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Abstract 

 

The reconstruction of neuronal connectivity is a very interesting and important topic in 

neuroscience as it helps with understanding neuronal circuit and function. With the 

advancement of calcium fluorescence imaging technique, we can now observe the dynamical 

activity of hundreds of neurons in vivo in one setting, which provides a foundation for 

inferring connectivity within a community or network. Poor signal-to-noise ratio and low 

frame rate with respect to neurons’ actual firing rate are challenges that come with calcium 

imaging data. Here we review several methods that can be applied to calcium imaging data, 

without the direct need for converting the data to spike trains which is the more traditional 

and popular way of connectivity analysis. We then apply generalized transfer entropy to three 

different sets of calcium imaging data obtained from mice visual cortex, and infer the 

directed functional connectivity network, in which a directed edge implies a direct causal 

influence by source neuron to sink neuron. The transfer entropy causal influence measure is 

time-dependent but requires no prior statistical assumptions on neuron firing patterns and 

network topology, hence model-free and applicable in face of aforementioned challenges. 

The performance of this measure has previously been tested on simulated data, and its 

performance applied to real data, as is the case in this project, is assessed using 

randomization. We found using properties of randomized networks compared with properties 

of our reconstructed network that transfer entropy was able to identify significant 

non-random features of the imaging data. Therefore, the inferred connectivity can provide 

information on the functional organization of the neuronal networks. 
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Figure 1. (left) x-y coordinates of 98 neurons in the first dataset; (right) Examples of neuron 

calcium fluorescence traces in the form ∆𝐹/𝐹 recorded for over 230+ seconds at 14.8Hz 

 

Figure 2.  Average ∆𝑭/𝑭 traces of whole population of neurons (N=98) over 230+ seconds 

 

Figure 3. (main) Distribution of population-averaged ∆𝑭/𝑭 amplitudes; choose 𝑔̃ = 0.1974; 

(top-right) Figure 2 re-plotted to show average fluorescence values above and below conditioning 

level 𝑔̃. We use time points in our dataset for which the overall average at that time point is strictly 

less than this level 
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Figure 4. Reconstructed connectivity (k=2) of dataset 1 using pre-processed 

neuropil-corrected ∆𝐹/𝐹. Reconstruction evaluated for S=1, B=4, k=2, and conditioning level=0.1974. 

Graph reflects thresholding which retained top 5% of links. Average full cluster coefficient is found to 

be 0.182 and average in-degree for all nodes (neurons) is approximately 5 

 

 

Figure 5. Reconstructed connectivity (k=3, k=4) of dataset 1 using pre-processed 

neuropil-corrected ∆𝐹/𝐹. Reconstruction evaluated for S=1, B=4, conditioning level=0.1974, and k = 

3 (left) or k = 4 (right). Graph reflects thresholding which retained top 5% of links. Average full 

cluster coefficient is found to be 0.180 for k=3, and 0.146 for k=4. The average in-degree for all nodes 

is 5 for both k=3 and k=4 
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Figure 6. (left) Reconstructed connectivity from randomization of k=2 adjacency matrix. 

Average full cluster coefficient found to be 0.024; (right) Reconstructed connectivity from partial 

randomization of k=2 adjacency matrix, preserving out-degree, exploring randomness of 

in-degree. Average full cluster coefficient found to be 0.045 

 

 

Figure 7a. Properties of network reconstructed from GTE (top row) compared to randomized 

network (middle row) and partially randomized network (bottom row) 
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Figure 7b. Properties of network reconstructed from GTE with k=3, number of nodes with no 

in-degrees found to be 64 (top-row); compared to reconstructed network from GTE with k=4, 

number of nodes with no in-degree found to be 67 (bottom row) 

 

Figure 8. Hubs of causal connectivity: sink nodes defined as having larger than average in-degrees 

are highlighted in red (with 20 or more in-degrees). Cross-correlation can be used to find the relative 

strength of synchrony within a local hub (causal link node and each immediate neighbors), and then 

compared and tested against peak cross-correlations over the entire population 
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Figure 9. (top-left) x-y coordinates of 69 neurons in the second dataset; (top-right) Examples of 

neuron calcium fluorescence traces in the form ∆𝐹/𝐹 (window = 3s, lowest 30%) recorded for over 

500+ seconds at 28.38Hz; (middle) Average ∆𝑭/𝑭 traces of whole population of neurons (N=69) 

over 500+ seconds; (bottom main) Distribution of population-averaged ∆𝑭/𝑭  amplitudes; 

choose 𝑔̃ = 0.2703; (bottom-right) Average ∆𝑭/𝑭  re-plotted to show average fluorescence values 

above and below conditioning level 𝑔̃. We use time points in our dataset for which the overall 

average at that time point is strictly less than this level 
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Figure 10. (top) Reconstructed connectivity of dataset 2 using pre-processed  ∆𝐹/𝐹 . 

Reconstruction evaluated for S=1, B=4, k=2, and conditioning level=0.2703. Graph reflects 

thresholding which retained top 5% of links. Average full cluster coefficient was found to be 0.107 

and average in-degree for all nodes (neurons) is approximately 3.5; (bottom left) Reconstructed 

connectivity from randomization of adjacency matrix. Average full cluster coefficient found to be 

0.024; (bottom right) Reconstructed connectivity from partial randomization of adjacency 

matrix, preserving out-degree, exploring randomness of in-degree. Average full cluster coefficient 

found to be 0.046 
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Figure 11.  (top) Properties of network reconstructed from GTE (top row) compared to 

randomized network (middle row) and partially randomized network (bottom row); (bottom) Hubs 

of causal connectivity: sink nodes with 10 or more in-degrees are highlighted in blue 
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Figure 12. (top) Conditioning level chosen based on population-averaged raw data; (middle-left) 

reconstructed connectivity of dataset 2 using raw data (non-processed). Reconstruction evaluated 

for S=1, B=4, k=2, and conditioning level=292.33. Graph reflects thresholding which retained top 5% 

of links. Average full cluster coefficient was found to be 0.116 and average in-degree for all nodes 

(neurons) is approximately 3.5; (middle-right) Sink nodes with 10 or more in-degrees are 

highlighted in blue; (bottom) Properties of network distribution of full cluster coefficient and 

in-degrees 
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J. 0.314 

K.0.334 

Figure 13. (left column) Reconstructed connectivity of Stimulus data, for 11 levels (indicated by 

letters A-K) of contrasts, using pre-processed ∆𝐹/𝐹 . In each reconstruction, 69 neurons over 

approximately 178 image frames (at 28.38 Hz) were used. Reconstruction evaluated for S=1, B=4, 

k=2 with no conditioning level (as data is already limited). Graphs reflect thresholding which 

retained top 5% of links. Average full cluster coefficient for each contrast level is listed beside each 

row, and the average in-degree is always 3.5; (right column) Hubs of causal connectivity: sink 

nodes with 10 or more in-degrees are highlighted in green for each contrast level 
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1. Introduction 

 

During the past century neuroscientists have tried to understand the mechanism for 

memory, cognition, and perception by studying the connectivity between different brain 

regions. Now, with the help of more promising technology (Stevenson & Kording, 2011), 

studying populations of neurons at the cellular level has become of great interest 

(Mishchencko, Vogelstein, & Paninski, 2011). Of many, one important problem concerning 

populations of neurons is how neurons work together to form a functioning system, be it to 

encode information or to communicate. A popular way to assess collective behavior is to 

study population coding (Montijn, Vinck, & Pennartz, 2014) using signal correlation between 

neurons and trial-to-trial variability in the responses of multiple neurons over repeats of the 

same stimulus, called noise correlations (i.e. repeat presentations of the same stimulus results 

in different responses on each trial, and this variability can be correlated across different 

neurons) (Zylberberg & Shea-Brown, 2014). However, studies on neuronal correlation to date 

have reported discrepant findings (Cohen & Kohn, 2013). Another way, complimentary to 

neuronal correlation and factors in a lot more temporal information, is to identify topological 

features of the network. In other words, to infer circuits or connectivity within the network 

based on neurons’ activity time series. This, in turn, can be essential to understanding the 

structure of networks and how neurons in them compute and function (Stetter, Battaglia, 

Soriano, & Geisel, 2012). In this paper we will study the topological features of a population 

of neurons. Our aim is to reconstruct the connectivity based on the population’s dynamical 

activity to see if the population of neurons have any interaction with each other. 
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 There are many available experimental tools to capture neuron activities, such as the 

extracellular electrodes (EEG). However, tools like EEG are inadequate for capturing the 

synaptic activities of many neighboring neurons simultaneously, as the electrodes can only be 

placed so closely (Mishchencko, Vogelstein, & Paninski, 2011). In neurons, the movement of 

calcium ions is how bioelectrical currents are generated and propagated, and thus calcium 

imaging techniques have become of popular use. Scientists can now study neuron activities 

simultaneously in dozens to hundreds of neighboring neurons, by bulk-loading 

calcium-sensitive fluorescence indicators into the brain tissue and measuring the changes of 

fluorescence using imaging technique.  

 However, this technique also has its disadvantages. This technique can have low 

temporal resolution, which means that the frame rate of image acquisition is much slower 

than the firing dynamic of neurons (Stetter, Battaglia, Soriano, & Geisel, 2012). Additionally, 

the fluorescence reaction to the calcium indicator is not immediate, as well the bright of the 

neuron decays at an order of magnitude slower than the time of the actual neuronal activity, 

decreasing signal-to-noise ratio (Rama, 2013). To analyze the collected data effectively, some 

advanced and/or efficient statistical methods specifically for calcium imaging data have been 

developed. In the next section we will briefly explain three methods, of which generalized 

transfer entropy will be used to analyze our sets of real data. 
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2. Review of Methods 

 

In reconstructing connectivity, there exists deconvolution methods that go to great lengths 

to extract spike trains (series of discrete action potentials from a neuron taken as a time series) 

from imaging time series as a pre-processing step (Garofalo, Nieus, Massobrio, & Martinoia, 

2009). In this paper we will focus on methods that do not directly go through this step. The 

following Bayesian approach includes this step in its model rather than in the pre-processing 

step. There also exists methods that operate directly on time series acquired from imaging, 

such as cross-correlation and transfer entropy, without the need for deconvolution. Though 

some sort other basic data pre-processing is necessary.  

 

2.1 Bayesian  

The method developed by Mishchencko et al. introduces a Markovian state-space model 

that relates the fluorescence time sequence as a non-linear function of Calcium activity to its 

hidden states, the spike train. It then uses a Monte Carlo expectation maximization algorithm 

for obtaining estimates of the parameters of interest. The goal of this model is to infer the 

connectivity matrix of a population of neurons. This method is highly promising, as it does 

not rely on linear assumptions of neuronal dynamics and has been tested extensively on 

simulated data. The main points of the model are summarized as follows (Volgelstein, et al., 

2009); (Mishchencko, Vogelstein, & Paninski, 2011): 

1. Spike: generalized linear model to capture the firing properties of individual neurons. 

Overall unknown parameters {𝒘𝒊 = (𝑤𝑖1, … , 𝑤𝑖𝑁), 𝑘𝑖, 𝑏𝑖}  for hidden variable 𝑛𝑖(𝑡), 
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𝑖 ≤ 𝑁. 

o Denote the 𝑖th neuron’s spiking activity at discrete time 𝑡 as 𝑛𝑖(𝑡), 

𝑛𝑖(𝑡)~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖[𝑓(𝐽𝑖(𝑡)] 

o The spiking probability for the 𝑖th neuron is modeled by a nonlinear function 

𝑓(∙) of function 𝐽𝑖(𝑡). 𝐽𝑖(𝑡) is the summed input to neuron 𝑖 at time 𝑡. The 

author used 𝑓(𝐽) = 1 − exp (−𝑒𝐽∆), where ∆ is the inverse frame rate or the 

time interval size that scales the firing rate 

o 𝐽𝑖(𝑡) is composed of various inputs, as mentioned above, including a baseline 

value 𝑏𝑖, external stimulus 𝑆(𝑡), spike influences ℎ𝑖𝑗(𝑡) detailing the 

influence of neuron 𝑗 on neuron 𝑖; the influences are weighted by 𝑤𝑖𝑗. Thus, 

𝐽𝑖(𝑡) =  𝑏𝑖 +  𝑘𝑖 ∙ 𝑆(𝑡) +  ∑ 𝑤𝑖𝑗 ∙ ℎ𝑖𝑗(𝑡)𝑁
𝑗=1,𝑗≠𝑖  

o Model ℎ𝑖𝑗(𝑡) as an autoregressive process driven by the spike train of the 𝑗th 

neuron, 𝑛𝑗(𝑡). Thus ℎ𝑖𝑗(𝑡) = (1 −
∆

𝜏𝑖𝑗
ℎ ) ℎ𝑖𝑗(𝑡 − ∆) +  𝑛𝑗(𝑡 − ∆) +

 𝜎𝑖𝑗
ℎ√∆𝜖𝑖𝑗

ℎ (𝑡), where 𝜏𝑖𝑗
ℎ  is the decay time constant, and it is treated as known 

and the same for all pairs (𝑖, 𝑗), as is 𝜎𝑖𝑗
ℎ  

2. Calcium: conditional first-order hidden markov model for intracellular calcium 

concentration of individual neurons at time 𝑡 with spike activity as modeled by 𝑛𝑖(𝑡). 

Overall unknown parameters {𝐶𝒊
𝒃, 𝜏𝑖

𝑐 , 𝐴𝑖 , 𝜎𝑖
𝑐} for hidden variable 𝐶𝑖(𝑡), 𝑖 ≤ 𝑁 

o 𝐶𝑖(𝑡) = 𝐶𝑖(𝑡 − ∆) + (𝐶𝒊
𝒃 −  𝐶𝑖(𝑡 − ∆))

∆

𝜏𝑖
𝑐 + 𝐴𝑖𝑛𝑖(𝑡) + 𝜎𝑖

𝑐√∆𝜖𝑖
𝑐(𝑡) 

o When there is no spiking, Calcium goes down to baseline level 𝐶𝒊
𝒃 

o When 𝑛𝑖(𝑡) = 1, Calcium goes up by a fixed amount 𝐴𝑖, which is the impact 
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on calcium amplitude due to spike, then decays with time constant 𝜏𝑖
𝑐 

3. Fluorescence: observed fluorescence 𝐹𝑖(𝑡) as a nonlinear function of Calcium with 

unknown parameters {𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜎𝑖
𝐹}, 𝑖 ≤ 𝑁 

o 𝐹𝑖(𝑡) = 𝛼𝑖𝑆(𝐶𝑖(𝑡)) +  𝛽𝑖 + √(𝜎𝑖
𝐹)2 + 𝛾𝑖𝑆(𝐶𝑖(𝑡))𝜖𝑖

𝐹(𝑡) 

o 𝑆(𝐶) = 𝐶/(𝐶 + 𝐾𝑑) is a saturating function, modeled by a Hill function of 

the bound Calcium concentration (Orlandi, Stetter, Soriano, Geisel, & 

Battaglia, 2014) 

4. MCEM for parameter estimation:   

o Unknown parameters 𝜃𝑖 = {𝒘𝒊, 𝑘𝑖, 𝑏𝑖, 𝐶𝒊
𝒃, 𝜏𝑖

𝑐, 𝐴𝑖 , 𝜎𝑖
𝑐 , 𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜎𝑖

𝐹}   

o Define 𝜃𝑖̌ = {𝑤𝒊𝒊, 𝑘𝑖, 𝑏𝑖, 𝐶𝒊
𝒃, 𝜏𝑖

𝑐, 𝐴𝑖, 𝜎𝑖
𝑐 , 𝛼𝑖 , 𝛽𝑖, 𝛾𝑖, 𝜎𝑖

𝐹} as our intrinsic 

parameters 

o Interested in finding the connectivity matrix 𝒘 = {𝒘𝒊, … , 𝒘𝑵} 

o Use Monte Carlo Expectation-Maximization algorithm to estimate the 

parameters, which incorporates block-wise-Gibbs algorithm for sampling from 

joint neuron activity 

 

2.1.1 Limitations 

This method’s accuracy increases with data availability, as it is model dependent. As our 

datasets contain time series that are all less than 600 seconds each, the method may not infer 

as accurately a connectivity matrix as we would hope. More importantly, the author uses 

60Hz imaging rate, which we also do not have. The author mentions in his paper that 
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genetically encoded calcium indicators are under development in recent years, and would 

allow the signal-to-noise levels to approach near single spike accuracy. This particular 

method can be used to exploit data collected from such advanced imaging techniques. 

Therefore, it would be to any researchers’ advantage to invest time in learning this method for 

future application. However, at the moment there are no implementation packages readily 

available. Given the complexity of this model and its parameter estimation algorithm, 

collaboration or consultation with the authors is highly recommended if one wishes to 

implement this method correctly. Finally, the method is in the process of being tested on real 

data, and its real world application performance has yet to be evaluated. 

 

2.2 Cross-Correlation 

Cross-correlation connectivity reconstructions are based on the assumption of linearity of 

neuronal dynamics; it uses Pearson’s correlation. This method is among the standard methods 

in the problem field, and has been widely used by researchers (Garofalo, Nieus, Massobrio, 

& Martinoia, 2009). Cross-correlation is a function that assigns a score to each potential link 

between two time series, given by the largest cross-correlogram of lag 𝜏 between the series, 

0 < 𝜏 < 𝑡𝑚𝑎𝑥 (Garofalo, Nieus, Massobrio, & Martinoia, 2009). In other words, it measures 

the similarity between one series and lagged copies of the other series as a function of the lag, 

and finds the maximum correlation. Garafalo et al. uses 150ms for 𝑡𝑚𝑎𝑥, with incremental 

value 0.1ms, while Stetter et al. uses 60ms, with similar incremental value. The goal of this 

method in this problem setting is to infer a directed connectivity matrix for a population of 

neurons, by finding the cross-correlation link value between all pairs of neurons.  
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We denote the cross-correlation function by XC. If 𝑋 and 𝑌 are two discrete markov 

processes (i.e. two fluorescence time series), and 𝑆 represents the set of values in 𝑋 and 𝑌, 

then 

𝑋𝐶𝑌→𝑋 = max
𝜏=0,…,𝑡𝑚𝑎𝑥

{𝑐𝑜𝑟𝑟(𝑥𝑆 , 𝑦𝑆−𝜏)} 

 returns the cross-correlation of 𝑌’s influence on 𝑋.  

 

2.2.1 Limitations 

Real life phenomena are rarely linearly related. Thus, linear causality measures applied 

to such a complex system of information that is a neuron network can hardly be reliable. 

Though many implementation packages are readily available in statistical analysis software, 

the use of this method should always be compared to other methods or restricted to 

exploratory analysis, as there is no ground truth of network topology available to us. As 

shown by Stetter et al., in their comparison of XC to other connectivity methods, XC inferred 

a connectivity that is too clustered, which did not reflect the true nature of their simulated 

data. However, XC are of great use in other applications including finding the relative 

strength of synchrony of close neighboring neurons (Stetter, Battaglia, Soriano, & Geisel, 

2012).  

  

2.3 Transfer Entropy 

Transfer Entropy is an information theoretic measure (Vicente, Wibral, & Lindner, 2011). 

It is used to extract causal relationships from two time series. With respect to the 
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cross-correlation method, transfer entropy is sensitive to both linear and non-linear 

interactions, as it is model free, meaning it makes no assumptions to the underlying neuronal 

interaction. The method incorporates directional and dynamical information by using the 

history of both time series in its calculations. Mathematically, if we assume that two time 

series, 𝑋 and 𝑌, can be represented by Markov processes, then TE is a measure of deviation 

from the generalized Markov condition 

𝑝(𝑥𝑡+1|𝑥𝑡
𝑛𝑦𝑡

𝑚) = 𝑝(𝑥𝑡+1|𝑥𝑡
𝑛) 

where 𝑥𝑡
𝑛 = (𝑥𝑡, … , 𝑥𝑡−𝑛+1) , 𝑦𝑡

𝑚 = (𝑦𝑡, … , 𝑦𝑡−𝑚+1) , 𝑛, 𝑚  are orders of the Markov 

processes and 𝑝  denotes the transition probabilities conditioned to the past 𝑛, 𝑚 

observations of the Markov processes 𝑋 and 𝑌, respectively. This equation is fully satisfied 

when the dynamic of 𝑋 is independent of the 𝑚 past time points of 𝑌. When it is not 

satisfied, the departure can be measured (Schreiber, 2000) as 

𝑇𝐸𝑌→𝑋 =  ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡
𝑛, 𝑦𝑡

𝑚)log (
𝑝(𝑥𝑡+1|𝑥𝑡

𝑛, 𝑦𝑡
𝑚)

𝑝(𝑥𝑡+1|𝑥𝑡
𝑛)

)

𝑥𝑡+1,𝑥𝑡
𝑛,𝑦𝑡

𝑚

 

which we may interpret as system 𝑌 adding predictability to system 𝑋. In other words, the 

connectivity we measure is “improved predictability” of 𝑋 because of 𝑌 (Stetter, Battaglia, 

Soriano, & Geisel, 2012). Low TE value implies that 𝑦𝑡
𝑚 has little to no influence on the 

transition probabilities of 𝑋, while high TE values indicate the time series 𝑌 influences 

times series 𝑋. Similarly, TE is zero if two time series have the same transition probabilities. 

Due to its inherent asymmetry, 𝑇𝐸𝑌→𝑋 is not the same as 𝑇𝐸𝑋→𝑌. 

Using a little algebra and substitution, the equation becomes (Tenkanen, 2008) 

𝑇𝐸𝑌→𝑋 =  ∑ 𝑝(𝑥𝑡+1, 𝑥𝑡
𝑛, 𝑦𝑡

𝑚)log (
𝑝(𝑥𝑡+1, 𝑥𝑡

𝑛, 𝑦𝑡
𝑚)𝑝(𝑥𝑡

𝑛)

𝑝(𝑥𝑡
𝑛, 𝑦𝑡

𝑚)𝑝(𝑥𝑡+1, 𝑥𝑡
𝑛)

)

𝑥𝑡+1,𝑥𝑡
𝑛,𝑦𝑡

𝑚
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which can be calculated easily if 𝑋 and 𝑌 are discrete. The measure is highly interpretable, 

and is adequate for determining the direction of information flow among two time series 

(Kaiser & Schreiber, 2002). 

Transfer entropy has been used to find effective connectivity of different brain regions 

(Vicente, Wibral, & Lindner, 2011), functional connectivity in cortical networks using 

micro-electrode array data (Garofalo, Nieus, Massobrio, & Martinoia, 2009), information 

transfer between auditory cortical neurons (Gourevitch & Eggermont, 2007), and calcium 

signaling patterns under different cellular conditions (Pahle, Green, Dixon, & Kummer, 2008), 

to name a few.  

Most recently, Orlandi et al., and Stetter et al. have furthered the work of Garofalo et al. 

to apply transfer entropy to calcium imaging data. Given the challenges present in this type of 

data, these researchers have derived a generalized transfer entropy as an extension of TE to 

overcome the challenges.  

 

2.3.1 Generalized Transfer Entropy 

The goal of generalized transfer entropy is the same as the Bayesian and cross-correlation 

methods; it is to yield a connectivity matrix of TE values that represents a directed functional 

connectivity network of neurons whose activities were observed under calcium imaging 

techniques. Standard transfer entropy is modified in two major areas and several smaller 

areas to accommodate calcium imaging data (Stetter, Battaglia, Soriano, & Geisel, 2012). 

1. Same time bin: Since calcium imaging acquisition rate is much slower than synaptic 

activity, the fluorescence measured at each time point can be thought of as a time bin. 
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The authors proposed to evaluate  𝑝 , which denotes the transition probabilities, 

conditioned to the past 𝑘 observations of the markov process 𝑋, current observation 

𝑌 , and 𝑘 − 1  past observations of 𝑌  , to account for same time bin causal 

interactions between neurons.  

2. Conditioning level: The authors observed that the neuronal network switches between 

dynamical states as a whole. They call them bursting and non-bursting states of the 

network. During burst, the network is excitable and the directed functional 

connectivity can be hard to detect. During a non-burst phase, the activities of neurons 

and their interactions can be better observed. Hence, TE evaluation is restricted to 

time ranges in which the network is consistently in the non-bursting dynamical state. 

For a graphical explanation, please refer to Mishchenko et al.’s paper, Figure 11 

(Mishchencko, Vogelstein, & Paninski, 2011). The separation of states can be 

achieved by calculating the average signal of the entire network of 𝑁 neurons: 

 𝑔𝑡 =
1

𝑁
∑ 𝑥𝑖(𝑡)

𝑁

𝑖=1

 

Then, a threshold 𝑔̃ is chosen based on the fluorescence amplitude histogram of the 

network (e.g. Figure 3). This is achieved by taking the conditioning level to be 

approximately two standard deviations above the mean of the normal-looking part of 

the graph. All data points at time 𝑡 for which 𝑔𝑡 <  𝑔̃ are included in the analysis.  

3. Quantize continuous fluorescence: the probabilities in transfer entropies are evaluated 

at discrete values. Since fluorescence (after processing) is continuous data, we need to 

quantize the time series into 𝐵 discrete levels. The authors fixed 𝐵 = 3, but in this 
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paper we will use 𝐵 = 4. The rationale is we would like to have the resulting 

amplitude width of each discrete level to be close to twice the standard deviation of 

the fluorescence signal. 

4. Final generalized transfer entropy: 

 (Orlandi, Stetter, Soriano, Geisel, & Battaglia, 2014) 

                         𝐺𝑇𝐸𝐽→𝐼(𝑔𝑡 <  𝑔̃)

= ∑ 𝑝(𝑖𝑡+1, 𝑖𝑡
(𝑘)

, 𝑗𝑡+𝑆
(𝑘)

| 𝑔𝑡+1 <  𝑔̃) log (
𝑝(𝑖𝑡+1|𝑖𝑡

(𝑘)
, 𝑗𝑡+𝑆

(𝑘)
, 𝑔𝑡+1 <  𝑔̃ )

𝑝(𝑖𝑡+1|𝑖𝑡
(𝑘)

, 𝑔𝑡+1 <  𝑔̃)
)

𝑖𝑡+1,𝑖𝑡
(𝑘)

,𝑗𝑡+𝑆
(𝑘)

 

Where 𝐼 and 𝐽 represent quantized fluorescence time series, 𝑖𝑡
(𝑘)

 is a vector in time 

that has length k, representing the underlying fluorescence process 𝑥𝑡
𝑛 =

(𝑥𝑡, … , 𝑥𝑡−𝑛+1), and 𝑆 is the shift variable that can take values 0 or 1. If 𝑆 = 1 then 

we include same time bin interaction in our analysis. If 𝑆 = 0 then this aspect of the 

model resemble the standard transfer entropy. According to the authors, 𝑘 = 2 is 

enough to allow generalized transfer entropy to separate actual interactions from other 

signal disturbances. 

 

2.3.2 Limitations 

Although the generalized transfer entropy addresses several limitations to the TE method, 

there still poses other challenges. First, generalized transfer entropy is a new method lacking 

in standardized implementation software (there exists C++ and MATLAB tools only), 

however, the algorithm is not difficult to code from scratch. The choice of 𝑘 can be of some 

difficulty to researchers. Though time lag is somewhat incorporated into transfer entropy by 
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way of looking at both the time series’ history, choosing 𝑘  too small may result in 

non-accurate causal influence estimates (Vicente, Wibral, & Lindner, 2011). Moreover, 

though the method is model free, the data set should still be reasonably large. As well, the 

conditioning level decreases the dataset, which should be taken into consideration. This 

method is able to deal with sequences with both excitatory and inhibitory data, however, it is 

unable to identify the connection type by itself. Finally, as with all previous methods for 

connectivity reconstruction, there is no ground truth with which we can compare our 

reconstructed results to. Nevertheless, given its interpretability, model-free nature, and fairly 

straight-forward implementation, this method is chosen for analysis on real data in this paper.  
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3. Research Design 

 

Three sets of data were kindly provided by Dr. Michael J Higley, Yale School of 

Medicine. The data were collected using calcium imaging and fluorescence indicators on 

mice under anesthetics. The data underwent pre-processing before analysis. We then used the 

extension of transfer entropy to reconstruct the directed functional connectivity of our 

network. The presence of a directed edge from neuron 𝑖 to 𝑗 imply a direct causal influence 

by the source node 𝑖 to the sink node 𝑗. The method can be applied to data with both 

excitatory and inhibitory synapses, however, identification of type of connection (i.e. 

inhibitory or excitatory) is difficult as there is no prior information on neuronal type nor 

procedure that collected excitatory activities only of the same set of neurons (Orlandi, Stetter, 

Soriano, Geisel, & Battaglia, 2014) 

To interpret the results, the reconstructed functional connectivity matrix was ranked, and 

a thresh-hold was used to maintain the top 5% of connections, producing an adjacency matrix 

(as recommended by Setter et al., 2012). The adjacency matrix 𝐴 has entries 𝑎𝑗𝑖 ∈ {0,1}, 

where 1 means a connection from neuron 𝑗 to 𝑖 which is in the top 5% of all connections, 

and 0 means no connection or a weak connection relative to other connections. We then can 

use this adjacency matrix to illustrate our findings using a directed graph.  

To assess our findings, the average full cluster coefficient over all neurons was calculated 

as a summary statistic for our directed network (Fagiolo, 2007):  

𝐶𝐶 =  〈
(𝐴 +  𝐴𝑇)𝑖𝑖

3

2𝑇𝑖

〉𝑖   

𝑤ℎ𝑒𝑟𝑒   𝑇𝑖 =  𝑑𝑖
𝑡𝑜𝑡𝑎𝑙(𝑑𝑖

𝑡𝑜𝑡𝑎𝑙 − 1) − 2𝑑𝑖
𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡 
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(𝐴 + 𝐴𝑇)𝑖𝑖
3 = ∑ ∑(𝑎𝑖𝑗 + 𝑎𝑗𝑖)(𝑎𝑖ℎ + 𝑎ℎ𝑖)(𝑎𝑗ℎ + 𝑎ℎ𝑗)

ℎ𝑗

 

An in-degree of neuron 𝑖 is the number of edges going into 𝑖, which can be calculated by 

taking row sum of column 𝑖 of the adjacency matrix. An out-degree of neuron 𝑖 is defined 

as the number of edges going out of 𝑖, which can be calculated by taking the column sum of 

row 𝑖 of 𝐴. Then, 𝑑𝑖
𝑡𝑜𝑡𝑎𝑙 is the total-degree of node 𝑖; the sum of in-degree and out-degree 

of node 𝑖. Whereas 𝑑𝑖
𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡 is the number of bi-directional edges node 𝑖 has. When 𝑖 has 

an edge going into 𝑗 and 𝑗 has edge going into 𝑖, then this is a bi-directional edge for 𝑖. 

The cluster coefficient measures the phenomena that is intrinsic to networks: forming circles 

of connected nodes (Fagiolo, 2007). The full cluster coefficient is an extension of cluster 

coefficient from undirected graphs to directed graphs. 

Then, hubs of causal connectivity (Stetter, Battaglia, Soriano, & Geisel, 2012) were 

identified by finding the neurons with highest in-degrees. Finally, randomization was used to 

identify statistically significant non-random features of the network.  

Furthermore, to set a direction for future analysis and methodology development, we 

compared results of our evaluations based on different Markov orders (𝑘) for the Markov 

processes (the fluorescence sequences) of the first data set. Additionally, we compared the 

adjacency matrix of generalized transfer entropy evaluated on pre-processed raw data versus 

non-processed raw data for the second data set. We hypothesize, given larger data 

observations and higher frame rate in data set two, that using raw-data does not perform 

worse than using pre-processed data. Finally, we compared results of reconstruction based on 

varying conditioning levels to check robustness of our reconstruction. This final comparison 
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is not shown in this paper as we verified that the inferred connectivity features were 

consistent if conditioning level remained close to the original choice and not further than two 

standard deviations away (Stetter, Battaglia, Soriano, & Geisel, 2012).  

 

3.1 Data Processing I 

The first dataset we will explore and analyze contains spontaneous activity of 98 neurons 

over 3500 image frames, captured at 14.8Hz. Both raw data and pre-processed neuropil 

corrected ∆𝐹/𝐹 data are given. A number of past studies have shown that neuropil-corrected 

∆𝐹/𝐹 can be interpreted as time series reflecting spike activity (Goltstein, Montijn, & 

Pennartz, 2015). However, preprocessing is not always necessary in order to use generalized 

transfer entropy. Nevertheless, Setter et al. claims that even a basic discrete differentiation to 

fluorescence time series can isolate potential spike events, as well as improve signal-to-noise 

ratio, which allows for a better sampling (based on conditioning level) of distributions with 

limited number of data points (Stetter, Battaglia, Soriano, & Geisel, 2012). Since our imaging 

video is only four minutes long and has a low frame rate, the neuropil-corrected ∆𝐹/𝐹 was 

used (98 neurons over 3456 frames, as 44 frames were used for baseline calculations).  

 

3.2 Data Processing II 

The second dataset contains spontaneous activity of 69 neurons over 15000 image frames, 

captured at 28.38Hz. Only raw data was given and we need to pre-process it. Many 

researchers (Golstein et al., 2015; Montjin et al., 2014; Jia et al., 2010) have calculated their 
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∆𝐹/𝐹 (more precisely, (𝐹𝑖 −  𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑓 𝑖)/𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑜𝑓 𝑖) differently, with baseline window 

preceding image frame 𝑖 ranging from 3s to 30s, and mean value taken over lowest value to 

50% of values in this window. Many baseline values were tried in this dataset, ranging from 

10% of 3s window to 50% of 3s window. Ultimately a 30% of 3s window was chosen to be 

the criteria for baseline calculation. In this dataset, we will also compare reconstruction based 

on raw data versus reconstruction based on processed data to show why this pre-processing 

step is important in reconstruction; however, with higher frame rate and better signal-to-noise 

ratio, this step may become unnecessary. 

 

3.3 Data Processing III  

While it is known that techniques to infer functional connectivity networks seem to rely 

on investigation of spontaneous activity (Garofalo, Nieus, Massobrio, & Martinoia, 2009), 

the stimulus data set can still be of use. This third dataset contains the same neurons as 

dataset two, but activity was only captured over 13785 image frames. The stimulus 

orientation remained at 30 degrees throughout the experiment, but contrast of stimulus 

changed 11 ways. The stimulus was initially off for approximately 4s, then on for 2s, then off 

for 4s, for each contrast level. The experiment was repeated seven trials. We propose a plan 

of first obtaining the ∆𝐹/𝐹 (30% of 3s window as baseline) for each neuron’s time series, 

then dissecting each time series into 77 segments, each containing one trial over one stimulus. 

We then take trial average per contrast level as the 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 ∆𝐹/𝐹 for each neuron. We do 

so for all contrast levels. Note that each segment contains 2 seconds of stimulus on and 4 

seconds of stimulus off. 
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4. Analysis and Results 

 

4.1 Results I 

We first applied generalized transfer entropy to the reconstruction of a network based on 

98 neurons over almost four minutes of spontaneous activity (Figure 1). The average 

fluorescence signal 𝑔𝑡 is calculated (Figure 2) and its frequency distribution plotted (Figure 

3). The distribution is right-skewed, as expected, displaying towards the left side times during 

which the network was in non-bursting phase, and towards the right side times during which 

the network was in synchronous burst. Based on this plot we chose a conditioning level 

𝑔̃=0.1974 which would exclude the right-tail of high average fluorescence amplitudes. Then, 

reconstruction analysis using generalized transfer entropy was applied on the data set of 98 

time series. We initiated the algorithm using B=4 (quantize fluorescence amplitudes into 4 

categories), S=1 (consider same time-bin interaction), and k=2 (markov order considering 

past two time point events). A reconstructive matrix was generated indicating the TE causal 

influence value between each pair of neurons. Recall that TE for 𝑗 → 𝑖 is often not the same 

as TE for 𝑖 → 𝑗. Moreover, the diagonal terms for the reconstructive matrix are not for 

interpretation, because we are not considering causal influence between a neuron and itself. 

We threshold the connectivity matrix to retain the top 5% of connections, and produce an 

adjacency matrix illustrated by a directed graph (Figure 4).  The average in-degree for the 

network is 5 and average full cluster coefficient is 0.182. The distribution of full-cluster 

coefficients and in-degrees for the set of 98 neurons is displayed in Figure 7a.  
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4.1.1 Comparison to randomized networks 

 We do not know what the functional organization or structure of the network of neurons 

actually looks like. Therefore, we use randomization to assess our findings. At least, we may 

determine if our reconstructed connectivity is a deviation from random connectivity. There 

are two types of randomization we can do to make such comparisons. First, we may compare 

our reconstruction with a fully randomized network by preserving the number of connections 

in the adjacency matrix, then mixing up the source and sink nodes (Figure 6 left). First row of 

Figure 7a shows the distribution of cluster coefficients and in-degree of reconstructed 

network, and second row shows the same properties of the fully randomized network. We 

observe that while the fully randomized network has cluster coefficient distribution 

somewhat normal and in-degree following the Poisson distribution (Newman, Trogatz, & 

Watts, 2001), our reconstructed network deviates heavily from such distributions. This 

indicates our findings of network features are not random. In particular, TE detects large 

cluster coefficients for certain nodes but small or no clustering for other nodes. The overall 

clustering coefficient for the network is 0.182, significantly larger than for fully random 

network (0.024).  

A second method of randomization preserves the total connections and the out-degree of 

each node, and partially randomizes the network based on randomization of in-degrees. 

Bottom row of Figure 7a we can see that the partially randomized network has similar 

distributions of cluster-coefficient and in-degrees as fully randomized networks. Therefore, 

our reconstructed network features are not random. In particular, using in-degrees, we found 

sink nodes with larger than average in-degrees and highlighted them in red (Figure 8). While 
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the average for both partially randomized network and our reconstructed network was 5, the 

reconstructed network displayed sinks with more than 20 in-degrees, a phenomena 

non-existent in the randomized graph.  

 

4.1.2 Comparison of network reconstructions based on different Markov orders 

 In Figure 5 we plotted the reconstructed network based on 𝑘 = 3 and 𝑘 = 4. The 

result is sparser connectivity as indicated by visual observation. We see that many 

nodes are left “untouched” by the links, which is consistent with the understanding that 

neuronal coding in V1 exhibits sparse coding (Montijn, Vinck, & Pennartz, 2014). Their 

in-degree and full cluster coefficient distributions are shown in Figure 7b. We see that 

the distributions are far from random. Moreover, the increase in number of nodes with 

no in-degrees can also substantiate our claim above that there seems to be more 

sparseness. For this paper we will continue to use 𝑘 = 2. The authors who derived this 

method indicated in their analysis using simulated data which has ground-truth 

available that a Markov order of 2 is able to achieve a performance level ranging 

between 40% to 80% and only 10% false positive links, for any clustering type and 

conditioning level. However, in the future, it would be worthy to explore the statistical 

properties and effects of increasing markov order in neuronal connective 

reconstruction. 
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 4.2 Results II 

 For the second set of spontaneous data, we do the same thing as we did for the first 

set of data (Figure 9). The results provide validation for our findings previously in data 

set one. Our reconstructed connectivity graph (Figure 10 top) shows non-random 

features that are not displayed in both randomized networks. This phenomena is clearly 

seen by the distribution of full cluster coefficients and in-degrees of 69 neurons for 

reconstructed network compared to both randomized networks (Figure 11 top). While 

all three graphs have an average in-degree of 3.5, our reconstructed network has 

in-degree values over 10, and these nodes are highlighted in blue (Figure 11 bottom). 

 

4.2.1 Comparison of network reconstructions using pre-processed and raw data 

 In Figure 12 we show the results of reconstruction using raw data that was not 

pre-processed using a baseline fluorescence value. The average full cluster coefficient is 

0.116, higher than what we found with pre-processed data and a slightly different set of 

neurons with in-degrees over 10 was found. Moreover, the distribution of in-degrees 

(Figure 12 bottom) is similar to that of pre-processed data. Such observations do not tell 

us if pre-processing is necessary, but the findings do not reject our hypothesis that using 

raw-data does not perform any worse than pre-processed data, given higher frame rates 

and larger data size. However, it is known that pre-processed data is able to increase 

signal-to-noise ratio, and such a feature is not without its advantages. 
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4.3 Results III 

 We briefly analyze the dataset with stimulus indicators. We see that for each 

contrast level, different sink nodes with greater than 10 in-degrees are identified 

(Figure 13). However, the dataset for each contrast level is very small (trials average 

totaling 6 seconds), and this may cause biased estimation of TE values. Nevertheless, it 

is notable to say that different contrast levels seem to display different patterns of 

connectivity, with a few neurons consistently appearing to have more than average 

in-degrees. For example, neuron 44, neuron 4 and neuron 60.  The cluster coefficient 

for all network reconstructions over 11 contrast levels is consistently in the 0.20 to 0.35 

range. While not displayed, the randomized networks consistently had lower 

cluster-coefficients in the range of less than 0.10, with in-degrees for each node less 

than 10. These results indicate non-random patterns of connectivity for different 

stimulus.  
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5. Discussion 
 

We have used a model-free, computationally feasible method to find the directed 

functional connectivity of our two populations of neurons, without inferring spike trains 

from the data. The connectivity patterns we obtained are non-random. Certain neurons 

in each data set displayed higher number of in-degrees than others, and the phenomena 

is different from random patterns. While some neurons displayed high full cluster 

correlations by having a community of connected nodes, which is also non-random. 

These significant findings suggest that this method is able to capture some interaction, 

specifically, causal influence, among the neurons in the populations.  

The neurons with above-average in-degree of connectivity are seen as hubs of causal 

connectivity. We can use its first neighbors to define a community. It has been found that 

synchronization within these communities based around hubs are stronger than 

communities based around nodes with less in-degree. As well, a direct stimulation of 

hubs can trigger the synchronous reactions of its community. Researchers also found 

that synchronous activities are associated to functional connectivity with higher overall 

average cluster coefficient. However, it is also associated with less overlap with the 

underlying structural connectivity of the neuron population (Stetter, Battaglia, Soriano, 

& Geisel, 2012). Nevertheless, the chance of hubs who are functionally connected also 

being structurally connected is significantly larger than random networks. As a result, 

future work in this field should involve the analysis of both structural connectivity and 
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patterns of functional connectivity. The incorporation of stimulus (cognitive activation, as 

opposed to spontaneous activity) should also be explored more in depth.  

In the past, brain properties have been studied through brain region interactions 

and individual neuron behaviors. Ensembles of neurons have not been vastly explored 

(McIntosh, 2010). Scientists believe that a key to further understand how the brain 

controls thought, perception and memory is through learning how neurons work 

together. This paper aims to use one of few developed methods for calcium imaging data 

to find any connectivity among an ensemble of neurons. This project adds to current 

research on neuron connectivity and functional organization by using real data to test 

the methodology. Now that we have found non-random topology of neuron population, 

what can we do with it? 

This method’s main output is an adjacency matrix which we can plot and observe 

visually. Therefore, this method may be fit for exploratory analysis. Reconstructed 

neuronal connectivity provides information on how the neurons work together given a 

certain period of time and frame rate. We may use it to compare with its structural 

connectivity. Furthermore, we may use experimental methods, in conjunction with 

reconstruction of functional connectivity, to distinguish between inhibitory and 

excitatory neurons. It is known that anything that affects a specific brain region will 

ultimately affect the entire brain network. Perhaps it is analogous with neuron networks. 

We can hypothesize that diseases, disorders, and deficits can reflect an abnormal or 

damaged network of neurons in a specific region of the brain. We can learn about the 

dysfunctional neuron network by comparing its connectivity to network operations by 
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normal, healthy neuron networks. Some researchers have found that spontaneous, 

resting, brain activity are useful for finding the brain’s functional blueprint (McIntosh, 

2010). We may also hypothesize that resting neuron population activity are the 

blueprint for neuronal network interaction. Researchers have found that reduced 

functional connectivity correlates with a decline in executive function and processing 

speed. For example, Alzheimer’s disease is associated with reduced functional 

connectivity (McIntosh, 2010). Perhaps it is useful to apply the same concept to 

neuronal populations, and see if such discrepancies exist between normal and 

dysfunctional brains. By locating the population of neurons with lower functional 

connectivity, we may be able to pinpoint the source of disease, disorder, or deficit. 
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6. Conclusion 

 

In this paper we have established that generalized transfer entropy is a method of 

reconstruction for neuronal connectivity that works. We have found non-random 

features of our network of neurons and can use such findings to further our research. 

Generalized transfer entropy is one of many methods that can reconstruct interactions, 

or connectivity, between neurons with calcium imaging data. However, given our lower 

frame rate and potential poor signal-to-noise ratio, a model-free method that makes no 

assumption of linearity or interaction gives flexibility and robustness.  

Furthermore, the model does not require deconvolution. Other approaches have 

emphasized on the need to reconstruct spike trains, but techniques to do so are 

complicated and sometimes impossible to optimize, due to lack of prior testing 

(Moreaux & Laurent, 2008). This pre-processing step is not needed with generalized 

transfer entropy. The method performs efficiently and thus the need to pull out spike 

trains is unnecessary, even if signal-to-noise is good enough.  

There are some limitations to this field of study and to this method specifically. First 

of all we were only able to compare two neurons at a time. This method does not 

consider higher dimensions of analysis. Secondly, though this method has been 

established, there is no standard implementation. In other words, we have to conduct 

many sensitivity analysis on the data, and on parameter initialization. This is partly due 

to the way experiments are conducted and the difference in data collected. Also, it is due 

to lack of software or analysis packages. Furthermore, the true topology of the network 
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is unknown and therefore validation of method is non-existent, except through 

comparison to other methods or to the null (via randomization). Finally, the method 

cannot differentiate between types of neurons. However, with the help of a considerate 

experimental design, this is possible.  

In many research papers, the connectivity reconstructed using transfer entropy is 

known as functional connectivity, not effective connectivity (Friston, 2011).  However, 

in many other research papers, for example (Vicente, Wibral, & Lindner, 2011), the 

method is known to reconstruct effective connectivity. Effective and functional 

connectivity are different network connectivity, and the use of the two terms 

interchangeably or non-agreeably creates confusion in this field of study.  
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