
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2008

Co-optimization: a generalization of coevolution Co-optimization: a generalization of coevolution

Travis Service

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Service, Travis, "Co-optimization: a generalization of coevolution" (2008). Masters Theses. 4606.
https://scholarsmine.mst.edu/masters_theses/4606

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4606?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4606&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

CO-OPTIMIZATION: A GENERALIZATION OF COEVOLUTION

by

TRAVIS SERVICE

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

in Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER SCIENCE

2008

Approved by

Dr. Daniel Tauritz, Advisor
Dr. Bruce McMillin

Dr. David Grow

Copyright 2008

Travis Service

All Rights Reserved

iii

ABSTRACT

Many problems encountered in computer science are best stated in terms of

interactions amongst individuals. For example, many problems are most naturally

phrased in terms of finding a candidate solution which performs best against a set of

test cases. In such situations, methods are needed to find candidate solutions which

are expected to perform best over all test cases.

Coevolution holds the promise of addressing such problems by employing prin-

ciples from biological evolution, where populations of candidate solutions and test

cases are evolved over time to produce higher quality solutions. Coevolution has had

both success stories as well as noted deficiencies, and many additions to the base

coevolutionary algorithm have been proposed to address some of the studied defi-

ciences; however, to the author’s knowledge, all such additions have been based on

and applied to an underlying evolutionary model. This thesis presents a generaliza-

tion of coevolution to Co-Optimization, where optimization techniques that do not

rely on evolutionary principles may be used. Instead of introducing a new addition to

coevolution in order to make it better suited for a particular class of problems, this

thesis suggests removing the evolutionary model in favor of a technique better suited

for that class of problems.

This thesis makes three distinct contributions. The primary contribution is

a generalization of coevolution to co-optimization. Co-optimization allows arbi-

trary black-box optimization techniques to be employed in interactive domains in

place of artificial evolution. The second contribution is a methodology based on co-

optimization for Critical Infrastructure Protection as well as a detailed real-world case

study on the use of this methodology for strengthening the electric power transmission

system. The third and final contribution is a theoretical framework for discussing No-

Free-Lunch like results for co-optimization, and thus also for coevolution. Informally,

the No-Free-Lunch theorem states that all black-box optimization techniques per-

form equally well when averaged over all functions to be optimized. The framework

presented in this thesis allows such results to be proven for classes of co-optimization.

iv

ACKNOWLEDGMENT

First, I would like to thank my advisor Dr. Daniel Tauritz for all the help and

guidance he has provided as well as for introducing me to the field of evolutionary

algorithms. I would also like to thank the other members of my committee: Dr.

Bruce McMillin and Dr. David Grow for the assistance they have provided.

Ekaterina “Kate” Holdener’s reviews and comments on this thesis were invalu-

able and are much appreciated.

I would also like to thank my friends and family for the support and encourage-

ment they have given me throughout this work.

Finally, I would like to thank the Power Group at the Missouri University of

Science and Technology for funding the inital portions of this work.

v

TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENT .. iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . ix

SECTION

1. INTRODUCTION .. 1

1.1. TRADITIONAL FUNCTION OPTIMIZATION .. 2

1.1.1. Gradient Ascent . 2

1.1.2. Local Beam Search . 2

1.1.3. Simulated Annealing . 2

1.1.4. Evolutionary Computation . 3

1.2. COEVOLUTION .. 3

1.2.1. Interaction Functions . 5

1.2.2. Solution Concepts . 6

1.2.2.1. Cooperative coevolution . 6

1.2.2.2. Maximization over all test cases . 7

1.2.2.3. Maximization of expected utility . 7

1.2.2.4. Nash equilibrium . 8

1.2.2.5. Pareto-optimal set . 8

1.2.2.6. MaxiMin . 9

1.2.3. Weak Preference Relation . 9

1.3. CONTRIBUTIONS . 10

2. CO-OPTIMIZATION: GENERALIZED COEVOLUTION.. 12

2.1. EXAMPLE ALGORITHMS .. 14

2.1.1. Canonical CoEA . 14

2.1.2. Co-Gradient Ascent . 15

2.1.3. Co-Local Beam Search . 15

2.1.4. Co-Simulated Annealing . 15

2.1.5. Island Based CoEA . 16

2.2. NUMBERS GAMES COMPARISON.. 18

2.2.1. Problem Definitions . 18

2.2.1.1. Locally INTransitive . 18

vi

2.2.1.2. Compare-On-One . 20

2.2.1.3. Compare-On-All . 20

2.2.2. Results . 21

2.2.2.1. Locally INTransitive . 22

2.2.2.2. Compare-On-One . 22

2.2.2.3. Compare-On-All . 23

2.3. POPULATION DIVERSITY .. 24

2.4. EFFECTS OF DISENGAGEMENT .. 28

2.5. ITERATED PRISONER’S DILEMMA.. 31

2.6. DISCUSSION .. 33

3. CRITICAL INFRASTRUCTURE PROTECTION .. 35

3.1. METHODOLOGY .. 36

3.2. RELATED POWER SYSTEM WORK.. 38

3.3. POWER SYSTEM MODEL.. 39

3.4. UPFC CONTROL.. 41

3.5. EXPERIMENTAL SETUP .. 42

3.6. RESULTS . 44

3.7. DISCUSSION .. 46

4. NO-FREE-LUNCH: A THEORETICAL FOUNDATION 48

4.1. BACKGROUND.. 48

4.1.1. Traditional Optimization . 48

4.1.2. Coevolutionary Free Lunches. 51

4.2. PREFERENCE DAG .. 53

4.3. ALGORITHM MODELS . 53

4.3.1. Traditional Model . 54

4.3.2. Candidate Selection Model . 54

4.4. PERFORMANCE METRICS . 55

4.5. NO-FREE-LUNCH DEFINITIONS. 56

4.5.1. Traditional Model . 56

4.5.2. Candidate Selection Model . 57

4.6. DISCUSSION .. 58

5. CONCLUSIONS . 60

6. FUTURE WORK.. 62

APPENDIX. 64

BIBLIOGRAPHY .. 65

VITA . 69

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1 Two-population coevolution. 4

1.2 Measurement table. 5

2.1 Two-population co-optimization. 13

2.2 The Locally INTransitive (LINT) problem. 19

2.3 Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Locally INTransitive problem. 22

2.4 Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Compare-On-One problem. 23

2.5 Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Compare-On-All problem. 24

2.6 CoSA diversity. 25

2.7 CoGA diversity. 26

2.8 CoGA (10) diversity. 27

2.9 C-CoEA diversity. 27

2.10 CoBEAM diversity.. 28

2.11 I-CoEA (10) diversity.. 28

2.12 Effects of disengagement on the Compare-On-All Problem.. 30

2.13 Effect of I-CoEA island size on disengagement. 31

2.14 Amount of emergent cooperation of C-CoEA, I-CoEA(8), CoSA, CoGA
and CoBEAM on the Iterative Prisoner’s Dilemma. 33

3.1 IEEE 118 bus diagram. 43

4.1 Data driven algorithm. 50

viii

LIST OF TABLES

Table Page

2.1 Parameters for C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM used in
the LINT, Compare-On-One and Compare-On-All problems. 21

2.2 Prisoner’s Dilemma payoff matrix. 32

2.3 Parameters for each algorithm used in the Iterated Prisoner’s Dilemma. . . 32

3.1 Parameters for C-CoEA, I-CoEA, CoSA, and CoGA. 45

3.2 Random UPFC placements. 46

3.3 Co-Optimization algorithm effectiveness. 46

1. INTRODUCTION

Many problems in computer science can be phrased in terms of searching through

a set of possible solutions, or search space, for a candidate solution which best satis-

fies some criteria. Traditionally this involves optimizing an objective function, which

assigns a measure of quality to each candidate solution in the search space. For exam-

ple, the objective function could give the overhead cost associated with each element

in the search space, in which case the minimum value is desired, or may give the

expected profit for each member of the search space, in which case the maximum is

desired.

While traditional function optimization naturally applies to a vast number of

common problems, including difficult real-world problems such as from the field of

Critical Infrastructure Protection [1], some problems are best phrased in terms of

interactions amongst individuals. For example, many problems are most naturally

phrased in terms of finding a candidate solution which performs best against a set of

test cases. For large numbers of test cases it is often infeasible to evaluate a candidate

solution against all test cases.

Coevolution holds the promise of addressing such problems by employing prin-

ciples from biological evolution [2, 3]. Populations of individuals are evolved over a

period of time to produce higher quality individuals. As an example, consider the

case of finding a candidate solution which performs best against a set of test cases. In

such situations two-population competitive coevolution can be employed to coevolve

a population of candidate solutions along with a population of test cases. Evolution-

ary principles are used to evolve the candidate solutions such that they perform well

against the evolving population of test cases, and to evolve the test cases so that they

provide a challenge to the population of candidate solutions. In such a manner, evo-

lutionary principles guide the populations toward higher quality candidate solutions

and more challenging test cases.

Coevolution has had both success stories as well as noted deficiencies [4, 5].

Many additions to coevolution have been proposed to help address some of the studied

deficiencies; however, to the author’s knowledge, all such additions have been based on

2

and applied to an underlying evolutionary model. This thesis presents a generalization

of coevolution to Co-Optimization, where optimization techniques that do not rely

on evolutionary principles may be used. Instead of introducing a new addition to

coevolution in order to make it better suited for a particular class of problems, this

thesis provides a generalized framework within which the most suitable optimization

technique for a given problem can be employed.

1.1. TRADITIONAL FUNCTION OPTIMIZATION

Black-box function optimization techniques are a class of optimization algo-

rithms where the objective function is treated as a black-box which takes an element

of the search space and returns the associated objective value. As function opti-

mization is central to many of the problems faced in computer science, a variety of

black-box optimization algorithms exists. This thesis focuses its attention on four in

particular which are presented here.

1.1.1. Gradient Ascent. Gradient ascent is a member of the class of hill

climbing optimization algorithms in which successive steps are taken to neighboring

points in the search space of higher value than the current point. In the continuous

version this is accomplished by moving along the gradient of the function. In discrete

cases, or cases where the gradient can not be computed, neighboring points may be

selected at random and moved to if they are of a greater value then the current point.

1.1.2. Local Beam Search. Local beam search is a population based

hill climbing optimization algorithm [6]. The algorithm maintains a collection of k,

initially random, points in the search space. During each iteration of the algorithm

a random successor of each of the k points is generated and the best k points are

selected to progress to the next iteration. Local beam search is, in some sense, a

population based version of gradient ascent.

1.1.3. Simulated Annealing. Simulated annealing is an optimization

technique which employs principles from annealing in metallurgy [6, 7]. A model

of temperature is used to incorporate a degree of stochasticity into the search, the

higher the temperature the greater the chance of moving to a less desirable point in

the search space. The system begins in a high temperature state and as the search

progresses the temperature is gradually lowered, according to a cooling schedule.

3

The search is successively moved to neighboring points in the search space in

a probabilistic fashion, with probability proportional to the difference between the

objective value of the generated point and that of the current point. If the generated

neighboring point is of higher value than the current point, then the search is moved

to that generated point. Thus, over time the search progresses to areas of the search

space with higher objective values.

1.1.4. Evolutionary Computation. Evolutionary computation applies

principles from biological evolution to optimization problems [2, 3]. A population

of individuals, containing search space points, are evolved over multiple generations.

Individuals reproduce creating offspring, and then compete for survival within the

population. Selection pressures guide the evolving population toward more promis-

ing areas of the search space. A fitness value is assigned to each individual in the

population such that fitter individuals are better with respect to the objective fun-

tion, and the fitter an individual is the more likely it will be able to reproduce as well

as survive to future generations.

In traditional evolutionary computation, the fitness of an individual is deter-

mined by an external function (i.e., the function to be optimized).

1.2. COEVOLUTION

Coevolutionary optimization is an extension of traditional evolutionary compu-

tation in which individuals are evaluated based upon interactions with their peers

rather than by an external fitness function [2, 3]. Figure 1.1 diagrams the two-

population coevolutionary algorithm (CoEA). Both populations evolve in separate

life cycles which intersect during fitness computation.

Coevolution has been successfully applied to optimization problems. For in-

stance, in [4] sorting networks and sequences of numbers to be used as test cases were

evolved simultaneously. The performance of coevolution is compared to that of evo-

lution against random samples of test cases and better results are obtained through

the use of coevolution.

While such examples highlight the potential of coevolution as a problem solving

technique, there are several problems inherent to coevolution described in literature,

including:

4

Figure 1.1. Two-population coevolution.

1. over-specialization, where candidate solutions progress on some, but not all, of

the underlying objectives [8, 5],

2. disengagement, where one or more evolving populations become too challenging

for another population, resulting in a loss of gradient on which to compare

individuals [5],

3. inaccurate evaluation, where the fitness of an individual in a particular observed

context is not an accurate estimate of its true quality [9] and

4. cycling, where previously seen individuals, determined to be inferior, reemerge

in future generations [5, 10].

Many of the problems observed in CoEAs are interrelated (i.e., cycling and over-

specialization can both be a side effect of inaccurate evaluation). While different

additions to CoEAs have been proposed to address one or more of the studied prob-

lems, to the author’s knowledge, all such additions have been based on and applied

to an underlying evolutionary model.

5

1.2.1. Interaction Functions. Coevolution replaces the fitness function in

traditional evolutionary computation with an interaction function which defines the

outcome of interactions amongst the individuals in each population. An individual

from each population is supplied to the interaction function which then specifies an

outcome of the interaction. Formally, an interaction function, g, is of the form

g : P1 × · · · × Pn → O

where P1 · · ·Pn are the n coevolving populations and O is a set of outcomes. This

outcome set may be vector valued, indicating outcomes for each of the n individuals

taking place in the interaction and will typically be ordered. Throughout the remain-

der of this thesis it will be assumed that the set of outcomes are total ordered under

the < relation.

In some situations it is convenient to view the interaction function as a measure-

ment table [11]. As an example consider the two-population case. Figure 1.2 shows

the measurement table for an interaction function g. The (i, j)-th location in the

table represents the outcome of the interaction of individual i ∈ P1 with individual

j ∈ P2.

Figure 1.2. Measurement table.

6

1.2.2. Solution Concepts. Solutions in coevolution take on various forms.

For example, they may be probability distributions over sets of behaviors (as in the

Nash equilibrium [11]) or may simply be an n-tuple of individuals (as in cooperative

coevolution). Since the form of the solution in coevolution is dependent upon the

problem at hand, in general CoEAs search for configurations over individuals from

the evolving populations [12] rather than individuals themselves. Both the form of

these solution configurations as well as which such configurations are to be considered

solutions is dependent upon the type of problem the CoEA is designed to solve, or the

solution concept which it implements [11]. Thus, solution concepts define the problem

at hand and serve two purposes: they define the set of solution configurations as well

as their form and partition that set into a set of solutions and a set of non-solutions.

This thesis adopts much of the notation from [12] for discussing solution con-

cepts. For a given solution concept and populations P1, · · · , Pn, the set of possible

solution configurations is denoted as C(P1 + · · ·+ Pn). The actual form of the mem-

bers of C(P1 + · · · + Pn) is dependent upon the solution concept used. The goal of

a CoEA is then to find a solution configuration which is considered a solution, as

defined by the solution concept which it implements.

Recent theoretical work has focused on analyzing CoEAs in terms of the solu-

tion concept which they implement [11, 13]. The importance of understanding and

correctly implementing the desired solution concept has been shown, and pathologies

often seen in CoEAs have been suggested to be a result of incorrect implementation

of the desired solution concept [11]. Further it has been shown that solution concepts

lacking the property of monotonicity, even if correctly implemented, are expected to

exhibit some of the studied pathologies [13].

Several different solution concepts have been used in coevolution literature, and

much recent work has focused on designing CoEAs for specific solution concepts

[14, 8]. Here a few of them are described in order to illustrate the variety of forms

which solution configurations may take.

1.2.2.1. Cooperative coevolution. In many instances an optimization

problem can naturally be decomposed into n separate subproblems, or populations,

P1, · · · , Pn, where candidate solutions to each subproblem are evolved simultaneously.

In such cases the combination of candidate solutions which maximizes the outcome

7

of the interaction function, g, is desired. Under this solution concept the interaction

function can also be viewed as an objective function to optimize. Thus, C(P1 + · · ·+
Pn) = P1 × · · · × Pn.

Formally, under this solution concept the set of solutions is defined by:

S = {C ∈ P1 × · · · × Pn : ∀C ′ ∈ P1 × · · · × Pn g(C) ≥ g(C ′)}

This solution concept most closely resembles traditional function optimization

in that the combination of subproblem candidate solutions which maximizes some

objective function is desired.

1.2.2.2. Maximization over all test cases. In many cases, coevolution

is used to evolve candidate solutions which are best able to defeat, or solve, a set of

test cases. As an example, consider evolving sorting networks and the accompanying

sequences of numbers to sort [4].

The solution concept of maximization over all test cases requires a solution to

maximize the outcome over all possible test cases. Formally there is a set of candidate

solutions, C, and a set of test cases, T . Given an interaction function, g : C×T → O,

where O is an ordered set which determines the outcome of candidate solution C on

test T , the solution concept is defined by:

S = {C ∈ C : ∀C ′ ∈ C ∀T ∈ T g(C, T) ≥ g(C ′, T)}

Thus, C(C + T) = C.
Theoretical aspects of this solution concept were discussed in [10]; however, in

many real-world problems there are no candidate solutions which perform best over

all possible test cases. That is, there is often a trade-off between performance on test

cases. In such situations the candidate solutions which are expected to perform best

against a random test case might be desired as described in the next solution concept.

1.2.2.3. Maximization of expected utility. In this solution concept there

is also a set of candidate solutions and a set of test cases. An element of C is a solution

if and only if it maximizes the expected outcome of a uniform randomly selected test

8

case. Formally the solution set in this solution concept is defined by:

S = {C ∈ C : ∀C ′ ∈ C E(g(C, T)) ≥ E(g(C ′, T))}

where E is the expectation operator.

In the simple case where a candidate solution either passes or fails the tests,

this is equivalent to maximizing the number of tests the candidate solution passes.

This solution concept, or its derivative with a nonuniform distribution of test

cases, is one of the most commonly used in coevolution literature, and is often stated

as the canonical example of competitive coevolution, where test cases are evolved to

challenge the current candidate solutions and thus force them to improve in quality.

1.2.2.4. Nash equilibrium. Game theory provides the concept of the

Nash equilibrium solution concept [11]. A Nash equilibrium in an n player game is

a specification of a strategy for each player such that no single player can profit by

a change in that player’s strategy alone. Thus, for any player to profit, two or more

players must cooperate.

Formally, given an n player game, each player i has a corresponding set of

behaviors Bi. A Nash equilibrium is a mixed strategy for each player, where a mixed

strategy for player i is a probability distribution over the set of behaviors in Bi.

Let ∆Bi denote the set of probability distributions over the set of behaviors Bi. A

member, α = (α1, · · · , αn), of the set ∆B1×· · ·×∆Bn is a Nash equilibrium if and only

if for all players i and all βi ∈ ∆Bi E(gi(α)) ≥ E(gi(α1, · · · , αi−1, βi, αi+1, · · · , αn)),

where gi denotes the payoff for player i.

Thus, the solution set for this solution concept is given by:

S = {α ∈ ∆B1 × · · · ×∆Bn : ∀i ∀βi ∈ ∆Bi

E(gi(α)) ≥ E(gi(α1, · · · , αi−1, βi, αi+1, · · · , αn))}

and the set of solution configurations is ∆B1 × · · · ×∆Bn.

1.2.2.5. Pareto-optimal set. The Pareto-Optimal Set solution concept

borrows ideas from multiobjective optimization. Each test case is treated as a separate

objective to be optimized, and the solution set is the non-dominated front.

9

Formally, a candidate solution C is said to dominate another candidate solution

C ′ if C performs at least as well on all tests as does C ′ and performs strictly better

than C ′ on at least one test. That is, the relation dom(C, C ′) is defined to be:

∀T ∈ T : g(C, T) ≥ g(C ′, T) ∧ ∃T ∈ T : g(C, T) > g(C ′, T)

The solution set is then:

S = {C ∈ C : ∀C ′ ∈ C ¬dom(C ′, C)}

Thus, the solution set for this solution concept is the entire non-dominated front.

1.2.2.6. MaxiMin. This solution concept also has a set of candidate

solutions (solution configurations), C, and test cases, T . The solutions are those

solution configurations which maximize the minimum outcome over all test cases.

The solution set is given by:

S = {C ∈ C : ∀C ′ ∈ C min
T∈T

(g(C, T)) ≥ min
T∈T

(g(C ′, T))}

Many game theoretic concepts rely on maximizing the worst case outcome of

a strategy over all possible combinations of opponents. In such cases the MaxiMin

solution concept naturally applies.

1.2.3. Weak Preference Relation. The solution set defined by a particular

solution concept depends upon the interaction function under consideration and the

context in which individuals are evaluated, that is the set of other individuals under

consideration [13]. Consider the maximization of expected utility solution concept

with candidate solution set C and test case set T . A given candidate solution may

appear in the solution set when compared against a subset of the other candidate

solutions and test cases. That is, it may appear in the solution set defined on C ⊂
C, T ⊂ T , but may not be a member of the solution set defined on the problem

instance as a whole, for example if T contains only those tests on which it performs

optimally. A solution set context, or simply a context, is defined to be the subset of

each population which is currently under consideration. Given a set X = p1 + · · ·+pn

where pi ⊆ Pi, the solution set defined by that context is denoted δX.

10

The weak preference relation is a binary relation on solution configurations [13].

Formally, a candidate solution configuration, α, is weakly preferred to a candidate

solution configuration, β, written α �W β , if every context in which β appears as a

solution is a strict subset of a context in which α is a solution.

Definition 1.1 (Weak Preference). A solution configuration α is weakly preferred to

a solution configuration β, written α �W β, iff for every context Xβ with β ∈ δXβ

there is a context Xα such that Xβ ⊂ Xα and α ∈ δXα.

Thus, any solution is preferred to any non-solution, as desired.

The weak preference relation has been shown to be irreflexive, asymmetric and

transitive [13], and can be viewed as a type of order on the set of configurations1.

Note that if α and β are two solution configurations returned by CoEAs A and B,

respectively, on the same problem instance and α �W β then the performance of A can

be considered superior to that of B on that particular problem. It is in this manner

which the weak preference relation is employed to compare CoEA performance in

Section 4.

1.3. CONTRIBUTIONS

This thesis makes three distinct contributions. The primary contribution is a

generalization of coevolution to Co-Optimization, presented in Section 2. While there

are many parallels between coevolutionary processes and natural evolution, optimiza-

tion methods other than those based on evolutionary principles may be employed in

the interactive fitness setting. Co-optimization allows arbitrary black-box optimiza-

tion techniques to be employed in interactive domains in place of artificial evolution.

This generalization permits matching interactive problem domains to the optimiza-

tion techniques best suited for them. Section 2 extends the author’s earlier work on

generalizing coevolution to co-optimization presented in [15].

The second contribution, presented in Section 3, is a methodology based on co-

optimization for Critical Infrastructure Protection. A detailed real-world case study

on strengthening the electric power transmission system is provided as a demonstra-

tion of the methodology. The methodology presented employs co-optimization to

1If α �W α was defined for all solution configurations α (the reflexive closure of �) then the
weak preference relation would be a partial order on the set of configurations.

11

discover system hardenings capable of defending against a wide variety of low-effort,

high-impact system faults. The work presented in Section 3 is an extension of the

author’s previous work presented in [16] and [17].

The No-Free-Lunch (NFL) theorem is a fundamental result in the field of black-

box function optimization. In its most basic, and informal, form it states that all

search algorithms perform equally well when averaged over all functions to be opti-

mized. The original NFL theorem is applicable only to the class of iterative, data

driven search algorithms which optimize an objective function. Due to the interactive

nature of fitness evaluation in co-optimization, co-optimization algorithms are not, in

general, a member of this class [18]. The third and final contribution of this thesis

is a theoretical framework for discussing NFL like results for co-optimization, and

thus also for coevolution, presented in Section 4. While it has been shown that, in

general, free lunches exist in coevolution [18], and by extension co-optimization, the

framework presented in this thesis allows such discussions to be phrased in terms of

the type of solution desired. This allows co-optimization algorithms to be naturally

classified in terms of the solutions they seek. The NFL framework presented in this

thesis will appear in [19].

12

2. CO-OPTIMIZATION: GENERALIZED COEVOLUTION

Coevolution extends traditional evolutionary computation by measuring an in-

dividual’s fitness based on interactions with its peers rather than by an external fitness

function. The canonical example of coevolution being that of two-population compet-

itive coevolution where one population evolves a set of candidate solutions while the

other evolves a set of test cases. Candidate solutions are evolved to maximize their

success against the test cases and the test cases are evolved to challenge, and thus

promote further advances in, the candidate solutions. This ideally results in an arms

race between the competing populations where each population acts as a stepping

stone for the other [10].

The basic two-population coevolutionary setup has been shown to be an effec-

tive optimization technique [4]. However, the interactive coevolutionary environment

has introduced new problems to overcome, such as disengagement, cycling and over-

specialization [5]. To address these deficiencies, many additions to the canonical

CoEA have been proposed. Diversity maintenance techniques [10] have shown suc-

cess in overcoming over-specialization [5]. Techniques which incorporate observed

behavior from host parasite relationships in biology [5] and other challenge manage-

ment [20] techniques have been used to combat disengagement. Adding an archive of

previously seen individuals [8, 14] has been used to stabilize evaluation and help to

prevent inaccurate evaluation and cycling [10]. However, to the author’s knowledge,

all such additions have been based on, and applied to, an underlying evolutionary

model.

While coevolutionary processes have many parallels to natural evolution, tech-

niques other than evolutionary computation may be employed in the interactive fitness

setting. Any method of generating new individuals to add to the current populations

may be used in place of artificial evolution. As an example consider an algorithm

which, for each individual in every population, performs gradient ascent to chose the

new individual to replace it.

This thesis presents a generalization of coevolution to Co-Optimization, where

the use of artificial evolution is replaced with either an arbitrary population based

13

optimization algorithm, or for a population of n individuals, n instances of a non-

population based optimization algorithm. The basic principle of interactive fitness

is still used in this larger class of algorithms. That is, individuals are still evaluated

based on their interactions with their peers. Figure 2.1 diagrams the basic two-

population co-optimization algorithm.

Figure 2.1. Two-population co-optimization.

This generalization allows for matching interactive problem domains to par-

ticular optimization algorithms. If a particular domain lends itself to a particular

search algorithm, such as simulated annealing, the co-optimization version of simu-

lated annealing could be used in place of evolutionary computation. Also, multiple

optimization algorithms could be used in a single instance, where one population is

updated based on evolutionary computation, another by simulated annealing, and so

on. Thus, if a problem is naturally decomposable into n subproblems, or species, the

optimization technique best suited for each individual subproblem can be employed,

even in cases of interdependencies between subproblem solutions.

Rather than introducing a new addition to coevolution in order to address a

deficiency observed on a particular class of problems, this thesis instead provides a

generalized framework within which the most suitable optimization technique for a

given problem can be employed.

14

In general, interactions with multiple individuals are required to generate an

accurate estimate of an individual’s objective fitness. As such, regardless of the opti-

mization algorithm used, a population, consisting of multiple individuals, is required

for each species. Due to this requirement of a population of individuals, the stan-

dard terminology from evolutionary computation is employed in the co-optimization

setting. Candidate solutions are referred to as individuals in a population and in-

dividuals are updated in what are called generations, regardless of the optimization

technique employed. Each individual has an associated fitness which is determined

by interactions with its peers and co-optimization algorithms are required to attempt

to maximize the fitness of their individuals.

An attractive feature of this generalization of coevolution to co-optimization is

that the majority of the growing body of theoretical results for coevolution also apply

to co-optimization, due to the fact that the majority of such work does not assume an

underlying evolutionary model. For example, the notion of solution concepts and the

weak preference relation [11, 12], due to the interactive fitness evaluation, naturally

apply to the class of co-optimization algorithms.

Also, the numerous additions to the canonical CoEA, such as archives or diver-

sity maintenance techniques, are applicable to arbitrary co-optimization algorithms,

as the majority of such techniques do not require an underlying evolutionary model.

2.1. EXAMPLE ALGORITHMS

While the class of co-optimization contains many algorithms, this thesis focuses

its attention on the co-optimization versions of gradient ascent, local beam search,

simulated annealing and evolutionary computation, in both a canonical and island

based form. It should be noted that, in contrast to evolutionary algorithms, both

gradient ascent and simulated annealing are non-population based optimization tech-

niques. As such a different set of dynamics is to be expected in the interactive

co-optimization environment.

2.1.1. Canonical CoEA. A basic two-population CoEA is employed as

the first test algorithm. This canonical CoEA (C-CoEA) includes no additions to

improve performance and is used as a baseline for comparison. Algorithm 1 provides

the pseudo-code for the C-CoEA algorithm.

15

Algorithm 1 C-CoEA

function C-CoEA()

1: for 0 ≤ i < numPopulations do
2: Initialize populationi

3: end for
4: while not termination condition do
5: for 0 ≤ i < numPopulations do
6: Evaluate interactive fitness for populationi

7: Evolve generation for populationi

8: end for
9: end while

10: return populationi ∀ 0 ≤ i < numPopulations

2.1.2. Co-Gradient Ascent. Co-Gradient Ascent (CoGA) employs a

unique instance of gradient ascent for each individual. That is, every generation each

individual is updated by gradient ascent. A set of random neighbors is selected for

each individual and the member of that set which has the best fitness, in the current

context, is selected to replace the current individual in the population. Algorithm 2

provides the pseudo-code for the CoGA optimization technique.

2.1.3. Co-Local Beam Search. In Co-Local Beam Search (CoBEAM) each

population employs an instance of the local beam search algorithm. Each generation

and for each population, a random neighboring point is generated for each of the k

individuals in population and the best k individuals are selected for use as the new

population in the next generation. For pseudo-code for CoBEAM refer to Algorithm 3.

2.1.4. Co-Simulated Annealing. Co-Simulated Annealing (CoSA) em-

ploys a unique instance of simulated annealing for each individual. Every generation,

for each individual, a random neighboring individual is selected and chosen to replace

that current individual based upon the cooling schedule. This process is repeated

until replacement individuals are selected for all current members of the popula-

tion. The temperature is held constant throughout the course of a generation and

is updated at the beginning of each new generation. Thus, the temperature in each

instance of simulated annealing for each individual in the current population, dur-

ing a given generation, is the same, regardless of the order in which the individuals

16

Algorithm 2 CoGA

function CoGA()

1: for 0 ≤ i < numPopulations do
2: Initialize populationi

3: end for
4: while not termination condition do
5: for 0 ≤ i < numPopulations do
6: for each j ∈ populationi do
7: Generate k random mutations of j
8: Compute fitness for all k + 1 individuals
9: Add the most fit individual to newPopulationi

10: end for
11: end for
12: for 0 ≤ i < numPopulations do
13: populationi ← newPopulationi

14: end for
15: end while
16: return populationi ∀ 0 ≤ i < numPopulations

are updated. A linear cooling schedule is used in which the temperature is directly

proportional to the number of remaining fitness evaluations. Pseudo-code for the

CoSA algorithm is given in Algorithm 4. In Algorithm 4 COOLING SCHED() re-

turns the current temperature as dictated by the employed cooling schedule, and

ACCEPT INDIVIDUAL(Temp, k, j) determines whether or not individual k should

be accepted as a replacement to individual j at temperature Temp.

2.1.5. Island Based CoEA. Preliminary results showed that CoSA and

CoGA greatly outperformed C-CoEA on the test problems employed (see next sec-

tion), primarily due to over-specialization of C-CoEA. Lack of diversity is a common

problem in both coevolution [10] and traditional evolutionary computation [2] and

has been shown capable of causing over-specialization [8]. One method which has

been used to promote diversity in traditional evolutionary computing is islanding

(see Section 9.3.1 in [2] for an overview of island models). Here a type of CoEA is

presented based on the same concept, the island based CoEA (I-CoEA). I-CoEA is

identical to the canonical CoEA, except that each population is divided into a number

of reproductively isolated islands.

17

Algorithm 3 CoBEAM

function CoBEAM()

1: for 0 ≤ i < numPopulations do
2: Initialize populationi

3: end for
4: while not termination condition do
5: for 0 ≤ i < numPopulations do
6: k ← Number of individuals in populationi

7: for each j ∈ populationi do
8: Generate random neighbor, n, of j
9: Add n to populationi

10: end for
11: Evaluate interactive fitness for populationi

12: Remove the k least fit individuals from populationi

13: end for
14: end while
15: return populationi ∀ 0 ≤ i < numPopulations

Algorithm 4 CoSA

function CoSA()

1: for 0 ≤ i < numPopulations do
2: Initialize populationi

3: end for
4: while not termination condition do
5: for 0 ≤ i < numPopulations do
6: Temp←COOLING SCHED()
7: Evaluate interactive fitness for populationi

8: for each j ∈ populationi do
9: repeat

10: Generate a random neighbor, k, of j
11: Evaluate interactive fitness for individual k
12: until ACCEPT INDIVIDUAL(Temp, k, j)
13: Add k to newPopulationi

14: end for
15: end for
16: for 0 ≤ i < numPopulations do
17: populationi ← newPopulationi

18: end for
19: end while
20: return populationi ∀ 0 ≤ i < numPopulations

18

While the members of a given island may lose diversity over time, diversity

amongst individuals from different islands is preserved. Thus, in general, more islands

implies more diversity among the individuals in the population. In the extreme case

where the number of islands is equal to the number of individuals, I-CoEA is, for

certain parameters, functionally equivalent to CoGA. The pseudo-code for the I-

CoEA algorithm is given in Algorithm 5.

Algorithm 5 I-CoEA

function I-CoEA()

1: for 0 ≤ i < numPopulations do
2: for 0 ≤ j < numIslandsi do
3: Initialize islandj

4: end for
5: end for
6: while not termination condition do
7: for 0 ≤ i < numPopulations do
8: for 0 ≤ j < numIslandsi do
9: Evaluate interactive fitness for islandj

10: Evolve generation for islandj

11: end for
12: end for
13: end while
14: return populationi ∀ 0 ≤ i < numPopulations

2.2. NUMBERS GAMES COMPARISON

Here the problem solving capabilities of C-CoEA, I-CoEA, CoGA, CoBEAM

and CoSA are compared on several numbers games problems [21, 8, 9].

2.2.1. Problem Definitions. The numbers game test problems employed

here use the maximization of expected utility solution concept.

2.2.1.1. Locally INTransitive. The Locally INTransitive (LINT) problem

[9] is an example of a numbers game, where individuals, both candidate solutions and

test cases, are vectors of real numbers, and a candidate solution’s fitness is equal to

the number of test cases which it solves.

19

A candidate solution passes all tests which are not greater than or equal to it

in all dimensions. However, this is reversed in a region about the candidate solu-

tion. Thus, higher values in all dimensions correspond to better global performance;

however, search may be driven toward less globally optimal search space regions as

locally lower values can lead to increased performance.

Formally, let the candidate solution be the n-dimensional point S. Then S

defeats all tests which are less than or equal to S − ∆S in at least one dimension

or which are greater than or equal to S in all dimensions and less than or equal to

S + ∆S in at least one dimension (where ∆S = (∆s, · · · , ∆s)). Figure 2.2 diagrams

the set of tests which a candidate solution S defeats.

Figure 2.2. The Locally INTransitive (LINT) problem. A candidate solution, S, de-
feats all test cases in the shaded region.

The variant of LINT employed is the same as was used in [9] where the value

of ∆s grows as S improves on the underlying dimensions of the problem. Thus, it

is relatively easy to make progress when the search begins but becomes increasingly

difficult as the search progresses.

For an algorithm to be successful on the LINT problem it must be capable

of overcoming the ever growing region of intransitivity. Algorithms attempting to

progress on the LINT problem can easily become victims to inaccurate evaluation,

20

as candidate solutions which are closer to the origin may be preferred to those far-

ther away if the current test cases do not correctly discriminate between candidate

solutions.

2.2.1.2. Compare-On-One. The Compare-On-One test problem is another

example of a numbers game problem. Individuals, both candidate solutions and test

cases, are vectors of real numbers. Again a candidate solution’s fitness is equal to the

number of test cases which it solves. A candidate solution solves a test case if and

only if the candidate solution’s value on the dimension on which the test case has its

largest value is greater than that of the test case. Thus, candidate solutions and tests

are compared only based on the test’s largest dimension.

Formally, a candidate solution, C, passes a test, T , if

CTMAX
≥ TTMAX

where TMAX is the dimension on which the test T has the largest value.

The Compare-On-One problem has been used in coevolution literature [8, 21]

and has been shown to induce over-specialization as tests judge candidate solutions

only on a single underlying dimension. Thus, a high level of diversity is necessary

among the test cases to adequately evaluate the candidate solutions.

2.2.1.3. Compare-On-All. The Compare-On-All problem is a numbers

game identical the Compare-On-One problem, except that individuals are compared

on all underlying dimensions instead of just a single dimension [21].

Formally, a candidate solution, C, passes a test, T , if

∀i ∈ {1, 2, · · · , n} Ci ≥ Ti

where the individuals are n dimensional vectors of real numbers.

The Compare-On-All problem is, in a sense, a simpler version of both the

Compare-On-One and LINT problems as it shares the underlying goal of both other

problems, without the added obstacles. As such, algorithms attempting to solve

the Compare-On-All problem are not as susceptible to the problems of inaccurate

evaluation and over specialization as they are with the Compare-On-One and LINT

problems. However, disengagement is still a possible concern.

21

2.2.2. Results. All results are statistically significant with an α of 0.05 on a

two-tailed t-test assuming unequal variances, unless otherwise stated, and all graphs

depict the performance of each algorithm averaged over all runs. Table 2.1 shows the

parameter values used. On each problem I-CoEA is used with island sizes of 5, 8, 10

and 20; however, only the island size which performed best is included in the plots

for comparison with the other algorithms.

Table 2.1. Parameters for C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM used in the
LINT, Compare-On-One and Compare-On-All problems.

Parameter Value

Populations 2
Population size 40
CoEA recombination One point crossover
Mutation Addition of a uniformly selected ran-

dom number in the interval [−3, 3] to
one allele

CoGA number of evaluated
neighboring individuals

1

CoEA offspring 40
CoEA parent and survival
selection

Binary tournament selection

Fitness evaluations 6 million
Number of runs 60
Population initialization Each allele is a uniform random number

from the interval [0, 10]
Dimensions 2
Minimum value in any di-
mension

0.0

Maximum value in any di-
mension

1000.0

For each of the three test problems, individuals which have high values in all

dimensions are more fit, in a global sense, than those which have lower values. As was

done in [8], the least value in all dimensions is used as a measure of objective fitness

for all test problems. In cases of over-specialization where, for example, a particular

algorithm finds candidate solutions which have very large values on one dimension

22

but not the others, that algorithm will have a low overall objective performance due

to the neglect of the other underlying problem dimensions.

2.2.2.1. Locally INTransitive. For the LINT problem, I-CoEA with eight

reproductively isolated islands outperformed all other algorithms. CoSA and CoGA

produced the second highest average values, with no statistically significant difference

between the two. C-CoEA and CoBEAM performed the worst, with no statistically

significant difference between the two.

While I-CoEA experienced an increase in performance by increasing the num-

ber of reproductively isolated islands from five to eight, the objective performance

decreased when the number of islands was increased to ten, indicating that, for this

problem, a balance between diversity (i.e., the number of islands) and a sufficient

number of individuals per island for evolution is needed for optimal performance.

Figure 2.3 shows a plot of the objective fitness value for the most fit individual

for each search algorithm averaged over all runs.

Figure 2.3. Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Locally INTransitive problem.

2.2.2.2. Compare-On-One. For the Compare-On-One problem, CoGA

performed better than all other algorithms tested, followed by I-CoEA with twenty

23

reproductively isolated islands. CoSA performed third best followed by C-CoEA and

CoBEAM, for which there was no statistically significant difference in performance.

For this problem, each increase in the number of islands in the CoEA was

accompanied by an increase in objective performance. Figure 2.4 shows a plot of the

objective fitness value of the most fit individual for each search algorithm averaged

over all runs.

Figure 2.4. Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Compare-On-One problem.

2.2.2.3. Compare-On-All. The relative performance of each algorithm on

the Compare-On-All problem was identical to that of the Compare-On-One problem:

CoGA performed the best, followed by I-CoEA with twenty reproductively isolated

islands followed by CoSA and finally by both C-CoEA and CoBEAM, for which there

was no statistically significant difference in performance. Figure 2.5 shows a plot of

the objective fitness of the fittest individual for each search algorithm averaged over

all runs.

24

Figure 2.5. Performance of C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM on the
Compare-On-All problem.

2.3. POPULATION DIVERSITY

Maintaining adequate levels of diversity amongst individuals is essential in co-

optimization and coevolution to allow for accurate evaluation. Many additions to

canonical coevolution have been suggested to promote diversity, see [5] for an sum-

mary of such techniques.

Here the level of diversity among individuals in each co-optimization algorithm is

compared. As individuals in numbers game problems are vectors of real numbers it is

easy to visualize the diversity in a population by a plotting its members. The diversity

of each algorithm’s individuals is plotted over the course of a run on the Compare-

On-One problem as it was designed to induce over-specialization, and thus a loss in

diversity is expected as individuals over-specialize and neglect one or more underlying

problem dimensions. For each algorithm three plots are given which demonstrate how

the individuals progress over time on one run of the Compare-On-One problem. It

should be noted that the three plots do not correspond to the same number of fitness

evaluations or the same number of generations for all algorithms. They are simply

25

representative of the way in which each algorithm explores the search space. Refer

to Figure 2.4 for a comparison of average algorithm performance in terms of fitness

evaluations.

Figure 2.6 plots the individuals from a CoSA population early in the run, during

the middle of the run and at the end of the run. CoSA maintains a fairly uniformly

distributed population of individuals in the visited area of the search space. Such

a distribution of individuals allows accurate evaluation as the population progresses

equally on all dimensions. Further there are individuals which progress equally on all

dimensions, as desired.

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.6. CoSA diversity. Each subfigure plots the individuals from a CoSA popu-
lation over the course of a single run.

Figure 2.7 shows a plot of a population from a run of CoGA, where a single

neighboring individual for each current member of the population, is generated each

generation. CoGA displays similar behavior to CoSA in that members of the popula-

tion are fairly uniformly distributed throughout the visited area of the search space.

The number of neighboring points generated each generation for every individ-

ual has an interesting affect on the behavior of CoGA. Figure 2.8 plots the individuals

from a CoGA population, where ten neighboring individuals are generated each gen-

eration (CoGA (10)), early in the run, during the middle of the run and at the end of

the run. As can be seen in Figure 2.8(b), the CoGA population, as a whole, progresses

on all underlying dimensions; however, the individuals within the population progress

26

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.7. CoGA diversity. Each subfigure plots the individuals from a CoGA pop-
ulation over the course of a single run.

predominantly on a single dimension, resulting in a lower objective fitness. This is

most likely due to the fact that there is a greater chance for random movement when

a single neighboring individual is generated than when many neighboring individuals

are. To illustrate this consider the two dimensional case. For a given individual, it

may be easier to generate a more fit individual by a move along dimension 1 than

by dimension 2, for example increasing fitness by moving along dimension 2 might

require a large jump. If only a single individual is generated then it is equally likely

that it will have been created by a move along either dimension. Half of the time it

will be created by a move along dimension 2, which in the current context would be

considered equally fit to its parent individual, even though it may have increased or

decreased in objective fitness. As both individuals have equal fitness both are equally

likely to surive to the next generation, resulting in occasional random movements

which do not increase or decrease fitness. When a large number of neighboring in-

dividuals are generated it is unlikely that an increase along dimension 1 will not be

created, resulting in less random movement and, in this case, more over-specialization.

The manner in which CoGA (10) explored the search space would provide ac-

curate evaluation as it progressed on all of the underlying objectives, or dimensions,

in the sense used in [22].

The plots of the individuals from both C-CoEA, Figure 2.9, and CoBEAM,

Figure 2.10, show the same lack of diversity. All members of the population are

tightly clustered and progress along a single dimension. This behavior results in both

27

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.8. CoGA (10) diversity. Each subfigure plots the individuals from a CoGA
(10) population over the course of a single run.

low objective fitness as both algorithms quickly over-specialize on a single dimension

as well as inaccurate evaluation as this over-specialization promotes advances along

a single dimension.

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.9. C-CoEA diversity. Each subfigure plots the individuals from a C-CoEA
population over the course of a single run.

Figure 2.11 plots the individuals from a I-CoEA population with ten reproduc-

tively isolated islands early in the run, during the middle of the run, and at the end of

the run. While the individuals in each island are tightly coupled together, the islands

themselves progress to different areas of the search space.

28

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.10. CoBEAM diversity. Each subfigure plots the individuals from a
CoBEAM population over the course of a single run.

(a) Early in Run (b) Middle of Run (c) End of Run

Figure 2.11. I-CoEA (10) diversity. Each subfigure plots the individuals from a I-
CoEA (10) population over the course of a single run.

2.4. EFFECTS OF DISENGAGEMENT

Disengagement is a well studied problem observed in coevolution, which results

when one or more populations become too challenging for another resulting in a loss of

gradient on which to compare individuals [5]. Without such a gradient, effective search

is impossible and degrades into random drift. Here the effects of disengagement are

investigated on C-CoEA, I-CoEA, CoSA, CoGA and CoBEAM. Each co-optimization

algorithm is used on the Compare-On-All problem where population A is initialized

29

such that each dimension of each individual is a uniform randomly selected number

between 50 and 60 and in population B each dimension of each individual is a uniform

randomly selected number between 190 and 200. This insures that both populations

start off in a highly disengaged state, with all members of population B defeating all

members of population A. The results presented here only demonstrate how certain

co-optimization algorithms behave in a disengaged state and not how likely each

algorithm is to reach such a state.

Figures 2.12(a), 2.12(b), 2.12(c), 2.12(d) and 2.12(e) show the best objective

fitness values of each population when started off in a disengaged state for C-CoEA,

I-CoEA, CoSA, CoGA and CoBEAM, respectively.

I-CoEA, CoSA and CoGA were still able to make significant progress while both

C-CoEA and CoBEAM were caught in a period of random drift for the entirety of

most runs. As one would expect, the progress of I-CoEA and CoGA was significantly

hindered by starting it out in a disengaged state, compared to starting in an engaged

state (refer to Figure 2.5). However, the progress of CoSA when started out in a

disengaged state was nearly identical to that of CoSA started out normally.

CoSA and CoGA were able to make progress when started from a disengaged

state due to the fact that they are non-population based optimization techniques, as

opposed to C-CoEA and CoBEAM which performed poorly when disengaged. Even

if only a single individual, in a non-population based technique, from population A

is able to become competitive with the members of population B, in a setting of

disengagement, the search is able to progress with that individual alone.

The progress made by I-CoEA was dependent upon the number of islands used.

Figure 2.13 shows plots of I-CoEA’s performance for 5, 8, 10 and 20 islands. As the

number of islands increased, and thus as I-CoEA became less population based, the

objective performance improved.

30

(a) C-CoEA (b) I-CoEA(20)

(c) CoSA (d) CoGA

(e) CoBEAM

Figure 2.12. Effects of disengagement on the Compare-On-All Problem.

31

Figure 2.13. Effect of I-CoEA island size on disengagement.

2.5. ITERATED PRISONER’S DILEMMA

The Prisoner’s Dilemma is a classic example of an interactive problem domain

[23]. The Prisoner’s Dilemma is formulated as follows: Two individuals Alice and Bob

are being interrogated separately by the police for a crime they committed together.

No communication between the two is allowed. Both Alice and Bob have two options.

They can either defect and accuse their accomplice of committing the crime, or they

can cooperate with their accomplice and remain silent. If both cooperate then both

will receive 2 years in prison, if both defect then both will receive 4 years. If one

individual defects and the other cooperates, then the defecting individual will be

allowed to leave free, while the cooperating individual will receive 5 years in prison.

Abstractly, the Prisoners Dilemma can be described by the payoff matrix in

Table 2.2, where each player attempts to maximize the number of points they get,

where the number of points is 5 minus the number of years in prison.

In the Iterative Prisoner’s Dilemma (IPD) a number of iterations of the basic

prisoner’s dilemma is played, and a memory of past iterations is maintained so that

32

Table 2.2. Prisoner’s Dilemma payoff matrix.
Player B

Cooperate Defect

Player A
Cooperate 3,3 0,5

Defect 5,0 1,1

strategies can use information from past games to decide whether to cooperate or to

defect. In the experiments presented here ten iterations are played and, as done in

previous IPD work [23], each strategy has a memory of the past three iterations.

Since each strategy retains a memory of the past three games, there are 64

possible three game sequences for which the strategies must be capable of determining

an action. Individuals are represented by bit strings of 70 bits. Where the i-th bit

represents the action which the strategy takes when the i-th sequence of three games

is observed: either to defect or to cooperate. The final six bits are used to represent

a hypothetical previous sequence of three games used by the strategy to determine to

seed the initial three game memory for determining actions prior to the completion

of the first three actual games. The parameters for each search algorithm are given

in Table 2.3

Table 2.3. Parameters for each algorithm used in the Iterated Prisoner’s Dilemma.

Parameter Value

Populations 2

Population size 40

CoEA recombination One point crossover

Mutation Bit flip of a single bit

CoGA # of neighbors 1

CoEA offspring 40

CoEA parent and survival selection Binary tournament selection

Fitness evaluations 1 million

Population initialization Each bit 0 or 1 with 50% probability

33

The amount of emergent cooperation between individuals over time is mea-

sured. Under each algorithm, individuals converged to cooperative states, with all

but CoBEAM finding populations which cooperated in more than 80% of the games.

Figure 2.14 shows a plot of the percentage of games in which the first player chose

to cooperate. While the C-CoEA quickly converged to cooperative solutions, CoSA

and CoGA eventually found more cooperative solutions, with CoGA finding the most

cooperative set of individuals on average.

Figure 2.14. Amount of emergent cooperation of C-CoEA, I-CoEA(8), CoSA, CoGA
and CoBEAM on the Iterative Prisoner’s Dilemma.

As observed in previous studies [23] all algorithms exhibited the same initial

tendency towards defecting strategies; however, this initial tendency towards defec-

tive strategies was muted in both CoBEAM and C-CoEA, compared to the other

algorithms, ith both algorithms quickly producing strategies which cooperated more

than fifty percent of the time.

2.6. DISCUSSION

This section has introduced the novel class of co-optimization algorithms. Co-

optimization extends coevolution to arbitrary black-box function optimization tech-

niques. Three examples of non-evolutionary co-optimization algorithms are presented:

34

CoGA, CoBEAM, and CoSA. The performance of all three are compared to that of

C-CoEA and I-CoEA on three numbers game problems as well as on the Iterative

Prisoner’s Dilemma. It is found that CoSA and CoGA have better performance on

the three numbers game test problems than does C-CoEA and do not suffer from

the problems of over-specialization and inaccurate evaluation that C-CoEA does on

the numbers game test problems. The performance of CoBEAM was nearly identi-

cal to that of C-CoEA on numbers game problems, and the performance of I-CoEA

was dependent upon the number of islands used. On the Compare-On-One and

Compare-On-All problems greater numbers of islands always corresponded to better

performance; however, on the LINT problem a trade-off was observed between the

number of islands and adequate number of individuals per island for evolution.

The effects of disengagement are investigated on the different co-optimization

algorithms using the Compare-On-All problem. CoSA, CoGA and I-CoEA were all

able to effectively reengage and make progress, with greater numbers of islands in

I-CoEA corresponding to better progress; however, C-CoEA and CoBEAM remained

disengaged throughout the entirety of most runs. This is hypothesized to be a result of

non-population based optimization techniques naturally maintaining greater amount

of diversity between the individuals in the population.

Finally, the different co-optimization algorithms are tested on the Iterative Pris-

oner’s Dilemma problem. While all algorithms produced strategies which were co-

operative in games amongst themselves, they varied in terms of the level of cooper-

ativeness as well as how quickly such strategies were generated. All algorithms but

CoBEAM produced a high level of cooperativeness.

The generalization of coevolution to co-optimization allows interactive problem

domains to be matched with the optimization technique best suited for them. If

deficiencies are observed in a particular optimization techniques on a given problem

then that technique may be swapped out for a different method which does not exhibit

the observed deficencies. An example of when this ability might be useful is in the

case of disengagement. In the experiments detailed in this section, the non-population

based co-optimization algorithms, CoSA and CoGA, were able to perform well in the

face of complete disengagement, while the population based algorithms remained in

a period of random drift for the entirety of most runs.

35

3. CRITICAL INFRASTRUCTURE PROTECTION

The world is increasingly dependent on critical infrastructures such as the elec-

tric power grid, water, gas and oil transport systems. Due to economic, social, and

environmental constraints, the current rate of infrastructure expansion is inadequate

to continue meeting the increasing demand [24]. This trend leaves these systems less

resilient to external faults, both accidental and malicious, than ever before. As a

result of this increased vulnerability, many critical infrastructures are becoming sus-

ceptible to cascading failures, where an initial fault caused by an external force may

induce a domino-effect of further component failures. A well known example of such

a cascading failure is the 2003 Northeast Blackout during which a large portion of the

Northeastern United States and Ontario, Canada lost power [25, 26]. Because of the

increasingly interconnected nature of infrastructures, cascading failures now threaten

to jump infrastructure borders causing further damage.

These trends combined raise the spector of a well targeted attack bringing down

an entire infrastructure or system of interconnected infrastructures, resulting in a

devastating economic blow and potentially a significant loss of life. Traditional in-

frastructure risk analysis methods, often relying on Monte Carlo sampling of fault

scenarios, are not sufficient against intelligent adversaries. Instead, systematic anal-

ysis based on worst-case fault scenarios is essential.

The incorporation of intelligent control devices in infrastructures provides the

ability to dynamically balance system use during normal operating conditions and

redistribute system resources during fault scenarios. Both alone and coupled with

topological changes, these devices offer the possibility of increasing system resilience

to cascading failures. However, strategic placement of such devices and intelligently

chosen topological changes are essential to fully reap the benefits they offer.

The problems of finding optimally balanced hardenings and worst-case disaster

scenarios are interdependent and their solution spaces share the characteristics of:

1. combinatorial complexity, making exhaustive search on even moderate size sys-

tems infeasible, and

36

2. non-linear dependencies between solution components, resulting in many local

optima which defeat most traditional search algorithms.

Correct functioning of the electric power transmission system is a prerequisite

for the correct functioning of most other critical infrastructures. Such Level 1 in-

frastructures [27] require significant attention due to the potential disruption other

infrastructures face if they are disabled.

This section presents a co-optimization methodology for Critical Infrastructure

Protection (CIP) as well as a demonstration of this methodology on an electric power

transmission system real-world case study.

3.1. METHODOLOGY

A hardening is a set of modifications designed to make a system more resilient

to faults. System hardenings should effectively minimize damage caused by a wide

range of faults, including worst-case scenario faults, and the hardening which provides

the most economic protection for the least economic overhead should be adopted. To

measure the economic protection of a hardening, the hardening must be evaluated

in the face of system faults. More formally, if a fault f is expected to occur Ef

times throughout the lifetime of the system and inflicts L(h, f) dollars in damage

with the hardening h in place and L(∅, f) dollars in damage without the hardening

in place, then the hardening h saved Ef × (L(∅, f)−L(h, f)) dollars over the lifetime

of the system. The most desirable hardenings are those capable of maximizing that

difference over large numbers of likely faults.

Equation (1) provides a measure of the total cost of a hardening over the lifetime

of the system. Minimizing Equation (1) is equivalent to maximizing Ef × (L(∅, f)−
L(h, f)) over all faults, as Ef × L(∅, f) is independent of the hardening used.

F (h) = C(h) +
∑
f∈Ω

Ef · L(h, f) (1)

where F (h) measures the expected value of the total amount of economic cost the

system will require throughout the lifetime of its use with hardening h in place, C(h)

is the overhead cost of the hardening, such as installation, Ω is the set of all possible

faults the system might incur, Ef is the expected number of times fault scenario f will

37

occur throughout the lifetime of the system, and L(h, f) is the expected monetary

damage caused to the system by fault scenario f with hardening h in place. The

minimal values of F (h) correspond to the hardenings with the best cost-benefit ratio.

One means by which to obtain values of Ef is to use Model-Based Vulnerability

Analysis presented in [27].

Equation (2) shows the analogous equation for evaluating a fault over all possible

hardenings.

G(f) =
∑
h∈Σ

[Ef · L(h, f) + C(h)] (2)

where G(f) measures the expected monetary damage caused by fault scenario f

averaged over all possible hardenings from the set Σ. Thus, the maximal values of

G(f) represent those faults which, on average, cause the most damage to the system

with an arbitrary hardening in place. When evaluating the effects of a fault in a real-

world situation, a hardening is already in place and the fault need only be evaluated

against that specific system configuration and not against all possible hardenings.

However, in this methodology faults are being optimized to promote advances in the

hardenings. Faults which provide a challenge for all of the current hardenings are

desired. As such faults need to be evaluated against all of the current hardenings.

Equations (1) and (2) represent a variation of the maximization of expected

utility solution concept where a non-uniform distribution over the test cases is em-

ployed.

Ideally, each hardening would be evaluated against the entire range of faults and

a hardening with the least expected cost, F (h), selected; likewise the worst scenarios

or faults, f , can be determined from Equation (2) by selecting those faults with the

greatest expected cost, G(f). In practice it is not feasible to evaluate a hardening

against all possible faults, nor a fault against all possible hardenings.

The CIP methodology presented in this thesis employs co-optimization to simul-

taneously optimize system hardenings and faults. The methodology presented here

employs unique populations for both system hardenings and faults. In such a manner

the system hardenings are challenged by increasingly damaging faults, resulting in,

ideally, hardenings which withstand a wide range of faults, and cover general areas of

38

the system in need of strengthening. By each population using its opposing popula-

tion as stepping stones [10], the protective ability of hardenings and damaging effects

of faults are forced to increase incrementally.

3.2. RELATED POWER SYSTEM WORK

Much work has gone into hardening the electric power transmission system

[28, 29]. A promising approach to hardening power transmission systems is through

the use of power system control devices, in particular the family of power electronics-

based controllers known as Flexible AC Transmission System (FACTS) devices [30].

One of the most powerful types of FACTS devices is the Unified Power Flow Controller

(UPFC). The UPFC is attached between a bus and a transmission line and can be

used to control the phase angle, bus voltage, and line reactance. With intelligent

placement and control, UPFCs have been shown capable of preventing cascading

failures [31].

Previous work has gone into both optimizing the placement of UPFCs in an

electric power system and determining UPFC control parameters during operation.

Sequential Quadratic Programming (SQP) has previously been employed to deter-

mine long term UPFC set points [32, 33]. SQP is a hill climbing method to solve

constrained non-linear optimization problems. In SQP a series of quadratic pro-

gramming subproblems are formed, whose solutions converge to the solution of the

original problem. SQP has been employed to find UPFC set points which minimize

a performance index (PI) [32]:

PI =
∑

i∈lines

wi ·
(

Si

Smax
i

)n

(3)

where Si is the current power flow through line i, Smax
i is the maximum rated capacity

of line i, and n is a free parameter no less than 1. The ratio Si

Smax
i

is raised to the power

n to more heavily punish heavily overloaded lines. By increasing n, more importance

is given to those lines which are heavily overloaded. Weights wi provide a means to

assign varying levels of importance to different lines, for example it may be desirable

to minimize the overload on larger lines, as their removal has more potential to affect

large portions of the system, before the overload on smaller lines.

39

In general, smaller PI values indicate a more balanced use of the system trans-

port capacity, as skewed flow distributions are punished due to the larger percent

capacity usage on some lines. SQP is used to determine UPFC set points such that

the PI metric is minimized. It should be noted that SQP is guaranteed to find optimal

set points if the PI metric is convex; however, it is currently not known for which

operating conditions the PI metric is a convex function and thus the set points found

by SQP may only be local, and not global, minima [32].

Previous work has proposed placing UPFCs in an electric power transmission

system to minimize a quadratic cost function consisting of generation cost and UPFC

investment cost [28]. An algorithm was given to determine the optimal UPFC place-

ment to minimize the cost function and a case study is presented on the IEEE 14 bus

system. While the optimal UPFC placement was successfully found for this system,

the cost function used considers only normal operating conditions and does not take

into consideration external faults.

Evolutionary computation has been previously applied to the problem of UPFC

placement in a power transmission system [34, 33, 1]. UPFC placements have been

evolved to minimize the number of line overloads over all single line faults [34] without

taking into consideration the additional failures induced by the original faults. UPFC

placements have also previously been evolved to minimize the sum of the PI metric,

Equation (3), over all single line faults [33], and the results were compared against

a greedy heuristic approach in which the best fifty placements of a single UPFC are

combined to form
(
50
2

)
placements of two UPFCs,

(
50
3

)
placements of three UPFCs,

and so on. The evolved placements of k UPFCs were compared against the best

heuristic placement out of the
(
50
k

)
such placements and found to be better in terms

of the PI metric, Equation (3).

3.3. POWER SYSTEM MODEL

A steady state model of a subset of the IEEE 118 bus test system2 is used as the

testbed for all experiments presented here. The Newton-Raphson iteration method

with optimal multiplier [35] is employed to solve the polar form of the steady state

system of loadflow equations, further referred to as loadflow, to determine the power

2http://www.ee.washington.edu/research/pstca/pf118/pg_tca118bus.htm

40

flow through each line in the system. An iterative load shedding method is used

to restore solvability in unsolvable situations such as when demand exceeds system

capacity [35]. If after ten iterations of the load shedding algorithm a solution is not

found, it is assumed a complete blackout has occurred. System islanding is handled by

employing multiple instances of steady state loadflow. Once islanding has occurred,

the line flows are solved for each island by a separate instance of loadflow.

To more accurately simulate some of the slower acting dynamics of an elec-

tric power transmission system, specifically cascading failures, several iterations of

the steady state loadflow are performed to account for line overloads and additional

contingencies induced by the initial faults.

Each line in the system has a maximum power capacity rating, specifying the

amount of power it is capable of carrying. Whenever line i’s current power flow,

Si, is greater than 100% of its rated capacity, Smax
i , its remaining amperage, Ai, is

decreased by the amount by which its power flow is greater than 100% of its rated

capacity, (Si − Smax
i), times the time spent at that flow, ∆t. When line i’s current

power flow is less than its rated capacity, its remaining amperage is increased by a

cooling factor up to the maximum, Amax. Line i fails when Ai = 0. Since in general

when steady state loadflow converges, the bus voltages are close to their nominal

values, the direct comparison between transmission line power flows in watts and line

current ratings in amps is not a significant source of error.

In a real-world power system, the total amount of power delivered over the

period of time from t0 to t can be determined by taking the integral over that time

period of the power delivered at each instance. In the employed discretized steady

state model this corresponds to a sum over each time step of the power delivered

during that time step.

In order to test the proposed methodology, values for the various system pa-

rameters were chosen close enough to reality to allow validation of our methodology.

Amax was chosen such that a line running at 200% of its rated capacity fails in roughly

30 seconds and the cooling factor was choosen to be 50. With these values a line on

the brink of failure recovers fully in just under two minutes. The change in time, ∆t,

is taken to be one second. With the selected system parameters, a finer time scale

would only increase the computational complexity without adding to the realism of

41

the simulation. The total amount of power delivered over the course of a 12 hour

period is simulated. Algorithm 6 details the power system simulation used.

Algorithm 6 Power System Simulation

function LoadServed(h,f)

1: Apply hardening h to the system
2: Apply fault f to the system
3: max time step = 60 · 60 · 12
4: Amax = 30 · 60
5: cool factor = 50
6: for each line i do
7: Ai = Amax

8: end for
9: Calculate steady state loadflow

10: time step = 0
11: while time step < max time step do
12: Increment time step
13: if Ai ≤ 0 then
14: Decommission line i
15: end if
16: if any line decommissioned this time step then
17: Recalculate steady state loadflow
18: end if
19: for each line i do
20: if Si > Smax

i then
21: Ai = Ai − (Si − Smax

i)
22: else
23: Ai = min{Amax, Ai + cool factor}
24: end if
25: end for
26: end while
27: return sum of load served at each time step

3.4. UPFC CONTROL

UPFCs are employed to ideally prevent cascading failures from occurring, or at

least to slow their progression, providing system operators time to recover from the

42

initial fault. UPFC set points are desired that maximize the time to the next line

failure. This is equivalent to maximizing the equation

min
i∈Lines

Ai

(Si − Smax
i)

(4)

In this manner UPFCs are used to delay a cascade, if not prevent it entirely, providing

time for system operators to remedy the situation.

SQP is used to determine UPFC points which maximize Equation (4). SQP

makes successive calls to a steady state loadflow to determine the time to next line

failure for different UPFC set points. SQP is used to find UPFC set points for both

real and reactive power. Thus, for a system with k UPFCs, there are 2k unknowns

to be determined.

In preliminary tests, the UPFC control heuristic was shown capable of, on av-

erage, serving more load than the no UPFC system under a wide range of faults;

however, for a little over 10% of the random UPFC placement/fault pairs tested the

UPFC set points determined by this heuristic changed the lines which fail during the

cascade and performed worse than the no UPFC system. To compensate for such

cases, the UPFC control algorithm is allowed to place all the UPFC devices in bypass

mode, where they do not affect the line on which they sit. If it is determined that

the UPFC control heuristic will cause a change in the resulting cascade which forces

less load to be served, then the UPFCs are placed in bypass mode. To determine

when to place the UPFCs in bypass mode the UPFC control algorithm performs two

simulations: one with the control heuristic, and one with the UPFCs in bypass mode.

3.5. EXPERIMENTAL SETUP

The co-optimization versions of simulated annealing (CoSA) and gradient ascent

(CoGA) as well as the canonical coevolutionary algorithm, with (I-CoEA) and without

islands (C-CoEA), are employed to demonstrate the effectiveness of the proposed

methodology. C-CoEA, I-CoEA, CoSA and CoGA are used to find UPFC placements

for a twenty-five bus, forty-one line, subset of a heavily stressed version of the IEEE

118 bus test system. Figure 3.1 shows a diagram of the IEEE 118 bus system. The

subset of the system used in the tests presented here corresponds to Area 2 in the

43

diagram. Refer to Appendix for the line capacities used in the experiments presented

here.

Figure 3.1. IEEE 118 bus diagram.

The cost incurred by a fault, f , with a hardening, h, in place, L(h, f), is assumed

to be directly proportional to the demand which can not be delivered. Equation (1)

and Equation (2), the expected cost of a hardening h and failure f , respectively, are

simplified by assuming the initial cost of all hardenings/placements to be zero and

the expected number of times a given fault will occur is a function of the number of

lines which fail, represented by |f |. For a given fault, f , Ef is defined to be 1
1+|f |2 .

Thus, any simultaneous fault of |f | lines is assumed to occur, on average, 1
1+|f |2 times

throughout the lifetime of the system, and the number of times a fault is expected to

44

occur decreases roughly as the reciprocal of the square of the number of lines outaged

during the fault. |f | includes only those lines outaged initially by the fault and does

not include additional line failures caused as a result of the initial outages (i.e., an

initial fault consisting of the outage of two lines but inducing a cascade which causes

the outage of an additional three lines will still be expected to occur 1
1+22 times).

Placements are evolved to maximize the negation of Equation (1) and faults are

evolved to maximize Equation (2).

Table 3.1 details the parameters used for each co-optimization algorithm.

3.6. RESULTS

As it is infeasible to evaluate a placement against all 241 possible faults, the

best placements found by each co-optimization algorithm are compared based on

their performance over all single and double line contingencies. Removal of three

lines, from the forty-one line test system, represents, on average, removal of a little

more than seven percent of the system’s transport capacity. Such a large initial outage

is very unlikely to occur in a real-world system, as such comparing against all single

and double line contingencies provides a fair estimate of the true, objective, quality of

the placements. However, it is important to note that the resulting cascade induced

by the initial contingencies is not limited to two lines. Thus, the single and double

line contingencies could result in cascades of more than two lines.

As a base line by which to compare the effectiveness of the co-optimization

algorithms for CIP, a uniform random sample of 125 UPFC placements of between

one and ten UPFCs is taken to provide an estimate of the average UPFC placement

effectiveness. Table 3.2 provides the results averaged over all 125 random placements.

The random UPFC placements were, on average, able to serve about 3% more system

demand than the no UPFC system.

Table 3.3 shows the results of the best placement found by the C-CoEA, I-

CoEA(3), CoSA and CoGA co-optimization algorithms against all single and double

line contingencies.

Without UPFCs in the system, only 85.42% of the demand was served, averaged

over all single and double line contingencies. The placements found with the co-

optimization algorithms served about 8% more demand than otherwise would have

45

Table 3.1. Parameters for C-CoEA, I-CoEA, CoSA, and CoGA.
Parameter Value

Population size 15
CoEA recombination One point crossover
UPFC population mutation If there are no UPFC’s in the sys-

tem then a UPFC is randomly added.
Otherwise 25% of the time a UPFC
is added or removed from the system
(with equal probability), and the other
75% of the time a UPFC is moved from
the line it is currently on to another line
in the system.

Fault population mutation If there are no outaged lines then an
outaged line is randomly added. Oth-
erwise 25% of the time an outaged line
is added or removed from the system
(with equal probability), and the other
75% of the time an outaged line is
moved to a new line.

CoGA number of evaluated
neighboring individuals

1

CoEA offspring 15
CoEA parent and survival
selection

Binary tournament selection

CoSA cooling schedule Linear
I-CoEA number of islands 3
Interaction function evalua-
tions

1,350,000

Number of runs 30
UPFC population initializa-
tion

Placement of a UPFC on each line in
the system with 5% probability.

Fault population initializa-
tion

Outage of each line in the system with
5% probability.

been served. However, the only statistically significant differences, with α = 0.05 on a

two-tailed t-test assuming unequal variances, were that both C-CoEA and I-CoEA(3)

outperformed CoGA.

The placements from all three co-optimization algorithms were, on average,

superior to the randomly generated placements, by serving about 5% more demand,

46

Table 3.2. Random UPFC placements.
Ave. Demand Served(Std. Dev.) Ave. Num. of UPFCs(Std. Dev.)

88.65%(1.93) 4.91(1.59)

Table 3.3. Co-Optimization algorithm effectiveness.
Algorithm Ave. Demand Served(Std. Dev.) Ave. Num. of UPFCs(Std. Dev.)

C-CoEA 94.10%(1.76) 5.13(2.03)
I-CoEA(3) 93.96%(1.32) 4.87(1.59)

CoSA 93.49%(1.56) 6.03(1.69)
CoGA 93.29%(1.10) 5.37(1.35)

demonstrating how the co-optimization methodology can produce UPFC placements

capable of minimizing the damange caused by likely faults.

3.7. DISCUSSION

This section presented a novel methodology for CIP employing co-optimization

to simultaneously discover effective system hardenings and damaging system faults.

The system hardenings are optimized to effectively withstand the current set of faults

and the system faults are optimized to challenge and thus promote further advances

in the system hardenings.

The effectiveness of this methodology was demonstrated on a real-world power

transmission system case study. A population of UPFC device placements was op-

timized simultaneously with a population of line outages. The results of this study

show that co-optimization algorithms are able to discover placements of UPFC devices

capable of increasing system resilience to probable faults.

Unlike the experiments presented in Section 2, C-CoEA performed as well as

both CoSA and CoGA in the CIP setting. This suggests that C-CoEA does not exhibit

any of the studied pathologies in this setting, allowing it to perfom on par with I-

CoEA(3), CoSA and CoGA, or that the UPFC placement and fault fitness landscapes

are well suited for evolutionary methods. This second possibility is consistent with

the author’s previous findings in [17], where experimental results on optimizing UPFC

47

placements against a fixed set of faults show evolutionary algorithms to be superior

to simulated annealing.

An avenue of future work is to compare the performance of the best UPFC

placements found by C-CoEA, I-CoEA(3), CoSA and CoGA over all single and dou-

ble line contingencies, to the performance of UPFC placements evolved against all

single and double line contingencies using traditional evolutionary computing. This

will strengthen the results presented in this section by providing a comparison be-

tween UPFC placements found by co-optimization techniques and UPFC placements

optimized against the set of all single and double line contingencies.

The methodology presented in this section can be applied to hardening arbitrary

infrastructures as well as to hardening systems of interconnceted infrastructures. As

cascading failures now threaten to jump infrastructure borders, hardening a single

infrastructure may no longer be sufficient. Interactions between infrastructures need

to be taken into consideration.

48

4. NO-FREE-LUNCH: A THEORETICAL FOUNDATION

The No-Free-Lunch (NFL) theorem is a fundamental result in the field of black-

box function optimization. In its most basic, and informal, form it states that all

search algorithms perform equally well when averaged over all functions to be opti-

mized. Such results provide a fascinating view into the underlying nature of black-box

function optimization.

The original NFL theorem is applicable only to the class of iterative, data driven

search algorithms which optimize an objective function. Due to the interactive nature

of fitness evaluation in co-optimization, co-optimization algorithms are not, in general,

a member of this class [18].

Recent work has shown that certain classes of coevolution, and therefore also

co-optimization, exhibit free lunches. As such, any framework designed to perform

NFL like analysis for co-optimization should allow for the discussions of NFL like

results for natural classes of co-optimization algorithms.

In this section a novel framework for analyzing NFL like results for co-optimization

which satisfies this requirement is presented. The framework presented in this thesis

classifies co-optimization algorithms by the solution concept which they implement

(i.e., the type of solution they were designed to find).

4.1. BACKGROUND

NFL like questions have been discussed in both the traditional function opti-

mization and the coevolutionary settings. Here an overview of previous related NFL

work for both traditional function optimization as well as for coevolution is provided.

During this overview the two models of search algorithms used in NFL work as well

as in the co-optimization setting are presented.

4.1.1. Traditional Optimization. Here a brief overview of the framework

used in the NFL theorem for traditional black-box function optimization is presented.

The reader is referred to [36] for the original and full presentation of the NFL theorem.

Let F = YX be the set of all |Y||X | cost functions from a finite search space, X ,

to a finite set of possible cost values, Y . As computer memory is inherently finite,

49

the restriction to a finite search space is not limiting (i.e., the search space of real

numbers is still restricted to those numbers representable by some finite number of

bits). However, it has been shown that in continuous domains the standard NFL

theorem does not hold [37].

A sequence of m distinct cost function evaluations is denoted as:

dm ≡ {(dx
m(1), dy

m(1)), · · · , (dx
m(m), dy

m(m))}

where dx
m(i) is the i-th search space point visited and dy

m(i) is the value of the cost

function evaluated at that point. Let dx
m and dy

m be the set of all the m search points

visited and their accompanying cost values, respectively. Also let D∗ denote the set

of all such finite sequences, dm, including the empty sequence, ∅.
Informally, a search algorithm, such as an evolutionary algorithm, simulated

annealing or gradient descent, samples elements from the search space, evaluates the

fitness of the sampled points and then selects new search space points based upon

the previously seen points [36].

Formally, a search algorithm or a search heuristic, is defined as a function which

takes as an argument a sequence of data points, pairs of search space points and their

corresponding cost values, and outputs a new, unique, search space point [36]:

a : dm ∈ D∗ → {x|x 6∈ dx
m} (5)

where x is an element of the search space X , which has not previously been visited.

This is the first search algorithm model employed and is referred to for the remainder

of this thesis as the traditional model. See Figure 4.1 for a visual representation of a

search algorithm3.

For simplicity in this thesis a search algorithm is considered to be completely

deterministic4. The reader is referred to [36, 18] for details on how to extend this to

stochastic search algorithms, where the next chosen point is a random variable in a

probability distribution conditional upon the observed sequence.

3This figure is a recreation of the one used in [38]
4Instances of stochastic algorithms may be viewed as deterministic when used with a specific

pseudo-random number generator with a given seed [36].

50

Figure 4.1. Data driven algorithm. Data points are sampled from a finite search
space (left) and a new unique search space point is choosen based upon
the observed data points.

The original NFL theorem says that the probability of seeing any sequence

of cost values is constant when averaged uniformly over all optimization functions,

independent of the algorithm used5.

Theorem 4.1 (No Free Lunch). For any two search algorithms a and b, any positive

integer m and any sequence of m cost values dy
m:

∑
f∈F

P (dy
m|f, m, a) =

∑
f∈F

P (dy
m|f, m, b)

where F is the set of all cost functions from a finite search space X to a finite set of

cost values Y.

This result has since been generalized to subsets of F which are closed under permu-

tation, rather than F as a whole [39].

A search algorithm’s performance is based upon the sequence of cost values it

observes. Formally, a performance metric is a function mapping sequences of costs

5The statement of the original NFL theorem is left in terms of probabilities even though only
deterministic search algorithms are considered in the analysis presented in this thesis.

51

values to a real number indicating how well an algorithm, which observed that se-

quence of cost values, performed:

Φ : dy
m ∈ D∗ → <

For example, a performance metric might be the last observed cost value, or the

greatest cost value seen so far. Thus, algorithms are compared upon the distinct

sequences of cost values they observed. Factors such as wall time, the amount of time

the algorithm takes to run, fall outside the range of the NFL theorems.

Since every sequence of cost values occurs the same number of times over all

cost functions, regardless of the search algorithm, if follows that all search algorithms

perform equally well when averaged over all cost functions under any performance

measure.

Corollary 4.2 (No Free Lunch). For any two search algorithms a and b, any positive

integer m, any sequence of m cost values dy
m and any performance metric Φ:

∑
f∈F

P (Φ(dy
m)|f, m, a) =

∑
f∈F

P (Φ(dy
m)|f, m, b)

4.1.2. Coevolutionary Free Lunches. Free lunches exist in general in

coevolution [18], and thus also in co-optimization. The setting in which coevolution

was shown to exhibit free lunches was that of training an individual to compete in a

multiplayer game, where the individual which maximized its worst case performance

against all opponents was desired. Under such conditions it was shown that there

exist two algorithms with different performance when averaged over all interaction

functions.

To do such an analysis, the framework used in the proof of the original NFL the-

orem was extended to the generalized optimization (GO) framework. This extension

took place in three places.

First, the search space was expanded to include the set of individuals from all

populations: X = P1× · · ·×Pn. In the example used to show free lunches there were

two distinct players (X = P1 × P2).

52

The model of a search algorithm was expanded to include both a search heuristic

(Equation (5)), which explores the interaction function, and a champion selection

function, which selects a champion individual based upon the data points visited by

the search heuristic.

Thus, the search heuristic served the role of providing information about in-

teractions between players from all populations to the champion selection function,

which then selected a champion from the population of interest believed to have the

best worst case performance. The performance of the search algorithm as a whole

was then based upon the quality of the selected champion after m iterations of the

search heuristic.

The search heuristic was identical to the search algorithm model used in the

original NFL proof. The additional champion selection function was defined by:

A : D∗ → P1 (6)

where P1 is the set of individuals, or strategies, for the player which the algorithm is

designed to train. A generalization of the champion selection function (Equation (6))

is the second search algorithm model employed and is further referred to as the

candidate selection model.

Also, the notion of a performance metric was expanded. To determine the

performance of a given search algorithm, the worst case value of the selected champion

must be considered, which requires dependence upon the interaction function used.

Thus, to incorporate coevolution, the definition of a performance metric was expanded

to allow the use of functions which depend on the interaction function. Formally the

performance metric used in [18] to show free lunches in CoEAs was:

Φ(C) = min
O∈P2

g(C, O)

where C is the champion individual from population P1 selected by the algorithm,

and O ranges over the set of all opponents to C, P2. This metric may be generalized to

arbitrary n player games by taking the minimum over all combinations of opponents.

Under such conditions it was shown that there is a pair of search algorithms

with different performance, when averaged over all interaction functions. The reason

53

for this was stated to be because a sum over all possible interaction functions g :

P1×P2 → O, where O is an ordered set, is not equivalent to a sum over all functions

minO∈P2 g(C, O) [18].

The framework presented in this thesis approaches the question of the existence

of free lunches in CoEAs from the point of view of solution concepts and the weak

preference relation. Informally, a given solution concept exhibits no free lunches un-

der the weak preference relation if for every pair of algorithms, a and b, and every

interaction function g, there is a corresponding interaction function g′ such that the

labeled graph induced by the weak preference relation and algorithm a on g is isomor-

phic to the labeled graph induced by b on g′. That is, there is no way to distinguish

the performance of algorithm a on g, under the weak preference relation, from the

performance of b on g′, up to isomorphism.

Before formalizing this framework it is shown how a solution concept and the

weak preference relation induce a directed acyclic graph (DAG) on the set of possible

solution configurations. Search algorithms are then modeled in terms of this induced

preference DAG.

4.2. PREFERENCE DAG

The weak preference relation induces a directed graph on the space of solution

configurations, C(P1 + · · · + Pn). An edge is defined to be from configuration β to

configuration α when α �W β. That is, edges point in the direction of increased

preference and may be thought of as routes through configuration space to the global

solutions. Algorithms are desired which are capable of quickly climbing the preference

graph. As the weak preference relation is irreflexive, asymmetric and transitive, it

follows that the preference directed graph is always acyclic (that is a DAG).

Given a solution concept, each interaction function induces a different prefer-

ence DAG. The preference DAG induced by an interaction function g is denoted by

Pref(g).

4.3. ALGORITHM MODELS

Here both the traditional model and the candidate selection model used in NFL

literature are modeled in terms of preference DAGs.

54

4.3.1. Traditional Model. Depending on the solution concept of interest,

the solution configurations (nodes in the preference DAG) may themselves be the

objects used as arguments to the interaction function, but in general this need not

be the case. That is, in general a candidate solution configuration need not be a

member of P1 × · · · × Pn, see for example the Nash equilibrium; or in other words

C(P1 + · · ·+ Pn) need not equal P1 × · · · × Pn.

In the simplest case, where C(P1+· · ·+Pn) = P1×· · ·×Pn, the search algorithm

model used in the original NFL proof (see Equation (5)), can be used. In such cases

the points visited by the algorithm can be viewed as a direct traversal of the nodes

in the preference DAG.

Formally, say a given algorithm explores the sequence of m data points:

(x1, y1), · · · , (xm, ym)

(where exploration means examination under the interaction function, i.e., fitness

evaluations). The visiting of a point xi in the search space can be viewed as labeling

that configuration in the preference DAG with the label i. Thus, after m iterations of

some search algorithm, m nodes in the preference DAG have been labeled, indicating

at which point during the search they were examined.

4.3.2. Candidate Selection Model. In the most general case where the

solution configurations are not simply n-tuples of members from each population, a

search algorithm model similar to the one presented in [18] must be used, where a

search heuristic explores the interaction function and a candidate selection function

maps a set of previously visited data points explored by the search heuristic to a

solution configuration.

Formally, a candidate selection function is of the form:

A : D∗ → C(P1 + · · ·+ Pn) (7)

This is a generalization of the champion selection function, Equation (6) [18]. It is

assumed that the candidate selection function does not depend upon the order of

the data points in the sequence dm, and does not depend upon the “names” of the

individuals. That is, if dm and d′m are two permutations of the same set of data points,

55

then A(dm) = A(d′m) for all candidate selection functions A. Also, given any sequence

dm (on populations P1, · · · , Pn), if all occurrences of the individuals p1, p2 ∈ Pi in dx
m

were swapped to form a new sequence d′m, but the observed cost values remained the

same, then the solution configuration returned by A(d′m) would be identical to that

of A(dm) except the roles of p1 and p2 would be swapped.

The candidate selection function can also be viewed as a memory mechanism,

or archive, in a sense similar to that used in [11], in that the memory mechanism,

or candidate selection function, has the role of representing the solution, relieving

the search heuristic of that responsibility. In such cases the search heuristic’s sole

responsibility is to provide relevant information to the candidate selection function.

While arbitrary combinations of search heuristics and candidate selection func-

tions can be compared, this thesis restricts its attention to a fixed, but arbitrary,

candidate selection function. This is done because allowing arbitrary combinations,

or even a fixed, but arbitrary, search heuristic combined with different candidate se-

lection functions will always exhibit free lunches. To see this consider an arbitrary

solution set, S, and one candidate selection function which when presented with all

possible data points never selects a member of the solution set and a second selection

function which always does. When the number of data points, m, is allowed to be

the total number of combinations of behaviors from each population, then, for all

interaction functions, the second selection function will always outperform the first,

regardless of the search heuristic.

4.4. PERFORMANCE METRICS

The weak preference relation provides a means by which to measure performance

in co-optimization. Algorithms which consistently find more preferred solution con-

figurations than other algorithms are desired.

Formally, a performance metric is defined to be a function Φ from the set of

labeled DAGs to the real numbers, where each node’s label is a natural number

such that no natural numbers are skipped. That is, if the number m appears in the

graph as a label, then so do all positive integers n < m. Thus, the performance of

an arbitrary algorithm depends only upon the shape and labeling of the preference

DAG. It follows that for any performance metric, Φ, if two labeled graphs Pref(g)

56

and Pref(g′) are isomorphic, then Φ(Pref(g)) = Φ(Pref(g′)). This fact is exploited

in the No-Free-Lunch definitions given next.

An example of a performance metric might be the number of solution con-

figurations which the last labeled node is preferred to. Thus, under the candidate

selection model, if the solution configuration selected by an algorithm A is preferred

to more nodes than the solution configuration selected by an algorithm B then the

performance of A is superior to that of B in that instance.

Intuitively this definition makes sense as only the relative ordering, under the

weak preference relation, of the visited solution configurations differentiate between

algorithm performance.

The possible dependence upon the interaction function is removed from the

performance metric allowing a simpler definition, more akin to the definition in the

original NFL framework. This dependence is instead hidden in the notion of a solution

concept and the weak preference relation.

4.5. NO-FREE-LUNCH DEFINITIONS

Informally, free lunches do not occur under the weak preference relation only

when for all search algorithm pairs a and b, any performance metric value, V , and

any performance metric Φ, Φ takes on the value V under search algorithm a for the

same number of interaction functions as it does under algorithm b. As noted, this

occurs when for every labeled graph induced by algorithm a on an interaction function

g there is an isomorphic labeled graph induced by b on a corresponding interaction

function g′.

4.5.1. Traditional Model. If given a solution concept of interest, two search

algorithms a and b on interaction functions g and g′, respectively, produce labeled

graphs which are isomorphic to one another, then the performance of a on g and b

on g′ are indistinguishable under any performance metric.

Definition 4.3 (Traditional Model - NFL). A solution concept is said to not exhibit

free lunches under the weak preference relation if for any pair of algorithms a and b

and any positive integer m, there is a bijection F : G → G, where G denotes the set

of all interaction functions from the search space to the space of possible outcomes,

57

such that:

∀g ∈ G Pref(am
g (∅)) ' Pref(bm

F(g)(∅))

where Pref(am
g (∅)) denotes the labeled graph induced by algorithm a after m iterations

on interaction function g6.

In other words, Definition 4.3 says that F is a one-to-one correspondence such

that the graph induced by a under g is isomorphic to the graph induced by b under

F(g). If such a bijection F exists, for any performance metric, Φ, it follows that

Φ(Pref(am
g (∅))) = Φ(Pref(bm

F(g)(∅)))

for all g ∈ G. Thus, every possible performance value occurs the same number of

times for any pair of algorithms when ranged over all possible interaction functions.

4.5.2. Candidate Selection Model. For the more general search algo-

rithm model just the solution configuration produced after m iterations of the search

heuristic is considered, as was done in [18]. As with the traditional model, the so-

lution configuration returned by the candidate selection function is considered to be

equivalent to labeling the corresponding node in the preference DAG. Again, two algo-

rithms run on two interaction functions are then considered to have indistinguishable

performance after m iterations if and only if the labeled graphs produced by both are

isomorphic.

Definition 4.4 (Candidate Model). A solution concept and candidate selection func-

tion, A, combination is said to not exhibit free lunches if for any pair of search

heuristics a and b, and any positive integer m, there is a bijection F : G → G such

that:

∀g ∈ G Pref(A(am
g (∅))) ' Pref(A(bm

F(g)(∅))) (8)

where Pref(A(am
g (∅))) denotes the graph induced by the interaction function g with

the single node selected by candidate selection function, A, labeled as being selected.

6In reality this also depends on the solution concept used; however, this relationship will largely
be left implicit

58

Unlike the traditional optimization algorithm case, the labeled graphs will al-

ways consist of a single label regardless of the number of iterations performed by the

search heuristic.

Note that the bijection F , for all values of m, is not required to produce in-

teraction functions on which algorithm b produces an isomorphic graph to that of a.

In general F will be a function of m, with different values of m producing different

bijections.

As in the case of the traditional model, given such a bijection F it follows that

Φ(Pref(A(am
g (∅)))) = Φ(Pref(A(bm

F(g)(∅))))

for any performance metric Φ, and all g ∈ G.
The NFL definition for the candidate selection model deals with the informa-

tiveness of search heuristics. That is, if a solution concept and candidate selection

function satisfy Definition 4.4, then all search heuristics provide equally relevant in-

formation to the candidate selection function, when averaged over all interaction

functions. In other words, no particular search heuristic consistently provides more

relevant information to the candidate selection function than any other heuristic.

4.6. DISCUSSION

This section presented a framework for discussing No-Free-Lunch like results for

classes of co-optimization. Co-optimization algorithms are naturally classified by the

solution concept which they implement, and algorithm performance is based upon

labeled graphs induced by the algorithm and the weak preference relation.

The weak preference relation depends only on the contexts in which solution

configurations appear as solutions and not on the properties of the solution concept

used. This non-dependence on the particular solution concept used results in a loss

of discriminating ability. As an example consider the solution concept of MaxiMin.

A natural measure of the quality of a solution configuration is the minimum value it

obtains over all test cases. However, such a measure is not expressible with the weak

preference relation. While α �W β implies that mint∈τ g(α, t) > mint∈τ g(β, t) the

reverse is not true.

59

While the framework presented in this section employs the weak preference

relation as a means to compare algorithm performance, measures of preference other

than the weak preference relation may be used in the same manner. For example, a

preference relation defined by

α �MaxiMin β iff min
t∈T

g(α, τ) > min
t∈T

g(α, t)

could be used in place of the weak preference relation to induce a preference DAG. The

preference relation �MaxiMin naturally applies to the MaxiMin solution concept, but

not to maximization of expected utility. Also since α �W β implies α �MaxiMin β but

the reverse is not true, �MaxiMin provides a greater amount of distinguishing ability

between solution configurations for the MaxiMin solution concept.

This provides a way in which to employ this co-optimization framework for other

measures of solution configuration preference and presents a possible extension to this

framework.

60

5. CONCLUSIONS

The primary contribution of this thesis is the introduction of the class of co-

optimization algorithms. This class provides a natural generalization of coevolution

to arbitrary optimization techniques and employs the same interactive fitness envi-

ronment as does coevolution. Three co-optimization algorithms are introduced, in

addition to coevolution, and are shown to be effective optimization techniques. It

is shown that non-population based co-optimization algorithms naturally provide a

greater amount of diversity amongst the individuals. As lack of diversity is a com-

mon problem in coevolution, with many additions having been suggested to alleviate

it, non-population based co-optimization promises to be an effective optimization

technique. Furthermore, the effects of disengagement are investigated on each co-

optimization algorithm on the Compare-On-All test problem. It is observed that

the non-population based algorithms, and the island based CoEA, are capable of

reengaging and making progress even when initialized to be completely disengaged,

and it is hypothesized that non-population based co-optimization algorithms are less

susceptible to the effects of disengagement.

A novel co-optimization methodology for Critical Infrastructure Protection is

presented along with a real-world case study. Co-Optimization is employed to si-

multaneously optimize hardenings for an electric power transmission system, in the

form of placements of Unified Power Flow Controllers (UPFCs), and system faults, in

the form of line outages. The co-optimized UPFC placements are compared over all

single and double line contingencies and found to have discovered system hardenings

capable of lessening the impact of a wide range of likely faults.

Finally, a novel framework for discussing No-Free-Lunch (NFL) like results for

co-optimization is presented. While free lunches have been shown to exist in general

in coevolution, and thus also in co-optimization, the framework presented in this

thesis allows such questions to be phrased in terms of the type of solution desired

(i.e., the solution concept employed). This allows co-optimization algorithms to be

naturally classified by the solution concept they implement and NFL like results to

be proven for such classes of co-optimization.

61

The generalization of coevolution to co-optimization presented in this thesis

opens the door to matching interactive problem domains to the optimization tech-

nique best suited for that domain. For example, if a particular interactive domain

exhibits one of the common pathologies under coevolution then the use of evolution-

ary computation may be swapped with another optimization technique which does

not exhibit those pathologies in the given domain.

62

6. FUTURE WORK

The generalization of coevolution to co-optimization opens the door to many

applications of co-optimization algorithms to problems previously only solved by co-

evolution. An interesting avenue of future work is to identify which co-optimization

algorithms are best suited for which interactive problem domains. Such results would

vastly improve the ease of use of co-optimization algorithms as time would not need

be expended trying to identify the best algorithm for the problem domain of interest.

To further demonstrate the effectiveness of the co-optimization methodology

for Critical Infrastructure Protection (CIP) presented in this thesis, the methodology

needs to be applied to additional infrastructures and needs to incorporate multiple

forms of system hardenings (i.e., topology changes as well as flow controllers). Fur-

ther, this methodology can be employed to harden systems of infrastructures rather

than only single infrastructures.

A possible extension to the NFL framework presented in Section 4, is the use of

notions of solution configuration preference other than the weak preference relation.

For individual solution concepts there are algorithm performance metrics which are

not expressible in terms of the weak preference relation. For example, a preference

relation defined by

α �MaxiMin β iff min
t∈T

g(α, τ) > min
t∈T

g(α, t)

naturally applies to the MaxiMin solution concept and could be used in place of

the weak preference relation to induce a preference DAG. While α �W β implies

α �MaxiMin β, the reverse is not true. Thus, in a sense, the preference relation

�MaxiMin provides a greater level of distinguishing ability than does �W . However,

while �W is solution concept independent, �MaxiMin applies only to the solution

concept of MaxiMin and not to, for example, the maximization of expected utility

solution concept.

The NFL framework presented in this thesis might be extended by allowing

different preference relations to be employed to induce preference DAGs. Under

each preference relation different performance metrics would be expressible. Such an

extension might provide a means by which to classify performance metrics as well as

to assess to what extent free lunches occur, for solution concepts for which NFL like

results do not hold, by the characteristics which preference relations need to have in

order for free lunches to occur under them.

64

APPENDIX

Line Ratings, Smax values, for Area 2 of the IEEE 118 Bus System

From Bus To Bus Line Rating From Bus To Bus Line Rating

43 44 0.388033 54 59 0.469334

44 45 0.758944 55 56 0.499582

45 46 0.830441 55 59 0.534541

45 49 0.772015 56 57 0.370952

46 47 0.472097 56 58 0.228730

46 48 0.357073 56 59 0.721000

47 49 0.524914 56 59 0.721000

48 49 0.529905 59 60 0.993488

49 50 0.829812 59 61 1.188832

49 51 1.045510 59 63 2.491195

49 54 0.799406 60 61 1.690491

49 54 0.799406 60 62 0.616106

49 66 2.708691 61 62 0.652729

49 66 2.708691 61 64 1.699646

50 57 0.555417 62 66 0.614703

51 52 0.438542 62 67 0.423885

51 58 0.432726 63 64 2.491195

52 53 0.262565 64 65 2.917117

53 54 0.467182 65 66 1.636710

54 55 0.262466 66 67 0.848251

54 56 0.431543

65

BIBLIOGRAPHY

[1] Stephane Gerbex, Rachid Cherkaoui, and Alain Germond. Optimal Location of
Multi-Type FACTS Devices in a Power System by Means of Genetic Algorithms.
IEEE Transactions on Power Systems, 16(3):537–544, August 2001.

[2] Agoston Eiben and James Smith. Introduction to Evolutionary Computing.
Springer, 2003.

[3] Kenneth De Jong. Evolutionary Computation: A Unified Approach. The MIT
Press, 2006.

[4] Daniel Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Opti-
mization Procedure. Physica D Nonlinear Phenomena, 42(1–3):228–234, June
1990.

[5] John Peter Cartlidge. Rules of Engagement: Competitive Coevolutionary Dy-
namics in Computational Systems. PhD thesis, University of Leeds, 2004.

[6] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[7] Scott Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671–680, May 1983.

[8] Edwin De Jong. The Maxsolve Algorithm for Coevolution. In Proceedings of the
7th annual Genetic and Evolutionary Computation Conference, pages 483–489,
June 2005.

[9] Edwin De Jong. Objective Fitness Correlation. In Proceedings of the 9th annual
Genetic and Evolutionary Computation Conference, pages 440–447, July 2007.

[10] Christopher Darrell Rosin. Coevolutionary Search Among Adversaries. PhD
thesis, University of California - San Diego, 1997.

[11] Sevan Ficici. Solution Concepts in Coevolutionary Algorithms. PhD thesis, Bran-
deis University, 2004.

[12] Anthony Bucci and Jordan Pollack. Thoughts on Solution Concepts. In Pro-
ceedings of the 9th annual Genetic and Evolutionary Computation Conference,
pages 434–439, July 2007.

[13] Sevan Ficici. Monotonic Solution Concepts in Coevolution. In Proceedings of the
7th annual Genetic and Evolutionary Computation Conference, pages 499–506,
June 2005.

66

[14] Frans A. Oliehoek, Edwin De Jong, and Nikos Vlassis. The Parallel Nash Memory
for Asymmetric Games. In Proceedings of the 8th annual Genetic and Evolution-
ary Computation Conference, pages 337–344, July 2006.

[15] Travis Service and Daniel Tauritz. Co-Optimization Algorithms. To Appear in
Proceedings of the 10th annual Genetic and Evolutionary Computation Confer-
ence, July 2008.

[16] Travis Service, Daniel Tauritz, and William Siever. Infrastructure Hardening:
A Competitive Coevolutionary Methodology Inspired by Neo-Darwinian Arms
Races. In Proceedings of 31st Annual IEEE International Computer Software
and Applications Conference, pages 101–104, July 2007.

[17] Travis Service and Daniel Tauritz. Increasing Infrastructure Resilience through
Competitive Coevolution. Accepted for publication in New Mathematics and
Natural Computation.

[18] David Wolpert and William Macready. Coevolutionary Free Lunches. IEEE
Transactions on Evolutionary Computation, 9(6):721–735, December 2005.

[19] Travis Service and Daniel Tauritz. A No-Free-Lunch Framework for Coevolu-
tion. To Appear in Proceedings of the 10th annual Genetic and Evolutionary
Computation Conference, July 2008.

[20] Josh Bongard and Hod Lipson. ‘Managed Challenge’ Alleviates Disengagement in
Co-evolutionary System Identification. In Proceedings of the 7th annual Genetic
and Evolutionary Computation Conference, pages 531–538, June 2005.

[21] Edwin De Jong and Jordan Pollack. Learning the Ideal Evaluation Function. In
Proceedings of the 5th Annual Genetic and Evolutionary Computation Confer-
ence, pages 277–288, June 2003.

[22] Edwin De Jong and Anthony Bucci. DECA: Dimension Extracting Coevolu-
tionary Algorithm. In Proceedings of the 8th annual Genetic and Evolutionary
Computation Conference, pages 313–320, July 2006.

[23] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1997.

[24] William Siever, Daniel Tauritz, and Ann Miller. Blueprint for Iteratively Hard-
ening Power Grids Employing Unified Power Flow Controllers. In Proceedings
of IEEE SoSE 2007–the 2nd International Conference on System of Systems
Engineering, pages 1–7, April 2007.

[25] U. S. DOE. Initial Blackout Timeline of the August 14, 2003 Outage, 2003.

[26] U.S.-Canada Power System Outage Task Force. Final report on the August
14th blackout in the United States and Canada: Causes and recommendations.
Technical report, U.S. Department of Energy, April 2004.

67

[27] Ted Lewis. Critical Infrastructure Protection in Homeland Security Defending a
Networked Nation. John Wiley & Sons, Inc., 2006.

[28] H.A. Abdelsalam, G.A.M. Aly, M. Abdelkrim, and K.M. Shebl. Optimal Location
of the Unified Power Flow Controller in Electrical Power Systems. In Proceedings
of Power Systems Conference and Exposition, volume 3, pages 1391– 1396. IEEE,
2004.

[29] Zhuo Lu, M.S. Li, W.J. Tang, and Q.H. Wu. Optimal Location of FACTS Devices
by A Bacterial Swarming Algorithm for Reactive Power Planning. In Proceedings
of IEEE Congress on Evolutionary Computation, pages 2344–2349, 2007.

[30] Narain Hingorani and Laszlo Gyugyi. Understanding FACTS: Concepts and
Technology of Flexible AC Transmission Systems. IEEE Press, 2000.

[31] Adam Lininger, Bruce McMillin, Mariesa Crow, and Badrul Chowdhury. Use of
Max-Flow on FACTS Devices. In Proceedings of the 39th Annual North American
Power Symposium, pages 288–294, September 30–October 2, 2007.

[32] William Siever, Daniel Tauritz, and Ann Miller. Improving Grid Fault Tolerance
by Optimal Control of FACTS Devices. International Journal of Innovations in
Energy Systems and Power, 2(1):44–49, June 2007.

[33] Radha Kalyani, Mariesa Crow, and Daniel Tauritz. Optimal Placement and
Control of Unified Power Flow Control devices using Evolutionary Comput-
ing and Sequential Quadratic Programming. In Proceedings of the 2006 IEEE
PES Power Systems Conference & Exposition–PSCE2006, pages 959–964, Octo-
ber 29–November 1, 2006.

[34] John Chaloupek, Daniel Tauritz, Bruce McMillin, and Mariesa Crow. Evolu-
tionary Optimization of Flexible AC Transmission System Device Placement for
Increasing Power Grid Reliability. In Proceedings of FEA 2005, the 6th Interna-
tional Workshop on Frontiers in Evolutionary Algorithms, pages 516–519, July
2005.

[35] Thomas Overbye. Computation of a Practical Method to Restore Power Flow
Solvability. IEEE Transactions on Power Systems, 10(1):280–287, February 1995.

[36] David Wolpert and William Macready. No Free Lunch Theorems for Optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[37] Anne Auger and Olivier Teytaud. Continuous Lunches are Free! In Proceedings
of the 9th Annual Genetic and Evolutionary Computation Conference, pages
916–922, July 2007.

[38] Mario Koppen, David Wolpert, and William Macready. Remarks on a Recent
Paper on the “No Free Lunch” Theorems. IEEE Transactions on Evolutionary
Computation, 5(3):295–296, 2001.

68

[39] Christian Igel and Marc Toussaint. No-Free-Lunch Theorem for Non-Uniform
Distributions of Target Functions. Journal of Mathematical Modelling and Al-
gorithms, 3(4):1570–1166, December 2004.

69

VITA

Travis Service was born on February 24, 1985 in Berkeley, California. He re-

ceived his high school diploma and an Associate of Science degree from the Missouri

Academy of Science, Mathematics and Computing in May of 2003 at Northwest Mis-

souri State University. In the fall of that year, he enrolled in the Computer Science

department and the Mathematics department of the University of Missouri - Rolla,

now the Missouri University of Science and Technology, from which he received his

BS in Computer Science and Applied Mathematics in December of 2005 and 2007,

respectively. He enrolled in the Computer Science graduate program in the spring of

2006 and received his Master’s degree in the May of 2008.

	Co-optimization: a generalization of coevolution
	Recommended Citation

	Co-optimization: a generalization of coevolution

