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ABSTRACT 
 

Transplants of Spartina alterniflora Loisel. (smooth cordgrass, Poaceae) are effective in 

stabilizing and protecting vulnerable coastal wetlands from erosion. However, the expense and 

labor associated with propagation and transplanting restrict the widespread use of S. alterniflora 

in coastal restoration and protection projects. As an alternative, seeding of S. alterniflora by 

aircraft has been proposed as a more useful and economical approach for revegetating denuded 

marsh sites. However, a period of stalled growth, which lasts for 12 or more weeks, has been 

observed in smooth cordgrass seedlings, and this increases their susceptibility to being washed 

away by inundating tides. This stalled growth period must be overcome before aerial seeding can 

be implemented.  

As with any plant species, it is reasonable to assume that S. alterniflora has optimal 

nutritional requirements for seedling and mature plant growth. Previous nutritional research has 

involved only mature smooth cordgrass plants. These studies showed that applications of 

nitrogen and phosphorus fertilizers increased plant growth. The objectives of this study were to 

document the lag phase of seedling growth observed in field and greenhouse conditions; 

determine the possible role of soil microbes, including seed and seedling pathogens and 

mycorrhizal fungi, as a cause of delayed seedling growth; and investigate the role of nutrition in 

seedling growth.  

This study confirmed the existence of stalled seedling growth in S. alterniflora and 

concluded that pathogens are not the cause of this lag period. Furthermore, supplemental N and P 

(240 kg N ha-1, 49.5 kg P ha-1) reduced the lag phase from over 100 days to less than 50 days 

under ideal greenhouse conditions. However, nutrient additions did not completely overcome 



 ix 
 

stalled seedling growth. Future research possibilities include investigating the effects of plant 

growth regulators (hormones) and seed preconditioning treatments on seedling growth.  
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1. INTRODUCTION 
 
 Louisiana’s coastal marshes account for 41% of the total coastal marshes of the 

continental United States (DeLaune et al. 1990, Williams et al. 1997). This vast expanse of 

coastal land is an important habitat for commercial and recreational fisheries and waterfowl as 

well as the first line of defense against storm-induced tidal surges (Mitsch and Gosselink 1993). 

Unfortunately, this habitat is being lost at rates between 26 and 100 km2
 per year as a result of 

rising sea levels, subsidence, geologic processes, and anthropogenic causes, including river 

channelization (DeLaune et al. 1983, 1990; Mitsch and Gosselink 1993; Williams et al. 1997).   

 In order to maintain itself, a salt marsh must maintain its elevation above sea level within 

a specific range via accretion. Marshes become inundated when accretion rates do not equal or 

exceed loss rates relative to sea level, which is rising (DeLaune et al. 1983, Mitsch and 

Gosselink 1993). Louisiana’s coastal marshes are being lost primarily as a result of deterioration 

from within rather than shoreline erosion. This change from emergent marsh to open water 

accounts for approximately 75% of the total land loss (DeLaune et al. 1990). Within a Louisiana 

marsh, DeLaune et al. (1983) estimated that accretion rates averaged 0.8 cm/yr, whereas coastal 

submergence was proceeding at about 1.2 cm/yr. In other southeastern U.S. marshes, the rate of 

sediment accretion is approximately 1.2 mm/yr, which is less than the average rate of sea-level 

rise for the region (1.9 mm/yr) (Hackney and Cleary 1987, Stevenson et al. 1986).  

 One effort to combat coastal erosion is the deposition of dredged material into marsh sites 

that are particularly critical with regard to barrier island preservation, coastal protection, and 

habitat restoration. The use of dredge spoils for this purpose has considerable merit because it 

offers a unique means by which to economically resolve spoil disposal problems while 

simultaneously restoring and enhancing marsh habitats. Several innovative ideas, including spray 
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dredging, sediment transport through abandoned oil and gas pipelines, as well as construction of 

siphons and diversions, have been investigated (Cahoon and Cowan 1988, Ford et al. 1999, 

Harrison et al. 2003). Regardless of the means by which marshes are restored, it is critical that a 

self-sustaining plant community be established as quickly as possible to prevent erosion of the 

spoil material. This is particularly critical in coastal marshes where elevation may be only a few 

inches above sea level and where the newly elevated marsh may be inundated by unusually high 

tides or storm surges.  

 Spartina alterniflora Loisel. (smooth cordgrass) is the predominant plant species that 

thrives in this habitat. It produces a dense stand of stems that is very effective in trapping 

sediment during periods of inundation, and its extensive fibrous root system prevents erosion of 

topsoil (Anon. 2000). There has been a sustained effort in Louisiana to reintroduce this plant into 

newly created marshes (Harrison et al. 2003). Unfortunately, native populations produce very 

few seeds, and these seeds require special handling to preserve viability and break dormancy 

(Broome and Seneca 1974, Harrison et al. 2003, Plyler and Carrick 1993, Plyler and Proseus 

1996, Seneca and Broome 1972). Therefore, commercial restoration efforts have depended upon 

transplanting pot-grown, vegetatively propagated plants. This is a very expensive and laborious 

undertaking because the plants must be propagated and grown in 1-gallon containers in 

greenhouses; these potted plants must be transported to the sites by barge; and then the plants 

must be carried across the marsh and transplanted by hand (M. Materne, personal 

communication). This can be done only at sites that are accessible by barge, and it is not a cost 

effective means for marsh restoration. Obviously, this approach is of limited value and is 

reserved for critical restoration sites. 
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A more useful and economical approach would be to plant seeds of S. alterniflora from 

aircraft. Such an approach would allow many acres to be planted in a short time (seconds per 

acre), and there would be fewer problems with inaccessible sites.  Aerial planting technology is 

well developed in Louisiana having been used in the rice industry for many years. However, 

certain biological prerequisites must be met before this technology can be adapted to planting S. 

alterniflora. First, there must be adequate seed production of locally adapted ecotypes. Second, 

seeds must be stored moist to retain viability, and, if subject to dormancy, seeds must be treated 

to break dormancy. Third, seeds must germinate and seedlings must become established quickly 

after planting in order to avoid being swept away by inundating tides.   

The first two hurdles have been overcome in ecotypes that were originally collected from 

a Louisiana salt marsh (Harrison et al. 2001). Substantial progress has been made in this area 

because of a large multidisciplinary project that includes an agronomist/plant breeder, a 

molecular geneticist, a biotechnologist, a seed physiologist, a wetlands biologist and restoration 

technologist, and a plant pathologist (Harrison et al. 2001, 2003). In fact, aerial planting was 

successfully accomplished in that seeds were dispersed from an aircraft in a relatively uniform 

pattern in a marsh. Furthermore, the seeds were viable and began to germinate. However, 

germination and seedling establishment were so slow that seedlings were washed away by an 

inundating tide soon after planting (M. Materne, personal communication). In addition, this lag 

phase in seeding growth has been observed in seedlings grown in the greenhouse under flooded 

conditions. An investigation by Broome and Seneca (1974), regarding the propagation of S. 

alterniflora from seeds, also indicated very little growth during the first growing season when 

direct seeded onto dredge spoil in coastal North Carolina. Thus, the third prerequisite must be 

met before commercial interests and governmental agencies can adopt this technology.  It is 
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encouraging to note that direct seeding has been attempted in North Carolina and Delaware, but 

there are no reports of its being adopted as a widespread practice or of the use of aircraft to plant 

seeds (Broome and Seneca 1974, Leslie 1987, Seneca et al. 1976).   

 As with any plant species, it is reasonable to assume that S. alterniflora has its optimum 

nutritional requirements for seedling and mature plant growth.  The literature base is very 

restricted in this area, with only one report dealing with seedling nutrition (Broome et al. 1975b). 

Therefore, the objectives of this study were to document the lag phase of seedling growth 

observed in field and greenhouse conditions, determine the possible role of soil microbes, 

including seed and seedling pathogens and mycorrhizal fungi, as a cause of delayed seedling 

growth, and investigate the role of nutrition in seedling growth.  
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2.  MATERIALS AND METHODS 
 

2.1 Microbial Interactions, Including Seed and Seedling Diseases  

Spartina alterniflora seeds were planted in both raw and steam-sterilized native marsh 

soil collected on Grand Terre Island, Louisiana. Each experimental unit consisted of a 

disposable, 1920-ml capacity food storage container (model 9291-64 FL OZ, Alcoa, Pittsburgh, 

PA) filled with soil to a depth of 60 ml and a soil surface area of 245 cm2
.  Six containers each 

were filled with the raw and steam-sterilized native marsh soil. Distilled water was added to each 

container to saturate the soil. On June 7, 2001, twenty seeds were planted in each container by 

laying them on the soil surface. Seeds had been harvested in December 2000 from S. alterniflora 

plants located at the LSU Agricultural Center Ben Hur Research Farm (Baton Rouge, LA). After 

harvesting, the seeds were stored in sealable plastic bags with moist paper toweling and 

maintained at 4ºC. Prior to planting, the seeds were sorted using a light box to eliminate seeds 

without embryos. After planting, distilled water was added to each container to flood the soil to a 

depth of 1-2 mm. The containers were then placed in growth chambers set at 25ºC with 12 hours 

of light per day. Distilled water was added as needed.  

Seedlings were removed from the soil after 14 days, by carefully pulling the seedlings 

and roots out of the soil. Once removed from the soil, seedlings for raw and sterile soil were 

placed in separate beakers covered with a piece of fiberglass screen, a layer of brown paper 

towel, and a final piece of screen. The seedlings were then washed in the covered beakers under 

cold running tap water for 1 hour.  

After washing, 24 seedlings received a 5 second dip in 70% ethanol, followed by a 10 

minute soak in sterile deionized water.  Another 24 seedlings were placed in sterile deionized 

water without receiving an ethanol dip. Seedlings from both groups were then removed and 
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blotted dry with autoclaved paper toweling before discolored root sections were plated onto 

water agar and acidified potato dextrose agar. Culture dishes were incubated at 27ºC under 

fluorescent lights. Plates were observed for fungal growth on June 28, 2001. 

This experiment, as described above, was repeated three times during the following time 

periods: July 6, 2001 through August 10, 2001, September 24, 2001 through November 1, 2001, 

and November 29, 2001 through January 22, 2002.  

Roots of mature S. alterniflora plants collected from marsh sites were stained and viewed 

for the presence of mycorrhizal infection following the protocol described by Dhingra and 

Sinclair (1985). Plants with mycorrhizal relationships are known to benefit nutritionally from 

this association. 

2.1 Initial Time Course Study  

Spartina alterniflora seeds were planted in steam sterilized and raw mineral soil supplied 

by the Louisiana State University (LSU) Greenhouse Services. Results of soil analyses for both 

the steam sterilized and raw soil are listed in Appendix A. Four experimental treatments of 

nutrient enrichment were randomly assigned to four containers of steam-sterilized soil and four 

containers of raw soil in each sampling group (control, N, P, N plus P) for a total of eight 

containers per sampling group. Ten sampling groups were planted to establish a growth rate 

curve over time. The containers were placed on concrete benches in a glasshouse located in the 

main campus greenhouse complex at LSU. An evaporative cooling pad system was used in the 

greenhouse for cooling. No supplemental lighting was used. 

Nutrient treatment levels were based on studies of nutrient enrichment along the Neuse 

River shoreline near Oriental, North Carolina (Broome et al. 1983) and near Beaufort, North 

Carolina (Broome et al. 1975a, 1975b). These sites had been investigated with regard to soil 
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nutrient interactions with S. alterniflora. Reagent grade ammonium sulfate was used (21.2% N) 

for the nitrogen treatments. Ammonium sulfate was used because ammonium is the primary 

nitrogen source for many Spartina-dominated salt marshes (Mendelssohn 1979). Phosphorus was 

supplied using equimolar amounts of reagent grade monobasic calcium phosphate 

(Ca(H2PO4)2H2O, 24.6% P and 15.87% Ca) and dibasic calcium phosphate (CaHPO4, 21.2% P 

and 27.4% Ca). Fertilization rates within each container were 224; 99; and 224 plus 99 kg/ha for 

N; P; and N+P treatments, respectively. In addition, calcium sulfate (23.25% Ca) was added to 

the N only treatments to balance the amount of Ca present in the soil between the N and N + P 

treatments. Nutrients were incorporated in the soil prior to flooding and planting.  

 Each experimental unit consisted of a disposable, 720 ml capacity food storage container 

(Gladware, Oakland, CA) filled with soil to a depth of 50 millimeters and a soil surface area of 

140 cm2. Each container was placed in a plastic storage container (Rubbermaid, Fairlawn, OH) 

filled with 2 L of a 15 parts per thousand (ppt) salt solution. The salt solution was made by 

mixing 30 g artificial sea water mix (Crystal Sea / Forty Fathoms Marinemix, Baltimore, MD) 

with 2 L deionized tap water. The chemical assay for Crystal Sea Marinemix is listed in 

Appendix B. Tap water was deionized using two mixed bed deionization tanks (U.S. Filter, 

Metairie, LA). Deionized water was added as needed to maintain the water level above the soil 

surface. Salinity was measured periodically using a handheld refractometer (model S/Mill-E, 

Atago, Tokyo, Japan) to insure a constant salinity level of 15 ppt.  

Seeds had been harvested in December 2002 from S. alterniflora plants located at the 

LSU Agricultural Center Ben Hur Research Farm, and they were stored and sorted as described 

above. Thirty-six seeds were planted in each container by placing them on the soil surface on 

March 21, 2003. Sample group one was harvested 15 days after planting (April 6, 2003) when a 
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majority of seedlings had two true leaves. Harvesting of sampling groups continued at 15-day 

intervals through sample group 4 (May 21, 2003). Starting with sample group five (harvested 

May 28, 2003), harvesting was conducted at 7-day intervals until the last sample group (10) was 

harvested on July 2, 2003.  

After harvesting, whole plants were washed twice in deionized water, and the number of 

plants per treatment container was recorded. Roots were separated from shoots and both weighed 

after oven drying at 65ºC for 48 hours as recommend by the LSU Agricultural Center Soil 

Testing and Plant Laboratory. Shoot and root dry weights for each treatment were divided by the 

number of plants per treatment for an average plant weight. In addition to dry weight analysis, 

plant heights were measured throughout the experiment. 

2.2 Plant Nutrition Study I  

Seeds of S. alterniflora and rice (Oryza sativa L. cultivar Cypress) were planted in steam 

sterilized mineral soil supplied by LSU Greenhouse Services. Rice was included for comparative 

purposes because it is a grass that grows in flooded soils and its response to soil nutrient 

treatments has been well documented (Anon. 1987, Fageria et al. 1997). Five replications with 

various nutrient treatment levels were planted for S. alterniflora and four replications were 

planted for rice. Eighteen experimental treatments of nutrient enrichment were randomly 

assigned to 18 containers of steam-sterilized soil in each replication (Table 2.1).  The containers 

were placed on concrete benches in a glasshouse located in the main campus greenhouse 

complex at LSU. Details of the experimental set-up, including containers, sources of N and P, 

and artificial seawater are described above. Fertilization rates within each container for N and P 

are listed in Table 2.2.  
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Table 2.1: Nitrogen and Phosphorus Treatment Combinations Used in Nutrition Study I 
 Nutrient addition treatments 

P Levels N Control N Level 1 N Level 2 N Level 3 N Level 4 N Level 5 
P Control N0P0 N20P0 N40P0 N80P0 N160P0 N240P0 

P Level 1 N0P49.5 N20P49.5 N40P49.5 N80P49.5 N160P49.5 N240P49.5

P Level 2 N0P99 N20P99 N40P99 N80P99 N160P99 N240P99 
 

 
Table 2.2: Fertilization Rates of Nitrogen and Phosphorus for Treatment Levels Described in 
Table 2.1 

Treatment  
Fertilizer (N or P)  

(kg/ha) 
Amount of nutrient added per 

container (mg) 
Nitrogen Control 0 0 

Nitrogen Level 1  20 142 

Nitrogen Level 2  40 283 

Nitrogen Level 3  80 566 

Nitrogen Level 4  160 1132 

Nitrogen Level 5  240 1698 

Phosphorus Control  0 0 

Phosphorus Level 1  49.5 188.5 dibasic 

139.6 monobasic 

Phosphorus Level 2  99 377.0 dibasic 

279.3 monobasic 
 

Seeds of S. alterniflora were harvested and stored as described above. Rice seeds were 

supplied by Dr. M.C. Rush in the Department of Plant Pathology and Crop Physiology at LSU.  

Thirty-six seeds were planted in each container by placing them on the soil surface on 

July 10, 2003. Seedlings were removed randomly from each container on July 18, 2003 to reduce 

the number of plants per container to 15.  Plant heights for the tallest four plants per container 

were recorded on August 20, 2003, because many shoots had not yet emerged from the water.  

Harvesting of roots and shoots of S. alterniflora and rice plants began on August 21 and ended 

August 26, 2003. During harvesting, plants were removed from the containers by gently washing 
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away the soil from the roots with tap water. After harvesting, whole plants were washed twice in 

deionized water, and the number of plants per container was recorded. Then, the roots were 

separated from the shoots and both placed in separate labeled paper bags. Plant material was 

weighed after oven drying at 65ºC for 48 hours. Dry shoots were ground, and N analysis was 

performed by the LSU Agricultural Center Soil Testing and Plant Laboratory using dry 

combustion with a Leco N Analyzer (St. Joseph, MI). 

2.3 Plant Nutrition Study II  

The plant nutrition study was repeated as described above from November 17, 2003 

through February 12, 2004. Differences in the experimental design were restricted to the number 

of replications (four replications each for S. alterniflora and rice) and the nutrient treatment 

levels used, which are listed in Table 2.3. Fertilization rates for each nutrient treatment level 

corresponded to those previously listed (Table 2.2). 

 
Table 2.3: Nitrogen and Phosphorus Treatment Combinations Used in Nutrition Study II 

 Nutrient addition treatments 
P Levels N Level 3 N Level 4 N Level 5 
P Control N80P0 N160P0 N240P0 

P Level 1 N80P49.5 N160P49.5 N240P49.5 

P Level 2 N80P99 N160P99 N240P99 
 
 
2.4 Time Course Study II  

 Each of two experimental treatments of nutrient enrichment (control and N plus P) was 

randomly assigned to four containers of steam-sterilized soil in each sampling group for a total 

of eight containers per sampling group. Nutrient treatment levels used in this study were the N 

level 5 plus P level 1 (N240P99) and a control (N0P0) (Table 2.2). These rates were chosen 

based upon findings from the initial time course study and the first nutrition study. This 
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experiment was expanded to four replications per treatment and reduced from ten sampling 

periods to four in order to establish a growth curve.  

 Seeds were harvested, stored, and sorted as described above. Thirty-six seeds were 

planted in each container by placing them on the soil surface on November 17, 2003. Seedlings 

were randomly removed from each container on December 2, 2003 to reduce the number of 

plants per container to 15. Sample group one was harvested 56 days after planting (January 12, 

2004) when a majority of seedlings had four or five true leaves. Harvesting continued at 8-day 

intervals through sample group 4 (February 5, 2004). Plants were harvested and dried as 

described above. In addition, height measurements for each shoot were recorded at the time of 

harvest.  

2.5 Temperature Study 

The effect of temperature on seedling growth was examined using five diurnally lighted 

growth chambers. Each growth chamber was maintained at one of five temperatures (15, 20, 25, 

30, and 35ºC), and each was set for a 12-hour photoperiod. Three thermometers were placed in 

each chamber, and a hand held photometer (Phytotronics Inc., St. Louis, MO) was used for light 

intensity readings taken at each shelf level.  

 The nutrient level used in this study was the N240P49.5 treatment (Table 2.2). This rate 

was chosen based upon findings from the initial time course study and the first nutrition study. 

Seeds were harvested, stored, and selected and nutrients were incorporated into the steam-

sterilized soil as described above. Also, the same containers and protocols described above were 

used. Three experimental units were randomly assigned to four sampling groups for a total of 12 

containers per growth chamber. Four sampling groups were planted to establish growth curves 

over time. 
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Thirty-six seeds were planted in each container by placing them on the soil surface on 

October 6, 2003. The seeds were allowed to germinate and grow until all containers were 

harvested on January 5, 2004. One harvest was conducted, instead of the originally intended 

four, because of a small number of plants per temperature treatment, and only shoots were 

harvested. Height at the time of harvest and shoot dry weights were recorded after oven drying at 

65ºC for 48 hours.  

2.6 Statistical Analysis  

Plant dry weights from the initial time course nutrition study were assessed graphically 

for differences among nutrient treatments and between steam-sterilized soil and raw soil because 

there were no replications. All remaining analyses were conducted using Minitab Release 14, in 

which univariate analysis of variance (ANOVA) was used to compare treatment differences. 

Tukey’s pairwise comparisons with a 95% simultaneous confidence interval also were used to 

determine significant differences (P = 0.05) among nutrient treatment levels and temperature 

treatments, respectively.  
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3. RESULTS 
 

3.1 Microbial Interactions, Including Seed and Seedling Diseases  

Discoloration of primary and secondary roots, and seed rot were not observed. 

Observations of cultures of fungi that grew from root sections plated onto water agar and 

acidified potato dextrose agar and identification of these fungi based on spore type, did not 

reveal the presence of seed or seedling pathogens. Fungi were primarily saprophytic species 

including Penicillium, Trichoderma, and Rhizopus spp. Typical seed and seedling pathogens, 

including Pythium spp. were rarely observed and not associated with seedlings displaying stalled 

growth. These findings indicated stalled seedling growth was not disease related, which 

prompted the hypothesis that the lag phase of seedling growth may be a result of nutritional 

deficiencies. This led to the examination of roots from plants collected in the marsh for 

mycorrhizal infection because of the known nutritional benefits resulting from this association. 

No mycorrhizal infection was observed.  

3.2 Initial Time Course Nutritional Study  

Differences in plant growth related to nutrient treatments were apparent 45 days after 

planting (40 days after germination). Visual observations revealed that the N + P treatment in 

steam-sterilized soil had the effect on plant height (data not shown). N + P in steam-sterilized 

soil produced the greatest individual shoot dry weights along with the tallest plants, followed by 

the N + P treatment in raw soil and N only in steam-sterilized soil treatments (Fig 3.1). No 

changes in shoot dry weights were observed throughout the experiment for the remaining 

nutrient treatments in either steam-sterilized or raw soil.  

 Graphical analysis of individual root dry weights indicated that the N + P in raw soil 

treatment had the greatest effect on increasing root growth (Fig 3.2). N + P and N only in steam 
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sterilized soil ranked second and third, respectively, in affecting dry root weight. The remaining 

treatments had minute to no effects on dry root weight. Unfortunately, because of extremely 

diminished growth of the seedlings, plants had to be combined for analysis, and replicates were 

not available for statistical analysis.  

 No visual observations were noted during the experiment that would indicate a 

pathogenic involvement inhibiting seedling growth or causing premature plant death. Likewise, 

root and shoot individual dry weights did not give reason to suspect pathogenic involvement 

inhibiting seedling growth. Visual inspection of roots showed no signs or symptoms of disease 

for all nutrient and both soil treatments.  

3.3 Time Course Study II  

 3.3.1 Mean Shoot Height 
 

There were significant differences in shoot height among treatments (P<0.000). Shoot 

heights for the control group showed no increase in growth throughout the 80-day experiment 

(Fig. 3.3).  Mean shoot heights for the N240P49.5 treatment seedlings continually increased 

throughout the experiment (Fig. 3.3). Analysis of sampling periods using Tukey’s pairwise 

comparisons with 95% simultaneous confidence intervals found significant increases in mean 

shoot heights for seedlings in the N240P49.5 treatment with sample periods. These increases in 

shoot heights occurred between the first (56 days) and the remaining three sample periods, the 

second (64 days) and the last sample period, and between the third (72 days) and the last sample 

period (80 days). 

 3.3.2 Mean Shoot Weight 

Shoot dry weights for the N240P49.5 treatment increased significantly (P < 0.000) over 

time when compared to the control. The control group showed no increase in dry weight over 

time (Fig. 3.4). Seedlings in the N240P49.5 treatment showed a continual increase in shoot 
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Figure 3.1. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry shoot weight over time for the initial time course study. 
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Figure 3.2. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry root weight over time for the initial time course study.  
  

 

 



 17 
 

weight at each sampling period (Fig. 3.4). Analysis of sampling periods using Tukey’s pairwise 

comparisons with 95% simultaneous confidence intervals found significant differences in mean 

shoot weights among sample periods for the N240P49.5 treatment. These occurred between the 

first (56 days) and the remaining three sample periods, the second (64 days) and the last sample 

period, and between the third (72 days) and the last sample period (80 days). 

3.3.3 Mean Root Weight 

Sample period and the N240P49.5 treatment had a significant (P < 0.000) effect on root 

dry weight. The control group showed no increase in root weight over time (Fig. 3.5). Root 

weights in the N240P49.5 plants increased continuously at each sampling period (Fig. 3.5). 

Analysis of sampling periods using Tukey’s pairwise comparisons with 95% simultaneous 

confidence intervals found significant differences in mean root weights among sample periods 

for the N240P49.5 treatment. These occurred between the first (56 days) and the remaining three 

sample periods, the second (64 days) and third (72 days) and fourth (80 days) sampling periods, 

and between the third (72 days) and the last sample period (80 days). Analysis of sampling 

periods using Tukey’s pairwise comparisons with 95% simultaneous confidence intervals did not 

detect significant differences between the control first and second sampling periods and the 

corresponding N240P49.5 sampling periods.   

 3.3.4 Root to Shoot Ratios 

 Root to shoot ratios (R:S ratios) were significantly higher (P= 0.033) for plants in the 

control group throughout the experiment (Fig. 3.6).  

3.4 Plant Nutrition Study I  

3.4.1 Mean Shoot Height 

Height of S. alterniflora shoots was significantly (P<0.000) effected by nutrient  

treatment (Fig. 3.7). Two-way analysis of variance also indicated a significant interaction effect 
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Figure 3.3. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
shoot height over time for time course study II. Bars indicate standard errors, where larger than 
the symbols. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry shoot weight over time for time course study II. Bars indicate standard errors, where larger 
than the symbols. 
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Figure 3.5. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry root weight over time for time course study II. Bars indicate standard errors, where larger 
than the symbols. 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 3.6. The effects of nitrogen and phosphorus nutrient treatments on weight based Spartina 
alterniflora root:shoot ratios over time for time course study II. Bars indicate standard errors, 
where larger than the symbols. 
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(P < 0.000) between N and P levels on shoot height.  Mean shoot height for the N240P49.5 

treatment was significantly different (P<0.000) from all treatments except the N160P49.5 and 

N160P99 treatments. Average shoot height decreased with an increase in N level between the 

N160P99 treatment and the N240P99 treatment (Fig. 3.7). The increase in N level between the 

N160P49.5 and the N240P49.5 treatment did not result in a significant increase in mean shoot 

height (Fig. 3.7).  

 Two-way analysis of variance for mean heights of rice shoots indicated significant N 

treatment effects (P < 0.000), but did not indicate a significant P treatment effect (P = 0.143) or a 

significant interaction effect between N and P (P = 0.716) (Fig 3.8). While the increase in N 

level produced a significant increase in mean shoot height, mean shoot heights among P 

treatments, for each respective N treatment level, did not differ significantly (Fig 3.8).  

3.4.2 Mean Shoot Dry Weight 

Shoot dry weights of S. alterniflora increased considerably with added N and P. 

Graphical analysis indicated significant treatment effects for N and P. Two-way analysis of 

variance also indicated a significant interaction effect between N and P (P <0.000) on shoot dry 

weights (Fig. 3.9). The N4P1 treatment produced the greatest increase in shoot weight over the 

control and was significantly different from all treatments excluding N80P99, N240P49.5, 

N160P99, and N240P99. Shoot weights for plants receiving no P supplements remained constant 

among all N treatment levels, with no significant difference among the nitrogen treatments 

(P=0.627). 

Two-way analysis of variance for mean shoot dry weights for rice plants emulates the 

findings of the rice shoot height analysis. Significant N treatment effects (P < 0.000) supported 

the graphical analysis (Fig. 3.10) in which increased N increased shoot weight. P had no effect 
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Figure 3.7. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
shoot height for plant nutrition study I. Bars indicate standard errors, where larger than the 
symbols. 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.8. The effects of nitrogen and phosphorus nutrient treatments on rice shoot height for 
plant nutrition study I. Bars indicate standard errors, where larger than the symbols. 
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 on treatment effects (P = 0.103). A significant interaction effect between N and P treatments     

(P = 0.302) was not evident. While the increase in N level produced a significant increase in 

mean shoot dry weights, dry weights among P treatments for each respective N treatment level 

did not differ significantly (Fig 3.10). 

 3.4.3 Mean Root Dry Weight 

Root growth, as measured by root dry weight, of S. alterniflora responded to N and P 

supplements (P = 0.001 and <0.000, respectively). Two-way analysis of variance indicated a 

significant interaction effect (P < 0.016) between N and P levels on root dry weight. Graphical 

analysis of S. alterniflora mean root dry weights (Fig. 3.11) supported the findings, indicating 

significant interaction between combined N and P. High N levels increased root dry weight when 

P was added, but had no effect in the absence of P.  Root weights for plants receiving no 

supplemental P nutrition showed no significant difference in growth among all N treatment 

levels (P=0.568).  

As with rice dry shoot weights, two-way analysis of variance for rice dry root weights 

also indicated no significant P treatment effects (P = 0.105) or a significant interaction effect 

between N and P treatments (P = 0.120). Significant N treatment effects (P < 0.000) supported 

the graphical analysis (Fig. 3.12) that increased N resulted in increases in root weight. While the 

increase in N level produced a significant increase in mean root dry weights over the control, dry 

weights among P treatments for each respective N treatment level showed no significant 

differences (Fig 3.12). 

3.4.4 Root to Shoot Ratios 

Graphical analysis showed a general decrease in weight based R:S ratios for S. 

alterniflora as N levels increased (Fig. 3.13). Statistically, there was a significant N treatment 
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Figure 3.9. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry shoot weight for plant nutrition study I. Bars indicate standard errors, where larger than the 
symbols. 
 

 

 

 

 

 

 

 

 

 

 
Figure 3.10. The effects of nitrogen and phosphorus nutrient treatments on rice dry shoot weight 
for plant nutrition study I. Bars indicate standard errors, where larger than the symbols. 
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Figure 3.11. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry root weight for plant nutrition study I. Bars indicate standard errors, where larger than the 
symbols. 
 

 

 

 

 

 

 

 

 

 
 
Figure 3.12. The effects of nitrogen and phosphorus nutrient treatments on rice dry root weights 
for plant nutrition study I. Bars indicate standard errors, where larger than the symbols. 
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level effect on R:S ratios (P = 0.005), but there was not a significant P treatment level effect  

(P= 0.788). Also, two-way analysis of variance failed to show an interaction effect among N  

and P treatment levels on S. alterniflora R:S ratios (P = 0.735). 

 Rice R:S ratios also showed a general decrease as N levels increased (Fig. 3.14). Rice 

plants were able to utilize added N without requiring supplemental P. Graphical analysis was 

confirmed by two-way analysis of variance findings for no significant P treatment level effect  

on R:S ratios (P = 0.689) and no interaction effects among N and P treatment levels on rice  

R:S ratios (P = 0.964). However, N treatment level had a significant effect on R:S ratios  

(P = 0.001).  

3.4.5 Percent Leaf Nitrogen 

Graphical analysis of the mean percent N content of S. alterniflora leaf tissue showed 

increases in N content as N treatment levels increased (Fig. 3.15). However, this increase in leaf 

tissue N did not begin until N treatment levels reached 80 kg N ha-1, at which point differences 

among P treatment levels also can be observed. Two-way analysis of variance indicated 

significant N (P < 0.000) and P (P < 0.000) treatment level effects on percent leaf N. Statistical 

analysis also indicated a strong interaction effect among N and P treatment levels (P < 0.000) on 

the percent leaf N of S. alterniflora. 

 Increases in N treatment level resulted in substantial increases in the percent N found in 

rice leaf tissue (Fig. 3.16). There was no indication of a P treatment level effect on leaf tissue N 

content in the graphical analysis, which corroborated the findings of the two-way analysis of 

variance for no significant effect for P treatment level (P = 0.063). The effect of N treatment 

level on rice leaf tissue N content was significant (P < 0.000), but no significant interaction 

effect (P = 0.907) between N and P treatment levels was observed.  
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Figure 3.13. The effects of nitrogen and phosphorus nutrient treatments on weight based 
Spartina alterniflora root:shoot ratios for plant nutrition study I. Bars indicate standard errors. 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. The effects of nitrogen and phosphorus nutrient treatments on weight based rice 
root:shoot ratios for plant nutrition study I. Bars indicate standard errors. 
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Figure 3.15. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
percent leaf nitrogen for plant nutrition study I. Bars indicate standard errors, where larger than 
the symbols. 
 
 
 
 

 

 

 

 

 

 

 

 

Figure 3.16. The effects of nitrogen and phosphorus nutrient treatments on rice percent leaf 
nitrogen for plant nutrition study I. Bars indicate standard errors, where larger than the symbols. 
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3.4.6 Nitrogen Uptake Efficiency Rates 

Nitrogen uptake efficiency (NUE) rates were calculated for S. alterniflora and rice plants 

for the first nutrition study. These rates were calculated according to the method described by 

Lee et al. (2004) in which NUE = shoot dry weight divided by % leaf N. These values provide an 

indication for comparative purposes of relative nitrogen use efficiencies. Results are shown in 

Fig. 3.17.  

 S. alterniflora exhibited maximum NUE value range of 0.5 to 1.0 for the 49.5 and 99 kg 

P ha-1 amendments (Fig. 3.17). In contrast NUE for rice continued to increase with increasing 

levels of N up to 160 kg N ha-1. At that point, NUE’s values for 0 and 49.5 kg P ha-1 plateaued, 

and additional N was not efficiently used. However, at 99 kg P ha-1, NUE continued to increase 

(Fig. 3.17).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.17. The effects of nitrogen and phosphorus nutrient treatments on nitrogen utilization 
efficiencies (shoot dry weight / % leaf N) for Spartina alterniflora and rice for plant nutrition 
study I.  
 

 Results from plant nutrition study II were similar to the first nutrition study. Graphical 

results are presented in Appendix C. 
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3.5 Temperature Study  

3.5.1 Mean Shoot Height 

S. alterniflora shoot heights increased with increasing temperatures until a maximum was 

reached at 25ºC. Further increases in temperature resulted in decreased mean shoot height     

(Fig. 3.18). No seedlings survived at the 35ºC treatment. One-way analysis of variance of shoot 

height versus temperature indicated a significant (P = 0.005) effect of temperature on shoot 

height.  

3.5.2 Mean Shoot Weight 

A graphical analysis of increasing temperature versus S. alterniflora shoot weights 

showed a maximum was attained at 25ºC followed by a decline in shoot weights (Fig. 3.19). 

Likewise, one-way analysis of variance for shoot weight versus temperature treatment showed 

temperature does significantly affecting shoot weight (P = 0.039).  
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Figure 3.18. The effects of temperature on Spartina alterniflora shoot height. Bars indicate 
standard errors, where larger than the symbols. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.19. The effects of temperature on Spartina alterniflora dry shoot weight. Bars indicate 
standard errors, where larger than the symbols. 
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4. DISCUSSION 
 
 Successful colonization of barren mud flats and newly created coastal marshlands in 

Louisiana by S. alterniflora is an essential tool in combating coastal erosion and natural marsh 

subsidence. The potential for aerial seeding of S. alterniflora presents the possibility for 

substantial savings in labor and costs associated with growing transplants that must be hand 

transplanted in the marsh. Although the successful use of S. alterniflora seedlings as a means of 

propagation has been documented (Broome and Seneca 1974, Broome et al. 1975b), delayed or 

stalled seedling growth, which has so far been an inhibitory factor in aerial seeding, have not 

been previously described.  

4.1 Microbial Interactions, Including Seed and Seedling Diseases  

 It was initially proposed that the stalled seedling growth may have been related to 

unknown seed or seedling diseases. There is limited information in the literature describing 

seedborne fungi for S. alterniflora. One survey conducted by Gessner (1978) mentions the 

presence of general decomposers of marine plant debris, but no pathogenic fungi were described. 

My experiments found that no fungal pathogens were present. These findings indicate stalled 

seedling growth probably is not disease related.  

To further examine the role of microbial interactions affecting seedling growth, roots of 

mature S. alterniflora plants were assessed for the presence of mycorrhizal fungi. It is well 

documented that symbiotic relationships occur between many plant species and mycorrhizal 

fungi, which benefit the plant hosts through increased absorption of nutrients, especially P and 

minor elements (Abel-Fattah 2002). Investigations of other Spartina species, including S. patens 

(Burke et al. 2002) and S. maritime (Carvalho et al. 2001) found mycorrhizal associations. 
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However, no evidence of mycorrhizal fungi was found in the present study. This led to the 

hypothesis that the lag phase in seedling growth was a result of nutritional deficiencies.   

4.2 Time Course and Nutritional Study  

The initial time course nutritional study was conducted as a range finding experiment to 

determine the length and document the lag phase in seedling growth. Initially the test was 

designed so each plant within each treatment would serve as a replication. Unfortunately, 

because of the extremely small seedlings, plants had to be combined for analysis, and replicates 

were not available. However, it was observed, and then documented through replications during 

the second time course nutritional study, that additions of N and P shortened the lag phase from 

over 100 days to less than 56 days. Emergence from the stalled seedling growth phase was never 

observed in the absence of added nutrients.  

 The growth responses of S. alterniflora seedlings to N and P fertility treatments provided 

insight into difficulties associated with establishing S. alterniflora marshes from seed in coastal 

Louisiana. Results from this study indicated N and P nutrient additions are important for S. 

alterniflora seedling establishment. Soil P levels measured in this study were higher than P 

levels reported by Charbreck (1972) and Mendelssohn and Kuhn (2003) for coastal marsh soils 

of Louisiana (Appendix D). Despite higher P levels present, S. alterniflora seedlings required 

additional P for increased growth. N (224 kg ha-1) and P (49 kg ha-1) additions to dredge spoil 

were reported by Broome et al. (1975b) to have a substantial effect on increasing seedling dry 

weight during the growing season (3470 kg ha-1 to 10800 kg ha-1), while a N (224 kg ha-1) 

addition alone had a smaller effect on increasing seasonal growth (3470 kg ha-1 to 9340 kg ha-1). 

Additional studies indicated P is second only to N in limiting growth in S. alterniflora seedlings 

(Broome and Seneca 1974) and established S. alterniflora stands (Broome et al. 1975a, Broome 
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et al. 1983, DeLaune and Pezeshki 1988, Foret 2001, Smart and Barko 1980). Other 

investigations of the role of N and P nutrition in established S. alterniflora stands concluded that 

availability of P does not limit plant growth (Buresh et al. 1980, DeLaune and Patrick 1980, 

Patrick and DeLaune 1976, Sullivan and Daiber 1974).  However, none of these studies 

examined the effects of nutrients on seedling growth from germinating seeds, which would be 

required for aerial seeding of marsh sites.  

Root and shoot growth responses from all nutrition experiments in this study indicated 

that S. alterniflora was very sensitive to N and P supplements in the single soil type used, and it 

may be necessary to add these nutrients to marsh soils if direct seeding is employed. 

Alternatively, it may be possible to soak seeds in nutrient solutions as a means of providing these 

limiting elements. Pelleting seeds with appropriate N and P formulations is probably not 

practical because seeds must be kept wet in order to preserve seed viability (Broome and Seneca 

1974, Harrison et al. 2003, Plyer and Carrick 1993, Plyer and Proseus 1996, Seneca and Broome 

1972). 

Results from the initial time course experiment indicated the N + P treatment resulted in a 

greater increase in whole plant biomass. Although growth remained stalled during the initial 40 

days after germination, growth during the remaining 62 days of the experiment was substantially 

greater than the nonamended control. The N only treatment in steam-sterilized soil showed 

increased growth over the remaining N only treatments. The plants receiving only N grew at a 

slower pace and did not attain the height or biomass of those in the N plus P treatments. These 

findings suggest that P is a limiting nutrient during the seedling phase of S. alterniflora growth. 

Results from this initial nutrition study were expanded upon in subsequent investigations to 

determine the specific N and P fertilizer rates required by S. alterniflora to overcome stalled 
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seedling growth. In particular, tissue concentrations reported in this study can be used to assess 

field grown plants, although it will be necessary to calibrate field and greenhouse results. 

Two levels of P (49.5 kg P ha-1
 and 99 kg P ha-1) were used in the first nutrition study, 

along with a P control (0 kg P ha-1), to determine the level of P that produced the greatest 

response in plant growth. All three P levels were used in combination with varying levels of N 

fertilizer amendments. The P levels were selected based on previous research on the effects of P 

fertilizer amendment levels on increases in growth of mature S. alterniflora plants (Broome et al. 

1983) and on S. alterniflora seedlings (Broome et al. 1975b). Results from the first nutrition 

study showed that P applied at 49.5 kg ha-1 combined with N applied at a rate of 240 kg N ha-1 

increased shoot height and shoot and root dry weights significantly more than the P control.  

 Established N and P nutritional requirements for rice, along with similarities between the 

growth habit and morphology of S. alterniflora and rice, led to the inclusion of rice as a standard 

for comparing S. alterniflora growth responses to N and P. P deficiency in rice is known to cause 

reduced seedling growth rate and emergence through water, reduced tillering, delayed maturity, 

reduced plant height, and reduced grain yield (Anon. 1987). These growth responses to P 

deficiency in rice were observed in S. alterniflora, particularly the delayed seedling growth.  

Likewise, rice P deficiency is known to occur in the coastal prairie soils of southwestern 

Louisiana, which are low in available soil P (Anon. 1987).  

Fujiwara (1965) reported that decreased available P for rice suppresses early N uptake 

and prevents the synthesis of protein from nitrogenous materials, and he reported a plentiful 

supply of P promoted early growth in rice plants because of increases in the content of nucleic 

acid and phospholipids. Previous investigations failed to report whether or not the lack of 

available P prevents N uptake by S. alterniflora seedlings. My findings that an abundant 
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availability of P for S. alterniflora seedlings resulted in increased N uptake and consequently 

plant growth corroborated the findings of Broome et al. (1975b) who worked with seedling 

propagation on dredge spoil near Beaufort, North Carolina. Also, results from the present study 

suggested that S. alterniflora seedlings were not capable of adequate N uptake in the absence of 

higher P levels in the river silt soil used in these experiments.  

These studies support the hypothesis that S. alterniflora seedlings experience the same 

suppressed growth response observed in rice seedlings grown in P deficient soils, although rice 

growth was not limited by P in the nonamended soils used in the present study. Rice appeared to 

grow to its maximum potential with regard to N availability in that tissue N concentrations were 

surprisingly similar across P treatments. Likewise, NUE values with increasing N levels under 

different P fertilization regimes provided a stark contrast between S. alterniflora and rice. The 

latter was able to utilize N far more efficiently then the former.  

While P was not limiting for rice growth across N treatments, higher levels of tissue N in 

the lowest P treatment with S. alterniflora suggested that P was limiting when there was 

sufficient N available. S. alterniflora was not able to utilize higher levels of N, and N 

supplements above 80 kg N ha-1 were not efficiently used regardless of P status. Schulte and 

Kelling (1991) suggested plant growth declines when one nutrient supply is increased 

sufficiently as a result of an imbalance with other plant nutrients or because of toxic effects of 

the excessive nutrient. The marked repression in growth of S. alterniflora at the highest N and P 

treatment levels, as compared to rice, could be a result of an imbalance of plant nutrients or 

possibly a toxic effect of high P levels for S. alterniflora when sufficient N is not available. 

Phosphorus is rarely known to be toxic, but it is known to suppress the uptake of copper and zinc 

and be out of balance with respect to nitrogen or potassium when present at high levels (Schulte 
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and Kelling 1991).  Furthermore, the present study showed that there is an optimum ratio of N 

and P in root and shoot growth and root:shoot ratios. NUE analyses clearly showed that 

fertilization of S. alterniflora in the marsh must be very carefully regulated with regard to 

excessive nitrogen applications.   

 It is likely that modern rice cultivars have been selected over many generations for 

fertilizer use efficiency. Given that S. alterniflora reproduces primarily via rhizomes, it does not 

rely upon the successful establishment of seedlings. Therefore, we would expect that there has 

been relatively little evolutionary selection for rapid seedling establishment and efficient nutrient 

uptake.    

The levels of N and P used in these nutrition studies are within current fertilizer 

application rate recommendations for rice (Salton et al. 2002, Wilson et al. 1998). Recent 

analysis of P nutrition requirements for rice growth indicate that P applications made at 

preemergance, preflood, and post flood have significant effects on increasing yields compared to 

applications made at midseason (Salton et al. 2002). Salton et al. (2002) reported that it is critical 

to have sufficient P availability during the first 5 weeks, and especially during the first 2 weeks 

after flooding, to ensure high yield potential for direct-seeded, delayed flood, rice culture. 

Likewise, Wilson et al. (1998) concluded that increased preflood N applications results in 

increased total dry matter accumulation, grain yields, and a significantly greater ability for total 

N uptake.  

4.3 Temperature Study 

 Temperature had a significant effect on S. alterniflora seedling growth. Seedlings 

produced the greatest shoot heights and biomass at 25ºC, and growth was suppressed at 

temperatures above and below the optimum. Other studies on the effects of temperature of S. 
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alterniflora seedling growth found taller plants and greater total plant dry weight when daytime 

temperatures ranged from 26 to 30ºC (Seneca and Blum 1984, Seneca and Broome 1972). This is 

consistent with the effect of temperature on seed germination observed by M.A. Cohn, seed 

physiologist, LSU Department of Plant Pathology and Crop Physiology (personal 

communication). These data suggest that breeding should select for seedling vigor at greater 

temperatures, since temperature in the field would be greater than optimal for plant growth.  
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5. CONCLUSION 
 

There were significant differences in responses to supplemental N and P between rice and 

S. alterniflora. Rice shoots were efficient in utilizing the highest level of added N, whereas S. 

alterniflora displayed a pronounced decrease in growth at the highest N and P levels. Shoot 

weights were similar between the two species, but rice root growth responded readily to higher 

levels of N and P. Again, it is likely that fertilizer N and P supplements for direct seeding of S. 

alterniflora will have to be governed by soil analysis and extensive field investigations. Also, it 

may be possible to select for and breed S. alterniflora cultivars that are more responsive to 

fertilizer supplements. This strategy will have to be assessed critically because we would not 

want to develop cultivars that are dependent upon supplemental fertilizer additions other than 

those required to establish seedlings.  

Through this study we were able to document the lag phase of S. alterniflora seedlings 

and conclude there is no evidence of pathogen involvement. Furthermore, it was observed that 

supplemental N and P aid in reducing the lag phase from over 100 days to less than 50 days for 

the soil type used in this study. However, nutrient additions are not able to completely overcome 

stalled seedling growth. Future research possibilities could include nutritional studies in native 

marsh soils and include other native Spartina species for a comparative analysis of seedling 

growth and response to N and P nutrient additions.  Additional research possibilities include 

investigating the effects of plant growth regulators (hormones) and seed preconditioning 

treatments on seedling growth. Furthermore, the possibility of epicotyl dormancy in S. 

alterniflora should be investigated. Epicotyl dormancy is known to cause similar stalled growth 

periods in other plant species, and may be overcome through seedling stratification (M.A. Cohn, 

personal communication).   
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APPENDIX A 
 

RESULTS OF SOIL ANALYSES FOR STEAM STERILIZED AND RAW SOIL 
 

Table A.1: Soil test results for steam sterilized and raw soil used in greenhouse experiments. 
Soil component  Steam sterilized soil  Raw soil  
NH4

+ 203 kg ha-1 697 kg ha-1 

P 437 kg ha-1 520 kg ha-1 

K 137 kg ha-1 157 kg ha-1 

Ca 3107 kg ha-1 3111 kg ha-1 

Mg 347 kg ha-1 672 kg ha-1 

Na 56 kg ha-1 54 kg ha-1 

% Organic matter 0.26 0.30 

pH 8.3 8.2 
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APPENDIX B 
 

ASSAY CHART FOR AVERAGE SOLUTION OF CRYSTAL SEA MARINEMIX 
HYDRATED TO A DENSITY OF 1.025 USING DISTILLED WATER. (SUPPLIED BY 

MARINE ENTERPIRSES INTERNATIONAL, BALTIMORE, MY. 
 

Chemical/Element Concentration 
(ppm) 

Chemical/Element Concentration 
(ppm) 

Chloride 18,600 Scandium trace 
Sodium 10,400 Nickel 0.0002 
Sulfate 2,600 Radium trace 

Magnesium 1,290 Thallium 0.00007 
Calcium 410 Neodymium trace 

Potassium 380 Iron 0.01 
Bicarbonate 149 Helium trace 
Strontium 12.5 Cobalt 0.0001 
Carbonate 10 Palladium trace 
Bromide 6 Beryllium trace 
Boron 4.4 Neon trace 

Fluoride 1.5 Praseodymium trace 
Silicon 2.8 Mercury 0.0003 
Barium 0.05 Yttrium trace 

Nitrogen 0.00 Ruthenium trace 
Zinc 0.014 Molybdenum 0.01 

Lithium 0.11 Samarium trace 
Argon trace Tantalum trace 

Aluminum 0.17 Silver 0.003 
Rubidium 0.19 Xenon trace 

Copper 0.001 Gold trace 
Tin 0.003 Antimony 0.0003 

Bismuth trace Indium trace 
Niobium trace Arsenic 0.003 

Vanadium 0.002 Zirconium trace 
Phosphorus 0.00 Tungsten 0.0001 
Dysprosium trace Protactinium trace 

Erbium trace Lanthanum trace 
Cesium 0.002 Hafnium trace 

Manganese 0.001 Chromium 0.00005 
Europium trace Radon trace 
Thorium 0.0002 Selenium 0.0039 
Krypton trace Titanium trace 
Uranium 0.00005 Cerium 0.0007 

Gadolinium trace Gallium 0.0003 
Iodine 0.05 Cadmium 0.0001 
Lead 0.004 Germanium 0.00007 

Lutetium Trace   
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APPENDIX C 
 

GRAPHICAL RESULTS FROM PLANT NUTRITION STUDY II 
 

 

 

 

 

 

 

 

 

 
 
Figure C.1. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
shoot height for plant nutrition study II. Bars indicate standard errors. 
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Figure C.2. The effects of nitrogen and phosphorus nutrient treatments on rice shoot height for 
plant nutrition study II. Bars indicate standard errors. 
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Figure C.3. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry shoot weight for plant nutrition study II. Bars indicate standard errors, where larger than the 
symbols. 
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Figure C.4. The effects of nitrogen and phosphorus nutrient treatments on rice dry shoot weight 
for plant nutrition study II. Bars indicate standard errors. 
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Figure C.5. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
dry root weight for plant nutrition study II. Bars indicate standard errors. 

 

 

 

 

 

 

 

 

 

 

 
Figure C.6. The effects of nitrogen and phosphorus nutrient treatments on rice dry root weight 
for plant nutrition study II. Bars indicate standard errors. 

 

Nitrogen treatment level (kg N ha-1)

60 80 100 120 140 160 180 200 220 240 260

R
oo

t w
ei

gh
t (

gr
am

s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 kg P ha-1

49.5 kg P ha-1

99 kg P ha-1

Nitrogen treatment level (kg N ha-1)

60 80 100 120 140 160 180 200 220 240 260

R
oo

t w
ei

gh
t (

gr
am

s)

0.05

0.10

0.15

0.20

0.25

0.30

0 kg P ha-1

49.5 kg P ha-1

99 kg P ha-1



 48 
 

 

 

 

 

 

 

 

 

 

 

Figure C.7. The effects of nitrogen and phosphorus nutrient treatments on weight based Spartina 
alterniflora root:shoot ratios for plant nutrition study II. Bars indicate standard errors. 

 

 

 

 

 

 

 

 

 

 

 

Figure C.8. The effects of nitrogen and phosphorus nutrient treatments on weight based rice 
root:shoot ratios for plant nutrition study II. Bars indicate standard errors. 
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Figure C.9. The effects of nitrogen and phosphorus nutrient treatments on Spartina alterniflora 
percent leaf nitrogen for plant nutrition study II. Bars indicate standard errors. 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
Figure C.10. The effects of nitrogen and phosphorus nutrient treatments on rice percent leaf 
nitrogen for plant nutrition study II. Bars indicate standard errors, where larger than the symbols. 
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APPENDIX D 
 

NITROGEN AND PHOSPHORUS LEVELS OF NATIVE LOUISIANA MARSH SOILS 
 
Table C.1: Total nitrogen and phosphorus level ranges present in three types of native marsh 
soils found in Louisiana (Charbreck 1972). 

 Nutrient level ranges (kg ha-1) 
Marsh Type Total Nitrogen Phosphorus 
Saline  1344 – 19,264  134 – 291  

Brackish 6900 – 15,900  22 – 224  

Fresh 5152 – 53,088  9 – 381  

 
 
 

Table C.2: Phosphorus levels of Louisiana coastal marsh soil amended with sediment dredged 
from the Gulf of Mexico (Mendelssohn and Kuhn 2003). 
Dredge Sediment Depth Phosphorus Levels (kg ha-1) 
No dredge sediment 134.3 

Trace amounts of sediment 163.3 

Not greater than 15 cm 274.8 

15-30 cm  191.7 

More than 30 cm 354.4 
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