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ABSTRACT 

A behavioral model is introduced, which can predict low-loss and low surface 

roughness transmission line time- and frequency- domain performances. High data rates 

push for better performance of PCB transmission lines. However, the roughness of 

copper foil has a considerable impact on the signal integrity performance of transmission 

lines at high data rates and long propagation distance. Existing models for low-loss 

transmission line surface roughness are inadequate. A new behavioral model to represent 

the surface roughness has been developed. The model is applied in the design process by 

adding a dispersive term to the bulk dielectric permittivity to represent the loss due to the 

foil surface roughness. By adding a broadband dielectric model into original transmission 

model, time- and frequency-domain performance improvements is achieved. 

Two version of high-speed PCB test board via-transition design optimization is 

presented, the goal is to make the working frequency up to 50GHz and also will 

summarize a design flow for design a high-speed board with single and differential signal 

traces. 
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1. INTRODUCTION 

A behavioral model, which can predict low-loss and low surface roughness 

transmission line time- and frequency- domain performances are introduced in Section 1. 

High data rates push for better performance of PCB transmission lines. However, the 

roughness of copper foil has a considerable impact on the signal integrity performance of 

transmission lines at high data rates and long propagation distance. Existing models for 

low-loss transmission line surface roughness are inadequate, so a new behavioral model 

to represent the surface roughness was developed. The model is applied in the design 

process by adding a dispersive term to the bulk dielectric permittivity to represent the loss 

due to the foil surface roughness. By adding a broadband dielectric model into the 

original transmission model, time- and frequency-domain performance improvement is 

achieved. 

In Section 2, two version of high-speed PCB test board via-transition design 

optimization is presented, the goal is to make the working frequency up to 50GHz and 

also will summarize a design flow for design a high-speed board with single and 

differential signal traces. 
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2. METHOLOGY FOR BEHAVIORAL SURFACE ROUGHNESS MODEL  

2.1. BACKGROUND 

TEM transmission line is composed of any two conductors that have length, 

which used to transport a signal from one point to another [1]. There are different kinds 

of TEM transmission lines; for example, parallel-plate, parallel-rounded conductor, 

coaxial, microstrip, stripline and so on. This thesis will focus on symmetric stripline 

modeling.  

For signal integrity perspective, usually, there are two criteria to evaluate the 

transmission line performance. First, insertion and return loss analysis in the frequency 

domain; second, time domain response or eye diagram analysis in the time domain. 

Insertion loss usually express in dB, and can be calculated from transmission coefficient, 

IL=-20log|T|dB. T is the transmission coefficient; it describes the amplitude, intensity or 

total power of a transmitted wave Vt relative to an incident wave Vi. 

                                                        𝑇 =
𝑉𝑡

𝑉𝑖
= 𝑒−𝛾𝑙                                             (1-1) 

where l is the transmission line length and γ is the propagation constant. Propagation 

constant is used to describe the behavior of an electromagnetic wave along a transmission 

line, the general expression for complex propagation constant is: 

                                      𝛾 = √(𝑟 + 𝑗𝜔𝑙)(𝑔 + 𝑗𝜔𝑐)                                          (1-2)     

There are four parameters to describe the transmission line characteristic 

behavior: r (resistance per unit length in Ω/m), l (inductance per unit length in H/m), g 

(conductance per unit length of the dielectric medium between conducting surfaces in 

S/m), c (capacitance per unit length between conducting surfaces in F/m. For low-loss 
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case, one can assume that 𝑅 ≪ 𝜔𝐿  and 𝐺 ≪ 𝜔𝐶 , which means R’s and G’s can be 

eliminated for γ calculation, but for the lossy case, γ need to include R’s and G’s.  

The propagation constant gamma also can be expressed as 

                                                  𝛾 = 𝛼 + 𝑗𝛽                                                       (1-3) 

where α is the attenuation constant (loss factor) and β is the phase constant. The loss 

factor can be in turn separated into conductor and dielectric loss,𝛼 = 𝛼𝑐 + 𝛼𝑑, depending 

on the parameters of corresponding materials. The specific material property causes 

energy loss in the dielectric named dielectric loss. The energy loss in the conductor for 

both signal and return path is named conductor loss.  

For low-loss transmission lines alpha and beta can be expressed as [25] 

                                          
0

0

1
( )

2

r
gZ

Z

lc



 


                                                     (1-4) 

with  𝛼𝑐 =
1

2
𝑟/𝑍0  and 𝛼𝑑 =

1

2
𝑔𝑍0. The dielectric dissipation factor can be rewritten as 

[25] 

                                       𝛼𝑑 = 𝜔 tan 𝛿                                                               (1-5) 

where tanδ is the dielectric loss tangent, it is the ratio of imaginary and real parts of the 

dielectric permittivity: 

                                          tan 𝛿 = −휀′′/휀′                                                        (1-6) 

Therefore, in order to calculate the dissipation factor due to dielectric loss, one 

needs to know the permittivity of the material. There are several ways to model the 

dielectric permittivity, for the example frequency independent model, or measure the 

dielectric permittivity at several frequencies then fitted with frequencies, but all these 

model will cause non-causal behavior. Figure 2.1 shows an in-house tool check S-
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parameter causality results, the S-parameter also calculated use in-house tool, the 

parameter values used for S-parameter calculation are ɛ’=3.34 and tanδ=0.003.   

 

 

Figure 2.1 Causality report for S-parameter: ɛ’=3.34 and tanδ=0.003 

 

Dielectric permittivity can be modeled accurately in different interest frequency 

range by using different approaches. Figure 2.2 shows estimated dielectric mechanisms at 

different frequency range. From the plot observation, the low-frequency dielectric 

behavior can be modeled by first-order Debye mode and the high-frequency dielectric 

behavior can be modeled by Lorentz model, Equation 1-8. In the intermediate region, 

neither two of the previous model is accurate. In this article, the interesting frequency is 

the intermediate region, from MHz to tens of GHz. Wide-band Debye model has been 

chosen to imitate this region. It is a casual model and can provide sufficient accuracy for 

transmission line modeling up to 40GHz [19]. Equation 1-9 is wide-band Debye model 

expression 

                       휀𝐷𝑒𝑏𝑦𝑒 = 휀∞ + 𝐷𝐶− ∞

1+𝑗𝜔𝜏𝐷𝑒𝑏𝑦𝑒
                                                           (1-7) 

                 휀𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 휀∞ +
( 𝐷𝐶+ ∞)𝜔0

2

𝜔0
2+𝑗𝜔𝜏𝐿𝑜𝑟𝑒𝑛𝑡𝑧−𝜔2                                                    (1-8)                                                       

                          휀(𝑓) = 휀(∞) + 𝑑

(𝑚1−𝑚2)∙ln (10)
[

10𝑚2+𝑖𝑓

10𝑚1+𝑖𝑓
]                                  (1-9) 
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where 𝜔1 = 2𝜋10𝑚1 and  𝜔2 = 2𝜋10𝑚2 are the lower and upper frequency limit. εd and 

ε(∞) can be obtained by one measurement of dielectric constant at measured frequency. 

 

 

Figure 2.2 Dielectric permittivity versus frequency plot: estimated dielectric 

mechanisms for different region 

 

The conductor loss is usually modeled as follows. At low frequencies, in stripline 

transmission lines, the current will flow through the entire cross-section of the 

conductors. At high frequencies, for stripline, the current are concentrated in the upper 

and lower edges of the conductor, as shown in Figure 2.3. The electric current flows 

mainly at the “skin” of the conductor, between the outer surface and a skin depth delta[2].  

The skin depth formula is  

                                                     𝛿 = √
2

𝜔𝜇𝜎
                                                    (1-10) 

where ω is the angular frequency, μ = μrμ0  is the permeability of the conductor, (μr is 

the relative permeability of the conductor and μ0 is the permeability of free space), σ is 

metal conductivity.  
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Figure 2.3 Current distribution in the signal; conductor and reference planes of a 

stripline 

     

Frequency dependent total resistance for stripline include skin effect obtained by 

the two resistance values, resistances calculated from top and bottom reference planes, 

put in parallel. The resistance from top and bottom reference planes can be calculated as 

[3] 

                                               𝑅 = √
𝜋𝜇𝑓

𝜎
(

1

𝑤
+

1

6ℎ
)                                            (1-11) 

from equation (1-11) could derive stripline resistance show in below 

                                         𝑅𝑎𝑐,𝑠𝑡𝑟𝑖𝑝 =
(𝑅(ℎ1))(𝑅(ℎ2))

𝑅(ℎ1)+𝑅(ℎ2)
                                           (1-12) 

The realistic conductor rough surface reminds a “tooth structure”, show in Figure 

2.4. When the tooth height is comparable to the skin depth, the conductor foil should be 

treated as the rough case [3]. There are three very common conductor surface roughness 

models: Hammerstad model, Hemispherical model, and Huray model. 
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Figure 2.4 Realistic conductor roughness exhibit the tooth structure [3] 

 

Hammerstad model is a traditional way to model conductor foil surface 

roughness. Hammerstad equation to model transmission line gives the following 

expression for PUL R due to the surface roughness losses: 

                                          𝑅𝑎𝑐 = 𝐾𝐻𝑅𝑠√𝑓                                                  (1-13) 

where 𝐾𝐻  is the Hammerstad coefficient and 𝑅𝑠√𝑓  is the classic skin resistance for 

smooth conductor. The correction coefficient is given as follows: 

                                    𝐾𝐻 = 1 +
2

𝜋
arctan [1.4(

ℎ𝑟𝑚𝑠

𝛿
)2]                           (1-14) 

where 𝛿 is the skin depth. Hammerstad coefficient used to represent the extra loss caused 

by the conductor surface roughness. Frequency dependent skin effect resistance and total 

inductance using the Hammerstad correction for surface roughness are presented below 

                     𝑅𝐻(𝑓) = {
𝐾𝐻𝑅𝑠√𝑓     𝑤ℎ𝑒𝑟𝑒 𝛿 < 𝑡 

𝑅𝑑𝑐               𝑤ℎ𝑒𝑟𝑒 𝛿 ≥ 𝑡
                                        (1-15a) 

 

            𝐿𝐻(𝑓) = {
𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +

𝑅𝐻(𝑓)

2𝜋𝑓
                   𝑤ℎ𝑒𝑟𝑒 𝛿 < 𝑡 

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +
𝑅𝐻(𝑓𝛿=𝑡)

2𝜋𝑓𝛿=𝑡
              𝑤ℎ𝑒𝑟𝑒 𝛿 ≥ 𝑡

                       (1-15b) 
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To be more accurate to model the roughness profile large than 2um, the roughness 

profile could be approximated as random protrusion sitting on the flat plane. 

Hemispherical model [3] models the complete copper surface as N separated individual 

protrusions randomly distributed on a flat plane, as shown in Figure 2.5. The effect of 

protrusions is modeled by calculating the effective cross-section area of the 

hemispherical protrusions: 

                          𝜎𝑡𝑜𝑡 = −
𝜋

𝑘2
∑ (2𝑚 + 1)𝑅𝑒[𝛼(𝑚) + 𝛽(𝑚)]𝑚                         (1-16)  

where 𝑘 = 2𝜋/𝜆 , and 𝛼  and 𝛽  are scattering coefficients. Since the protrusions are 

electrically small, only the first order coefficients are taken into account: 

                                  𝛼(1) = −
2𝑗

3
(𝑘𝑟)3 1−(𝛿/𝑟)(1+𝑗)

1+(𝛿/2𝑟)(1+𝑗)
                          (1-17a) 

                                  𝛽(1) = −
2𝑗

3
(𝑘𝑟)3 1−(4𝑗/𝑘2𝑟𝛿)[1/(1−𝑗)]

1+(
2𝑗

𝑘2𝑟𝛿
)[1/(1−𝑗)]

                         (1-17b) 

where r is the sphere radius. The total absorbed or scattered power is given by: 

      𝑃ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑒 =
1

2
(

1

2
𝜂|𝐻0|2𝜎𝑡𝑜𝑡) = −𝑅𝑒[

1

4
𝜂|𝐻0|2 3𝜋

𝑘2 (𝛼(1) + 𝛽(1))]       (1-18)                                                                 

where 𝜂 = √𝜇0/휀0휀′  is the impedance of the transmission line medium, and 𝐻0 is the 

magnitude of applied magnetic field. The power dissipated in the flat regions surrounding 

the hemispheres is given by: 

                                        
𝑑𝑃𝑝𝑙𝑎𝑛𝑒

𝑑𝑎
=

𝜇0𝜔𝛿

4
|𝐻0|2                                           (1-19) 

The dissipated power of the protrusion on the flat plane is calculated by adding 

half of hemisphere dissipated power and the power absorbed by the flat plane of that 

hemisphere base area: 

   𝑃𝑡𝑜𝑡 = |−𝑅𝑒 [
1

4
𝜂|𝐻0|2 3𝜋

𝑘2 (𝛼(1) + 𝛽(1)]| +
𝜇0𝜔𝛿

4
|𝐻0|2(𝐴𝑡𝑖𝑙𝑒 − 𝐴𝑏𝑎𝑠𝑒)      (1-20) 
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where 𝐴𝑡𝑖𝑙𝑒 is the tile area of the flat plane surrounding the protrusion, and 𝐴𝑏𝑎𝑠𝑒 is the 

base area of the hemisphere. 𝐴𝑏𝑎𝑠𝑒 and  𝐴𝑡𝑖𝑙𝑒 are illustrate in the Figure 2.3. 

 

 

Figure 2.5 Simplified hemispherical shape approximating a single surface 

protrusion: top and side views; current direction and applied TEM field orientations 

shown [3] 

 

To calculate the new coefficient shows in Equation (1-13), the ratio of the power 

absorbed with and without protrusion need to be derived. This can be obtained by 

dividing (1-18) and (1-20), the equation could be simplified: 

                   𝐾𝑠 =
|𝑅𝑒[𝜂(3𝜋/4𝑘2)(𝛼(1)+𝛽(1))]|+(𝜇0𝜔𝛿/4)(𝐴𝑡𝑖𝑙𝑒−𝐴𝑏𝑎𝑠𝑒)

𝜇0𝜔𝛿

4
𝐴𝑡𝑖𝑙𝑒

                      (1-21) 

 The limitation of Equation (1-21) is when the skin depth is greater than the 

protrusion height. Therefore, there is a knee frequency defined when 𝐾𝑠 = 1. It means 

when the roughness begin to affect the loss significantly. 

                   𝐾ℎ𝑒𝑚𝑖 = {
1                                      𝑤ℎ𝑒𝑛 𝐾𝑠 ≤ 1
𝐾𝑠                                     𝑤ℎ𝑒𝑛 𝐾𝑠 > 1

                            (1-22) 
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The frequency dependent skin depth resistance and total inductance using in the 

Hemispherical model to represent the extra losses caused by surface roughness:              

                     𝑅𝐻(𝑓) = {
𝐾𝐻𝑅𝑠√𝑓     𝑤ℎ𝑒𝑟𝑒 𝛿 < 𝑡 

𝑅𝑑𝑐               𝑤ℎ𝑒𝑟𝑒 𝛿 ≥ 𝑡
                                        (1-23a) 

            𝐿𝐻(𝑓) = {
𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +

𝑅ℎ𝑒𝑚𝑖(𝑓)

2𝜋𝑓
                   𝑤ℎ𝑒𝑟𝑒 𝛿 < 𝑡 

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +
𝑅ℎ𝑒𝑚𝑖(𝑓𝛿=𝑡)

2𝜋𝑓𝛿=𝑡
              𝑤ℎ𝑒𝑟𝑒 𝛿 ≥ 𝑡

                   (1-23b) 

Huray model was invented by Paul G. Huray in 2006 at the University of South 

Carolina [3]. It is a new wideband model for surface roughness, which is adequate than 

Hammerstad and hemisphere model, it also named ‘snowball’ model. Figure 2.6 shows 

the scanning electron microscope (SEM) of surface roughness sample on the printed 

circuit board (PCB). Figure 2.7 shows the 3D model, which was built to represent the 

‘snowball’ surface. 

 

 

Figure 2.6 Copper foil surface SEM photograph [3] 
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Figure 2.7 Cross section of a distribution of copper spheres that create a 3D rough 

surface in the form of copper ‘pyramids’ on a flat conductor [3] 

 

The power dissipated on the protrusion is calculated similarly to the 

hemispherical model (1-18) but with twice the magnitude: 

            𝑃𝑠𝑝ℎ𝑒𝑟𝑒 = (
1

2
𝜂|𝐻0|2𝜎𝑡𝑜𝑡) = −𝑅𝑒[

1

2
𝜂|𝐻0|2 3𝜋

𝑘2 (𝛼(1) + 𝛽(1))]           (1-24) 

The new correction coefficient is shown below: 

𝐾𝐻𝑢𝑟𝑎𝑦 =
𝑃𝑓𝑙𝑎𝑡 + 𝑃𝑁,𝑠𝑝ℎ𝑒𝑟𝑒𝑠

𝑃𝑓𝑙𝑎𝑡
                      

                                    =
|𝑅𝑒[𝜂(3𝜋/4𝑘2)(𝛼(1)+𝛽(1))]|+(𝜇0𝜔𝛿/4)(𝐴𝑡𝑖𝑙𝑒−𝐴𝑏𝑎𝑠𝑒)

𝜇0𝜔𝛿

4
𝐴𝑡𝑖𝑙𝑒

           (1-25) 

Huray model represents the extra loss caused by surface roughness shown below: 

                          𝑅𝐻𝑢𝑟𝑎𝑦(𝑓) = {
𝐾𝐻𝑢𝑟𝑎𝑦𝑅𝑠√𝑓    𝑤ℎ𝑒𝑛 𝛿 < 𝑡

             𝑅𝑑𝑐          𝑤ℎ𝑒𝑛 𝛿 ≥ 𝑡
                       (1-26a) 

           𝐿𝐻𝑢𝑟𝑎𝑦(𝑓) = {
𝐿𝑒𝑥𝑡𝑟𝑒𝑟𝑛𝑎𝑙 +

𝑅𝐻𝑢𝑟𝑎𝑦(𝑓)

2𝜋𝑓
        𝑤ℎ𝑒𝑛 𝛿 < 𝑡

𝐿𝑒𝑥𝑡𝑟𝑒𝑟𝑛𝑎𝑙 +
𝑅𝐻𝑢𝑟𝑎𝑦(𝑓𝛿=𝑡)

2𝜋𝑓𝛿=𝑡
   𝑤ℎ𝑒𝑛 𝛿 ≥ 𝑡

                      (1-26b) 

Hammerstad model could only model the copper roughness RMS value less than 

about 2 μm. Hemisphere model improved the modeling results base on Hammerstad 

model, but still underestimated the loss at high frequencies. It can give accurate results 

only when to know the protrusion geometry parameter accurately, therefore not effective 
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for a smooth surface. Huray model can model any type of surface roughness, even the 

sphere size is less than 1 μm, but need to have detailed surface profile or scanning 

electron microscope figure.  

In [16], it presents a different way to model PCB conductor surface roughness 

model. Instead of imitating the roughness profile, it uses an additional layer with 

effective material parameters to present surface roughness. This method is based on the 

effective medium theory. The effective medium theory describes a medium (composite 

material) based on the properties and the relative fraction of its components [17-18]. 

Conductor roughness in the proposed approach is substituted with a “roughness 

composite dielectric” layer. In this article, it evaluated three groups of test vehicles; in 

each group has nine boards. Three groups only differed in foil types (STD-standard, 

VLP-very-low-profile, and HVLP-hyper-very-low-profile foils). The “roughness 

dielectric” is modeled as a lossy non-dispersive material, the three types of foil 

“roughness dielectric” parameters are shown in below: 

 

: 48.5 18.4 (tan 0.38);

: 33.1 4.97 (tan 0.15);

: 28.9 1.73 (tan 0.06)

STD STD

VLP VLP

HVLP HVLP

STD j

VLP j

HVLP j

 

 

 

  

  

  
 

The “roughness dielectric” in each case of a foil type has its own effective dielectric 

properties and thickness, depending on the roughness amplitude. This method requires 

using 2D cross-section analysis. The article shows that this model works up to 20GHz, 

the modeling results have very good correlations with measurement results, the 

differences are within 1dB.  
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2.2. OBJECTIVES  

The objective of this research is to develop an accurate low-loss transmission line 

model, which can be used to precisely predict the actual case. Most of the existing 

transmission line models can model the high-loss and middle-loss transmission lines 

(with the dielectric loss tangent tanδ larger than 0.01) in frequency- and time-domain 

adequately [5,8]. However, for low-loss material with tanδ less than 0.01, the existing 

transmission line models demonstrate lack of accuracy (Figure 2.8a). Surface roughness 

effect is often modeled as scattering of the electromagnetic wave on protrusions of the 

conductor (hemispherical model [5] and snowball model [14] implemented in ADS).  

This approach, however, cannot model increase of the slope of transmission coefficient 

curve with frequency, which can be clearly observed for low-loss transmission lines [15, 

19] with a typical example shown in Figure 2.8b.  

 

 

 (a)                                                       (b) 

Figure 2.8 (a)Insertion loss and phase delay per inch for a 7-inch transmission line 

showing errors induced by the hemispherical model [1]. (b) Measured |S21| of a rough 

transmission-line compared to the linear curve 
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This work will present a new way to model the conductor surface roughness 

effect with effective dielectric. To achieve the goal two variants of the model were tested. 

In the first one, we used the method from [16] with the dispersive dielectric in the 

effective layer. In the second one instead of using effective dielectric layer, an additional 

term adding to the bulk dielectric, which simplifies the simulation, is eliminating the need 

of 2D cross-sectional analysis. In this variant of the model, the per-unit-length (PUL) 

parameters of transmission-line are calculated analytically to obtain the transmission 

coefficient of the line.  

 

2.3. BEHAVIORAL MODEL DESIGN APPROACHES 

As stated before, the existing surface roughness models are adequate to capture 

the high-loss and mid-loss material, which dissipation factor, DF=tanδ, is larger than 0.1. 

For low-loss material and low-loss surface roughness, existing model’s accuracy is not 

enough. In [10], it mentioned that the accuracy of transmission line models usually 

depends on broadband dielectric and conductor roughness models. The following section 

will introduce two methods to model low-loss and low surface roughness transmission 

line. The first model using an additional dispersive layer to represent surface roughness 

effect and the second model is added a dispersive dielectric term, use wide-band Debye 

dielectric model, to represent surface roughness. 

Method I – Add Additional Dispersive Dielectric Layer. This part will introduce 

the implemented procedures of add additional dispersive layer method, and show the 

model results. 
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For this study, a set of test vehicles (TV) was created. The set consisted of twelve 

boards, each having 50 ohms single-ended 16-inch striplines of three different roughness 

grades (STD, RTF/VLP, and HVLP) and four different widths (3.5, 9.5, 13 and 15 mils).  

All the boards contained a TRL pattern for de-embedding purposes and were 

manufactured using the same dielectric material (Megtron 6). An example of the test 

vehicle is demonstrated in Figure2.9.  

 

 

Figure 2.9 Extraction set test board example 

 

Two layers dielectric model plot is shown in Figure 2.10. The yellow part is 

copper, it represents the stripline reference grounds and conductor; the blue part is the 

border dielectric, it represents the actual stripline dielectric; the green part is an additional 

dispersive dielectric layer, also named equivalent dielectric layer, it represents the surface 

roughness. This equivalent dielectric layer should be dispersive, frequency dependent, so 

it can model extra slope performance at high frequencies [10]. There are four numerical 

models used to model the equivalent layer dielectric parameters. Idea 1, 1
st
 order Debye 

model, idea 2 is tanδ = A(1 − e−αω)  and the idea 3 is tanδ = A1(1 − e−α1ω) +

A2

1+e−α2(ω−ω1)  and idea 4 is the combination of Debye term and Lorentz term to define 

dielectric permittivity. 
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Due to the extraction set has the same dielectric, for simplicity, in this idea 

assume the border dielectric is same for all extraction cases and is calculated according to 

the Djorivic Model [5]. Figure 2.11 shows the border dielectric layer tangent loss and real 

part of dielectric permittivity plot.    

 

 

Figure 2.10 STD foil 3.5mils trace width two layers dielectric model in FEMAS, 

thickness of effective dielectric layer is 4*htooth 

 

 

Figure 2.11 Border dielectric layer tanδ and ɛ’ plot 
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The border dielectric calculated in Equation (1-27). This model works in the 

range of [𝜔1, 𝜔2]. 

                        Re{휀𝑟(𝜔)} ≈ 휀∞
′ +

∆ ′

𝑚1−𝑚2

ln (
𝜔2
𝜔

)

ln (10)
                                            (1-27a) 

                        Im{휀𝑟(𝜔)} ≈
∆ ′

𝑚2−𝑚1

−
𝜋

2

ln (10)
                                                     (1-27b) 

where 휀∞
′  is the real part of relative permittivity at high frequencies. ∆휀′ is the variation 

of the real part of relative permittivity. 𝜔1 = 10𝑚1  and 𝜔2 = 10𝑚2  are the frequency 

lower and upper bonds.  

Idea 1 first order Debye model.  The expression of the equivalent dielectric layer 

is shown in Equation 1-28 and an example plot is shown in Figure 2.12, the equivalent 

dielectric parameters are ɛDC=48.5, ɛ∞=44.71, and τ=0.8e11 

                                                   ε = ε∞ +
εDC−ε∞

1+jωτ
                                           (1-28) 

 

 

Figure 2.12 Dielectric parameters, first-order Debye model plot 
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 Before starting to model the entire extraction set, one need to understand whether 

the thickness of the equivalent dielectric layer is an additional degree of freedom or not. 

Figure 2.13 shows that for different equivalent dielectric layer thicknesses, by tuning the 

Debye model parameter can have a very similar result, which means that the equivalent 

dielectric layer thickness is not a degree of freedom. Since this equivalent dielectric layer 

represents surface roughness, its thickness should be the same magnitude, in this case, the 

model uses four times the roughness mean square root of tooth peak (4 ∙ ℎ𝑡𝑜𝑜𝑡ℎ) for all 

other cases.  

 

 

Figure 2.13 The equivalent dielectric thickness is not an additional degree of 

freedom validation 

 

Eight boards were used to extract the parameters for the additional layer. Figure 

2.14 shows an example of idea 1 modeling results. The modeling result has good 

correlation with the measurement result.   

Table 2.1 shows the summary of 1st order Debye model parameters. This method 

only fitted for eight cases, 9.5mil standard foil did not include. The parameters as shown 

in this table, there are no clear clue that can be used for the future. 
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Table 2.1 Summary of 1
st
 order Debye model parameters  

 

 

                                                                 (a)  

 

                                                              (b) 

Figure 2.14 HVLP 3.5 mil modeling results (a) frequency domain (b) time domain 
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      This is the first model that been used for the equivalent dielectric layer, and 

the modeling results are not as good as expected, the other dielectric model options 

should be tried first. The parameters of this model do not indicate a clear trend that can be 

used in the future. 

Idea 2 𝑡𝑎𝑛𝛿 = 𝐴(1 − 𝑒−𝛼𝜔). The modeling procedure is the same as in idea 1. 

The equivalent dielectric layer permittivity calculation replaced by 𝑡𝑎𝑛𝛿 = 𝐴(1 − 𝑒−𝛼𝜔). 

Unlike idea 1, this formula is only decided by two parameters, A and α. A will be the 

magnitude of loss tangent at high frequencies and α will decide the frequency start to 

become stable. Figure 2.15 shows the tangent loss behavior of idea 1 (green curve) and 2 

(blue curve). First order Debye model tangent loss will drop at high frequencies which is 

not desired. Tangent loss should increase a little as frequency increases, which can create 

extra loss at high frequencies.  

 

 

Figure 2.15 Tangent loss for equivalent dielectric layer plot 
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Similar to idea 1, this model also fit for all the extraction cases. The results are 

showing in the Table 2.2. To show how this formula improves the S-parameter 

correlation at high frequencies, two STD foil cases are shown. Figure 2.16 and 2.17 show 

the frequency-domain and time-domain modeling results for STD foil 3.5mil and 15mil. 

 

 

(a) 

 

(b) 

Figure 2.16 STD 3.5 mil modeling results (a)frequency domain (b) time domain  
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(a) 

 

(b) 

Figure 2.17 STD 15mil modeling results (a) frequency domain (b) time domain  

 

Table 2.2 Summary of stage 2 formula defined parameter values for all the 

validation cases 
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This table shows that the idea 2 formula parameters can have a monotonic trend, 

but for one case, probably will have one or more A and α combinations. However, when 

implement idea 2 to 13mil trace width boards, it could not model very well at low 

frequencies and causes extra loss. Figure 2.19 shows Megtron 6 HVLP MB 13mil 

modeling results.  

In the Figure 2.18, this model shows that it overestimates the low-frequency loss 

and underestimates the high-frequency loss. So one consider trying other options to see 

whether can achieve results that are more accurate or not by separating model the low- 

and high- frequency loss. In addition, this model is a non-causal model, it is not desired 

for later time domain analysis.  

 

 

Figure 2.18 Meagtron 6 HVLP MB 13mil frequency domain plot 

 

Idea 3 tanδ = A1(1 − e−α1ω) + A2/(1 + e−α2(ω−ω1)). In order to better model 

the low-loss transmission line frequency-domain behavior, the low-frequency loss and 

high-frequency loss modeled separately. Figure 2.19 shows an example plot for tangent 

loss which has two levels for low and high frequencies. A1 is the level value for low 

frequencies and A2is the level value for high frequencies. α1 is where the low frequencies 
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start to become stable and α2 is where the high frequencies start to become stable and ω1 

is where the frequencies start the second level. 

 

 

Figure 2.19 Example of model 3 formula loss tangent plot 

 

The reason to develop this idea is to model the 13mil trace width boards well. 

However, after adding another degree of freedom in the formula, the modeling results do 

not improve as expected. Figure 2.20 shows the modeling results for Megtron 6 VLP 

13mil MB  board.  

 

 

Figure 2.20 Megtron 6 13mil VLP MB board modeling and measurement results 
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Even though increased the model parameters, the accuracy of the modeling results 

did not improve as expected. Therefore, one consider to try another model which use 

fewer parameters but the correlation of simulation and measurement should not degrade 

and should be a causal model. 

Idea 4 is based on idea 2,tanδ = A(1 − e−αω). By using the combination of  

Debye and Lorentz model, this model can assure causal, the expression is shown below 

                 휀 = 휀inf _𝑑 + 𝑠_𝑑− inf _𝑑

1+𝑗𝜔𝜏𝑑
+ 𝑎 ∗ (휀inf _𝑙 +

( 𝑠_𝑙+ inf _𝑙)𝜔0
2

𝜔𝑜𝑙
2 +𝑗𝜔𝛿𝑙−𝜔2 )                      (1-29) 

where ε is the total permittivity, εinf _d and εs_d is the relative permittivity value of the 

Debye model  at infinity time and DC, respectively. τd is the relaxation for Debye model. 

A is the number of Lorentz model, εinf _l  and εs_l  is the relative permittivity value of 

Lorentz term at infinity time and DC. Equation 1-29 is a casual model and the tanδ has 

the similar trend as exponential equation used in Ideal 2. But this ideal includes too many 

parameters, it is difficult to tune the extraction set with so many parameters. Therefore, 

the equation needs to reduce the parameters. Equation (1-29) also can be expressed as  

                                                         ε = εd + ∑ εl                                         (1-30a) 

the Debye term can be expressed as  

                                                      εd = ε∞ +
∆εd

1+jωdτ
                                     (1-30b) 

and the Lorentz term can be expressed as  

                                                        εl =
∆εlω0

2

ω0
2+jωδ−ω2                                       (1-30c) 

From Equation (1-30a) and (1-30b) the maximum imaginary part frequency is 

                                                   ωd = √ω2 − (
δ

2
)2                                       (1-30d) 
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From (1-30), the goal curve which only includes two parameters, tanδs and fs, 

can be obtained and is shown in Equation (1-31) 

                                                           tanδs =
∆εd

2ε∞+∆εd
                                  (1-31a) 

                                                                       fs =
1

τ
                                       (1-31b) 

In Figure 2.21 an example is shown how the tanδs and fs define the tanδ curve, 

 

 

Figure 2.21 tanδs and fs illustration plot example 

 

In Figure 2.22(a), it shows old Megtron 6 STD 13mil trace width PCB board 

measurement and model simulation results. There are three curves shown in the plot, red 

is the measurement curve using SFD extraction method, green is the measurement result 

using the TRL extraction method and blue is the model simulation results. The simulation 

correlated with measurement results very well. Figure 2.22(b) is the tangent loss plot for 

the additional layer dielectric with the new dielectric model; it maintains the loss at high 

frequencies but keeps the low frequencies loss the same (compared with the Debye model 

where loss decreased at high frequencies). Figure 2.22(c) is the comparison plot between 

additional layer dielectric permittivity Debye model and idea 4 dielectric model. This 

new model keeps the real part of dielectric permittivity similar compared with first odder 
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Debye model. For the imaginary part of the dielectric permittivity, compared with 

traditional Debye model, it does not decrease as rapidly as the Debye model, almost 

keeps flat at high frequencies. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2.22 Old Megtron6 STD 13mil trace width board (a) SFD measurement, 

TRL measurement, and simulation results plot. (b) additional dielectric layer tangent loss 

curve plot. (c) additional layer dielectric permittivity curve plot 
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This idea also fits for all 12 boards, Megtron6 MB with three different foil types 

(STD, VLP/RTF, HVLP) and four trace widths (3.5mil, 9.5mil, 13mil, 15mil). Table 2.3 

shows all the parameters used for the new dielectric layer tangent loss calculation. 

 

Table 2.3 Summary of the parameters which for 12 boards modeling use idea 4  

 

 

This dielectric model can be fitted with a linear trend, it is shown in Figure 2.23; 

this is the intuitive design curve plot for method II. For tanδs the linear trend is not as 

good as fs.  

In this section, shows the surface roughness represents the additional dielectric 

layer can be used to model the low-loss and low surface roughness transmission line 

process. This method begins with first order Debye model, then tried three other models. 

From the different dielectric model, the requirements for the dielectric model become 

clear; this model should be a casual model and tanδ should not decrease at high 

frequencies. There should be fewer parameters in the model, otherwise, it is difficult to 

find the trend that can be used for later. After three tries, ideal 4 actually provide very 

good results. However, this method did not continue as the project going on. The main 
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reason is that the company wants to use ADS to run this method and this model requires 

using 2D cross-section analysis.   

 

 

(a) 

 

(b) 

Figure 2.23 (a) fs vs trace width plot with linear fitted trend (b) tanδs vs. trace 

width plot with linear fitted trend 
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Method II – Add Dispersive Dielectric Term. This method focuses on 

representing the surface roughness using the dispersive dielectric term. The diagram of 

the surface roughness modeling algorithm is shown in Figure 2.24 

 

 

Figure 2.24 Proposed surface roughness modeling algorithm 

 

In an earlier study, a practical causal approximation for low-dispersive dielectrics 

often used in the PCBs (Djordjevic model) is presented.  The dielectric constant was 

calculated as follows: 

                                 𝑅𝑒{휀𝑟(𝜔)} = 휀′ ≈ 휀∞
′ +

∆ ′

𝑚2−𝑚1
∙

ln (
𝜔2
𝜔

)

ln (10)
                         (1-32a) 

                                       𝐼𝑚{휀𝑟(𝜔)} = 휀′′ ≈
∆ ′

𝑚2−𝑚1
∙

−
𝜋

2

ln (10)
                           (1-32b) 

Besides the dielectric parameters ε∞
′  and  ∆ε′, the model is characterized by two 

frequency limits ω1 = 10m1 and ω2 = 10m2. Usually, the lower frequency limit is set to 

a kHz value and the upper one is set to a THz value. This allows generating the causal 

dielectric constant function that is practically constant in the frequency range of interest 

of typical signal integrity simulations (MHz – tens of GHz). Most of the dielectrics used 
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for PCB manufacturing are indeed very low-dispersive (at least starting from 5-10 GHz) 

[16 - 22]. However, as was indicated above, the low-loss transmission lines, often exhibit 

an increase in the slope of the insertion loss (S21) curve with frequency, which cannot be 

accounted by the existing models.  

Although typical PCB dielectrics have low dispersion, it is possible to model the 

frequency-dependent slope of S21 by adding an effective dispersive dielectric term to the 

bulk dielectric, accounting for the roughness effect in this manner. 

In the proposed model, the bulk dielectric of the transmission line is calculated as 

εtot = ε1 + ε2  (Figure 2.25), where both terms ε1  and ε2  are calculated according to 

Djordjevic (as shown in Equations 1-27a and 1-27b). The first term is non-dispersive and 

describes the ‘nominal’ behavior of the dielectric and the second term is dispersive and 

accounts for the roughness effect.  

 

 

Figure 2.25 Stripline geometry 

 

The parameters of the non-dispersive term ε1  are calculated by specifying the 

desired values of  ε′ and tanδ at a certain frequency, and using the frequency limits ω1 

and ω2 in the kHz and THz frequency range correspondingly.  

A similar procedure is applied to calculate the dispersive part ε2  with the 

following exceptions: the ε2
′  is set such that ε2

′ ≪ ε1
′  (in the examples below, ε2

′  is set to 

0.1 for  ε1
′ ≈ 4); the lower frequency limit ω1 = 2πfs is set in the GHz frequency range; 
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and tanδs is specified at the lower frequency limit. The two parameters of the dispersive 

term (tanδs and  fs) are illustrated in Figure 2.21. 

The non-dispersive term had nominal values of DK and DF of 3.8 and 0.006 

respectively. The lower frequency limit for the non-dispersive term is 10 kHz and the 

upper one is 1 THz. For the dispersive term tan δs = 0.12  and  fs = 9 GHz. As shown in 

Figure 2.26, the proposed method allows generating the causal permittivity function that 

has the almost frequency independent real part (DK) and at the same time frequency 

dependent loss tangent (tanδ), the parameters of which can be set independently of DK. 

 

 

Figure 2.26 Bulk dielectric modeling example 

 

After the permittivity function is generated, the transmission coefficient of the 

stripline is calculated analytically based on an earlier study [23 - 24]. 

The proposed model requires two parameters: fs and tan δs, both of which depend 

on the roughness and the geometry of the stripline. These parameters are determined 
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empirically. This method uses the same extraction set as illustrated in the method I. For 

each TV, a model was built as described above, using known values for the bulk 

dielectric permittivity (ε1′ = 3.8) and loss tangent(tan δ = 0.006). 

The parameters of the dispersive layer fs and tanδs were tuned for each case to 

ensure the best match between the measured and calculated transmission coefficients. 

The transmission coefficient curves along with the tuned parameters are shown in Figure 

2.27. 

 

 

Figure 2.27 Complete |S21| in dB vs frequency in GHz for the entire TV set 

 

The extracted parameters of the dispersive term are shown in Figure 2.28, along 

with the linearly fitted approximation (design curves). The obtained design curves allow 

determining the dispersive term parameters for arbitrary line width, provided that the 
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roughness of the modeled transmission-line resembles one of the roughness grades (STD, 

RTF/VLP, HVLP) used for the parameter extraction.  

The design curves were extracted for the Megtron 6 dielectric material. However, 

these can be extended to be used for other low-loss materials, using the following 

normalization scheme: 

                                   tanδs_other =
tanδ0_other

tanδ0_meg6
tanδs_meg6                              (1-33) 

where tanδs_meg6 is the value from design curve for Megtron 6 board, tanδs_other is the 

other material dispersive term dielectric loss,  tanδ0_meg6  is the loss tangent for the 

Megtron6 and tanδ0_meg6 is the loss tangent for the other material. 

 

 

Figure 2.28 Design curves for the surface roughness behavioral model (dispersive 

dielectric parameters) as a function of trace width 

 

For this study, fourteen cases were used to validate the behavioral model. As 

shown in Figure 2.29, the validation set includes high-loss and middle-loss materials 
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(tanδ > 0.01) as well as low-loss material (tanδ ≤ 0.008), with different trace widths 

and roughness. 

 

 

Figure 2.29 Available boards map--extraction and validation boards 

 

Figure 2.30 to 2.34 show five examples of the validation of the behavioral model 

compared with the results obtained in ADS. Each example has a different trace width, 

material, and roughness. 

As can be observed, there is no need to use behavioral model for high and middle-

loss dielectrics marked as ‘region 1’ in Figure2.29 (the same is true for ADS model, as 

the inclusion of roughness in that model also leads to substantial overestimation of loss – 

see green lines in Figure 2.33 and Figure 2.34).  However, for the low-loss materials 

(region 2), the behavioral model improves the modeling accuracy. The impulse response 

accuracy is also improved compared to the roughness modeling implemented in ADS. 

The reason for the differences in the behavior of low- and middle-loss boards with regard 

to roughness is under investigation.   
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Figure 2.30 Simulation results for Megtron6, HVLP foil, 7.32mil trace width 

 

 

Figure 2.31 Simulation results for Megtron6, HVLP foil, 10.45mil trace width 
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Figure 2.32 Simulation results for Megtron7, HVLP foil, 10.45mil trace width 

 

 

Figure 2.33 Simulation results for middle-loss material, VLP foil, 9mil trace 

width 
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Figure 2.34  Simulation results for high-loss material, STD foil, 9.5mil trace 

width 
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3.  HIGH-SPEED TEST BOARD VIA-TRANSITION OPTIMIZATION 

3.1. BACKGROUND  

With the demanding on high bandwidth transition, the impedance discontinuity in 

the channel is stricter. Usually, via-transition is the main reason, which causes the 

discontinuity, cause extra inductance or capacitance depends on how the transition part 

designed. 2D and full-wave 3D simulation solver are been used to analyze the impedance 

signature in this section. Single-ended trace impedance should be 50Ω and differential 

trace impedance should be 100Ω. Additional, at 50GHz, insertion loss should as flat as 

possible close to 0dB and return loss should as low as possible, expect to be lower than 

10dB.  

The optimization is based on previous CISCO test board design. The first reason 

for this optimization is to change the ground via signature. Figure 3.1 shows that 

aperiodic spacing of the ground via wall along the test trace, which reduces undesirable 

resonances due to the proximity of ground via wall structure to the signal trace.  

However, the ground via wall is even on the two sides of the signal trace, so the signal 

still has some effect.  

Second is to optimize this design is to improve the insertion loss and reduce the 

return loss.  Figure 3.2 shows the time-domain (TDR) and frequency-domain (S-

parameter) results from the last version. From the simulation results, this design will 

perform well until 47 or 48GHz. At 50GHz, return loss is approximate -2dB; it may 

affect the signal high-frequency performance. 
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Figure 3.1 Example of distribution of the 15 ground via columns along the test 

trace 

 

 

Figure 3.2 Achieved S-parameters and TDR 

 

Last design has 3D full wave model and cadence allegro file.  In Figure 3.3, it 

shows the allegro drawing from last design; in this version, it uses TRL calibration 

pattern. The single-ended and the differential signal trace length is 16inch (16,025mil). 
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For single-ended, the trace characteristic impedance from top to bottom is 48Ω, 50Ω and 

52Ω and trace width is 9.8mil, 9mil, and 8.2mil. For differential trace, the trace 

impedance from top to bottom is 96Ω, 100Ω and 104Ω; trace pitch is the same, all of 

them are 15mil and trace width is 8.8mil, 8.1mil, and 7.4mil.  In the new version, use 

SFD calibration pattern to replace TRL pattern.  In the new version, only consider 50Ω 

and 100Ω for single-ended and differential, respectively.  

 

 

Figure 3.3 Allegro PCB design drawing from the last version 

 

In the new version, expect three different modifications. First, the ground via wall 

pattern, second the S-parameter improvement and third SFD calibration pattern and 

different trace length. 

 

3.2. VERSION I 

In this part will show the first version modification from last design. Version 1 

test board design uses MEGTRON7 Lineup material low-Dk glass, the laminate is R-

5785(N) and prepreg is R-5680(N). The designed stackup shows in Figure 3.4. 

Based on the stackup, the 2D cross-section and 3D full wave modeling built for 

analysis. Figure 3.5-3.6 shows the 2D cross-section model and simulation results for both 

single-ended and differential cases. 
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Figure 3.4 Desired PCB stckup design 

 

 

Figure 3.5 Single-ended 2D cross-section analysis results 

 

After has the 2D modeling results, the cross-section and stackup are determined, 

therefore, has enough information to build 3D full wave model. However, as Figure 3.4 

shows that, at that point didn’t notice the DK and DF was different from dielectric vendor 

suggest, all the DK and DF used in the simulation is 3.5 and 0.004 respectively. This 

should not affect the trace impedance significantly, since the PCB shop will adjust the 

DK Thickness (mil)

1 2.4

1035 77% 3.2 3.9

2 0.6

2x1035 72% 3.14 4.72

3 0.6

1035 77% 3.2 3.9

4 0.6

2x1078 72% 3.08 9.28

5 0.6

1035 77% 3.2 3.9

6 0.6

2x1035 72% 3.14 4.72

7 0.6

1035 77% 3.2 3.9

8 2.4
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trace width based on the real situation, but will have some minor effects for the via-

transition part since this will affect the antipad size. 

 

 

Figure 3.6 Differential 2D cross-section analysis results 

 

First built the 3D model for the single-ended case, analyze the results in the time 

and frequency domain to decide the via-transition structure. There several key elements 

designing the via-transition, via, pad, anti-pad and diving board size. All these elements 

will make sure the transition close to 50Ω and reduce the impedance discontinuity.  

Figure 3.7 illustrate the via-transition key elements. 

 

 

 Figure 3.7 Screen shot for via-transition key elements illustration 
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In order to have a better understanding of the design flow, here will introduce two 

concepts. First is diving board. This is designed by EMC lab and CISCO. The diving 

board structure developed to compensate the parasitic inductance, it is the additional part 

come out from both ground planes adjacent to the trace layer, shows in Figure 3.7 orange 

part [27]. Second is teardrop. In printed circuit board, a teardrop is typically drop-shaped 

featured at the junction of via or contact pad and trace. It helps the structural integrity in 

the presence of thermal or mechanical stresses [28].   

To begin the design, first need to design a 50Ω through-hole via structure. Then 

add the via-to-trace transition. Below is the final 3D model for single-ended simulation.  

In the model, it removed all the un-functional pads in order to simple PCB manufacture 

process. 

In Figure 3.8, it shows the basic model that will be used. Three models were 

simulated: with same size diving board, with different size diving board and without 

diving board. The S-parameters results show in Figure 3.9. The optimized results are 

better than the last version, especially with the same size diving board case, which shows 

in Figure 3.2, insertion loss has 2dB improvement and return loss has 3dB improvement 

at 50GHz. 

After analyzing the frequency domain results, time domain also been investigated, 

as shown in Figure 3.10. From the time domain analysis, TDR results, with the same size 

diving board will cause the largest extra capacitance compare with the other two cases, 

but pull down the extra parasitic inductance at the transition and give better frequency 

domain performance. Therefore, in the real board drawing will use this structure.  The 

same structure will also apply to the differential case.  
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Figure 3.8 Single-ended trace CST model 

 

 

Figure 3.9 Optimized via-transition structure insertion and return loss summary 
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For differential case, need to consider the two connectors separation. This test 

board will use 2.4mm JACL 2 HOLE FL MT connector from SV Microwave, Inc.  

Therefore, differential trace connector center-to-center separation is 499.5mil in order to 

have enough space for connector installation. 

For differential trace, need to do simulation for transition trace part, which from 

via to normalized trace. The angle α for the transition trace to normalized trace should be 

45̊. Due to transition trace separation is larger than normalized trace, therefore in order to 

maintain 100Ω impedance, the transition trace width should be narrower.  In Figure 3.11 

shows that in the final design, decided to use 3.2mil trace width for transition trace and 

3.45mil trace width for normalized trace width. Figure 3.12 and 3.13 shows the frequency 

domain and time simulation results. As single-ended case, the simulation also has the 

same cases, with and without diving board cases, but has additional case, which adjusts 

the transition trace width. Same as single-ended results, with the same size diving board 

and transition trace width is 3.2mil has the best performance at 50GHz. 

After deciding single-ended and differential trace structure, need to implement the 

structure into cadence allegro then generate the PCB file for manufacture.  Figure 3.14 

shows the final layout. In the final design, instead of using TRL only use SFD method. 

SFD only require two different lengths of the trace for de-embedding, one is thru and 

another is test line. Therefore, for single-ended and differential trace need a 500mil thru 

line, and 5inch, 10inch, and 16inch test line. 
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Figure 3.10 Optimized via-transition structure TDR results summary 

 

 

Figure 3.11 Differential trace model in CST 
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Figure 3.12 Optimized differential via-transition structure insertion and return loss 

summary 

 

Figure 3.13 Optimized differential via-transition structure TDR results summary 
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Figure 3.14 Optimized test board layout in cadence allegro 

 

3.3. VERSION II 

This section will present another optimized PCB structure design. Version II test 

board also plan to use MEGTRON7 Lineup material low-Dk glass, the laminate is R-

5785(N) and prepreg is R-5680(N). The designed stackup shows in Figure 3.15. 

 

 

Figure 3.15 Version II test board stackup 

 

DK Thickness (mil)

1 2.4

1035 77% 3.09 2.9

2 0.7

1035 67% 3.2 3.9

3 0.7

1035 77% 3.09 2.9

4 0.7

2116 55% 3.34 9.8

5 0.7

1035 77% 3.09 2.9

6 0.7

1035 67% 3.2 3.9

7 0.7

1035 77% 3.09 2.9

8 2.4
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Based on designed stackup, 2D cross-section model was built to calculate the 

characteristic impedance for single-ended and differential cases. In Figure 3.16 and 3.17 

shows single-ended and differential impedance, respectively.  

 

 

Figure 3.16 2D cross-section analysis for single-ended case 

 

 

Figure 3.17 2D cross-section analysis for differential case 
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For this version test board, the trace width and characteristic impedance value 

requirement for single-ended are 3.5mil and 50Ω; the differential case is 3.5mil width 

and spacing is 3.5-4.5mil, the differential mode impedance should be 100Ω. According to 

the 2D cross-section analysis results, the stackup choice meets the requirements, both 

cases are close to the desired design values.  

In Figure 3.18, it shows the PCB stackup. For 3D full wave model starts from the 

single-ended case, due to deciding the via-transition structure parameters first.  The 

company provides the standard requirement of via, signal pad, antipad size (diameter), 

they are 7.9mil drill, 17.1mil, and 26mil, need to tune antipad size to reach 50Ω. The 

worst backdrill stub length is 12mil and the best backdrill stub length is 2mil. From Table 

3.1, both via-transition cases are close to 50Ω, need to do additional analysis of 

frequency domain and time domain results to decide the final size, due to the ɛ listed in 

the table is an estimated value.  

 

Table 3.1 Via-transition and coaxial port impedance list 

 

 

In Figure 3.19, shows that via-transition 1, with smaller antipad size, will have 

better insertion and return loss performance, especially for return loss, at least two 2dB 

different at 50GHz; for insertion loss, no significant improvement, approximate 0.2dB 
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difference. From frequency-domain analysis results, the via-transtion1 case is a little bit 

better than via-transition 2.   

TDR comparison between these two cases shows in Figure 3.20, apparently via-

transition2 transition structure is better than via-transition1. Via-transition2 case the 

antipad size (38mil) is larger than via-transition1 (36mil). As mentioned, ɛ=3.2 is an 

approximation value, in real cases, the effective ɛ should be less than 3.2 due to prepreg ɛ 

is 3.09 and also the backdrill fill is air (ɛ=1). Therefore, larger antipad size will provide 

larger impedance, as expected the transition should be smoother.  

 

 

Figure 3.18 Single-ended CST model 

 

Summarize the frequency-domain and time-domain analysis results, decide to use 

the larger antipad size structure, which is the via-transition2 case. Due to via-transition1 

frequency-domain performance is not significantly better but TDR is significantly worse 

than via-transition2. As showing the figure, all the un-functional pads are removed and 
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no diving board adds to this design, cause no need to compensate extra parasitic 

inductance, if adding the diving board will cause additional parasitic capacitance. 

Differential trace will have the same via-transition structure. The 3D full wave 

modeling will simulate the transition trace width.  

 

 

Figure 3.19 Insertion and return loss for different via-transition size 

 

 

Figure 3.20 Time-domain results for different via-transition size 
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4. CONCLUSION 

In Section 2.1 shows how the behavioral model was developed and why decided 

to add a dispersive dielectric term to build the dielectric model. Fifteen validation cases 

are provided which indicate that this model has a significant improvement compared with 

the presented model for low-loss and low surface roughness transmission line. The model 

is capable of capturing the frequency-dependent |S21| slope and has better agreement 

with the measurement up to 30GHz. However, this model still not perfect. In the future, 

another degree of freedom in the design curve needs to be included - foil roughness. The 

2D design curve needs to be developed into a 3D design curve which will improve the 

modeling accuracy. In addition, the physics of conductor surface roughness effect should 

be investigated to more clearly understand how the foil roughness affects the loss for the 

low-loss and low surface roughness transmission line at high frequencies. Last, since this 

behavioral model dielectric permittivity non-dispersive part is highly dependent on the 

material extraction method how to improve the accuracy of material tangent loss value 

(not include the foil roughness) needs to be investigated. 

In Section 3.1 presents two version PCB optimization results. Both PCB design is 

better than the original design. From these two PCB design can summarize a high-speed 

test board design flow for later optimization. First, based on company trace width 

requirement and dielectric material to run 2D cross-section modeling for rough 

estimation of stackup. Then correlate the stackup with the real thickness suggest in the 

vendor manual to run another 2D cross-section evaluation to validate the desired trace 

width. Then start from the single-ended trace, to decide the via-transition geometry, via, 

signal pad and antipad size. Also, need to run simulation about the backdrill stub length, 
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usually this length should base on company suggestion and mechanical restriction. Then 

decide whether need the diving board or not. After settling these details, then run the 

differential case to decide the transition trace width in order to have a smooth transition. 
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