
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2017

Predicting the impact of data corruption on the operation of Predicting the impact of data corruption on the operation of

cyber-physical systems cyber-physical systems

Erik David Burgdorf

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Burgdorf, Erik David, "Predicting the impact of data corruption on the operation of cyber-physical systems"
(2017). Masters Theses. 7874.
https://scholarsmine.mst.edu/masters_theses/7874

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7874&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7874&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/7874?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F7874&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PREDICTING THE IMPACT OF DATA CORRUPTION ON THE OPERATION OF

CYBER-PHYSICAL SYSTEMS

by

ERIK DAVID BURGDORF

A THESIS

Presented to the Graduate Faculty of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

2017

Approved by

Sahra Sedigh Sarvestani, Advisor
Ali R. Hurson

Egemen K. Çetinkaya

Copyright 2017

ERIK DAVID BURGDORF

All Rights Reserved

iii

ABSTRACT

Cyber-physical systems, where computing and communication are used to fortify

and streamline the operation of a physical infrastructure, now comprise the foundation of

much of modern critical infrastructure. These systems are typically large in scale and

highly interconnected, and span application domains from power and water distribution

to autonomous vehicle control and collaborative robotics. Intelligent decision support in

these systems is heavily reliant on the availability of sufficient and sufficiently correct data.

Failure or malfunction of these systems can have devastating consequences in terms of

public safety, financial losses, or both.

The research described in this thesis aims to predict the impact of loss or corrup-

tion of data on operation of a cyber-physical system. Given knowledge of the respective

physical and functional topologies of the system, information exchange is abstracted as a

graph of interconnected data processing nodes. A model is created with each node mod-

eled as a stochastic colored Petri net. Populated with information about the reliability of

measurement, communication, storage, and processing devices, the Petri net model enables

estimation of the fraction of the node’s data that will be lost or corrupted.

A determination is made of each node’s criticality, based on the consequences of its

failure on overall system-level operation, using field data or simulation. Themeasure of data

corruption impact at a given node is the product of the two aforementioned metrics: i) the

extent of data corruption expected at the node and ii) its criticality. The proposed approach

can enable informed decisions about targeted investments in hardening of cyber-physical

system, specifically to mitigate the effects of corruption or loss of data.

iv

ACKNOWLEDGMENTS

I would like to take this opportunity thank my thesis and research advisor, Dr.

Sahra Sedigh Sarvestani. Her counsel during the decision process leading me to undertake

completion of this research is highly valued. It is not an understatement to say that my

completion of this program is due, in part, to her advocacy for and support of distance

programs. Thanks are also due to the other members of my Committee, Dr. Ali Hurson

and Dr. Egemen Çetinkaya. They both offered much of their time.

I would also like to acknowledge colleagues in our research group for their assistance,

especially Mark Woodard for spending hours discussing model design, Koosha Marashi for

his PSAT expertise and Isam Alobaidi for helping me get started.

Finally, but in no way least, I want to thank my wife, Lynn. Without your love,

support and encouragement I would not have finished what was started long ago. I must

also thank you for being the best tandem bicycle stoker I know. I have enjoyed every mile

we have pedaled together. Thank you!

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF ILLUSTRATIONS . vii

LIST OF TABLES . viii

SECTION

1. INTRODUCTION. 1

2. BACKGROUND AND RELATED WORK . 5

2.1. MODELS. 9

2.2. INFORMAL DEFINITION PETRI NET . 10

2.3. PETRI NET DEFINITION . 11

2.4. COLORED PETRI NETS . 12

2.5. COLORED PETRI NET DEFINITION . 13

2.6. DISCRETE TIME STOCHASTIC PETRI NETS. 14

3. METHODOLOGY . 15

3.1. CONTRIBUTION . 15

3.1.1. Step 1: Topology Abstraction . 17

3.1.2. Step 2: Data Corruption Extent Estimation. 18

3.1.3. Step 3: Data Processing Component Criticality Calculation 20

3.1.4. Step 4: Impact Calculation . 20

vi

3.2. SIMULATION PERFORMANCE AND INTEGRATION . 21

3.2.1. Design Review - Performance Inhibitors . 21

3.2.2. Architectural Changes for Performance . 22

3.2.3. Integration . 23

4. APPLICATION TO CPS . 31

5. CONCLUSIONS AND FUTURE WORK. 39

APPENDIX . 41

REFERENCES . 45

VITA . 48

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1 Simple Petri Net . 12

2.2 Colored Petri Net Used to Model Human Metabolic Systems [1] 13

2.3 Colored Petri Net Used to Model Urban Traffic Control System [2] 13

3.1 Survivability Metrics . 16

3.2 CPN Node Structure . 19

3.3 Model Overview . 25

3.4 FACTS Device F6 (l12−17) Database State - Single Run. 26

3.5 FACTS Device F6 (l12−17) Consecutive Steps Over Threshold - Single Run 27

3.6 Original Node Structure . 27

3.7 Simplified Node Structure . 28

3.8 External Application Message Flow . 30

4.1 Average Corrupted or Missing Data. 34

4.2 IEEE-57 Bus Smart Grid . 36

4.3 IEEE-57 Bus Smart Grid with Cyber Control Components . 37

4.4 Percentage Corrupt or Missing Data . 38

viii

LIST OF TABLES

Table Page

3.1 pStat Data: Original Node . 23

3.2 pStat Data: Revised Node . 24

3.3 Run Time in Seconds . 29

4.1 Single Line Criticality (with FACTS) . 32

4.2 CPN Databases: Percent Missing or Corrupt . 32

4.3 FACTS Line Aggregate Criticality and Impact . 35

SECTION

1. INTRODUCTION

Many modern critical systems, ranging in scale from large distributed infrastructure

services such as distribution networks for water or electrical power are no longer comprised

of only traditional physical devices. In these cyber-physical critical infrastructure systems,

the cyber components include sensors deployed throughout the system to collect real-time

data. The data collected is then transmitted over communication lines to decision support

components that analyze the data and determine configurations that will optimize aspects

of systems operation. The configurations are then transmitted over communication lines

to control devices where adjustments to systems operation are actuated. When operating

correctly, cyber-physical systems (CPSs) are expected to deliver more efficient service, and

often extended capability and features.

These improvements, however, come at a cost. Service delivery in a CPS is con-

tingent on the availability of sufficient and sufficiently correct data. If data required for

decision support is corrupted or missing, component- and/or system level-failures could

result in catastrophic or even fatal consequences. The goal of the research described in this

thesis is to quantify the effect of data loss or corruption on service delivery by a CPS.

Motivating examples for this work include past CPS failures caused by missing or

corrupted data. The European Space Agency’s ExoMars Schiaparelli Mars Lander was

lost due to a transient data corruption event [3]. During descent, the lander’s inertial

measurement unit produced erroneous data for approximately one second. This erroneous

data caused the navigation system to estimate a negative altitude, leading to premature

release of the parachute at a height of 3.7 km. The lander plummeted to the surface,

impacting at an estimated velocity of 150 m/s. The craft was destroyed on impact.

2

Another motivating example is the crash of Air France flight 447, which is believed

to have been triggered by corrupt data reported from an iced-over pitot tube (the device

providing airspeed data) [4]. The loss of data and unavailability of airspeed information

caused the autopilot to disconnect. The flight crew had to take over control of the aircraft.

With conflicting and incomplete airspeed data, the flight crew became confused and made

decisions leading to eventual crash of the aircraft and loss of 228 lives.

As noted above, data integrity issues affecting large-scale cyber-physical infrastruc-

ture systems have the potential to affect many individuals and have significant economic

impact. In July 2012, two widespread blackouts in India left over 600 million individuals -

approximately 10% of the worlds population at that time - without power. Unreliable data

was identified as one of the causes of these outages. A post-event inquiry committee noted

the need for data reliability and recommended fortification of the communication networks

responsible for delivery of data to the load dispatch centers [5].

The potential for data corruption in CPSs has been recognized for some time.

Voas raised this concern in 1997 [6]. He noted that many CPSs are systems-of-systems,

constructed by integration of multiple commercial, off-the-shelf software application pack-

ages. CPS designers necessarily are limited in detailed knowledge of semantics of each

component. Between complexity and opacity, the semantic dependencies within systems-

of-systems are such that no single person can fully understand all details. There will

likely be undiscovered incompatibilities, leading to data corruption 1. Voas proposes a

methodology, interface propagation analysis, where errors are deliberately injected into an

operational system. Propagation of corrupted data is then monitored to determine impact.

This methodology is often infeasible in practice, as it requires testing of full-scale in-use

systems, or at a minimum, a duplicate test system. Crenshaw et al. propose what they

1The European Space Agency report notes this situation occurred in the Schiaparelli ExoMars Lander
incident. Individual components did not fail; they operated correctly during the landing phase. It was the
interaction of components and undiscovered gaps in specifications that resulted in the loss of the spacecraft.

3

denote as the simplex reference model to limit fault propagation in CPSs [7]. They too note

that the integration of commercial off-the-shelf software into a CPS results in less than full

understanding of system behavior. Full verification becomes impossible.

In his PhD dissertation, Behrens notes that the hardware errors currently observed

in production systems could be considered inevitable, the rate of these errors is expected to

increase in future hardware generations, and a non-negligible number of errors are uncor-

rectable by hardware techniques such as error correcting codes and manifest as application

state corruptions [8]. These errors are potentially propagated to other components when a

process experiencing state corruption sends corrupted data to an external entity, i.e., sends

a corrupt message.

An understanding of the impact of missing or corrupt data has on cyber-physical

system components is required in order to enable appropriate hardening measures for the

most vulnerable and/or critical components. The objective of the research described in this

thesis is to create and demonstrate a methodology that quantifies the impact of corrupt and

missing data on the operation of CPSs. Previous studies have investigated the criticality

of physical components, as well as the impact that individual components have on overall

system service delivery. The original contribution of this thesis is a model that provides an

a-priori relative measure of the impact of missing and corrupt data on service delivery from

each cyber component. This model utilizes stochastic colored Petri nets to estimate the flow

of corrupted and missing data across the components of a CPS, and utilizes this information

in conjunction with estimates of physical component criticality to provide a measure of

the system-level impact of data loss or corruption on service delivery. Understanding this

impact can guide prioritization of hardening investments, leading to more robust CPSs with

improved service delivery characteristics.

4

The remainder of this thesis is structured as follows: Section 2 provides an overview

of foundational and related work. Section 3 describes the proposed approach. Section 4

illustrates the application of the proposed approach through a case study involving the IEEE

57-bus test system. Lastly, Section 5 provides concluding notes and describes areas for

continuing research.

5

2. BACKGROUND AND RELATED WORK

Critical cyber-physical systems, by nature and definition need to be reliable, de-

pendable systems. For the purposes of this thesis, dependability attributes are defined as

described by Avizienis et al. [9]:

availability: readiness for correct service.

reliability: continuity of correct service.

safety: absence of catastrophic consequences for the user(s) and the environment.

integrity: absence of improper system alterations.

maintainability: ability to undergo modifications and repairs.

As demonstrated by the motivating examples of the previous section, dependable

system operation requires sufficient and sufficiently correct data in order to deliver services

at the expected levels. Unfortunately, despite the attention paid to reliability during the

design phases of the system and its components, it is impossible to guarantee 100%-reliable

systems. As systems grow in scope and complexity, software and hardware errors become

unavoidable. Hardware errors are observed surprisingly often and their rates are expected

to only increase in successive hardware generations. Furthermore, a non-negligible number

of errors are uncorrectable by current hardware techniques, such as error correcting codes,

and manifest themselves as application state corruptions [8].

• A study by Schroeder et. al found error rates in deployed commodity servers orders of

magnitude higher than previously reported, with 25,000 to 70,000 errors per billion

device hours perMbit. More than 8%ofDIMMSwere affected by errors per year [10].

6

• Hwang et. al studied DRAM errors from a diverse range of production systems

collecting almost 300 terabyte-years of data. Analysis indicated that almost a third of

memory banks showed signs of hard errors [11].

• Intel researchers note the reliability per bit tends to decrease by 8% each successive

processor generation [12], [13].

These failures can have significant real-world impact as illustrated in the following

anecdotal examples of failures [8]:

• Hardware faults corrupted the state of processes in some instances ofGoogle’sChubby

locking service resulting in at least one complete service failure.

• In 2008, a single flipped bit in a single machine propagated via messages to other

processes, causing an 8-hour outage of Amazon S3 service in the USA and Europe.

• When under high load, faulty hardware corrupted the payload of Amazon S3 user

message during 2008 and 2011.

• Magnolia, a social bookmarking website, had a major data corruption episode, losing

all user data; an event that led to the company’s closing.

• State corruption at the CPU level is a common occurrence in the Google Mesa data

warehouse system at the large scale in which it operates. Ensuring state integrity

becomes the responsibility of application developers who must add additional code to

check assertions, checksum results, and execute consistency checks against replicated

data [14].

Data corruption can also occur when malicious actors are present. Encryption,

message authentication codes, digital signatures and cryptographic hash functions are used

to protect sensitive information, authenticate users and detect message corruption [15]. Ma-

licious actions are not limited to communication channels. Researchers have demonstrated

7

that parasitic effects in dynamic RAM can be exploited to change contents of neighboring

memory cells [16]. A proof-of-concept exploit was developed to demonstrate the feasibility

of this attack for off-the-shelf systems and further demonstrate the ineffectiveness of existing

countermeasures.

In addition to hardware errors and malicious actors, increasing system complexity

can cause potential sources of data corruption to go unnoticed. Attempts at reducing the

resulting errors include interface propagation analysis and the simplex reference model,

which were described in Section 1. In the latter, redundant controllers, with different oper-

ating characteristics, are utilized, providing operational diversity. An unreliable component

provides full features and aggressive behavior, while a trustworthy component provides

limited features with predictable, safe behavior. A third component, a checker, evaluates

inputs from the unreliable component and trustworthy component, selecting and propagat-

ing the input that is expected to maintain safe operation. In this manner corrupted data is

not allowed to propagate and cause the CPS to operate outside of defined safe operational

limits. This approach comes with additional costs of procuring and integrating the duplicate

and arbitrating components.

Many techniques have been proposed for modeling the reliability of combined

hardware/software systems. As an example, work by Friedman et al. develops extensive

statistical procedures to calculate reliabilitymeasures for hardware and software components

[17]. Despite this general activity, as of the publication date of this thesis, no studies outside

of our research group have aimed to specifically capture the effect of data corruption on

dependability attributes of a system.

Petri nets, and their derivatives, have been used as a basis for system reliability

models. The work most closely related to this thesis is presented in [18], which attempts

to illuminate dependencies between electrical and cyber infrastructures and quantify the

impact of data loss resulting from a malicious attack. The Petri nets described in their

work account for some missing data, however, the impact of corrupt and missing data is not

8

the focus of the study. Malhotra et al. use Petri nets to model system dependability [19].

They propose a methodology to convert fault trees to general stochastic Petri nets (GSPN)

and stochastic reward nets (SRN), allowing for analysis of system dependability attributes.

Their work does not directly address data corruption. Chen et al. investigate the use of Petri

nets to model coordinated attacks on an electrical smart grid [20]. These attacks include

intentional, malicious data corruption or blocking of communication paths, which results in

data loss. Their work shows the sequence of actions during attacks, with the aim of gaining

an understanding of attack vectors. Propagation of corrupt data or ripple effects of data loss

are not directly addressed.

Understanding of component criticality for CPSs and determination of the impact

of individual component failures on service delivery are recognized needs. Sha et al. were

among the first to note the pressing need for theory and tools that facilitate understanding

of dependency relationships between components and the effects of these dependencies on

service delivery [21].

Failure dynamics within single, standalone networks have been the subject of ex-

tensive study. Systems today consist of coupled networks, whose failure dynamics differ

from those of individual networks. Among these differences is the increased vulnerability

of coupled networks to random failures [22].

A mechanism to quantify the impact of cyber components within a CPS is a first

step. Marashi et al. propose such a model, calculating two measures of CPS component

dependability; criticality (impact to overall service provision when a component fails) and

fragility (sensitivity of this component to failure of other components) [23]. This model

quantifies the interdependence of CPS cyber and physical components, and quantifying

the effect of fault propagation paths in the face of disruptive events. Woodard proposes a

conceptual CPN data corruption model [24]. This model facilitates the evaluation of data

corruption extent at any given time and allows for investigation of the impact data corruption

has on service delivery.

9

This work extends the foundational work of Woodard and Marashi. The original

research contribution of this work is a model that quantifies and predicts the impact corrupt

and missing data have on cyber-physical data processing elements and the resultant impact

to overall system service delivery. The proposed approach and metric can enable informed

decision making in the hardening decision process, providing information as to which data

processing elements within a cyber-physical system, that fail due to missing or corrupt

data, have the most impact on overall system service delivery. Conversely, the information

provided by this approach informs decision makers as to those data processing elements

where missing and corrupt data issues have lower impact on service delivery. When limited

resources are available the proposed model can be used as an aid to applying resources

where greatest impact will be realized.

2.1. MODELS

Realworld physical systems components operate concurrently and in a non-deterministic

manner. Designing reliability into a cyber physical systems is a challenge and non-trivial

task. For example, in a system of even minor complexity, when communicated messages

are lost, process scheduling and timing of physical events are taken into account the number

of execution states becomes quite large - larger than reasonable for human designers to

understand all interaction patterns, including the impact of corrupted or missing data on

system operation. For many critical systems; vehicle control systems, life support systems,

nuclear power plant control systems, etc. reliability must be understood and designed in to

the system from the beginning. Further, it is impossible to inject faults and monitor failures

in many operating cyber-physical systems. Disruption caused by testing is not an option as

these systems provide critical services.

Models have become a preferred method to address these design challenges. De-

veloping models allows for a designer to gain 1) insight into the operation of complex,

concurrent systems; 2) understand completeness of the design and 3) confidence in the

10

design correctness. Petri nets and derivatives; colored Petri nets, stochastic Petri nets; have

been used as modeling environments that can aid in meeting these design challenges. Two

examples of use of Petri nets to model business processes are:

• Ericsson Telebit used CPNs to aid in development of the communication protocol

Edge Route Discovery Protocol (ERDP) [25]. Modeling, simulation and state space

analysis identified several issues and errors in the design prior to finalization.

• Huang et. al [26] used Colored Petri Nets to develop models and algorithms for

tracing the entire life of manufactured products.

2.2. INFORMAL DEFINITION PETRI NET

Petri nets are directed bi-partite graphs consisting of two mutually exclusive node

classes, labeled as either a Place or a Transition. Arcs connect places to transitions and

vice-versa. It is invalid for an arc to connect two places or two transitions. Each place may

contain one or more Tokens.

In a standard PN, tokens are untyped and no distinction is made between individual

tokens. Places contain discrete numbers of tokens. The set of tokens held in a particular

place is the Marking of that place. A distribution of tokens across all places is denoted

as a Marking of the Petri net. Transitions are enabled when sufficient tokens exist in all

of the transition’s input arcs. When enabled a transition may Fire consuming input tokens

and producing tokens on output arcs. In a standard PN execution is nondeterministic when

11

multiple transitions are enabled simultaneously. The Initial Marking of the PN is specified

by assigning a number of tokens to Places as required by the model. Graphically, Colored

Petri Nets are represented as follow:

• Places as ovals

• Transitions as rectangles

• Arcs by line segments.

Arrowheads indicate direction of token flow. Arcs connecting transitions to places

are referred to as Input Arcs, arcs connecting places to transitions are referred to as Output

Arcs. Figure 2.1 shows an example of a simple CPN.

Petri Net markings over time create a State Space. Analysis of the state space allows

for understanding of system behavior and properties, such as state reachability.

2.3. PETRI NET DEFINITION

A basic Petri net, N , is defined as the tuple N = (P,T, A, M0) where:

• P = {p1, p2, ..., pn} : a finite set of places

• T = {t1, t2, ..., tn} : a finite set of transitions

• P
⋂

T = Φ and T
⋂

P = Φ

• A = {a1, a2, ..., an} : a finite set of arcs

• A ⊆ (PxT)
⋃
(PxT)

• M0 = {mp1,mp2, ...,mpn} : the initial marking

12

Figure 2.1. Simple Petri Net

2.4. COLORED PETRI NETS

An extension to basic Petri Net models is Colored Petri Nets (CPN). CPNs extend

PNs by adding a type, ColorSet, with enumerated (possibly infinite) values, Color to the

token specification. This allows for distinction among tokens and behavioral changes based

on token type and value. The definition of Place is extended to include a list of permitted

ColorSets allowed to be held as tokens in each Place. Arc definition is extended to include

an Arc Expression function or functions. Type checking is then performed on input and

output arcs. Arcs are enabled only when sufficient number of corresponding token types

are available. A second extension, Guard Expression is also added. Guard Expressions

evaluate input arc token types and values to produce a Boolean true or false value. If the

evaluation results in a true condition the arc is enabled, if the evaluation evaluates to false

the arc is disabled. If the Guard Expression evaluates to false, the transition is not enabled

(irrespective of the number and type of input tokens). The Guard Expression concept

enables multiple simultaneous arcs to connect the same Places. Behavior is determined at

runtime based on token type and value. If there are multiple enabled transitions connecting

two places, only one is selected using a stochastic process.

Examples of Petri include:

• Modeling of human and animal metabolic systems, [1]

• Design of urban traffic light control system, [2]

13

Figure 2.2. Colored Petri Net Used to Model Human Metabolic Systems [1]

Figure 2.3. Colored Petri Net Used to Model Urban Traffic Control System [2]

2.5. COLORED PETRI NET DEFINITION

The Colored Petri net Definition includes definitions of the standard Petri net and

adds:

A DTSCPN, N , is thus defined as the tuple N = (P,T, A, Σ, F,C, E,G, M0). Defini-

tion of P,T, AandM0 are as in the original Petri net definition. The additional tuple elements

are defined as:

• Σ = {c1, c2, ..., cn} : a finite set of non-empty color sets (type)

• F = node function mapping A onto (PxT)
⋃
(PxT)

14

• C = color function mapping P into Σ

• G = guard function mapping T into expression: ∀t ∈ T , type G(t) = BOOLE AN

• E = arc expression mapping from A such that ∀a ∈ A, type E(a) = C(p(a))

2.6. DISCRETE TIME STOCHASTIC PETRI NETS

Molloy describes a further extension to Petri nets, discrete-time stochastic Petri nets

(DTSPN) [27]. DTSPNs further extend Petri nets and colored Petri nets with specification

of a non-zero firing probability for each enabled transition. The discrete time stochastic

Petri net may be viewed as a standard Petri net where at each time step any number

(including none) of enabled transitionsmayfire based on probabilities attached to transitions.

The probability of an enabled transition firing is “memoryless,” depending only on the

probability specified and not on previous firing history or current time step. Discrete time

stochastic Petri nets are thus Markovian in nature, the reachability graph of a DTSPN can

be mapped to a Markov process. This work uses this Petri net derivative.

15

3. METHODOLOGY

3.1. CONTRIBUTION

The original research contributions of this work are twofold. First, architectural

changes were made to a colored Petri net simulation model to increase modeling perfor-

mance, provide programmatic control of transition firing probabilities, and enable interac-

tion with external tools during simulations via a set of application programming interfaces.

Second,a model is developed that quantifies the potential impact missing and corrupt data

have on CPS data processing components and the resultant impact to service delivery. This

metric provides a calculated relative measure of service delivery impact to each component,

and provides a means to rank corrupt and missing data impact component by component.

It is envisioned this metric will be used in the hardening decision making process, pro-

viding data identifying those areas of a system having most impact of service delivery

when affected by missing and corrupt data and those areas of a system where missing and

corrupt data have lower impact on service delivery. When limited resources are available

the proposed model can be used as an aid to applying resources where greatest benefit will

be realized.

Thiswork extends two foundational research projects, those ofWoodard andMarashi

[24], [28], [23]. Consistent with their work, survivability is defined qualitatively as a

system’s ability to continuously deliver essential services and exhibiting failure resistance

and graceful degradation. Two survivability quantitative metrics are seen in Figure 3.1,

Extent of Degradation and Rate of Degradation. These metric will be calculated as:

• Extent of Degradation: δ = maxt0≤t≤td |M(t0) − M(t)|

• Rate of Degradation: ρ = maxt0≤t≤td

���dM(t)
dt

���

16

Figure 3.1. Survivability Metrics

This work extends two aspects of theMarashi andWoodard work. An idealized Petri

net model was proposed to enable quantification of missing and corrupt data propagation.

The idealized model implements an idealized 3x3 system model. This work extends this

model from the described idealized 3x3 topology to allow topologies modeling the data

processing element topology within a cyber-physical system. Second, a methodology was

proposed in theseworks to calculate theCriticality of each component. Criticality is defined

as a measure of the consequences of a component failure on overall service delivery. In the

referenced work, to calculate criticality a set of failure cases is generated and simulated. For

each failure case k, the highest level of service degradation is measured as δk . Component

criticality, αi, is calculated as the sum across all failure cases where component i fails as:

αi =
1
m

∑
k∈Qi

©«

first term︷ ︸︸ ︷
δk

max
1≤l≤m

δl
×

second term︷ ︸︸ ︷
dMk(t)

dt

���
t=t(k)i

max∀t

dMk(t)
dt

×

third term︷ ︸︸ ︷
d2Mk(t)

dt2

���
t=t(k)i

max∀t

d2Mk(t)
dt2

ª®®®®®®®®®®¬
(3.1)

The first term normalizes the amount of service delivery impact. The second term

normalizes the rate of impact at the instant of component i’s failure at time t during failure

case k. The third term, the second derivative, is considered to be indicative of the immediate

impact of component i’s failure during the failure case.

17

This work extends this method and it’s application to quantify the criticality of data

processing component failures to service delivery. A high level view of this model is found

in Figure 3.3. This figure shows data flows within and across the model components. Steps

in this process are:

I. The data processing topology corresponding to the cyber-physical system topology

is abstracted as a graph

II. An estimate of the extent of data corruption expected at each node is determined

using a colored Petri net model

III. The set of data processing component criticality values are calculated

IV. The two data sets are provided as input to a calculation of data corruption impact for

each cyber component.

3.1.1. Step 1: Topology Abstraction. The first step in the process is design of a

colored Petri net model mapping the CPS cyber component topology into a colored Petri

net topology. A standard CPN node is defined to model each cyber component. Figure

3.2 provides a graphical view of Petri net components within a node. Following standard

Petri net nomenclature, places are denoted with ovals, transitions with rectangles and arcs

as connecting arrows. Direction of data flow is indicating by the arrow direction with

two-headed arrows indicating two-way data flow. Components within each node are:

• Sensor(s): one or more sensors providing local data

• Input: an entry point to receive data from connected nodes

• Detection and Cleansing: entities that detect and cleanse incoming data from sensors

and inputs

• Database: a database holding a set of historical data values

• Processing: local processing of database entries which may produce corruption

18

This node is then connected to other nodes as defined by the cyber topology creating

the complete CPN model of the CPS cyber components.

Rather than using fixed values for communication, sensor and processing failures,

and to enable closer modeling of real-world devices, node-specific probability values are

assigned to the following events:

• Probability of local sensor(s) producing corrupt data

• Probability of local sensor(s) not producing data when expected (i.e. missing value)

• Probability of local processing corrupting entry in node database

• Probability of local processing dropping data from node database (i.e. creating a

missing value)

• Probability of inter-node communication producing corrupt data

• Probability of inter-node communication not producing data (i.e. producing amissing

value)

Node definitions include optional, configurable mitigation capabilities. If enabled,

corrupt and missing data are cleansed at specified probabilities.

Global parameters specified include number of simulation steps (time) and the

number of simulation iterations to execute.

3.1.2. Step 2: Data Corruption Extent Estimation. Analysis is performed on

simulation output to collect data on amount of corrupt and missing data per execution step

per node as well as the contiguous step sequence lengths where corrupted and missing

data exceed specified limits. Figure 3.4 shows a graphical representation of this data for

the decision support node. 1 Output of this step, A used in the final step is the average

1data shown reflect results from running multiple simulations, with 25,000 steps per simulation run.

19

Figure 3.2. CPN Node Structure

percentage of corrupt and missing data within the node database.

∀ n in N : {DTSCPN nodes} (3.2)

An =

∑
steps

% db corruptionn

n
(3.3)

For purposes of this work average corruption percent is calculated across all simulation

steps. 2

Figure 3.5 shows a distribution of the number of consecutive simulation steps where

corrupted and missing data exceed a defined threshold for the device F6. This data can

provide insights regarding how much missing and corrupt data must be tolerated in an

individual node while continuing to provide service. This data is provided to demonstrate

that shorter runs of corrupted data over the defined threshold occur more frequently than

longer runs of corrupted data. The model presented her provides this data however full

analysis of the data is outside the scope of this work 5.

2This work includes capture of addition model state space data. While note used in analysis described in
this work it is available for future research. Refer to Section 5 for a description.

20

3.1.3. Step 3: Data Processing Component Criticality Calculation. The second

process step is to calculate an aggregate criticality of cyber components, Data Processing

Component Criticality. The concept of criticality was introduced byMarashi [23]. Critical-

ity can be informally expressed as ameasure of howmuch a single component affects system

survivability. Marashi provides a formal definition of criticality and methodology used to

calculate criticality for a single physical component. Multiple physical components can be

affected and controlled by a single cyber component. This work introduces the concept of

aggregate criticality. Data processing component criticality is, in essence, a measure of

the cascading criticality of all physical components directly connected to a specific data

processing component. For purposes of this model it is assumed that failure of a cyber

component results in failure of those physical components directly attached.

Data processing component criticality is calculated as:

∀p ∈ P : {physical components} (3.4)

∀c ∈ C : {cyber components} (3.5)

αi = criticality of physical component i (3.6)

dc = {physical components directly affected byc} (3.7)

criticality(Cc) =
1
|dc |

∑
∀dc

αi (3.8)

(3.9)

3.1.4. Step 4: Impact Calculation. The last step to combine the data processing

component criticality from Step 3 with corresponding corrupt and missing data measured

from Step 2. Impact is calculated as:

∀c ∈ C : C = {cyber components} (3.10)

Impactc = Criticalityc ∗ Ac (3.11)

21

3.2. SIMULATION PERFORMANCE AND INTEGRATION

The foundational colored Petri net simulation code was developed to demonstrate

and validate this particular approach to modeling data corruption behaviors. Performance

concerns were not included in the original design goals. To enable simulation of large

and complex models it was necessary to analyze performance inhibitors and identify code

changes leading to improved simulation performance. Analysis of the simulation envi-

ronment and model architecture identified several areas where changes provide increased

simulation performance.

3.2.1. Design Review - Performance Inhibitors. While reviewing foundational

work, it was noted that CPN simulation performance was an inhibitor to modeling of

large, complex systems. Analysis of the CPN model and architecture provided opportunity

for architectural changes that would provide increased performance and add additional

capabilities while maintaining existing model semantics.

Individual nodes in the original model design consist of four places, twenty nine

transitions and ninety two arcs Figure 3.6. For each simulation step a marking calculation

is executed. This calculation consists of:

• Boolean guard functions are evaluated to determine is transition is enabled.

• Possible firing modes for each enabled transition are calculated by iterating over each

combination of input token(s).

When the step executes a random firing is selected from the set of firing modes for

each transition

Linux performance tools and the Python pStat module were used to characterize per-

formance and identify potential areas for performance enhancement. This characterization

indicated calculation of the marking iterations as computationally expensive and an area

where significant performance improvements could be realized. Table 3.1 shows captured

22

data from the original node structure. Analysis of this data indicated significant time spent

in Python functions calculating possible firing modes. Simplification of node architecture

to reduce the number of transitions and arcs would reduce the number and size of potential

firing sets and have the desired performance enhancements.

Further review of the original node structure showed that multiple, mutually exclu-

sive transition guards were used to model probabilities of data corruption and cleansing.

For example, the process of communicated a valid token required three transitions; one for

the case where the token is successfully transmitted, one for the case where the token is

corrupted and one for the case the communication failed and the token is missing. Duplicate

arcs are required for each of these transition. Arc duplication resulted in duplicate iterations

with a corresponding performance impact.

3.2.2. Architectural Changes for Performance. A node simplification approach

was chosen to eliminate the use of per-transition guards and utilize Python language func-

tions. This approach resulted in a node structure with reduced number of elements; four

places, five transitions and eleven arcs [Figure 3.7].

Increased performance is also realized by migrating from use of transition guards to

user defined Python functions. This eliminates evaluating each guard function to determine

if enabled. The prior approach had multiple transitions with mutually exclusive guards.

This architecture necessitated enumeration of large number of possible firings. Using a

single arc with user defined callable Python function logic significantly reduces the number

of marking enumerations. Selection logic is pushed in to the user-written Python code.

More complex logic is possible than with the transition guard approach. The programmatic

approach also enables future work (see Section 5) allowing dynamic failure probabilities,

communication and integration with other simulation tools

23

Tables 3.2 shows data from the re-architected node structure. Performance is sig-

nificantly improved. It is noted that changes result in greatly decreased number of library

calls. Overall execution time is also reduced. The same configuration and input files were

provided to both scenarios.

The following improvements are realized: 3

• Average runtime 4 reduced 47% (Table 3.3)

• Total function calls are reduced from 32,627,180,048 to 4,107,468,485.

• Procedures associatedwithmarking enumeration dominate the original node profiling

data and not the simplified node.

Table 3.1. pStat Data: Original Node

Calls Total Time Source File Function
1323597000 3197.956 data.py __add__
2862278160 1495.032 data.py cross
924429896 1315.219 nets.py bind

2021316504 1251.976 data.py __init__
11828344 1092.502 nets.py modes
918670448 1065.950 nets.py _check
915100035 793.465 built-in _functools.reduce

2647194000 700.647 data.py dict
1218004298 672.161 nets.py __init__
22870400 633.780 nets.py <listcomp>

Table 3.3 describes run time improvements following modifications.

3.2.3. Integration. Architectural and code changes were implemented allowing

for communication, exchange of control, and exchange of state information between the

colored Petri net simulation code and external applications. These integration additions

enable an external application to monitor simulation status, query the colored Petri net

model markings, modify the colored Petri net model markings, and to control simulation

3Simulation environment: Hardware: 3.40GHZ Intel i5-3570K CPU, 8GB DDR2 memory. Operating
System: CentOS 7 Linux (kernel version 3.10.0). Platform: Python 3.5. Data capture from 5 runs, 1000 steps
per run.

4Runtime measurements recorded under profiling environment

24

Table 3.2. pStat Data: Revised Node

Calls Total Time Source File Function
65949625 169.710 nets.py _check
134599130 150.812 nets.py bind
127428690 140.599 data.py _add
72024565 133.213 nets.py check
101373765 115.053 data.py iterate
173463455 114.657 built-in hasattr
213798470 109.670 nets.py __init__
152628510 102.378 hashables.py __setitem__

2699880 91.940 nets.py modes
213805745 87.310 nets.py __setattr__

step execution. The interface is enabled via a command line parameter and based on TCP/IP

V4 socket interfaces. TCP/IP socket interface was selected due to the wide level of support

for exploitation of this programming model. For example, the MATLAB-based Power

System Analysis Toolbox (PSAT) could be extended to connect to, control, and query a

CPN model markings, using the returned data to adjust power flow parameters based on

levels of data corruption.

The external application is configured to listen for connections on a specified port.

If enabled, the CPN simulation attempts to bind to this port and proceeds to communicate

with the external application via a series of message flows. Figure 3.8 describes this content

and flow of messages.

25

Figure 3.3. Model Overview

26

Figure 3.4. FACTS Device F6 (l12−17) Database State - Single Run

27

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50+

Fr
eq

ue
nc
y

Duration of continual corruption in excess of threshold

Figure 3.5. FACTS Device F6 (l12−17) Consecutive Steps Over Threshold - Single Run

Figure 3.6. Original Node Structure

28

Processing1
True

db1
{}

 (processingFunction(x, 0.001, 0.001))!

in1
{}

Detection1
True

 x

SensorSource1
{0}

Sensor11
True

 x

flagged1
{0}

 detectFunction(x, 0.95, 0.01)

Comm11
True

 x?

 x!

Mitigation1
True

 mitigateFunction(x, flagged, 0.5, 0.75)

 communicationFunction(x, 0.001, 0.001)

 (x, flagged)

 x sensorFunction(x, 0.001, 0.001)

Figure 3.7. Simplified Node Structure

29

Table 3.3. Run Time in Seconds

Run Original Simplified
1 350.48 176.81
2 327.93 176.98
3 321.92 178.07
4 324.61 177.48
5 320.16 177.19
6 322.81 178.17
7 348.03 175.89
8 328.75 177.15
9 347.65 176.31
10 339.48 174.97
11 329.82 176.16
12 340.65 177.05
13 329.36 175.15
14 337.34 174.99
15 350.30 175.97
16 341.09 175.91
17 329.57 175.48
18 339.39 176.15
19 345.64 173.92
20 344.87 174.83
21 339.39 176.12
22 324.67 175.28
23 330.67 175.26
24 324.07 179.67
25 324.23 182.62
26 331.50 179.59
27 350.09 183.12
28 339.34 186.14
29 327.08 188.29
30 331.12 183.11

Average 334.73 177.79

30

Figure 3.8. External Application Message Flow

31

4. APPLICATION TO CPS

Marashi has researched interdependencies between the cyber and physical compo-

nents of a CPS [23]. This work explores interdependencies via case studies using IEEE-14

and IEEE-57 bus systems [29]. This work focuses on the IEEE-57 bus system. The IEEE-57

bus test case is a simple approximation of the America Electric Power system deployed in

the Midwest U.S. in the early 1960s. There are 57 buses, 7 generators and 42 loads. An

IEEE-57 model augmented with cyber control components is used in this work as the basis

for tracking the flow of corrupted data. The focus of this work is on the impact to the

critical components identified byMarashi. In this model, cyber control components; phasor

measurement units (PMUs) and flexible AC transmission system (FACTS) devices and a

central control unit are overlaid over the physical IEEE-57 bus system. The topology of the

cyber components as defined by Marashi [Figure 4.3, page 37] is used as the basis for the

colored Petri net model used in this case study.

A stepwise CPN simulation is then executed. The current state information of each

place is logged, providing step-by-step detail of the CPN. This data becomes the input to

the next step, analysis.

Analysis is performed comparing captured state data against predefined thresholds

for total amount of permissible invalid data and number of consecutive steps where missing

and corrupt data exceed predefined limits. Individual transmission line criticality values

from previous simulations are used (Table 4.1).

Marashi’s simulation was conducted over 25 steps. Simulations of the overlaid

cyber topology of 25,000 steps each are executed, corresponding to 1,000 CPN steps per

power systems step. A configurable threshold (3% used in this model) was established

as the allowable percentage of corrupt/missing data for the central processing and PMU

nodes. Data collected capture the step number where database corruption exceeds the

32

Table 4.1. Single Line Criticality (with FACTS)

Line Criticality
l6−7 (F3) 0.123
l1−16 (F4) 0.066
l1−17 (F5) 0.060
l6−8 (F1) 0.060
l7−8 (F2) 0.020

l54−55 (F7) 0.020
l12−17 (F6) 0.000

permitted threshold and number of steps duration. Consecutive over-threshold sequences

ranged from a minimum of 1 step to maximum of 115 consecutive steps. Corruption data

for each run and for each node was collected. Figure 4.4 shows an example of data from

cyber component F6 plotted per step for a single run. A trend-line showing the specified

allowable corrupted data limit is included. Data point below the threshold are colored blue

and green, those above the threshold orange and red. Table 4.2 shows database states of a

25,000 step simulation. Figure 4.1 shows this data graphically.

Table 4.2. CPN Databases: Percent Missing or Corrupt

Run
Node 1 2 3 4 5 6 7 8 9 10

l1−16 (F4) 1.03% 0.91% 0.96% 0.96% 1.29% 1.12% 1.08% 1.38% 0.93% 1.21%
l1−17 (F5) 1.05% 1.05% 1.20% 1.22% 1.23% 1.06% 0.69% 0.81% 1.07% 1.08%
l12−17 (F6) 1.06% 1.25% 0.91% 0.95% 1.30% 1.22% 0.97% 1.03% 1.47% 1.05%
l54−55 (F7) 1.31% 0.93% 1.04% 1.36% 1.13% 0.82% 0.90% 1.52% 1.10% 1.11%
l6−7 (F3) 1.40% 0.88% 0.89% 0.86% 1.03% 0.91% 0.94% 0.94% 1.43% 0.98%
l6−8 (F1) 0.90% 1.36% 1.33% 0.96% 1.19% 1.19% 1.43% 0.82% 1.22% 0.90%
l7−8 (F2) 1.11% 1.27% 1.06% 1.19% 1.25% 1.09% 1.20% 1.04% 1.19% 0.92%

dbProcessing 2.10% 2.10% 2.33% 1.94% 2.07% 2.18% 2.00% 1.75% 2.16% 2.30%

To assess criticality of overlaid data processing elements, aggregated measures are

calculated combining criticality of the underlying physical components with data corruption

percentages from the data processing elements from the CPN model.

33

Physical aggregated criticality and fragility metrics are calculated for each PMU as:

Aggregate PMU Criticality

∀p ∈ P : P = PMU devices (4.1)

∀l ∈ L : L = lines attach to bus L (4.2)

c(li− j) = calculated criticality of line li− j (4.3)

Cp =
∑

li−j∈L

c(li− j) (4.4)

Aggregate measures and information from the CPN model, specifically database

state, are then combined to calculate a figure-of-merit that quantifies the impact corrupt and

missing data have to the system and which cyber components are most at risk of impacting

system service delivery when affected by corrupt or missing data.

Using the criticality and average database state measures the impact metric can be

calculated as:

Impact

Impact: Ip = [Average Percentage Corrupt Data] ∗ Cp ∗ 100 (4.5)

Calculated values for FACTS devices are shown in Table 4.3. Comparison of

criticality measures between the Single Line Criticality in Table 4.1 against the Aggregate

Criticality and Impact in Table 4.3 show different orders. The Criticality value of 0.000

listed in the table for FACTS device F6 (line l12−17) reflects improvements to service delivery

from the addition of an active power flow device as compared to a physical only IEEE-57

bus system.

34

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Percent Missing or Corrupt Data

Run 0 Run 1 Run 2

Figure 4.1. Average Corrupted or Missing Data

35

While single device criticality analysis provides one measure, the impact metric

showing the effect of missing and corrupt data shows a different order. The Impact measure

provides an additional mechanism for systems designers to use as they look at improving

systems reliability.

Table 4.3. FACTS Line Aggregate Criticality and Impact

Data Extent of Missing and Data Corruption
Processing Data Corruption Corrupt Data Impact

Node (Expected) Criticality (Expected)
l6−8 (F1) 1.13% 0.80 0.91
l7−8 (F2) 1.13% 0.69 0.78
l6−7 (F3) 1.02% 0.66 0.67
l1−16 (F4) 1.09% 0.63 0.68
l1−17 (F5) 1.05% 0.57 0.59
l12−17 (F6) 1.12% 0.28 0.31
l54−55 (F7) 1.12% 0.06 0.07

36

Figure 4.2. IEEE-57 Bus Smart Grid

37

Figure 4.3. IEEE-57 Bus Smart Grid with Cyber Control Components

38

Figure 4.4. Percentage Corrupt or Missing Data

39

5. CONCLUSIONS AND FUTURE WORK

This thesis proposes a method for predicting the impact of data corruption at each

data processing node of a CPS, based on:

• The extent of data corruption expected at the node

• The consequences of the node’s failure in terms of service interruptions, i.e., its

criticality

A second contribution of this work is a performance improvement to a colored

petri net simulation. As this model is applied to more complex cyber physical system

topologies, the improved performance enables analysis of larger models. Replacement of

transition guard design with Python language functions will allow future work to include

more complex failure probability logic. For example, corruption probabilities can be made

dynamic, using distributions such asExponential,Weibull, Poisson, or evenmodeler-defined

as applicable, to meet specific needs.

A third contribution is enabling of integration of the data corruption modeling with

external tools. Interfaces have been developed allowing communication to external tools

at each modeling step. With the communication capability, external tools can take actions

based on current CPN marking, affect CPN markings, or step-by-step marking analysis.

The communication mechanism utilizes standard TCP/IP socket techniques and, as such,

enables connection to a wide variety of external tools.

An example application to an electrical distribution system was demonstrated. It

was demonstrated that combining importance analysis results with the colored Petri net

simulation results can provide predictive assistance to evaluate impact of data processing

element failure caused by corrupted or missing data. These predictive values can be used to

identify data processing elements where data corruption issues have the highest impact on

40

system service delivery and where investments are required to improve systems reliability.

The proposed method aids in making determination of system, component or network

modifications necessary to meet service level requirements. As important as identification

of where investments are needed, knowledge gained from this method can also be used

to identify areas where hardening investments are of limited value. Identification of areas

where minimal service delivery impact is realized by hardening against failure allows for

resources to be applied to more critical areas of the cyber-physical system, resulting in both

improved service delivery and lower overall cost.

With the enabling contribution of this work it is anticipated that future work will

extend this research in the following areas:

• The model as described, is a template of idealized physical devices. Future work

can include developing models that more closely mirror actual physical devices

characteristics - the amount of missing or corrupt data than can be tolerated, both an

absolute percentage of missing or corrupt data at any one time and a threshold over

time (consecutive steps).

• Variations of the internal node database size can be explored to determine impact of

corrupted data and what tolerance levels provide acceptable service delivery.

• The model described captures raw state space data. Petri net state space analysis tools

and methods can be used against this data to quantify, describe and better understand

missing and corrupt data propagation patterns. Additional insight intomodel behavior

can be realized by performing reachability analysis of the captured state data.

41

APPENDIX

EXAMPLE TRANSITION PROBABILITY FUNCTIONS

The following are examples of modeler written Python transition functions as de-

scribed in Section 3.

"""
Probability distribution functions
"""
__author__ = "Erik␣Burgdorf ,␣edb4k4@mst.edu"

from random import random , randint

def processingFunction(x, pProcCorruption , pProcMiss , db_size):
"""
Data corruption processing function

Inputs:

x: token database
pProcCorruption: probability of processing corruption
pProcMiss: probability processing creates missing data
db_size: number of tokens in database

Returns:

database with updated entries
"""

dbcontent = x.items()
slot = randint(0, len(dbcontent)-1)
p_proc = random ()

if p_proc <= pProcCorruption: # proc_corr
dbcontent[slot] = 1 # CORRUPT

elif p_proc > (1.0- pProcMiss): # proc_miss
dbcontent[slot] = 2 # MISS

else: #
dbcontent[slot] = 0 # VALID

42

#
trim db to appropriate number of entries
#

while len(dbcontent) > db_size:
del dbcontent[randint(0, len(dbcontent)-1)]

return dbcontent

def sensorFunction(x, pSensorCorruption , pSensorMiss):
"""
Sensor function

Inputs:

x: data token
pSensorCorruption: probability sensor corrupts token
pSensorMiss: probability sensor creates missing data

Returns:

data token
"""

p = random ()
if p <= pSensorCorruption: # sens_corr

r = 1 # CORRUPT
elif (1.0- pSensorMiss) < p: # sens_miss

r = 2 # MISS
else: #

r = 0 # VALID
return r

def detectFunction(x, pTruePositive , pFalsePositive):
"""
Detection function

Inputs:

x: data token
pTruePositive: probability corruption correctly detected
pFalsePositive: probability corruption incorrectly detected

Returns:

data token
flagged indication

43

"""

r = x
flagged = False

detect

p = random () # p(detection)

if x == 0 and 0 <= p < pFalsePositive:
r = 0 # False positive
flagged = True

elif x == 1 and 0 <= p < pTruePositive:
r = 1 # True positive
flagged = True

elif x == 2:
r = 2 # Missing
flagged = True

elif x == 0 and pFalsePositive <= p < 1.0:
r = 0 # True negative
flagged = False

elif x == 1 and pTruePositive <= p < 1.0:
r = 1 # False negative
flagged = False

return (r, flagged)

mitigate

def mitigateFunction(x, flagged , pFix , pDrop):
"""
Mitigation function

Inputs:

x: data token
flagged: indication if token was flagged as corrupt
pFix: probability corrupt token is corrected
pDrop: probability token is dropped (made missing)

Returns:

data token
flagged indication

"""

r = x

44

if flagged is True:
p = random () # p(mitigation)

if r == 1 or r == 2: # bad and missing
if 0 <= p < pFix:

r = 0 # mitigate
elif pFix <= p < pDrop:

r = 1 # unable to mitigate
else:

r = 2 # drop
elif r == 0: # good

if 0 <= p <= pDrop:
r = 1 # false mitigation

elif pDrop <= p < 1:
r = 2 # false drop

return r

def communicationFunction(x, pCommCorruption , pCommMiss):
"""

Communication function

Inputs:

x: data token
pCommCorruption: probability communication corrupts token
pCommMiss: probability communication creates missing data

Returns:

data token
"""

p = random ()
if 0.0 <= p <= pCommCorruption: # comm_corr

r = 1 # CORRUPT
elif (1.0- pCommMiss) <= p < 1.0: # comm_miss

r = 2 # MISS
else: #

r = 0 # VALID
return r

45

REFERENCES

[1] J. H. Van Beek, A.-C. Hauschild, H. Hettling, and T. W. Binsl, “Robust modelling,
measurement and analysis of human and animal metabolic systems,” Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineer-
ing Sciences, vol. 367, no. 1895, pp. 1971–1992, 2009.

[2] Y.-S. Huang, Y.-S. Weng, and M. Zhou, “Modular design of urban traffic-light control
systems based on synchronized timed petri nets,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 530–539, 2014.

[3] Schiaparelli Inquiry Board - European Space Agency, “ExoMars 2016 - Schiaparelli
Anomaly Inquiry,” tech. rep., 2017.

[4] Bureau d’Enquêtes et d’Analyses pour la sêcuritê de l’aviation civile, “Final report on
the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by
Air France flight AF 447 Rio de Janeiro–Paris,” tech. rep., 2012.

[5] “Report of the Enquiry Committee on Grid Disturbance in Northern Region on 30th
July 2012 and in Northern, Eastern & North-eastern Region on 31st July, 2012.,” tech.
rep.

[6] J. Voas, “Error propagation analysis for COTS systems,” Computing Control Engi-
neering Journal, vol. 8, pp. 269–272, Dec 1997.

[7] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar, “The sim-
plex reference model: Limiting fault-propagation due to unreliable components in
cyber-physical system architectures,” in 28th IEEE International Real-Time Systems
Symposium (RTSS 2007), pp. 400–412, Dec 2007.

[8] D. Behrens, Error isolation in distributed systems. PhD thesis, Technische Universitat
Dresden, 2015.

[9] A.Avizienis, J. C. Laprie, B. Randell, andC. Landwehr, “Basic concepts and taxonomy
of dependable and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, pp. 11–33, Jan 2004.

[10] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild: a large-
scale field study,” in ACM SIGMETRICS Performance Evaluation Review, vol. 37,
pp. 193–204, ACM, 2009.

[11] A. A. Hwang, I. A. Stefanovici, and B. Schroeder, “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for system design,” in
ACM SIGPLAN Notices, vol. 47, pp. 111–122, ACM, 2012.

46

[12] S. Borkar, “Designing reliable systems from unreliable components: the challenges
of transistor variability and degradation,” Ieee Micro, vol. 25, no. 6, pp. 10–16, 2005.

[13] S. Borkar et al., “Microarchitecture and design challenges for gigascale integration,”
in MICRO, vol. 37, pp. 3–3, 2004.

[14] A. Gupta, F. Yang, J. Govig, A. Kirsch, K. Chan, K. Lai, S. Wu, S. G. Dhoot,
A. R. Kumar, A. Agiwal, et al., “Mesa: Geo-replicated, near real-time, scalable data
warehousing,” Proceedings of the VLDB Endowment, vol. 7, no. 12, pp. 1259–1270,
2014.

[15] W. Stallings and M. P. Tahiliani, Cryptography and network security: principles and
practice, vol. 6. Pearson London, 2014.

[16] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer. js: A remote software-induced
fault attack in javascript,” in Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 300–321, Springer, 2016.

[17] M. A. Friedman, P. Y. Tran, and P. I. Goddard, Reliability of software intensive systems.
William Andrew, 1995.

[18] M. Beccuti, S. Chiaradonna, F. Di Giandomenico, S. Donatelli, G. Dondossola, and
G. Franceschinis, “Quantification of dependencies between electrical and information
infrastructures,” International Journal of Critical Infrastructure Protection, vol. 5,
no. 1, pp. 14–27, 2012.

[19] M. Malhotra and K. S. Trivedi, “Dependability modeling using Petri-nets,” IEEE
Transactions on Reliability, vol. 44, pp. 428–440, Sept. 1995.

[20] T. M. Chen, J. C. Sanchez-Aarnoutse, and J. Buford, “Petri Net Modeling of Cyber-
Physical Attacks on Smart Grid,” IEEE Transactions on Smart Grid, vol. 2, pp. 741–
749, Dec. 2011.

[21] L. Sha, S. Gopalakrishnan, X. Liu, and Q. Wang, “Cyber-physical systems: A new
frontier,” in Machine Learning in Cyber Trust, pp. 3–13, Springer, 2009.

[22] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, “Catastrophic
cascade of failures in interdependent networks,” Nature; London, vol. 464, no. 7291,
pp. 1025–1028, 2010.

[23] K. Marashi, S. S. Sarvestani, and A. R. Hurson, “Quantification and analysis of
interdependency in cyber-physical systems,” in Dependable Systems and Networks
Workshop, 2016 46th Annual IEEE/IFIP International Conference on, pp. 149–154,
IEEE, 2016.

[24] M.Woodard, S. Sedigh Sarvestani, and A. R. Hurson Reliability Engineering & Safety
Systems, 2017 Submitted. Reliability Engineering & Safety Systems.

47

[25] L. M. Kristensen and K. Jensen, Specification and validation of an edge router dis-
covery protocol for mobile ad hoc networks, pp. 248–269. Springer, 2004.

[26] J. Huang, Y. Zhu, B. Cheng, C. Lin, and J. Chen, “A Petri net based approach for
supporting traceability in cyber-physical manufacturing systems,” Sensors, vol. 16,
p. 382, Mar 2016.

[27] M. K. Molloy, “Discrete time stochastic Petri nets,” IEEE Transactions on Software
Engineering, no. 4, pp. 417–423, 1985.

[28] M. Woodard, K. Marashi, and S. Sedigh Sarvestani, “Survivability evaluation and
importance analysis for complex networked systems,” IEEE Transactions on Network
Science and Engineering, 2017.

[29] R. Christie, “Power Systems Test Case Archive, University of Washington.” https:
//www2.ee.washington.edu/research/pstca, 2000.

48

VITA

Erik David Burgdorf was born in Ohio and has lived and worked in Texas, North

Carolina, and Missouri. He attended the University of Missouri - Rolla (now the Missouri

University of Science and Technology) from 1975 through 1980, earning a Bachelor of

Science in Computer Science in May 1980. Following graduation he worked in industry,

contributing to graphics terminal design, embedded systems development, real-time operat-

ing system design, data and voice switching systems, and large scale data analysis software.

After 26 years in the industry, he chose to apply his skills in support of a non-profit charitable

foundation. He spent 10 years as Director, managing the foundation corpus and overseeing

grant processes and beneficiary relationships. Upon completion of the foundation work he

made the decision to return to his alma mater and complete a graduate degree, receiving a

Master of Science degree in Computer Engineering in December 2017.

