from Peru and Kenya are closely related to the US isolate of 

SPLCV (Fuentes and Salazar, 2003; Miano et al., 2006), while the isolate from China is more 

closely related to SPLCGV (Luan et al., 2007). 

SPLCV, IYVV, SPLCGV, and SPLCV-China each has monopartite genome organization 

which is typical of Old World begomoviruses. DNA-B component or DNA satellites (DNA β 
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Figure 2.1. Leaf curl and yellow vein symptoms caused by Sweet potato leaf curl virus on 

Ipomoea nil (A) and I. aquatica (B), respectively. 

 

 

 

 

 

 
 

Figure 2.2. Genome organization of the Sweet potato leaf curl virus (SPLCV) component A. 

Arrows represent the orientation of the open reading frames. The numbers represent the position 

of nucleotides on the genome (Lotrakul and Valverde, 1999). 
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and DNA 1) have not been found associated with these begomoviruses (Lotrakul and Valverde, 

1999; Lotrakul et al., 1998; 2003; Briddon et al., 2006; Luan et al., 2007).  

Phylogenetic analysis using the derived amino acid sequences available of the 

sweetpotato begomoviruses (SPLCV, IYVV, SPLCGV, and SPLCV-China), place these 

begomoviruses in a distinct cluster apart from begomoviruses that infect other plant species 

(Lotrakul et al., 2003; Luan et al., 2007). Among these four sweetpotato begomoviruses, the coat 

protein was the most conserved; however, it was very different from the coat proteins of other 

begomoviruses (Lotrakul et al., 2003; Luan et al., 2007).  

Considerable variability among the sweetpotato begomoviruses has been reported in the 

US (Lotrakul and Valverde, 1999; Lotrakul et al., 2002). Some of these viruses either do not 

induce symptoms or induce very mild, transient symptoms in the standard indicator host, I. 

setosa (Valverde et al., 2007). The nucleotide sequence identity (from 87% to nearly 100%) of a 

fragment of the AC1 of different SPLCV isolates and the phylogenetic analysis of them 

suggested that there may be more than one begomovirus species (Lotrakul et al., 2002).  

2.2.4 Sweetpotato Virus Disease Complexes 

In many cases, simultaneous infection of sweetpotato plants with more than two different 

viruses can cause greater damage than infection by each virus separately. This synergism is very 

clear in sweet potato virus disease (SPVD) which is caused by the synergistic interaction of 

SPFMV and SPCSV. SPVD has become the major virus constraint for sweetpotato production 

worldwide causing yield reductions up to 90 % (Schaefers and Terry, 1976; Gibson et al., 1998; 

Carey et al., 1999; Karyeija et al., 2000; Gutierrez et al., 2003; Loebenstein et al., 2004; Miano, 

2008).  Other disease complexes include: sweet potato chlorotic dwarf (SPFMV, SPCSV, and 

Sweet potato mild speckling virus, Di Feo et al., 2000), camote kulot (several viruses, Salazar 

and Fuentes, 2001), and the sweetpotato severe mosaic disease (SPCSV and Sweet potato mild 
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mottle virus, Mukasa et al., 2006). Untiveros et al., 2007, found synergistic interactions between 

SPCSV and carla- and cucumoviruses in addition to ipomo- and potyviruses. 

The potential importance of sweetpotato begomoviruses has been overlooked, in part, 

because leaf curl symptoms are not common and do not persist in sweetpotato (Valverde et al., 

2007). Genotypes that do develop characteristic upward curling symptoms generally do this only 

during warm periods of the year and may require the presence of other viruses for symptom 

development (Clark et al., 2002). In the US, SPLCV was found in mixed infection with SPFMV 

and SPLCGV (Lotrakul et al., 1998; 2003), while in Peru, SPLCV was found in mixed infection 

with SPCSV (Fuentes and Salazar, 2003). Therefore, it is likely that SPLCV may interact with 

these viruses synergistically. Experiments with single and mixed infections with russet crack 

strain of SPFMV and SPLCV resulted in higher titers of SPLCV in mixed infections, while that 

of SPFMV remained the same (Kokkinos, 2006). It is possible that higher SPLCV titers could 

result in a more efficient transmission by whiteflies and therefore natural spread of the virus to 

uninfected plants. More research is needed to get information on the prevalence, economic 

impact, and effects of mixed infections with SPLCV. 

2.2.5 Diagnosis and Detection 

Based on biological, serological, and nucleic acid properties of plant viruses, several 

diagnostics methods have been developed for sweetpotato virus detection (Valverde et al., 2007; 

2008). However, detection and identification of sweetpotato viruses is not an easy task due to the 

low concentration and the uneven distribution of some viruses within the plant (Esbenshade and 

Moyer, 1982), and the presence of phenolic compounds, latex and inhibitors in sweetpotato 

tissue (Abad and Moyer, 1992). Also, difficulties in detection have been attributed to the 

occurrence of mixed infections, and viral strains (Valverde et al., 2008). Sweetpotato viruses can 

be detected by graft-inoculation to susceptible indicator plants, such as I. setosa and I. nil, among 
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others. Based on the properties of the coat protein, serological methods such as enzyme-linked 

immunosorbent assay (ELISA) and serologically specific electron microscopy (SSEM) have 

been reported (Cadena-Hinojosa and Campbell, 1981; Hoyer et al., 1996; Fuentes et al., 1996; 

Souto et al., 2003; Gutierrez et al., 2003; Untiveros et al., 2007). In addition, detection 

techniques based on nucleic acid properties include: polymerase chain reaction (PCR), reverse 

transcription PCR (RT-PCR), real-time PCR, and molecular hybridization (Lotrakul, 2000; Li et 

al., 2004; Colinet et al., 1998; Sim, 2001; Valverde et al., 2004a; Kokkinos and Clark, 2006). 

Different diagnostic methods have been developed for SPLCV. Most of them are based 

on symptomatology of indicator hosts and on the detection of viral DNA. An extensive SPLCV 

host range study was conducted by Ling et al. (2008). Molecular hybridization using a SPLCV-

specific probe (coat protein gene) has been used to detect SPLCV from sweetpotato field 

collected samples (Valverde et al., 2004a; 2008). PCR, using specific and degenerate primers, 

and real-time PCR assays have been successfully used to detect SPLCV from indicator hosts and 

sweetpotato plants infected with this virus (Lotrakul and Valverde, 1999; Li et al., 2004; 

Kokkinos and Clark, 2006; Valverde et al., 2008). Due to the difficulties in obtaining purified 

SPLCV virions that can be used as antigens for antisera production, serological assays are not 

currently available. 

Diagnosis and identification of sweetpotato viruses are essential for the development of 

appropriate management programs (Valverde et al., 2008). Plant virus diseases cannot be 

controlled in the same way as fungal or bacterial diseases. Their control relies mainly on 

preventing the establishment, development, and dispersal of the viruses. Prevention of 

sweetpotato viral diseases involves a wide variety of measures such as eradication of sources of 

infection, elimination of alternative hosts, as well as, vectors (Clark and Moyer, 1988). The use 

of virus-free planting material is the most widely used control strategy, followed by the use of 
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resistant cultivars (Clark and Moyer, 1988; Loebenstein et al., 2004; Valverde et al., 2007; 

2008).  
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CHAPTER 3: MOLECULAR DIVERSITY OF SWEET POTATO 

LEAF CURL VIRUS I� THE U�ITED STATES 
 

3.1 Introduction 

Sweet potato leaf curl virus (SPLCV) and Sweet potato leaf curl Georgia virus 

(SPLCGV) are two begomoviruses that have been reported in the United States. SPLCV has 

been found in an ornamental sweetpotato and some breeding lines, but not in sweetpotato grown 

for commercial production (Lotrakul et al., 1998; Clark and Valverde, 2001), whereas SPLCGV 

was found in a sweetpotato breeding line, in mixed infection with SPLCV and Sweet potato 

feathery mottle virus (SPFMV) (Lotrakul et al., 2003). SPLCV and SPLCGV can be transmitted 

by graft inoculations but not mechanically to several Ipomoea species. In nature, they are likely 

to be transmitted by the sweetpotato whitefly Bemisia tabaci (Lotrakul et al., 1998; 2003; 

Valverde et al., 2004b). SPLCV causes yellow vein symptoms in some Ipomoea species (I. 

aquatica, I. fistulosa, and I. cordatotriloba) and leaf curl symptoms in others (I. alba, I. batatas 

W-285, I. lacunosa, I. lobata, I. nil, I. setosa and I. trifida) (Lotrakul et al., 2002). SPLCGV 

causes leaf curl symptoms in several Ipomoea species, but unlike SPLCV, SPLCGV does not 

cause yellow vein symptoms on I. aquatica and I. cordatotriloba (Lotrakul et al., 2003). The 

genome organization of SPLCV and SPLCGV is similar to that of the monopartite 

begomoviruses from the Old World. DNA-B component or DNA satellites have not been found 

associated with these begomoviruses (Lotrakul and Valverde, 1999; Lotrakul et al., 2003; 

Briddon et al., 2006).  

The potential importance of sweetpotato leaf curl diseases has been overlooked, in part, 

because leaf curl symptoms are not common and do not persist in sweetpotato (Valverde et al., 

2007). Genotypes that do develop characteristic upward curling symptoms generally do this only 

during warm periods of the year and may require the presence of other viruses for symptom 
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development (Clark et al., 2002). Although SPLCV does not cause symptoms on Beauregard, the 

predominant sweetpotato cultivar in the US, it can reduce its yield up to 26 % (Clark and Hoy, 

2006).   

Since SPLCV could become an important constraint for sweetpotato production (yield 

and quality); diagnosis, identification, and characterization are essential for the development of 

an appropriate management strategy.  

Variability among sweetpotato begomoviruses has been reported in the US (Lotrakul and 

Valverde, 1999; Lotrakul et al., 2002). Some of these viruses either do not induce symptoms or 

induce very mild, transient symptoms in the standard indicator host, I. setosa (Valverde et al., 

2007). Comparisons of the nucleotide sequence of the AC1 fragment of different SPLCV isolates 

and phylogenetic analysis of them suggest that there may be more than one begomovirus species. 

Therefore, it is likely that this viral disease might be caused by a species complex (Lotrakul et 

al., 2002). 

The aim of this study was to further explore the diversity of begomoviruses infecting 

sweetpotato genotypes and to determine the frequency of SPLCV and SPLCGV in the US, by 

analyzing the sequence of a 457 nucleotide fragment from the AC1.  

3.2 Materials and Methods 

3.2.1 Plant Samples and D�A Extraction 

Eleven sweetpotato genotypes (kindly provided by Dr. C.A. Clark, Louisiana State 

University, Baton Rouge) (Table 3.1) that tested positive for SPLCV and SPFMV were graft-

inoculated to indicator plants (I. setosa, I. nil, and I. aquatica). Total DNA was extracted from 

foliar tissues of these indicator plants (between 4 and 6 weeks after grafting) using Plant DNAzol 

Reagent (Invitrogen, Carlsbad, CA) and from sweetpotato leaves using DNeasy Plant Mini Kit 

(Qiagen, Valencia, CA), following the procedure provided by the manufacturers. The DNeasy 
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Plant Mini Kit (Qiagen) was found to be more efficient to obtain total DNA from sweetpotato 

leaves compared to Plant DNAzol Reagent (Invitrogen).    

 

Table 3.1. Sweetpotato genotypes tested positive for Sweet potato leaf curl virus 

Breeding lines Source
a
 

   

   W-275 
 

NCSU 

   Grand Asia NCSU 

   NC1554 NCSU 

   Norton NCSU 

   Whitestar NCSU 

   98-20 USDA-VL 

   W-317 USDA-VL 

   W-287 USDA-VL 

   W-361 USDA-VL 

   SC1149-19 USDA-VL 

   0075 LSU 
 

a
 NCSU: North Carolina State University, USDA-VL: USDA-ARS Vegetable Laboratory, Charleston, 

South Carolina; LSU: Louisiana State University. 

 

 

3.2.2 Polymerase Chain Reaction (PCR) 

SPLCV-specific primers PW285-1 and PW285-2 (Figure 3.1) were used to amplify a 

fragment of the AC1 (Lotrakul and Valverde, 1999). PCR reaction mixtures were conducted as 

described by Lotrakul et al. (1998): 50 µl volume containing 1X PCR buffer, 2.5 mM MgCl2, 0.2 

mM dNTP mixture, 0.2 µM of each primer, 2.5 U of Taq DNA polymerase (Promega, Madison, 

WI) and 1 µl of DNA sample. PCR was performed in a Genius Thermocycler (Techne, 

Cambridge, UK) with an initial cycle of 94 ˚C for 1 min followed by 45 cycles of 94 ˚C for 1 

min, 55 ˚C for 1 min, and 72 ˚C for 3 min, and a final extension cycle of 72 ˚C for 10 min 

(Lotrakul and Valverde, 1999). To further test the variability of sweetpotato begomoviruses 

obtained from the analysis of the AC1 fragment, primers SPB-1 and SPB-2 (Figure 3.1) were 

used to amplify the full length coat protein (CP) gene (AV1). SPB-2 primer sequence was 
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provided by Dr. P. Lotrakul (Chulalongkorn University, Bangkok, Thailand), while SPB-1 

primer was modified from a primer sequence also provided by Dr. P. Lotrakul. PCR reaction 

mixtures were prepared as described above. PCR was performed in a Genius Thermocycler with 

38 cycles of 94 ˚C for 1 min, 58 ˚C for 1 min, and 72 ˚C for 3 min, followed by a final extension 

cycle of 72 ˚C for 10 min. PCR products were separated by electrophoresis (1.2 % agarose) and 

stained with ethidium bromide.  

 

 

 

Figure 3.1. Primers used for the amplification of a fragment of the AC1 and the full length coat 

protein gene (AV1) of sweetpotato begomoviruses. 

 

 

3.2.3 Cloning and Sequencing 

Bands corresponding to the expected PCR products were excised from agarose gels and 

further purified after electrophoresis using MiniElute (Qiagen) DNA purification kit and ligated 

into the pGEM-T Easy vector (Promega). Recombinant plasmids were transformed into 

Escherichia coli JM 109 competent cells. Plasmids were isolated from transformant colonies 
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using the FlexiPrep kit Miniprep procedure (Amersham Pharmacia Biotech Inc., Piscataway, 

NJ). Successful insertion of PCR products was confirmed by enzyme digestion (Eco RI). 

Nucleotide sequences were determined by automated sequence analysis at the Research 

Technology Support Facility of Michigan State University, East Lansing using a Perkin 

Elmer/Applied Biosystems 3100 capillary sequencer (Perkin Elmer, Foster City, CA).  

3.2.4 Sequence Analysis 

Nucleotide and derived amino acid sequences of the AC1 fragment and the full length of 

the CP gene (AV1) were compared to the corresponding sequences of geminiviruses available in 

the Genbank.  Four sequences of SPLCV isolates (GA-00-4, GA-00-3 I, W-328, and LA-Font-4), 

previously reported in the US (Lotrakul et al., 2002), were included in the analysis. Nucleotide 

sequences of four SPLCV isolates from Peru (CIP 400820, CIP 401212, TB26, and SR 90323) 

and two from Kenya (Kenya 43 and Kenya 84) were determined from total DNA samples 

provided by M.S. S. Fuentes (International Potato Center, Lima, Peru) and Dr. D.W. Miano 

(KARI Biotechnology Centre, Nairobi, Kenya), respectively (Table 3.2). Nucleotide and derived 

amino acid sequence identities were determined by using pairwise alignments. Pairwise and 

multiple sequence alignments were conducted using Clustal X version 1.83 (Jeanmougin et al., 

1998).  Neighbor-joining trees with bootstrap analysis (1000 replicates) were constructed from 

the multiple alignments and drawn with Tree View version 1.6.6 (Page, 1996).  

3.3 Results 

Only mild leaf curl symptoms on I. setosa and I. nil, and transient yellow vein symptoms 

on I. aquatica were observed after graft-inoculation experiments using scions from 11 

sweetpotato genotypes.  

A 512 nucleotide fragment corresponding to the AC1 was amplified with primers 

PW285-1 and PW285-2. Sequence analyses based on a 457 nucleotide region (selected from the 
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Table 3.2. Geminivirus sequences used in the analyses of the AC1 fragment and the coat protein 

gene (AV1) of sweetpotato begomoviruses  

Virus names 
Assigned 

Abbreviation 
AC1 AV1 

GenBank 

Accession 

number 
 

Sweet potato leaf curl virus 
 

SPLCV 
 

� 
 

� 
 

AF104036 

Sweet potato leaf curl Georgia virus SPLCGV � � AF326775 

SPLCV US-isolates     

               AL-Prakash (Alabama) AL-Prakash �  AY679764 

               GA-00-4 (Georgia) GA-00-4 ●   

               GA-00-3 I (Georgia) GA-00-3 I ●   

               W-328 (USDA, SC) W-328 ●   

               LA-Font-4 (Louisiana) LA-Font-4 ●   

SPLCV-China China � � DQ512731 

SPLCV-Japan (Kyoto) Japan-Ky � � AB433788 

SPLCV-Japan (Kunamoto) Japan-Ku � � AB433787 

SPLCV-Japan (Miyazaki) Japan-Mi � � AB433786 

SPLCV-Puerto Rico I P.Rico I �  AY679766 

SPLCV-Puerto Rico II P.Rico II �  AY679767 

SPLCV-Korea Korea �  AY679765 

SPLCV-Kenya 43 Kenya 43 � � DQ361005 

SPLCV-Kenya 84 Kenya 84 ■ �  

SPLCV-Peru 1 (CIP400820) Peru 1 �   

SPLCV-Peru 2 (CIP401212) Peru 2 � �  

SPLCV-Peru 3 (TB26) Peru 3 � �  

SPLCV-Peru 4 (SR90323) Peru 4 �   

Ipomoea yellow vein virus IYVV � � AJ586885 

Tomato yellow leaf curl virus – USA TYLCV-US � � EF539831 

TYLCV- Dominican Republic TYLCV-DO � � AF024715 

Tomato yellow leaf curl China virus TYLCCNV � � NC_004044 

Ageratum yellow vein virus AYVV � � X74516 

Bean golden yellow mosaic virus BGYMV � � NC_001439 

Mungbean yellow mosaic virus MYMV � � NC_001983 

Dicliptera yellow mottle virus DiYMoV � � AF139168 

Beet curly top virus BCTV � � NC_001412 
 

� Sequences available in GenBank, ● Sequences provided by Dr. R.A Valverde, ■ Sequence provided by 

Dr. D.W. Miano, � Sequences determined in this study. 
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amplified fragment) of the begomoviruses obtained from the 11 sweetpotato genotypes indicated 

that 10 were closely related to SPLCV with nucleotide sequence identities that varied from 

nearly 100 to 96 %, while one (W-361) was related to SPLCGV with 92 %  nucleotide sequence 

identity (Table 3.3). Nucleotide sequence of the AC1 fragment of W-287 and W-361 isolates 

were deposited in the GenBank (DQ361002, DQ361003). According to the nucleotide sequence of 

the AC1 fragments, the isolates from Peru and Kenya were closely related to SPLCV (Table 3.4).  

A neighbor-joining tree based on the nucleotide sequence of the AC1 fragments clustered 

all sweetpotato begomoviruses together. In this cluster, sweetpotato begomoviruses were divided 

in three major groups (Figure 3.2). Group I included SPLCV and its relatives; this major group 

can be further divided in eight subgroups (Ia-Ih). Subgroup Ia consisted of SC1149-19, W-275, 

Grand Asia, W-287, Norton, and NC1554, and two SPLCV isolates from Peru (Peru 1 and Peru 

2). Subgroup Ib contained 0075, Whitestar, and W-317, SPLCV, LA-Font-4 and W-328. The 

isolate 98-20 was clustered with the three SPLCV isolates from Japan (subgroup Ic), Peru 4 was 

clustered with IYVV (subgroup Id), while the Kenyan isolates (Kenya 43 and 84) were placed 

together (subgroup Ie). The SPLCV isolates from Korea, Peru (Peru 3), and Puerto Rico (P. Rico 

I) were placed separately and each one could be considered as subgroup (If-Ih, respectively). 

Group II included SPLCGV that clustered with W-361, AL-Prakash, GA-00-3 I, GA-00-4, and 

Puerto Rico II. Group III only contained a SPLCV isolate from China. 

Based on the variability obtained from the analysis of the AC1 fragment, isolates W-361, 

W-287, 0075, and Whitestar were selected for the sequence analysis of the CP gene (AV1). The 

full length of the CP gene (765 nucleotides) was amplified with primers SPB-1 and SPB-2. 

Results indicated that these four isolates were closely related to SPLCV with nucleotide 

sequence identities that ranged from 95 to 99 % (Table 3.5). The CP gene sequence of the  
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Peruvian isolate, Peru 3, was related to SPLCV; however, Peru 2 was related to SPLCGV. 

Isolates from Kenya were related to SPLCV (Table 3.4). 

A neighbor-joining tree based on the CP gene sequence clustered all sweetpotato 

begomoviruses together. In this phylogenetic analysis (Figure 3.3), two major groups were 

observed. Group I with 5 subgroups included W-361, Whitestar, 0075, and SPLCV in subgroup 

Ia. The isolate from W-287 breeding line was grouped with Japan-Ky (subgroup Ib); whereas, 

the other two Japanese isolates (Japan-Ku and Japan-Mi) were placed with Peru 3 (subgroup Ic). 

The SPLCV isolates from Kenya were grouped together, and IYVV was placed alone. In group 

II, SPLCGV clustered with the SPLCV isolate from China and Peru (Peru 2).  

3.4  Discussion 

Diseases caused by begomoviruses on sweetpotato have been reported in Israel, Taiwan, 

Japan, US, Spain, Italy, China, Peru, and Kenya (Cohen et al., 1997; Chung et al., 1985; Onuki 

and Hanada, 1998; Lotrakul et al., 1998; Banks et al., 1999; Briddon et al., 2006; Luan et al., 

2007; Fuentes and Salazar, 2003; Miano et al., 2006). Two begomoviruses, SPLCV and 

SPLCGV, found infecting sweetpotato breeding lines in the US, have been characterized 

(Lotrakul and Valverde, 1999; Lotrakul et al., 2003); however, information about how often 

these viruses occur in breeding lines and sweetpotato cultivars is not known. 

In this study, sequences of 11 begomoviruses infecting sweetpotato genotypes in the US 

were obtained. Nucleotide sequence identities of the AC1 fragment indicated that ten were 

closely related to SPLCV, and only one, related to SPLCGV. Therefore, it appears that SPLCV 

is more common in sweetpotato genotypes than SPLCGV. 

Lotrakul and Valverde (1999) have reported that the region of the AC1 that overlaps with 

the AC4 was the most conserved in the genome of SPLCV. Thus, the percent nucleotide 

sequence identity obtained from comparing sequences of this region may be higher than that of



 

 

2
8
 

T
ab

le
 3

.3
. 
P

er
ce

n
t 

n
u
cl

eo
ti

d
e 

(a
b
o
v
e)

 a
n
d
 d

er
iv

ed
 a

m
in

o
 a

ci
d
 (

b
el

o
w

) 
se

q
u

en
ce

 i
d
en

ti
ti

es
 o

f 
th

e 
A

C
1
 f

ra
g
m

en
t 

o
f 

1
1
 b

eg
o
m

o
v
ir

u
se

s 

fo
u
n
d
 i

n
fe

ct
in

g
 s

w
ee

tp
o
ta

to
 g

en
o
ty

p
es

 i
n
 t

h
e 

U
S

 

 
0
0
7
5
 

W
-3

6
1
 

S
C

1
1
4
9
-

1
9
 

�
o
rt

o
n

 
W

h
it

es
ta

r 
9
8
-2

0
 

W
-2

7
5
 

G
ra

n
d

 

A
si

a
 

�
C

1
5
5
4
 

W
-3

1
7
 

W
-2

8
7
 

 S
P

L
C

V
 

 

1
0
0
 

 

8
8
 

 

9
6
 

 

9
7
 

 

9
9
 

 

9
8
 

 

9
7
 

 

9
7
 

 

9
7
 

 

9
8
 

 

9
7
 

 
1
0
0
 

9
4
 

9
9
 

9
8
 

9
9
 

9
9
 

9
9
 

9
8
 

9
8
 

9
8
 

9
8
 

S
P

L
C

G
V

 
8
7
 

9
2
 

8
5
 

8
5
 

8
7
 

8
7
 

8
5
 

8
5
 

8
5
 

8
6
 

8
5
 

 
9
4
 

9
6
 

9
3
 

9
2
 

9
3
 

9
3
 

9
3
 

9
2
 

9
4
 

9
2
 

9
2
 

0
0
7
5
 

 
8
8
 

9
6
 

9
7
 

9
9
 

9
8
 

9
7
 

9
7
 

9
7
 

9
8
 

9
7
 

 
 

9
4
 

9
9
 

9
8
 

9
9
 

9
9
 

9
9
 

9
8
 

9
8
 

9
8
 

9
8
 

W
-3

6
1
 

 
 

8
7
 

8
7
 

8
7
 

8
8
 

8
7
 

8
7
 

8
8
 

8
7
 

8
7
 

 
 

 
9
4
 

9
2
 

9
4
 

9
4
 

9
4
 

9
3
 

9
4
 

9
3
 

9
3
 

S
C

1
1
4
9
-1

9
 

 
 

 
9
8
 

9
6
 

9
6
 

9
9
 

9
9
 

9
8
 

9
6
 

9
8
 

 
 

 
 

9
8
 

9
8
 

9
8
 

1
0
0
 

9
9
 

9
9
 

9
8
 

9
9
 

�
o
rt

o
n

 
 

 
 

 
9
6
 

9
6
 

9
8
 

9
8
 

9
8
 

9
6
 

9
8
 

 
 

 
 

 
9
7
 

9
7
 

9
8
 

9
8
 

9
8
 

9
6
 

9
8
 

W
h

it
es

ta
r 

 
 

 
 

 
9
8
 

9
6
 

9
6
 

9
6
 

9
8
 

9
6
 

 
 

 
 

 
 

9
8
 

9
8
 

9
8
 

9
8
 

9
8
 

9
8
 

9
8
-2

0
 

 
 

 
 

 
 

9
6
 

9
6
 

9
6
 

9
8
 

9
6
 

 
 

 
 

 
 

 
9
8
 

9
8
 

9
8
 

9
8
 

9
8
 

W
-2

7
5
 

 
 

 
 

 
 

 
9
9
 

9
8
 

9
6
 

9
9
 

 
 

 
 

 
 

 
 

9
9
 

9
9
 

9
8
 

9
9
 

G
ra

n
d

 A
si

a
 

 
 

 
 

 
 

 
 

9
8
 

9
6
 

9
9
 

 
 

 
 

 
 

 
 

 
9
8
 

9
7
 

1
0
0
 

�
C

1
5
5
4
 

 
 

 
 

 
 

 
 

 
9
6
 

9
8
 

 
 

 
 

 
 

 
 

 
 

9
7
 

9
8
 

W
-3

1
7
 

 
 

 
 

 
 

 
 

 
 

9
6
 

 
 

 
 

 
 

 
 

 
 

 
9
7
 



 

 

29 

Table 3.4. Percent nucleotide (above) and derived amino acid (below) sequence identities of the 

AC1 fragment and the coat protein gene (AV1) of sweetpotato begomoviruses from Peru and 

Kenya  

 
SPLCV

a
 

AC1        AV1   

SPLCGV
b
 

AC1        AV1   

IYVV
c
 

AC1        AV1   
    

  Peru 1 (CIP400820) 
 

      97 
 

     86 
 

     96 

       98      92       99 

  Peru 2 (CIP401212) 96            89 85             94 94            89 

 98            95 92             96 97            94 

  Peru 3 (TB26) 94            96 87             90 93            93 

 96            97 92             96 95            95 

  Peru 4 (SR90323)       97      87      97 

       99      93       98 

  Kenya 43 96            94 85            89 96            93 

 97            95 92            94 96           94 

  Kenya 84 96            95 84            90 95           94 

 98            97 92            95 98           95 
 

a
 SPLCV: Sweet potato leaf curl virus, 

b
 SPLCGV: Sweet potato leaf curl Georgia virus,  

c
 IYVV: Ipomoea yellow vein virus.  

 

Table 3.5. Percent nucleotide (above) and derived amino acid (below) sequence identities of the 

coat protein gene (AV1) of four selected begomoviruses found infecting sweetpotato genotypes 

in the US 

 W-361 W-287 0075 Whitestar 

 

SPLCV
a
 

 

  99 
 

95 
 

99 
 

99 

 100 97 99 99 

SPLCGV
b
   90 90  89 89 

   94 94 94 94 

W-361  95 99 99 

  97 99 99 

W-287   95 95 

   97 97 

0075    99 

    98 
   

a
 SPLCV: Sweet potato leaf curl virus, 

b
 SPLCGV: Sweet potato leaf curl Georgia virus.  
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Figure 3.2. Neighbor-joining tree based on the nucleotide sequence of the AC1 fragment shows 

the relationship among begomoviruses infecting sweetpotato in the US and other begomoviruses. 

Beet curly top virus (BCTV), genus Curtovirus, was used as an outgroup. The tree was generated 

with Clustal X version 1.83 and drawn with Tree View version 1.6.6. Numbers at each branch 

indicate the bootstrap values. Vertical and horizontal branch lengths are arbitrary. Blue labels 

indicate US isolates of SPLCV reported in this study, while green labels indicated US isolates 

previously reported. 
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Figure 3.3. Neighbor-joining tree based on the nucleotide sequence of the coat protein gene 

(AV1) shows the relationship among begomoviruses infecting sweetpotato in the US and other 

begomoviruses. Beet curly top virus (BCTV), genus Curtovirus, was used as an outgroup. The 

tree was generated with Clustal X version 1.83 and drawn with Tree View version 1.6.6. 

Numbers at each branch indicate the bootstrap values. Vertical and horizontal branch lengths are 

arbitrary. Blue labels indicate SPLCV isolates reported in this study. 
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the entire genome (Lotrakul et al., 2002). Based on the sequence of a 457 nucleotide fragment of 

the AC1, SPLCV isolates (analyzed by Lotrakul et al., 2002) were clustered into three groups. In 

this study, SPLCV isolates were also clustered in three major groups that were slightly different 

from the ones reported by Lotrakul et al. (2002).  

Most isolates of different geographical regions (Japan, Puerto Rico isolate I, Korea, Peru, 

and Kenya) were closely related to SPLCV. As was expected, isolates from the same region were 

more closely related to each other as shown by the isolates from Kenya and Japan. Nevertheless, 

it was interesting to notice that the isolates from Peru were distributed in different subgroups. 

The fact that the International Potato Center (Lima, Peru) obtains germplasm from different 

countries may explain the diversity of SPLCV isolates from Peru. The isolate II from Puerto 

Rico was closely related to SPLCGV. The isolate from China was placed alone in group III 

because the AC1 of this particular isolate is shorter than those of other SPLCV strains (Luan et 

al., 2007).  It has been reported that the AC1 (Rep) sequences of SPLCV, SPLCGV, IYVV and 

the SPLCV isolate from China were more conserved than the CP gene (AV1) sequences when 

they were compared to those of non-sweetpotato begomoviruses (Lotrakul et al., 2003; Luan et 

al., 2007). 

According to Padidam et al. (1995), the 5’ end is the most variable region of the 

begomovirus CP gene, and is representative of the nucleotide sequence variability of the entire 

viral genome. Therefore, a phylogenetic analysis based on this region is usually sufficient to 

establish the taxonomic position of a given begomovirus isolate. In order to confirm the 

variability found in the analysis of the AC1 fragment, sequences of the CP gene (AV1) were 

obtained from selected SPLCV infected samples. Results of phylogenetic analysis based on CP 

sequences were slightly different from the AC1. In this case, sweetpotato begomoviruses were 

split in two groups instead of three. Group I contained SPLCV and its relatives from the US, 
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Peru (Peru 3), Japan, Kenya, and Spain (IYVV). In Group II, SPLCV isolates from China and 

Peru (Peru 2) were clustered with SPLCGV.  

An unexpected finding was that the nucleotide sequence of the AC1 fragment from the 

W-361 isolate was more related to SPLCGV (92 %) even though the CP sequence was more 

similar to the sequence of SPLCV (99 %).  Similar results were obtained with one of the isolates 

from Peru (Peru 2). Based on the AC1 sequence analysis, Peru 2 clustered within the SPLCV 

group (96 %), while the CP sequence clustered with SPLCGV (94 %). Further studies are needed 

to determine if these isolates are the result of a recombination.   

The sequence analysis of the AC1 fragment and the CP gene (AV1) clustered SPLCV 

and SPLCGV in two different groups, supporting their status as different species. Also, the 

results confirm that the CP gene sequence is the most conserved among the sweetpotato 

begomoviruses but distinct from those of other begomoviruses as previously reported by 

Lotrakul and Valverde (1999) and Luan et al. (2007).   

A threshold of 89 % nucleotide sequence identity between the full length genome 

sequences of the A component has been established to demarcate between distinct species of 

geminiviruses, and 93 % nucleotide sequence identity to distinguish between strains (Fauquet et 

al., 2003; 2008). According to this rule, the SPLCV isolate from China can be considered as a 

strain of SPLCGV based on the percentage of the nucleotide sequence identity of its DNA-A, 91 

% with SPLCGV and 88 % with SPLCV (Luan et al., 2007). Whereas, the viruses from Japan: 

Kyoto, Kunamoto, and Miyazaki could be considered variants or strains of SPLCV based on 

their DNA-A nucleotide sequence identities of 96, 93 and 90 %, respectively (Onuki et al., 

unpublished).  

The analysis of the AC1 fragment and the CP gene (AV1) confirmed previous 

suggestions regarding the variability of begomoviruses infecting sweetpotato. However, it should 
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be emphasized that partial sequences are not enough to distinguish new viral species. A 

comprehensive characterization on host range, virus transmission, and complete genome 

sequence needs to be conducted in order to classify a virus strain or a new species as suggested 

by Fauquet et al. (2003).  

Evidence for recombination events in the genus Begomovirus has been reported (Harrison 

et al., 1997; Zhou et al., 1997; Padidam et al., 1999). For instance, the virus associated with the 

cassava pandemic in Uganda (EACMV-UG2), is a recombinant between African cassava mosaic 

virus (ACMV) and East African cassava mosaic virus (EACMV) (Zhou et al., 1997). Similarly, 

it was reported that Tomato yellow leaf curl Malaga virus (TYLCMalV) is a recombinant 

derived from the genetic exchange between Tomato yellow leaf curl virus (TYLCV) and Tomato 

yellow leaf curl Sardinia virus (TYLCSV) (Monci et al., 2002).  

Mixed infections provide suitable conditions for recombination. In Spain, a high 

incidence of begomovirus infection on sweetpotato has been reported (Lozano et al., 2004). 

SPLCV and IYVV were found in mixed infections. Moreover, sequence analysis of DNA-A 

components from various begomovirus isolates suggested the presence of new species (Lozano 

et al., 2004). SPLCV was found in mixed infections with SPFMV and SPLCGV in the US 

(Lotrakul et al., 1998; 2003), whereas with SPCSV in Peru (Fuentes and Salazar, 2003). It is 

likely that SPLCV may interact with these viruses synergistically. Experiments with single and 

mixed infections with russet crack strain of SPFMV and SPLCV resulted in higher titers of 

SPLCV in mixed infections, while that of SPFMV remained the same (Kokkinos, 2006). It is 

possible that higher SPLCV titers could result in a more efficient acquisition by whiteflies and 

therefore natural spread of the virus to uninfected plants. 

The genetic diversity of sweetpotato begomoviruses may have important implications in 

host range, disease, and whitefly transmissibility. Some regions of the begomovirus genome are 
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more prone to variation than others. The part of the genome that shows the greatest variation 

among different begomoviruses is the intergenic region (IR). Apart from the conserved 

nonanucleotide sequence and the TATA boxes, the IRs of different viruses may show little 

similarity to one another (Harrison and Robinson, 1999). According to Seal et al. (2006), the 

main recombination site appears to be in the IR. The AC1 encodes the replication-associated 

protein (Rep) which binds in a sequence-specific manner to the iterons in the IR. Consequently, 

variability of the IR coincides with variability of the Rep sequence, especially in the N-terminal 

half of the Rep, which contains the domain that interacts with the IR (Harrison and Robinson, 

1999; Sanz et al., 2000).  

The AC4 (which is embedded in the AC1) is involved in host range determination, 

symptom severity, and virus movement (Jupin et al., 1994; Laufs et al., 1995; Wartig et al., 

1997). Recombinants in the AC1-AC4 region have been reported (Seal et al., 2006); therefore, 

variability in the AC1-AC4 region may be critical and could affect the fitness of begomoviruses, 

as well as, their ability to cause disease.  

In contrast to the IR, the most conserved region among begomoviruses is the CP gene 

(AV1). The CP plays a key role in processes that are involved in virus infection, survival and 

spread (Harrison and Robinson, 1999; Harrison et al., 2002). Although the CP is the most 

conserved protein among sweetpotato begomoviruses, it is very different from the CP of 

begomoviruses that infect other plant species (Lotrakul and Valverde, 1999; Lotrakul et al., 

2003; Luan et al., 2007). This could be one reason for the low rate of transmission by the 

sweetpotato whitefly B. tabaci. 

Genetic diversity may also interfere with the reliability of molecular detection tools, such 

as PCR and nucleic acid hybridization. Successful amplification of a fragment of the AC1 by 

SPLCV-specific primers (PW285-1 and PW285-2) required high quality DNA samples from 



 

 

36 

plant tissues. Any variation in primer recognition sites could affect the amplification. An 

alternative to virus-specific primers is the use of degenerate primers. Li et al. (2004) developed 

degenerate primers to facilitate the detection of sweetpotato begomoviruses.  

The variability among sweetpotato begomoviruses is likely because of genetic 

recombination. In conclusion, the genetic diversity of sweetpotato begomoviruses must be 

evaluated and the prevalence of distinct species, strains, or variants must be identified as well. 

This information will be helpful to breeding programs aimed at development of resistant 

sweetpotato cultivars.  
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CHAPTER 4: EXPRESSIO� OF THE COAT PROTEI� OF 

SWEET POTATO LEAF CURL VIRUS I� ESCHERICHIA COLI 
 

4.1 Introduction 

Sweet potato leaf curl virus (SPLCV), a whitefly-transmitted geminivirus, has been found 

in an ornamental sweetpotato and some breeding lines in the United States (Lotrakul et al., 1998; 

2002; Clark and Valverde, 2001). Leaf curling is a common symptom on infected plants (I. 

batatas W-285, I. nil, I. setosa), but yellow vein symptoms are observed on some hosts (I. 

aquatica, I. cordatotriloba). Although SPLCV does not cause symptoms on Beauregard, the 

most predominant sweetpotato cultivar in the US, it can reduce the yield up to 26 % (Clark and 

Hoy, 2006). Since SPLCV could become an important constraint for sweetpotato production; 

diagnosis, identification, and characterization are essential to develop an appropriate 

management strategy. Methods available to detect SPLCV are based on symptomatology of 

indicator hosts (graftings assays) and on the detection of viral DNA (polymerase chain reaction 

(PCR), and molecular hybridization) (Lotrakul and Valverde, 1999; Li et al., 2004).  

Despite the availability of sensitive nucleic acid based assays for detecting plant viruses, 

serological assays are still the methods of choice for screening large numbers of plant materials. 

Furthermore, these methods are particularly valuable in developing countries since they require 

few resources.  

Serological detection of SPLCV is not currently available due to the difficulties in 

obtaining purified virions that can be used as antigen for antiserum production. It is possible that 

either SPLCV virus particles occur in low concentration in plant tissues or viral particles are not 

stable following standard purification procedures. This problem is not unique to SPLCV. 

Purification of begomovirus virions can be very difficult; the success of purification methods 

depends greatly on the virus and host plant (Palmer et al., 1998). Using partially purified virions, 
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serological relationships of SPLCV to Bean golden mosaic virus (BGMV) and to Mungbean 

yellow mosaic virus (MYMV) by Western blot was reported by Onuki et al. (2000). ELISA on 

nitrocellulose membranes (NCM-ELISA) and Western blot tests using antisera to Tomato yellow 

leaf curl virus (TYLCV) and leaf extracts and partially purified preparations of SPLCV did not 

reveal serological relationships between these two viruses (Appendix A).  

Cloning and expressing viral coat protein genes in bacteria can overcome the difficulties 

in obtaining purified plant virus preparations for antiserum production (Nikolaeva et al., 1995; 

Hoyer et al., 1996; Meng et al., 2003). Polyclonal antisera prepared to four begomovirus coat 

proteins (BGMV, TYLCV, Cabbage leaf curl virus, and Tomato mottle virus) expressed in 

Escherichia coli have been prepared and used for begomovirus detection in different 

immunological assays (ELISA, Western blots, leaf imprint blots, tissue blots, and immunogold 

labeling in electron miscroscopy) (Abouzid et al., 2002).  

The availability of the complete genome sequences of most begomoviruses, including 

SPLCV (Lotrakul and Valverde, 1999), should allow the expression of a recombinant coat 

protein in bacteria. Therefore, in theory, it should be feasible to use this technology to produce 

SPLCV antisera for serological based assays.  

4.2 Materials and Methods 

4.2.1 Cloning of the SPLCV Coat Protein Gene 

Total DNA was extracted from I. setosa leaf tissue infected with the US isolate of 

SPLCV using the DNeasy plant mini kit (QIAGEN, Valencia, CA). Based on the known 

sequence of SPLCV, specific primers SPB-1 (5’-CAGAGTCGGTACCTATGACAGGGCGAA-

3’) and SPB-2 (5’-TACTCTGCAGTTAATTGTTGTGCGAATC-3’) were used to amplify the 

full length coat protein (CP) gene (a Kpn I restriction site on SPB-1 and a Pst I restriction site on 

SPB-2 are underlined). SPB-2 primer sequence was kindly provided by Dr. P. Lotrakul 
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(Chulalongkorn University, Bangkok, Thailand), while SPB-1 primer sequence was modified 

from a primer sequence (5’-GGTCAAGCTTTATGACAGGGCGAATTCC-3’) also provided by 

Dr. P. Lotrakul. PCR reaction mixtures were prepared as described by Lotrakul et al. (1998). 

Amplification was performed in a Genius Thermocycler (Techne, Cambridge, UK) with 38 

cycles of 94 ˚C for 1 min, 58 ˚C for 1 min, and 72 ˚C for 3 min, followed by a final extension 

cycle of 72 ˚C for 10 min. PCR products were separated by electrophoresis (1.2 % agarose) and 

stained with ethidium bromide. Bands corresponding to the expected PCR products were excised 

from agarose gels and further purified using MiniElute (Qiagen) DNA purification kit and 

ligated into the pGEM-T Easy vector (Promega, Madison, WI). Recombinant plasmids were 

transformed into E. coli JM 109 competent cells following manufacturer’s instructions 

(Promega). Plasmids were isolated from transformant colonies using the FlexiPrep
 
kit Miniprep 

procedure (Amersham Pharmacia Biotech Inc., Piscataway, NJ). The successful insertion of PCR 

products were confirmed by enzyme digestions (Eco RI, Kpn I, and Pst I). In order to verify the 

identity of PCR products as the corresponding SPLCV CP gene, recombinant plasmids were 

sequenced at the Research Technology Support Facility of Michigan State University, East 

Lansing using a Perkin Elmer/Applied Biosystems 3100 capillary sequencer (Perkin Elmer, 

Foster City, CA).   

The SPLCV CP gene was excised from the pGEM-T Easy vector by restriction enzymes 

(Kpn I and Pst I) and subcloned into the expression vector pMAL-c2E (New England Biolabs, 

Beverly, MA). The ligation mixture in 10 µl volume consisted of 1.7 µl containing 264 ng of 

pMAL-c2E vector (Kpn I and Pst I digested), 0.5 µl containing 90 ng of the CP gene (Kpn I and 

Pst I digested), 5 µl of 2X Rapid ligation buffer (Promega), 1 µl of 10 mM ATP, 1 µl of T4 DNA 

ligase (Promega) and 0.8 µl of nuclease free water. The ligation solutions were mixed and 

incubated for 1 h at room temperature (24-25 ˚C), and then overnight at 4 ˚C. Recombinant 
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plasmids were transformed into E. coli XL1-Blue competent cells, according to a procedure 

developed by Dr. N. Murai (Louisiana State University, Baton Rouge). For transformation, 5 µl 

of the ligation solution was added to a 5 ml sterile capped Falcon tube and diluted with 95 µl of 

TENC buffer (20 mM Tris HCl, pH 8.0, 30 mM CaCl2, 1 mM EDTA, 20 mM NaCl). Competent 

cells were prepared as follow: 50 ml of Luria-Bertani (LB) broth (10 g tryptone, 5 g yeast 

extract, 5 g NaCl per liter) containing 0.1% glucose was inoculated with 0.5 ml of an overnight 

culture of XL1-Blue cells and incubated at 37 ˚C, until an OD600 value between 0.3 and 0.4 was 

reached. Cells were harvested by centrifugation in two 30 ml centrifuge bottles (4,000 RPM, 5 

min, 4 ˚C in a Beckman Coulter Avanti J-25 Centrifuge, JA 25.5 rotor). Pellets were resuspended 

in 12.5 ml of 10 mM NaCl, then combined in one tube (final volume: 25 ml) and centrifuged. 

The pellet was resuspended in 25 ml of 30 mM CaCl2 and incubated on ice for 60 min. The 

sample was centrifuged again and the pellet resuspended in 5 ml of 30 mM CaCl2 and incubated 

on ice for another 60 min. After incubation, 200 µl of competent cells were added to the diluted 

ligation solution and incubated on ice for 60 min. Cells were heat-shocked at 42 ˚C for 2 min, 

and then kept on ice for at least 2 min. One ml of pre-warmed LB broth was added to the heat-

shocked cell suspension, and it was incubated at 37 ˚C with shaking (150-200 RPM) for 60 min. 

Aliquots of 100, 300, and 600 µl were mixed with 2.5 ml of top agar (LB broth plus 0.75 % 

agar), and then spread on  LB/ampicillin plates. Plasmids were recovered from transformant 

colonies using the Wizard Plus SV Minipreps DNA Purification System (Promega). 

Recombinant plasmids pMAL-CP were identified by PCR using primers: malE and M13/pUC 

(New England Biolabs, #S1237S and #S1224S, respectively). PCR reactions were conducted as 

described previously using the following parameters: 1 cycle of 94 ˚C for 1.5 min, 35 cycles of 

94 ˚C for 1 min, 65 ˚C for 1 min, and 72 ˚C for 1.5 min, and 1 cycle of 72 ˚C for 5 min. Also, 

recombinant plasmids were characterized by restriction enzyme digestions (Mfe I, (co I, and 
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(he I). In-frame insertion of the SPLCV CP gene in the pMALc2-E vector (pMAL-CP) was 

verified by DNA sequencing.  

4.2.2 Overexpression Experiments 

Bacterial colonies carrying the recombinant plasmid pMAL-CP were grown at 37 ˚C in 

LB broth containing 0.2 % glucose and 100 µg/ml ampicillin. When cultures reached an OD600 

value of approximately 0.5, cells were induced with 0.3 mM IPTG (Isopropyl β-D-1-

thiogalactopyranoside) and incubated at 26 and 37 ˚C for 1, 2, 3 and 4 h. For analysis of the total 

cell protein fraction, 1 ml of both induced and non-induced cells were harvested and resuspended 

in 25 µl of dH2O, then 25 µl of 2X loading buffer (0.125 M Tris, pH 6.8, 4 % SDS, 20 % 

glycerol, 10 % 2-mercaptoethanol, 0.2 % bromophenol blue) was added, mixed and kept at -20 

˚C. For samples induced more than 2 h, 1 ml of bacterial cultures were harvested and 

resuspended in 50 µl of dH2O, then 50 µl of 2X loading buffer was added, mixed and kept at -20 

˚C. When all samples were collected, proteins were denatured in boiling water for 5 min, and 20 

µl of each sample was loaded on SDS-PAGEs (stacking gel 4 % and resolving gel either 8 or 10 

%) as described by Laemmli (1970). Proteins were visualized with Coomassie Brilliant Blue 

staining solution (45 % methanol, 0.1 % Coomassie Brilliant Blue R-250, 10 % acetic acid).  

A selected bacterial clone harboring the recombinant plasmid pMAL-CP was chosen for 

a time course expression experiment. In this assay, bacterial cells were induced with 0.3 mM 

IPTG and incubated at 26 ˚C for 15 and 30 min, and 1, 2, 4, and 6 h.   

Bacterial colonies carrying the pMAL-c2E plasmid (expression vector without insert) 

were used as controls in every expression experiment.  

4.2.3 Expression and Purification of the Fusion Protein 

Expression and purification procedures were performed according to Dyer (1993) with 

some modifications. One liter of LB broth containing 0.2 % glucose and 100 µg/ml ampicillin 
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was inoculated with 10 ml of an overnight culture of XL1-Blue cells harboring the recombinant 

plasmid pMAL-CP and incubated at 37 ˚C. When the OD600 reached an approximate value of 

0.5, IPTG was added to a final concentration of 0.3 mM and incubation was continued at 26 ˚C 

for 1 h in a gyrotory water bath shaker (at approximately 200 RPM). Cells were harvested by 

centrifugation (4,800 RPM, 20 min, 4 ˚C, in a Beckman J2-21M Centrifuge, JA 10 rotor). The 

pellet was kept overnight at -20 ˚C and then resuspended in 50 ml of lysis buffer (10 mM 

phosphate, 30 mM NaCl, 0.25 % Tween 20, 10 mM EDTA, 10 mM EGTA (ethylene glycol 

tetraacetic acid), pH 7.0). Freshly prepared lysozyme (1 mg/ml) was added, and the suspension 

was kept on ice for 20 min. Cells were disrupted by sonication (6 times, 15 s, short pulses, 50% 

output), and NaCl was added to a final concentration of 0.5 M. After centrifugation (9,000 RPM, 

30 min, 4 ˚C, in a Beckman Coulter Avanti J-25 Centrifuge, JA 25.5 rotor), the supernatant was 

diluted 1:5 with column buffer (10 mM phosphate, 0.5 M NaCl, 1 mM sodium azide, 1 mM 

EGTA, pH 7.0) plus 0.25 % Tween 20 and kept at 4 ˚C. 

The fusion protein MBP*CP comprising the SPLCV CP and the Maltose-binding protein 

(MBP) was purified using an amylose affinity chromatography.  The column was prepared by 

adding amylose resin (New England Biolabs) to a 30ml-syringe with a final bed volume of 

approximately 4 ml. The column was washed with 1 volume of column buffer and 3 volumes of 

column buffer plus 0.25 % Tween 20.  The diluted extract was added to the column at a flow rate 

of approximately 1 ml/min. Then, the column was washed with 3 volumes of column buffer plus 

0.25 % Tween 20 and 5 volumes of column buffer. The fusion protein MBP*CP was eluted with 

column buffer containing 10 mM maltose (14 fractions of 1 ml each). Fractions containing the 

fusion protein (fractions 5 to 10) were pooled and concentrated by filtration using Amicon® 

Ultra-4 30,000 NMWL and Microcon YM-30 filter units (Millipore, Billerica, MA), and  
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reconstituted to about 1 mg/ml in 1X PBS (8 g NaCl, 1.15 g Na2HPO4, 0.2 g  KCl, 0.2 g 

KH2PO4, per liter, pH 7.4). 

4.2.4 Western Blot 

Proteins electrophoresed on SDS-PAGE, as previously described, were transferred to 

nitrocellulose membranes. Polyacrylamide gels were soaked in blotting buffer (0.025 M Tris, 

0.192 M glycine, 20 % methanol) before assembling the transfer cassette. Electroblotting was 

conducted at 4 ˚C, 35 V overnight in a TE 22 Transphor electrophoresis unit (Hoefer Scientific 

Instruments, San Francisco, CA). Hereafter, all incubations and washings were performed at 

room temperature in a shaker with gentle agitation. Blotted membranes were blocked for 1.5 h 

with TBS (0.02 M Tris, 0.5 M NaCl, pH 7.5) containing 3 % nonfat dry milk and 1 % Triton X-

100. Blocking solution was discarded, and membranes were rinsed with TBS. Membranes were 

probed using either Anti MBP polyclonal antibody (1:10,000 dilution) (New England Biolabs) 

overnight, or with TYLCV polyclonal antiserum #1214 (1:1,000 dilution) (provided by Dr. J. 

Polston, University of Florida, Gainesville) for 5 h. The TYLCV antiserum #1214 was produced 

against the TYLCV coat protein expressed in E. coli (Abouzid et al., 2002). Membranes were 

washed 4 times, 5 min each with TBS containing 0.05 % Tween 20, and then incubated for 1 h 

with alkaline phosphatase conjugated goat anti-rabbit (1:10,000 dilution) (Bio-Rad, Hercules, 

CA).  Antisera were diluted in TBS containing 2 % nonfat dry milk. Protein bands were 

visualized by the addition of BCIP/NBT color development solution (Bio-Rad). 

4.2.5 Enterokinase Digestion 

The fusion protein MBP*CP was digested with 0.013 % (w/w) enterokinase (New 

England Biolabs) in a 20.5 µl volume as follows: 10 µl containing 7.5 µg of fusion protein (in 1X 

PBS), 10 µl of 2X digestion buffer (40 mM Tris-HCl pH 8.0, 100 mM NaCl, 4 mM CaCl2), and  
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0.5 µl containing 1 ng of enterokinase. The solution was incubated at room temperature for 3 h. 

Digested proteins were analyzed by 10 % SDS-PAGE.  

4.2.6 Mass Spectrometry 

A 30 kDa polypeptide obtained after enterokinase digestion was excised from a SDS-

PAGE. In gel protein digestion and protein mass spectrometry experiments to facilitate 

identification and confirmation of this peptide as the SPLCV CP were performed at the 

Proteomics Core Facility at Pennington Biomedical Research Center, Louisiana State University, 

Baton Rouge. According to DeLany et al. (2005) and Zvonic et al. (2007), excised gel plug was 

deposited into
 
a 96-well plate and transferred to the MassPrep (Waters/Micromass)

 
station. 

Proteins within the gel plug were automatically destained,
 
reduced, alkylated, dehydrated, 

rehydrated, and digested with trypsin. The resulting peptides were extracted and separated by 

capillary liquid chromatography coupled to an ESI MS/MS Micromass Q-TOF mass 

spectrometer (Waters). MassLynx 4.0 software package (Waters) was used to identify individual 

mass spectrograms. Database searches for protein identification were
 
done in NCBI database 

using the ProteinLynx Globalserver 1.1 software
 
(Waters). The number of peptides analyzed and 

the
 
percentage of coverage of the total amino acid sequence was

 
determined for the protein 

identified. 

4.3 Results 

A fragment of about 789 base pairs (bp) containing the SPLCV CP gene was amplified 

with primers SPB-1 (forward) and SPB-2 (reverse), cloned into pGEM-T Easy vector and 

subcloned into pMAL-c2E expression vector (Figure 4.1). 

After transformation into E. coli XL1-Blue, the recombinant plasmid pMAL-CP (SPLCV 

CP gene cloned into the pMAL-c2E) was identified by PCR. A 937 bp fragment corresponding 

to the SPLCV CP gene including flanking regions of the recombinant plasmid was amplified 
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with primers malE and M13/pUC (Figure 4.2, lanes 1-5). While a 196 bp fragment was amplified 

from the pMAL-c2E (plasmid without insert) using these primers (Figure 4.2, lane 6). 

Recombinant plasmids (pMAL-CP) were characterized by restriction enzyme digestions. 

Mfe I, (co I, and (he I restriction sites are present in the SPLCV CP gene but not in the pMAL-

c2E (Figure 4.3). DNA sequencing confirmed that the SPLCV CP gene was in frame for 

expression in the recombinant plasmid pMAL-CP. 

Preliminary expression tests were conducted using two different IPTG concentrations 

(0.03 and 0.06 mM) and two different temperatures (26 and 37 ˚C) in order to optimize the 

expression conditions for the fusion protein MBP*CP. However, when non-induced and induced 

crude extracts were analyzed on SDS-PAGE, expected protein bands were not detected in 

induced samples (Figure 4.4).  Therefore, the predicted amino acid sequence of the fusion 

protein MBP*CP was analyzed by ProtParam tool (Gasteiger et al., 2005) to calculate some of 

the physico-chemical properties that could give a clue to improve the expression tests (Appendix 

B). To discard the possibility of bacterial toxicity due to the expression of the fusion protein and 

a suspected leakage of the fusion protein from the cells, a time course expression experiment was 

performed using 0.3 mM IPTG, at 26 ˚C, for 15 and 30 min, 1, 2, 4 and 6 h. However, an 

induced band was not observed (Figure 4.5). To determine if the E. coli strain (XL1-Blue) was 

the factor involved in the lack of expression of the fusion protein due to the presence of some 

proteases that could degrade the fusion protein, recombinant plasmids pMAL-CP were 

transformed into E. coli TB1 strain, but expression was not observed. 

Fusion protein yields of 5 to 6 mg/liter of culture have been reported even when a band 

was not visible (New England Biolabs, 2004). Therefore, a pilot experiment from 1 liter culture 

was conducted. After induction of E. coli XL1-Blue cells harboring the recombinant plasmid 

pMAL-CP, a 72 kDa polypeptide was purified from the crude protein extract of E. coli by 
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Figure 4.1. Diagram showing the expression of the fusion protein MBP*CP [Maltose-binding 

protein (MBP) and coat protein (CP) of Sweet potato leaf curl virus (SPLCV)]. MCS: Multiple 

cloning site in pMALc-2E expression vector. mal E: gene of E. coli which encodes MBP. lacZα: 

gene of E. coli that encodes β-galactosidase α fragment. 
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Figure 4.2. PCR amplification of a 937 bp fragment corresponding to the coat protein (CP) gene 

of Sweet potato leaf curl virus (SPLCV) and flanking regions in the recombinant plasmid 

pMAL-CP using malE and M13/pUC primers. Lanes 1-5, recombinant plasmid pMAL-CP 

(pMAL-c2E containing the SPLCV CP). Lane 6, pMAL-c2E (without insert). Lane 7, water 

control. Lane M, DNA ladder. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Restriction enzyme analysis of the recombinant plasmid pMAL-CP containing the 

coat protein (CP) gene of Sweet potato leaf curl virus cloned into the pMAL-c2E expression 

vector. Lane 1, pMAL-CP (7,392 bp). Lane 2, pMAL-CP digested with Mfe I. Lane 3, pMAL-CP 

digested with (co I. Lane 4, pMAL-CP digested with (he I. Lane 5, pMAL-c2E digested with 

Mfe I. Lane 6, pMAL-c2E digested with (co I.  Lane 7, pMAL-c2E (6,651 bp). Lane M, DNA 

ladder. 
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Figure 4.4. Expression of the fusion protein MBP*CP [Maltose-binding protein (MBP) and coat 

protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. Cells were induced with 0.3 

mM IPTG, at 26 ˚C, for 1 and 3 h. Induced cells harboring the recombinant plasmid pMAL-CP 

expressed the fusion protein MBP*CP, while induced cells harboring the pMAL-c2E vector 

expressed the MBP fused with the β-galactosidase α fragment protein (MBP*β-gal). Total 

proteins were separated by 8 % SDS-PAGE and stained with Coomassie Brilliant Blue. Lane 1, 

non-induced cells harboring pMAL-c2E. Lane 2, non-induced cells harboring pMAL-CP. Lane 

3, induced cells (1 h) harboring pMAL-c2E. Lanes 4-7, induced cells (1 h) harboring pMAL-CP. 

Lane 8, induced cells (3 h) harboring pMAL-c2E. Lane 9, induced cells (3 h) harboring pMAL-

CP. Lane M, molecular weight marker. 
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Figure 4.5. Time course expression of the fusion protein MBP*CP [Maltose-binding protein 

(MBP) and coat protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. Cells were 

induced with 0.3 mM IPTG at 26 ˚C. Induced cells harboring the recombinant plasmid pMAL-

CP expressed the fusion protein MBP*CP, while induced cells harboring the pMAL-c2E vector 

expressed the MBP fused with the β-galactosidase α fragment protein (MBP*β-gal). Total 

proteins were separated by 10 % SDS-PAGE and stained with Coomassie Brilliant Blue. Lane 1, 

non-induced cells harboring pMAL-CP. Lanes 2-7, induced cells (15 min, 30 min, 1 h, 2 h, 4 h, 

and 6 h, respectively) harboring pMAL-CP. Lane 8, non-induced cells harboring pMALc-2E. 

Lane 9, induced cells (2 h) harboring pMAL-c2E. Line M, molecular weight marker. 
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affinity chromatography on an amylose column. The 72 kDa polypeptide was eluted from the 

amylose column with 10 mM maltose (14 fractions of 1 ml each) (Figure 4.6, Figure 4.7, lanes 6-

8). This polypeptide was identified as the expected fusion protein based on its size 72 kDa (42.5 

kDa for MBP plus 29.4 kDa for the SPLCV CP) and its reaction with the Anti-MBP polyclonal 

antiserum by Western blot analysis. Moreover, the 72 kDa polypeptide reacted with the TYLCV 

polyclonal antiserum #1214 on Western blot analysis. Although this antiserum was not specific 

(it reacted with other bacterial proteins), it did not react with the MBP. Therefore, it is possible 

that some antibodies reacted with some epitopes of the SPLCV CP.  

Yield of the purified MBP*CP fusion protein was approximately 200 µg/liter of bacterial 

culture. After the MBP was separated from the fusion protein by enterokinase digestion, a 30 

kDa protein band was obtained. The 30 kDa protein is expected to produce 40 peptide fragments 

when digested with trypsin, using the PeptideCutter software (Appendix D). Trypsin digestion 

products were separated by capillarity liquid chromatography, and fractionated peptides were 

analyzed by the ESI MS/MS Micromass Q-TOF mass spectrometer. 

The 30 kDa protein from the MBP*CP was identified as the SPLCV CP based on the 

mass spectrometer determination of trypsin digestion products.The peptide sequences of SPLCV 

CP indicated in Table 4.1 were identified by mass spectrometry analysis (Appendix E). 

4.4 Discussion 

Serological assays to detect SPLCV are not available because of the difficulties in 

obtaining purified virions that can be used as antigen for antiserum production. Cloning and 

expressing the CP gene of SPLCV in bacteria can overcome this limitation.     

Many systems for expression of foreign genes in bacteria have been developed. The 

pMAL-c2E expression vector of the pMAL Protein Fusion and Purification System from New 

England Biolabs was selected to express the CP gene of SPLCV in E. coli. The target gene 
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Figure 4.6. Elution fractions of the fusion protein MBP*CP [Maltose-binding protein (MBP) and 

coat protein (CP) of Sweet potato leaf curl virus] after amylose affinity chromatography. 
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Figure 4.7. Expression of the fusion protein MBP*CP [Maltose-binding protein (MBP) and coat 

protein (CP) of Sweet potato leaf curl virus] in E. coli XL1-Blue. Cells were induced with 0.3 

mM IPTG, at 26 ˚C, for 1 h. Induced cells harboring the recombinant plasmid pMAL-CP 

expressed the fusion protein MBP*CP, while induced cells harboring the pMAL-c2E vector 

expressed the MBP fused with the β-galactosidase α fragment protein (MBP*β-gal). Total 

proteins were separated by 8 % SDS-PAGE and stained with Coomassie Brilliant Blue. Lane 1, 

non-induced cells harboring pMAL-c2E. Lane 2, non-induced cells harboring pMAL-CP. Lane 

3, induced cells harboring pMAL-c2E. Lane 4, induced cells harboring pMAL-CP. Lanes 5-8, 

purified MBP*CP fusion protein, fractions # 6, 7, 8, and 9, respectively. Lane M, molecular 

weight marker. 
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Table 4.1. Peptide sequences of Sweet potato leaf curl virus coat protein identified by mass 

spectrometry analysis  

Amino acid 

residues 
Peptide sequence 

  

13-20    PYGGRPVR 

22-42    RLNFETAIVPYTGNAVPIAAR 

86-94    FVCVSDFTR 

117-125    VWMDDNVAK 

127-138    DHTNIITYWLIR 

179-191    FSVTVSGGPYSHK 

204-216    YNHVTYNHKEEAK 

246-254    AYFYDSHNN 
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(SPLCV CP) was inserted downstream from the mal E gene of E. coli, which encodes a maltose-

binding protein (MBP), resulting in a cytoplasmic expression of a fusion protein (MBP*CP). 

This method uses the strong “tac” promoter and the mal E translation initiation signals to express 

large amounts of fusion protein (New England Biolabs, 2004). The fusion protein was then 

purified by affinity chromatography using an amylose column, and cleaved from the MBP by 

enterokinase.    

Subcloning SPLCV CP gene into the pMALc-2E was not an easy task considering the 

size of the insert (766 bp) and the size of the vector (6,626 bp). High quality DNA as well as an 

appropriate insert:vector ratio (1:3) was required for the ligation solutions.  

Overexpression tests with bacterial cells harboring the recombinant plasmid pMAL-CP 

were disappointing because expected protein bands were not detected in induced samples. 

Attempts to optimize the expression conditions for the fusion protein MBP*CP using different 

IPTG concentrations, temperatures, incubation times, and different bacterial strains were not 

successful. 

After induction of E. coli XL1-Blue cells harboring the recombinant plasmid pMAL-CP, 

the 72 kDa fusion protein (42.5 kDa for MBP plus 29.4 kDa for the SPLCV CP) was expressed 

at low levels. Thus, the fusion protein MBP*CP was probably masked by bacterial proteins of 

similar size (72 kDa) present in the crude extract, making its detection difficult in initial 

overexpression experiments.  

Yield of the purified MBP*CP fusion protein was approximately 200 µg/liter of bacterial 

culture. According to the information provided by the manufacturer (New England Biolabs, 

2004), the yield of fusion protein from the affinity purification can be up to 200 mg/liter culture, 

with typical yields in the range of 10-40 mg/liter. However, yields can vary greatly depending 

upon the sequences fused to malE. Nikolaeva et al. (1995) used the pMAL system to produce 
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polyclonal antisera to the coat protein of Citrus tristeza virus obtaining 100 mg/liter culture of 

purified fusion protein, whereas Meng et al. (2003) using the same system to produce a 

polyclonal antiserum to the coat protein of Rupestris stem pitting associated virus obtained only 

12 mg/liter culture of purified fusion protein.         

Several factors could affect the expression of MBP*CP fusion protein. The efficient 

expression of foreign genes in E. coli can be affected by the physico-chemical properties of the 

target protein, the stability of the mRNA, degradation of the target protein by E. coli proteases, 

the presence of rare codons, or the toxicity of the expressed target protein (Chen and Texada, 

2006). Time course protein expression experiments were performed to determine the possibility 

of bacterial toxicity due to the expression of the fusion protein and/or a suspected leakage of the 

fusion protein from the cells. Nevertheless, fusion protein toxicity or leakage was not detected.  

Similar expression results were obtained when the fusion protein was expressed in two 

different E. coli strains (XL1-Blue and TB1) suggesting that proteases (which could degrade the 

fusion protein) could not be the limiting factor for the low expression of the fusion protein 

MBP*CP.  

Bacterial colonies harboring the plasmid pMAL-CP were kept on LB/ampicillin plates, 

and renewed on fresh LB/ampicillin plates, monthly.  To discard the possibility of bacterial stress 

that could affect protein expression due to continual transfers, new transformations of pMAL-CP 

on XL2-Blue (Ultracompetent cells, Stratagene) were performed.  Overexpression tests were 

conducted using these new transformants with different IPTG concentrations, temperatures, and 

incubation times; however, expression of the fusion protein MBP*CP could not be increased. 

The solubility of the fusion protein could also be involved in the low expression. It is 

common for recombinant proteins expressed in E. coli to be produced as aggregates (inclusion 

bodies). Even when inclusion bodies are formed, a proportion of the target protein is usually 
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soluble within the cell (Novagen, 2006). Growth at 37 ˚C can cause some proteins to accumulate 

as inclusion bodies, while incubation at 30 ˚C may lead to soluble proteins (Schein and 

Noteborn, 1988; Schein, 1989). In expression experiments of bacterial cells harboring the 

pMAL-c2E that were induced with 0.3 mM IPTG, at 37 ˚C, the MBP*β-gal protein (51 kDa) was 

expressed at high levels as a soluble form. However, when bacterial cells harboring the 

recombinant plasmid pMAL-CP were induced with 0.3 mM IPTG, at either 26 or 37 ˚C, 

expression of the fusion protein MBP*CP (72 kDa) was too low to be clearly detected in SDS-

PAGEs.  The grand average of hydropathicity (GRAVY) index (Kyte and Doolittle, 1982) were 

estimated for both the MBP*β-gal (-0.483) and MBP*CP (-0.537), indicating that both proteins 

were soluble (positive GRAVY: hydrophobic, negative GRAVY: hydrophilic) (Appendices B 

and C). Moreover, the solubility of these proteins was confirmed by another sequence-based 

protein solubility evaluator (PROSO server, Smialowski et al., 2007). Consequently, the 

solubility of the fusion protein MBP*CP may not be related to the low expression levels of this 

protein in E. coli.  

It has been reported that proteins that contain highly charged domains may associate with 

other cellular components, for example, basic proteins may bind to DNA. If this is the case, the 

protein may partition with cellular debris (Novagen, 2006). This could be a reason for the low 

expression of MBP*CP which is a basic protein (theoretical pI 8.88) that contains 77 negatively 

charged residues (Asp + Glu) and 86 positive charged residues (Arg + Lys). In contrast, the 

MBP*β-gal protein with a theoretical pI of 5.04 contains 63 negatively charged residues and 50 

positive charged residues.  

Another factor affecting protein expression is the presence of rare codons which are 

defined as low-usage codons that are not only used rarely or infrequently in a genome but also 

decoded by a low-abundant tRNA (Chen and Texada, 2006).  Analysis of E. coli codon usage 
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reveals that several codons are underrepresented; therefore, when the mRNA of heterologous 

target gene is overexpressed in E. coli, differences in codon usage can impede translation due to 

the demand for one or more tRNAs that may be rare or lacking in the population. A number of 

studies have indicated that high usage of the arginine codons AGA and AGG can have severe 

effects on protein yield (Novagen, 2006). Eight rare codons (argnine codon: AGG) were found in 

the sequence corresponding to the SPLCV CP of the fusion protein MBP*CP (Figure 4.8), and 

they may have affected translation of this fusion protein.  

SPLCV CP was expressed as a fusion protein in E. coli. Despite the low expression levels 

of MBP*CP, SPLCV CP can be obtained after enterokinase digestion and could be used as an 

antigen to produce antibodies to SPLCV. The availability of an antiserum to SPLCV will allow 

the development of a practical and inexpensive serological method for SPLCV detection. 

Moreover, an SPLCV specific antiserum may be used to study serological relationships of 

SPLCV with other begomoviruses. 
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  gccctgaaagacgcgcagactaattcgagctcgaacaacaacaacaataacaataacaac 

 361 A  L  K  D  A  Q  T  N  S  S  S  N  N  N  N  N  N  N  N  N  

 

  aacctcggggatgacgatgacaaggtacctatgacagggcgaatgcgcgtttcgccgaga 

 381 N  L  G  D  D  D  D  K  V  P  M  T  G  R  M  R  V  S  P  R  

 

  tttcatccatatggggggagaccggtaagacggaggctgaacttcgagacagctatcgtg 
 401 F  H  P  Y  G  G  R  P  V  R  R  R  L  N  F  E  T  A  I  V  

 

  ccctacactgggaatgctgtcccaattgctgcccgaagctatgtcccggtttcaagaggc 

 421 P  Y  T  G  N  A  V  P  I  A  A  R  S  Y  V  P  V  S  R  G  

 

  gtccggatgaagagaaggaggggtgaccgcatcccgaagggatgtgtgggtccctgtaag 
 441 V  R  M  K  R  R  R  G  D  R  I  P  K  G  C  V  G  P  C  K  
 

  gtccaggactatgagttcaagatggacgttccccacgcgggaacgtttgtctgtgtctcg 

 461 V  Q  D  Y  E  F  K  M  D  V  P  H  A  G  T  F  V  C  V  S  

 

  gattttacaaggggtactgggcttacccatcgcctgggtaagcgtgtttgtgtgaagtcc 
 481 D  F  T  R  G  T  G  L  T  H  R  L  G  K  R  V  C  V  K  S  

 

  atgggtatagatgggaaggtctggatggatgataatgtggccaagagagatcacaccaat 

 501 M  G  I  D  G  K  V  W  M  D  D  N  V  A  K  R  D  H  T  N  

 

  atcatcacgtattggttgattcgtgacagaaggcccaataaggatccgttgaactttggc 
 521 I  I  T  Y  W  L  I  R  D  R  R  P  N  K  D  P  L  N  F  G  
 

  cagatcttcaccatgtacgacaatgagcccactactgctaagatccgaatggatctgagg 
 541 Q  I  F  T  M  Y  D  N  E  P  T  T  A  K  I  R  M  D  L  R  
 

  gatagaatgcaggtcttgaagaagttttctgttacagtttcaggaggtccatacagccac 

 561 D  R  M  Q  V  L  K  K  F  S  V  T  V  S  G  G  P  Y  S  H  

 

  aaggagcaggcattaattaggaagttttttaagggtttgtataatcatgttacttacaat 
 581 K  E  Q  A  L  I  R  K  F  F  K  G  L  Y  N  H  V  T  Y  N  

 

  cacaaggaagaagctaagtatgagaatcaattagagaatgcacttatgctgtatagtgct 

 601 H  K  E  E  A  K  Y  E  N  Q  L  E  N  A  L  M  L  Y  S  A  

 

  agcaatcatgctagtaatcctgtgtatcagaccctgcgttgcagggcttatttctatgat 
 621 S  N  H  A  S  N  P  V  Y  Q  T  L  R  C  R  A  Y  F  Y  D  
 

  tcgcacaacaattaa 

 641 S  H  N  N  *   
 

 
 

Figure 4.8. Identification of E. coli rare codons in the peptide sequence of the fusion protein 

MBP*CP [Maltose-binding protein (MBP) and Sweet potato leaf curl virus (SPLCV) coat 

protein (CP)]. Rs are Arginine rare codons (AGG) in the positions 412, 446, 447, 484, 531, 560, 

587, and 635 of the fusion protein that correspond to the SPLCV CP region. The arrow head 

indicates the the start codon (391) and the asterisk the stop codon (645) of SPLCV CP. 
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CHAPTER 5: SUMMARY A�D CO�CLUSIO�S 
 

5.1 Summary and Conclusions 

Due to its nutritional qualities, sweetpotato (Ipomoea batatas (L.) Lam) is considered as a 

crop with great potential to alleviate food security concerns. Yields of sweetpotato cultivars have 

appeared to gradually decline over the years. Several factors including mutations and 

accumulation of systemic pathogens, especially viruses, may be involved in sweetpotato cultivar 

decline (Clark et al., 2002; 2003). Viral diseases occur everywhere sweetpotato is grown, and 

they are an important constrain for sweetpotato production.  

Leaf curl diseases have been reported in different sweetpotato growing regions, and their 

importance have been overlooked because leaf curl symptoms are not common and do not persist 

in sweetpotato (Valverde et al., 2007). One of the causal agents of these diseases is Sweet potato 

leaf curl virus (SPLCV) which belongs to the genus Begomovirus (family Geminiviridae) 

(Lotrakul and Valverde, 1999). In the United States, SPLCV has been found infecting an 

ornamental sweetpotato cultivar and several breeding lines but not in sweetpotatoes grown for 

commercial production (Clark and Valverde, 2001). SPLCV does not cause symptoms, but it can 

reduce the yields of Beauregard, the predominant sweetpotato cultivar in Louisiana (Clark and 

Hoy, 2006). Since SPLCV could become an important constraint for sweetpotato production, 

diagnosis and identification are essential to develop an effective management strategy.  

In this study, sequences of 11 begomoviruses infecting sweetpotato genotypes in the US 

were obtained. Molecular diversity of these begomoviruses was investigated by analyzing the 

sequence of a nucleotide fragment of the AC1. Data obtained from this analysis suggested that 

SPLCV is more commonly found infecting sweetpotato genotypes than Sweet potato leaf curl 

Georgia virus (SPLCGV), another begomovirus reported in the US. Moreover, sweetpotato 
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begomoviruses from different geographical regions that were investigated were closely related to 

SPLCV. Phylogenetic analysis based on the nucleotide sequence of the AC1 fragment and the 

full length nucleotide sequence of the coat protein (CP) gene (AV1) clustered all sweetpotato 

begomoviruses together but apart from begomoviruses that infect other plant species. Within the 

sweetpotato begomovirus cluster, SPLCV and SPLCGV clustered in different groups supporting 

their status as different species. These results illustrate the variability and the complexity of 

begomoviruses infecting sweetpotato. However, analysis of partial sequences does not provide 

sufficient data to establish new species (Fauquet et al., 2008). In order to establish a new virus 

species, a comprehensive characterization that includes host range, virus transmission, and 

complete genome sequence must be conducted.  

The CP gene sequence was highly conserved among the sweetpotato begomoviruses 

analyzed in this study. However, it was quite distinct from that of other begomoviruses. This 

may explain the low rate of transmission of SPLCV by the sweetpotato whitefly Bemisia tabaci. 

In most whitefly transmission experiments, indicator plants (I. setosa, I. nil, and I. aquatica) 

infected with SPLCV have been used as acquisition and transmission hosts. Preliminary whitefly 

transmission experiments were conducted using Beauregard sweetpotato infected with SPLCV as 

the acquisition host, and I. nil as the transmission host. But whitefly transmissions were not 

successful. When I. nil was used as acquisition and transmission hosts, and the number of 

whiteflies per transmission was increased, SPLCV was transmited at low rates (Appendix F). 

Mixed infections of different begomoviruses, SPLCV and SPLCGV in the US and 

SPLCV and Ipomoea yellow vein virus (IYVV) in Spain (Lotrakul et al., 2003; Lozano et al., 

2004), are likely to provide suitable conditions for recombination that could favor the occurrence 

of new virus species. Therefore, the high variability found among sweetpotato begomoviruses in  

 



 

 

61 

this study is not surprising. This supports the suggestion that this viral group might be another 

case of a species complex. 

The potential of a synergistic interaction between SPLCV and SPFMV has been 

suggested. SPLCV DNA titers increased in mixed infection with the russet crack strain of 

SPFMV (Kokkinos, 2006). Higher SPLCV titers could result in a more efficient acquisition by 

whiteflies, and therefore spread of the virus to uninfected plants. 

Sweetpotato begomoviruses could be a problem for quarantine and seed foundation 

programs because infected plants are symptomless. Therefore, sensitive methods for their 

detection and identification are very important. Methods available to detect SPLCV include: 

graft inoculations to indicator hosts (I. setosa, I. nil, I. aquatica), polymerase chain reaction 

(PCR), and molecular hybridization (Valverde et al., 2008). Serological detection of SPLCV 

from crude sap extracts, which can be practical for diagnosticians in developing countries, is not 

currently available due to the lack of an antiserum specific for SPLCV. Attempts to purify the 

virus for antiserum production have not been successful. Antisera to Tomato yellow leaf curl 

virus (TYLCV) were not practical to detect SPLCV by ELISA and Western blot analysis 

(Appendix A). 

An alternative approach to obtain the CP of SPLCV for antibody production is by cloning 

and expressing the CP gene in bacteria. Thus, the SPLCV CP gene was amplified, cloned into 

the expression vector pMAL-c2E and transformed into Escherichia coli XL1-Blue. A 72 kDa 

polypeptide was obtained and identified as the expected fusion protein based on its size (42.5 

kDa for maltose binding protein (MBP) plus 29.4 kDa for the SPLCV CP) and the reaction with 

Anti-MBP polyclonal antiserum by Western blot. Digestion with enterokinase cleaved the fusion 

protein into a 42.5 kDa maltose-binding protein and the 29.4 kDa SPLCV CP. The CP was 

identified by mass spectrometry analysis. Despite the low expression levels of the fusion protein, 
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SPLCV CP can be obtained after enterokinase digestion and used as an antigen to produce 

antibodies to SPLCV. 

5.2 Future Research 

Future research in the following areas needs to be considered: 

• Analysis of complete genome sequences of sweetpotato begomoviruses from 

different geographical regions will allow for a better understanding of their 

evolution and variability. 

• Production of SPLCV infectious clones will be helpful to determine the presence 

of either DNA-B component or DNA satellites (DNA β and DNA 1) and to 

develop resistant cultivars. 

• SPLCV is transmitted by the sweetpotato whitefly B. tabaci at low rates. Most 

transmission experiments used SPLCV infected indicator plants (I. setosa, I. nil, 

and I. aquatica) as acquisition and transmission hosts. In order to better 

understand epidemiological aspects of SPLCV spread in natural conditions, 

sweetpotato cultivars need to be used as acquisition and transmission hosts in 

whitefly transmission experiments.    

• DNA titers of SPLCV were increased in mixed infections with SPFMV. 

Therefore, it is possible that these higher SPLCV titers could result in more 

efficient transmission by whiteflies. Whitefly transmission using single infections 

(SPLCV) and mixed infections (SPLCV and SPFMV) needs to be evaluated to 

test this hypothesis. 

• Production of an antiserum to SPLCV may allow the development of a practical 

and inexpensive serological method for SPLCV detection and the study of 

serological relationships of SPLCV with other begomoviruses. 
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APPE�DIX A: SEROLOGICAL EXPERIME�TS 
 

A.1 Introduction 
 

Serological methods are based on the interaction between the viral coat protein and 

specific antibodies. Currently, serological methods, such as enzyme-linked immunosorbent assay 

(ELISA), to detect Sweet potato leaf curl virus (SPLCV) are not available due to the difficulties 

in obtaining purified virions that can be used as antigen for antiserum production. It is possible 

that either SPLCV virus particles occur in low concentration in plant tissues or viral particles are 

not stable after standard purification procedures.  

The begomovirus coat protein (CP) is highly conserved and plays a key role in processes 

that are involved in virus infection, survival and spread (Harrison and Robinson, 1999; Harrison 

et al., 2002). Serological relationships have been reported among begomoviruses (Harrison and 

Robinson, 1999; Harrison et al., 2002; Stanley et al., 2005). The nature of these serological 

relationships has been explored in detail by assays with monoclonal antibodies (MAbs), 

especially the panels of MAbs to African cassava mosaic virus (ACMV), and Indian cassava 

mosaic virus (ICMV), and Okra leaf curl virus (Thomas et al., 1986; Swanson, 1992; Macintosh 

et al., 1992; Swanson et al., 1998). The numerous serological cross-reactions among 

begomoviruses in tests with polyclonal antisera and with a proportion of MAbs may be explained 

by the existence of many shared epitopes (antigenic determinants) present in the CP (Harrison et 

al., 2002). Serological relationships of SPLCV to Bean golden mosaic virus (BGMV) and 

Mungbean yellow mosaic virus (MYMV) by Western blotting have been reported by Onuki et al. 

(2000) using partially purified virions of SPLCV. 

Antisera to Tomato yellow leaf curl virus (TYLCV) were tested for the ability to detect 

SPLCV from leaf extracts and partially purified preparations by ELISA and Western blot. 
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A.2 Materials and Methods 
 

A.2.1 ELISA in �itrocellulose Membranes (�CM-ELISA) 

 

Foliar tissues of SPLCV infected plants (I. nil, I. setosa, and I. aquatica), as well as, 

tomato plants infected with TYLCV and Dicliptera sexangularis infected with Dicliptera yellow 

mottle virus (DiYMoV) (Begomovirus) were used for NCM-ELISA following the procedure 

described by Gutierrez et al. (2003). Two leaf disks (about 1 cm in diameter) for each sample, 

were ground in 2 ml of 1X TBS (0.02 M Tris, 0.5 M NaCl, pH 7.5) containing 0.2 % Na2SO3. 

Clarified sap extracts were blotted onto TBS buffer-saturated nitrocellulose membranes. Then 

membranes were blocked for 1 h with TBS containing 2 % nonfat dry milk and 2 % Triton X-

100. Blocking solution was discarded, and membranes were rinsed with TBS. Membranes were 

probed using either TYLCV polyclonal antiserum #1214 (1:1,000 dilution) for 5 h, or TYLCV 

4C13F7 monoclonal antiserum (1:500 dilution) overnight. Both antisera were kindly provided by 

Dr. J. Polston, University of Florida, Gainesville. The TYLCV antiserum #1214 was produced 

against the TYLCV coat protein expressed in E. coli (Abouzid et al., 2002). Membranes were 

washed 4 times, 3 min each with TBS containing 0.05% Tween 20, and then incubated for 1 h 

with alkaline phosphatase conjugates: goat anti-rabbit (GAR, 1:10,000 dilution) (Bio-Rad, 

Hercules, CA) and goat anti-mouse (GAM, 1: 3,333 dilution) (Agdia Inc., Elkhart, IN). 

Membranes were washed as before, and the presence of bound antibodies was visualized by the 

addition of BCIP/NBT color development solution (Bio-Rad).  Positive reactions were 

determined by visual assessment where purple color reaction was recorded as positive. 

The polyclonal antiserum was diluted and crossed-absorbed with healthy plant sap 

extracts. Tomato leaves were ground in 1/30 (w/v) TBS containing 0.2 % Na2SO3 and 2 % 

nonfat dry milk, and centrifuged at room temperature for 10 min at 10,000 RPM in a Beckman 

Coulter Avanti J-25 Centrifuge, JA 25.5 rotor. Supernatant was collected and the antiserum was 
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added at the appropriate dilution. The solution was incubated at 37 ˚C for 1 h, and applied to the 

blocked membrane. Monoclonal antiserum, GAR, and GAM were diluted in TBS containing 2% 

nonfat dry milk. 

A.2.2 Partial Purifications 

SPLCV was partially purified from I. nil and I. aquatica, following the minipurification 

method developed by Lane (http://lclane.net/text/minipurprotocol.html) with some 

modifications. TYLCV and DiYMoV were used as controls. Foliar tissues (1 g) were ground in 

cold buffer containing 22 ml of 0.2 M Sodium Citrate pH 6.5 plus 150 µl of 0.5 M Sodium 

diethyldithiocarbamate. Solutions were expressed through cheesecloth into polycarbonate 

centrifuge tubes; then, samples were centrifuged for 15 min at 30,000 RPM, 20 ˚C in a Beckman 

L8-70 Ultracentrifuge, 70 Ti rotor. Supernatants were transferred through cheesecloth into clean 

polycarbonate centrifuge tubes. Four drops of 10 % Triton X-100 were added to each sample. 

Solutions were mixed and centrifuged for 1h at 30,000 RPM, 15 ˚C in a Beckman L8-70 

Ultracentrifuge, 70 Ti rotor. Supernatants were discarded immediately and tube walls were 

washed thoroughly with distilled water. Pellets were dried at room temperature for about 20-30 

min, and resuspended in 200 or 250 µl (depending on the pellet size) of 50 mM NaPO4, pH 7.0. 

Samples were mixed with an equal amount of 2X loading buffer (0.125 M Tris, pH 6.8, 4 % 

SDS, 20 % glycerol, 10 % 2-mercaptoethanol, 0.2 % bromophenol blue) and denatured in boiling 

water for 5 min. Proteins were separated by 10 % SDS-PAGE (stacking gel 4 % and resolving 

gel 10 %) as described by Laemmli (1970) and visualized with Coomassie Brilliant Blue staining 

solution (45 % methanol, 0.1 % Coomassie Brilliant Blue R-250, 10 % acetic acid).  

A.2.3 Western Blot Analysis 

Proteins electrophoresed on SDS-PAGE were transferred to nitrocellulose membranes. 

SDS-PAGEs were soaked in blotting buffer (0.025 M Tris, 0.192 M glycine, 20 % methanol) 
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before assembling the transfer cassette. Electroblotting was conducted at 4 ˚C, 35 V overnight in 

a TE 22 Transphor electrophoresis unit (Hoefer Scientific Instruments, San Francisco, CA). All 

the following incubations and washings were performed at room temperature in a shaker with 

gentle agitation. Blotted membranes were blocked for 1 h 30 min with TBS (0.02 M Tris, 0.5 M 

NaCl, pH 7.5) containing 3 % nonfat dry milk and 1 % Triton X-100. Blocking solution was 

discarded, and membranes were rinsed with TBS. Membranes were probed using either TYLCV 

polyclonal antiserum #1214 (1:1,000 dilution) for 5 h, or TYLCV 4C13F7 monoclonal antiserum 

(1:500 dilution) overnight. Membranes were washed 4 times, 5 min each with TBS containing 

0.05 % Tween 20, and then incubated for 1 h with alkaline phosphatase conjugates, GAR 

(1:10,000 dilution) (Bio-Rad) and GAM (1: 3,333 dilution) (Agdia Inc.), respectively. Antisera 

were diluted in TBS containing 2 % nonfat dry milk. Protein bands were visualized by the 

addition of BCIP/NBT color development solution (Bio-Rad). 

 

A.3 Results 
 

Antisera to TYLCV reacted with the homologous antigen, but it did not react with 

SPLCV by NCM-ELISA or Western blot analysis. Attempts to electrophoretically detect SPLCV 

CP using partial purifications from I. nil and I. aquatica infected plants were not successful. The 

expected 29 kDa protein band (size of SPLCV CP) was not obtained when total protein extracts 

from infected plants were analyzed by SDS-PAGE (Figure E.1A). Moreover, Western blot 

analysis using TYLCV antisera did not result in cross reactivity with SPLCV (Figure 

E.1B).Weak reactions in NCM-ELISA and Western blot were observed between the TYLCV 

antisera (monoclonal and polyclonal) and DiYMoV. 
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Figure E.1. Partial purification of Sweet potato leaf curl virus (SPLCV). (A) Protein analysis by 

10 % SDS-PAGE stained with Coomassie Brilliant Blue. (B) Western blot analysis using Tomato 

yellow leaf curl virus (TYLCV) polyclonal antiserum #1214. Lanes 1-2, TYLCV (Tomato). Lane 

3, healthy Dicliptera sexangularis. Lane 4, Dicliptera yellow mottle virus (D. sexangularis). 

Lane 5, healthy I. nil. Lane 6, SPLCV (I. nil). Lane 7, healthy I. aquatica. Lane 8, SPLCV (I. 

aquatica). Lane M, molecular weight marker. 

 
 

A.4 Conclusions 

 
The percent derived amino acid sequence identity and similarity between the CP of 

SPLCV and the CP of TYLCV is 49 and 65 %, respectively. This may explain the lack of 

reactivity with the antisera tested. Also, it is possible that epitopes recognized by these antisera 

are not present in the SPLCV CP, or perhaps, the epitopes on the SPLCV CP were not accessible 

to these antisera (Harrison et al., 2002).  

The CP of SPLCV (about 29 kDa) was not observed when partial purifications of SPLCV 

from I. nil and I. aquatica were analyzed by SDS-PAGE. The presence of polysaccharides and 

other components in Ipomoea species interfered with pellet formation and recovery after 

centrifugation. Pellets obtained from Ipomoea species were smaller than those obtained from 

tomato or D. sexangularis plants. Consequently, the amount of proteins obtained from Ipomoea 

species was lower than those from other plant species. This is illustrated in Figure E.1. The use 

of a different plant host, such as (icotiana bethamiana, may improve protein yields that could  
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facilitate the detection of SPLCV CP in polyacrylamide gels, as well as, its detection by Western 

blot.            

The lack of cross reactivity of TYLCV antisera with SPLCV could also be due to the low 

concentration of the virus in plant tissues. Virus particles were not observed when 

minipurification preparations of SPLCV were subjected to electron microscope analysis.  

It has been reported that Sweet potato feathery mottle virus (SPFMV) is distributed in the 

whole plant when detected by nucleic acid spot hybridization tests. However, the virus is 

serologically detected mainly in symptomatic leaves (Abad and Moyer, 1992; Cadena-Hinojosa 

and Campbell, 1981; Karyeija et al., 2000). It is possible that the virus moves as nucleic acid or 

as virions in very low concentration in symptomless leaves in the plant, but accumulation of 

detectable amounts of viral coat protein is directly associated with symptom expression (Abad 

and Moyer, 1992). The same phenomenon may happen with SPLCV, and for that reason it has 

been difficult to detect it by serological assays.  
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APPE�DIX B: A�ALYSIS OF THE MBP*CP FUSIO� PROTEI�  
 

ProtParam is a tool which allows the computation of various physical and chemical 

parameters that can be deduced for a protein sequence. 

 

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, 

A. 2005. Protein identification and analysis tools on the ExPASy Server. Pp. 571-607. In: The 

Proteomics Protocols Handbook. Ed: Walker, J.M. Humana Press. Totowa, New Jersey, USA. 

 

MBP*CP: Fusion protein comprising the maltose-binding protein and the coat protein of Sweet 

potato leaf curl virus 

 

ProtParam 
 
User-provided sequence: MBP*CP 

 
        10         20         30         40         50         60  

MKTEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ VAATGDGPDI  

 

        70         80         90        100        110        120  

IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY NGKLIAYPIA VEALSLIYNK  

 

       130        140        150        160        170        180  

DLLPNPPKTW EEIPALDKEL KAKGKSALMF NLQEPYFTWP LIAADGGYAF KYENGKYDIK  

 

       190        200        210        220        230        240  

DVGVDNAGAK AGLTFLVDLI KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK  

 

       250        260        270        280        290        300  

VNYGVTVLPT FKGQPSKPFV GVLSAGINAA SPNKELAKEF LENYLLTDEG LEAVNKDKPL  

 

       310        320        330        340        350        360  

GAVALKSYEE ELAKDPRIAA TMENAQKGEI MPNIPQMSAF WYAVRTAVIN AASGRQTVDE  

 

       370        380        390        400        410        420  

ALKDAQTNSS SNNNNNNNNN NLGDDDDKVP MTGRMRVSPR FHPYGGRPVR RRLNFETAIV  

 

       430        440        450        460        470        480  

PYTGNAVPIA ARSYVPVSRG VRMKRRRGDR IPKGCVGPCK VQDYEFKMDV PHAGTFVCVS  

 

       490        500        510        520        530        540  

DFTRGTGLTH RLGKRVCVKS MGIDGKVWMD DNVAKRDHTN IITYWLIRDR RPNKDPLNFG  

 

       550        560        570        580        590        600  

QIFTMYDNEP TTAKIRMDLR DRMQVLKKFS VTVSGGPYSH KEQALIRKFF KGLYNHVTYN  

 

       610        620        630        640  

HKEEAKYENQ LENALMLYSA SNHASNPVYQ TLRCRAYFYD SHNN  

 
 
Number of amino acids: 644 
Molecular weight: 72214.0 
Theoretical pI: 8.88 
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Amino acid composition: 
 

Ala (A)  57   8.9% 

Arg (R)  32   5.0% 

Asn (N)  47   7.3% 

Asp (D)  42   6.5% 

Cys (C)   5   0.8% 

Gln (Q)  15   2.3% 

Glu (E)  35   5.4% 

Gly (G)  48   7.5% 

His (H)  12   1.9% 

Ile (I)  31   4.8% 

Leu (L)  44   6.8% 

Lys (K)  54   8.4% 

Met (M)  17   2.6% 

Phe (F)  26   4.0% 

Pro (P)  36   5.6% 

Ser (S)  27   4.2% 

Thr (T)  35   5.4% 

Trp (W)  10   1.6% 

Tyr (Y)  29   4.5% 

Val (V)  42   6.5% 

Pyl (O)   0   0.0% 

Sec (U)   0   0.0% 

 

(B)   0   0.0% 

(Z)   0   0.0% 

(X)   0   0.0 

 

 
Total number of negatively charged residues (Asp + Glu): 77 
Total number of positively charged residues (Arg + Lys): 86 

 

Atomic composition: 
 

Carbon      C       3227 

Hydrogen    H       5012 

Nitrogen    N        890 

Oxygen      O        952 

Sulfur      S         22 

 

Formula: C3227H5012N890O952S22 
Total number of atoms: 10103 
 

Extinction coefficients: 

 

Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 

 

Ext. coefficient    98460 

Abs 0.1% (=1 g/l)   1.363, assuming ALL Cys residues appear as half cystines 

 

Ext. coefficient    98210 

Abs 0.1% (=1 g/l)   1.360, assuming NO Cys residues appear as half cystines 

 

 

Estimated half-life: 
 

The N-terminal of the sequence considered is M (Met). 

 

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 

                            >20 hours (yeast, in vivo). 

                            >10 hours (Escherichia coli, in vivo). 

Instability index: 
 

The instability index (II) is computed to be 26.69 

This classifies the protein as stable. 

 

Aliphatic index: 73.18 
Grand average of hydropathicity (GRAVY): -0.537 
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APPE�DIX C: A�ALYSIS OF THE MBP*β-GAL PROTEI�  
 

ProtParam is a tool which allows the computation of various physical and chemical 

parameters that can be deduced for a protein sequence. 

 

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, 

A. 2005. Protein identification and analysis tools on the ExPASy Server. Pp. 571-607. In: The 

Proteomics Protocols Handbook. Ed: Walker, J.M. Humana Press. Totowa, New Jersey, USA. 

 

MBP*β-gal: Fusion protein comprising the maltose-binding protein and the β-galactosidase α 

fragment protein 

 

ProtParam 
 
User-provided sequence: MBP*β-gal 

 
        10         20         30         40         50         60  

MKTEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ VAATGDGPDI  

 

        70         80         90        100        110        120  

IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY NGKLIAYPIA VEALSLIYNK  

 

       130        140        150        160        170        180  

DLLPNPPKTW EEIPALDKEL KAKGKSALMF NLQEPYFTWP LIAADGGYAF KYENGKYDIK  

 

       190        200        210        220        230        240  

DVGVDNAGAK AGLTFLVDLI KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK  

 

       250        260        270        280        290        300  

VNYGVTVLPT FKGQPSKPFV GVLSAGINAA SPNKELAKEF LENYLLTDEG LEAVNKDKPL  

 

       310        320        330        340        350        360  

GAVALKSYEE ELAKDPRIAA TMENAQKGEI MPNIPQMSAF WYAVRTAVIN AASGRQTVDE  

 

       370        380        390        400        410        420  

ALKDAQTNSS SNNNNNNNNN NLGDDDDKVP EFGSSRVDLQ ASLALAVVLQ RRDWENPGVT  

 

       430        440        450        460  

QLNRLAAHPP FASWRNSEEA RTDRPSQQLR SLNGEWQLGC FGG  

 
 
Number of amino acids: 463 
Molecular weight: 50960.2 
Theoretical pI: 5.04 
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Amino acid composition: 

 
Ala (A)  51  11.0% 

Arg (R)  13   2.8% 

Asn (N)  36   7.8% 

Asp (D)  31   6.7% 

Cys (C)   1   0.2% 

Gln (Q)  15   3.2% 

Glu (E)  32   6.9% 

Gly (G)  36   7.8% 

His (H)   4   0.9% 

Ile (I)  21   4.5% 

Leu (L)  40   8.6% 

Lys (K)  37   8.0% 

Met (M)   7   1.5% 

Phe (F)  18   3.9% 

Pro (P)  26   5.6% 

Ser (S)  22   4.8% 

Thr (T)  22   4.8% 

Trp (W)  11   2.4% 

Tyr (Y)  15   3.2% 

Val (V)  25   5.4% 

Pyl (O)   0   0.0% 

Sec (U)   0   0.0% 

 

(B)   0   0.0% 

(Z)   0   0.0% 

(X)   0   0.0% 

 
Total number of negatively charged residues (Asp + Glu): 63 
Total number of positively charged residues (Arg + Lys): 50 
 

Atomic composition: 
 

Carbon      C       2283 

Hydrogen    H       3525 

Nitrogen    N        609 

Oxygen      O        700 

Sulfur      S          8 

 

Formula: C2283H3525N609O700S8 
Total number of atoms: 7125 

 

Extinction coefficients: 

 

Extinction coefficients are in units of  M-1 cm-1, at 280 nm measured in water. 

 

Ext. coefficient    82850 

Abs 0.1% (=1 g/l)   1.626, assuming ALL Cys residues appear as half cystines 

 

Ext. coefficient    82850 

Abs 0.1% (=1 g/l)   1.626, assuming NO Cys residues appear as half cystines 

 
Estimated half-life: 
 

The N-terminal of the sequence considered is M (Met). 

 

The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). 

                            >20 hours (yeast, in vivo). 

                            >10 hours (Escherichia coli, in vivo). 

 

Instability index: 
 

The instability index (II) is computed to be 25.04 

This classifies the protein as stable. 

 

 

Aliphatic index: 78.06 
Grand average of hydropathicity (GRAVY): -0.483 
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APPE�DIX D: TRYPSI� DIGESTIO� OF SWEET POTATO LEAF 

CURL VIRUS COAT PROTEI� 
 

PeptideCutter predicts potential cleavage sites cleaved by proteases or chemicals in a given 

protein sequence. 

 

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, 

A. 2005. Protein identification and analysis tools on the ExPASy Server. Pp. 571-607. In: The 

Proteomics Protocols Handbook. Ed: Walker, J.M. Humana Press. Totowa, New Jersey, USA. 

PeptideCutter  

The sequence to investigate: Sweet potato leaf curl virus coat protein 

 
        10         20         30         40         50         60  

VPMTGRMRVS PRFHPYGGRP VRRRLNFETA IVPYTGNAVP IAARSYVPVS RGVRMKRRRG  

 

        70         80         90        100        110        120  

DRIPKGCVGP CKVQDYEFKM DVPHAGTFVC VSDFTRGTGL THRLGKRVCV KSMGIDGKVW  

 

       130        140        150        160        170        180  

MDDNVAKRDH TNIITYWLIR DRRPNKDPLN FGQIFTMYDN EPTTAKIRMD LRDRMQVLKK  

 

       190        200        210        220        230        240  

FSVTVSGGPY SHKEQALIRK FFKGLYNHVT YNHKEEAKYE NQLENALMLY SASNHASNPV  

 

       250  

YQTLRCRAYF YDSHNN  

 
The sequence is 256 amino acids long. 

The enzyme(s) that you have chosen: Trypsin 

Trypsin cleaves C-terminal to Arginine (R) and Lysine (K) residues. 

 

This enzyme cleaves the sequence:  

 

No. of cleavages   Positions of cleavage sites  

40 6 8 12 22 24 44 51 54 56 57 59 62 65 72 79 96 103 106 107 

111 118 127 128 140 142 146 166 168 172 174 179 180 193 

199 200 203 214 218 245 247 
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Map of Trypsin cleavage sites: 

Cleavage occurs at the right side (C-terminal direction) of the marked amino 

acid.  

Highlighted fragments were identified by mass spectrometry. 

 
                                                                      

                                                               Tryps  

                                                             Tryps |  

                Tryps                                       Tryps| |  

            Tryps   |       Tryps                         Tryps || |  

          Tryps |   |     Tryps |               Tryps  Tryps  | || |  

 

              | |   |         | |                   |      |  | || |  

         VPMTGRMRVSPRFHPYGGRPVRRRLNFETAIVPYTGNAVPIAARSYVPVSRGVRMKRRRG 

     1   ---------+---------+---------+---------+---------+---------+   60 

 

                                                           

                                                                      

                                                       Tryps          

                                                   Tryps   |          

         Tryps                                    Tryps|   |          

      Tryps  |  Tryps  Tryps            Tryps  Tryps  ||   |  Tryps   

 

          |  |      |      |                |      |  ||   |      |   

         DRIPKGCVGPCKVQDYEFKMDVPHAGTFVCVSDFTRGTGLTHRLGKRVCVKSMGIDGKVW 

    61   ---------+---------+---------+---------+---------+---------+   120 

 

 

                                                                Tryps 

                                                               Tryps| 

                                                          Tryps    || 

                              Tryps                     Tryps |    || 

            Tryps         Tryps   |                 Tryps   | |    || 

           Tryps|       Tryps |   |               Tryps |   | |    || 

 

               ||           | |   |                   | |   | |    || 

         MDDNVAKRDHTNIITYWLIRDRRPNKDPLNFGQIFTMYDNEPTTAKIRMDLRDRMQVLKK 

   121   ---------+---------+---------+---------+---------+---------+   180 

 
                                                  

                           Tryps                                      

                        Tryps  |          Tryps                       

                 Tryps Tryps|  |      Tryps   |                       

 

                     |     ||  |          |   |                       

         FSVTVSGGPYSHKEQALIRKFFKGLYNHVTYNHKEEAKYENQLENALMLYSASNHASNPV 

   181   ---------+---------+---------+---------+---------+---------+   240 

 

               

           Tryps          

         Tryps |          

 

             | |          

         YQTLRCRAYFYDSHNN 

   241   ---------+------   256 
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APPE�DIX E: MASS SPECTROMETRY A�ALYSIS REPORT  
 

Proteomics Core Facility at Pennington Biomedical Research Center, Louisiana State 

University, Baton Rouge.  

 
Mass Spectrometry Analysis 
 

Accession: gi|29294540 

Description: Coat protein AV1 [Sweet potato leaf curl virus] 

MW: 29,436 

Peptides: 26 (Table E.1) 

Coverage: 34% 
 

Table E.1. Peptide sequences of Sweet potato leaf curl virus coat protein identified by mass 

spectrometry analysis 

 

Fragment Peptide Sequence m/z Z Peptide MW 
 

 

13-20    PYGGRPVR*  451.223 2  900.43 

22-42             RLNFETAIVPYTGNAVPIAAR  758.347 3 2272.02 

23-42              LNFETAIVPYTGNAVPIAAR 1058.959 2 2115.90 

23-42              LNFETAIVPYTGNAVPIAAR 1059.020 2 2116.03 

28-42                   AIVPYTGNAVPIAAR  756.882 2 1511.75 

30-42                     VPYTGNAVPIAAR  664.818 2 1327.62 

30-42                     VPYTGNAVPIAAR  664.819 2 1327.62 

31-42                      PYTGNAVPIAAR  615.275 2 1228.54 

31-42                      PYTGNAVPIAAR  615.265 2 1228.52 

 

86-94    FV(CamC)VSDFTR  565.725 2 1129.44 

87-94     V(CamC)VSDFTR  492.192 2  982.37 

88-94      (CamC)VSDFTR  442.668 2  883.32 

 

117-125  VW(OxM)DDNVAK  547.224 2 1092.43 

117-125  VWMDDNVAK  539.226 2 1076.44 

118-125   W(OxM)DDNVAK  497.680 2  993.35 

119-126    (OxM)DDNVAKR  482.701 2  963.39 

127-138                DHTNIITYWLIR  772.854 2 1543.69 

127-138                DHTNIITY(OxW)LIR  780.873 2 1559.73 

 

179-191  FSVTVSGGPYSHK  683.304 2 1364.59 

180-191   SVTVSGGPYSHK  609.779 2 1217.54 

181-191    VTVSGGPYSHK  566.249 2 1130.48 

 

204-216  YNHVTYNHKEEAK  544.894 3 1631.66 

204-212  YNHVTYNHK  588.275 2 1174.54 

205-212   NHVTYNHK  506.736 2 1011.46 

 

246-254  AYFYDSHNN  565.712 2 1129.41 

248-254    FYDSHNN  448.658 2  895.30 
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MS/MS Fragmentation of DHT�IITYWLIR peptide of Sweet potato leaf curl 

virus coat protein 
 

Mascot MS/MS Matrix Science (http://www.matrixscience.com/) 

Mascot is a powerful search engine that uses mass spectrometry data to identify proteins from 

primary sequence databases. 
 
Accession: gi|29294540 
Description: Coat protein AV1 [Sweet potato leaf curl virus] 

 

 
 
Monoisotopic mass of neutral peptide Mr(calc): 1543.8147 
Fixed modifications: Carbamidomethyl (C) 
Ions Score: 63  Expect: 0.0046   
Matches (Bold Red): 18/116 fragment ions using 32 most intense peaks 

 
# b b

++
 b* b*

++
 b

0
 b

0++
 Seq. y y

++
 y* y*

++
 y

0
 y

0++
 # 

1 116.0342 58.5207     98.0237 49.5155 D             12 

2 253.0931 127.0502     235.0826 118.0449 H 1429.7950 715.4012 1412.7685 706.8879 1411.7845 706.3959 11 

3 354.1408 177.5740     336.1302 168.5688 T 1292.7361 646.8717 1275.7096 638.3584 1274.7256 637.8664 10 

4 468.1837 234.5955 451.1572 226.0822 450.1732 225.5902 N 1191.6885 596.3479 1174.6619 587.8346 1173.6779 587.3426 9 

5 581.2678 291.1375 564.2413 282.6243 563.2572 282.1323 I 1077.6455 539.3264 1060.6190 530.8131 1059.6350 530.3211 8 

6 694.3519 347.6796 677.3253 339.1663 676.3413 338.6743 I 964.5615 482.7844 947.5349 474.2711 946.5509 473.7791 7 

7 795.3995 398.2034 778.3730 389.6901 777.3890 389.1981 T 851.4774 426.2423 834.4509 417.7291 833.4668 417.2371 6 

8 958.4629 479.7351 941.4363 471.2218 940.4523 470.7298 Y 750.4297 375.7185 733.4032 367.2052     5 

9 1144.5422 572.7747 1127.5156 564.2615 1126.5316 563.7694 W 587.3664 294.1868 570.3398 285.6736     4 

10 1257.6263 629.3168 1240.5997 620.8035 1239.6157 620.3115 L 401.2871 201.1472 384.2605 192.6339     3 

11 1370.7103 685.8588 1353.6838 677.3455 1352.6997 676.8535 I 288.2030 144.6051 271.1765 136.0919     2 

12             R 175.1190 88.0631 158.0924 79.5498     1 

 

Note: There are three different types of bonds that can fragment along the amino acid backbone: the NH-CH, CH-CO, and CO-NH 
bonds. Each bond breakage gives rise to two species, one neutral and the other one charged, and only the charged species is 
monitored by the mass spectrometer. The most common cleavage sites are at the CO-NH bonds which give rise to the b ions 
(charge retained on the N-terminal fragment) and/or the y ions (charge retained on the C-terminal fragment). The mass difference 
between two adjacent b ions, or y ions, is indicative of a particular amino acid residue. 
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APPE�DIX F: WHITEFLY TRA�SMISSIO� EXPERIME�TS 
 

F.1 Introduction 
 

Sweet potato leaf curl virus (SPLCV), a begomovirus that has been reported infecting 

sweetpotato breeding lines in the United States, is transmitted by the sweetpotato whitefly 

Bemisia tabaci at very low levels under greenhouse conditions (Lotrakul et al., 1998; Valverde et 

al., 2004). Most transmission experiments of SPLCV reported in the literature used indicator 

plants (Ipomoea setosa, I. nil, and I. aquatica) as acquisition and transmission hosts. However, in 

order to better understand epidemiological aspects of SPLCV spread in natural conditions, 

sweetpotato cultivars need to be used as acquisition and recipient hosts in whitefly transmission 

experiments.    

F.2 Materials and Methods 
 

F.2.1 Whitefly Transmissions 

 

Transmission experiments were conducted using sweetpotato whitefly B. tabaci colonies 

that were reared on I. nil and tomato plants kept in plexiglass cages under greenhouse conditions 

(From June to September, Baton Rouge, LA). Whiteflies were allowed to feed for 72 or 96 h on 

SPLCV infected I. batatas cv. Beauregard and 48 h on SPLCV infected I. nil. Groups of five and 

10 whiteflies were then transferred to single I. nil seedlings (6-day-old) (Figure G.1). After 48 h, 

whiteflies were removed and plants were maintained in an insect-free cage in the greenhouse. 

Between two and four weeks after inoculation, plants were evaluated for SPLCV infection by 

symptom development and polymerase chain reaction. 

F.2.2 Polymerase Chain Reaction (PCR) 

 

Total DNA was extracted from foliar tissues of I. nil using DNeasy Plant Mini Kit 

(Qiagen, Valencia, CA), following the procedure provided by the manufacturers.  
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Figure G.1. Whitefly transmission of Sweet potato leaf curl virus. (A) Whitefly colonies reared 

on Ipomoea nil plants. (B) Transmission of individual I. nil plant.  

 

 

 

Degenerate primers SPG1 and SPG2 described by Li et al. (2004) were used to detect 

SPLCV. PCR reaction mixtures were conducted as described by Lotrakul et al. (1998) in 50 µl 

volume containing: 1X PCR buffer, 2.5 mM MgCl2, 0.2 mM dNTP mixture, 0.2 µM of each 

primer, 2.5 U of Taq DNA polymerase (Promega, Madison, WI) and 1 µl of DNA sample. PCR 

was performed in a Genius Thermocycler (Techne, Cambridge, UK) with an initial cycle of 94 

˚C for 1.5 min followed by 35 cycles of 94 ˚C for 40 s, 56 ˚C for 40 s, and 72 ˚C for 1.5 min, and 

a final extension cycle of 72 ˚C for 10 min. PCR products were assessed by electrophoresis in 

1.2 % agarose gels in TBE buffer, stained with ethidium bromide, and visualized under 

ultraviolet light.  

F.3 Results 
 

Two and 4 weeks after whitefly inoculations, I. nil began showing typical leaf curl 

symptoms (Figure G.2). Asymptomatic and symptomatic I. nil plants were tested by PCR. 

Degenerate primers SPG1/SPG2 amplified a 912 bp DNA fragment only from symptomatic 

plants (Figure G.3). 
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Figure G.2. Symptoms caused by Sweet potato leaf curl virus on Ipomoea nil after whitefly 

transmission.  Leaf curl symptoms (A) and chlorosis with severe leaf curl symptoms (B).  

 

 

 

 

 

 
Figure G.3. PCR products resulting from amplification with primers SPG1/SPG2. Lanes 1-2, 

Ipomoea nil infected with Sweet potato leaf curl virus (SPLCV) by whitefly transmission. Lane 

3, healthy I. nil.Lines 4, SPLCV positive control (I. setosa). Lane 5, water control. Lane M, 

DNA ladder. 
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Low whitefly transmission rates were obtained when I. nil plants infected with SPLCV 

were used as the acquisition hosts.  However, transmission was not obtained when I. batatas cv. 

Beauregard was used as acquisition host (Table G.1).  

Table G.1. Transmission of Sweet potato leaf curl virus (SPLCV) by Bemisia tabaci  
 

Experiment SPLCV source
a
 

�umber of 

whiteflies
b
 

Acquisition 

access period 

SPLCV 

transmission
c
 

     

1 Ipomoea batatas cv. Beauregard 5 72 h 0/6 

2 I. batatas cv. Beauregard 5 96 h 0/2 

     

1 I. nil 10 48 h 5/9 

2 I. nil 10 48 h 3/7 

3 I. nil 10 48 h 2/8 

4 I. nil 10 48 h 10/20 
     

 

a 
Transmissions were made from SPLCV infected plants to Ipomoea nil. Acquisition access 

periods of 48, 72 and 96 h, and an inoculation access period of 48 h were tested. 
b 

Individual I. nil plants were exposed to groups of five and ten whiteflies. 
c 
Infected plants/plant 

tested.  

 

 

F.4 Conclusions 
 

Several attempts to transmit SPLCV from I. nil infected plants to I. nil seedlings using 

single whiteflies were not successful. However, when the number of whiteflies was increased 

(groups of 10), SPLCV was transmitted at very low rates. Similar results were reported by 

Lotrakul et al. (1998) and Valverde et al. (2004). Whitefly transmissions were not successful 

when I. batatas cv. Beauregard was used as acquisition host. 

Environmental conditions play an important role in symptom expression of SPLCV on I. 

nil and other indicator plants. Typical leaf curl symptoms were consistent on I. nil from June to 

September under greenhouse conditions in Baton Rouge, LA. For this reason, whitefly 

transmissions were conducted during this period.  
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The results of these preliminary experiments suggest that whiteflies were more efficient 

in transmitting SPLCV from I. nil to I. nil, when they were reared on I. nil than on tomato plants. 

Hosts can play an important role in whitefly transmission of begomoviruses. Antony et al. (2006) 

have reported that Indian cassava mosaic virus was successfully transmitted from cassava to 

cassava by whiteflies reared on cassava, but not whiteflies reared on sweetpotato. They found 

that the activities of the cyanide detoxifying enzymes rhodanese and β-cyanoalanine synthase in 

B. tabaci were significantly higher in the cassava-reared whitefly population compared with the 

sweetpotato-reared population suggesting a possible reason for higher mortality of the 

sweetpotato-reared whiteflies feeding on cassava.  

Experiments dealing with SPLCV whitefly trasmision efficiency such as temperature, 

biotypes and age of whiteflies, and hosts, need to be conducted. 
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