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ABSTRACT  

 Greenhouse and microplot studies were conducted to evaluate the influence of soil 

texture on reproduction and pathogenicity of Rotylenchulus reniformis (reniform nematode) on 

cotton. A 45 day duration greenhouse experiment confirmed the pathogenicity of an isolate of R. 

reniformis from Avoyelles Parish on Stoneville LA887 cotton. A series of greenhouse 

experiments were conducted with three geographic isolates of R. reniformis (identified as 

Avoyelles, Evangeline, and Rapides to indicate the Parish of origin) on Stoneville LA887, 

Stoneville 5288B2F, and Phytogen 375WF cotton growing in soils with varying textures for 60 

days. Soil types with sand, silt, and clay contents ranging from 74.4 to 7.8, 20.7 to 66.3, and 4.9 

to 25.9, respectively, were employed in this research. Two experiments were conducted with 

Stoneville LA887 cotton, three soil types and Avoyelles isolate of reniform nematode for 150-

152 days in a microplot environment. In the greenhouse, variations in soil texture significantly 

affected plant height and dry weights in both Stoneville 5288B2F and Phytogen 375WF, but did 

not have any significant effect on plant growth of Stoneville LA887, except in the 45-day 

duration experiment. Stoneville 5288B2F plants were significantly taller throughout the 

experiment in soil with 31.4% sand and 13.3% clay. Phytogen 375WF cultivar showed the same 

pattern, but the difference in plant height was not observed at harvest. Stoneville 5288B2F and 

Phytogen 375WF had significantly reduced dry root and shoot weights in sandier soils. Soil type 

had a significant effect on nematode reproduction on all three cotton cultivars. The interaction 

between soil type and reniform isolate significantly affected population densities of all reniform 

isolates tested among the multiple soil types in the cultivars Stoneville 5288B2F and Phytogen 

375WF, but no effect was observed in Stoneville LA887 cultivar. In the microplot, plants 

growing in soil with more clay content had significantly greater root and shoot weights than the 
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others. The number of bolls open and seed cotton weight were significantly reduced by R. 

reniformis in the microplots. Population densities of R. reniformis in the microplot followed the 

same pattern observed in greenhouse experiments.  
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INTRODUCTION 

 

 Cotton is grown in 17 states in the United States and had a 3.7 billion dollar impact on the 

economy in 2009 with more than 3 million hectares harvested (Anonymous, 2010b). Production 

in Louisiana represented about 3% of this total (Anonymous, 2010a). Despite the 15% reduction 

in area planted from 2011 to 2012, there was an increase of about 9% in yield over these years 

(Anonymous, 2013). Last year, Louisiana cotton yield ranked 8
th

 out of the 17 cotton growing 

states in the U.S. with an average yield of 1,124 kg per hectare.   

According to the National Cotton Council of America (2010), cotton yield losses due to 

nematodes have increased substantially since 1990. Several nematode species have been reported 

as a potential threat to cotton in the United States (Smith and Taylor, 1941; Robinson et al., 

1987; Koenning et al., 2004; Gazaway, 2005). Root-knot nematode (Meloidogyne incognita) has 

historically been the most damaging nematode of cotton. In recent years, reniform nematode 

(Rotylenchulus reniformis) has replaced root-knot nematode as the most damaging species in the 

Southeastern states of the U.S. (Gazaway, 2005; Overstreet and McGawley, 1998; Robinson, 

2007). This shift in nematode dominance may be associated with the higher rate of survival over 

winter demonstrated by reniform populations (Koenning et al., 1996; Robinson, 2007). Koenning 

et al. (1996) further suggested that the high levels of reniform nematode in cotton fields in North 

Carolina reflect the ability of this nematode to establish feeding sites all along the root system, 

whereas root-knot nematode establishes feeding sites primarily at the root tip. Variation in 

reproduction and pathogenicity within and among geographical isolates R. reniformis has been 

confirmed both in soybean (McGawley et al., 2011) and cotton (Agudelo et al., 2005; McGawley 

et al., 2010). Such variation in reniform reproduction and pathogenicity is likely to be a 

significant factor impacting the search for new resistance germplasms (McGawley et al., 2012).  
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Currently, R. reniformis is one of the most important pests of cotton in Louisiana and other 

southern states with yield losses estimated at $166 million (U.S. dollars) in 2004 (Robinson, 

2007; Koenning et al., 2004; Gazaway, 2005). According to the National Cotton Council, losses 

due to reniform nematode in cotton have increased steadily over the past years throughout the 

cotton growing areas of the United States. Yield loss due to R. reniformis in the Beltwide Cotton 

areas of the U.S. in 2011 was approximately 280,000 bales (Blasingame and Patel, 2012). In 

Louisiana, reniform nematode was responsible for the loss of about 23,000 bales in 2011 

(Blasingame and Patel, 2012).  

Reniform nematode was first described by Linford and Oliveira in Hawaii in 1940. In 

Louisiana, it was identified as a pest in 1941 by Smith and Taylor on cotton and cowpea and it 

was associated with stunted cotton in 1960s (Birchfield and Jones, 1961). At that time, fields 

with high levels of infestation showed poor stands (Birchfield, 1962) and growers began to be 

concerned about the importance of controlling reniform nematode. Since then, the occurrence 

and losses due to this nematode have increased throughout the state of Louisiana (Overstreet and 

McGawley, 1996; 2000).  

 Reniform nematode causes reductions in yield, delays in maturity, and reductions in boll 

size and lint percentage (Birchfield and Jones, 1961; Overstreet and Wolcott, 2007). According 

to Blasingame et al. (2008), approximately 4% of cotton losses in Louisiana in 2007 were the 

result of R. reniformis.   

Although some progress has been made towards producing upland cotton with resistance to 

reniform nematode, currently there is no commercial resistance. The search for resistance 

remains a subject of intense research (Robinson and Percival, 1997; Koenning et al., 2004; 

Weaver, et al., 2007; Agudelo, P., 2007; Romano et al., 2009; Parkhi, et al., 2010). Although 
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possessing some resistance to reniform nematode, the LONREN germplasm, released in 2007, 

has been reported to exhibit stunting and low yield in fields with high levels of reniform 

nematode (Nichols et al., 2010). In 2009, Romano et al. identified molecular markers related to a 

resistance source that might be useful in developing cotton varieties with resistance to R. 

reniformis. LONREN and BARBREN germplasm lines with potential resistance to reniform 

nematode have performed poorly in the field when compared with commercial cultivars (Sikkens 

et al., 2012).  

Aside from genetic resistance, other possible management strategies for R. reniformis in 

cotton are crop rotation, biological control, and nematicide application. Since cotton is such a 

good host for the reniform nematode, management strategies frequently require a combination of 

these approaches to be efficient (Blasingame et al., 2008).    

As related by Cabanillas et al. (1999), crop sequence influenced population densities of R. 

reniformis. In a crop rotation study, plots where cotton was followed by corn had greater 

population densities of reniform nematode than plots where fallow was used after corn, grain 

sorghum, or cotton. Despite reducing nematode levels, adopting fallow as a management practice 

is not always economically viable. Using non-host or poor host crops may also affect nematode 

densities, since the nematode populations will not increase as rapidly in these crops as on cotton 

(Stetina et al., 2007). The advantage of crop rotation for managing reniform nematode is limited 

in many areas by both the lack of resistant crops that will provide economic return and by the 

ability of populations to increase rapidly when cotton is introduced into the area (Barker and 

Koenning, 1998; Davis et al., 2003, Stetina et al., 2007). Another issue to be considered is that 

the presence of multiple nematode species in the same area makes it difficult to find a crop that is 

not a host for all indigenous nematode species. R. reniformis and M. incognita are increasingly 



4 

 

being reported as cohabiting cotton growing areas in the mid-South and Southeast United States 

(Overstreet et al., 2010).   

Some biological control agents have been shown to be efficacious against the reniform 

nematode. Most of these agents are nematophagous fungi. Walters and Barker (1994) 

demonstrated the efficiency of Paecilomyces lilacinus in suppressing R. reniformis population on 

tomato under both greenhouse and microplot conditions. Wang et al. (2005) demonstrated that 

Pochonia chlamydosporia isolates from fields in Arkansas were able to parasitize eggs of R. 

reniformis and to decrease their population density in greenhouse conditions. The bacterium 

Pasteuria spp. showed efficiency in parasitizing R. reniformis in vitro (Hewlett et al., 2010). It is 

likely that ideal management will be accomplished by combining biological control with other 

management techniques.   

Traditionally, nematicides have been the most common management strategy for 

nematodes (Koenning et al., 2004; Starr et al., 2007; Overstreet et al., 2007). In cotton, aldicarb 

has been the most widely used nematicide in the U.S. (Koenning et al., 2004). Production of 

aldicarb ceased in the United States in 2011 (C. Overstreet, pers. comm.). The use of nematicides 

as a short term management strategy has resulted in increased yield and plant vigor (Davis et al., 

2003; Faske and Starr, 2005; McGawley et al., 2006; Overstreet et al., 2007), but it has also 

increased the cost of production and elicited environmental concern (Starr et al., 2007). Avicta 

Complete Cotton (Syngenta) and AERIS Seed-Applied System (Bayer CropScience) are 

currently the dominant seed treatment nematicides used with cotton in the U.S. (Erwin et al., 

2010). To make the use of seed treatment nematicides economically viable, it will probably be 

necessary to integrate their use with other management practices, such as crop rotation. In a two 
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year rotation of cotton with peanut and corn combined with aldicarb application, reniform 

nematode population density was reduced by 86% (Royal and Hammes, 2005).  

 Another potential nematode management strategy involves the use of precision technology. 

Dividing a field into zones according to soil texture, nematode species, and/or yield will make 

possible the establishment of management zones within the field (Barker and Koenning, 1998; 

Wyse-Pester, et al., 2002; Koenning et al., 2004, Erwin et al., 2007). Such parameters can enable 

the creation of site specific management (SSM) zones. Evans et al. (2003) based the application 

of a nematicide on nematode populations for specific areas within the field. SSM will reduce 

nematicide costs, since they will be applied only in sites where there is a yield response to its 

application (Starr et al., 2007; Erwin et al., 2007). The SSM system has also been successfully 

applied to delineate management zones associated with Meloidogyne incognita on cotton (Perry, 

C. et al., 2006; Ortiz et al., 2007, 2012) and Heterodera glycines on soybean (Avendaño et al., 

2004a, 2004b, 2004c).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

ROLE OF SOIL TEXTURE IN NEMATODE MANAGEMENT 

 

Soil texture is an important characteristic to be considered when managing nematodes 

affecting agronomic crops (Sivakumar and Seshadri, 1972; Robinson et al., 1987; Koenning et 

al., 1996; Herring et al., 2010). Soil texture will affect nematode management because it affects 

their damage potential (Barker and Weeks, 1981; Griffin, 1996; Overstreet et al., 2010, 2011a).   

 In 1988, Koenning et al. demonstrated that damage caused on susceptible cultivars of 

soybean by the soybean cyst nematode (SCN), Heterodera glycines, was strongly related to soil 

texture. Similarly, Avendaño et al. (2004b) found that soils with sand contents greater than 60% 

were able to withstand greater populations of SCN, confirming the relationship between SCN 

spatial distribution and soil texture. The greater the sand content in the soil, the more likely 

soybean plants are to be severely damaged by SCN (Koenning et al., 1988; Avendaño et al., 

2004a, 2004b, 2004c). Some studies have demonstrated a correlation between the root-knot 

nematode, M. incognita, and soil texture in cotton and/or in soybean fields (Koenning et al., 

1996; Shane and Barker, 1986; Ortiz et al., 2007; Monfort et al., 2007). This research 

demonstrated that greater population densities of the root-knot nematode are associated with 

coarse textured soils. Shane and Barker (1986) also found that soybean growth was significantly 

influenced by nematodes in soils with greater sand contents. Similar observations were made by 

Koenning et al. (1996) while studying soil texture influences on the reproduction and damage 

potential of both M. incognita and R. reniformis on cotton. The use of SSM for root-knot 

nematode on cotton based on readings of apparent electrical conductivity (ECa) has been 

successfully applied in cotton fields in Arkansas, affirming the potential of using this strategy for 

predicting areas most likely to be damaged by this nematode (Monfort et al., 2007).  
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 Reproduction of R. reniformis also has been shown to be significantly influenced by soil 

texture. Several studies demonstrated that this nematode, unlike root-knot, is favored by finer 

textured soils (Robinson et al., 1987; Sivakumar and Seshadri, 1972; Koenning et al., 1996; 

Overstreet et al., 2010; Moore and Lawrence, 2011; Overstreet et al., 2011a). Zhao et al. (2000) 

found that in silt loam and loamy sand soils the population density of reniform nematode was 

greater on soybean than on cotton. However, on finer textured soils, there was no difference in 

population density between the two crops. In Louisiana, most cotton fields are located in areas 

where the predominant soil type is a silt loam, in which reniform nematode can reproduce 

rapidly and cause significant yield losses. Commerce silt loam soil is a common soil type found 

in cotton production areas in Northeast Louisiana. It is exactly this soil type in which the most 

variable response to nematicide application has been observed (Overstreet et al., 2011b).  

In this context, precision farming techniques are extremely important to maximize crop 

profitability. Improvements in the geographical information system (GIS) associated with the 

global position system (GPS) have been essential in formulating management decisions in 

current agriculture (Thomas et al., 2002; Ortiz et al., 2012; Monfort et al., 2007). The adoption of 

SSM zones will increase the accuracy and precision required for successful and profitable 

nematode management. However, in order to successfully use the SSM technology, new 

variables such as the spatial distribution of the nematodes and the effect of soil texture on 

nematode damage potential will need to be characterized (Avendaño et al., 2004a, b, c; Koenning 

et al., 1996; Melakeberhan, 2002). One feasible alternative for accessing soil texture is the 

application of apparent electrical conductivity (ECa) technology (Ortiz et al., 2007, 2012; Xavier, 

et al., 2012). As affirmed by Ortiz et al. (2012), the correlation between aggregated spatial 

distribution of M. incognita and soil texture makes SSM a feasible management strategy for this 
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nematode. Grid sampling or zone sampling for nematodes can be combined with ECa data to 

map nematode populations within a field.  

 It is essential to embrace current technologies in order to develop twenty first century 

integrated nematode management techniques. With R. reniformis in particular, the refinement of 

conventional techniques is essential because they have been ineffective against this pathogen, 

especially on cotton.   This research is focused on the influence of soil texture (Commerce silt 

loam soil in particular, since it is a major type associated with cotton production in Louisiana) on 

the reproduction and pathogenicity of the reniform nematode, R. reniformis.   
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MATERIALS AND METHODS 

Isolates of Reniform Nematode 

Isolates of reniform nematode from Louisiana were supplied/collected by E. C. McGawley. 

Three geographic isolates (identified as Avoyelles, Evangeline, and Rapides to indicate the 

Parishes where they were originally collected) were obtained from axenic cultures maintained in 

the LSU Nematology greenhouse on tomato (cultivar Rutgers PS Seedway; Hall, New York 

14463) for use as inoculum. Each of these three isolates has been confirmed R. reniformis as 

described by McGawley et al, 2010 and Robinson et al, 1997.  

General Information 

 In the greenhouse, terra cotta pots with an inside top diameter of 10.2 cm or 15.0 cm 

holding 0.5 or 1.6 kg of soil, respectively, were used. Microplots were terra cotta pots having an 

inside top diameter of 42.9 cm with a soil capacity of 27.3 kg. In all experiments, all materials 

including soils were autoclaved prior to use. All experiments were repeated once.  

 The soil used in the greenhouse and microplot studies originated from the Northeast 

Research Station, located at St. Joseph, Louisiana. Soil from three different sites within the same 

field (Appendix, Figures A1 and A2) was selected based on apparent electrical conductivity 

(ECa) values obtained employing a Veris® Soil EC Mapping System. The ECa data was 

measured from two soil depths: 0-0.3 m or shallow ECa (ECa-sh), and 0-0.9 m or deep ECa    

(ECa-dp). The ECa data was processed utilizing SSToolbox (Anonymous, 2011b). The ECa-sh and 

ECa-dp data points were interpolated to a 6.1 m x 6.1 m grid cell format using the Kriging tool of 

SSToolbox and classified into zones using unsupervised natural breaks. Figures A1 and A2 

(Appendix) show the field divided into 10 zones based on the ECa-sh and ECa-dp values, 

respectively. Figure A3 (Appendix) shows that all the samples were collected from the same soil 
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zone (Commerce silt loam, fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic 

Endoaquepts). The location of each site was georeferenced in the field using a Trimble Juno 

handheld GPS receiver and a FarmWorks SiteMate Pro program. Soil from the three sites 

differed in sand, silt and clay content according to the Hydrometer method modified from Day 

(1965) and the American Society for Testing and Materials (1985) (Table 1).  

Table 1.  Soil texture analysis and apparent electrical conductivity (ECa) from three sites within a 

Commerce silt loam field on the Northeast Research Station in St. Joseph, LA used in 

greenhouse and microplot studies.   

 Particle size distribution (%) ECa (mS/m)
X
 

Soil type Sand Silt Clay ECa-sh ECa-dp 

T1 74.4 20.7 4.9 7.4 27.5 

T2 31.4 55.3 13.3 8.7 49.9 

T3 7.8 66.3 25.9 33.4 88.1 
X
Apparent electrical conductivity (ECa) data was measured in millisiemens per meter (mS/m) 

from two soil depths: 0-0.3 m or shallow ECa (ECa-sh), and 0-0.9 m or deep ECa (ECa-dp).  

 

 Additionally, soil samples from each site were sent to the LSU Soil Testing and Plant 

Analysis Lab for nutrient analysis (Table 2). According to recommendations from the LSU Soil 

Testing Lab, the pH of soil from sampling site T1 was low (pH of 5.4). Soil from this site was 

amended with calcium hydroxide at a rate of 1,120 kg per hectare, or 13.7 g or 0.8 g per 

microplot or pot respectively, to adjust pH to 7.0. The pH amendment was performed after 

planting in greenhouse experiment 2 and prior to planting in greenhouse experiments 3 and 4, 

and in microplots.   

Table 2. Nutrient status of soil from three sites within a Commerce silt loam field at the 

Northeast Research Station in St. Joseph, LA
X
.  

Soil type Ca
Y
 Cu

Y
 Mg

Y
 pH P

Y
 K

Y
 Na

Y
 S

Y
 Zn

Y
 OM

z
 

T1 692.3 0.4 146.5 5.4 53.5 129.5 5.8 12.9 1.6 0.7 

T2 1494.0 1.5 173.0 7.2 47.6 161.1 7.4 13.7 3.1 1.1 

T3 2520.2 2.4 483.5 6.8 60.4 270.8 3.3 18.2 3.7 1.7 
X
Values are averaged over two replications.  

Y
Values are expressed as mg/kg.  

z
OM indicates percentage of organic matter.  
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 Nematode inoculum for all tests consisted of juveniles, preadult females, and males 

extracted from greenhouse cultures by wet-sieving through nested 250-µm-pore and 38-µm-pore 

sieves followed by sugar flotation and centrifugation (Jenkins, 1964).  Soils in pots and 

microplots were infested with nematodes by pipetting aqueous suspensions containing 

vermiform individuals of R. reniformis into a series of depressions arranged into a triangular 

pattern in soil, 0.5 cm diameter X 5-7.5 cm deep, surrounding the seedling. In the greenhouse 

studies, three cotton cultivars (Stoneville LA887, Stoneville 5288B2F, and Phytogen 375WF) 

well known by their field performance (Anonymous, 2011a) and susceptibility to reniform 

nematodes were used (McGawley et al., 2010; Sikkens et al., 2012). In the microplot, the cultivar 

Stoneville LA887 was utilized.  

  In both greenhouse and microplot studies, two cotton seeds were planted in each pot to a 

depth of 2.5 cm. To optimize seedling establishment, pots were placed inside of or covered by a 

plastic bag. Bags were removed once seeds were established and thinned to one per pot or 

microplot. During the course of all experiments, plants were fertilized every two weeks with 

water-soluble Miracle-Gro fertilizer, containing 18% nitrogen, 18% available phosphate and 

21% soluble potash.  

 Plant height was measured every two weeks in greenhouse experiments 2, 3, and 4, and in 

microplot studies. Air temperature was measured daily during all greenhouse and microplot 

experiments. In microplots, soil temperature for the three different soil types was also monitored.  

Tensiometers were employed to determine when it was necessary to water pots or microplots 

since there were different soil types. Pots/microplots in all experiments were arranged as a 

randomized complete block design.  
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 At the conclusion of all experiments, soil samples were processed by semiautomatic 

elutriation (Byrd et al., 1976) and centrifugal-flotation (Jenkins, 1964). Immature stages of 

reniform were enumerated at 40X using an inverted microscope. Total population density per pot 

(Pf) and reproductive value (R, where R = Pf/Pi, Pf is the final population density, and Pi is the 

initial infestation level) were determined. Eggs of reniform nematode were extracted from fresh 

root tissue by stirring in 0.6% of NaOCl for 10 minutes (Hussey and Barker, 1973). In 

greenhouse studies the entire root system was used for egg extraction and in microplot studies a 

5 g subsample (randomly selected) was used.  

The duration of microplot studies was full season (150-152 days), and the duration of 

greenhouse studies were 45 days for experiment one and 60 days for experiments 2, 3, and 4. At 

the conclusion of all experiments, plant height and dry root and shoot weights were determined. 

Plant shoots were excised and placed into a paper bag prior to drying at 45ºC for two days for the 

greenhouse experiments and for seven days for the microplot experiments. After egg extraction 

root material was handled in a similar manner. At the conclusion of all experiments, tissue 

samples representative of each treatment were collected and submitted to the LSU Soil Testing 

and Plant Analysis Lab for nutrient analysis.  

Greenhouse Studies   

A total of eight experiments were conducted in 2011 and 2012 to evaluate reniform 

nematode pathogenicity and reproduction on cotton. The first two experiments evaluated the 

influence of soil type on nematode reproduction and pathogenicity, and employed a single isolate 

of the nematode and a single cultivar of cotton. The remaining six experiments had the same 

objective, but employed multiple isolates of the nematode, multiple cultivars of cotton, and 

multiple soil types.  



13 

 

Experiment 1:  

 This experiment was initiated to evaluate pathogenicity of a single isolate of reniform 

nematode on Stoneville LA887 cotton growing in either greenhouse soil (72.1% sand, 25.4% silt, 

and 2.5% clay) or field soil (31.4% sand, 55.3% silt, 13.3% clay). Treatments in this experiment 

consisted of two soil types (soil from field sampling site T2 and greenhouse soil) and two 

nematode infestation levels (0 and 5,000 juveniles, preadult females and males per pot). Pots 

used for this experiment were 10.2 cm in diameter and nematode inoculated pots received 2,500 

vermiform individuals at 10 and 30 days after planting. Treatments were replicated five times.  

Experiments 2, 3 and 4: 

 Experiments 2, 3, and 4 each involved nematode isolates, from Avoyelles, Evangeline, and 

Rapides Parishes, infestation levels of 0 and 10,000 nematodes per pot and three soil types. Each 

treatment was repeated five to six times. In experiments 2, 3 and 4, respectively, the cotton 

cultivars Stoneville LA887, Stoneville 5288B2F, and Phytogen 375WF were employed. 

Additionally, the Commerce silt loam soils for experiments 2, 3 and 4 had sand, silt and clay 

content percentages of 74.4, 20.7, 4.9; 31.4, 55.3, 13.3; and 7.8, 66.3, 25.9, respectively (Table 

1).  

Microplot Studies  

The microplot setup more closely simulates a field environment. Plants were grown full 

season, reached full size, and provided an evaluation of nematode impact on yield. Each 

microplot was established in preformed depressions in soil with only the rim of the pot exposed 

to maintain constant soil temperature. Microplots were spaced 1-meter apart and arranged as a 

randomized block design in a six-by-six pattern. The microplot area was bounded by a 17-meter-

long by 9-meter-wide aluminum Quonset hut skeletal frame open at both ends and covered with 



14 

 

one layer of clear, 6-millimeter thick polyethylene greenhouse film and one layer of 20% 

reflective foil cloth (McGawley et al., 2010). The watering was done manually and was based on 

tensiometer readings for the three soil types.  

The microplot study involved the Avoyelles Parish reniform nematode population at 

infestation levels of 0 and 30,000 individuals per microplot and three soil types, thus providing 

six treatment combinations replicated each three times.  

Once approximately 60% of the bolls were opened, tribufos (Folex) and ethephon (Prep) 

were applied twice at weekly interval at the rates of 0.6 and 1.5 l/ha, respectively, to induce boll 

opening and defoliation.  

Numbers of bolls and seed cotton weights were determined at the conclusion of each 

microplot trial. Six fully developed leaves were collected from the midpoint of each plant and 

used to calculate the leaf area using Assess 2.0 Image Analysis Software (APS Press, St. Paul, 

MN). Additionally, internode lengths were determined at harvest for each plant.  

Data Analysis 

 Data from greenhouse experiments were examined by analysis of variance (ANOVA) for a 

2 x 2 factorial design (soil type x nematode) or 2 x 3 x 3 (nematode x soil type x reniform 

isolate) using the “Fit Model” module of SAS JMP, version 10.0 (SAS Institute, Cary, NC). Data 

from the microplot study was a 2 x 3 factorial design (nematode x soil type). Means of data were 

separated by Student’s t-test (P ≤ 0.05) in greenhouse experiment 1, by Tukey’s HSD at P ≤ 0.05 

in greenhouse experiments 2, 3 and 4, and by least significant difference (LSD) at P ≤ 0.05 in 

microplot studies.  
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RESULTS  

 For each trial, foliar tissue nutrient analyses were compared, and no differences in 

nutrient levels between treatments were observed (data not shown).  

Greenhouse - Experiment 1: 

Soil type had a significant effect on plant height, but did not have any significant effect 

on either root or shoot dry weights (Table 3). The average height of plants growing on field soil 

was 18.4 cm, and was significantly greater than that of those growing on greenhouse soil, which 

averaged 16.0 cm. The presence of reniform nematode did not significantly affect any of the 

plant data collected in this study. Additionally, soil type did not significantly influence nematode 

reproduction on this study (Appendix, Table A1). Nematode reproductive values for greenhouse 

and field soil were, respectively, 1.8 and 2.0 in this experiment. Low reproductive values 

observed in this experiment were likely the result of short experimental duration and winter 

temperatures during the months when the experiment was conducted.  

Table 3. Main and interaction effects (P values) of soil type and nematode on Stoneville LA887 

cotton in a greenhouse environment
X
.  

Source DF Plant height Root weight
Z
 Shoot weight

Z
 

Soil type
Y
 (S) 1 0.05* 0.12 0.12 

Nematode (N) 1 0.83 0.74 0.77 

S x N 1 0.14 0.49 0.14 
X
Data combined over two 45 day duration experiments with five replications each. Data was 

analyzed with ANOVA and Student’s t-test (P ≤ 0.05).  
Y
Two soil lots were used in this experiment. Percentages of sand, silt, and clay were 72.1, 25.4, 

and 2.5for the greenhouse lot, and 31.4, 55.3, and 13.3 for the field lot.  
Z
Data are dry weight obtained after two days at 45ºC.  

*Indicates a significant P value.  

 

Greenhouse - Experiment 2: 

Main and interactive effects of soil type and reniform isolate, as well as nematode and 

egg counts, and reproductive values on Stoneville LA887 cotton are summarized in tables 4 and 

5, respectively.  
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 Numbers of vermiform stages in the soil and numbers of eggs per gram of root were both 

significantly influenced by soil type and reniform nematode isolate (Table 4).  

Table 4. Main and interaction effects (P values) of soil type and reniform isolate on Stoneville 

LA887 cotton in a greenhouse environment – Nematode density
X
.  

Source DF Vermiform stages /500 cm
3
 of soil Eggs/g of root 

Soil type
Y
 (S) 2 < 0.01* < 0.01* 

Reniform isolate
Z
 (I) 2 < 0.01* 0.02* 

S x I 4 0.21 0.09 
X
Data combined over two 60 day duration experiments with a total of 11 replications. Data was 

analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
Y
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  
Z
Reniform nematode isolates were collected from Avoyelles, Evangeline and Rapides Parishes.  

*Indicates a significant P value.  

 

Across the three soil types, the least number of nematodes and eggs was found in T3 soil 

where the clay content averaged 26% (Table 5).  The lowest numbers of vermiform stages in 

soil, eggs per gram of root system, and corresponding reproductive values were those from the 

Evangeline isolate (Table 5).  

Among the three soil types, final population densities for the Avoyelles isolate ranged 

from 154,764 to 387,631 vermiform stages per pot with resultant reproductive values from 15.5 

to 38.8. Similarly, final population densities for the Evangeline isolate ranged from 117,202 to 

219,788 with R values of 11.7 to 22.0. Those for the Rapides isolate ranged from 234,775 to 

436,038 with R values averaging from 23.5 to 43.6 (Table 5).  

The interaction of soil type and reniform isolate approached significance, especially with 

respect to eggs per gram of root. This data is presented as Figure 1. In the lighter soil types (T1 

and T2), egg production by the Avoyelles isolate was significantly greater than in the heaviest 

soil (T3). Soil type did not have a significant effect on the number of eggs per gram of root of 
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Evangeline and Rapides isolates. Within soil types, the only difference was that in T2 soil there 

was greater number of eggs per gram produced by Avoyelles isolate than the Evangeline isolate.  

Table 5. Numbers of vermiform stages in soil, eggs per gram of root, and reproductive values for 

three isolates of Rotylenchulus reniformis in three soil types recovered from Stoneville LA887 in 

a greenhouse environment
V
.  

Soil type
W Reniform 

isolate
X
 

Vermiform stages 

per 1.6 kg of soil
Y
 

Eggs per 

gram of root
Y
 

Reproductive 

value
Z
 

T1 Avoyelles 387,631 ab 50,035 a 38.8 

T1 Evangeline 219,788 bc 34,127 ab 22.0 

T1 Rapides 436,038 a 31,883 ab 43.6 

T2 Avoyelles 344,111 ab 52,087 a 34.4 

T2 Evangeline 133,376 c 10,264 b 13.3 

T2 Rapides 374,598 ab 19,477 ab 37.5 

T3 Avoyelles 154,764 c 7,422 b 15.5 

T3 Evangeline 117,202 c 6,891 b 11.7 

T3 Rapides 234,775 bc 14,680 ab 23.5 
V
Data combined over two 60 day duration experiments with a total of 11 replications.  

W
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.   
X
Reniform nematode isolates are Avoyelles, Evangeline and Rapides, identified according to the 

Parish from which they were originally obtained. 
Y
Data analyzed with ANOVA and Tukey’s HSD test (P ≤ 0.05). Means followed by the same 

letter in a column are not significantly different.  
Z
Nematodes were extracted from a 500 cm

3
 soil sample and converted to numbers per pot (1.6 kg 

of soil) in order to estimate reproductive values. Original infestation level was 10,000 vermiform 

stages per pot. Reproductive values (R values) were calculated as R = Pf/Pi, where Pf is the final 

population density and Pi is the initial infestation level.  

 

Neither soil type nor reniform nematode isolate had a significant effect on plant height 

and shoot or root dry weights (Appendix, Table A2).  

During the course of this experiment, the average temperature in the greenhouse was 

34.2ºC in both runs of the experiment, which ranged from 28.9 to 36.7ºF in the first run and from 

23.9 to 43.3ºC in the second run. 

 



18 

 

 
Figure 1. Individual treatment means for the interaction between soil type and reniform isolate 

on egg production on the cotton cultivar Stoneville LA887 in a greenhouse environment. Across 

all columns, means followed by the same letter do not differ significantly according to Tukey’s 

HSD test, P ≤ 0.05.  

 

Greenhouse - Experiment 3: 

 There were some significant main effects due to both soil type and reniform isolate for 

Stoneville 5288B2F cotton. However, the main effect for soil type were consistent across the 

entire duration the experiment while those associated with the reniform isolate were confined 

only to plant height at 15 days after inoculation (DAI) (Table 6).  

Table 6. Main and interaction effects (P values) of soil type and reniform isolate on Stoneville 

5288B2F cotton in a greenhouse environment
V
.  

Source DF Plant height    

15 DAI
Y
 

Plant height 

30 DAI 

Plant height 

50 DAI 

Root 

weight
Z
 

Shoot 

weight
Z
 

Soil type
W

 (S) 2 < 0.01* < 0.01* < 0.01* < 0.01* < 0.01* 

Reniform isolate
X
 (I)  3 0.01* 0.46 0.81 0.21 0.88 

S x I 6 0.16 0.09 0.03* 0.24 0.11 
V
The experimental duration was 60 days and there were six replications of each treatment. Data 

was analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
W

Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively. 
X
Reniform nematode isolates were collected from Avoyelles, Evangeline and Rapides Parishes.  

Y
DAI = days after inoculation.  

Z
Data are dry weight obtained after two days at 45ºC.  

*Indicates a significant P value.  
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 Plants growing in T2 soil were significantly taller than those growing in either T1 or T3 

soils at 15 DAI. At 50 DAI (harvest), plants growing in T1 soil had the least dry root and shoot 

weights.  

 There was a significant interaction between soil type and reniform isolate that influenced 

plant height at harvest (Figure 2). There was no significant difference in plant height within each 

of the soil types. Plants inoculated with the Evangeline and Rapides isolates were taller in T2 

than in T1 soil.  

          
Figure 2. Individual treatment means for plant height from the cotton cultivar Stoneville 

5288B2F for the interaction between soil type and reniform isolate in a greenhouse environment. 

Means across all columns followed by the same letter do not differ significantly according to 

Tukey’s HSD test, P ≤ 0.05. Control refers to the treatment that received no nematodes.  

 

 Both vermiform stages per 500 cm
3
 of soil and number of eggs per gram of root were 

significantly affected by soil type in this experiment (Table 7). There were no significant effect 

of reniform isolates in this experiment, but there were significant soil type by reniform isolate 

interaction which influenced the number of vermiform stages in the soil. Across soil types, the 

Rapides isolate produced greater numbers of vermiform stages in the lightest textured soil (T1) 

0

10

20

30

40

50

60

70

T1 T2 T3

 
a a 

a 

b 

P
la

n
t 

h
e
ig

h
t 

a
t 

h
a
r
v
e
st

 (
c
m

) 

ab ab ab ab ab ab 
ab 

b Avoyelles 

Evangeline 

Rapides 

Control 

Soil type 

Reniform  

isolate 



20 

 

than in the heavier textured soils (T2 and T3) (Figure3). Also, within the T1 soil, there was 

greater reproduction by the Rapides than the Evangeline isolate.  

Table 7. Main and interaction effects (P values) of soil type and reniform isolate on Stoneville 

5288B2F cotton in a greenhouse environment
X
.   

Source DF Vermiform stages/500 cm
3
 of soil Eggs/g of root 

Soil type
Y
 (S) 2 < 0.01* < 0.01* 

Reniform isolate
Z
 (I) 2 0.19 0.22 

S x I 4 0.01* 0.23 
X
The experimental duration was 60 days and there were six replications of each treatment. Data 

was analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
Y
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively. 
Z
Reniform nematode isolates were collected from Avoyelles, Evangeline and Rapides Parishes.  

*Indicates a significant P value.  

 

 
Figure 3. Individual treatment means for the interaction between soil type and reniform isolate 

on numbers of vermiform stages per 500 cm
3
 of soil on the cotton cultivar Stoneville 5288B2F in 

a greenhouse environment. Across all columns, means followed by the same letter do not differ 

significantly according to Tukey’s HSD test, P ≤ 0.05. 

 

 Among all three soil types, final population densities for the Avoyelles isolate ranged 

from 186,027 to 363,520 vermiform stages per 1.6 kg of soil and eggs per gram of root ranged 

from 6,864 to 27,391 (Table 8). Reproductive values for this isolate ranged from 18.6 to 36.4. 

Likewise, final population densities for Evangeline isolate ranged from 135,509 to 324,864 with 
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egg numbers averaging from 6,783 to 14,519. Reproductive values for the Evangeline isolate 

ranged from 13.6 to 32.5. With the Rapides isolate, population densities ranged 149,504 to 

493,909, egg numbers ranged from 3,330 to 27,237 per gram of root, and reproductive values 

ranging from 15.0 to 49.4. Final population densities and overall reproductive values were 

greatest for all three of the isolates in T1 soil.  

During the course of this experiment, temperatures in the greenhouse averaged 33.4ºC, 

with minimum and maximum temperatures of 23.9 and 37.2ºC, respectively.  

Table 8. Numbers of vermiform stages in soil, eggs per gram of root, and reproductive values for 

three isolates of Rotylenchulus reniformis in three soil types recovered from Stoneville 5288B2F 

in a greenhouse environment
V
.  

Soil 

type
W

 

Reniform 

isolate
X
 

Vermiform stages 

per 1.6 kg of soil
Y
 

Eggs per 

gram of root
Y
 

Reproductive 

value
Z
 

T1 Avoyelles 363,520 ab 26,082 ab 36.4 

T1 Evangeline 211,541 b 31,919 a 21.2 

T1 Rapides 493,909 a 27,237 ab 49.4 

T2 Avoyelles 360,192 ab 27,391 ab 36.0 

T2 Evangeline 324,864 ab 14,519 abc 32.5 

T2 Rapides 212,053 b 9,815 bc 21.2 

T3 Avoyelles 186,027 b 6,864 bc 18.6 

T3 Evangeline 135,509 b 6,783 bc 13.6 

T3 Rapides 149,504 b 3,330 c 15.0 
V
The experimental duration was 60 days and there were six replications of each treatment.  

W
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively. 
X
Reniform nematode isolates are Avoyelles, Evangeline and Rapides, identified according to the 

Parish from which they were originally obtained. 
Y
Data analyzed with ANOVA and Tukey’s HSD test (P ≤ 0.05). Means followed by the same 

letter in a column are not significantly different.  
Z
Nematodes were extracted from a 500 cm

3
 soil sample and converted to numbers per pot (1.6 kg 

of soil) in order to estimate reproductive values. Original infestation level was 10,000 vermiform 

stages per pot. Reproductive values (R values) were calculated as R = Pf/Pi, where Pf is the final 

population density and Pi is the initial infestation level.  

 

Greenhouse - Experiment 4: 

 Soil type significantly affected both the height and dry shoot weight of Phytogen 375WF 

cotton (Table 9). At 15 and 30 DAI, plants growing in T3 soil were significantly taller than 
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plants growing in T1 soil. Dry shoot weights in T1 soil were significantly reduced. There were 

no main or interactive effects of reniform isolate on the plant parameters measured.  

Table 9. Main and interaction effects (P values) of soil type and reniform isolate on Phytogen 

375WF cotton in a greenhouse environment – Plant parameters
V
.  

Source DF Plant height 

15 DAI
Y
 

Plant height 

30 DAI 

Plant height 

50 DAI 

Root 

weight
Z
 

Shoot 

weight
Z
 

Soil type
W

 (S) 2 0.03* 0.03* 0.49 0.46 < 0.01* 

Reniform isolate
X
 (I) 3 0.66 0.39 0.37 0.98 0.16 

S x I 6 0.68 0.39 0.11 0.99 0.88 
V
The experimental duration was 60 days and there were six replications of each treatment. Data 

was analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
 W

Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  
X
Reniform nematode isolates were collected from Avoyelles, Evangeline and Rapides Parishes.  

Y
DAI = days after inoculation.  

Z
Data are dry weight obtained after two days at 45ºC.  

*Indicates a significant P value.  

 

Both main and interaction effects of soil type and reniform isolate significantly influenced 

numbers of vermiform stages per 500 cm
3
 of soil and eggs per gram of root of the nematode 

(Table 10). The interactive effects of soil type and reniform isolate are shown graphically as 

Figures 4 and 5.  

Table 10. Main and interaction effects (P values) of soil type and reniform isolate on Phytogen 

375WF cotton in a greenhouse environment – Nematode density
X
.   

Source DF Vermiform stages/500 cm
3
 of soil Eggs/g of root 

Soil type
Y
 (S) 2 < 0.01* < 0.01* 

Reniform isolate
Z
 (I) 2 < 0.01* < 0.01* 

S x I 4 < 0.01* < 0.01* 
X
The experimental duration was 60 days and there were six replications of each treatment. Data 

was analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
Y
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  
Z
Reniform nematode isolates were collected from Avoyelles, Evangeline and Rapides Parishes.  

*Indicates a significant P value.  

 

 Vermiform stages per 500 cm
3
 of soil for the Avoyelles isolate were significantly greater 

than those for either Evangeline or Rapides isolates in T1 soil. In T2 and T3 soils, the patterns 
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were similar to that of T1, but there were no significant differences in nematode numbers per 

500cm
3
 of soil.  

 
Figure 4. Individual treatment means for the interaction between soil type and reniform isolate 

on numbers of vermiform stages per 500 cm
3
 of soil on Phytogen 375WF cotton in a greenhouse 

environment. Across all columns, means followed by the same letter do not differ significantly 

according to Tukey’s HSD test, P ≤ 0.05.  

 

 Numbers of eggs per gram of root followed a trend similar to that observed for 

vermiform stages per 500 cm
3
 of soil. For all three isolates, there were significantly more eggs 

per gram of root in T1 soil than in T2 and T3 soils (Figure 5, and Table 11). Additionally, in T1 

soil, the number of eggs per gram of root for the Avoyelles isolate was three times greater than 

those produced in T2 soil, and almost six times greater than those produced in T3.  

Final population densities of Avoyelles ranged from 480,427 to 83,200 vermiform stages 

per 1.6 kg of soil, with average number of eggs per gram of root ranging from 4,385 to 60,070. 

Reproductive values for this isolate ranged from 8.3 to 48.0. Similarly, Evangeline isolate final 

population densities ranged from 117,760 to 44,800 and the average number of eggs ranged from 

1,335 to 22,801. Reproductive values of Evangeline isolate ranged from 4.5 to 11.8. Finally, 

Rapides had final populations ranging from 201,600 to 47,787, egg numbers ranging from 1,771 

0

20000

40000

60000

80000

100000

120000

140000

160000

T1 T2 T3

V
e
r
m

if
o
r
m

 s
ta

g
e
s/

5
0
0
 c

m
3

 o
f 

so
il

 a 

b 

c c 

bc 

bc bc 
bc bc 

Reniform isolate 

Avoyelles 

Evangeline 

Rapides 

Soil type 



24 

 

to 41,186, and R values from 4.8 to 20.2 (Table 11). Temperatures in the greenhouse during the 

course of this experiment averaged 34ºC, ranging from 23.9 to 40.6ºC.  

 
Figure 5. Individual treatment means for the interaction between soil type and reniform isolate 

on egg production on the cotton cultivar Phytogen 375WF in a greenhouse environment. Across 

all columns, means followed by the same letter do not differ significantly according to Tukey’s 

HSD test, P ≤ 0.05.   

 

Microplot Experiment: 

 Soil types significantly influenced plant height at 75 DAI and root and shoot dry weights 

at harvest, as well as number of opened bolls and cotton seed weight. The nematode significantly 

influenced number of bolls opened and cotton seed weight. There was no significant interaction 

between soil type and nematode (Table 12).  

 Numbers of vermiform stages per 500 cm
3
 of soil were significantly affected by soil type 

and there was significant soil type by nematode interaction which influenced the number of 

vermiform stages in soil (Table 13). The fine texture of T2 soil resulted in reniform population 

densities at harvest that averaged just over two million vermiform stages per microplot, with 

respective reproductive value averaging 62.1. In the heavier textured soil (T3), final population 
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densities averaged 743,040 individuals per microplot and yielded reproductive values of only 

24.8 (Table 14).  

Table 11. Numbers of vermiform stages in soil, eggs per gram of root, and reproductive values 

for three isolates of Rotylenchulus reniformis in three soil types recovered from Phytogen 

375WF in a greenhouse environment
V
.   

Soil 

type
W

 

Reniform 

isolate
X
 

Vermiform stages 

per 1.6 kg of soil
Y
 

Eggs per 

gram of root
Y
 

Reproductive 

value
Z
 

T1 Avoyelles 480,427 a 60,070 a 48.0 

T1 Evangeline 117,760 bc 22,801 c 11.8 

T1 Rapides 201,600 bc 41,186 b 20.2 

T2 Avoyelles 257,280 b 19,993 cd 25.7 

T2 Evangeline 87,040 bc 3,235 de 8.7 

T2 Rapides 128,000 bc 8,004 cde 12.8 

T3 Avoyelles 83,200 bc 4,385 de 8.3 

T3 Evangeline 44,800 c 1,335 e 4.5 

T3 Rapides 47,787 c 1,771 e 4.8 
V
The experimental duration was 60 days and there were six replications of each treatment.   

W
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  
X
Reniform nematode isolates are Avoyelles, Evangeline and Rapides, identified according to the 

Parish from which they were originally obtained.  
Y
Data analyzed with ANOVA and Tukey’s HSD test (P ≤ 0.05). Means followed by the same 

letter in a column are not significantly different.  
Z
Nematodes were extracted from a 500 cm

3
 soil sample and converted to numbers per pot (1.6 kg 

of soil) in order to estimate reproductive values. Original infestation level was 10,000 vermiform 

stages per pot. Reproductive values (R values) were calculated as R = Pf/Pi, where Pf is the final 

population density and Pi is the initial infestation level.  

 

 The average air temperature during the course of the microplot experiments was 32.8ºC 

with maximum of 38.9ºC and minimum of 17.8ºC in the first run, and average of 31.7ºC, 

maximum of  38.9ºC, and minimum of 14.4ºC in the second run. Soil temperatures averaged 

29.1 ºC and 27.8 ºC in the first and second runs, respectively.  
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Table 12. Main and interaction effects (P values) of soil type and nematode on Stoneville LA887 cotton in a microplot environment – 

Plant parameters
V
.  

Source DF 

Plant 

height 

30
X
 

Plant 

height 

75
X
 

Plant 

height 

140
X
 

Root 

weight
Y
 

Shoot 

weight
Y
 

Average 

leaf 

area
Z 

Average 

internode 

length 

Number 

of 

interno-

des 

Number 

of bolls 

opened 

Number 

of bolls 

closed 

Cotton 

seed 

weight 

Soil 

type
W 

(S)
 

2 0.49 0.05* 0.38 0.01* < 0.01* 0.65 0.32 0.34 0.02* 0.30 < 0.01* 

Nema-

tode 

(N) 

1 0.62 0.49 0.58 0.60 0.24 0.54 0.30 0.39 0.04* 0.23 0.01* 

S x N 2 0.33 0.73 0.07 0.20 0.44 0.21 0.66 0.31 0.37 0.10 0.51 
V
Data combined over two 150-152 days duration experiments with three replications each. Data was analyzed with ANOVA and LSD 

(P ≤ 0.05).
 

W
Soils were from three different locations within a Commerce silt loam field. Percentages of sand, silt and clay were 74.4, 31.4, and 

7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 25.9 for T3, respectively. 
 

X
30, 75 and 140 indicate number of days after inoculation.  

W
Data are dry weight obtained after seven days at 45ºC.  

Z
Six fully developed leaves were collected from the midpoint of each plant and used to calculate the leaf area using Assess 2.0 Image 

Analysis Software.  

*Indicates a significant P value.  
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Table 13. Main and interaction effects (P values) of soil type and nematode on Stoneville LA887 

cotton in a microplot environment – Nematode density
Y
.  

Source DF Vermiform stages / 500cm
3
 of soil Eggs/ 5g of root 

Soil type
Z 

(S)
 

2 0.05* 0.50 

Nematode (N) 1 < 0.01* < 0.01* 

S x N 2 0.05* 0.12 
Y
Data combined over two 150-152 days duration experiments with three replications each. Data 

was analyzed with ANOVA and LSD (P ≤ 0.05). 
 

Z
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  

*Indicates a significant P value.  

 

Table 14. Numbers of vermiform stages in soil, eggs per gram of root, and reproductive values 

for three isolates of Rotylenchulus reniformis in three soil types recovered from Stoneville 

LA887 in a microplot environment
W

.  

Soil 

type
X
 

Vermiform stages 

per 27.3 kg of soil
Y
 

Eggs per 5 g 

of root
Y
 

Reproductive 

value
Z
 

T1 1,863,360 ab 32,000 a 62.1 

T2 2,151,360 a 53,433 a 71.7 

T3 743,040 b 21,133 a 24.8 
W

Data combined over two 150-152 days duration experiments with a total of six replications.  
X
Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively. 
 

Y
Data analyzed with ANOVA and LSD test (P ≤ 0.05). Means followed by the same letter in a 

column are not significantly different.  
Z
Nematodes were extracted from a 500 cm

3
 soil sample and converted to numbers per microplot 

(27.3kg of soil) in order to estimate reproductive values. Original infestation level was 30,000 

vermiform stages per pot. Reproductive values (R values) were calculated as R = Pf/Pi, where Pf 

is the final population density and Pi is the initial infestation level.  

 

 

 

 

 

 

 

 



28 

 

DISCUSSION 

 During this research, greenhouse experiments and microplot experiments were performed 

to evaluate the influence of soil texture on reproduction and pathogenicity of R. reniformis in 

cotton.  

 Soil type influenced plant height of Stoneville LA887 in experiment 1 but not in 

experiment 2. Plants growing in field soil with 31.4% sand, in experiment 1, were taller than 

those in soil with 72.1% of sand. In the third greenhouse experiment, with Stoneville 5288B2F, 

soil type significantly influenced all plant parameters measured. The greatest reduction in plant 

height and dry weights for Stoneville 5288B2F cultivar occurred in the lightest textured soil, T1. 

In experiment 4, with Phytogen 375WF, T1 soil again had the greatest impact on plant growth. 

However, there were no differences in the final 50 day plant height. Observations such as this, 

where plant height is reduced early in the season and diminishes over time, are not uncommon 

under field conditions (C. Overstreet, pers. comm.).  

 This research clearly demonstrates the impact of soil texture on the reproduction of 

reniform nematode. In both greenhouse and microplot environments, soil texture had a 

significant effect on population density of R. reniformis. Previous studies have also shown that 

soil texture has significantly influenced reproduction of reniform nematode (Robinson et al., 

1987; Koenning et al., 1996; Overstreet et al., 2010; Moore and Lawrence, 2011; Overstreet et 

al., 2011a). In the heaviest textured soil, herein referred to as T3, nematode reproduction was 

significantly less than those in finer textured soils, referred to as T1 and T2.  

 In the first greenhouse experiment, with the Avoyelles isolate and Stoneville LA887 cotton, 

there was no difference in nematode reproduction across the two soil types used. In the second 

greenhouse experiment, again with Stoneville LA887 cotton and including the three isolates of 
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reniform nematode from Avoyelles, Evangeline, and Rapides Parishes, the lowest numbers of 

vermiform stages in 500 cm
3
 of soil and eggs per gram of root were associated with the heavier 

T3 soil.  

 Among the three cotton cultivars, the greatest reproduction of all the reniform isolates was 

observed in the lighter textured soils (T1 and T2). Nematode reproduction was primarily 

governed by soil type, but the overall magnitude was determined by the cultivar. In the cultivar 

Stoneville 5288B2F the Rapides isolate reached the greatest nematode population density in T1 

soil but in the cultivar Phytogen 375WF, the Avoyelles isolate was the one with the greatest final 

population density in the same soil type.  

 In all four greenhouse experiments, the lighter textured soils (T1 and T2) might have 

produced the most favorable environment for motility of the nematode, probably as a result of 

their water holding capacity and aeration characteristics. Within T1 and T2 soils, the magnitude 

of nematode reproduction was governed by both cotton cultivar and nematode isolate. The 

particle size distribution of T1 soil (Table 1) employed in this research is similar to the 

Portsmouth loamy sand soil (72% sand, 18% silt, and 10% clay) used by Herring et al. (2010) 

and Koenning et al. (1996). Portsmouth loamy sand and T1 soils were the soil types in which 

significantly greater nematode reproduction occurred when compared with the other soil types. 

Also, Herring et al. (2010) observed the lowest nematode reproduction on two soil types having 

29% and 39% of clay. These observations were similar to data for the T3 soil type, with 25.9% 

clay, which showed less reproduction of reniform nematode.  

 Across both cotton cultivars and reniform isolates employed in experiments 2, 3, and 4, T1 

soil provided the environment for the greatest amount of vermiform stages per 500 cm
3
 of soil 

and eggs per gram of root. Reproduction values in T1 soil ranged from 26.7 on Phytogen 375WF 
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to 35.7 on Stoneville 5288B2F. In T2 soil, reproduction values ranged from 15.7 in Phytogen 

375WF to 29.9 in Stoneville 5288B2F. Number of eggs per gram of root followed the same 

trend, in which the number of eggs was greater in T1 than in T2 soil. In T1 soil, eggs per gram of 

root ranged from 28,413 in Stoneville 5288B2F to 41,356 in Phytogen 375WF. In T2 soil, the 

number of eggs per gram varied from 10,411 in Phytogen 375WF to 27,276 in Stoneville LA887.  

 Across the three cotton cultivars, soil type had less of an impact on growth than it did on 

reproduction of the nematode. Cook et al. (1997) also reported a lack of interaction between 

reniform nematode and plant height and dry shoot weight in a 12-week duration greenhouse 

experiment.  

 In the microplot experiment, plant height at 75 DAI, approximately the midpoint of the 

experiment, and dry root and shoot weights at harvest were significantly affected by soil type, 

with taller plants and greater dry weights recorded from plants growing in the heaviest soil (T3).  

 In the microplot environment, the greater reproduction of nematodes was observed in T1 

and T2 soils. In these soils, the numbers of bolls opened and cotton seed weights were 

significantly reduced by the nematode.  

 Observations in the microplot experiment revealed that cotton maturity was delayed by 

reniform nematode due to the significant reduction in number of bolls opened. Consequently, 

this delay produced a significant reduction in seed cotton weight. Similar results were obtained 

previously by Koenning et al. (1996) in North Carolina, while studying the impact of soil texture 

on the reproductive and damage potential of R. reniformis on cotton.   

 The research reported in here supports, to a limited extent, previous reports of variation in 

pathogenicity among reniform isolates (McGawley et al., 2010). This variation was evidenced by 
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significant reduction in cotton plant dry weights observed in some greenhouse experiments and 

also as reduction of seed cotton weight in the microplot experiment.   

 While studying the effects of soil texture on Heterodera glycines on soybeans, Koenning et 

al. (1988) considered that there is an optimum limit in sand content that will favor the 

reproduction of Heterodera species. As reported in previous studies, R. reniformis is favored by 

fine textured soils (Robinson et al., 1987; Koenning et al., 1996; Overstreet et al., 2011a). 

However, it is noticeable in the present research that there is also an optimum of clay content that 

will limit the reproduction of the reniform nematode. Koenning et al. (1996) and Xavier et al. 

(2012) have reported similar observations in microplot and field experiments, where population 

densities of reniform nematode were greater in samples with clay content ranging from 18% to 

20%. However, as clay content increases above 20%, there is a limitation in R. reniformis 

reproduction.  

 For the three nematode isolates tested, a reduction in nematode reproduction is evident with 

the increase in clay content. The marked differences in population densities, observed in 

Stoneville 5288B2F and Phytogen 375WF cultivars are noticeable in T1 soil, but they decrease 

considerably in T2 soil and almost disappear in T3 soil. These observations re-emphasize the fact 

that there is a limit to the influence of clay content on population development of R. reniformis.  

 Monfort et al. (2008) reported an effect of silt content on reproduction and spread of 

reniform nematode in a field over years, where the nematode seems to establish itself better in 

soils with silt contents ranging from 51% to 68%. Moore and Lawrence (2011) have also 

reported greater nematode reproduction in soils with silt and clay contents ranging from 49% to 

42%, and 28% to 53%, respectively, in microplot experiments in Alabama. In the microplot 

phase of this research, the greatest nematode reproduction was observed in soils with about 55% 
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silt and 13% clay. This observation is in opposition to the microplot data of Moore and Lawrence 

(2011). Environmental factors, such as soil formation from different parental materials (Petersen 

and Calvin, 1986) and differences in geographic isolates of reniform nematode (McGawley et al., 

2010) might also have contributed for the divergence of results among these two reports.   
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SUMMARY 

 This research focused on the impact of soil texture on reproduction and pathogenicity of R. 

reniformis on cotton growing in greenhouse and microplot environments. Major variables in this 

research were: isolate of reniform nematode, cotton cultivars, and soil textures. Overall, soil 

texture had a greater impact on nematode reproduction than it did on cotton growth parameters. 

Commerce silt loam soils with clay content greater than 20% tends to restrict reproduction of R. 

reniformis. Isolates of reniform nematode were significantly impacted by soil type and cotton 

cultivars. Such information is essential for refining management zones in cotton production areas 

where reniform nematode is the predominant pathogen.   
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APPENDIX 

 

      

 
Figure A1. The Gin Ridge field located on the Northeast Research Station at St. Joseph, LA that 

has been divided into 10 different zones based on shallow readings (0-0.3 m) of apparent 

electrical conductivity (ECa-sh). The sample sites where soil was collected for additional 

experimentation are represented by the dots in the map. 

 

 
Figure A2. The Gin Ridge field located on the Northeast Research Station at St. Joseph, LA that 

has been divided into 10 zones based on deep readings (0-0.9 m) of apparent electrical 

conductivity (ECa-d). The sample sites where soil was collected for additional experimentation 

are represented by the dots in the map.  
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Figure A3. Soil series of the Gin Ridge field located on the Northeast Research Station at St. 

Joseph, LA. The sampling sites that were used for soil collection are all found in the Commerce 

silt loam.     

 

Table A1. Reproduction of Rotylenchulus reniformis (Avoyelles isolate) on Stoneville LA887 

cotton growing in two different soil types in a greenhouse environment
W

.  

Soil type
X
 Vermiform stages / 500cm

3 
of soil

Y
 Eggs/ g of root

Y
 Reproductive value

Z
 

Greenhouse 8952 a 24357 a 1.8 

Field 9716 a 14440 a 2.0 
W

Data combined over two 45 day duration experiments with five replications each.  
X
Two soil lots were used in this experiment. Percentages of sand, silt, and clay were 72.1, 25.4, 

and 2.5 for the greenhouse lot, and 31.4, 55.3, and 13.3 for the field lot. 
Y
Data analyzed with ANOVA and Student’s t-test (P ≤ 0.05). Means followed by the same letter 

in a column are not significantly different.  
Z
Nematodes were extracted from a 500 cm

3
 soil sample in order to estimate reproductive values. 

Original infestation level was 5,000 vermiform stages per pot. Reproductive values (R values) 

were calculated as R = Pf/Pi, where Pf is the final population density and Pi is the initial 

infestation level.  
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Table A2. Main and interaction effects (P values) of soil type and reniform isolate on Stoneville 

LA887 cotton in a greenhouse environment – Plant parameters
V
.  

Source DF Plant height    

15 DAI
Y
 

Plant height 

30 DAI 

Plant height 

50 DAI 

Root 

weight
Z
 

Shoot 

weight
Z
 

Soil type
W

 (S) 2 0.47 0.82 0.88 0.88 0.40 

Reniform isolate
X
 (I) 3 0.88 0.82 0.85 0.81 0.36 

S x I 6 0.93 0.99 0.99 0.63 0.92 
V
Data combined over two 60 day duration experiments with a total of 11 replications. Data was 

analyzed with ANOVA and Tukey’s HSD (P ≤ 0.05).  
W

Soils were from three different locations within a Commerce silt loam field. Percentages of 

sand, silt and clay were 74.4, 31.4, and 7.8 for T1; 20.7, 55.3, and 66.3 for T2; and 4.9, 13.3, and 

25.9 for T3, respectively.  
X
Reniform nematode isolates are Avoyelles, Evangeline and Rapides, identified according to the 

Parish where they were originally obtained. 
Y
DAI = days after inoculation.  

Z
Data are dry weight obtained after two days at 45ºC. 
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