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ABSTRACT 

This thesis proposes the use of Frequency Selective Surfaces (FSSs) as an 

embedded structural health monitoring (SHM) sensor.  FSSs are periodic arrays of 

conductive elements that filter certain frequencies of incident electromagnetic radiation.  

The behavior of this filter is heavily dependent on the geometry of the FSS and local 

environment.  Therefore, by monitoring how this filtering response changes when the 

geometric or environmental changes take place, information about those changes may be 

determined.  In previous works, FSS-based sensing has shown promise for sensing 

normal strain (a stretching or compressing geometrical deformation).  This concept is 

extended in this thesis by investigating the potential of FSSs for sensing shear strain (a 

twisting deformation) and detection of delamination/disbond (defined as an air gap that 

develops due a separation between layered dielectrics, and herein referred to as 

delamination) in layered structures.  For normal strain and delamination sensing, 

monitoring of the FSS’s resonant frequency is shown to be a reliable indicator for each 

phenomena, as verified by full-wave simulation and measurement.  For shear strain, 

simulation results indicate that an FSS may cross-polarize incident radiation when under 

shear strain.  Additionally, FSS was applied as a normal and shear strain sensor within a 

steel-tube reinforced concrete column, where it was found to provide reliable normal 

strain detection (as compared to traditional strain sensors), but was not able to detect 

shear strain.  Lastly, in order to improve the design procedure by reducing computation 

time, an algorithm was developed that rapidly approximates the response of an FSS to 

delamination through use of conformal mapping and existing frequency response 

calculations.  
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1. INTRODUCTION 

1.1. BACKGROUND AND RESEARCH MOTIVATION 

A major area of interdisciplinary research focuses on the development of 

infrastructure than can provide information on its structural integrity, allowing for easier 

inspection and testing [51].  As such, structural health monitoring (SHM) sensors that can 

be embedded into and integrated throughout a structure are necessary.  Currently, fiber 

optic sensors are one of the most common embedded SHM sensors, and can sense 

phenomena such as temperature and normal strain [52].  Other potential sensor 

technologies involve the use of piezoelectric materials or acoustical nanowire sensors that 

can be directly integrated into a structure [51], [52].  As an addition to the currently 

available sensors, this thesis proposes the use of Frequency Selective Surfaces (FSS) as a 

form of embedded SHM sensors.  

In its most basic form, an FSS is a periodic array of conductive elements designed 

to resonate at a certain frequency.  At this resonant frequency, the FSS acts as either a 

band-pass or a band-stop filter to incident electromagnetic radiation [1].  This filtering 

behavior occurs due to inductive (L) and capacitive (C) coupling between the elements of 

the FSS (and hence the FSS acts as an LC filter).  This coupling, and thus the filtering 

behavior of the FSS (referred to as the frequency response), is highly dependent on 

geometry and local environment.  As such, an FSS’s frequency response is determined by 

the dimensions and spacing of the FSS elements, as well as the presence of nearby 

dielectrics and conductors.  This thesis proposes that an FSS’s dependence on geometry 

and environment can be useful for SHM purposes.  Previously, [33] and [34] have found 

that an FSS can be used to sense normal strain (a stretching or compressing deformation) 

[39].  The use of an FSS for sensing normal strain is extended in this work by examining 

the sensitivity of different FSS elements to normal strain, as well as measurement 

verification of FSS’s sensitivity to normal strain.  Additionally, sensing capabilities are 

explored for shear strain (defined as a twisting deformation [36]) and 

delamination/disbond (defined as a separation of bonded or laminated materials within a 

structure [43] and herein referred to as delamination) detection. 
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1.2. SUMMARY OF SECTIONS 

Section 2 of this thesis introduces the theory and background of FSS operation 

and design.  A brief history of the development and research of FSS design is presented 

in Section 2.1.  Section 2.2 presents the fundamental theory of FSS operation, including 

analysis of frequency response for various FSS elements and general design practices.  

Additionally, a variety of common FSS elements used throughout this thesis are 

presented and discussed.  Next, Section 2.3 presents a range of more advanced FSS topics 

that pertain to practical implementation, including the effects of local dielectrics and 

conductors, oblique incidence of impinging radiation, and sensing using multiple FSS 

layers within a single structure. 

In Section 3, the use of FSSs for sensing normal and shear strain is examined.  In 

Section 3.1, the effects of normal strain on an FSS’s frequency response are investigated.  

FSSs have previously been found to have potential as a normal strain sensor because an 

FSS’s resonant frequency is a function of its geometry (conductor length, width, etc.)  

[33], [34].  As such, an FSS’s resonant frequency will shift when its conductors are 

stretched or compressed, as is the case when an FSS is under normal strain.  By 

monitoring changes in the resonant frequency, the normal strain (experienced by the FSS) 

can be determined.  In this investigation, the response of FSS to normal strain is 

investigated for a variety of FSS elements through full-wave electromagnetic simulation 

and measurements.  Next, in Section 3.2, the effects of shear strain on the FSS’s 

frequency response are studied through full-wave simulation for a series of common FSS 

elements.  These investigations are extended to a practical sensing application in Section 

3.3, where the use of FSS as a normal and shear strain sensor is tested in a steel-core 

reinforced concrete column.   

Next, in Section 4, the use of an FSS for delamination detection in a layered 

dielectric structure is explored.  Section 4.1 discusses the effect of local dielectrics on an 

FSS’s frequency response, as well as how a delamination in these dielectrics alters that 

response.  This is examined through a series of simulations and measurements that 

demonstrate the use of FSSs for delamination sensing.  Meanwhile, Section 4.2 presents 

an analytical approximation method that uses conformal mapping to determine the 

effective permittivity (εr,eff) observed by an FSS when embedded within a dielectric 
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structure.  The value of εr,eff can be used to relate changes in an FSS’s resonant frequency 

to changes in the surrounding dielectric environment, such as delamination.  This 

approach for determining εr,eff is subsequently applied to an algorithm for approximating 

the frequency response of an FSS when embedded within a layered dielectric structure.  

Determining εr,eff  in this way reduces computation time (as compared to full-wave 

simulation), allowing for expedited analysis of an FSS’s response to delamination.  

Additionally, this can aid the FSS design process by approximating how an FSS’s 

frequency response will be altered when embedded into a dielectric structure.   

Finally, Section 5.1 summarizes the work presented in this thesis.  Furthermore, 

Section 5.2 outlines a number of possible extensions of this work.  Such extensions 

include the development of an FSS design methodology for creation of improved FSS 

SHM sensors, along with the potential of active FSS and optical-wavelength FSS for 

SHM sensing.  
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2. AN OVERVIEW OF FSS 

This section provides an overview on the background and physical operation of 

FSSs.  To start, a short historical account of FSSs is presented.  Then, an in-depth 

discussion on the functionality and physics inherent to FSSs is provided.  This discussion 

includes a comparison of different FSS element geometries that are relevant to this thesis.  

Lastly, problems and limitations encountered in real-world application of FSSs are 

discussed. 

 

2.1. A BRIEF FSS HISTORY 

The defining feature of an FSS is its ability to act as a surface with band 

pass/band stop filtering properties to incident radiation.  This is accomplished through a 

periodic array of conductive elements that inductively and capacitively couple when 

excited by incident electromagnetic radiation (e.g., a plane wave, a propagating wave 

with electric and magnetic fields that are orthogonal to each other and the direction of 

propagation).  One of the earliest forms of an FSS was a parabolic reflector grid using an 

array of resonant dipoles that was designed and patented by Marconi and Franklin in 

1919 [1].  However, much of the research into what is now referred to as FSSs didn’t 

gain momentum until the 1960s and 1970s.  During this time, the United States Air Force 

supported classified investigations into FSS development for radar and stealth 

applications [1], [2].  This research included conductive elements, such as crossed-

dipoles and tripoles, which had greater versatility than the single resonant dipoles 

investigated previously.  These new FSS element designs provided better performance 

including insensitivity to angle of incidence (defined as the angle between a plane wave’s 

direction of propagation and the direction normal to the plane of the FSS) and finer 

tunability, making FSSs useful for stealth radomes and as multi-band Cassegrain reflector 

dishes in antenna systems [1], [3].  After becoming declassified in the mid-1970s, 

research moved towards new methods of FSS design and development for general use.  

Analysis techniques such as computational modal analysis of resonating elements and 

circuit model approximations of filter behavior led to a better understanding of the 

physical characteristics of FSSs [3], [4].  In the 1990s and 2000s, improvements to 
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computing technology led to the use of numerical solvers, allowing for analysis of more 

complicated structures that cannot be easily described through analytical means.  Today, 

this work has led to many different FSS designs and applications, including three-

dimensional FSS structures [5], active FSS [6], thin-film high-impedance surface 

absorbers [7], and fractal element FSS designs [8].   

 

2.2. BASIC FSS DESIGN AND ANALYSIS 

As stated, the most common form of an FSS is that of a periodic array of 

conductive elements.  Other forms of FSSs include three-dimensional conductive patterns 

and dielectric-based FSSs (both of which are beyond the scope of this thesis).  A number 

of popular FSS elements, such as dipoles, crosses, loops, and patches, are illustrated in 

Figure 2.1. 

 

 

 

 

Figure 2.1. Illustration of common FSS elements. 

 

 

 

The frequency response of these elements to incident radiation is commonly 

modeled by an equivalent LC circuit model that corresponds to the mutual inductive and 

capacitive coupling that occurs between each element [3].  In this way, the FSS can be 

considered as a frequency dependent impedance.  Based on transmission line theory, the 

impedance mismatch between the FSS LC circuit and surrounding material(s) creates 
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reflections and transmissions at the FSS interface.  The net effect of these reflections and 

transmissions creates the desired filtering response.  Common FSS element designs tend 

to fall into one or more of three types, described as dipole, loop, or patch type FSSs, or 

hybridized combinations of the three [1].  Element designs used over the course of this 

thesis, as well as their accompanying circuit models, are discussed next. 

2.2.1. Dipole-Type FSS Elements.  The simplest form of an FSS is that of the 

dipole array, as shown in Figure 2.2, as well as its associated equivalent LC circuit. 

 

 

 

g

L

W

E

C1

L1

 

Figure 2.2. Dipole Array FSS with Equivalent LC Circuit 

 

 

When currents are excited on the FSS by a plane wave polarized along the broad 

lengths of the dipoles (shown by E in Figure 2.2, with L and W defining the length and 

width of the conductor), this length acts an inductance (L1), and the vertical gap between 

each dipole length (of width g) provides a capacitance (C1) [1].  The desired frequency 

response of the FSS can be obtained by tuning L, W, and g to obtain the corresponding L 

and C values.  For the dipole array FSS, the transmission frequency response is that of a 
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band-stop filter, meaning that signals can transmit through the FSS at any frequency 

outside of the designated stop band, and signals having frequencies within the stop band 

are reflected.  The center frequency of this stop band (hereto referred to as the resonant 

frequency) is dictated by the resonant length, L, of the dipole with respect to the 

operating wavelength, λ.  Typically, this resonance occurs when the length of the dipole 

is roughly equal to half the operating wavelength, λ/2, [1].  Conversely, in order to obtain 

a band-pass transmission resonance, a complementary slot-based array can be used.  A 

slot-based FSS is composed of an array of resonant slots cut out of a metal sheet.  Unlike 

conductive dipoles, these slots exhibit a band-pass resonance that occurs for an incident 

plane wave polarized perpendicularly to the broad length of the slot [1].  A slot is 

considered complimentary to a dipole when the dimensions of the slot match the 

dimensions of the dipole, meaning that the slot FSS transmits signals at frequencies 

where the dipole FSS reflects, and vice-versa.  An example of transmission frequency 

responses for dipoles and slots with parallel oriented incident wave polarizations 

(denoted by E) is shown in Figure 2.3.  This behavior is a consequence of Babinet’s 

principle, and can generally be applied to most other FSS designs, if a complimentary 

response is needed [1].  This consideration may be inaccurate in the presence of thick 

dielectric slabs near the FSS, however, due to differences in impedance profiles between 

the complimentary FSS designs.  Since the dipole FSS acts as a short circuit at resonance, 

and the slot FSS acts as an open circuit, the transmission lines representing the dielectric 

slabs are thus loaded differently, causing non-complimentary behavior between each FSS 

[3].  However, for practical use, the dipole FSS is often not used due to its strong 

dependence on the polarization of an incident plane wave.  Should the plane wave not be 

polarized parallel to the length of the dipoles, the structure’s resonance will be reduced.  

Furthermore, in the case of completely perpendicular polarization (opposite to the 

polarization depicted by E in Figure 2.3), the structure stops resonating completely [3].  

To help alleviate this problem, a second dipole can be added to the structure that is 

perpendicular to the first dipole.  This creates the crossed-dipole FSS (or Cross FSS), 

shown in Figure 2.4.  For this FSS, the presence of the second dipole ensures that the 

polarization of an incident plane wave can never be completely perpendicular to the 

length of any one conductor. 
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Figure 2.3. Complimentary transmission response of dipole array and slot array. 
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Figure 2.4. The crossed-dipole FSS. 
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Thus, while the resonance will still be dampened for non-parallel (to either 

dipole) polarizations, the resonance will not be completely removed.  Additionally, this 

dampening will be less severe than for a single dipole, as both dipoles will still be 

partially excited for any arbitrary polarization.  The addition of the second dipole can 

have adverse effects, however, in the form of an additional coupling mode that occurs 

between the perpendicular arms of the cross [3].  While this coupling does not occur 

when the FSS is excited by a normally incident plane wave, it does pose a problem when 

the plane wave is incident at certain (off-normal) angles in which the electric field of the 

plane wave is no longer parallel to the plane of the FSS (i.e., TM incidence).  When this 

occurs, an additional resonance is created that is very close to the main resonance of the 

FSS [1].  As a result, the shape of the resonance can be significantly modified, thus 

creating an unintended frequency response.  To resolve this problem, an additional set of 

“end-loading” dipoles can be added to the ends of each arm of the cross in order to better 

control this unwanted coupling [1].  This helps to move the unwanted resonance to a 

higher frequency, away from the main resonance.  The addition of these end-loading 

dipoles creates the Jerusalem Cross FSS, shown in Figure 2.5 (a).   

In this figure, the parameters of note are the gap width (g), central conductor 

length (D1) and width (W1), and end-loading conductor length (D2) and width (W2).  

Additionally, an example of the frequency response and equivalent circuit model is also 

shown in Figure 2.5 (b) and (c), respectively.  As can be seen in the frequency response 

(Figure 2.5 (b)), the presence of the new end-loading dipoles adds a second stable 

transmission resonance (f2) in addition to the original transmission resonance (f0), giving 

this FSS multi-resonant behavior.  Furthermore, in between these two transmission 

resonances there is also an impedance-controlled reflection resonance (f1), giving 

additional design flexibility [13].  With this level of complexity, however, more advanced 

FSS design and analysis methods must be used. 

Evaluating the frequency response of any given FSS design can be accomplished 

through a number of methods.  These methods tend to rely on either numerical or 

analytical approximations, as the coupling behavior in an FSS tends to be too complex 

for direct evaluation.  Numerical approximation methods, such as Method of Moments 

(MoM) [9], Finite-Difference Time Domain (FDTD) [10],  
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Figure 2.5. The Jerusalem Cross FSS (a), with associated frequency response (b) 

and equivalent circuit model (c). 

 

 

 

 

 

and Finite-Element Method (FEM) [11], are often used to solve for the frequency 

response and field scattering of an FSS.  This is accomplished by solving for the response 

of a single element of the FSS (referred to as a “unit cell”) and then enforcing the effect 

of periodicity using Floquet boundary conditions [55].  These boundaries operate by 

analyzing the fields incident on a particular side wall of the unit cell (known as a 

“master” boundary), and then matching those fields on the opposite unit cell side wall 

(known as a “slave” boundary), with an additional phase term added which accounts for 

the effect of the incident angle of the impinging plane wave [11].  This method results in 

improved computation time (compared to modeling the full extent of a finite-sized FSS), 

but can be inaccurate when applied to FSS structures that don’t have infinite (or at least, 
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effectively infinite) periodicity.  Such structures include finite-size FSS (i.e. having a 

limited number of elements such that edge effects from the outer-most elements can 

significantly affect the response) and curved FSS structures [9].  However, these issues 

can often be compensated by doing further simulations of edge cases (i.e., elements on 

the edge of a finite-size FSS) or assuming locally planar behavior (for curved FSS 

structures), if possible [24].  The main advantages of numerical based solutions lie in 

their ability to be applied to any arbitrary FSS design, while also accounting for the 

effects of incident angle and polarization of an incident plane wave.  The drawback of 

numerical methods, however, is the lengthy computation time required.  This can become 

a problem for FSS design, as design practices using this method generally involve 

parameter sweeps and optimization techniques to obtain a desired frequency response.  

While this isn’t necessarily a problem when fine-tuning an established design to meet 

specific criteria, a more expedient solution may be needed when first starting the design 

process.  To help address this, a number of analytical approximation techniques have 

been developed to act as a starting point for FSS design.  These techniques generally 

approximate FSS behavior as similar to more basic resonant structures that are easier to 

describe mathematically.  In doing so, equations have been developed for a number of 

common FSS designs which give useful design parameters (such as the reactance of the 

FSS) based on the dimensions and surrounding geometry of an FSS [13], [16], [17].  This 

method of approximation often comes at the expense of neglecting the presence of more 

complicated electromagnetic mechanisms (such as the effects of incident angle or 

polarization), however, and thus is best suited only for initial design.  While the details on 

this modeling approach are discussed in Chapter 4, the analytical approximations 

developed for a variety of FSS elements are discussed in this chapter, as they provide 

insight into how different aspects of the geometry of an FSS contribute to the 

inductance(s) and capacitance(s) in an FSS's associated equivalent LC circuit. 

One such analytical method involves approximating the resonating FSS structure 

as an infinitely long conductive strip grating in order to obtain the equivalent inductances 

and capacitances of the FSS.  Equations for the reactive and susceptive impedances of a 

conductive strip grating were originally derived by Marcuvitz, and are presented in [14]. 
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                         (2.2) 

 

Equation (2.1) describes the (normalized to the impedance of free space) 

inductive reactance of the strip grating when excited by a plane wave polarized parallel to 

the length of the strips.  Equation (2.2) describes the normalized capacitive susceptance 

of the strip grating when excited by a plane wave that is polarized perpendicularly to the 

length of the strips.  The variables w and g describe the width of the conductors and the 

width of the gaps between conductors, respectively, with p being equal to w + g.  

Additionally, λ is the operating wavelength of the incoming plane wave, and θ is the 

angle of incidence of the plane wave.  Lastly, the function GTE,TM is given by the 

following equation. 

 

                
 

 

      
 
    

  

 
                  

   
  

 
       

  

 
 

  

 
                

  (2.3) 

 

where A± and β are given by (4) and (5). 

 

   
 

   
        

 
  

       

 
 
 
      (2.4) 

 

       
  

  
      (2.5) 

 

These equations can then be used to determine the individual capacitances and 

inductances of an FSS by estimating the lengths of conductor segments as a parallel-

polarized strip grating through (2.1) and estimating the gaps between the ends of each 

conductor segments as a perpendicularly polarized strip grating through (2.2).  For the 

case of the Jerusalem Cross in Figure. 2.5, there are five different circuit elements to be 
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calculated.  The circuit elements L1 and C1 account for the first resonance, f0, and is 

caused by the resonance of the main center dipole of length D1.  Since the gap, g, 

between the ends of the dipoles is much smaller than D1, the inductance of the FSS 

structure will be nearly identical to that of an infinite strip grating.  As such, the 

equivalent inductance can just be found directly through (1) as being          

         , where p = D1 + g, and W1 is the width of the center dipole, as shown in 

Figure 2.5 [13].  The term θ is not included in the function F for this case, as the effect of 

incident angle is difficult to account for when these equations are used to describe an 

FSS.  This is due to the FSS acting as both an inductive and capacitive strip grating, 

meaning that the FSS impedance is affected by both TE and TM incidence angles 

(meaning that the electric field (E-field) and/or magnetic field (H-field) is no longer 

perpendicular to the plane of the FSS), which isn’t accounted for in Marcuvitz’s original 

equations [22].  However, [22] provides modifications that can be made to Marcuvitz’s 

equations to better account for incident angle (but are beyond this scope of this thesis and 

as such, are not discussed here).  As such, it is assumed that θ = 0 (i.e., normal incidence) 

whenever the incident angle is not specified.  The capacitive term C1 represents the 

capacitive coupling that occurs between the end-dipoles (of length D2) [15].  This is 

described as a combination of two susceptances, Bg and Bd [13].  Bg is calculated as 

approximating the horizontal (as depicted in Figure 2.5) end-dipoles as a perpendicularly 

polarized strip grating of width W2 and gap spacing g, giving a susceptance of          

 
  

 
        .  The 

  

 
 term is added to account for the fact that the end dipoles can’t be 

approximated as being a continuous infinitely long conductive strip, as D2 is generally 

much smaller than p.  As such, the capacitance of the end-dipole is described as being 

only a fraction of the capacitance seen for a strip grating [13].  The susceptance Bd is 

caused by the additional coupling that occurs between the ends of the vertical end-

dipoles, and can be found as           
     

 
           .  However, if the length 

D2 is much smaller than the overall periodicity, this term can be considered largely 

negligible due to the large vertical spacing between end-dipoles.   

The second resonance of the Jerusalem Cross FSS is created when the end-dipoles 

themselves resonate.  This resonance is described by the circuit elements L3 and C3.  Two 
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series combinations of these elements are placed in parallel in the circuit diagram in 

Figure 2.5 (c) in order to account for the fact that there are two vertical end-caps.  The 

capacitance C3 is the self-capacitance of the end-dipole, which can’t be calculated using 

(2) [13].  Instead, this value can be found by assuming that the resonant wavelength (λ3) 

of the end-dipole is equal to     
  

    
 , and then using the relationship     

 

  
 

 

      
.  By finding the inductance, L, of a single end-dipole, the capacitance C3 can be 

calculated.  This inductance is solved using (1), 

giving               
  

 
          .  While this may seem redundant since f2 has 

already been determined through this process, the values of C3 and L3 can still provide 

valuable information about the quality factor of the resonant curve, as well as the 

interactions of this resonance with the first resonance.   

The inductance of each end-dipole, L3, is comprised of two reactances, Xl and Xm.  

Xl accounts for the inductance of the two adjacent end-dipole lengths between FSS 

elements, and is calculated as          
  

 
             .  Meanwhile, Xm describes 

the mutual inductance between the end-dipole and center dipole, and is calculated 

as                        .  Lastly, the capacitance C2 helps to describe the band-

stop region f1 that occurs between the resonances at f0 and f2, and is calculated as the sum 

of two additional capacitances, C4 and C5.  C4 is the self-capacitance of two adjacent end-

dipoles, which are treated as a single dipole of width 2W2+g.  This self-capacitance is 

solved in the same way as C3, with the inductive reactance now being given as  

              
  

 
             .  Next, the capacitance C5 accounts for the 

mutual capacitance that exists between the end-dipoles and the center dipole.  This final 

capacitance is given by           
  

 
  

 

 
 
          

 
    .  Using this complete 

circuit model, the response of the FSS can be determined by calculating its equivalent 

admittance, Y, and this value can be subsequently used to find the reflection coefficient 

(ρ), calculated as      
  

    
.  Additionally, the transmission coefficient (τ) is given 

by             [13].  A comparison of the results given between this method and 

HFSS simulation [23] is shown in Figure 2.6.  For this comparison, the Jerusalem Cross 
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FSS had dimensions of D1 = 17 mm, D2 = 10.3 mm, W1 = 2.3 mm, W2 = 1 mm, and g = 

0.4 mm, with normal incidence assumed.  Additionally, the FSS was assumed to be 

located in free space (εr = 1), with no additional dielectric present. 

 

 

 

 

(a) 

 

(b) 

Figure 2.6. Comparison of HFSS simulation and Marcuvitz analytical model of 

transmission (a) and reflection (b) responses of the Jerusalem Cross FSS design. 

 



 

 

16 

Overall, the results of both methods shown in Figure 2.6 match fairly well.  Minor 

variations in resonant frequency can be seen, however, for the first reflection resonance 

in Figure 2.6 (a) and second transmission resonance in Figure 2.6 (b), which demonstrate 

potential inaccuracies in the approximate analytical model.  Additionally, there may also 

be inaccuracies in the response calculated from HFSS.  However, the inaccuracies of the 

HFSS model are likely minor, due to tight tolerances on the adaptive meshing of the 

model during calculation.  Furthermore, the depth and bandwidth of the resonances are 

different between each case due to the analytical model not accounting for the surface 

resistance of the FSS.  Nonetheless, the analytical method is still fairly close to the 

simulated results, thus demonstrating its usefulness for initial FSS design work. 

The final form of dipole-based FSS designs to be discussed is the tripole design.  

As the name suggests, a tripole FSS is a design consisting of three arms that are 

connected at a central point and spaced 120° from each other.  The standard and end-

loaded tripole variations are both shown in Figure 2.7. 

 

 

 

 

 

        

                      (a)           (b) 

 

Figure 2.7. The Tripole FSS (a) and Loaded Tripole FSS (b). 
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The advantage of the tripole style design is the capability to orient the elements in 

a closely spaced hexagonal grid pattern.  This close spacing helps reduce the sensitivity 

of the FSS to incident angle (which makes the FSS’s behavior more consistent in a 

practical setting, since the angle of incidence may vary) while providing a large operating 

bandwidth for the transmission resonance [1].  This effect is further improved with the 

addition of the end-loading conductors seen on the ends of the tripole arms in Figure 2.7 

(b).  This end-loading helps to reduce the size of the elements due to the added inter-

element coupling.  The size reduction subsequently leads to an even closer element 

spacing, resulting in a wider transmission resonance bandwidth and greater insensitivity 

to incident angle [1].   

2.2.2.  Loop-Based FSS Elements.  The next category of FSS design to be 

discussed is the loop-based element.  As the name suggests, these elements are formed 

from loops of conductors.  Examples of loop shapes include circular rings, square loops, 

and hexagonal loops, as shown in Figure 2.8.  Additionally, dimensions are included for 

the square loop in Figure 2.8, as this element also has an analytical approximation model 

that is discussed below.  These dimensions are the conductor length (d) and width (s), gap 

width (g), and element length (p, which is equal to d + g). 
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Figure 2.8. Examples of ring, square loop, and hexagonal loop FSSs 
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The main distinction between these forms of loop elements is how closely the 

elements can be spaced together.  For instance, the circular and hexagonal elements can 

be spaced closest when in a hexagonal pattern, like the tripole above.  The square loop, 

on the other hand, can only be spaced closest when in a square-grid arrangement.  This 

consideration, as well as conductor width, affects the bandwidth and sensitivity to angle 

of incidence.  Meanwhile, the resonant frequency of the FSS is determined by the 

circumference of the loop.  More specifically, for a general loop FSS, the FSS resonates 

when the circumference of the loop is approximately equivalent to the operating 

wavelength [16].  Thus, by varying the conductor width, element spacing, orientation, 

and circumference, the desired overall frequency response can be acquired.   

The frequency response for the square loop FSS can also be determined using 

analytical equations for initial design work, before relying on the slower full-wave 

simulations.  These equations are similar to those presented above for the Jerusalem 

Cross, with some minor variations given as follows [16].  The square loop FSS frequency 

response is modeled by a single stage LC circuit.  The inductive reactance, X1, is 

calculated as          
 

 
         , which corresponds to an inductance, given as L1 

[16].  Here, d corresponds to the lengths of each side of the loop, s corresponds to the 

width of the conductor, and p is the unit cell length, equal to p = d + g, where g is the 

width of the gap between elements, as shown above in Figure 2.8.  Furthermore, the 

function F corresponds to the function presented above in equation (2.1).  Note that the 

parameter w found in equation (2.1) (which corresponds to the strip grating conductor 

width) is represented here as being equal to 2s.  The reason for this is that the currents 

excited in the FSS occur only along the segments that are parallel to the incident E-field, 

which in this case corresponds to two of the four sides [4].  Since each of these segments 

are close to other segments (of neighboring elements, separated only by a narrow gap, g), 

the strip grating approximation is applied by assuming that these neighboring segments 

operate inductively as one single conductor segment of width 2s, which are spaced apart 

from each other by the length of the unit cell.  Lastly, a modifier of d/p is applied to the 

total inductance to account for the fact that these segments are not infinitely long, as was 

done for the Jerusalem Cross.  Next, the susceptance, B1, which corresponds to a 



 

 

19 

capacitance, given as C1, is calculated as           
 

 
        .  Given these 

equations, the frequency response can be calculated from the resultant impedance, the 

result of which is compared with HFSS simulation in Figure 2.9.  For this comparison, 

the square loop was designed to have parameters of d = 10 mm, s = 2 mm, g = 2 mm, and 

p = 12 mm. 

 

 

 

 

Figure 2.9. Comparison of HFSS simulation and Marcuvitz analytical model for 

the transmission response of Square Loop FSS. 

 

 

 

As shown in Figure 2.9, the simulation and analytical model results match well.  

This again indicates the usefulness of analytical equations for FSS design due to its low 

computational requirements (when compared to full-wave simulation). 

One unique advantage of the loop-type elements is the ability to incorporate 

higher frequency resonant structures into the FSS design.  This is accomplished by 

adding additional rings into the interior of the initial outer ring.  Since the resonant 
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frequency of these structures is related to the circumference of the rings, these interior 

rings add additional resonances to the frequency response [17], [18].  Examples of double 

and triple square loop FSSs are shown in Figure 2.10.  Dimensions are included for 

double square loop for the analytical model below, and include the outer conductor length 

(d1) and width (s2), outer gap width (g1), inner conductor length (d2) and width (s2), inner 

gap width (g2) and element length (p, which is equal to d1+g1) 

 

 

 

 

g1g2s1 s2

d1

d2

p
 

 

Figure 2.10. Double square loop (left) and triple square loop (right).  

 

 

 

 

For the double square loop FSS design, the inductance of the inner square loop 

operates similarly to that of the single square loop, but its capacitance is affected by the 

outer loop.  Meanwhile, the capacitance of the outer loop is reduced from that of the 

single loop design, and the reactance of the outer loop is affected by an additional 

inductance created by the width of the inner conductor loop, as is shown in the following 
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equivalent circuit approximation equations [17].  The equivalent circuit for the double 

square loop FSS is composed of two series LC circuits in parallel with each other (which 

corresponds to the double-resonant nature of the FSS).  The value of L1 for the first 

resonance is calculated as a parallel combination of two other inductances that 

correspond to the inductances created by the conductor lengths of both the inner and 

outer loop, given here as Li and Lo, respectively.  These inductances are calculated as 

             and            .  The total reactance for L1 can then be calculated as 

        
   

 

    

     
 , where d1 is the side-length of the outer loop, p is the unit cell length 

p=d1+g1,  g1 is the gap between neighboring outer square loops, and s1 and s2 are the 

widths of the outer and inner square loops, respectively. 

The value for L2 for the double square loop is calculated in a manner similar to L2 

of the single loop above, with the associated reactance for L2 calculated as         

  

 
          , where d2 is the side-length of the inner loop.  Next, the susceptances 

corresponding to C1 and C2 are calculated based on the values of two separate 

capacitances, Ci and Co, which are related to the inner and outer conductor rings, 

respectively.  The capacitance Ci is calculated as               (with g2 being the gap 

between each square loop) and Co is calculated as              .  From these, the 

susceptance for C1 is calculated as             
  

 
   and the susceptance for C2 is 

calculated as           
  

 

    

     
.  The resulting frequency response of this circuit-based 

analytical model is compared to simulation results in Figure 2.11.  For this comparison, 

the dimensions of the double square loop were set as d1 = 4.8 mm, w1 = g1 = w2 = 0.2 

mm, d2 = 3.5 mm, g2 = 0.45 mm, and p = 5 mm. 

Overall, the results obtained by HFSS and the circuit approximation model 

equations have comparable resonant behavior.  More specifically, the resonant 

frequencies from both methods differ by approximately 1 GHz.  Although not exact, 

these circuit approximations can still be useful for an initial estimate of an FSS’s 

frequency response when first developing an FSS.  The loop concept can also be applied 

to other FSS types, creating hybrid elements, such as the Cross Loop FSS shown in 

Figure 2.12. 
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Figure 2.11. Comparison of HFSS simulation and Marcuvitz model for the 

transmission response of Double Square Loop FSS. 
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Figure 2.12. The Cross Loop FSS. 
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The main advantage given by this hybridized design is that the overall element 

size can be reduced.  This is possible because the arms that aren’t parallel to the E-field 

of the incoming wave instead act as an inductive impedance.  This impedance occurs due 

to the arms acting as a two-wire transmission line loaded with a short (of load impedance 

ZL = 0Ω) at the end.  This gives a reactive response based on the length of the arms, l, as 

well as the effective impedance of the two-wire transmission line, given as Zo.  If the 

lengths of all four arms are assumed the same, then at resonance, the length l will be 

equal to λ/8, giving an inductive response [1].  This inductance essentially makes up for 

the inductance lost by the reduction in the length of the element, thus allowing the 

element to be made smaller while still operating at a fixed frequency.  Another advantage 

given by this design is that the bandwidth of the resonance can be easily controlled by 

changing the impedance, Z0, of the two-wire transmission line [1].  This can be changed 

by tuning both the conductor width of the element, as well as the interior spacing between 

each line, thus giving a number of design parameters that can be adjusted without 

affecting resonant frequency, making the Cross Loop FSS a highly versatile design.  

Naturally, many other hybridized designs can also be created by combining elements of 

different FSS designs.  However, this is beyond the scope of this thesis and is not 

discussed here. 

 

2.3.  PRACTICAL DESIGN CONCERNS 

While the shape and dimensions of an FSS element plays the greatest role in 

determining the frequency response of the FSS, the overall response is also affected by 

other factors.  For example, practical concerns, such as the presence of a supporting 

dielectric layer (upon which an FSS may be etched), or the incident angle of an 

impinging plane wave can cause the resonant frequency to drift or be dampened.  Other 

environmental concerns, such as the presence of a ground plane near the FSS or curvature 

of the FSS, can more drastically alter the frequency response.  As a result, these structure-

dependent concerns must be evaluated to understand how an FSS will behave in a real-

world system.  As such, it may be possible to design an FSS in order to counteract or 

even take advantage of these effects.  Thus, the mechanisms behind these environmental 

and practical effects will now be discussed. 
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2.3.1. Effects of Supporting Dielectrics on Frequency Response.  One common 

concern when implementing an FSS in a structure is how the structure itself will affect 

the FSS response.  Such a structure can include the dielectric substrate that the FSS is 

printed on, any dielectric structural materials that surround the FSS, and the presence of 

conductors (which will be discussed in a separate section).  The presence of dielectric 

layers around an FSS can affect the frequency response in two ways.  First, a dielectric 

near the FSS will directly increase the capacitance of the FSS [19].  The increase in 

capacitance caused by this dielectric loading will then reduce the resonant frequency of 

the FSS, while also changing the depth and bandwidth of the resonance.  The resonance 

bandwidth is changed because the capacitance is affected by the permittivity of the 

material, but the inductance is not.  Conversely, if the material is magnetic (not typical 

for an FSS substrate), then the inductance will also increase (as well as the capacitance, 

depending on the material’s permittivity).  Additionally, the degree to which the 

capacitance of the FSS is increased is related to the thickness of the dielectric, as well as 

its proximity to the FSS.  If a dielectric layer completely surrounds an FSS on both sides, 

and is thicker than approximately 0.4p (where p is the length of the unit cell), then the 

capacitance is multiplied by the relative permittivity, εr, of the material [2].  However, if 

the material is very thin compared to the dimensions of the FSS, or if there are multiple 

materials surrounding the FSS, then the change in capacitance won’t be purely related to 

the permittivity (εr) of any one material.  Instead, the capacitance of the FSS is shifted by 

a modified permittivity that is referred to as the effective (relative) permittivity, εr,eff [19].  

For example, if different materials of appropriate thickness (such that all capacitive 

coupling from the FSS occurs within them) are present on each side of the FSS, then the 

value of εr,eff is calculated as an average between the permittivity of the materials on 

either side of the FSS.  In the case of a thick dielectric present on one side of the FSS 

only, the value of εr,eff  will be the average of the permittivity of the material and of free 

space, which leads to        
    

 
 [20].  However, for the case of a very thin dielectric 

near the FSS, the calculation of εr,eff becomes more difficult since the value of εr,eff does 

not change linearly with the thickness of the dielectric.  The reason for this is that the 

majority of the electric field coupling in the FSS occurs directly at the surface of the FSS, 

and falls off non-linearly with distance from the FSS [19].  Furthermore, the complexity 
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of calculating εr,eff is further increased if multiple layers of thin dielectrics are present.  

The treatment of this problem as it relates to FSS design is discussed later in Section 4.   

The presence of a multi-layer dielectric can also have a passive effect on the frequency 

response when measuring an FSS.  That is to say, a layered dielectric structure alone will 

also lead to additional resonant behavior due to the presence of reflections at interfaces 

between different dielectrics [19].  If this additional resonant response occurs near the 

operating frequency of the FSS, FSS measurement may become more difficult, as the 

presence of these dielectric resonance(s) may potentially hide the resonance of the FSS.  

Depending on the characteristics and requirements of the structure in which the FSS is 

embedded, this issue can be counteracted in a number of ways.  First, if a portion of the 

structure does not have an FSS present, this portion can be used to isolate the response of 

the structure itself.  With this data, the response of the structure can be removed from the 

overall frequency response (including the FSS response), thus yielding the effect of the 

FSS alone.  Alternatively, if needed, the use of an active FSS can be employed.  This 

form of FSS can essentially be designed to have its resonance switched on or off using, 

for example, PIN diodes properly connected throughout the surface of the FSS [6].  By 

modulating between the on and off states of the FSS resonance, the resonance of the FSS 

can be resolved from other resonances in a structure. 

2.3.2. Incident Angle. In an ideal system, an FSS will be excited by normally 

incident radiation.  However, in a real-world application, the propagation direction may 

not be known or controllable.  As such, an FSS may need to be designed to operate under 

a wide range of incidence angles.  However, the effect of incident angle on FSS operation 

is often complicated, making it difficult to calculate the FSS response through analytical 

means.  As such, when incident angle is a concern, full-wave simulation will generally be 

required in order to understand how the frequency response of the FSS will be affected.  

However, most basic FSS elements have a similar response to incident angle.  In general, 

incident angle will affect the frequency response of an FSS in two ways, depending on 

whether the mode of incidence is as a TE or TM wave.  A visual representation of these 

modes is shown in Figure 2.13.  Blue arrows indicate E-field direction for each incidence 

definitions, while green arrows indicate the magnetic field (H-field).  Meanwhile, black 
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arrows indicate direction of propagation (DOP), while θ and φ indicate angle of TE and 

TM incidence, respectively. 
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Figure 2.13. Illustration of TE and TM incidence.  

 

 

 

 

For a TM incident wave, the incident angle of the incoming plane wave causes a 

portion of the electric field to be normal to the plane of the FSS, with the magnetic field 

remaining completely parallel to the plane of the FSS.  As a result, the resonance of the 

FSS tends to become dampened, with stronger dampening occurring for higher angles of 

incidence.  This happens due to the occurrence of larger phase differences between 
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adjacent elements [3].  For TE incidence, the magnetic field has a vector component that 

is normal to the plane of the FSS, while the electric field remains parallel to the plane of 

the FSS.  When this type of incidence occurs, the resonant frequency of the FSS will 

generally be shifted, usually without noticeably affecting resonant bandwidth.  This 

occurs because incident angle-induced phase differences occurring along the parallel-

polarized length of the FSS will cause the FSS to behave as though it were longer, thus 

shifting the frequency of the FSS [21].  Lastly, if the electric and magnetic fields of an 

obliquely incident plane wave both have some component normal to the plane of the FSS, 

a combination of TE and TM mode effects will occur, changing the frequency and depth 

of resonance.  As such, since these effects may alter the expected frequency response of 

the FSS, a number of corrective measures may be needed. 

For most cases, two common design practices can be implemented to mitigate the 

effects of incident angle on the resonant response of an FSS.  First, when designing the 

FSS, it is often considered good practice to orient the elements of the FSS to ensure a 

minimal (or reduced) element spacing [1].  By doing this, the distance between elements 

can be minimized, thus reducing the effect of phase difference between elements caused 

by incident angle.  Naturally, some elements are easier to arrange closely than others, and 

are considered more desirable to use should incident angle be a consideration.  A few of 

these elements, as discussed in section 2.2, include the various loop type elements [21].  

Other hybridized elements (such as the Jerusalem Cross) can also provide a greater 

insensitivity to incident angle.  The second method that can be used to reduce the effects 

of incident angle involves strategic use of dielectric layers that can surround the FSS [3].  

If a dielectric layer is placed between the FSS and the incident plane wave source, the 

incident angle seen by the FSS will be reduced due to Snell's Law [19].  That is to say, at 

the interface between the dielectric layer and the surrounding environment (generally 

assumed to be air), the incident plane wave will be refracted closer to the plane of the 

FSS due to the permittivity of the dielectric, reducing the incident angle.   

Generally, it is ideal for the thickness of the supporting dielectric to be a multiple 

of λ/4 in order to reduce the effect of its impedance and corresponding reflections 

through quarter-wave transformation [1].  However, it may not always be possible to 

control the dimensions of the support structure surrounding the FSS, meaning that the 
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dielectric structure may cause additional resonances in the frequency response.  As such, 

the effects of both the presence of the material and the incident angle will need to be 

accounted for in this case.  Lastly, the use of a dielectric for incident angle compensation 

is generally more effective for TE incidence, rather than for TM incidence.  This is due to 

the effectiveness of the dielectric being reduced for TM incidence as the angle of 

incidence approaches the Brewster Angle, where the interface between the dielectric and 

air no longer reflects.  In this case, the λ/4 dielectric thickness specification becomes a 

requirement [21]. 

2.3.2.1  Curved FSS.  Another concern for the implementation of an FSS in a 

practical system occurs when the FSS needs to be conformed to a curved structure.  

Examples of applications where an FSS may be curved include sub-reflector antenna 

dishes and stealth radome structures [24].  When an FSS is curved, a number of changes 

in the FSS’s frequency response can occur, depending on the nature of the curvature.  

Geometrically speaking, there are two forms of curvature to take into account [27].  First, 

there is the singly-curved FSS, which conforms to the shape of a cylinder.  Secondly, 

there is the doubly-curved FSS, which is conformed to a spherically or conically rounded 

surface, such as a nose cone on an aircraft.  Naturally, the effect of double-curvature on 

the frequency response is more severe than that of the single-curvature.  In either case, 

however, the overall effects of curvature are similar.  In general, a curved FSS will have 

an altered resonant response from an equivalent planar FSS.  This occurs due to a 

reduction of impedance in the FSS resulting from changes in FSS coupling caused by the 

curvature.  In addition, the effect of curvature causes there to be a different incident angle 

amongst the elements of the FSS, causing differences in both phase and magnitude for 

each of the elements over the FSS surface [25].  This is exacerbated further by the fact 

that the curvature will also cause the plane wave to reach some portions of the FSS before 

others, adding another degree of variation in phase difference over the FSS [25].  Another 

concern with a curved FSS is the possibility of coupling between non-adjacent elements, 

as the geometry of the curvature causes the distance between non-adjacent elements to 

become shorter [24].  As a result, the currents excited on the elements of the FSS may be 

significantly altered [25].  Simulations may also be difficult when designing a curved 

FSS, as periodic unit cells can no longer be used in standard simulators, since the 
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curvature breaks the periodicity of the FSS.  As a result, in order to obtain an accurate 

simulated frequency response, the entire structure of the curved FSS may have to be 

simulated.  Thus, simulations may take an extensive amount of time or be impossible due 

to computational limitations [26].  As such, it may be necessary to utilize planar 

approximations (as long as the curvature is not extreme and the effects of phase and 

incident angle can be accounted for [26]).  Another strategy may be to use well-

established FSS element designs that respond well to curvature (such as the circular ring 

[27]), such that the simulated planar response provides enough design validation to 

support the building and testing of a curved FSS.   

2.3.2.2 Effect of conductors on FSS.  The final structural consideration to be 

discussed is the presence of a conductive ground plane or additional FSS layers on the 

response of an FSS.  When an FSS is embedded into a structure with a ground plane, a 

transmission response is no longer possible.  Instead, the grounded FSS acts as an 

absorber, giving a reflection resonance at a prescribed frequency.  This absorbing 

behavior occurs due to the FSS acting as a high-impedance surface (HIS), essentially 

acting as a matched load at resonance, with energy being absorbed by the resistivity of 

the FSS and through the loss in the dielectric substrate [7].  When the ground plane is 

considered “far” from the FSS (such that there is no coupling between them), an 

additional parallel inductance is created by the conductor-backed dielectric, acting as a 

transmission-line impedance [28].  To control the resonant response of the FSS, this 

additional inductance must be compensated for by using a highly capacitive FSS element, 

such as a patch.  Additionally, since the impedance of the FSS isn't directly affected by 

the ground plane, the effect of the ground plane on the overall frequency response can be 

accounted for with transmission line theory, assuming the impedance of the FSS is 

known [28].  This is done by treating the ground plane as a shorted load at the end of a 

transmission line separating the ground plane and FSS.  However, when the ground plane 

is located closer to the FSS, the FSS will begin to couple to the ground plane.  In doing 

so, the capacitance of the FSS will increase, while the inductance decreases [27].  This is 

caused by the reduction of the gap between FSS and ground restricting the magnetic field 

(H-field) coupling around the FSS while increasing E-field coupling between the FSS and 

ground.  In this arrangement, the use of highly capacitive elements will no longer be 
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needed to account for the higher inductance.  Instead, traditional dipole and loop 

elements can be used [27].  The disadvantage of this arrangement, however, is that the 

complexity of the FSS now requires the use of simulation for design work, as no simple 

analytical model for a ground plane coupled FSS is readily available.  Despite this minor 

design issue, HIS FSS designs have proven invaluable for use as thin absorbers in 

embedded antenna and stealth applications [1], [3]. 

If a second FSS should be present in a structure, the above behaviors become 

more complicated.  Naturally, when two separate FSS layers are far from each other, the 

overall response can again be determined using transmission line theory, with each FSS 

acting as an individual reactive impedance separated by dielectric layers that act as 

transmission line segments [30].  However, when these FSS layers are moved near each 

other, they begin to couple.  This coupling is much more complicated than that of the 

ground plane since the coupling is highly dependent on the different FSS geometries.  As 

such, there is a fair degree of difficulty in predicting the resultant FSS responses outside 

of numerical simulation [30].  Due to this significant complexity, this type of FSS 

configuration won't be discussed in detail here, and will instead be left for future 

investigations.  Instead, only non-coupling multi-layer FSS's will be used for the 

purposes of this thesis.  

 

2.4. CONCLUSION 

In this section, FSS history, theory, and operation were presented.  Several 

examples of common FSS elements were used to highlight the geometrical dependence of 

the FSS’s resonant filtering behavior.  Additionally, a variety of FSS frequency response 

calculation methods were discussed, including full-wave simulation and analytical 

approximations.  Finally, a number of issues for practical implementation of FSS were 

considered, such as the effects of incident angle, FSS curvature, and the presence of 

dielectrics and conductors local to the FSS.   

In summary, the reflection/transmission response of an FSS is affected not only 

by the geometry of the conductors of the FSS, but also by the nature of the structure in 

which the FSS is embedded.  For any given FSS, incident energy is either reflected or 

transmitted over certain frequencies due to inductances and capacitances generated 
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between elements of the FSS.  These inductances and capacitance values are determined 

by the dimensions of the FSS geometry, such as conductor length and width and gap 

width.  Additionally, the frequency response of the FSS can be altered by nearby 

dielectrics and conductors, incident plane wave orientation, and FSS curvature.  By 

observing how the response of an FSS is affected by these geometrical considerations, 

correlations (such as the effect of geometry on resonant frequency or resonant band-

shape) can be drawn, linking geometrical effects to the resultant frequency response.  

Thus, if the geometry of an FSS embedded in a structure is deformed due to stresses in 

that structure, the nature of these geometrical deformations may be determined from the 

resultant change in frequency response.  Based on this observation, FSSs may find 

application for structural health monitoring purposes by taking advantage of their 

geometrical dependencies.  From this perspective, the potential applications of FSSs as 

embedded sensors are investigated through the rest of this thesis. 
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3. APPLICATIONS OF FSS FOR NORMAL STRAIN AND SHEAR STRAIN 

SENSING 

In this section, the effects of normal and shear strain deformation are investigated 

for a variety of common FSS designs.  Since the frequency response of an FSS is heavily 

geometry dependent, deformation of this geometry will alter the frequency response.  As 

such, by understanding how the frequency response of a given FSS is modified by 

geometry-altering deformations, it may be possible to use FSS’s as both surface-mounted 

and embedded structural health monitoring (SHM) sensors.  That is, if an FSS is installed 

on a structure that undergoes mechanical stress, both the structure and the embedded FSS 

will be similarly deformed.  Thus, the changes in the frequency response of the FSS 

brought on by this deformation (and subsequently the normal and/or shear strain) can be 

monitored remotely by interrogating the FSS using an external measurement system.  

Thus, since the mechanical state of the structure can be remotely interrogated using FSS-

based sensors, the structure can be considered a “smart structure” that has inherent SHM 

capabilities [35]. 

The use of an FSS as an SHM sensor was first applied for normal strain detection 

in [31], [32], [33], and [34].  With this work in mind, the measurement of normal strain 

with FSS’s is discussed in Section 3.1.  Meanwhile, Section 3.2 focuses on utilizing 

FSS’s to characterize shear strain.  Finally, Section 3.3 discusses the application of FSSs 

to SHM of steel-tube reinforced concrete columns.   

 

3.1. EFFECTS OF STRAIN ON FSS RESPONSE 

The first type of deformation to be discussed is that of normal strain.  Normal 

strain is defined here as being a stretching or compressing deformation of a material 

caused by an applied force.  Normal strain is quantified as a unitless vector having a 

magnitude and direction [39].  The magnitude of the normal strain is defined as a ratio of 

the length of the stretched/compressed structure in relation to the original, non-strained 

structure.  For example, a bar that has increased to 1.5 times its original length is said to 

have 0.5 normal strain.  Furthermore, the polarity of this normal strain value indicates 

whether tension or compression is taking place, with tension (i.e., an increase in length) 

resulting in positive normal strain and compression (i.e., a decrease in length) resulting in 
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negative normal strain.  Additionally, the normal strain also has a directional component 

associated with it, describing the vector (direction) along which the normal strain is 

taking place [32].   

In Section 2, it is stated that the resonant frequency of an FSS is primarily 

dependent on the conductor lengths within the FSS.  That is, as the length of a conductive 

element increases or decreases, the resonant frequency of this conductor respectively 

decreases or increases due to the relation between operating wavelength (λ) and 

conductor length.  Therefore, it is expected that a similar shift in resonant frequency will 

occur if the length of this conductor were altered by normal strain [31].  Whether the FSS 

dimensions are either lengthened or shortened depends on the polarity of the normal 

strain (i.e., tension or compression).  Furthermore, the direction of the normal strain 

vector dictates what aspects of the FSS’s geometry are deformed, which has subsequent 

ramifications on the frequency response.  For this investigation, it is assumed that all 

normal strain occurs parallel to the plane of the FSS.  This is because normal strains 

oriented orthogonal to the plane of the FSS produce no noticeable effect on the geometry 

of the FSS (and related frequency response), and thus are not considered.   

The effect of normal strain on the resonant response of an FSS can also be 

described from a circuit element perspective by modeling the FSS as a band-pass or 

band-stop RLC filter circuit (composed of resistors, capacitors, and inductors which 

represent the coupling and surface resistance of the FSS).  In an RLC filter circuit, the 

resonant frequency (f0) is calculated as f0 = 1/(2πLC), where L and C are the inductance 

and capacitance of the circuit.  Meanwhile, the resistance, R, of the filter determines the 

depth of the filter’s resonance.  When an FSS undergoes normal strain, the L and C 

values of the FSS are altered.  For instance, as the length of an FSS’s conductor 

increases, the associated L also increases.  Conversely, as the distance between 

conductors is increased, C decreases due to a reduction in electric field coupling.  

Meanwhile, the surface resistance of the FSS remains effectively unaltered by normal 

strain, barring minor changes due to an increase in the conductor surface area (not 

considered in this investigation).  Taken together, these changes in L and C collectively 

alter the resonant frequency, while the depth of the FSS’s resonance remains unchanged 

due to the unaltered R.  To illustrate this, an example of a crossed-dipole FSS under 
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normal strain is shown in Figure 3.1 (a).  Additionally, the simulated (using HFSS [23]) 

transmission responses for different values of normal strain are given in Figure 3.1 (b), 

while the resonant frequency of this FSS is plotted as a function of normal strain in 

Figure 3.1 (c).  The polarization of the incident plane wave is assumed parallel to the 

direction of normal strain, as indicated by the vector labeled ‘E’ in Figure 3.1 (a), unless 

otherwise specified.   

 

 

 

 

(a)                                                                          (b) 

 

(c) 

Figure 3.1. Crossed-dipole FSS’s geometry (a), its transmission response as a function of 

normal strain (b), and its resonant frequency as a function of normal strain. 
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In Figure 3.1 (b), the FSS’s resonant frequency is shown to decrease 

proportionally with normal strain, with the resonant depth remaining relatively 

undisturbed.  Furthermore, the frequency shift follows a linear relationship with the 

normal strain, as shown in Figure 3.1 (c).  This occurs because the resonant wavelength 

(λ) is linearly related to the length of the dipoles in the Crossed-dipole FSS, which 

resonates for a dipole length equal to λ/2.  However, this linearity may not always be true 

for all element types.  The sensitivity of an FSS’s resonant frequency to normal strain can 

be quantified by considering its gauge factor, ς, which relates normal strain to change in 

resonant frequency, and is calculated using Equation 3.1 [35]. 

 

  
  

     
                                                       (3.1) 

 

Here, Δf is the change in resonant frequency for a given change in normal strain, Δs [35].  

Furthermore, this value is normalized by the FSS’s un-deformed resonant frequency (f0) 

so that the sensitivity of FSSs with different resonant frequencies to normal strain can be 

compared directly.  For the FSS of Figure. 3.1, ς was calculated as 0.51, based on the 

resonant frequency shift determined using full-wave simulation.  Naturally, since 

different FSS designs have different dependences between geometric dimensions and 

resonant wavelengths, each FSS will have its own value of ς.  As such, the normalized ς 

values (calculated through simulation) for a variety of FSSs (shown in Figure 3.2) are 

presented in Table 3.1.  Note that grounded FSS’s are defined here as having a ground 

plane 0.127 mm below the FSS.   

Based on Table 3.1, dipole-type FSSs (such as the Crossed-dipole, Jerusalem 

Cross, and Tripole FSSs) have similar ς values.  Meanwhile, the square loop element has 

a smaller ς, making it less sensitive to normal strain and therefore potentially unsuitable 

for strain sensing purposes.  Additionally, grounded FSSs have a higher ς than their 

ungrounded counterparts, making the addition of a ground plane advantageous if it can be 

included in a structure.  It should be noted that ς for these FSS elements is only 

representative of these specific elements, and therefore may vary if the dimensions of the 

element are changed.  As such, to investigate the effect of FSS dimensions on ς, a 

simulation was conducted in which the conductor length, conductor width, and gap width 
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of a crossed-dipole FSS were each varied over a range of normal strains.  The resulting ς 

is reported below in Table 3.2. 

 

 

 

Crossed-Dipole FSS            Jerusalem Cross FSS  Cross-Loop FSS       Loaded Cross-Loop FSS

     Square Loop FSS      Tripole FSS        Loaded Tripole
  (Grounded and Ungrounded)                   (Grounded and Ungrounded)

Strain 

Direction

Parallel 

Polarization 

       E

 

 

Figure 3.2. Examples of FSS elements used for strain analysis in Table 3.1. 

 

 

 

Table 3.1. Gauge factors for common FSS elements. 

 

FSS Elements 
Gauge 

factor (ς) 

Crossed-Dipole 0.53 

Jerusalem Cross 0.54 

Square Loop 0.18 

Tripole 0.68 
Grounded Tripole 
Loaded Tripole 
Grounded Loaded Tripole 

0.74 
0.56 
0.7 

Cross Loop 0.57 

Loaded Cross Loop 0.52 
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Table 3.2. Gauge factors of Crossed-Dipole FSS for different element dimensions. 

 

Parameter 
Studied 

Gap 
Width 

Conductor 
Length 

Conductor 
Width 

Gauge 
factor 

  3.5 mm 17 mm 5 mm 0.51 

Gap Width 4.5 mm 17 mm 5 mm 0.5 

  5.5 mm 17 mm 5 mm 0.49 

  4.5 mm 15 mm 5 mm 0.46 

Conductor Length 4.5 mm 17 mm 6 mm 0.5 

  4.5 mm 19 mm 7 mm 0.55 

  4.5 mm 17 mm 3 mm 0.36 

Conductor Width 4.5 mm 18 mm 5 mm 0.5 

  4.5 mm 19 mm 7 mm 0.67 

 

 

 

 

 

For the crossed-dipole element, ς doesn’t change significantly with gap width or 

conductor length.  Conductor width, however, has a more substantial effect on ς (meaning 

that a given normal strain will cause a greater shift in resonant frequency), with ς 

increasing as conductor width decreases.  When conductor width decreases, the 

inductance of the FSS is increased, while the FSS’s capacitance decreases, all while 

having a minimal effect on resonant frequency (since f0 = 1/(2πLC)).  This implies that 

decreasing inductance (while increasing capacitance to maintain the same resonant 

frequency) increases sensitivity to normal strain (as described by ς).  As such, conductor 

width could be used to tune (improve) ς of a given element if desired.   

For all cases presented thus far, the polarization of the incident plane wave was 

parallel to the direction of normal strain.  However, when the incident plane wave is not 

polarized parallel to the direction of normal strain, the effect of normal strain on the FSS 

resonance is altered.  The reason for this can be explained by principles of FSS operation 

discussed previously in Section 2.  Recall that for a given FSS, the currents induced in 

that FSS only occur along conductor lengths that are parallel to the electric field of the 

exciting plane wave [3].  For example, when a crossed-dipole FSS is illuminated by a 
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normally incident plane wave polarized along one of the two dipole-lengths, only that 

dipole will have induced current, while the other dipole essentially remains unexcited.  

The consequence of this is that the geometry of the unexcited dipole does not contribute 

to the frequency response of the FSS, meaning that the cross FSS essentially operates as a 

single dipole FSS for this polarization.  This selective behavior also applies to an FSS 

that has undergone normal strain.  If the direction of normal strain is perpendicular to the 

polarization of the interrogating plane wave, this normal strain will not affect the 

frequency response of the FSS.  An example of the polarization dependence on the 

frequency response of a strained crossed-dipole FSS is shown in Figure 3.3.  In this 

figure, simulation results are presented for the crossed-dipole FSS under normal strain 

that is aligned parallel (co-polar) (a) and perpendicular (cross-polar) (b) to the incident 

plane wave polarization.   

 

 

 

 

 

 

             (a)                                    (b) 

Figure 3.3. Frequency response of the crossed-dipole FSS undergoing co-polar (a) 

and cross-polar (b) normal strain. 
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By comparing Figure 3.3 (a) and (b), it is seen that cross-polar normal strain alters 

the resonant frequency less than co-polar normal strain.  This occurs because the 

conductor lengths deformed by normal strain are not the conductor lengths determining 

the frequency response (i.e., excited by the incident plane wave).  Instead, the strain will 

only alter the width of the excited conductor, which has a minimal effect on resonant 

frequency.  As such, the effect of normal strain on resonant frequency is dependent on the 

polarization of the incident plane wave.  Additionally, the resonant frequency is increased 

for cross-polar normal strain, rather than decreased.  This occurs because the only FSS 

geometry that is being changed (in the direction of polarization) for the cross-polar case 

is the conductor width, which has a minimal impact on resonant frequency.  More 

specifically, an increase in conductor width increases the capacitance of the FSS, while 

decreasing the inductance, altering the resonant frequency (f0 = 1/(2πLC)).  However, the 

impact of conductor width on resonant frequency is relatively minor when compared to 

the effects of conductor length and gap width since the L and C values are altered 

inversely when conductor width is changed , thus making the shift in resonant frequency 

less significant.  Instead, a change in conductor width will have a greater effect on the 

FSS’s ς, as indicated in Table 3.2.  As such, this change in ς due to cross-polar normal 

strain may lead to consequences in measuring normal strain when an FSS has normal 

strain along both axes (a concern that may need to be addressed in a practical system). 

For the purpose of normal strain sensing, this polarization dependent response is actually 

advantageous.  By rotating the polarization of the interrogating wave, the direction of an 

unknown normal strain can be determined remotely.  This is possible because the normal 

strain direction corresponds directly with the polarization angle at which the maximum 

frequency shift occurs.  Alternatively, instead of rotating the polarization, a structure 

could be analyzed using two orthogonally polarized antennas, with normal strain 

direction determined through vector decomposition.  That is, although a normal strain 

may not be parallel to the polarization of either antenna, the net effect of normal strain in 

those two polarization directions can be used to determine the vector direction.  However, 

this approach assumes there is only one normal strain affecting the structure.  This will 

generally not be the case, though, as most normal strains will often have an additional 

orthogonally oriented inverse normal strain associated with them [39].  For instance, if a 
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material under tension in a given direction, it will tend to contract in the direction 

perpendicular to the tension.  The ratio between the amount of contracting that occurs for 

a given amount of tension (or vice-versa) is a material property referred to as Poisson’s 

ratio [39].  This value is highly material dependent and must be taken into account during 

normal strain measurements.  As such, the use of a rotating linearly polarized source may 

be needed to determine all present normal strains, as vector decomposition would fail in 

this case. 

 In order to verify the simulated FSS normal strain behaviors discussed above, 

measurements were made on an FSS that had undergone normal strain.  The FSS design 

used for this investigation was the grounded tripole FSS illustrated in Figure 3.4, with 

relevant dimensions labeled and specified below.  L is the central conductor length, W 

the central conductor width, g is the gap width, and d is the end dipole length. 

 

 

W

gL

d

 

Figure 3.4. Grounded Tripole FSS with relevant dimensions. 
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The dimensions of this tripole are L = 3.75 mm, g = 0.3 mm, W = 0.5 mm, and d = 

1.5 mm, with a Roger’s RT/Duroid 5880 dielectric substrate of 0.127 mm thickness 

having a relative permittivity (εr) of εr = 2.2 and loss tangent of 0.0009.  This FSS was 

designed to have a reflection resonance occurring at 10 GHz.  The frequency response of 

this FSS was measured using a calibrated HP 8510C Vector Network Analyzer (VNA) in 

both normal strained and unstrained states.  Normal straining of the FSS was 

accomplished by plastically deforming the FSS sample using a universal testing machine 

(UTC) [35].  Normal strain measurements were conducted on the deformed sample after 

it had been removed from the UTC to avoid the possibility of the UTC physically 

interfering with the measurement results.  This could be done because the UTC 

plastically deformed the sample, meaning that the FSS retained some degree of normal 

strain deformation after having been deformed by the UTC.  The amount of this normal 

strain remaining on the FSS was subsequently measured using calipers, which measured 

that normal strains of 0, 0.006, and 0.015 had been applied.  The frequency response of 

this structure was subsequently measured using the test setup shown in Figure 3.5. 
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Figure 3.5. Grounded Loaded Tripole frequency response measurement setup. 
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In this test setup, the FSS was measured with a dual horn antenna system 

operating in the X-band frequency range (8.2-12.4 GHz).  Additionally, the FSS was 

placed in an anechoic chamber to reduce reflections from the surrounding environment.  

In this chamber, the reflection response (frequency response of the reflected signal) was 

measured by suspending two horn antennas collinearly, spaced 7 mm apart.  Two 

antennas were used so that both co-polarization and cross-polarization could be 

investigated.  In this arrangement, the excitation signal is transmitted by one horn, 

reflected from the FSS, and received in the other horn.  One issue with this arrangement 

is that the transmission path between the transmitting antenna, FSS, and receiving 

antenna creates approximately 10° of incidence angle with the FSS surface, which affects 

the frequency response.  As was discussed in Section 2, off-normal incidence can result 

in changes in the FSS’s resonant depth, as well as minor changes in resonant frequency.  

However, a 10° incident angle is assumed to be small enough such that its affect is 

minimal.  Additionally, since this incident angle doesn’t change between measurement 

sets, its effect on resonant frequency is consistent through all measurements.  Co-

polarized interrogation was measured by orienting the polarizations of the horn antennas 

in parallel, thus ensuring that the transmitted/received electric fields of the two antennas 

were aligned parallel to each other.  Meanwhile, cross-polarized reflection was measured 

by rotating one of the antennas 90°, causing the radiated electric fields from each antenna 

to be oriented perpendicularly.  Ordinarily, no signal would be transmitted between the 

antennas in such an arrangement due to the polarization mismatch.  However, there will 

be transmission if the FSS surface changes the polarization of the reflected wave, which 

may occur when the FSS is deformed in some way (i.e., shear strain).  This topic is 

discussed further in Section 3.2.   

Practical measurement concerns include unintended coupling between horn 

antennas, as well as the effects of the local environment on the measured frequency 

response.  For the test setup shown in Figure 3.5, the FSS sample was measured in a 

small semi-anechoic chamber in order to reduce environmental reflections.  Additionally, 

the FSS was supported in the chamber by a set of foam blocks with a permittivity similar 

to free space, meaning that the foam blocks only nominally affect the interrogating 

signal.  In addition to the frequency response measurements of the FSS (S21FSS), 
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additional measurements of the background system were taken to account for scattering 

losses and unintended coupling between the interrogating antennas.  Scattering loss was 

accounted for by measuring the test setup with a conductive plate in place of the FSS 

(labeled as S21conductor), accounting for losses caused by the interrogating signal not being 

reflected towards the receiving antenna.  Additionally, a measurement of the test setup 

was taken with the antennas radiating into an empty anechoic chamber.  This 

measurement (labeled as S21air) isolated any unintended coupling that occurred between 

the antennas, as all other interrogating signals would be absorbed by the chamber.  From 

these, the normalized FSS response, S21norm, was determined using Equation (3.2), 

allowing the FSS’s resonance to be isolated from all other aspects of the measured 

frequency response. 

 

 

          
             

                   
 (3.2) 

  

Using this normalization procedure, the frequency responses for the grounded 

tripole FSS were measured for normal strains of 0, 0.006, and 0.015.  The results of these 

measurements are presented in Figure 3.6 for normal strains oriented parallel and 

perpendicular to the incident polarization. 

For the normal strains oriented parallel to the polarization of the incident wave, 

the resonance of the FSS is reduced from 9.9 GHz in the un-deformed state to 9.86 GHz 

for 0.015 normal strain, giving ς of 0.249.  This ς is less than half the value calculated 

through simulation of this structure, which produced a ς of 0.76.  Unexpectedly, a similar 

change in resonant frequency occurred for the perpendicularly polarized measurement.  

While some positive displacement is expected due to Poisson’s ratio (as discussed 

above), the degree of compressive strain is generally expected to be a fraction of the 

expansive normal strain applied.  Additionally, the resonances of the normal strained 

sample appear to be much deeper than for the un-deformed sample, which is not expected 

from simulation.  One possible explanation for these discrepancies may be that the 

normal strain was not applied uniformly over the FSS, meaning that a normal strain 
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distribution may be contributing to the frequency response of the FSS (rather than one 

specific value). Furthermore, ς of the FSS may have been affected during the deformation 

process due to cross-polarized normal strain arising, as described by Poisson’s Ratio.  

This would have altered the width the FSS’s conductors, leading to unexpected changes 

in resonant frequency for either polarization, as well as changes in ς, as shown in Table 

3.2.  As such, additional FSS samples and measurements may be necessary to fully 

investigate how the Poisson’s ratio of a sample affects normal strain detection.  

Unfortunately, however, additional grounded loaded tripole FSS samples were 

unavailable for normal strain testing at the time of this investigation.  Finally, cross-

polarized transmission data is not presented, as all measured cross-polarized 

transmissions were below the noise floor of the system (~ -90 dB).  Altogether, however, 

the results shown here support the use of FSS for strain sensing. 

  

 

 

 

 

Figure 3.6. Parallel and perpendicularly oriented measurement results of 

Grounded Loaded Tripole FSS under normal strain. 
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Next, the effects of the angle between the interrogating wave polarization and 

normal strain direction (referred to as the polarization angle) were investigated.  To 

accomplish this, a second series of measurements were taken to investigate how the FSS 

resonance changed as a function of polarization angle.  This polarization dependency was 

measured by rotating the FSS and keeping the measurement antennas stationary.  

Measurements were taken for 10° increments of rotation until a full 360° rotation was 

achieved.  The antennas were arranged similarly to the test setup in Figure 3.5 above, 

only without the semi-anechoic chamber.  The two antennas used were spaced 8.5 mm 

apart, at a height of 30 cm from the FSS surface.  These measurements were normalized 

using the above procedure given in equation (3.2), but without the S21air measurement.  

This was done because the S21air measurement couldn’t be taken without significant 

changes to the static system.  Thus, direct coupling between the two antennas may have 

caused some minor errors in the measurements.  However, these errors would have been 

consistent throughout the measurements, so these measurements would still be 

comparable.  The shift in resonant frequency as a function of polarization angle for each 

variation of normal strain on the FSS (0, 0.006, and 0.015) is shown in Figure 3.7.  Here, 

0° polarization angle corresponds to a polarization that is perpendicular to the direction of 

normal strain. 

 

 

 

Figure 3.7. Resonant frequency of strained Grounded Loaded Tripole as a 

function of polarization angle. 
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According to these results, the resonant frequency of the FSS is directly 

dependent on polarization angle when the FSS has undergone normal strain, as 

corroborated by previous measurements and simulation (shown above in Figure 3.6).  

Additionally, the resonant frequency is consistently reduced for increasing parallel 

polarized normal strain (90° and 270°), corresponding to the measurements taken in 

Figure 3.6.  However, the perpendicularly polarized normal strain measurements (0°, 

180°, and 360°) behave more erratically, with the 0.006 normal strain case increasing the 

resonant frequency more than the 0.015 normal strain case did at the 180° rotation 

measurement.  This may be due to inaccuracies in measurement or the effects of 

Poisson’s ratio (as discussed above). 

 

3.2. EFFECTS OF SHEAR STRAIN ON FSS RESPONSE 

Like normal strain, shear strain is another form of mechanical deformation.  

Structurally, shear strain is defined as a twisting deformation on a structure caused by 

rotational force [36].  The geometrical effect of shear strain on a structure can be 

described using a coordinate translation at each point.  For a structure geometry that is 

mapped to a 2-D Cartesian plane (that is, each point of the structure has an associated X 

and Y coordinate), this translation can be described by the equations              

and              [35].  Here, X and Y are the coordinates at some specified point 

on the geometry, Xnew and Ynew are the new coordinates for the point after the structure 

has undergone shear strain, and Sxy is the dimensionless magnitude of the shear strain.  

Unlike the normal strains mentioned in Section 3.1, shear strain doesn’t have a specified 

directional vector.  Instead, shear strain is defined only by Sxy, with larger Sxy values 

indicating greater shear strain.  An illustration of the effect of shear strain on FSS 

geometry is shown in Figure 3.8 for the loaded tripole. 

To understand how an FSS can be used to detect shear strain, the response of an 

FSS to shear strain must first be characterized.  To begin, a simulation was conducted to 

find the reflection response of the grounded loaded tripole shown in Figure 3.8.  This 

reflection response is given in Figure 3.9 for both co-polarization (a) and cross-

polarization (b) responses. 

 



 

 

47 

 

Figure 3.8. Illustration of original (top left) and sheared (bottom right) loaded 

tripole. 

 

 

 

From Figure 3.9, several observations can be noted regarding the effect of shear 

strain on the response of the FSS.  First, shear strain has a negligible effect on the FSS’s 

resonant frequency for both co-polarization and cross-polarization.  This is due to a lack 

of geometrical change (conductor lengths and gap widths) of the FSS as a result of the 

shear strain, meaning that the FSS’s impedance remains unchanged (which determines 

the resonant frequency).  This result may be beneficial for FSS sensing applications, as 

the effects of shear strain may be differentiated from the effects of normal strain for an 

FSS undergoing multiple deformations.  That is, since shear strain doesn’t significantly 

affect the co-polarized resonant frequency, any shifts in resonant frequency would likely 

only be due to normal strain.  However, shear strain does reduce the depth of the co-

polarized resonance for this FSS, and causes the resonance to split around the resonant 

frequency for 0.03 (and greater) shear strain.  Similar resonance peak splitting behavior is 

seen for the cross-polarization response at 0.03 shear strain, shown in Figure 3.9 (b). 
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(a) 

 

(b) 

Figure 3.9. Co-polarization (a) and cross-polarization (b) reflection response of 

Grounded Loaded Tripole as a function of shear strain. 

 

 

 

According to these observations, when an FSS undergoes shear strain 

deformation, the FSS begins to reflect radiation at its resonant frequency that is cross-

polarized with respect to that of the incident radiation, with the level of cross-polarized 
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radiation increasing with increasing shear strain.  The reason for this increase is due a 

reduction in the symmetry of the FSS as a result of the shear strain deformation.  This 

loss of symmetry results in the generation of currents that are directed perpendicularly to 

the direction of the incident electric field.  Normally, when current is generated on an un-

deformed FSS by an incident plane wave, the perpendicular currents will cancel each 

other out due to element symmetry around the axis of the electric field.  However, when 

this symmetry is broken, these currents flow freely, resulting in the cross-polarized 

radiation seen in Figure 3.9.  Examples of these cross-polarized surface currents for 

grounded tripole FSSs without shear strain and with 0.05 shear strain are shown in Figure 

3.10 (a) and (b) respectively. 

As can be seen in the sample without shear strain (Figure 3.10a), any currents that 

are polarized perpendicularly (that is, those directed vertically in the figure) to the 

incident electric field (directed horizontally in the figure) have a similar mirrored current 

around the horizontal axis of the FSS.  As such, any radiation from these currents 

effectively cancels out.  However, once shearing occurs, a high degree of vertical, 

perpendicularly polarized current is generated along with the horizontal, parallel-

polarized current found in co-polarized operation.  For the grounded tripole examined 

here, these vertical currents can be observed for the 0.05 shear strain represented in 

Figure 3.10.  This effect can also be seen in the cross-polarized frequency response 

shown in Figure 3.9 (b), where the cross-polarization resonant peak begins to flatten out 

and broaden at -10 dB.  While the magnitude of cross-polarization does not increase any 

further at the resonant frequency, the overall response is still increasing in magnitude 

across the spectrum, causing the peak to flatten out at the observed -10 dB limit.  This 

resultant flat-toped peak can be considered as analogous to a clipped signal and likely 

occurs due to energy conservation between the parallel and perpendicular surface 

currents, as well as inherent resistive losses in the FSS.  This peak value of the cross-

polarized signal may be a limiting factor for detecting larger shear strains.  As such, some 

elements (such as the grounded-loaded tripole examined here) may be too sensitive to 

shear strain for practical usage, depending on the sensing requirements for a given 

application.   
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(a) 

 

(b) 

Figure 3.10. Simulated surface currents on Grounded Loaded Tripole FSS without 

shear strain (a) and with shear strain (b). 

 

 

 

 

To analyze how element shape determines sensitivity to shear strain, the response 

of a variety of FSS designs (shown below in Figure 3.11) to shear strain were simulated.  

Note that grounded FSS’s are defined here as having a ground plane 0.127 mm below the 

FSS, and that all FSS elements shown are assumed un-grounded unless otherwise 
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specified.  Since the magnitude of the cross-polarization peak doesn’t change linearly 

with shear strain, a single shear modulus cannot be determined (as was done above for 

normal strain in Equation 3.1).  Instead, the magnitude of cross-polarization for each 

element is shown as a function of shear strain (Sxy) in Figure 3.12.  Specifically, each 

cross-polarization magnitude response is taken from the maximum cross-polarization 

response for each element.  This generally occurs at or near the co-polar resonant 

frequency of the FSS, meaning that in practical applications, only this frequency will 

have to be measured.  

Overall, it appears that grounded FSS elements generally have a stronger cross-

polarization response than the equivalent ungrounded FSS designs, even when un-

deformed.  This behavior can act as both a benefit and a drawback, depending on the 

desired sensing requirements.  On one hand, this higher cross-polarization level (>-20 

dB) makes it relatively easy to detect in measurement, which may be a concern for 

practical implementations of FSS sensors in high loss or electrically noisy environments.  

Additionally, higher cross-polarization levels can allow simpler and more affordable 

measurement equipment to be used, rather than a VNA.  On the other hand, by having a 

higher baseline of cross-polarization (i.e. zero shear strain response), the cross-

polarization caused by shear strain quickly reaches its highest limit, as was seen for the 

grounded loaded tripole FSS.  While this can be useful for detection of shear strain, it 

limits the ability of the FSS to characterize the shear strain through cross-polarization 

magnitude measurements alone.  As such, the bandwidth (defined as the range of 

frequencies between the points that are -3dB from the peak) of the cross-polarized 

resonant peak will also be needed for characterization of larger shear strains.  

Furthermore, it may not always be practical to implement a conductive sheet in a 

structure to act as a ground plane for an associated FSS (particularly for embedded 

sensing applications).  As such, development of a non-grounded FSS element that gives 

high cross-polarization levels when un-shear strained (without reaching the observed 

maximum limit too quickly) would be beneficial.  Of the elements observed, the element 

that best fits these criteria is the loaded cross-loop design, shown in Figure 3.11.  The co-

polarized and cross-polarized responses of this element are displayed in Figure 3.13 (a) 

and (b), respectively. 
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Crossed-Dipole FSS            Jerusalem Cross FSS  Cross-Loop FSS       Loaded Cross-Loop FSS

     Square Loop FSS      Tripole FSS        Loaded Tripole
    (Grounded and Ungrounded)                   (Grounded and Ungrounded)  

Figure 3.11. FSS elements investigated in Figure 3.12. 

 

 

 

 

 

Figure 3.12. Simulated reflection response magnitude of cross-polarization plotted as a 

function of shear strain for FSS elements of Figure 3.11. 
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(a) 

 

(b) 

Figure 3.13. Simulated Co-polarized (a) and cross-polarized (b) frequency 

response for a Loaded Cross Loop FSS under shear strain. 
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Based on the results of Figure. 3.13, a number of advantages are observed.  First, 

unlike the ground-backed loaded tripole FSS design response seen in Figure 3.9, the 

loaded cross loop FSS has a co-polarized reflection response that is essentially  

unaffected by shear strain.  This means that the effects of normal strain and shear strain 

can be easily distinguished for this FSS, allowing this FSS to be used to sense both 

deformations simultaneously.  Second, this FSS design has a higher cross-polarization 

level for shear strain than other, non-grounded FSS designs, and is comparable to cross-

polarization levels seen for the grounded FSS designs investigated.  As such, after ~0.01 

shear strain, this peak will be relatively easy to detect in a practical measurement (in 

which electrical noise or environmental reflections might obscure the FSS response), 

while also not requiring the presence of a ground plane.  As a result, the loaded cross-

loop FSS appears to be an excellent candidate for normal strain and shear strain sensing 

purposes. 

 

3.3. APPLICATION OF FSS FOR STRAIN/SHEAR/BUCKLING DETECTION IN 

STEEL-TUBE REINFORCED CONCRETE COLUMNS 

Thus far, all investigations into the response of FSS to deformations have either 

been through simulation or controlled lab experiment.  To further extend the work, 

measurements were conducted using a grounded crossed-dipole and square loop FSS that 

were embedded into a set of steel-tube reinforced concrete columns.  These elements 

were chosen for their straightforward design principles, ease of in-house production, 

angle insensitivity, and for their strong SHM performance, as shown in the previous 

sections.  Meanwhile, the columns used in this test represent a novel advancement in 

concrete support structures, and take the form of a hollow, steel-tube core, around which 

the concrete column is poured [38].  This hollow-steel core acts to reinforce the concrete 

column, giving it structural stability that is comparable to a solid concrete column, but 

with reduced weight.  Additionally, a fiber-reinforced plastic (FRP) layer surrounds the 

concrete column, acting as a casing during the pouring of the concrete column, as well as 

providing a layer of protection from environmental exposure [38].  A cross sectional view 

of the column structure is shown in Figure 3.14. 
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Steel-tube

Concrete

FRP Wrap

         16"             4"    0.375"  

Figure 3.14. Cross-section of concrete column. 

 

 

 

 

To validate the structural integrity of these columns, two structural loading tests 

were conducted; a lateral displacement test and a torsion test.  The lateral displacement 

test consisted of a vertically oriented concrete column that underwent horizontal 

displacement at the top of the column.  This displacement caused the steel-tube core of 

the column to undergo significant vertical normal strains (and resultant buckling when 

the column failed mechanically) due to interactions between the column and the static 

concrete footing that acts as the column base [38].  Here, buckling is defined as a severe 

bending of the steel-core due to compressive normal strain.  This buckling can weaken 

the steel, and can thus lead to possible structure failure if not detected.  An illustration of 

the lateral displacement test is shown in Figure 3.15.  

The most significant normal strains and subsequent buckling occur near the 

bottom of the steel-tube core, at the interface between the column and the footing, and 

located in the direction of lateral displacement.  As such, the base of the steel-tube was 

chosen as the location to apply the FSS sensor, which for this test was the grounded 
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square loop FSS, which was found in simulation to be the more sensitive of the two FSSs 

to normal strain.  Meanwhile, the torsion test consisted of a vertical concrete column that 

underwent a twisting force at the top of the column.  This twisting force was applied 

using two linear actuators moving in opposite directions on either side of the column.  

This twisting caused shear strain to occur along the base of the column due to interactions 

between the twisted column and static footing.  By applying an FSS to the steel column 

in this region, shear strain can deform the FSS, causing the FSS to cross-polarize incident 

radiation.  The grounded crossed-dipole FSS was chosen for this test, as simulation 

showed that it was more sensitive to shear strain than the grounded square-loop FSS.   

 

 

 

Concrete 

Column

Buckling

Displacement

 

Figure 3.15. Diagram of linear displacement test. 
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For the purposes of embedding FSS sensors into the above concrete columns, a 

number of practical considerations had to be made in the FSS design process.  Such 

considerations included the effects of conforming the FSS to the column’s curvature, as 

well as compensation for the effects of loss and internal reflections that occurred within 

the geometry of the column.  The effects of curvature were accounted for by choosing 

FSS elements that are insensitive to incident angle, with this insensitivity verified by 

simulation of a curved FSS.  As for material considerations, radiation at microwave 

frequencies experiences significant power loss in concrete due to the concrete’s water 

content (i.e. dielectric loss), making it difficult for interrogating signals to penetrate 

through the concrete.  Additionally, course aggregates in the concrete can cause 

unintended scattering of incident signal.  This results in a reduction in power reflected 

from the FSS, making these resonances harder to detect.  This loss was partially 

accounted for by designing the FSSs to operate in the S-band (2.6-3.95 GHz), as lower 

frequencies experience less dielectric loss.  Signal reflections within the concrete 

structure were another concern, as the thickness of the concrete layer was comparable to 

the wavelength of the interrogating signal.  The combined reflections from dielectric 

boundaries in a layered structure can lead to alterations in the structure’s frequency 

response, such as the creation of resonances based on the thickness of the dielectric 

layers.  As such, the concrete structure may have (inherent) resonant behavior that would 

mask the FSS resonance [54].  In order to reduce these reflections, a pair of dielectric-

filled horn antennas were designed and built for interrogation of the concrete columns.  

By using a dielectric-filled horn, the impedance of the horn would better match the 

concrete column, reducing reflections and increasing the power incident on the FSS.  

Additionally, the apertures of these horns were curved to conform directly onto the 

columns, as an air gap would be otherwise present for a flat aperture.  These horns were 

manufactured by 3-D printing a dielectric material (εr  = ~ 3, and nominal loss factor) into 

the shape of the desired horn and wrapping the dielectric in conductive tape.  A 

photograph of one of the horn antennas is shown in Figure 3.16. 
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Figure 3.16. Filled horn antenna for measuring FSS embedded in concrete 

column. 

 

 

 

The grounded crossed-dipole and grounded square loop FSS designs used for this 

investigation were simulated before being built and tested in the lab.  Both FSSs were 

etched onto a thin film of conductor backed Roger’s 3006 PCB material having a 

thickness of 0.25 mm,  εr of 6.15, and the loss tangent of 0.0015.  The frequency response 

of each sample was measured when flat and when conformed over a curved surface 

(similar to that of the column) to ensure that the curvature does not adversely affect the 

FSS’s frequency response.  Images of the completed grounded crossed-dipole and 

grounded square loop FSS samples are shown in Figure 3.17 (a) and (b), respectively.  

Additionally, the measured reflection responses for both the cross FSS and square loop 

FSS are given in Figure 3.18 (a) and (b), respectively, for both flat and curved contours. 
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(a) 

 

 

(b) 

Figure 3.17. Grounded crossed-dipole FSS (a) and grounded square loop FSS (b) 

samples. 
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(a) 

 

(b) 

Figure 3.18. Reflection responses of grounded cross FSS (a) and grounded square 

loop FSS (b) in planar and curved states. 
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From the results shown in Figure 3.18, the FSSs were found to have 

distinguishable resonances at 3.248 GHz (for the grounded crossed-dipole FSS) and 

3.174 GHz (for the grounded square loop FSS).  Once constructed, the FSS samples were 

attached to the steel-tube cores of the test columns.  The method of attaching the FSS 

samples was of critical importance, as a poor adhesion could have lead to detachment 

during deformation.  Furthermore, depending on how the FSS was adhered to the 

structure, deformations on the steel-core potentially may not translate completely to the 

FSS, thus reducing the sensitivity and effectiveness of the FSS for normal/shear strain 

sensing.  For the purposes of this test, the FSS samples were adhered to the steel-core 

using 3M Hi-Strength 90 Spray Adhesive.  This adhesive was chosen for its high strength 

and large surface-area applicability.  The locations of the FSS samples applied to the 

steel-tube cores are shown in Figure 3.19. 

 

 

 

 

 

Figure 3.19. FSS samples applied to steel-tube cores. 
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For each measurement setup, the dielectric-filled horns were attached to the 

concrete columns over the locations of the FSS samples.  For the lateral displacement test 

(grounded square-loop FSS sensor), the two horns were oriented to provide a co-

polarized frequency response between the horns, as this test was intended to measure 

normal strain in the FSS.  Conversely, for the torsion test (crossed-dipole FSS sensor), 

the horns were oriented to provide a cross-polarized frequency response to measure shear 

strain in the embedded FSS.  In each test, an external 30 dB amplifier was added to the 

transmitting port to amplify the interrogating signal to counteract losses (mentioned 

above) in the concrete column.  This system was measured using at S-band (2.6-3.95 

GHz) using a calibrated Agilent 8753 VNA.   

During the lateral displacement test, the top of the column was displaced 

positively and negatively, relative to the hydraulic actuator that applied the displacement.  

This displacement deformed the FSS with both negative (compression) and positive 

(tension) normal strain.  Displacements were applied gradually (in cycles) over the course 

of the test, in such a way so that the actuator applied increasing displacement with each 

cycle.  During each cycle, the column was positively displaced by a certain amount, and 

then negatively displaced by the same amount.  This was repeated twice for each 

displacement.  The total displacement ranged from 0.05 inches for the first cycles to 15.3 

inches of displacement in the final cycles.  Measurements of the FSS response were 

conducted at the positive and negative apexes (maximums) of displacement for the first 

repetition of each cycle.  By observing the difference in resonant frequency between the 

strained and un-strained FSS for each displacement, the associated strain could be found 

by dividing the frequency difference by the gauge factor of the FSS (calculated by 

Equation 3.1 as   
  

     
  [35].  The value of ς for the grounded square loop FSS used in 

this test was determined through simulation to be 0.43.  Based on this value, the 

measured normal strain for the first cycle of each displacement is shown in Figure 3.20. 

For negative displacement, normal strain is relatively small until approximately -3 

inches of displacement, at which point the normal strain magnitude increases with 

displacement magnitude before reaching a plateau at about 0.05 normal strain.  Similar 

behavior is seen for positive displacement, with significant normal strain only occurring 

after about 6 inches of displacement.  After this point, the magnitude of normal strain 
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increases linearly with displacement until it reaches a value of approximately -0.025 at 13 

inches of displacement.  These normal strain values are compared to those measured by 

traditional strain gauges in Figure 3.21 as a verification of the FSS’s performance.  Two 

sets of strain gauge data are plotted, corresponding to data taken at the apexes of the two 

cycles for each displacement.  The strain gauge measurements are only reported for 

displacements between -4 to 4 inches, due to limitations in the strain gauges. 

 

 

 

 

Figure 3.20. Normal strain measured from FSS as a function of displacement.  

 

 

 

Figure 3.21. Comparison of normal strain data from FSS and strain gauge sensors. 
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Overall, there is good agreement between the FSS and strain gauge, with minor 

aberrations in the FSS data set occurring for displacements around zero.  These 

aberrations may be a result of the measurement not taking place at exactly at the apex of 

each displacement cycle due to the non-instantaneous measurement time of the VNA, as 

well as human error in timing the measurement with the apex of the strain cycle.  This 

would have the most significant effect for small displacement cycles, as these cycles 

occurred more quickly in the testing process than the larger displacement cycles.  

Additionally, for the larger displacement values, normal strains measured by the FSS are 

larger in magnitude than those measured by the strain gauges.  This may be due to the 

simulated gauge factor not exactly matching that of the physical FSS sample.  A similar 

behavior was observed for the FSS measurements shown in Figure 3.6 of Section 3.1, 

which could indicate that a more reliable gauge factor determination method may be 

needed that takes the effects of Poisson’s Ratio into account. 

 For the torsion test, a testing procedure similar to the linear displacement test was 

conducted.  In this test, torsion was applied to the column through a set of linear actuators 

connected to the top of the column.  Torsion was applied in cycles, with the column first 

being twisted clockwise and then counter-clockwise for each cycle.  Furthermore, the 

magnitude of this twisting increased with each additional cycle.  Measurements of the 

cross-polarized FSS response were taken at the apex of each cycle, with the goal of 

detecting increases in cross-polarization due to torsion-applied shear strain of the FSS.  

Unfortunately, however, no change was detected in the cross-polarized response over the 

course of the test.  This may indicate that shear strain was not applied to the FSS as 

expected, meaning that cross-polarization would not have occurred.  This could be due to 

the column not deforming as expected, or due to shear strain not correctly transferring to 

the FSS.  Alternatively, the returning signal may have been below the noise floor           

(~ -70dB) of the VNA.  In either case, the ability of an FSS to detect shear strain was not 

verified in this investigation, and therefore requires additional investigations including 

improved test and measurement procedures.   
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3.4. CONCLUSION 

Over the course of this section, the use of FSS for detecting deformations in a 

structure was discussed.  In Section 3.1 and 3.2, the effects of normal strain and shear 

strain on the frequency response of an FSS were examined through both simulation and 

measurement of deformed FSS samples.  In Section 3.1, it was found that the resonant 

frequency of an FSS shifts when under normal strain due to normal strain changing the 

length of the FSS element and altering the resonant wavelength.  Additionally, it was 

shown that this resonant shift was also a function of the polarization of the interrogating 

wave with respect to the direction of normal strain.  Specifically, the effect of normal 

strain on resonant frequency was greatest when the incident wave polarization and 

normal strain direction were parallel.  Based on these observations, FSSs were shown to 

have potential to sense both normal strain magnitude and normal strain direction.  To 

verify these observations, an FSS sample that had been subjected to normal strain was 

measured for different polarizations.  Although overall trends matched expectations 

(resonant frequency shifting as a function of normal strain), the magnitude of this shift 

was less than was seen through simulation.  Additionally, for incident wave polarizations 

oriented normal to the direction of normal strain, resonant frequency shifts were greater 

than expected.  Ultimately, these results indicate potential limitations for normal strain 

sensing (possibly due to the effects of Poisson’s Ratio) that may require future 

investigations, as well as the need for a secondary method of measuring normal strain 

such as commercial strain gauges for comparison. 

For the case of shear strain in Section 3.2, simulations indicated that shear strain 

causes an FSS to cross-polarize incident radiation due to the FSS losing geometrical 

symmetry.  The magnitude of this cross-polarization was found to increase with shear 

strain, resulting in a potential method for detecting shear strain.  The sensitivity of a 

number of FSS elements to shear strain was analyzed for sensing purposes.  This study 

indicated that while grounded FSS designs caused the highest level of cross-polarization 

for a given shear strain, the cross-polarization would quickly reach an observed 

maximum value, meaning that cross-polarization magnitude would cease to increase for 

higher shear strains.  Of the non-grounded elements, the loaded cross-loop FSS was 

found to provide the most sensitive response to shear strain, giving the highest magnitude 
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of cross-polarization of the non-grounded elements examined while also avoiding a 

maximum limit for the simulated shear strain values.  Unfortunately, for the case of shear 

strain, laboratory measurements were not conducted due to the difficulty in applying 

shear strain to the available FSS sample.  As such, future work will need to be undertaken 

to conduct such a measurements, thus providing validation of simulated results. 

Finally, in Section 3.3, FSS samples were embedded into a set of concrete 

columns to act as normal strain and shear strain sensors during lateral displacement and 

torsion tests of these columns.  This project provided examples of difficulties that might 

be encountered for FSS sensing in practical structures.  For the structures used in this 

project, one such difficulty regarded the high signal loss of the concrete, as this loss 

heavily dampened the interrogating signal, making detection of the FSS problematic.  

This loss was counteracted by using an amplifier on the interrogating signal, as well as 

reducing the noise floor of the VNA used during measurement (at the cost of longer 

acquisition times).  Another difficulty was due to the thickness of the concrete columns 

causing additional resonances in the measured frequency response due to reflections at 

dielectric interfaces within the layered dielectric structure of the column, masking the 

resonance of the FSS.  This was (partially) counteracted by using dielectric-filled horn 

antennas to measure the FSS, as these horns would reduce reflections by matching the 

impedance of the columns.  Finally, the curvature of the columns meant that the FSS 

samples used for this project had to be designed with such curvature in mind.  For the 

lateral displacement test, a shift in resonant frequency was observed for applied normal 

strain, as expected from results found in Section 3.1.  Furthermore, the normal strain 

measured by the FSS matched well with traditional strain gauges that were also 

embedded in the column.  However, for the torsion tests, no cross-polarization was 

detected for over the course of the test.  This may have been due to shear strain not being 

applied to the FSS, or due to shear strains not causing the FSS to cross-polarize incident 

radiation as expected.  As such, future work will need to include additional investigations 

into the effects of shear strain on FSS samples, likely under more controlled 

circumstances to ensure that the FSS samples have shear strain applied as expected. 
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4. APPLICATIONS OF FSS FOR DELAMINATION/DISBOND SENSING 

In Section 3, it was shown that geometrical deformation of an FSS affects the 

FSS’s frequency response.  Conversely, by (remotely) monitoring the FSS’s frequency 

response, the presence of a deformation may be determined.  Further, as discussed in 

Section 2, an FSS’s frequency response is also affected by materials (e.g., dielectrics) 

surrounding the FSS, providing another potential sensing application.  In this section, this 

material dependency is utilized for detection of separations (i.e., delaminations and 

disbonds) between layers of a layered dielectric structure.  

 

4.1.  FSS RESPONSE TO DELAMINATION WITHIN A STRUCTURE 

The formation of delaminations and disbonds in a layered dielectric structure may 

lead to structural failure, giving rise to the need for delamination/disbond detection.  A 

delamination is defined as a separation that occurs in a laminated material, such as a 

composite structure [43].  Alternatively, a disbond is defined as a form of delamination 

composed of a separation between two separate materials that had previously been 

bonded together.  In either case, this separation creates an air gap in the structure that can 

lead to structural failure.  Therefore, the ability to sense the presence of 

delaminations/disbonds is critical for assessing structural integrity.  Current 

delamination/disbond sensing techniques include ultrasound [42], thermography [40], and 

microwave interrogation [41].  In addition to these methods, FSSs may also be used for 

delamination/disbond detection by taking advantage of their sensitivity to dielectric 

materials in the vicinity of the FSS [54]. 

As discussed in Section 2.2, the frequency response of an FSS is sensitive to the 

presence of surrounding materials including (mechanically supportive) dielectric 

substrate layers.  This occurs due to the dielectric material altering the capacitive 

coupling that occurs between elements of the FSS, thus changing the FSS’s resonant 

frequency.  Normally, when integrating an FSS into a layered dielectric structure, the 

design of the FSS (element spacing, etc.) must be adjusted to account for this additional 

capacitance.  Thus, the FSS is “tuned” to provide a specific response for a particular 

dielectric structure.  However, should the dielectric structure change due to the presence 
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of a delamination in the structure, the FSS capacitance will be reduced.  When this 

occurs, the resonant response of the FSS is changed as well.   

4.1.1. Simulation Results.  To investigate how the FSS resonance is affected by 

delamination, a full-wave simulation in HFSS [23] was conducted for a crossed-dipole 

FSS embedded between two planar dielectric sheets having a permittivity of 3.3, loss 

tangent of 0.004, and thickness, t, of 1.524 mm.  The delaminated structure and 

embedded crossed-dipole FSS used for this simulation are shown in Figure. 4.1 (a) and 

(b), respectively.  Meanwhile, the resultant frequency response for three different 

delamination distances are shown in Figure. 4.2. 
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(a)                            (b) 

Figure 4.1. Crossed-dipole FSS (a) embedded into a delaminated structure (b). 
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Figure 4.2. Reflection response of the embedded crossed-dipole FSS of Figure 4.1 

for three delamination distances. 

 

 

 

 

From these results, a number of observations can be made.  First, Figure 4.2 

shows that both the resonant frequency and resonant depth of the FSS response are 

altered when a delamination is present.  The resonant frequency (f0) shifts because it is 

inversely proportional to both the FSS capacitance (C) and inductance (L), calculated as 

 

                   (4.1) 

 

  Since the FSS’s capacitance decreases as the delamination distance increases 

while the inductance remains constant, the resonant frequency increases accordingly.  

Furthermore, the resonant depth changes due to the reflections generated as a result of the 

additional interfaces (dielectric-air and air-dielectric) caused by the delamination within 

the structure.  These additional reflections coherently add to the total received signal, 

potentially causing a change in the depth of the resonance (in this case, the depth was 
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reduced).  As such, by monitoring both parameters, one can acquire two sets of data from 

which delamination information (such as severity and location) may be obtained.  

Additionally, the sensitivity of both resonant frequency and resonant depth to 

delamination can help differentiate the effects of delamination from other structural 

deformations of sensing interest, such as normal strain, which only affects resonant 

frequency.  In other words, in a system where both normal strain and delamination may 

occur, a significant change in both resonant frequency and depth may indicate the 

presence of delamination, whereas observing only a shift in resonant frequency may be 

indicative of normal strain alone.  As a result, a single FSS can conceivably be used to 

separately detect both normal strain and delamination (as well as shear strain, potentially, 

since shear strain doesn't typically affect the co-polarized frequency response, as 

discussed in Section 3.2).  This gives a single FSS the potential to act as a comprehensive 

distributed structural health monitoring sensor.  One limitation with this method is that it 

may be difficult to separately quantify normal strain and delamination if both are present.  

However, the presence of a delamination can often be considered a major structural 

failure [43].  As such, normal strain assessment may no longer be important in this case, 

since the structure has already reached a critical failure state due to the delamination.  

That being said, by better characterizing how delaminations affect an FSS’s frequency 

response, it may still be possible to separately quantify these two phenomena.  To this 

end, the resonant frequency and resonant depth of the FSS-integrated layered structure 

from Figure 4.1 are shown as a function of delamination distance in Figure 4.3 (a) and 

(b), respectively. 

From Figure 4.3, it is seen that for thin delaminations (less than 2 mm), the 

resonant frequency monotonically increases as the delamination distance increases.  

Additionally, for very thin delaminations (less than 0.2 mm), the increase in resonant 

frequency occurs more rapidly than for the slightly larger delaminations (0.3 mm - 2 

mm).  This is because the capacitive electric field coupling of the FSS is concentrated 

close to the FSS surface.  As such, changes in a dielectric that occur farther from an FSS 

have less of an effect on the resonance, since less of the electric field coupling is present 

in that region.  This behavior is further discussed later in this section.   
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(a) 

 

 

(b) 

Figure 4.3. Resonant frequency (a) and resonant depth (b) of the embedded 

crossed-dipole FSS shown in Figure. 4.1 as a function of delamination distance. 

 

 

 

The results of Figure 4.3 (b) show a similar trend for the relationship between 

resonant depth and thin delaminations.  For instance, when a delamination is very thin 
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(less than 0.1 mm) the resonance becomes slightly deeper.  This is likely due to the newly 

formed air gap changing the overall structure (effective) impedance to be closer to that of 

the surrounding environment (in this case, free space) and therefore reducing reflections 

at the resonant frequency.  Next, as the delamination distance increases, the resonance 

becomes heavily dampened due to additional reflections in the structure (introduced by 

the new interfaces created by the delamination), with the reflection resonance becoming 

most shallow at ~2.5 mm of delamination.  For the 2 mm - 5 mm delamination range, 

however, the trends in resonant frequency and depth become reversed.  After reaching a 

peak value in resonant frequency of 11.5 GHz at 3 mm of delamination, the resonant 

frequency reduces to 11 GHz at 5 mm of delamination.  Additionally, the observed 

reflection resonance quickly deepens again at 3.5 mm of delamination, reaching a depth 

of -50 dB, before eventually returning to a shallower level as delamination distance 

continues to become larger.  This is likely due to a resonant frequency (inherent to the 

delaminated dielectric structure) that is near the resonant frequency of the FSS.  To 

illustrate this, the resonant frequencies of the dielectric structure itself (without an 

embedded FSS) are shown with respect to delamination distance in Figure 4.4.   

 

 

 

Figure 4.4. First three resonances of dielectric structure given in Figure 4.1 (b) as 

a function of delamination distance. 
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From the results of Figure 4.4, it can be seen that at approximately 2.5 mm of 

delamination, the first resonance of the dielectric structure begins to approach the 

resonance of the FSS.  Since the FSS resonance is most shallow at this point, the 

dielectric resonance dominates the overall reflection response.  Qualitatively speaking, 

since the dielectric resonance is stronger, the overall resonant frequency is weighted by 

this resonance.  Furthermore, the deeper resonance for 2.5 mm of delamination in Figure 

4.3 (b) occurs approximately where the dielectric resonance overlaps the overall 

resonance, causing the resonance to reach its deepest point.  However, as the structure’s 

resonance continues to decrease in frequency for increasing delamination, the structural 

and FSS resonances no longer overlap.  As such, the overall resonance is dampened again 

as the delamination distance continues to increase. 

Another aspect to consider is the influence of delamination location on the FSS 

response.  Thus far, the delaminations have occurred at the interface of the FSS.  Since an 

FSS is more sensitive to dielectric changes that occur locally, delaminations occurring at 

other locations within a structure may have a reduced effect on the FSS response.  To 

investigate this, full-wave simulations were conducted for the structures shown in Figure 

4.5 (a) and (b), referred to as the “Near” delamination case (at the location of the FSS) 

and “Adjacent to” delamination case (at the next dielectric interface (1.524 mm) from the 

FSS), respectively.  The FSS design used here is identical to the FSS in Figure 4.1 (a).  

Additionally, the dielectric layers used have the same parameters as those found in Figure 

4.1 (b).  

The resonant frequency and resonant depth of the FSS as a function of 

delamination distance are shown in Figure 4.6 (a) and (b), respectively, for the "Near" 

and "Adjacent to" delamination cases.  Additionally, the resonant frequency of the 

standalone dielectric structure (without an embedded FSS being present) is also included 

in Figure 4.6 (a). 
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                                   (a)                                  (b) 

Figure 4.5. Dielectric structures for “Near” delamination (a) and “Adjacent to” 

delamination (b) cases. 

 

 

 

(a) 

Figure 4.6. Resonant frequency (a) and resonant depth (b) of the crossed-dipole 

FSS in Figure 4.1 as a function of delamination distance for the “Near” and “Adjacent to” 

delamination cases illustrated in Figure 4.5. 
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(b) 

Figure 4.6. Resonant frequency (a) and resonant depth (b) of the crossed-dipole 

FSS in Figure 4.1 as a function of delamination distance for the “Near” and “Adjacent to” 

delamination cases illustrated in Figure 4.5. (cont.) 

 

 

 

Overall, similar trends to what was seen in Figure 4.3 (in regards to a 

delamination occurring at the FSS location, albeit in different dielectric structures) are 

also seen here in Figure 4.6, with the FSS resonance initially dampening while shifting 

upward in frequency, before eventually interacting with the resonance of the delaminated 

dielectric structure (red line in Figure 4.6).  However, the resonant frequency is less 

affected for the “Adjacent to” case than for the “Near” delamination case.  This is 

attributed to the “Adjacent to” delamination case having less of an effect on the FSS’s 

capacitance than the “Near” delamination case, since capacitive coupling occurs close to 

the FSS.  Additionally, since the resonant frequency doesn't shift as much for the 

“Adjacent to” case as for the “Near” case, a thicker delamination (and thus lower 

resonant frequency for the dielectric structure) is required before the dielectric structure 

and FSS resonances overlap and interact, which occurs for this case at approximately 3 

mm of delamination.  
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For delamination sensing purposes, these observations imply that a single FSS 

may only be able to sense delaminations within its local area.  Delaminations occurring 

farther away have a reduced impact on the frequency response of the FSS.  For larger 

dielectric structures, this may be a problem, as a single FSS may not be able to 

adequately monitor the entire structure.  As such, the use of multiple FSSs embedded 

throughout the structure may be required for complete sensing coverage.  However, in 

order to include multiple FSS layers in a structure, a number of design considerations 

must be included [30].  First, to differentiate the resonances of the different FSS layers, 

the resonant frequencies of each layer must be spaced far enough apart in frequency to 

avoid unwanted interactions between resonances.  As a result, the response of each 

individual FSS can be separately monitored.  Conversely, however, the resonances must 

be close enough together to all fit within the operating frequency band (potentially 

requiring a wideband interrogation system).  As a result, there may be a limit to how 

many resonances can be used to monitor a structure.  Finally, the spacing between FSS 

layers in the structure must be carefully chosen.  For instance, if the FSS layers are 

spaced too far apart, there may be “blind spots” in the dielectric structure where a 

delamination won't be detected due to its distance from the FSS layers.  Alternatively, if 

the FSS layers are too close together, the layers may electrically couple and affect/change 

their intended response [30].     

With the above observations in mind, a full-wave simulation was conducted to 

investigate how multiple FSSs embedded within a dielectric structure respond to 

delaminations occurring between different layers of the structure.  For this investigation, 

two FSSs were embedded in the structures shown in Figure 4.8 (a-e), where each 

structure represents a different delamination location (referred to as Delams 1-5).  The 

crossed-dipole FSS shown in Figure 4.1 was used for the first FSS layer, while the cross-

loop FSS design shown in Figure 4.7 was used for the second FSS layer.  The 

transmission response resonant frequencies for each FSS are given in Figure 4.9 for each 

delamination as a function of delamination distance.  The transmission response was 

considered here in order to take advantage of the two transmission resonances of the 

cross-loop FSS.  The lowest and highest resonant frequencies, 3.6 GHz and 8.5 GHz for 

no delamination (delamination distance of zero in Figure 4.9) correspond to the cross-
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loop FSS, while the middle resonance, 6 GHz for no delamination, corresponds to the 

crossed-dipole FSS.  Meanwhile, the transmission response resonant depths of each FSS 

resonance are given in Figure 4.10 as a function of delamination distance for each 

delamination scenario of Figure 4.8. 
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14mm6mm

 

Figure 4.7. Cross Loop FSS used in multi-layer FSS structure for delamination 

analysis in Figure 4.8. 
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Figure 4.8. Simulated delaminated dielectric structures, referred to as Delams 1-5. 
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Figure 4.9. Simulated resonant frequencies as a function of delamination distance 

for Delams 1-5 shown in Figure 4.8.  The top and bottom resonances correspond to the 

cross-loop FSS, while the middle resonance corresponds to the crossed-dipole FSS. 
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        (a) 

 
        (b) 

 
       (c) 

Figure 4.10. Simulated values of resonant depth as a function of delamination 

distance for Delams 1-5 (Figure 4.8).  (a) and (c) correspond to the cross-loop FSS and 

(b) corresponds to the crossed-dipole FSS 
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Based on these simulations, Delams 1-5 affect each FSS resonance differently.  

For Delam 1 in Figure 4.8 (a), the resonance of the crossed-dipole FSS shifts by about 1 

GHz, while the resonances of the cross-loop FSS are less affected, shifting by less than 

0.1 GHz.  This behavior verifies that an FSS is only sensitive to local delaminations, as 

only the crossed-dipole FSS resonance is significantly affected by Delam 1.  The crossed-

dipole FSS resonance also shifts in resonant frequency for Delam 2 (shown in Figure 4.8 

(b)), shifting by 1.6 GHz over the delamination distance observed.  This shift in resonant 

frequency is greater than what was seen for Delam 1, despite both delaminations being in 

the same proximity to the crossed-dipole FSS.  This increase in delamination sensitivity 

is also observed in the second resonance of the cross-loop FSS, which exhibits a much 

larger frequency shift than was seen for Delam 1.  This increase in sensitivity for both 

resonances may be due to additional electric field coupling between the FSS structures 

that is weakened by the presence of the delamination, reducing the capacitance of both 

FSSs.  Furthermore, the crossed-dipole and second cross-loop FSS resonances begin to 

overlap after 3.5 mm of delamination distance, creating a single resonance.  For practical 

purposes, such an overlap may be undesirable, as this makes it difficult to independently 

track the resonance of each FSS.  However, 3.5 mm of delamination would likely have 

already caused the structure to fail, meaning that delamination sensing would no longer 

be a concern.  As such, knowing the maximum required delamination distance for a given 

structure is important when choosing the multi-layer FSSs’ resonance spacing in the 

overall frequency response.  Additionally, this combination of resonances causes a 

substantial increase in resonant depth at 3.5 mm of delamination distance, before 

subsequently reducing as the delamination continues to widen.  For all other 

delaminations, the resonant depth does not include the erratic changes seen for Delam 2, 

as these delamination cases don’t cause resonance overlap.  For Delam 3, shown in 

Figure 4.8 (c), all three resonances exhibit a similar frequency shift.  This similarity in 

frequency shift between resonances occurs because Delam 3 is spaced directly between 

the two FSS layers, thereby affecting each FSS in a similar way.  Next, for Delam 4 in 

Figure 4.8 (d), the cross-loop FSS resonances are each altered by ~1.5 GHz over the 

observed delamination distances, while the crossed-dipole FSS resonance is largely 

unaffected.  Much like the resonant responses to Delam 1 and Delam 2, this behavior is a 
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result of the close proximity of Delam 4 to the cross-loop FSS, again demonstrating the 

local sensitivity of an FSS to delamination.  Lastly, similar behavior is also seen for 

Delam 5 in Figure 4.8 (e), albeit with less shifting in the cross-loop resonances.  This 

behavior mirrors the difference in delamination response seen between Figure 4.8 (a) and 

(b), where the delaminations occurring between the two FSS layers cause a more 

significant impact on the frequency response than delaminations occurring between the 

FSSs and the outermost dielectric layers.  One final observation is that unlike for the 

reflection response in Figure 4.4, the transmission response doesn’t feature a dielectric 

structure resonance.  A selection of transmission responses for the delaminated structures 

of Figure 4.8 (without FSSs) are shown in Figure 4.11. 

 

 

 

 

 

Figure 4.11. Transmission responses for the structures shown in Figure 4.8, 

without embedded FSSs. 
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  As Figure 4.11 indicates, the transmission responses for the delaminated 

structures in Figure 4.8 don’t vary significantly over the observed frequency spectrum, 

(the largest variation is less than 4 dB for the 5 mm Delam 3 case).  As a result, instead of 

being altered by structural resonances, the resonant depths of each FSS resonance change 

smoothly with delamination distance, as seen in Figure 4.3 (b).  This is beneficial from a 

sensing point-of-view, as the presence of a delamination is the only aspect that causes a 

change in resonant response.  Additionally, measuring the transmission response may 

prove advantageous should structural resonances mask the FSS resonances in the 

reflection response.  However, transmission measurements may be impractical in some 

real world sensing cases, as both sides of a structure (required for transmission 

measurements) may be inaccessible.  Overall, based on these preliminary results, the use 

of multiple FSS layers for delamination detection appears quite promising, as this method 

can provide remote, non-contact delamination monitoring for an entire structure, while 

also providing information on delamination location. 

4.1.2. Measurement Results.  To verify the ability of embedded FSSs to detect 

the presence of delaminations, a series of measurements were conducted on layered 

dielectric samples with embedded FSSs.  The FSSs used for these measurements were the 

crossed-dipole FSS shown in Figure 4.1, and the cross-loop FSS shown in Figure 4.7.  

These samples were constructed through chemical etching of 8”x11” copper-clad Rogers 

RO4053 PCB boards (1.524 mm thick, permittivity of 3.3 and loss tangent of 0.004), as 

was used in simulation.  Although these FSS samples are not infinite in extent (as is 

assumed in simulation), all but the outermost FSS elements will contribute to an FSS 

response that is similar to the ideal (infinite dimensions) case, as most coupling only 

occurs with directly adjacent elements.  Furthermore, the size of the FSS sample was 

larger than the interrogating beam, thus avoiding significant edge effects.  The copper 

cladding was removed from two additional Rogers RO4053 boards to serve as additional 

dielectric layers.  The FSSs and dielectric layers were arranged in 5-layer stackups 

corresponding to the arrangements seen in Figure 4.1 (b), Figure 4.5, and Figure 4.8 (a-e).  

To replicate delaminations, 0.5 mm spacers were placed between the appropriate 

dielectric layers, creating an air gap with a controlled thickness.  The frequency responses 

of each of the stackups were measured using two horn antennas connected to two ports of 
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a calibrated 8510C Vector Network Analyzer (VNA).  During measurement, each 

stackup was placed in a semi-anechoic chamber to reduce environmental noise.  For each 

delamination case, several sets of measurements were conducted to mitigate possible 

variations in the measurement setup, as well as to demonstrate reproducibility of the 

results.  First, the reflection responses were measured for the stackups in Figure 4.1 (b) 

and Figure 4.5 (a), representing the “Near” delamination case of the cross FSS.  In this 

measurement, two X-band (8.2-12.4 GHz) horn antennas were place collinearly on one 

side of the FSS, with both horns emitting radiation in the direction of the FSS, with each 

receiving the reflected signal of the other.  With this setup, four sets of measurements 

were collected for each delamination distance.  The mean of the measured resonant 

frequency and depth are shown in Figure 4.12 (a) and (b), with error bars indicating the 

standard deviation.  The corresponding results from the simulations given in Figure 4.3 

and Figure 4.6 are also included for comparison.  Meanwhile, the transmission responses 

were measured for the dielectric structures in Figure 4.8 (a-e), representing the “multi-

layer” FSS delamination cases.  Since the multi-layer FSS featured resonances spread 

over a large frequency range (from 3-9 GHz), a pair of wideband (0.75-20 GHz) ridged 

horn antennas were used for this measurement.  To measure transmission through the 

FSS, these horn antennas were located on opposite sides of the FSS.  For these 

delamination cases, three measured data sets were collected.  The resulting mean and 

standard deviation are provided as a function of delamination distance and compared to 

simulation for each delamination case (Delam 1-5) in Figure 4.13-Figure 4.17, 

respectively.  In these figures, Res. 1 and Res. 3 refer to the lower frequency and upper 

frequency resonances of the cross-loop FSS (respectively), and Res. 2 refers to the 

crossed-dipole FSS resonance.  Figure 4.13-Figure 4.17 (a) shows the results of resonant 

frequency for Res. 1-3 as a function of delamination distance, while Figure 4.13-Figure 

4.17 (b)-(d) gives the resonant depths of Res. 1-3, respectively.  Simulation results are 

also included in these figures for comparison. 
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(a) 

 

 

(b) 

Figure 4.12. Comparison of measurement and simulation of resonant frequency 

(a) and resonant depth (b) of the crossed-dipole FSS as a function of delamination 

distance for “Near” delamination shown in Figure 4.1. 

 

 

 

 

 



 

 

85 

 

Figure 4.13. Measurement of resonant frequency (a) and resonant depth (b-d) of a 

multi-layer FSS-integrated stackup as a function of delamination distance for Delam 1 

(Figure. 4.7 (a)). 
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Figure 4.14. Measurement of resonant frequency (a) and resonant depth (b-d) of a 

multi-layer FSS-integrated stackup as a function of delamination distance for Delam 2 

(Figure. 4.7 (b)). 
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Figure 4.15. Measurement of resonant frequency (a) and resonant depth (b-d) of a 

multi-layer FSS-integrated stackup as a function of delamination distance for Delam 3 

(Figure. 4.7 (c)). 
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Figure 4.16. Measurement of resonant frequency (a) and resonant depth (b-d) of a 

multi-layer FSS-integrated stackup as a function of delamination distance for Delam 4 

(Figure. 4.7 (d)). 
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Figure 4.17. Measurement of resonant frequency (a) and resonant depth (b-d) of a 

multi-layer FSS-integrated stackup as a function of delamination distance for Delam 5 

(Figure. 4.7 (e)). 

 

 

 

 

Overall, the trends in measured resonant frequencies for all delamination cases 

match quite well with simulation.  However, the measured resonant frequencies differ 

from the simulated resonant frequencies, with a difference of up to 0.5 GHz for the 

crossed-dipole FSS.  This may be due to the FSS’s physical dimensions not matching 

those used in simulation as a result of minor errors in individual elements introduced 

during the production process (such as conductor width and length being smaller than 

intended due to over-etching).  Additionally, variations in delamination distance due to 
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sagging of the dielectric sheets and irregular sizing in the applied spacers (observed to 

have 0.2 mm of deviation or more) may have contributed to this difference.  Furthermore, 

minor errors in measurement (such as unintended variation in incident angle) may also 

have contributed.  Additionally, there was minimal deviation in resonant frequency (<0.3 

GHz for most datasets) between measurement sets (for a given Delam.), with the crossed-

dipole FSS resonance exhibiting the most variation (0.8 GHz for 3.5 mm of delamination 

in Figure 4.12), potentially due to this FSS having a higher sensitivity to incident angle 

[3].  For resonant depth, however, significant deviations from the simulation results 

occurred (~20 dB of difference for the worst cases).  This deviation was especially 

noticeable for the crossed-dipole resonance, again potentially due to higher incident angle 

sensitivity.  Furthermore, the measured resonant depths tended to be inconsistent between 

datasets, with the individual data points varying significantly (up to 30 dB) for each 

delamination distance.  This variability may be due to minor alignment errors between 

the horn antennas leading to radiation losses between antennas.  In addition, the VNA’s 

limited number of frequency acquisition points may have affected measured resonant 

depth for the deeper resonances.  That is, a given resonance may not have been measured 

at its deepest point if it occurred in between the frequency points measured by the VNA.  

Ultimately, however, this result indicates that measurement of transmission resonant 

depth may be an unreliable indicator of delamination distance for practical delamination 

detection, leaving resonant frequency as a better choice for quantifying delaminations.   

 

4.2. DETERMINATION OF EFFECTIVE PERMITTIVITY THROUGH 

CONFORMAL MAPPING 

Thus far, full-wave simulation-based investigations of an FSS's sensitivity to the 

presence of one or more delaminations have been limited to specific cases.  However, if 

this method is to be generalized for an arbitrary FSS integrated within an arbitrary 

dielectric structure, the use of full-wave simulation to design the FSS and study its 

subsequent response may become computationally intensive due to the wide variety of 

possible delamination scenarios and FSS elements.  As such, analytical methods may be 

needed to determine an FSS’s response to delamination.  Additionally, analytical 

calculations of an FSS’s response in the presence of dielectrics can facilitate initial FSS 

design and analysis prior to utilizing full-wave simulation for more detailed studies.  This 
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design approach reduces the need for computationally intensive full-wave simulation-

based FSS design optimization, and instead only uses full-wave simulation for more 

robust and detailed verification and/or study of the final FSS design.  In general, to 

design an FSS for delamination sensing in an arbitrary layered dielectric structure, three 

main steps are necessary.  First, the FSS's inductance and capacitance must be calculated 

in the absence of dielectrics (i.e., freestanding) to determine the freestanding impedance 

of the FSS.  This can be accomplished by using the modified Marcuvitz strip grating 

equations given in Section 2.2 [16].  Next, the effective permittivity (εr,eff) relevant to the 

FSS must be calculated.  εr,eff is related to how multiple surrounding dielectrics alter the 

impedance of an FSS, and is determined based on electric field coupling between FSS 

elements within the dielectrics.  By modifying the wavelength of Marcuvitz’s equations 

by εr,eff, the resulting dielectrically-loaded impedance of the FSS can be found.  Lastly, 

the frequency response of the entire FSS-integrated dielectric structure must be 

determined.  This can be obtained by using a transmission line model in which the FSS 

impedance acts as a load (in shunt) between a series of transmission lines that represent 

each surrounding dielectric layer.  This model can determine not only the response of the 

FSS, but also any reflections inherent to the dielectric structure.  To date, analytical 

approximation equations are available for finding the freestanding impedance of a variety 

of different FSS elements [13], [16], as well as for calculating the response of a 

transmission line model [44], meaning that these calculations can be easily implemented 

into an efficient computation engine, such as Matlab [45].  However, existing equations 

to approximate εr,eff for an FSS are based on curve-fitting of known FSS examples, with 

poor consideration for varying dimensions of an FSS [46].  Additionally, these models 

are limited to FSSs with a single dielectric layer.  As such, a new form of analytical 

approximation based on conformal mapping was developed to extend the above model 

for layered dielectric structures [53]. 

 Conformal mapping is the process of transforming a given coordinate system into 

a different coordinate system that preserves the angles between the vertices of the two 

coordinate systems [49].  In the field of high-speed electronics, the capacitance of 

transmission line structures on printed circuit boards (PCBs) is often approximated using 

conformal mapping techniques.  The main advantage of using a conformal map approach 
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for a given problem is that it can simplify the problem’s geometry into a more easily 

solvable form.  This transformation is accomplished through a series of weighting 

functions on the geometry’s coordinate system.  As an example, to determine the 

capacitance in a PCB transmission line system, a conformal map may be used that 

transforms a cross-section of the strip-line geometry into the form of two infinite parallel 

plates [47].  This greatly simplifies the problem, as this geometry lends itself better to an 

analytical solution, and the equation for the capacitance between two parallel plates is 

well known.  While this method was originally developed for finding εr,eff in PCB 

structures, it may also be applied for finding εr,eff that corresponds to the coupling of a 

given FSS [53] (including one embedded in a layered dielectric).  That is, since the 

majority of capacitive coupling between FSS elements is often between individual 

conducting segments of the elements, this coupling behavior can be modeled as two 

mutually coupled transmission lines.  For this purpose, conformal maps of two common 

transmission line configurations are available in [47] that may be useful for finding εr,eff 

for different FSS elements that share similar geometrical features with these transmission 

lines.  These conformal maps are for a coplanar waveguide and coplanar line, and are 

illustrated in Figure 4.18 (a) and (b), respectively.  
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Figure 4.18. Coplanar line (a) and coplanar waveguide (b) configurations in a 

layered dielectric structure. 
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In both configurations shown in Figure. 4.17, s is the conductor segment width 

and g is the gap width between conductors.  By applying these geometries to regions of 

coupling in FSS elements, the value of εr,eff that corresponds to that coupling can be 

found.  In order to do this, the capacitance of the freestanding geometry (denoted by C0) 

is first determined, with additional capacitances added to account for each dielectric layer 

(where each capacitance is denoted as Ci, where i designates the specific layer).  For the 

co-planar waveguide arrangement, the value of C0 is found as [47] 

 

                                                             (4.2) 

 

where ε0 is the permittivity of free space  Here, K describes an elliptic integral of the first 

kind, and has inputs of k0 and k0', where    
 

   
  and   

       
 
.  Next, the 

capacitance provided by each surrounding dielectric layer is determined as [47] 

 

                                                                    (4.3)  

 

Here, εri is the relative permittivity of dielectric layer i for which this capacitance 

is determined, while εr(i+1) is the relative permittivity of the next farthest dielectric layer 

from the FSS.  Meanwhile, ki is given as [47] 

 

     
            

                
                                                   (4.4) 

 

where Hi is the combined thicknesses of all layers between the FSS and layer i.  Lastly, ki' 

is found as           
 
.  Once the capacitance is found for each dielectric layer, the 

value of εr,eff is determined by dividing the sum of all capacitance values by the 

freestanding capacitance C0.  A similar process can be used for the coplanar transmission 

line arrangement [47].   

 To illustrate the application of conformal mapping for approximating εr,eff of an 

FSS, the square loop FSS element is considered.  When a square loop FSS is excited by 
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incident radiation, surface currents are excited in the direction of polarization of the 

incident wave, creating electric fields (denoted as E) between the conductor segments of 

adjacent elements, the magnitude of which is shown in Figure 4.19.  In this figure, the 

electric field coupling between the visible element and those adjacent (not shown) is 

illustrated.  Additionally, fringe coupling (oriented perpendicularly to the incident wave 

polarization) is also evident at the element corners. 

 

 

 

 

 

 

Figure 4.19. Illustration of electric field distribution between adjacent elements 

for a Square Loop FSS. 

 

 

 

 

Since the majority of coupling occurs between parallel conductor segments (of 

adjacent elements), the capacitance of this structure is assumed to be equivalent to the 
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capacitance of the coplanar transmission line geometry previously described.  While this 

assumption ignores minor differences in the electric field distribution including fringe 

coupling that occurs at the ends of these segments, this method still serves as a valid first-

order approximation since fringe coupling is not the dominant contributor to the FSS’s 

impedance.  As such, εr,eff is calculated for the FSS embedded in the dielectric structure of 

Figure 4.20 (a) and (b).  Here, ‘w’ and ‘g’ define the FSS conductor and gap widths, and 

‘h’ and ‘er’ define the height of (two) dielectric layers and permittivity.  The value of εr,eff 

determined from the conformal mapping approach is compared to that obtained via full-

wave simulation and presented in Table 4.1 for a variety of different test cases (labeled as 

Cases 1 - 13) for the dimensional parameters shown in Figure 4.20.  For simulation, εr,eff 

is determined based on the difference in resonant frequency between the freestanding 

FSS (f0) and embedded FSS (f), calculated as  

 

                                (4.5) 

 

FSS dimensions were chosen for Case 1 to produce a resonance in the desired 

frequency region (1-10 GHz).  From this, dimensions for the other cases were chosen in 

order to investigate the effect of the dimensional parameters shown in Figure 4.20 on εr,eff 

by varying them above and below the individual parameters of Case 1.  

Overall, the differences in εr,eff calculated using the conformal mapping approach 

and full-wave simulation are within approximately 0.2 (a maximum error of 8%).  The 

worst cases occur for larger gap widths and for lower permittivity dielectrics.  This 

deviation is likely due to the conformal mapping method not accounting for the fringe 

coupling at the conductor ends (as mentioned above).  This may be due to a reduction in 

the ordinary coupling between elements when the gap widths are larger or when the 

dielectrics have a lower permittivity, meaning that fringe coupling would have a more 

dominant effect for these cases.  However, it is important to remember that the conformal 

mapping approach provides a first order approximation and as such, this error is 

considered acceptable for initial design work and analysis.  More accurate results can be 

determined via subsequent full-wave simulation after the initial design is determined (if 

needed).   
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Figure 4.20. Square Loop FSS (a) and dielectric structure (b) used to demonstrate 

approximation of εr,eff. 

 

 

 

 

 

Table 4.1. Comparison of εr,eff calculated using the conformal mapping approach 

and full-wave simulation. 

 

 
Parameters εr,eff  

 
w g h er delam Sim Conf. Map % Error 

Case 1 3 mm 4 mm 2.54 mm 4 0 mm 2.97 2.76 6.97 

Case 2 1 mm 4 mm 2.54 mm  4 0 mm 3.21 3.15 1.93 

Case 3 2 mm 4 mm 2.54 mm 4 0 mm 3.09 2.93 4.99 

Case 4 3 mm 5 mm 2.54 mm 4 0 mm 2.89 2.66 8.02 

Case 5 3 mm 6 mm 2.54 mm 4 0 mm 2.80 2.58 7.86 

Case 6 3 mm 4 mm 5.08 mm 4 0 mm 3.48 3.29 5.49 

Case 7 3 mm 4 mm 7.62 mm 4 0 mm 3.61 3.47 3.96 

Case 8 3 mm 4 mm 2.54 mm 1 0 mm 1.90 1.77 7.06 

Case 9 3 mm 4 mm 2.54 mm 2 0 mm 2.25 2.10 6.88 

Case 10 3 mm 4 mm 2.54 mm 3 0 mm 2.61 2.43 6.90 

Case 11 3 mm 4 mm 2.54 mm 4 1 mm 2.41 2.46 2.41 

Case 12 3 mm 4 mm 2.54 mm 4 2 mm 2.27 2.29 0.84 

Case 13 3 mm 4 mm 2.54 mm 4 3 mm 2.22 2.18 1.62 
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Using this conformal mapping approach, the response of the square loop FSS to 

layered dielectrics (including delaminations) can be determined.  As such, a Matlab
©

 

model was created that calculates the input impedance of a layered dielectric structure 

with one or more embedded FSSs.  First, the model calculates the impedance of each 

dielectric and FSS layer.  For the dielectric layers, the impedance is calculated as 

             , where µr and εr are the relative permeability and dielectric constant 

(including both permittivity and loss factor) of the dielectric.  For the FSS layers, the 

impedance is calculated using the inductance and capacitance of the FSS, as determined 

by the modified Marcuvitz equations given in Section 2.2 [16].  Next, εr,eff is calculated 

for each FSS using the conformal mapping approach, which is subsequently used to scale 

the wavelength in the FSS’s inductance/capacitance approximation equations.  Once the 

impedance of each FSS or dielectric layer is determined, the ABCD transmission matrix 

of each layer is determined [44].  For each of the dielectric layers, the ABCD matrix is  

 

 
  
  

   

             
 
  

                                               (4.6) 

 

where Zd is the dielectric’s impedance, h is the dielectric’s thickness, and β=2π/λ, where 

λ is the wavelength of the incident wave.  Meanwhile, the ABCD matrix of the FSS is 

given as 

 

 

 
  
  

   
  

 
     

                                                   (4.7) 

 

where Zfss is the FSS impedance, calculated from the values of inductance and 

capacitance found above.  Once the ABCD matrix has been calculated for each layer, 

they are multiplied together to give the ABCD matrix of the entire structure.  This matrix 

can be used to find the reflection and transmission response (S11 and S21) of the structure 

through 
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                                               (4.8) 

 

    
    

           
      

                                               (4.9) 

 

where Z0 is the background impedance surrounding the structure, generally assumed to be 

the free-space impedance, and A-D are the individual elements of the overall ABCD 

matrix [48].  One limitation of this algorithm is that since the surface resistance of the 

FSS cannot be determined, the FSS's resonant depth cannot be accurately modeled.  This 

occurs because surface resistance creates losses that reduce a resonance’s depth (and this 

reduction not included in this model).  Additionally, this algorithm is inaccurate when an 

FSS layer is located close enough to another FSS layer such that electric field coupling 

occurs between the two layers, since the effects of this coupling on the FSS’s inductance 

and capacitance are not considered in the model.  In these cases, full-wave simulation 

will still be required to provide an accurate estimate of the structure's frequency response. 

To test the accuracy of this algorithm, the Matlab model was used to calculate the 

resonant frequencies of the test cases provided in Table 4.1, with the results shown in 

Table 4.2.  Additionally, the frequency response of Case 13 (see Table 4.2) calculated 

using the Matlab model and an HFSS full-wave simulation is shown in Figure 4.21. 

Overall, the results from the Matlab model and HFSS match well, with a worst-

case error (from the simulated value) of 8.5% (for Case 2).  Since εr,eff for Case 2 had 

matched well with simulation, this error is likely due to inaccuracies in the impedance 

calculation from Marcuvitz’s equations.  As noted, the resonant depth generated by the 

Matlab program is much deeper than that of HFSS, largely due to the lack of surface 

resistance in the Matlab model (since resistance reduces the resonant depth of a filter).  

However, despite this limitation, the quick computational speed (a few seconds, 

compared to full-wave simulation often taking hours) of this model renders it a powerful 

analysis tool.  In the future, this tool can be expanded for other FSS elements by 

developing appropriate conformal maps for calculating εr,eff, as well as equations for 

calculating FSS inductance and capacitance. 
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Table 4.2. Resonant frequency for the geometry shown in Figure 4.20 as 

calculated from the Matlab model and HFSS. 

 

 
Parameters Resonant Frequency  (GHz) 

 
w g h er delam Sim Conf. Map % Error 

Case 1 3 mm 4 mm 2.54 mm 4 0 mm 5.61 5.86 4.49 

Case 2 1 mm 4 mm 2.54 mm  4 0 mm 3.67 3.91 6.40 

Case 3 2 mm 4 mm 2.54 mm 4 0 mm 4.51 4.89 8.49 

Case 4 3 mm 5 mm 2.54 mm 4 0 mm 5.70 6.03 5.88 

Case 5 3 mm 6 mm 2.54 mm 4 0 mm 5.75 6.16 7.10 

Case 6 3 mm 4 mm 5.08 mm 4 0 mm 5.18 5.37 3.61 

Case 7 3 mm 4 mm 7.62 mm 4 0 mm 5.09 5.23 2.69 

Case 8 3 mm 4 mm 2.54 mm 1 0 mm 7.01 7.33 4.56 

Case 9 3 mm 4 mm 2.54 mm 2 0 mm 6.44 6.73 4.41 

Case 10 3 mm 4 mm 2.54 mm 3 0 mm 5.98 6.25 4.46 

Case 11 3 mm 4 mm 2.54 mm 4 1 mm 6.23 6.20 0.47 

Case 12 3 mm 4 mm 2.54 mm 4 2 mm 6.41 6.43 0.28 

Case 13 3 mm 4 mm 2.54 mm 4 3 mm 6.49 6.59 1.59 

 

 

 

 

Figure 4.21. Comparison of transmission response calculated from the Matlab 

model and HFSS for Case 13 in Table 4.2. 
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  To decide how to apply existing conformal maps (or when developing new 

maps), regions of electric field coupling within the FSS must be determined.  Conformal 

maps can then be applied that match these coupling geometries.  For instance, a crossed-

dipole FSS could potentially be modeled using the coplanar waveguide conformal map.  

Meanwhile, inductance and capacitance approximations can be added from existing 

sources (such as [13] and [17]), if available, or developed.  Alternatively, the capacitance 

and inductance of a freestanding FSS can be found using full-wave simulation, with the 

conformal mapping method being applied to find εr,eff for the FSS when embedded within 

various dielectric structures. 

 

4.3. CONCLUSION 

In this section, the response of an FSS to changes in adjacent dielectric layers was 

analyzed for sensing structural defects, such as delaminations/disbonds.  The results show 

that the frequency response of an FSS is sensitive to changes in surrounding dielectrics.  

This occurs due to the change in the FSS’s capacitance as a result of the change in 

dielectric, thus altering its resonant frequency.  Consequently, for an FSS embedded 

within a dielectric structure, delamination within that structure decreases the FSS’s 

capacitance due to the air gap’s lower permittivity.  Additionally, when interrogating an 

FSS that is integrated into a dielectric structure, the depth of the FSS’s reflection 

resonance was found to be altered due to additional reflections from the dielectric 

interfaces.  Observation of resonant depth may provide another parameter to analyze for 

sensing changes in a surrounding dielectric structure, and may also be useful for 

distinguishing the effects of dielectrics on an FSS from other sensing concerns, such as 

normal strain.  However, resonant depth measurements may be unreliable due to 

sensitivity to incident angle, which may be difficult to control for in practical 

measurements.   

To investigate these phenomena, a series of simulations and measurements were 

conducted on a set of FSS samples integrated into different dielectric structures.  The 

frequency responses of these elements were simulated when integrated into a series of 

dielectric layer configurations, some of which included delaminations.  These FSSs and 

dielectric layers were subsequently constructed and measured to provide verification of 
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simulated results.  Overall, measurements of these individual FSS samples matched well 

with simulation, indicating that FSSs have potential as delamination sensors.  

Furthermore, the results indicate that FSS’s are sensitive to delaminations occurring in 

close proximity to the FSS.  As such, additional simulations and measurements were 

conducted showing that multiple FSS layers (that resonant at different frequencies) could 

be integrated into a given dielectric structure to better determine the location of a 

delamination.  For this study, simulation was found to match well with measurement 

when monitoring the effect of delaminations on each FSS’s resonant frequency.  

However, the resonant depth of each FSS was found to be less consistent between 

measurement and simulation.  As such, the use of resonant depth for delamination 

monitoring may not be reliable, while monitoring of resonant frequency remains 

promising. 

Lastly, to better predict how delamination can affect an FSS, an algorithm was 

developed for approximating εr,eff for an FSS when integrated into an arbitrary dielectric 

structure.  To find εr,eff, a conformal mapping technique was used to model how electric 

fields couple between conductors within surrounding dielectric layers.  Overall, εr,eff 

calculated with this method for a square loop FSS were found to match well with 

simulation for a variety of FSS parameters and surrounding dielectric layer 

configurations.  This analytical approximation was subsequently applied to an algorithm 

for solving transmission lines that found the frequency response of an FSS when 

integrated into a dielectric structure.  Ultimately, this algorithm was also found to 

produce frequency responses that matched well with simulation.  As such, the resonant 

frequency and overall trends in frequency response could be modeled quickly and 

reliably, making this method useful for simple analysis and design. 
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5. CONCLUSION/FUTURE WORK 

5.1. SUMMARY/CONCLUSION 

In this thesis, Frequency Selective Surfaces (FSSs) have been investigated as 

potential embedded Structural Health Monitoring (SHM) sensors.  In Section 2, an 

overview of FSS theory and design principles was provided.  Section 2.1 presented a 

brief history of FSS development.  Meanwhile, Section 2.2 discussed the basic physics 

behind FSS operation, and provided examples of some common FSS elements, as well as 

methods for determining their frequency response.  Finally, in Section 2.3, more 

advanced FSS design considerations were presented, such as the effects of incident angle, 

curvature, and local dielectric and conductors.   

In Section 3.1, the use of FSSs for normal strain detection and characterization 

was studied.  Normal strain is defined as a stretching or compressing deformation of a 

structure [39].  Since the resonant frequency of an FSS is a function of the FSS geometry 

(conductor length, width, etc.), this resonant frequency is shifted when the FSS’s 

geometry undergoes some deformation, such as normal strain.  The response of common 

FSS elements to normal strain was initially determined through full-wave 

electromagnetic simulation [23], where the change in resonant frequency due to normal 

strain were characterized for each element by a gauge factor value.  Representative 

measurements were also conducted to verify the simulation results.  In Section 3.2, a 

similar investigation was conducted to determine the response of FSSs to shear strain 

(defined as a twisting deformation of a structure [36]).  Previously, it has been found that 

shear strain causes FSSs to cross-polarize (changing the electric field direction of the 

incident wave to be rotated by 90° from its original orientation) reflected radiation at the 

FSS’s resonant frequency [35].  Conversely, shear strain is known to have a minimal 

effect on the co-polarized frequency response (used for normal strain detection).  As 

such, the response of an FSS to shear strain may be easily distinguished from the FSS’s 

response to normal strain, allowing a single FSS to sense both forms of strain 

simultaneously.  In this work, these shear strain-sensing capabilities were verified 

through full-wave simulation for a variety of FSS elements.  Additionally, it was found 

that grounded FSS elements provided the strongest cross-polarization response to shear 
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strain, making them more advantageous for shear strain sensing purposes.  Unfortunately, 

however, these simulations could not be verified through measurement due to sample 

preparation limitations at the time of this investigation.  Finally, in Section 3.3, FSS 

samples were applied as normal and shear strain sensors in a practical system.  More 

specifically, two FSS samples were adhered to the hollow steel tube of a new concrete 

column design.  These FSS samples were interrogated as the concrete columns underwent 

linear displacement (i.e., normal strain) and torsional (i.e., shear strain) load testing.  The 

results showed that the normally strained FSS sample’s response was found to compare 

well with traditional strain gauge sensors while also showing an improved sensing range.  

Additionally, the wireless nature of FSS sensors offers an additional advantage over 

traditional wired strain gauges.  For the torsional load test, however, cross-polarized 

radiation wasn’t measured from the shear-strained FSS.  This implies that cross-

polarization may not have occurred due to the FSS sample not being deformed as 

expected.  Alternatively, signal losses due to the concrete column may have masked any 

returned cross-polarized signal.       

In Section 4, the use of FSS for delamination and disbond detection was 

investigated.  Delaminations are separations that occur in a laminate structure, creating 

air gaps and weakening structural integrity [43].  Meanwhile, disbonds are a form of 

delamination in which two bonded materials become separated.  When an FSS is 

embedded in a dielectric, capacitive coupling between FSS elements is increased due to 

the presence of the dielectric.  This decreases the resonant frequency of the FSS.  The 

effectiveness of the dielectric at altering this capacitance is a function of its permittivity 

and its proximity to the FSS.  As such, in the event of delamination, the subsequent air 

gap (with relative permittivity equal to 1) causes the FSS’s capacitance to reduce, thus 

increasing the resonant frequency.  Furthermore, the depth of the FSS’s resonant null is 

altered because the delamination creates additional dielectric interfaces that cause 

subsequent additional reflections.  This change in resonant null depth allows the effects 

of delamination to be differentiated from the effects of normal strain on the FSS’s 

frequency response, as normal strain generally has a minimal effect on resonant null 

depth.  Additionally, it was found that a delamination has a greater effect on the FSS’s 

resonance when it occurred in close proximity to the FSS.  This means that an FSS is able 
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to sense delaminations in the region local to the FSS.  As such, in larger or more complex 

dielectric structures, additional FSS layers may need to be embedded throughout the 

structure to achieve full sensing coverage.  To verify these results, a series of 

measurements were conducted.  FSS samples were created from etched PCBs that were 

placed between dielectric sheets.  Delaminations were created in these structures by 

separating the sheets using small spacers.  Overall, measurement results agreed well with 

simulation.  A second set of measurements was then carried out to test the use of multiple 

FSSs in a single structure.  These multi-layer FSS structures were constructed in a similar 

manor as for the first set of measurements, with the FSS layers being spaced far enough 

apart to avoid mutual coupling between them.  Next, delaminations were introduced in 

several locations throughout this structure.  Ultimately, it was found that the FSS closest 

to a delamination is most sensitive to it (as expected).  This confirmed that multiple FSSs 

can be used to provide distributed sensing coverage for different regions of a more 

complex structure.  Additionally, while measurement results of resonant frequency shift 

for each FSS matched well with simulation, resonant null depth for this application was 

found to be less comparable.  This is attributed to potential measurement errors such as 

misalignment of the interrogating antennas, or may indicate that resonant null depth may 

be difficult to predict through simulation.  As such, resonant null depth is not suggested 

to be used as a primary indicator of delamination in practical measurements.   

Lastly, in Section 4.2, a method was developed for estimating the effective 

permittivity (εr,eff) of an FSS when embedded into a dielectric structure using a conformal 

mapping approximation.  εr,eff is a composite value of the relative permittivities of 

surrounding dielectrics based on how the FSS capacitively couples within those 

dielectrics, and is instrumental to quantifying the response of an FSS to delamination.  

Previous algorithms for approximating εr,eff used curve fitting methods, but were 

ultimately limited to specific FSS elements and could only be used when the FSS was in 

the presence of a single dielectric layer on either side of the FSS surface [46].  Since this 

method proved ineffective for analysis of FSS-integrated delaminated structures, a new 

method for approximating εr,eff was developed using conformal mapping.  This method 

has previously been used for calculating εr,eff in PCB structures.  By applying a transform 

to transmission line cross-sections in the PCB, these transmission lines could be modeled 
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as parallel plates, for which εr,eff can be easily calculated.  This method could be applied 

to FSS by modeling relevant sections of the FSS as coplanar strip or coplanar waveguide 

transmission lines.  To test this method, a conformal mapping approximation was 

developed for the square loop FSS.  This method was tested for a variety of FSS 

parameters and dielectric structures.  The results were compared with simulation, and 

were found to match well.  Using this conformal mapping model to approximate εr,eff in, a 

Matlab [45] model was developed to calculate the frequency response of an FSS 

embedded within a dielectric structure.  This model represented the FSS as an LC filter 

circuit shunted into a transmission line network that modeled the different dielectric 

layers, with the frequency response of this structure being calculated using ABCD 

parameters.  The inductance and capacitance of the FSS was calculated using previously 

developed strip-grating equations [16] which were then modified by the approximated 

εr,eff.  Resonant frequency responses generated by this model were found to also match 

well with simulation.  As such, this model can be used to rapidly calculate the frequency 

response of an FSS in a dielectric structure, both with and without a delamination.  

Additionally, this model can be extended in the future to calculate the response of other 

FSS elements, once conformal maps and LC approximations for these elements are 

determined. 

 

5.2. FUTURE WORK 

As a result of this investigation, FSS-based sensors have been shown to have great 

potential for a variety of SHM applications.  As such, in order to continue the 

development of this new sensing methodology for SHM, the following areas of future 

work are suggested. 

5.2.1. Development of FSS-Based Sensing for Shear Strain.  In this thesis, the 

use of FSSs for sensing normal strain, shear strain, and delamination was investigated, 

through both full-wave simulation and empirical representative measurements.  While the 

measurement results of normal strain and delamination matched well with simulation, the 

effects of shear strain on the FSS response could not be experimentally verified.  As such, 

further investigations of shear strain sensing, especially measurement-based, are needed.  
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5.2.2. Development of FSS Sensor Element Design Rules. Throughout this 

work, a variety of common FSS elements have been analyzed for different forms of SHM 

sensing.  Each of these elements have been found to provide different advantages and 

disadvantages for different sensing applications.  By extending this analysis, it may be 

possible to develop a set of FSS design rules for different sensing scenarios.  By 

understanding what aspects of an FSS design provide desired sensing capabilities, FSS 

sensor design rules may be developed that can mitigate or enhance some of the sensing 

issues and traits explored throughout this work.  Such characteristics of note include 

incident angle sensitivity, polarization sensitivity, gauge factor, shear strain response, and 

sensitivity to local dielectrics and closely spaced FSS and conductor layers.  Additionally, 

FSS structures featuring multiple resonances can also be utilized for improved sensing 

accuracy by providing additional data or separate sensing capabilities within a single FSS 

layer. 

5.2.3. Active FSS Element Sensing. All FSS elements discussed throughout this 

thesis have been entirely passive in nature.  However, active electronic components, such 

as PIN diodes, are often integrated into FSS designs to provide electronic control of the 

FSS response [6].  These active FSSs provide a number of features, such as resonant 

frequency modulation.  This allows an FSS layer to be effectively “turned off”, meaning 

that its pass band resonance becomes a stop band, or vice versa.  Alternatively, active 

components can be used to switch an FSS’s resonance to a different frequency.  Such 

functionality can be useful for FSS sensing applications, as it allows an FSS’s response to 

be digitally controlled.  For instance, in a multi-layer FSS structure, modulation of each 

FSS layer can allow the user to interrogate each layer individually.  Alternatively, when 

the measured response is noisy or otherwise indiscernible, continuous modulation of the 

FSS’s response can help a user to identify its resonance among the noise.  Additionally, 

this technique may also allow a user to select only a single region of a large FSS surface, 

providing potential spot-checking functionality.  Possible challenges that may pertain to 

the design and use of active elements in FSS sensing include fragility of the electronic 

components to strains or other stresses that might occur in an FSS-integrated structure.  

Furthermore, active FSS elements require external biasing, which may be difficult to 

integrate into structures as well as increasing the sensor cost.  Despite these concerns, 
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however, active FSS elements may provide a host of enhanced SHM sensing capabilities 

that merit further investigation. 

5.2.4. Optical Wavelength FSS. One of the long-term goals of FSS research is 

the development of optical wavelength FSSs.  These are FSSs that operate in the visible 

light region of the electromagnetic spectrum, meaning that they can transmit, absorb, or 

reflect certain colors of visible light [50].  Such research has been challenging from a 

materials standpoint, however, due to the difficulty of producing FSS elements at the 

optical scale.  Since the resonant frequency of an FSS is related to the size of the FSS 

element in relation to wavelength, an optical FSS element would be on the nanometer 

scale, for which advanced manufacturing techniques must be used.  That being said, 

optical FSSs may still operate in a similar manor to the microwave scale FSSs discussed 

in this thesis, since the operation principles of FSS are scalable.  As a result, an optical 

FSS may also behave similarly to a microwave FSS when deformed.  This is significant, 

as it would imply that a normally strained optical FSS would change its color due to the 

shift in resonant frequency.  Unlike the microwave FSSs used in this thesis, which had to 

be measured using specialized equipment, the response of an optical FSS can be seen 

purely with the human eye for a surface mounted sensor.  As a result, a structure that has 

normal strain can be analyzed purely through human inspection by taking note of what 

color the optical FSS has changed to, as well as where on the FSS the color has been 

changed.  This could make FSS sensing easily accessible to the end-user by removing the 

need for specialized measurement equipment.  One drawback of optical FSS is that it 

would only be effective on the surface of a structure, or within transparent structures.  

Furthermore, this all assumes that optical FSSs are similar in design to microwave FSSs, 

which may not be the case due to the nature of manufacturing nanoscale materials.  

Additionally, due to these manufacturing difficulties, optical FSSs may be too expensive 

to produce for SHM purposes.  
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APPENDIX 

 

MATLAB CODE FOR EMBEDDED FSS FREQUENCY RESPONSE CALCULATION 

 

 (File names denoted in bold) 

Stackup_Response_Simulator.m (Main Function) 

close all; 
clear classes; 
clc; 

  
% This is a script to solve for the S-parameters of an arbitrary 

dielectric 
% stackup which includes the presence of Frequency Selective Surfaces 

and 
% ground planes. This script was written by Dustin Pieper, with 

equations 
% and knowledge developed both from general theory as well as a the 
% following papers: 

  

  
% Simulator Parameters 

  
startFreq=1*10^9;   %Start frequency (Hz) 
stopFreq=10*10^9;    %Stop frequency (Hz) 
numPoints=2001;     %Number of frequency points 
bckEr=1;            %Background relative dielectric constant 
bckMr=1;            %Background permeability; 
gnd=0;              %Set to 1 to simulate ground plane at bottom layer 

(currently un-implemented. Keep at 0) 
angle=0;            %Incident Angle (currently un-implemented. Keep at 

0) 

  
%Define Layers 
%Define each layer according to the following templates. Layers can be 
%either material layers or FSS layers. 
%Template: 
%   Material: sheet(layer,'Mat',thickness,dielectric 

constant,permeability,null (set to 0),null); 
%   FSS:      sheet(layer,'FSS',type,p1,p2,p3,p4); 
%             p1-p4 are dependant on the FSS element type. 
%             For the 'Square Loop' type FSS, p1=conductors width (m), 

p2=gap 
%             width (m), p3=conductor length (m), and p4=element edge 
%             length (m) 
%Each layer must be numbered in order 
%from 1 to the number of layers. All layers after the first layer must 
%include "l" at the end of the sheet function. An example is provided 

below 
%of a stackup. 

  
%%%%%%%%%%%%%%%%%%%%%%% 
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%EXAMPLE STACKUP: 
% l(1)=sheet(1,'Mat',1*2.54*10^-3,4,1,0,0); 
% l(2)=sheet(2,'Mat',2.54*10^-3,3.3-1i*0.0132,1,0,0,l); 
% l(3)=sheet(3,'FSS','Square_Loop',3*10^-3,4*10^-3,14.5*10^-3,18.5*10^-

3,l); 
% l(4)=sheet(4,'Mat',3*10^-3,1,1,0,0,l); 
% l(5)=sheet(5,'Mat',1*2.54*10^-3,3.3,1,0,0,l); 
%%%%%%%%%%%%%%%%%%%%%%% 

  
l(1)=sheet(1,'Mat',1*2.54*10^-3,4,1,0,0); 
l(2)=sheet(2,'Mat',2.54*10^-3,3.3-1i*0.0132,1,0,0,l); 
l(3)=sheet(3,'FSS','Square_Loop',3*10^-3,4*10^-3,14.5*10^-3,18.5*10^-

3,l); 
l(4)=sheet(4,'Mat',3*10^-3,1,1,0,0,l); 
l(5)=sheet(5,'Mat',1*2.54*10^-3,3.3,1,0,0,l); 

  
%Run simulation 
stack=stackup(startFreq,stopFreq,numPoints,bckEr,bckMr,angle,gnd,l); 

 

stackup.m (Class definition. Must be in separate folder with same name as class) 

classdef stackup 
    % This class defines a material stackup with  
    % dimensions and emag properties of all layers. 
    % Using these, the transmission and reflection responses of the 
    % structure are found using ABCD parameters 

    
    properties (Constant) 
        res=10^-5; 
        c=3*10^8; 
    end 

     
    properties 
        layers 
        x 
        xer 
        xmr 
        gnd 
        Zin 
        ref 
        trans 
        angle 
        bckgnder 
        bckgndmr 
        bckgndimp 
        freq 
    end 
    methods 
        function 

obj=stackup(minfreq,maxfreq,points,bckgnder,bckgndmr,angle,gnd,mats) 
            %Loads in parameters 
            obj.freq=minfreq:(maxfreq-minfreq)/points:maxfreq; 
            obj.bckgnder=bckgnder; 
            obj.bckgndmr=bckgndmr; 
            obj.angle=angle; 
            obj.bckgndimp=377*sqrt(bckgndmr/bckgnder); 
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            obj.gnd=gnd; 
            obj.layers=length(mats); 
            for n=1:obj.layers 
                  if n==1 
                      mats(n).minloc=0; 
                  else 
                      mats(n).minloc=mats(n).Prev.maxloc; 
                  end 
                  mats(n).maxloc=mats(n).minloc+mats(n).thickness; 
                  if strcmp('Mat', mats(n).type) 
                  obj.x=[obj.x mats(n).minloc:obj.res:mats(n).maxloc]; 
                  obj.xer=[obj.xer 

mats(n).er.*ones(1,mats(n).thickness/obj.res)]; 
                  obj.xmr=[obj.xmr 

mats(n).mr.*ones(1,mats(n).thickness/obj.res)]; 
                  end 
            end 
            %Calculates ABCD Parameters of structure  
            for n=obj.layers:-1:1; 
                %Finds input impedance of last layer 
                if n==obj.layers     
                    if ~obj.gnd 
                        %Calculate ABCD Paramaters for FSS layer 
                        if strcmp('FSS', mats(n).type) 
                            

mats(n).impedance=sheet.Z(mats(n).layer,mats(n).element,mats,obj.freq,m

ats(n).s,mats(n).g,mats(n).d,mats(n).p); 
                        end     
                        

obj.Zin=mats(n).impedance.*(obj.bckgndimp+1i*mats(n).impedance.*... 
                            

tan(2*pi.*obj.freq.*sqrt(mats(n).er*mats(n).mr)*mats(n).thickness./obj.

c))./... 
                           

(mats(n).impedance+1i*obj.bckgndimp.*tan(2*pi.*obj.freq.*sqrt(mats(n).e

r*mats(n).mr)*mats(n).thickness./obj.c)); 
                            

obj.Zin=mats(n).impedance.*obj.bckgndimp./(mats(n).impedance+obj.bckgnd

imp); 
                        

trans_matrix_A=[cos(2*pi.*obj.freq.*sqrt(mats(n).er*mats(n).mr)*mats(n)

.thickness./obj.c)]; 
                            

trans_matrix_B=[1i*mats(n).impedance.*sin(2*pi.*obj.freq.*sqrt(mats(n).

er*mats(n).mr)*mats(n).thickness./obj.c)]; 
                            

trans_matrix_C=[1i./(mats(n).impedance).*sin(2*pi.*obj.freq.*sqrt(mats(

n).er*mats(n).mr)*mats(n).thickness./obj.c)]; 
                            

trans_matrix_D=[cos(2*pi.*obj.freq.*sqrt(mats(n).er*mats(n).mr)*mats(n)

.thickness./obj.c)]; 
                        A=trans_matrix_A; B=trans_matrix_B; 

C=trans_matrix_C; D=trans_matrix_D;  
                    elseif obj.gnd 
                        if strcmp('FSS', mats(n).type) 
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mats(n).impedance=sheet.Z(mats(n).layer,mats(n).element,mats,obj.freq,m

ats(n).s,mats(n).g,mats(n).d,mats(n).p); 
                        end  
                        

obj.Zin=1i*mats(n).impedance.*tan(2*pi.*obj.freq.*sqrt(mats(n).er*mats(

n).mr)*mats(n).thickness./obj.c); 
                    end 
                %Finds input impedance of all other layers layer     
                else 
                        %Calculate ABCD Paramaters for FSS layer 
                        if strcmp('FSS', mats(n).type) 
                            

mats(n).impedance=sheet.Z(mats(n).layer,mats(n).element,mats,obj.freq,m

ats(n).s,mats(n).g,mats(n).d,mats(n).p); 
                            

obj.Zin=mats(n).impedance.*obj.Zin./(mats(n).impedance+obj.Zin); 
                            trans_matrix_A=[1]; trans_matrix_B=[0]; 

trans_matrix_C=[-1i./mats(n).impedance]; trans_matrix_D=[1]; 
                            An=A.*trans_matrix_A+B.*trans_matrix_C; 

Bn=A.*trans_matrix_B+B.*trans_matrix_D;  
                            Cn=C.*trans_matrix_A+D.*trans_matrix_C; 

Dn=C.*trans_matrix_B+D.*trans_matrix_D; 
                            A=An; B=Bn; C=Cn; D=Dn; 
                        end 
                        %Calculate ABCD Paramaters for Mat layer 
                        if strcmp('Mat', mats(n).type) 
                            

trans_matrix_A=[cos(2*pi.*obj.freq.*sqrt(mats(n).er*mats(n).mr)*mats(n)

.thickness./obj.c)]; 
                            

trans_matrix_B=[1i*mats(n).impedance.*sin(2*pi.*obj.freq.*sqrt(mats(n).

er*mats(n).mr)*mats(n).thickness./obj.c)]; 
                            

trans_matrix_C=[1i./(mats(n).impedance).*sin(2*pi.*obj.freq.*sqrt(mats(

n).er*mats(n).mr)*mats(n).thickness./obj.c)]; 
                            

trans_matrix_D=[cos(2*pi.*obj.freq.*sqrt(mats(n).er*mats(n).mr)*mats(n)

.thickness./obj.c)]; 
                            An=A.*trans_matrix_A+C.*trans_matrix_B; 

Bn=B.*trans_matrix_A+D.*trans_matrix_B;  
                            Cn=A.*trans_matrix_C+C.*trans_matrix_D; 

Dn=B.*trans_matrix_C+D.*trans_matrix_D;  
                            A=An; B=Bn; C=Cn; D=Dn; 
                        end 
                end 

               
              %Calculate overall structure reflection/transmission 

response 
              obj.ref=20*log10((A*obj.bckgndimp+B-C*obj.bckgndimp^2-

D*obj.bckgndimp)./(A*obj.bckgndimp+B+C*obj.bckgndimp^2+D*obj.bckgndimp)

); 
              

obj.trans=20*log10(2*(obj.bckgndimp)./(A*obj.bckgndimp+B+C*obj.bckgndim

p^2+D*obj.bckgndimp)); 
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            end 

             
            %Plot Frequency Responses  
            figure() 
            plot(obj.freq,obj.ref,'r-') 
            ylim([-60,0]) 
            xlim([min(obj.freq), max(obj.freq)]) 
            title('Reflection') 
            figure() 
            plot(obj.freq,obj.trans) 
            ylim([-60,0]) 
            xlim([min(obj.freq), max(obj.freq)]) 
            title('Transmission') 
        end 

         
    end 
end 

 

sheet.m (Class definition. Must be in separate folder with same name as class) 

classdef sheet < dlnode 
    % This class defines an FSS layer with its 
    % type,dimensions, and emag properties 

    
    properties 
        layer                                                     

%Position in stackup (input) 
        type                                                %FSS 

element type (input) 
        element 
        loc 
        ereff                                                     

%Effective Permittivity (calculated from function) 
        mreff                                                     

%Effective Permeability (calculated from function) 
        thickness                                  %Thickness of layer 
        minloc                                      %Bottom geometrical 

location 
        maxloc                                      %Top geometrical 

location 
        er                                          %Permittivity 
        mr                                          %Permeability 
        angle                                                     

%Angle of Incidence (unused) 
        lambda                                                    

%Wavelength (output) 
        impedance                                                 

%Impedance of FSS (output) 
        x 
        s 
        g 
        d 
        p 
        X1 
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        B1 
        c=3*10^8 
    end 

     
    methods 
        function obj=sheet(layer,type,p1,p2,p3,p4,p5,l) 
            obj=obj@dlnode(layer); 
            obj.layer=layer; 
            obj.type=type; 
            switch type 
                case 'FSS' 
                obj.element=p1; 
                obj.thickness=0; 
                switch obj.element 
                    %Define FSS element parameters here 
                    case 'Square_Loop' 
                    obj.s=p2; 
                    obj.g=p3; 
                    obj.d=p4; 
                    obj.p=p5; 
                end 
                case 'Mat' 
                obj.thickness=p1; 
                obj.er=p2; 
                obj.mr=p3; 
                obj.impedance=377*sqrt(obj.mr/obj.er); 
            end 
                if layer>1 
                obj.insertAfter(l(obj.layer-1))                              
                end 
        end 
    end 
    methods(Static)   
        function imp=Z(layer,element,l,f,s,g,d,p) 
            switch element 
                %Define FSS element impedance calculations here 
                case 'Square_Loop'                
                l(layer).ereff=Ereff_F('Strips', layer, l, s, g ); 
                l(layer).lambda=3*10^8./(f)./sqrt((l(layer).ereff)); 
                l(layer).X1=d/p*kern_F(p, 2*s, l(layer).lambda, 0); 
                l(layer).B1=4*d/p*kern_F(p, g, l(layer).lambda, 0); 
                imp=(377)*(1j.*l(layer).X1+1./(1j.*l(layer).B1)); 
            otherwise 
                imp=l(layer).impedance; 
            end 
        end 
    end 
end 

 

dlnode.m (Class definition. Must be in separate folder with same name as class. 

Provided by Matlab for object oriented program usage) 

classdef dlnode < handle 
 % dlnode A class to represent a doubly-linked list node. 
 % Link multiple dlnode objects together to create linked lists. 
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 properties 
 Data 
 end 
 properties(SetAccess = private) 
 Next = dlnode.empty; 
 Prev = dlnode.empty; 
 end 

  
 methods 
 function node = dlnode(Data) 
 % Construct a dlnode object. 
 if nargin > 0 
 node.Data = Data; 
 end 
 end 

  
 function insertAfter(newNode, nodeBefore) 
 % Insert newNode after nodeBefore. 
 removeNode(newNode); 
 newNode.Next = nodeBefore.Next; 
 newNode.Prev = nodeBefore; 
 if ~isempty(nodeBefore.Next) 
 nodeBefore.Next.Prev = newNode; 
 end 
 nodeBefore.Next = newNode; 
 end 

  
 function insertBefore(newNode, nodeAfter) 
 % Insert newNode before nodeAfter. 
 removeNode(newNode); 
 newNode.Next = nodeAfter; 
 newNode.Prev = nodeAfter.Prev; 
 if ~isempty(nodeAfter.Prev) 
 nodeAfter.Prev.Next = newNode; 
 end 
 nodeAfter.Prev = newNode; 
 end 

  
 function removeNode(node) 

  
 % Remove a node from a linked list. 
 if ~isscalar(node) 
 error('Input must be scalar') 
 end 
 prevNode = node.Prev; 
 nextNode = node.Next; 
 if ~isempty(prevNode) 
 prevNode.Next = nextNode; 
 end 
 if ~isempty(nextNode) 
 nextNode.Prev = prevNode; 
 end 
 node.Next = dlnode.empty; 
 node.Prev = dlnode.empty; 
 end 
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 function clearList(node) 
 % Clear the list before 
 % clearing list variable 
 prev = node.Prev; 
 next = node.Next; 
 removeNode(node) 
 while ~isempty(next) 
 node = next; 
 next = node.Next; 
 removeNode(node); 
 end 
 while ~isempty(prev) 
 node = prev; 
 prev = node.Prev; 
 removeNode(node) 
 end 
 end 
 end % methods 

  
 methods (Access = private) 
 function delete(node) 
 % Delete all nodes 
 clearList(node) 
 end 
 end % private methods 
end % classdef 

 

Ereff_F.m (function) 

function [ F ] = Ereff_F( type, Layer, l, s, g ) 

  
%Calculates effective dielectric constant using conformal maps for 

different conductor 
%configurations. Currently works with Coplanar Strips ('Strips') and 
%Coplanar Waveguides ('WG'). New conformal maps can be added as 

different 
%cases in the following switch case statement. 
switch type 
% if strcmp(type, 'Strips') 
    case 'Strips' 
   g=g/2; 
   k0=sqrt(1-(g/(s+g))^2); 
   kp0=sqrt(1-k0^2); 

    
   h=0; 
   ka=[]; 
   kpa=[]; 
   era=[]; 

    
   for n=Layer:-1:1 
       if strcmp(l(n).type, 'Mat') 
         h=h+l(n).thickness; 
         k=sqrt(1-

((sinh(pi*g/(2*sum(h))))^2/(sinh(pi*(s+g)/(2*sum(h))))^2)); 
         ka=[ka, k];   
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         kpa=[kpa, sqrt(1-k.^2)]; 
         era=[era, l(n).er]; 
       end 
   end 

    
   h=0; 
   kb=[]; 
   kpb=[]; 
   erb=[]; 

    
   for n=Layer:1:length(l) 
       if strcmp(l(n).type, 'Mat') 
         h=h+l(n).thickness; 
         k=sqrt(1-

((sinh(pi*g/(2*sum(h))))^2/(sinh(pi*(s+g)/(2*sum(h))))^2)); 
         kb=[kb, k];   
         kpb=[kpb, sqrt(1-k.^2)]; 
         erb=[erb,l(n).er]; 
       end 
   end 

  
   qa=ellipke(kpa)*ellipke(k0)./(ellipke(ka)*ellipke(kp0)); 
   qb=ellipke(kpb)*ellipke(k0)./(ellipke(kb)*ellipke(kp0));   

    
   Ereffa=1; 
   for n=1:1:length(qa) 
       if n<length(qa) 
           Ereffa=Ereffa+qa(n)*(era(n)-era(n+1)); 
       end 
       if n==length(qa) 
           Ereffa=Ereffa+qa(n)*(era(n)-1); 
       end 
   end 
   Ereffb=1; 
   for n=1:1:length(qb) 
      if n<length(qb)  
         Ereffb=Ereffb+qb(n)*(erb(n)-erb(n+1)); 
      end 
      if n==length(qb) 
         Ereffb=Ereffb+qb(n)*(erb(n)-1); 
       end 
   end 
   F=(Ereffa+Ereffb)/2; 

  
% elseif strcmp(type, 'WG') 
   case 'WG' 
   s=s/2;      
   k0=s/(s+g); 
   kp0=sqrt(1-k0^2); 
   h=0; 
   ka=[]; 
   kpa=[]; 
   era=[]; 

    
   for n=Layer:-1:1 
       if strcmp(l(n).type, 'Mat') 



 

 

117 

         h=h+l(n).thickness; 
         k=sinh(pi*s/(2*sum(h)))/sinh(pi*(s+g)/(2*sum(h))); 
         ka=[ka, k];   
         kpa=[kpa, sqrt(1-ka.^2)]; 
         era=[era, l(n).er]; 
       end 
   end 
   era=[era,1]; 

    
   h=0; 
   kb=[]; 
   kpb=[]; 
   erb=[]; 

    
   for n=Layer:1:length(l) 
       if strcmp(l(n).type, 'Mat') 
         h=h+l(n).thickness; 
         k=sinh(pi*s/(2*sum(h)))/sinh(pi*(s+g)/(2*sum(h))); 
         kb=[kb, k];   
         kpb=[kpb, sqrt(1-ka.^2)]; 
         erb=[erb,l(n).er]; 
       end 
   end 
   erb=[erb,1]; 

    
   qa=ellipke(ka).*ellipke(kp0)./(ellipke(kpa).*ellipke(k0)); 
   qb=ellipke(kb).*ellipke(kp0)./(ellipke(kpb).*ellipke(k0));   

    
   Ereff=1; 
   for n=length(qa):-1:0 
       Ereff=Ereff+qa(n)*(era(n)-era(n-1)); 
   end 
   for n=length(qb):-1:0 
       Ereff=Ereff+qb(n)*(erb(n)-erb(n-1)); 
   end 
   F=Ereff; 

  
end    

  
end 
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