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ABSTRACT 

 

 In this thesis, the concept of microgrid system is introduced. Also, the major 

components of a microgrid will be discussed thoroughly. Both grid-connected and 

autonomous modes are explained. In addition, the control of a microgrid is defined for 

the following types: local, centralized and decentralized control. 

 As one of the nation’s premiere research universities, the Missouri University of 

Science and Technology has built four inspirational solar houses (solar villages) for a 

competition in the US Department of Energy Solar Decathlon to allow students to 

research and improve different aspects of the microgrid system. Consequently, this thesis 

develops a computer model and displays the houses and the components of the Missouri 

S&T solar village. Also, it illustrated some technologies and techniques used in the solar 

village.   

 The simulation of the solar village system will be designed by MATLAB and is 

based on the data obtained from the real system. Energy management systems and the 

control scenarios of battery charging and discharging are provided along with an analysis 

of how effectiveness could be increased. Also, it proposed some specific algorithms to 

manage the power flow of the system based on the battery’s state of charge (SOC), solar 

power generation, and load. The algorithms work to control SOC and operate under the 

following conditions: charging the battery, and discharging the battery, importing power 

from a utility, and exporting power to a utility. The primary focus in this thesis is to find 

a way to have the final SOC after a specific time be close to the initial SOC and maintain 

the SOC between reasonable range. 
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1. INTRODUCTION 

 

1.1. MICROGRID 

A microgrid is defined as a set of interconnected loads and distributed energy 

sources (microsources) throughout explicitly defined electrical restrictions that can be 

operated as a single controllable load. The general structure of micrgrid is shown in 

Figure 1.1. The microgrid is connected to the main grid through a common point of 

coupling, but can be separated from the main grid if there are disturbances with the power 

utility or problems with the power quality. Therefore, a microgrid provides local power 

generation for local loads.  Microgrids can be powered by diverse energy sources 

including local and small distributed energy sources such as microturbines, wind 

turbines, fuel cells, and photovoltaic (PV) systems that are joined with storage devices 

that make the system highly efficient and able to supply continuous local loads.  The 

local loads can be classified into two groups, the sensitive and non-sensitive load, based 

on the need to prevent power outages.  Sensitive loads are defined as loads that are 

constantly supplied while non-sensitive loads are loads that can be shut down if there are 

disturbances in the main grid or problems in power equality.  In addition, microgrids have 

features that allow extra power from the local generators to be sent to the utility grid, 

however, the main purpose of the microgrid is to avoid power outages that impact 

sensitive loads. In addition, one of the differences between a conventional grid and a 

microgrid is efficiency.  A conventional grid has higher losses compared to a microgrid 

due to the large amount of energy that is wasted in a conventional grid as heat.  

Meanwhile, the power sources in a microgrid are small (microsources) and located in 

close proximity to the loads [1-4] which allow for more usable energy. The following are 

some of the advantages and disadvantages of a microgrid: 

The advantages of a microgrid [201]: 

� A main benefit of a microgrid system is its ability to island and isolate itself 

from a utility seamlessly with little or no interruption to the loads within the 

microgrid. 

� A microgrid protects utility grid from any problems by decreasing the 

pressure on the grid during maximum peak hours. 
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� A microgrid uses low- or zero-emission generators which provide huge 

environmental advantages. 

� A microgrid’s generator is close to users which allows energy to be delivered 

with higher efficiency with less conduction losses. 

� A microgrid reduces electricity costs by producing enough power to meet 

energy needs, but not producing excess energy. 

The disadvantages of a microgrid: 

� Voltage, frequency, and power quality are three main parameters that must be 

carefully considered and controlled using acceptable standards to maintain the 

proper power and energy balance. 

� Electrical energy must be stored in battery banks which requires greater space 

and maintenance. 

� If required, resynchronizing a microgrid with the utility grid is difficult. 

� Microgrids must be properly protected. 

� Issues such as standby charges and net metering may be problematic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. The general structure of microgrid. 
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1.2 COMPONENTS OF MICROGRID 

In this section, some of the main components in a microgrid system will be 

discussed including the distributed generator or microsources such as the PV system, fuel 

cell, and wind turbine. Second, the power electronic elements in a microgrid will be 

discussed along with the storage system. 

1.2.1. Distributed Generators. The following sections provide information about 

distributed generators. 

1.2.1.1. PV system. A photovoltaic (PV) system, also called a photovoltaic power 

system or a solar panel, is one of the forms of sustainable energy.  A solar panel uses sun 

rays to produce electricity. There are different types of the solar panels, which includes 

monocrystalline, polycrystalline and thin film. The solar village houses used 

monocrystalline and polycrystalline. Monocrystalline consists of silicon ingots. Four 

sides of cylindrical ingots are eliminated to make a slices of silicon ingots in order to 

optimize the function of a single monocrystalline solar cell. Monocrystalline solar panel 

have high efficiency rates, which is typically from 15% to 20%. Furthermore, since this 

type of solar panel produces a high power, they do not require a large space. It generates 

electricity as four times as thin-film solar panels. The maintenance of monocrystalline is 

low. However, the cost of monocrystalline is high. Figure 1.2 shows the shape of 

monocrystalline solar panel and cell.      

 

 

 

 

 

 

 

 

 

 

Figure 1.2. The shape of monocrystalline solar panel and cell. 
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 Polycrystalline solar panel consists of square silicon ingots. Since the complexity 

of making a polycrystalline solar panel is relatively simpler than monocrystalline, the 

cost of polycrystalline is low. Also, it has a typical efficiency from 13% to 16%, because 

the silicon purity is less than monocrystalline. Finally, it requires a large space to 

generate enough electricity comparing with monocrystalline. Figure 1.3 shows the shape 

of polycrystalline solar panel and cell.    

 

 

 

 

   

 

 

 

 

 

Figure 1.3. The shape of polycrystalline solar panel and cell. 

 

1.2.1.2. Fuel cell. A fuel cell is a dependable and sustainable energy source that 

can be traced back to 1839 when Sir William Grove created the first manmade fuel cell.  

A fuel cell generates electricity using many electrochemical reactions that result in the 

creation of electrical energy from chemical energy.  The fuel that is used to produce the 

energy could be hydrogen, gasoline, methanol, ethanol, or natural gas.  There are 

similarities between fuel cells and batteries excluding no need for recharging.  However, 

fuel cells have to be supplied with high fuel and an oxidizer. Fuel cells generate low 

voltage DC electricity and require an inverter to convert the electricity from DC to AC to 

allow appliances to work properly.  In addition, a fuel cell creates no emissions, only 

water and carbon dioxide.  A fuel cell could convert approximately 80% of the energy 

stored to electricity with relatively low maintenance compared to other distributed 

generators and no noise.  However, a fuel cell will produce extra heat.  The heat could be  

 



	 5 

used for cogeneration to produce additional energy.  The drawbacks of a fuel cell are cost 

and the need for a complicated control system. A fuel cell system is shown in Figure 1.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. A fuel cell system [10]. 

 

There are 6 types of fuel cells as listed below: 

• Proton Exchange Membrane. 

• Direct Methanol. 

• Alkaline. 

• Phosphoric Acid. 

• Molten Carbonate. 

• Solid Oxide. 

The different among the types of fuel cell is shown in Table 1.1. The operating 

temperatures of different fuel cells based on type, power density, efficiency rate, and 

possibility for cogeneration. 

1.2.1.3. Wind turbine. A wind turbine system is a system that converts kinetic 

energy from wind into electrical power.  A wind turbine uses energy from moving air by 

using the energy of the moving air to turn a shaft which then turns a generator to create 

power.  The power generated by the wind relies on the wind speed and the way that the 

wind is caught by the sharpened pieces of steel called blades.   
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Table 1.1. The different among the types of fuel cell [10]. 

 

 

 

 

 

 

 

 

 

There are two types of turbines, horizontal and vertical.  The types of turbines are 

shown in Figure 1.5 (a & b).  When a horizontal axis is used, the wind velocity is higher 

in the vertical hub and it has greater efficiency.  However, this set up has low support and 

makes it difficult for technicians to access the generator to perform maintenance and 

upkeep procedures.  When a vertical hub is used, the generator can be on the ground.  

However, there are weaknesses in the vertical pivot point.  This set up has some 

drawbacks as the wind speed is lower at the ground level than at higher elevations and the 

efficiency of this system is low comparing with horizontal hub [11]. 

The horizontal axis components used in a wind turbine are depicted in Figure 1.6.  

The blades and rotor work to convert wind power into rotational mechanical power.  The 

rotational mechanical power turns a generator and the generator converts the mechanical 

power into electrical power.  In the gear box, the wind turbines will rotate between 40 

and 400 rpm.  The generators will rotate at 1,200 to 1,800 rpm.  Several wind turbine 

models use a step-up gear box to efficiently operate the generator and produce efficient 

electricity.  The rotor is a part of the wind turbine that harnesses the wind energy and 

usually consists of two or more wooden, fiberglass, or metal blades that rotate around a 

horizontal or vertical axes at a rate defined by the wind speed and the properties of the 

rotational blades.  The rotational blades are connected to the hub which is connected to 

the main shaft. 
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Figure 1.5. The types of turbines [11]. (a)Vertical axis, (b) Horizontal axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Wind turbine [11]. 

 

1.2.2. Power Electronic Elements. The following sections provide an overview 

of the major electric elements commonly used in a microgrid system. 

1.2.2.1. Rectifier. A rectifier is an electrical device that converts alternating 

current (AC) to direct current (DC). The objective of a rectifier is to produce pure DC or 

generate a voltage or current waveform which can be considered a DC component [12]. 

(a) (b) 
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There are different rectifier circuits that produce different waveforms as DC 

outputs.  The following four items are the most common rectifier circuits: 

• The half-wave rectifier. 

• The full-wave rectifier. 

• The three phase half-wave rectifier. 

• The three phase full-wave rectifier.  

1.2.2.2. Inverter. An inverter is a device which performs the opposite function of 

the rectifier.  There have been many developments in static frequency conversion in 

power electronics and the conversion of AC power at one frequency to another AC 

frequency using solid-state electronics has become more popular.  There are two methods 

used in static AC conversion: 

• The cycloconverter. 

• The rectifier-inverter. 

The cycloconverter is a device that immediately converts AC power at a particular 

frequency to AC power at another frequency while the rectifier-inverter converts AC 

power to DC power and then converts the DC power to AC power again at different 

frequency [12].     

1.2.3. Storage System. The use of renewable energy is associated with problems 

related to variability and intermittent energy production or instability.  To reduce those 

problems, a suitable storage system must be installed in the local system.  The perfect 

storage system would be fully equipped for technical or economical use and could store 

power produced by fossil fuels or nuclear technology.  Storage systems have the ability to 

operate a system using a wide range of power densities. No particular storage system has 

the ability to handle all situations and a system will often employ multiple storage 

systems to perform tasks optimally.  A system may use a combination of some or all of 

the following: super capacitors, batteries, super conducting magnetic energy storage, and 

kinetic energy storage in flywheels. The characteristics of compensation provided by the 

system determine the limits of energy storage.  The type of stored energy and limit of the 

storage must be selected carefully.  If there is a short-time voltage drop situation that may 

draw higher currents for only a few cycles, energy storage elements with smaller storage 
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capacities must be installed.  However, a second backup source should be installed to 

handle situations in which the drop continues for a longer period of time and leads to the 

interruption of supply based on sensitive loads [13-16].  

 

1.3. THE STRUCTURE OF THE MICROGRID 

The microgrid structure consists of several components; the main components are 

distributed generation, loads, energy storage system, and static disconnect switch, 

controller, and mode switching device.  These components are shown in Figure 1.5. 

Microgrid system contain a set of feeders, which might be located in the distributed 

system or a local electrical system. There are two types of feeder the sensitive load feeder 

(A-C) and nonsensitive load feeder (D). the sensitive load feeders have to be always 

supplied, therefore they must have at least one microsource to meet the requirements of 

the sensitive demands. During the fault on the main grid, the static switch will be opened, 

and then all sensitive load feeders are supplied by the microsources. On the other hand, 

the nonsensitve feeder might be de-energized during the fault on the utility. Once the 

fault is cleared, the main grid will reconnect to the microgrid. The point of common 

coupling (PCC) is used to determine the connection and disconnection of common 

coupling points. Connection or disconnection with main grid relies on the control of the 

microgrid and energy managements.  In addition, the system will use distributed energy 

sources such as a distributed generator to supply the local sensitive load after the 

microgrid separates from the main grid for any reason.  The microgrid will begin working 

autonomously after the static switch is opened.  The arc of the system involves using 

power electronic interfaces such as an inverter or rectifier to properly handle power 

output and convert from AC to DC or from DC to AC. An energy storage system in the 

microgrid architecture will help the system avoid variability and intermittency of 

electricity supplying the sensitive load [17,18]. 

 

1.4. MICROGRID MODES OF OPERATION 

There are two modes of operation for the microgrid, grid-connected mode (on 

grid) and islanded mode (off grid).  
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1.4.1. Grid-connected Mode (On Grid). In this mode, the static switch in the 

microgrid system is closed and all feeders are supplied by the main grid. Microgrid 

architecture is shown in Figure 1.7.  Therefore, the microgrid is connected to the main 

grid and there are no disturbances in the utility and no power outages.  In this case, the 

microgrid will support the main grid (utility) by either importing or exporting power 

based on the total generation of local distributed generators.  The frequency in this mode 

is maintained by the main grid [1,2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Microgrid architecture [4]. 

 

 1.4.2. Islanded Mode (Off Grid). In this mode, the static switch of the microgrid 

is open and all feeders that connect to the distributed generators and sensitive local load 

are being supplied by distributed generators (microsources) as illustrared in Figure 1.5.  

The microgrid will work autonomously and has to generate enough power to cover all 

sensitive loads.  Non-sensitive loads will not have power when the microgrid is in 
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islanded mode because these loads depend entirely on the main grid.  When the main grid 

has recovered and is once again operating normally, the static switch will be reconnected 

and the microgrid will resume working in grid-connected mode [19-21]. 

 

1.5. CLASSIFICATION OF MICROGRID 

 Microgrids are classified into three different categories based on the type of 

voltage provided by distributed generators.  The three types of microgrids are the AC 

Microgrid, High-frequency Microgrid, and DC Microgrid. 

 1.5.1. AC Microgrid. The AC microgrid contains a group of distributed 

generators and some energy storage systems that are connected to the microgrid. The 

distributed energy generators either produce a DC output voltage or have an electrical 

output at a frequency that is not compatible with the main grid’s frequency.  For example, 

a PV system or fuel cell generates DC voltage while distributed generators such as wind 

turbines generate output voltage at a frequency that is not compatible with the main grid.  

To make the frequency compatible, the distributed generator output is rectified and 

charges a battery that then feeds power to the microgrid through the inverter [20]. The 

other way is to use an inverter without batteries. Figure 1.8 provides an image of an AC 

microgrid configuration that has three radial feeders.  In the image, A and B are 

connected to the sensitive loads and controllers while the C feeder is connected to the 

non-sensitive loads and is not impacted by any power outage or problems in the main 

grid.  The microgrid can operate in either the grid-connected mode or islanded mode.  

The following sections will provide greater detail about the various modes [17,20]. 

 1.5.1.1. Grid-connected mode of the AC microgrid. The power generated in the 

local distributed generator will be either imported or exported to/from the main grid 

based on the local load demands.  In this way, the microgrid will work as a controllable 

load for the utility grid while the microgrid would maintain its frequency within a 

particular mode. 

1.5.1.2. Islanded mode of the AC microgrid. When there are issues related to 

the quality of the fundamental network, the microgrid will disconnect from the main grid.  

One or more of the distributed generators are obligated to ensure that the voltage and 

frequency are kept at a particular level.  When the frequency falls below acceptable 
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levels, the loads begin to restore the frequency of the microgrid.  When this occurs, the 

microgrid will encounter the problem outlined in the following points. 

• Generation and Demand Balancing: In the grid-connected mode, power is made 

accessible using the utility to meet the prerequisite loads of the microgrid.  

However, when the microgrid islands itself, power balance is achieved and 

demand is maintained at the microgrid level.  This issue requires a legitimate 

control action involving demand side administration.  The microgrid should have 

enough storage capacity to adequately address unexpected issues in between 

generation and load [3,18]. 

• Power Quality:  Microgrids are designed to provide power quality in response to 

touchy or sensitive loads.  The microgrid must have sufficient reactive power 

compensation to allow the system to handle voltage faults.   In addition, a 

satisfactory harmonic decrease ability ensures that the harmonic created by 

nonlinear loads on the microgrid do not impact the sensitive loads [17]. 

 

 

 

 

 

 

 

 

 

Figure 1.8. An AC microgrid configuration [1]. 

 

 1.5.2. Microgrid with HFAC Link. A high-frequency AC power distribution 

system is typically found in aerospace applications including aircrafts or space crafts.  

The system can also be found in hybrid electric vehicles.  The most significant advantage 

provided by the HFAC system involves in the system’s smaller size and high power 

density and modularity [22,23].  
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 1.5.3. DC Microgrid. The majority of home appliances operate using DC.  The 

DC voltage can be provided by either a battery or by converting AC to DC using a 

rectifier. Some appliances which operate using DC have an adapter to convert it to DC.  

Figure 1.9 provides an image detailing the configuration of the DC microgrid [1,24].    

   

 

 
Figure 1.9. The configuration of the DC microgrid [1]. 

 

The advantages of a DC microgrid are as follows [25-27]: 

• High efficiency in the DC microgrid as a result of the reduction of losses of the 

inverter between DC output and loads [28] 

• No need for synchronization with utility and reactive power compensation 

• Ability to overcome faults in the main grid with no effect on the DC microgrid 

directly as the energy is stored in the battery or capacitor.  

The disadvantages of DC microgrids are as follows [28]: 

• Need for special DC lines to be laid to distribute microgrid DC power 

• Requires complicated protection system 

• Requires loads that are suitable for DC power supply. 

1.5.3.1. Grid-connected mode of the DC microgrid. In this mode, the rectifier 

handles the voltage distribution and the supervising algorithm will provide alerts 

regarding the amounts of power being provided by the running cogeneration system or 

fuel cell. A cogeneration system connected to the dc bus and its power generation will be 

distributed between the loads. In this mode, no power generated by the running 

cogeneration system will flow into the main grid [29]. 
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1.5.3.2. Islanded mode of the DC microgrid. In this mode, the extra power in 

the microgrid will be continued by capacitors. The energy stored in the capacitor and the 

loads in the microgrid will determine the number of running cogeneration systems. If the 

energy stored in capacitors exceeds the limits of the capacitor, one of the cogeneration 

systems will be stopped as the total load of the microgrid will be greater than the total 

generation of the cogeneration system. The capacitor will discharge until it reaches that 

level right above the minimum limit.  In cases where the capacitor discharges past the 

minimum limit, the cogeneration system will begin to run again.  At this time, the total 

load of the microgrid will be less than the total power generation of cogeneration system 

and the capacitors will begin charging.  The charging will continue until the capacitors 

reach a level that is greater than the maximum value [29-31].  

 

1.6. MICROGRID CONTROLS 

Microgrid controllers must be able to meet the certain performance standards and 

ensure the following [17]:  

• That microsources work appropriately at predefined working points or are 

marginally unique in relation to the predefined working point yet are able to be 

filled as much as possible; 

• That active and reactive power are exchanged by the microgrids and/or the 

distribution system;  

• That disconnection and reconnection techniques are very easy; 

• That market support is advanced by optimizing the generation of local 

microsources and power in combination with the utility; 

• That heat usage for nearby establishments is optimized; 

• That sensitive loads for items such as medical machinery and computer servers 

are supplied without interruption; 

• That in instances where there is a general fault, the microgrid has the ability to 

work through the black-start; and 

• That energy capacity of the storage system can bolster the microgrid and create 

overall system reliability and efficiency.  
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Depending on the above obligations and the controller coordination, the microgrid 

controls can be considered local controls, centralized controls, and decentralized controls. 

More detail regarding these terms will be provided in the following sections. 

 1.6.1. Local Controllers. Local controllers are an essential class of microgrid 

controllers. The principle utilization of local controllers is to control microsources. This 

sort of controller is intended to control the operation of microsources and their power 

electronic interfaces without using a communication system. Yet, it may have easy 

system or simple software.  The system must be able to provide data regarding local 

controllers via the local voltages and current [17, 18].  For the majority of microgrid 

applications, local controllers will work with other types of controllers in islanded mode 

of microgrids where the local controllers are the main obliged controllers [20, 32, 33]. 

The local controllers should guarantee the ''plug and-play'' mechanism of microsources; a 

few microsources should be have the ability to consistently connect or separate from the 

main grid when and where required [34, 35]. 

The majority of microsources need power-electronic interfaces to convert the 

power from AC to DC or from DC to AC.  Figure 1.10 contains a model of microsources 

connected to a microgrid.  The image contains three fundamental components: the prime 

mover, the DC interface, and the voltage source inverter (VSI). The microsource 

connects to the microgrid through an inductor. The magnitude and phase of its output 

voltage are handled by voltage source inverter to control real and reactive powers. The 

voltage regulation is vital for a microgrid which is integrating a huge number of 

microsources to prevent intermittency that can be caused by a high number of 

microsources.  Voltage regulation is used to guarantee that there is no extensive reactive 

current among distributed generators [17, 18]. 

 Other than the voltage regulation, microsources must be able to manage active 

and reactive power.  The most well-known systems that manage these forces include 

droop-based active and reactive controls. These droop controls are scaled-down forms of 

droop-based controls in the main grid. The droop-based controls comprise of voltage 

reactive power and frequency of active power droop controls [36, 37]. 

 A form of voltage-reactive power droop control is shown in Figure 1.11.  As the 

reactive current created by the microsource becomes more capacitive, the working 
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voltage will increase. Hence, the local voltage set-point is decreased to maintain the 

voltage at or close to its original set-point. In contrast, the local voltage set-point is 

expanded if the reactive current gets to be more capacitive. Qmax is shown to present the 

limit of reactive current increase and decrease, factors that are controlled by the 

volt-ampere (VA) rating of the inverter and the power created by the prime mover [17, 

18].   

When in grid-connected mode, the microgrid receives power from the grid from 

microsources as determined by the agent’s situation. If the grid is interrupted for any 

reason, the microgrid can easily move to islanded mode.  In addition, the microgrid is 

sometimes constructed in a way that allows it to work properly in islanded mode and 

allows it to disconnect from the main grid for certain reasons even if there are no issues 

or problems with the main grid.  After the main grid is disconnected from the microgrid, 

the voltage phase angles of the distribution sources will change and cause the local 

frequency relying on the power mismatch to diminish.  The frequency of the 

microsources will diminish if the microgrid receives power from the utility in grid-

connected mode, but will increase if the microgrid provides energy to the utility in grid-

connected mode.  The reliance on the frequency allows each microsource to give its 

appropriate portion of load without a quick new power dispatch from the energy 

administrator [38, 39]. 

 

 

      

 

 

 

 

 

 

 

 

Figure 1.10. A model of microsources connected to a microgrid.
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Figure 1.11. A form of voltage-reactive power droop control. 

 

 Figure 1.12 provides droop-based power-frequency control.  The illustration 

shows how the sources have certain expected ratings, P1 max, and P2 max. The dispatched 

power in grid-connected mode (P10 and P20) is characterized at base frequency, ω0. The 

droop is characterized to guarantee that two systems are at the rated power at the same 

lowest frequency.  During an adjustment in power demand, the two sources will work at 

different frequencies that may lead to a difference in the power angle between sources.  

When this change occurs, the two frequencies have a tendency to float toward a lower, 

single estimation of ω1. Unit 2 will have higher increment in its aggregate power needs 

than Unit 1. Because of droop regulation, every controller must have ability to handle 

decreases in microgrid frequency. 

 

 

 

 

 

 

 

 

 

Figure 1.12. Droop-based power-frequency control [4]. 
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 1.6.2. Centralized Controllers. In the hierarchical system, either centralized or 

decentralized controllers can be used.  The hierarchical system is shown in Figure 1.13 

and consists of local controllers including Microsource Controllers (MCs), Load 

Controllers (LCs), Microgrid Central Controllers (MGCCs), Distribution Management 

System (DMS), and Market Operator (MO) [40-43]. 

 In every microgrid, there is an MGCC that connects the distribution management 

system to the microgrid.  The MGCC performs distinctive tasks that involve the base 

coordination of the local controllers that work to enhance microgrid operation.  The 

contrast of the centralized and decentralized controls is characterized by the 

centralization tasks provided by the MGCC.  The level of decentralization varies 

depending on the demands of the MGCC and the MCs and LCs. In a centralized control, 

the MCs and LCs apply the requests of the MGCC throughout the grid-connected mode 

and have the ability to independently operate on their own in islanded mode [43].   

 A distribution management system or distribution network operator (DNO), to 

which a few MGCCs can be connected, has the obligation to handle the operation of 

medium and low voltage zones which have more than one microgrid.  In addition, one or 

more market operators may be part of the system to determine how the microgrids will 

share in a business operation.  The DNO and MO do not include microgrids, but, instead, 

are delegates of the main grid.  Centralized control is very good in utilizing microgrids 

and their associated features as listed below [43, 44]:  

• The proprietors of microsources and loads have the same targets and search for a 

coordinated effort to meet their targets.    

• It is practical to use it in small micogrid system with existence of an operator.   

 1.6.3. Decentralized Controllers. Decentralized controllers and centralized 

controllers are characterized in a similar way and are shown in Figure 1.13.  In 

decentralized controllers, the principle obligation is given to MCs that work to expand 

their power generation to meet the requirements of the load and provide the most extreme 

transmission to the grid based on the consideration of business sector costs.  A 

decentralized control is planned to increase the independence of microsources and 

burdens. Some of the ways to increase the independence of microsources depend on 

specific logic [45, 46].  
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Figure 1.13. The hierarchical system [4]. 

 

A decentralized control can be utilized effectively in microgrids and contain some or all 

of the following attributes [43]: 

• Microsources can have distinctive properties which allow a few choices to be 

made locally.  

• Microgrids that are used in business situations assume that the controllers of all 

units in the business sector have a particular level of knowledge.  

• Local microsources have different duties outside of generating energy for the 

local grid.  The duties could involve creating warmth for nearby equipment, 

ensuring voltage remains at a certain level, or providing reinforcement to a system 

that provides local basic loads to serve as a backup for that system.   

 

1.7. EXAMPLES OF MICROGRID 

 There are many examples of projects that use a microgrid system.  The following 

sections are the best examples of microgrid use in Canada and America. 

 1.7.1. Hartley Bay. Hartley Bay located in British Columbia, Canada, is a remote 

seaside town that is accessible via air or water.  An overview of Hartley Bay picture is 

provided in Figure 1.14.  A total of 170 people rely on a remote microgrid in the town to 

provide them with power.  With the developments in microgrid technology, areas such as 
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Hartley Bay have benefited greatly through the enhanced power control and cost 

reductions. Hartley Bay depends on three diesel generators which consists of two 420 kW 

generators and a single 210 kW generator which provides power for the town’s 62 houses 

and 20 commercial business buildings.   

Between 2008 and 2009, Harley Bay enhanced its vitality system by placing 

smart meters throughout the town to provide power readings that have information about 

the current fuel stream.  This information can be analyzed to assess the effectiveness of 

the generators. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14. An overview of Hartley Bay picture [47]. 

 

The 210 kW generator is relatively wasteful and a loads reaction system has been 

installed which will better utilize the generator’s meager power contributions and 

upgrade the diesel dispatch.  The loads reaction system has been placed in business 

structures and consists of 20 variable indoor regulators and 12 controllers.  The system 

has the capacity to lessen the greatest demand on the system, 61.3 kW, by 15%. The 

microgrid was expected reduce its diesel use by 77,000 liters per year.  The individuals at 
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Harley Bay worked to enhance the town’s energy by creating future projects which could 

help to reduce yearly fuel costs by 5% [47]. 

 1.7.2. New York University. New York University (NYU) is one of the biggest 

colleges in the United States and has generated power on its campus since the 1960s.  

The University built its own very large oil-fired cogeneration plant in 1980.  The 

University later transitioned from energy that is produced using the oil-fired method to a 

system that employs advanced natural gas techniques.  This new system combined the 

heating and power center and used microgrid capabilities to create a plant that is more 

dependable and has greater control of energy use.  The capital expense of the system 

overhaul was $126 million.  However, tax excluded bonds masterminded through the 

Initiative of the state of New York and through increases in NYU’s tuition worked to ease 

the financial burden.  The combined heat and power system has a yield limit of 13.4 MW, 

a limit that is twice as the limit of the old plant’s yield.  The system has also been 

completely operational since 2011 and produces power that is used by 22 buildings and 

heat that is used by 37 buildings.  The microgrid at NYU is made up of two 5.5-MW gas 

turbines that deliver power through the connection with heat steam generators and a 2.4 

Megawatt steam turbine. The NYU microgrid is associated with the Con Edison grid and 

buys power when the loads are greater than the on-site producing limit.  The NYU grid 

has reached a point where it could be disconnected from the main grid.  Figure 1.15 

provides an image of the NYU microgrid [47].  The ability to disconnect from the rest of 

the grid was tested when Hurricane Sandy hit the New York City area and the NYU 

microgrid was able to disconnect from the local network and continue to provide 

dependable energy to a significant part of the campus.  The renovation of the system has 

resulted in significant improvements both economically and environmentally.  The 

University has assessed the reserve funds relating to aggregate energy expenses to be $5 

to $8 million annually. The new office has radically diminished NYU's emissions with an 

expected 68% lessening in EPA criteria pollutants (Nitrogen Oxide, Carbon Monoxide, 

and Sulfur Dioxide missions) and 23% decline in gas emissions.  The reduction in these 

levels is a significant step toward the promise that NYU made to the City of New York to 

reduce greenhouse gas emissions by 30%.  
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Figure 1.15. An image of the NYU microgrid [47]. 

   

 1.7.3. University of California, San Diego (UCSD). The UCSD microgrid 

venture generates power, heating, and cooling for 450 hectares on the UCSD campus and 

serves 45,000 people daily.  Figure 1.16 provides an image of the USCD microgrid [47]. 

The microgrid is made up of two 13.5-MW gas turbines, one 3-MW steam turbine, and a 

1.2 MW solar panel that generate enough combined energy to cover 85% of the 

University’s power demands, 95% of the warming demands, and 95% of the cooling 

demands.  

The turbines create 75% less emissions than traditional gas power plans.  For 

HVAC services, the plant utilizes 140,674 kW/hour and provides 14,385 cubic meters of 

heat energy in addition to powering three cooling systems that power five chillers.  A 

2.8 MW liquid carbonate energy unit works to process waste methane which is supported 

by the California self-generation motivator project and take advantage a 30% government 

project tax credit.  The University is associated with San Diego gas and electric through a 

single 69 kV substation.  A “straight supervisory control and data acquisition 

framework” is utilized in the facility’s system to guarantee that the energy supply 

corresponds with the rest of the grid.  UCSD is currently introducing another top-of-the-

line expert controller of Paladin hat is designed to handle all plant issues relating to 

hourly generation, storage, and burdens to enhance working conditions.  The system is 
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able to receive more than 260,000 information inputs/second.  To bolster the 

effectiveness of Paladin, UCSD will use V-Power software to process business sector 

value signs, weather forecasting, and the accessibility of resources.  There are 

approximately 200 meters of primary lines at the facility’s principle circuit breakers that 

track the facility’s performance at all times.  The UCSD system has been constructed 

with power meters built into all fundamental electrical lines and into all of the facility’s 

primary circuit breakers.  The Department of Energy recently gave UCSD an award to 

model the impact of the distribution system on the sloping throughout the production of 

the solar PV system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16. An image of the USCD microgrid [47]. 
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2. SOLAR VILLAGE 

 

2.1. OVERVIEW 

 The solar village is comprised of four solar-powered buildings that are supplied 

using renewable energy.  The village was built by the solar house team from the Missouri 

University of Science and Technology for a competition hosted by the US Department of 

Energy, the Energy Solar Decathlon.  The solar house team works to inspire future 

generations to construct renewable energy buildings.  The team is comprised of students 

from different majors and is advised by individuals from MST and other companies.  The 

team began to build the solar houses in 2002 when it built the first structure called the 

“2002 house.”  The team has built a new home every two years. Outside of the research 

involving the microgrid system, the village is a location that allows for the testing and 

improvements of real world, sustainable energy generation and storage.  In addition, one 

of the solar house’s main objectives is to reduce the level of dangerous emissions from 

conventional generators and are released into populated areas such as cities.  Figure 2.1 

provides a picture of the solar village houses at Missouri S&T [48]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. A picture of the solar village houses at Missouri S&T [48]. 
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2.2. SOLAR VILLAGE OBJECTIVES 

 The Solar Village Microgrid Project will provide researchers with the opportunity 

to engage in hands-on exploration, training, and demonstrations that aim to accomplish 

the following goals [48]: 

• Determine the relationships between different components of the microgrid scale 

including the burden of installing and measuring power generation, capacity, and 

heat and to determine the optimal loads for capacity, storage, and generation.  

• Find the ways in which utilities could stabilize generation, storage, and load at 

particular voltages while keeping voltage and frequency at reasonable and safe 

levels. 

• Improve and develop the designs of microgrids, controllers, and other operational 

equipment.   

• Discover how microgrids can simplify the distribution of solar photovoltaics and 

determine if dividing the national power grid into smaller grids is feasible and 

could be the future of electric utilities.  Some of the issues that will be studied 

will involve determining if microgrids will be viable power options, if they will 

provide users with more independence, if community-scale microgrids are 

sensible for electric utilities for future generations, and how the 

techno-economics of the microgrids will work and impact users and 

communities.  

 

2.3. ARCHITECTURE OF SOLAR VILLAGE 

 Each of the four solar homes are different from one another due to changes in 

technology and the general evolution of the field.  The homes are built to meet all 

expectations related to providing sustainable energy that meets the daily needs of the 

homes at all times.  Originally, all four houses were wired individually to the main grid 

which was powered by Rolla Municipal Utilities.  Each house is now wired to the shed.  

The village also includes an electric vehicle charging station.  The following sections 

provide a brief description about each of the four houses to provide greater detail about 

the solar capacity of houses [48].  
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2.3.1. 2002 House. 5 kW of electricity is generated by 32 solar panels on the roof. 

Evacuated tubes are shown on the roof. It contains a vacuum to increase the energy 

absorption from the sun as heat. This heat converted to hot water in a tank by heat 

exchanger and use it as local hot water supply [48]. Figure 2.2 depicts the 2002 house.   

 

 

 

 

 

 

 

 

 

 

Figure 2.2. The 2002 house [48]. 

 

 2.3.2. 2005 House. 3 kW of electricity is generated by solar panels on the roof. In 

addition, the structure used insulated panels to reduce the energy costs associated with 

heating the house. The roof of the house was designed using the “step” technique which 

included solar panels and thermal systems in one panel and made the roof more efficient 

and more aesthetically pleasing.  The home’s appliances were all smart and energy 

efficient.  Figure 2.3 shows an image of the 2005 solar house [48]. 

 

 

 

 

 

 

 

 

Figure 2.3. An image of the 2005 solar house [48]. 
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 2.3.3. 2007 House. This solar house uses appliances that had smart energy ratings 

and would use less energy than the comparable conventional appliances. The 2007 house 

also used a subfloor system which consisted of conductive aluminum boards that would 

conduct heat and work to warm the house.  The solar panel on the roof had a 7 KW 

capacity and the electrical system includes battery bank. One of the new features in this 

home involved a home automation system that would remotely control the lights, 

windows, and the thermostat for high-voltage alternating current (HVAC), which actually 

should be heating, ventilation, and air conditioning. Figure 2.4 provides an image of the 

2007 solar house [48]. 

 

 

 

 

 

 

 

 

 

Figure 2.4. An image of the 2007 solar house [48]. 

 

 2.3.4. 2009 House. The automation system used in the 2009 house was very 

advanced and was able to interact with ambient conditions.  The washer and dryer were a 

single entity and the home automation system was able to control the washer, dryer, and 

dishwasher.  The addition of these appliances into the automation system showed that 

smart home technologies were viable.  Figure 2.5 provides an image of the 2009 house 

and shows some of the home’s 40 monocrystalline solar panels that had a maximum 

production ability of 8 KW.  Since 8 KW is not enough power to meet the needs of an 

ordinary home, all appliances in the 2009 house were designed to use less energy.  In 

addition, evacuated tube collectors on the roof used sunlight to heat water and provide the 

energy for the radiant floor heating system [48].  
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Figure 2.5. An image of the 2009 house [48]. 

 

 2.3.5. Shed. The shed is shown in Figure 2.6 and plays the main role of the 

microgrid system in the solar village.  This structure contained the batteries, bi-

directional inverter, fuel cell, and switches.  All four houses in the village were directly 

wired to the shed and a computer in the shed monitored all houses and their associated 

components.  This computer could be accessed remotely to obtain information regarding 

the function of the homes and their components at any time using a software called 

SynapSuite.  This software illustrated the power generation from distributed generation 

and main grid.  In addition, the program provided the load volume in kilowatts for each 

house.  

 

 

 

 

 

 

 

 

 

Figure 2.6. The shed [48]. 
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The total power generation of the solar panels was 21 KW for both the 

monocrystalline and polycrystalline panels used in the houses.  In addition, the ability to 

combine the power and heating capabilities was accomplished using a 5 KW natural gas 

fuel cell which was able to interact with a hydrogen reformer to produce electricity and 

low levels of heat. The electricity was connected to the microgrid and the heat in two of 

the houses was supplied using heat from the hydronic system fuel cell.  Two racks of 

lithium ion batteries that accounted for a total energy storage capacity of 60 kwh were 

installed and provided a nominal voltage of 960 V DC. The village’s bi-directional 

inverter was responsible for charging and discharging the batteries and primarily 

functioned to convert DC to AC to allow it to be used in the microgrid system.  The 

system’s switchgear consisted of six intelligent switches which interacted with one 

another to allow the microgrid system to work effectively. The solar village’s microgrid 

is shown in Figure 2.7 (a, b). It shows how the components in the solar village were 

wired along with the village’s microgrid. Each solar panel system for each four houses 

connected to inverters. And, they are connected to the switch A8 in Synap6 (number 1) 

by grid tie.  

2.3.5.1. A123 Lithium ion batteries. Two racks of lithium ion batteries provided 

roughly 30 kwh of storage capacity per rack with a nominal voltage about 960 DC 

voltage. Figure 2.8 shows the grid battery rack which consists of eight modules. In 

addition, the battery management system is placed based on the industry-specific 

standard. In the Figure 2.8, the top two modules are assigned for cooling and 

management wires.  Table 2.1 provides the operating parameters of the grid battery 

system rack. 

 

Table 2.1. Operating parameters of the grid battery system rack [49]. 

Parameter Range 

Energy rating 22 KWh 

Rack voltage range 563 V to 788 V 

Cell voltage range 22.2 V to 3.8 V 

Maximum charge / discharge 88  KW 

Recommended average charge / discharge rate Less than or equal to 22KW 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2.7. The solar village’s microgrid [53]. (a) definition and illustrations of the lines 
and equipment, (b) layout of the Solar Village 
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Figure 2.8. The grid battery rack [49]. 

 

Lithium is the lightest of all metals, has the greatest electrochemical potential, and 

provides the largest energy density per weight. The following list provides some brief 

advantages and disadvantages of the lithium ion battery [51]. 

Advantages of lithium-ion batteries: 

• Cell voltage = 3.7 V 

• High specific energy 100-160 Wh/kg 

• High specific power 250-340 W/kg 

• High energy efficiency 

• Good high-temperature performance 

• Relatively low self-discharge (5%-10% per month)  

• Low maintenance and no periodic discharge is needed; no memory. 

Disadvantages of lithium-ion batteries: 

• High internal resistance 

• Requires a protection circuit which limits voltage and current; battery is safe if 

not provoked 

• Liable to aging; storing the battery in a cool place at 40% state of charge can 

reduce the aging effect 
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• Subject to transportation regulations and larger shipments of lithium-ion batteries 

can be subject to specific regulations.  This constraint does not apply to personal 

carry-on batteries. 

• Relatively expensive. 

2.3.5.2. Bi-directional inverter. The power conversion system is a bi-directional 

inverter specifically created for an energy storage system. A bi-directional inverter for the 

solar village is shown in Figure 2.9 and includes many items including a 240V AC split 

phase grid interconnection, a 50 KW inverter (maximum 50 KVA), and a DC input 

designed at 60 amps. The DC side of the inverter is connected to the batteries while the 

AC side is connected to the main grid. Therefore, the batteries will be in charging mode if 

the system has excess energy available. And, it will be in discharging mode if the system 

does not have enough energy. Consequently, a bi-directional inverter is critical when the 

system is in islanded mode. Also, it could be used for economic purposes while grid-tied 

[57]. 
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Figure 2.9. A bi-directional inverter for the solar village [50]. 
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2.3.5.3. Solar village fuel cell. The manufacturer of the fuel cell in solar village is 

Clear Edge power. They designed advanced, safe, and reliable fuel cell, called Model 5. 

It is a constant phosphoric acid fuel cell (PAFC) system prepared for combining heat and 

power applications. It is able to produce 5 kW of ultra-clean, continuous electric power 

and 6,15 kW of useful thermal energy. This heat is very often used for local hot water, 

procedures for hot water, and places heating applications. The fuel cell system can also 

provide continuous, uninterruptible power when the main grid fails. As long as natural 

gas is available, electric power and heat can be produced. Figure 2.10 shows the basic 

operation of the fuel cell system. First of all, in the process called catalytic steam 

reformation, natural gas is converted to hydrogen in the fuel processing system. And 

then, Hydrogen and air are supplied to a phosphoric acid fuel cell stack in which 

hydrogen and oxygen combine electrochemically to produce direct current (DC) 

electricity, heat, and water. Finally, alternating current (AC) electricity is produced 

through DC to AC inverter. Useable heat is delivered to a local water source through heat 

recovery heat exchanger [56]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. The basic operation of the fuel cell system [56]. 
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2.3.5.4. Switchgear of the system and energy management. The switchgear of 

the system consists of six intelligent switches which communicate with one another to 

allow the microgrid system to work effectively using a power management system called 

Synap6. The Synap6 system consists of two switchgear units that provide real-time load 

and generation management for the microgrid.  It is the same hardware that is used in the 

SynapsSuite web portal that allows for the tracking of a microgrid.  Figure 2.11 provides 

an image of the SynapsSuite home page.  The hardware at the site functions as an 

intelligent switchgear and ensures that power and energy demands are met along with 

ensuring that the system is energy efficient, cost efficient, and capable of islanding. The 

batteries are managed by a code called SNTBatt, a code that is not related to the IATS 

code.  IATS is a code that works to manage the individual Synap6 modules.  There are 12 

modules in the solar village system that can switch the batteries on and off safely.  The 

solar village system is created by Milbank and is closed source.  SNTBatt was a custom 

software program that was written specifically for Missouri S&T and works to manage 

the batteries and the inverter.  IATS can give commands to SNTBatt by writing to a 

named pipe that SNTBatt creates at its startup.  This pipe may or may not be a good 

interface for the system.  In addition, the SNTBatt software does not allow users to easily 

query it regarding the battery’s state of charge (SOC).  The manufacturer could add this 

capability to the solar village.  The information gathered is written into a main database.  

Charging is currently managed within SNTBatt, and IATS tells SNTBatt to charge or not 

charge when the system is in islanded mode. The batteries can automatically disconnect 

from the DC bus if a fault is observed or if the charge or discharge limits are not 

respected.  The SynapSuite provides input on when the batteries will charge or discharge 

using commands sent to the inverter. 

2.3.6. EV Charging Station. The EV charging station in this village is not a 

standard EV charging station as it is bi-directional.  The EV charging station is provided 

by Milbank and the station is located at the front of the solar houses.  Figure 2.12 

provides an image of the EV charge station in the solar village.     
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Figure 2.11. An image of the SynapsSuite home page. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. An image of the EV charge station in the solar village. 
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3. SIMULATION OF MICROGRID SYSTEM 

 

3.1. INTRODUCTION 

 This project will use MATLAB Simulink to simulate the solar village microgrid 

system.  The simulation will use realistic data provided by Milbank.  The realistic data 

include load profile for the houses and PV system generation profile. This chapter will 

illustrate the simulation approach for the houses of the solar village, PV generation, and 

batteries. At the end of the chapter, the simulation results will be described and analyzed.  

Figure 3.1 provides an illustration of the entire solar village microgrid simulation. The 

solar village uses AC and the simulation will use DC for all scenarios.  The reason for the 

use of DC is to reduce the complexity of the simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. An illustration of the entire solar village microgrid simulation. 

 



	 37 

3.2. SOLAR PANEL 

In this simulation, the solar panels will use a controlled DC source to provide the 

simulation with realistic values for the PV generation profile.  The PV generation profile 

is considered after DC-DC converter in microgrid system. Therefore, there is no need for 

a DC-DC converter simulation on the design of microgrid. A block in MATLAB called 

the “From File” block is implemented in the model to use data from a MAT file and 

output the data as a signal. The data is a series of samples. Each sample contains a time 

stamp and an associated data value. The sample time is one minute and the data values 

will be the power generation of the PV system in watts. These values will be divided by 

the voltage in the “Gain” block and then inserted as signals into the controlled current 

source.  Figure 3.2 illustrates the simulation of solar panel. A typical solar generation 

profile plot for one day (24×60 = 1440 minutes) is displayed in Figure 3.3.  And, the 

average value of this solar generation profile is 3,722 w. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. The simulation of solar panel. 
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Figure 3.3. A typical solar generation profile plot for one day. 

 

3.3. THE HOUSES OF THE SOLAR VILLAGE  

In this simulation, the load profile is the total load power of all four solar houses. 

A controlled DC source simulates the total load profile for the houses in the solar village.  

The simulation of load profile uses similar approach of the PV profile to insert data into 

the simulation. Also, the data is a series of samples. Each sample contains a time stamp 

and an associated data value. The sample time is one minute and the values are the power 

load for the houses in watts. These values will be divided by the voltage in the “Gain” 

block and then inserted as signals into the controlled current source.  Figure 3.4 provides 

an image of the simulation of the load. A typical load profile plot for one day (24×60 = 

1,440 minutes) is displayed in Figure 3.5.  And, the average value of this load profile is 

10,061 w. 
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Figure 3.4. An image of the simulation of the load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5. A typical load profile plot for one day. 
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3.4. THE BATTERIES 

The simulation of batteries uses a current source. It is controlled by the difference 

between the load and PV profile. One of the main parameters of the battery is state of 

charge (SOC). The SOC of the battery is between 0% and 100%. The SOC for a fully 

charged battery is 100% and for an empty battery is 0%. The SOC is calculated as: 

 

SOC = 100	(1 −	 +
,
	 i	 t . dt)	2
3         (1) 

 

where, SOC is state of charge (%), Q is maximum battery capacity (Ah), and i is battery 

current. 

The simulation of SOC is shown in Figure 3.6. The input of the integrator block is 

the battery discharge current profile. The Integrator block outputs the value of the integral 

of its input signal with respect to time and the output is divided by time in seconds 

(3600 seconds) and the rated capacity for the batteries. The SOC will be the difference 

between the result of this equation and the initial SOC.  The rated capacity of the battery 

is measured in amperes per hour. The rated capacity is the minimum effective capacity of 

the battery. The initial SOC parameter is used as an initial condition for the simulation 

and does not affect the discharge curve. Also, nominal voltage is an important parameter 

of the battery as it represents the end of the linear zone of the discharge characteristics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6. The simulation of SOC. 
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3.5. SIMULATION RESULTS   

Energy management systems and the control of battery charging and discharging 

are discussed in this section. This section will show different scenarios for different 

seasons of the year. Each scenario has a specific control objective. One of the main goals 

in this chapter is to find a way to have the final SOC after 24 hours be close to the initial 

SOC and maintain the SOC between 40% and 70%.  In addition, the chapter will provide 

information regarding the algorithm used in the simulation to manage and organize the 

energy in the microgrid system.  The algorithm is designed and written by MATLAB. 

The scenarios of the simulations are flat grid power, SOC control algorithm, peak power 

shaving, and SOC control algorithm for peak power shaving scenario. Each one of these 

scenarios will be discussed individually. 

3.5.1. Flat Grid Power Scenario. Since the average of the solar generation and 

load are provided in the simulation, the average of load for three days per seasons that are 

selected is greater than the average of solar generation. Therefore, the system is in need 

to import power from the grid. Consequently, the scenario is chosen to be constant power 

from the main grid.  The control objective is to create a constant load to the main grid, 

and, therefore, the main grid provides constant power for the system.  To accomplish this, 

the battery will be controlled depending on the load profile of the houses, PV profile, and 

average difference between the load profile and PV profile or the average power 

imported from the grid for the previous day.  The battery simulation is shown in 

Figure 3.7.  

 

 

 

 

 

 

 

 

 

Figure 3.7. The battery simulation. 
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The logic of flat grid scenario is illustrated in Figure 3.8. The timeline is divided 

into segments. Each segment represents one day which is equivalent to 1,440 minutes.  

At the end of each day, the system will calculate the average difference between load and 

PV power to determine the grid power for the next day.  The grid will receive constant 

power throughout the day. The following equation represent the average difference 

between load and PV power to determine the grid power for the next day: 

 

𝛽 = +
+,663

[+,663
89+ P;<=>	(>?+),8 − 	P@A	(>?+),8]           (2) 

 

where, 𝛽 is the average difference between load and PV power to determine the grid 

power for the next day, P;<=>	(>?+),8 is the power load profile for the day before the 

designated day (w), P@A	(>?+),8 is is the power load profile for the day before the 

designated day (w), j is the sample of a minute from each day 

 (1 ≤ 𝑗 ≤ 24	ℎ𝑜𝑢𝑟𝑠𝑒	×60	𝑚𝑖𝑛𝑢𝑡𝑒𝑠). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. The logic of flat grid scenario. 
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Since the battery is simulated using a control current source, the following equation 

explains the total amount of charge and discharge current for the batteries in a day: 

 

IS=22,8 = 	
+

+,663
[+,663

89+ I;<=>	(>?+),8 − 	 I@A	(>?+),8] − 	 I;<=>	>,8 − 	 I@A	>,8 	       (3) 

    

where, IS=22 is the current of the battery (A), I;<=>	>,8 is the current load profile for 

specific day (A), d is the date for the particular day, j is the sample of a minute from each 

day (1 ≤ 𝑗 ≤ 24	ℎ𝑜𝑢𝑟𝑠𝑒	×60	𝑚𝑖𝑛𝑢𝑡𝑒𝑠), I@A	>,8 is the current PV profile for the same day 

of I;<=>	>,8 (A), I;<=>	 >?+ ,8 is the current load profile for the day before the designated 

day in I;<=>	>,8 − 	 I@A	>,8  (A), I@A	 >?+ ,8 is the current PV profile for the day before the 

designated day in I;<=>	>,8 − 	 I@A	>,8  (A), and +
+663

[+663
89+ I;<=>	(>?+),8 − 	 I@A	(>?+),8]  is 

the average current for the previous day. If IS=22,8 is greater than zero, the batteries are in 

charging mode. If IS=22,8 is less than zero, the batteries are in discharging mode. 

The scenario will be investigated during the four seasons each year, summer, fall, 

winter, and spring. Three consecutive days per season will be selected for the scenario.  

The average power values from each of the three days are shown in Table 3.1.  In 

addition, the PV power profile and load power profile are provided in the simulation for 

each day. The time interval of the data is one minute.  The total number of samples for 

three days is 4320.  Based on this information, the following table has been constructed 

to display the average power for the three days used each season. This table shows that 

all the numbers are positive. So, in order to keep SOC between acceptable rang, the 

system need to get power from the grid. Furthermore, the small average power values 

such as 74 and 52 w indicates that most of the solar houses are empty or the solar 

generation is high during a day. If there is no body in most of the houses, the load power 

will be decreased. Also, the large average power values such as in winter indicates that 

the heating load is large during the day.    

3.5.1.1. Summer. The load profile for three days in summer is shown in 

Figure 3.9. The PV profile for three days in summer is shown in Figure 3.10. The power 

of the main grid in the summer is shown in Figure 3.11. The power supplied by the grid is 

the average of the differences between the load and PV profile the previous day.  Figure 
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3.12 provides the SOC of summer.  Since β is high in the second day of summer, the 

overall SOC is high. Also, the SOC shows that the final SOC is lower than the initial 

SOC by approximately 1.5% (∆	𝑆𝑂𝐶 ≈ −1.5%). Table 3.1 shows the average power 

values from each of the three days. 

 

Table 3.1. The average power values from each of the three days. 

Day Average of Previous Day Summer 

(w) 

Fall 

(w) 

Winter 

(w) 

Spring 

(w) 

1st day 1
1,440 [

+,663

89+

p;<=>	3,8 − 	p@A	3,8] = β3 
714  47  6,339 w 1,544  

2nd day 1
1,440 [

+,663

89+

p;<=>	+,8 − 	p@A	+,8] = β+ 
1,400  1,206  4,449  488  

3rd day 1
1,440 [

+,663

89+

p;<=>	],8 − 	p@A	],8] = β] 
593  439  6,418  52  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. The load profile for three days in summer. 
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Figure 3.10. The PV profile for three days in summer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. The power of the main grid in the summer. 
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Figure 3.12. The SOC of summer. 

 

3.5.1.2. Fall. The load profile for the three days in fall is shown in Figure 3.13.  

Figure 3.14 shows the PV profile for three days in fall and the power of the main grid 

during this season is displayed in Figure 3.15.  The power supplied by the grid is the 

average of the differences between the load and PV profile the previous day.  Figure 3.16 

shows the SOC of the system.  The difference between the final SOC and initial SOC is 

approximately 10% (∆	𝑆𝑂𝐶 ≈ −10%). The PV generation on the third day is low and, 

therefore, the SOC for the third day shows considerable discharging to cover the demand 

of the load.   
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Figure 3.13. The load profile for the three days in fall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. The PV profile for three days in fall. 
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Figure 3.15. The power of the main grid during this season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16. The SOC of the system. 
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3.5.1.3. Winter. The load profile for three days in winter is displayed in 

Figure 3.17.  The PV profile for these three days is shown in Figure 3.18 while 

Figure 3.19 shows the power of the main grid in winter.  The power supplied by the grid 

is the average of the differences between load and PV profile the previous day. The SOC 

in winter is shown in Figure 3.20. In winter, the β is high due to high load and low PV 

generation for all three days. The SOC shows that the final SOC is lower than initial SOC 

by approximately 2.5% (∆	𝑆𝑂𝐶 ≈ −2.5%). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.17. The load profile for three days in winter. 
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Figure 3.18. The PV profile for these three days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. The power of the main grid in winter. 
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Figure 3.20. The SOC in winter. 

 

3.5.1.4. Spring. The load profile for three days in spring is shown in Figure 3.21.  

Figure 3.22 shows the PV profile for these three days and Figure 3.23 shows the power 

supplied by the main grid in spring.  The power of the grid is the average of the 

differences between the load and PV profile the previous day. The SOC in spring is 

shown in Figure 3.24.  In this SOC, the final SOC is higher than the initial SOC which 

means that the battery will continue charging on the third day to reach a high level of 

charge due to increasing the PV generation and decreasing the load and β. The SOC 

shows that the final SOC is higher than initial SOC by approximately 8% (∆	𝑆𝑂𝐶 ≈ 8%). 
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Figure 3.21. The load profile for three days in spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22. The PV profile for these three days. 
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Figure 3.23. The power supplied by the main grid in spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. The SOC in spring. 
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3.5.2. SOC Control Algorithm Scenario. An algorithm is implemented to be 

added to the previous scenario to control the SOC. The algorithm is designed based on 

the SOC and variations between the solar panel generation and the load. The system can 

operate to charge or discharge the batteries and the algorithm’s objective is to keep the 

SOC consistently in the 40% to 70% charge range to ensure that the batteries do not reach 

extremely high or low ranges.  The algorithm will monitor the SOC.  If the SOC passes 

either the upper or lower limit, the power supplied by the main grid will be adjusted to 

ensure that SOC stays within the established ranges. The logic of the algorithm is to 

check the SOC every two hours and adjust the system accordingly. The following actions 

of adjustments are taken based on the detected conditions: 

• Decrease the power grid by 40% if: 

o SOC is between 80% - 90%; and 

o The power grid is greater than 200 w. 

•  Decrease the power grid by 40% and shift it down by 2,000 if: 

o SOC is between 80% - 90%; and 

o The power grid is less than 200 w. 

• Decrease the power grid by 20% if: 

o SOC is between 80% - 90%. 

• Leave the power grid as it is if: 

o SOC is between 40% - 70%. 

• Increase the power grid by 20% if: 

o SOC is between 30% - 40% 

• Increase the power grid by 40% if: 

o SOC is between 20%- 30%; and 

o The power grid is greater than 200 w. 

• Increase the power grid by 40% and shift it up by 2,000 if: 

o SOC is between 20% - 30; and 

o The power grid is less than 200 w. 

• Decrease the power grid 40% and shift it down by 2,000 if: 

o SOC is greater than 90%. 
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• Increase the power grid by 40% and shift it up by 2,000 if: 

o SOC is less than 20%. 

Figure 3.25 provides a flowchart for the algorithm.  The flowchart assumes the 

average difference between the load profile and PV profile for the precedent day as 

defined by β as in equation (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25. A flowchart for the algorithm. 
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The commands will involve either increasing or decreasing the power imported 

form the grid based on the range of the SOC.  The code will be implemented using the 

MATLAB function as shown in Figure 3.26. The MATLAB function uses an input and 

output. The inputs of this function will be SOC and β and the output will be an adjusted 

numbers multiplied, added or subtracted by β to scale or adjust the power of main grid. 

The signals will be sent to the code using the “Tag” block, something which is 

responsible for receiving the input values from the simulation and sending them to the 

code.  The “Goto” block will send the commands from the code back to the model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26. The MATLAB function. 
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3.5.2.1. Summer. The load and PV profiles for three days in summer are shown 

in Figures 3.9 and 3.10.  The power of the main grid during summer is shown in Figure 

3.27.  The power of the grid is the average of the differences between the load and PV 

profile the previous day. The SOC in summer is shown in Figure 3.28. The battery SOC 

starts discharging with 0.8 initial value. Since the SOC is within range 0.8 and 0.7, β will 

be 80% of its original value. Also, once the SOC exceeds 0.8 in the second day, the main 

grid power is reduced by 60% of β to avoid any overcharging. The SOC shows that the 

final SOC is lower than initial SOC by approximately 4% (∆	𝑆𝑂𝐶 ≈ −4%). Also, it 

shows that applying the algorithm in this scenario was able to bring SOC back to the 

limits even though initial SOC was 80%. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.27. The power of the main grid during summer. 
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Figure 3.28. The SOC in summer. 

 

3.5.2.2. Fall. The load and PV profiles for the three days in fall are shown in 

Figures 3.13 and 3.14.  The power of the main grid in fall is shown in Figure 3.29.  The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. Figure 3.30 shows the SOC in fall. The SOC is maintained between 0.8 and 

0.7 except for the middle of second day and at the end of third day. In the middle of 

second day, the power of the main grid reduced by 60% of β, because the SOC exceed 

the 0.8 level. At the end of the third day, the SOC decreased below 0.7 which means the 

grid power will go back to the original β. Also, The SOC shows that the final SOC is 

much lower than initial SOC by approximately 10% (∆	𝑆𝑂𝐶 ≈ −10%). 
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Figure 3.29. The power of the main grid in fall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30. The SOC in fall. 
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3.5.2.3. Winter. The load and the PV profiles are shown in Figures 3.17 and 3.18.  

The power of the main grid during winter is shown in Figure 3.31.  The power of the grid 

is the average of the differences between the load and PV profile the previous day.  

Figure 3.32 shows the SOC of winter. The battery SOC starts discharging with 0.8 initial 

value. Since the SOC within range 0.8 and 0.7, the β will be 80% of its original value. 

Also, once The SOC exceeds the 0.8 in the second day, the power of main grid reduced 

by 60% of β to avoid any overcharging. And, when the SOC below 0.7, the grid power 

will go back to its original value to ensure that the SOC of the battery is maintained 

within reasonable range. The SOC shows that the difference between the final SOC and 

initial SOC is around 12% (∆	𝑆𝑂𝐶 ≈ −12%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.31. The power of the main grid during winter. 
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Figure 3.32. The SOC of winter. 

 

3.5.2.4. Spring. The load and PV profiles for spring are shown in Figures 3.21 

and 3.22.  Figure 3.33 shows the power of the main grid in spring.  The power of the grid 

is the average of the differences between the load and PV profile the previous day. The 

SOC of spring is shown in Figure 3.34. The battery SOC in the third day exceeds 0.8 and 

β is low. Therefore, the microgrid system will send power to the grid in order to avoid 

overcharging the battery. The exported power to the grid is 60% of the β subtracted by 

2000. Also, The SOC shows that the final SOC is bit higher than initial SOC by around 

3% (∆	𝑆𝑂𝐶 ≈ 3%). 

 

 



	 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.33. The power of the main grid in spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.34. The SOC of spring. 
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3.5.3. Peak Power Shaving Scenario. The control objective for this scenario is to 

create a constant load for the main grid with the exception of the peak load power hours.  

The main grid will supply constant power for the system until a certain time at which 

point the system will slowly ramp down to zero and then increase power until a specified 

time point.  The time that the system works to ramp up power will be the interval of 

maximum load demand.  In this simulation, the chosen time interval is from 3:00 pm 

until 7:00 pm each day.  The constant grid power in this scenario will be higher than in 

the flat scenario due to the ramp.  The scenario will be investigated in three days selected 

during summer, fall, winter, and spring.  In addition, a PV power profile and load power 

profile are provided in the simulation for each day. The time interval of the data is one 

minute and there will be 4,320 samples over the three-day sample, providing a sample for 

each minute of each day. The average values from each of the three days are shown in 

Table 3.2. 

 

Table 3.2. The average values from each of the three days. 

The day Average of previous day 

except PV peak power time  

(3pm-7pm) 

Summer 

(w) 

Fall 

(w) 

Winter 

(w) 

Spring 

(w) 

1st day  

β3	,`ab =
𝛽3,cde×24(ℎ𝑜𝑢𝑟𝑒𝑠)
24 − 5	(ℎ𝑜𝑢𝑟𝑒𝑠)  

903  59  8,007  1,950 

2nd day  

β+	,`ab =
𝛽+,cde×24(ℎ𝑜𝑢𝑟𝑒𝑠)
24 − 5	(ℎ𝑜𝑢𝑟𝑒𝑠)  

1,768  1,523  5,619  616 

3rd day  

β]	,`ab =
𝛽],cde×24(ℎ𝑜𝑢𝑟𝑒𝑠)
24 − 5	(ℎ𝑜𝑢𝑟𝑒𝑠)  

755  554 8,106 66  

 

3.5.3.1. Summer. The load and PV profiles for three days in summer are shown 

in Figures 3.9 and 3.10. The power of main grid in summer is shown in Figure 3.35. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. The SOC in summer is shown in Figure 3.36. The SOC shows that the final 
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SOC is bit lower than initial SOC by around 1% (∆	𝑆𝑂𝐶 ≈ −1%). The power of main 

remains constant except the PV peak power from 3pm until 7pm each day.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.35. The power of main grid in summer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.36. The SOC in summer. 
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3.5.3.2. Fall. The load and PV profiles for the three days in fall are shown in 

Figures 3.13 and 3.14. The power of the main grid in fall is shown in Figure 3.37. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. The SOC in fall is shown in Figure 3.38. The SOC shows that the final 

SOC is lower than initial SOC by 10% (∆	𝑆𝑂𝐶 ≈ −10%). The power of main remains 

constant except the PV peak power time from 3pm until 7pm each day. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.37. The power of the main grid in fall. 
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Figure 3.38. The SOC in fall. 

 

3.5.3.3. Winter. The load and PV profiles for three days in winter are shown in 

Figures 3.17 and 3.18. The power of the main grid in winter is shown in Figure 3.39. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. The SOC in winter is shown in Figure 3.40. The SOC shows that the final 

SOC is bit lower than initial SOC by around 3% (∆	𝑆𝑂𝐶 ≈ −3%). The power of main 

remains constant except the PV peak power time from 3pm until 7pm each day.  
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Figure 3.39. The power of the main grid in winter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.40. The SOC in winter. 
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3.5.3.4. Spring. The load and PV profiles for three days in spring are shown in 

Figures 3.21 and 3.22. The power of the main grid in spring is shown in Figure 3.41. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. The SOC in spring is shown in Figure 3.42. The SOC shows that the final 

SOC is higher than initial SOC by around 6% (∆	𝑆𝑂𝐶 ≈ 6%). The power of main 

remains constant except the PV peak power time from 3pm until 7pm each day.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41. The power of the main grid in spring. 
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Figure 3.42. The SOC in spring. 

 
3.5.4. SOC Control Algorithm for Peak Power Shaving Scenario. The control 

objective for this scenario is to demand a constant load to the main grid except for peak 

power demand hours. Also, the algorithm tries to control the SOC and keep it within 

acceptable range. The algorithm will be applied in the same way that it is used in the 

SOC control algorithm scenario.  This scenario will be implemented for three days per 

season. 
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3.5.4.1. Summer. The load and PV profiles for three days in summer are shown 

in Figures 3.9 and 3.10. The power supplied by the main grid in summer is shown in 

Figure 3.43. The power of the grid is the average of the differences between the load and 

PV profile the previous day. The SOC in summer is shown in Figure 3.44. The battery 

SOC starts discharging with 0.8 initial value. Since the SOC within range 0.8 and 0.7, the 

β will be 80% of its original value. Also, in figures, once The SOC exceeds 0.8 in the PV 

peak power ( β = 0 ), the system will send the power to the grid. That happened in the 

first and second day. The SOC shows that the final SOC is lower than initial SOC by 

approximately 4% (∆	𝑆𝑂𝐶 ≈ −4%). Also, it shows that the algorithm in this scenario is 

controlling the SOC successfully and bringing it back to the limits.  

 

 

 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3.43. The power supplied by the main grid in summer. 
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Figure 3.44. The SOC in summer. 
 
 

3.5.4.2. Fall. The load and PV profiles for three days in fall are shown in Figures 

3.13 and 3.14. The power supplied by the main grid in fall is shown in Figure 3.45. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day.  The SOC in fall is shown in Figure 3.46. The SOC is maintained between 

0.8 and 0.7 except the middle of second day and the end of third day. In the middle of 

second day, the power of the main grid is 60% of β ,and then -2,000 for the PV peak 

power time when the SOC exceed the 0.8 level. At the end of the third day, the SOC 

decreased below 0.7 which means the grid power will return to the original β. Also, The 

SOC shows that the final SOC is much lower than initial SOC by approximately 12% 

(∆	𝑆𝑂𝐶 ≈ −12%). 
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Figure 3.45. The power supplied by the main grid in fall. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.46. The SOC in fall. 
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3.5.4.3. Winter. The load and PV profiles for three days in winter are shown in 

Figures 3.17 and 3.18. The power of the main grid in winter is shown in Figure 3.47. The 

power of the grid is the average of the differences between the load and PV profile the 

previous day. The SOC in winter is shown in Figure 3.48. The battery SOC starts 

discharging with 0.8 initial value. Since the SOC within range 0.8 and 0.7, the β will be 

80% of its original value. Also, once The SOC exceeds the 0.8 in the peak PV generation, 

the power of main grid will be -2,000. Thus, the microgrid system is sending the power to 

the grid. And, when the SOC below 0.7, the grid power will go back to its original value 

to ensure that the SOC of the battery is maintained within reasonable range. The SOC 

shows that the difference between the final SOC and initial SOC is around 13% 

(∆	𝑆𝑂𝐶 ≈ −13%). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3.47. The power of the main grid in winter. 
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Figure 3.48. The SOC in winter. 

 

3.5.4.4. Spring. The load and PV profiles for three days in spring are shown in 

Figures 3.21 and 3.22. The power supplied by the main grid in spring is shown in Figure 

3.49. The power of the grid is the average of the differences between the load and PV 

profile the previous day. The SOC in spring is shown in Figure 3.50. The battery SOC 

starts discharging with 0.8 initial value. Since the SOC within range 0.8 and 0.7, the β 

will be 80% of its original value. Also, once The SOC exceeds the 0.8 in the peak PV 

generation, the power of main grid will be -2,000 which means the microgrid system is 

sending the power to the grid. In the third day, the β is less than 200 and the SOC within 

0.8 and 0.9. therefore, the exported power to the grid will be 60% of the original β minus 

2000. The SOC shows that the difference between the final SOC and initial SOC is 

around 1% (∆	𝑆𝑂𝐶 ≈ −1%). 
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Figure 3.49. The power supplied by the main grid in spring. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.50. The SOC in spring. 
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3.6. COMPARISONS BETWEEN SCENARIOS 

This section will combine all the SOCs of the scenarios in different seasons to see 

the differences and determine the best scenario for each season.  The SOC for the 

scenarios in summer is shown in Figure 3.51. The SOC for fall is shown in Figure 3.52, 

the SOC for winter is shown in Figure 3.53, and the SOC for spring is shown in Figure 

3.54. The figures show that the algorithm is controlling and managing SOC successfully. 

And, it is able to maintain the SOC within limits even though the initial SOC was 80%.   

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.51. The SOC for the scenarios in summer. 
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Figure 3.52. The SOC for fall. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.53. The SOC for winter. 
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Figure 3.54. The SOC for spring. 
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4. CONCLUSION 

 

This thesis presents the definition of a microgrid and how a microgrid system and 

distributed generators with the existence of a main grid interact with one another.  In 

addition, the thesis also discusses certain microgrid and distributed generator 

components.  The grid-connected and islanded modes of operation have been defined and 

discussed along with various types of microgrid controls.  Models and simulations 

involving microgrids and particular scenarios allow researchers to ensure that challenges 

are properly addressed before new and improved microgrid systems are constructed.  The 

simulation using the solar village constructed by the solar house team from Missouri 

S&T has provided a great model to enhance component functions of the system.    

The main goal for this thesis is to control the battery of the microgrid system of 

the solar village at Missouri S&T.  The thesis began with an overview involving the 

architecture and components of the solar village’s microgrid.  The Milbank Company 

built the microgrid system in the solar village and created very intelligent switchgear 

hardware.  The company uses web portal software to monitor the power in the solar 

village.   

The batteries in the solar village are currently managed by a code called SNTBatt. 

This code is a custom program that was written specifically by the manufacturer for the 

solar village at the Missouri University of Science and Technology and is used to manage 

and control the batteries and inverter.  The code is separate from the IATS code which is 

responsible for reading and managing the switchgear system. 

In this thesis, the simulation of the solar village was designed using MATLAB 

and the algorithm for energy management was written using MATLAB function. The 

simulation used realistic load and PV profile. They are obtained by Milbank.   

Four energy management scenarios are simulated and the results of the 

simulations are discussed. each scenario has a specific control objective. State of charge 

plays a critical role in the control algorithm.  The results of the simulation provide 

evidence regarding how certain state of charge control algorisms could play a role in 

charging and discharging the battery to manage grid interactions.   
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The solar generation and load profile of three consecutive days per season were 

selected for all the scenarios. In all cases, the average of load is greater than the average 

of solar generation. First, the flat grid power scenario objective was preferred to create a 

constant load to the main grid, and, therefore, the main grid provides constant power for 

the system. Second, the SOC control algorithm scenario aimed to manage SOC and 

adjust the grid power accordingly. It was controlling SOC effectively and bringing it back 

to limits. Third, the peak power shaving scenario is chosen to create a constant load for 

the main grid with the exception of the peak load power hours. Finally, SOC control 

algorithm for peak power shaving scenario aimed to demand a constant load to the main 

grid except for peak power demand hours. Also, the algorithm was efficient in this 

scenario to control the SOC and keep it within reasonable range.      
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