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ABSTRACT 

As the data rates increase into the multi-gigabit range, the bit periods fall in the 

range of few tens of picoseconds. At above few Gbps, it becomes very important to 

reduce skew between differential pairs as it can adversely impact the signal eye and 

thereby increase bit error rate. The goal of this study is to mitigate the skew contributed 

by woven glass fabric of PCB dielectrics. 

The glass weave skew between differential pairs in a PCB occurs due to the 

difference in dielectric constants (DK) of glass and resin. This thesis aims to mitigate the 

skew by reducing the effective DK difference experienced by the traces of a differential 

pair. Several strategies like using low DK glass, spread glass styles with less gaps in the 

glass fabric, 1-ply and 2-ply dielectrics, routing the traces in warp and fill directions are 

studied through measurements taken on several test vehicles.  

Since the relative location of traces with respect to glass bundles cannot be 

controlled, it is highly unlikely to capture the worst case skew from measurements on few 

test vehicles. Full wave simulation model of laminate with fiber weave is employed. A 

systematic approach using measurements and simulations to mitigate the differential pair 

skew is presented.  
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1. INTRODUCTION 

With ever increasing data rates, signal integrity issues are on the rise. It is crucial 

to consider all the possible factors that affect the integrity of the transmitted signal. 

Signal quality will be degraded by many factors like conductor losses, dielectric losses, 

crosstalk, discontinuities in the transmission paths, etc. In addition to all these factors, 

skew between the P & N signals of differential pair can degrade the signal eye at multi-

gigabit data rates. The skew between the P & N signals of differential pair can be 

generated at the transmitter itself or in the channel due to asymmetries in lengths of P & 

N traces or due to glass weave effect.  

At high data rates above few Gbps, the skew induced by the inhomogeneity in the 

dielectric constants of glass and resin becomes significant when compared to the bit 

duration/unit interval (UI). It is common to use 15 to 20 inch long links on many 

commercial products. On such long serial data links, skew of 3ps/inch can result in 45 – 

60 ps of skew between the P & N signals at the receiver. One study [5] has reported a 10 

ps/inch measured skew on some transmission lines. Several methods like rotating traces, 

zig-zag routing, are proposed by earlier studies to mitigate the skew which may not be 

applicable to long high speed data links due to the cost and board size constraints. In this 

study, reduction in skew by using low DK glass, using spread glass styles, 1-ply and 2-

ply dielectrics will be evaluated to find a cost effective solution.  

Measurements as well as full wave simulations will be used to capture the worst 

case skew on a particular glass when differential pairs are routed in some particular 

direction (Warp/Fill).  The study focusses only on stripline and microstrip differential 

pairs.  
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2. FABRICATION PROCESS OF PCB DIELECTRICS 

PCB dielectrics are fabricated using woven glass fabric strengthened by epoxy 

resin material which makes it inhomogeneous material. Raw glass in marble form is 

melted in a furnace. Glass yarn is prepared after brushing, sizing and strand forming [8]. 

The steps in manufacturing laminate are shown in fig. 2.1.  

 

 

Figure 2.1. Steps in fabrication of laminates 
 

Several glass yarns acquired from the glass yarn manufacturer are grouped into 

glass bundles. The glass fabric is weaved with these bundles. Weaving glass fiber is 

similar to weaving the garments. Glass bundles are held tight in one direction and glass 

bundles are woven in the perpendicular direction as shown in fig.2.2.  

 

               

Figure 2.2. Weft and warp. During weaving process (left), after weaving (right) 
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The direction in which bundles are held tight is called grain direction or warp 

direction and the direction in which the bundles are woven is called weft or fill direction. 

Warp (grain) and weft (fill) is shown in fig. 2.2[10]. The glass fabric thus obtained is 

called square glass fabric. Several glass styles like 106, 1080, 2116, 1078 etc. are defined 

by the IPC standard as shown in table 2.1. Top view of few glass fabrics is shown in fig. 

2.3. 

 

     

 Figure 2.3. Top view of glass styles. 2116 (left), 1078 (center), 1027 (right) 
 

     Bundle width, bundle gap, bundle thickness, pitch of glass weave are described in 

the cross-section view of fiber weave as shown in fig. 2.4.  The width, thickness and pitch 

of the glass bundles are different for each style. The gaps in glass weave can be reduced 

by spreading the glass bundles. Several spreading companies use different techniques for 

spreading the glass bundles. 

 

 

Figure 2.4. Cross-section view of glass fabric 
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IPC standard defines the number of glass bundles per inch along warp and fill 

direction. Table 2.1 shows the warp and fill count per inch for several glass styles. Pitch 

of the glass styles can be calculated from the bundle count per inch. From the table 2.1, 

1067 weave style has 70 bundles per inch in warp direction and 73 bundles per inch on 

fill direction. The pitch of glass bundles in warp and fill can be calculated as  

Warp pitch = 1000 mil/70 = 14.28 mil 

Fill pitch = 1000 mil/58 = 13.69 mil 

 

Table 2.1. IPC standard for various glass styles 

 

Laminate manufacturers use the woven glass fabric and fill with resin to make 

large PCB substrates or dielectrics. The gaps between the glass bundles are filled with 

resin which has lower dielectric constant (DK ~ 3.3) when compared to glass (DK ~ 6) 

making the dielectrics inhomogeneous. The inhomogeneity is reduced by spreading the 

glass bundles. The dielectrics thus obtained by hardening the glass weave using epoxy 

resin are cut into smaller laminates according to the PCB board size requirements of the 

final product. As per the dielectric manufacturer’s capability, panels are either cut in such 

a way that the longer dimension is along grain or shorter dimension is along grain. 

18x24G specifies that the laminate is 24 inches long, 18 inches wide and the long side is 

the grain direction. Similarly, 18Gx24 indicates that the laminate is short grain.  It is 

important to keep track of grain and fill directions because the width, gap and pitch of 

glass bundles may be very different in fill and grain direction depending on weave style 

Glass 
Style 

Weave Warp 
count 

Fill 
count 

Warp yarn Fill yarn Fabric 
thickness 
Inches 

Fabric 
nominal 
weight 
g/m2 

1035 Plain 66 68 ECD 900-1/0 ECD 900-1/0 0.0011 30 
1037 Plain 70 73 ECC 1200-1/0 ECC 1200-1/0 0.0011 23 
1067 Plain 70 70 ECD 900-1/0 ECD 900-1/0 0.0013 31 
1078 Plain 54 54 ECD 450-1/0 ECD 450-1/0 0.0017 48 
2116 Plain 60 58 ECD 225-1/0 ECD 225-1/0 0.0038 109 
106 Plain 56 56 ECD 900-1/0 ECD 900-1/0 0.0015 25 
3313 Plain 61 62 ECDE 300-1/0 ECDE 300-1/0 0.0032 82 
2313 Plain 60 64 ECD 225-1/0 ECD 225-1/0 0.0032 81 
1080 Plain 60 47 ECD 450-1/0 ECD 450-1/0 0.0025 49 
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and the worst case skew between P & N of differential traces will be different in warp 

and fill direction due to difference in glass dimensions. 

Although the PCB dielectric is inhomogeneous, it is common for the dielectric 

fabricators to specify the effective DK of the material at a particular frequency. The 

effective DK is calculated as a weighted average of the volume percentage of the glass, 

resin and their respective DK’s. It is to be noted that density of glass is more than density 

of resin due to which the percentage of the glass by weight is not same as the percentage 

of glass by volume.  

 

𝜺𝒓𝒆𝒇𝒇
= 𝑽𝒓𝒆𝒔𝒊𝒏 ∗  𝜺𝒓𝒓𝒆𝒔𝒊𝒏

+ 𝑽𝒈𝒍𝒂𝒔𝒔 ∗  𝜺𝒓𝒈𝒍𝒂𝒔𝒔
        (1) 

 

where 𝜺𝒓𝒆𝒇𝒇
 is the effective DK of the dielectric, 𝜺𝒓𝒓𝒆𝒔𝒊𝒏

 is the DK of resin, 𝜺𝒓𝒈𝒍𝒂𝒔𝒔
 is the 

DK of glass, Vresin is the volume percentage of resin, Vglass is the volume percentage of 

glass. The inhomogeneity in dielectrics can be ignored at low frequencies but at higher 

frequencies in the range of few GHz, the discontinuities become electrically small and the 

dielectric can no longer be treated as homogeneous material with a bulk dielectric 

constant [1], [6], [12].  
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3. ORIGIN AND IMPACT OF GLASS WEAVE SKEW 

The electromagnetic waves travel at the speed of light in any given medium. The 

velocity of EM wave in a medium is given by 

 

      𝒗 =
𝒄

√𝜺𝒓𝒆𝒇𝒇

           (2)  

 

where 𝑐 is the velocity of light in free space, 𝜀𝑟𝑒𝑓𝑓
 is the relative permittivity or dielectric 

constant of the medium.  It is evident from the equation that the wave travels slower in a 

medium with higher DK than in a medium with lower DK.  

 

3.1. ORIGIN OF GLASS WEAVE SKEW 

The dielectric/laminate is a composite formed using glass with higher DK and 

resin with lower DK, the effective DK seen by the traces will be different based on the 

relative location of the trace with respect to glass bundle. Cross section of a differential 

microstrip traces is shown in fig. 3.1. 

 

     

Figure 3.1. Differential Microstrip. Trace 1 is on glass & trace 2 on resin (left), trace 1 & 
trace 2 are on both glass and resin 

 

In fig. 3.1 (left), trace 1 falls directly above the glass bundle and trace 2 falls on 

resin. The effective dielectric constant experienced by trace 1 is higher than effective DK 

experienced by trace 2. EM wave on trace 1 travels at a lesser velocity than on trace 2 

which will result in skew. Skew between the differential pair is dependent on the relative 

location of the traces with respect to the glass bundles. From fig. 3.1 (right), both P &N 

traces experience similar effective DK since they fall both on glass and resin. Skew 

between diff. pair in this case can be expected to be lesser than previous case. Due to the 
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manufacturing tolerances, the PCB fabricator cannot control the location of the trace with 

respect to glass bundles resulting in trace to trace & board to board variation in skew 

even though the layout is same. Cross section of a differential stripline traces is shown in 

fig. 3.2. 

 

 

Figure 3.2. Differential Stripline. Bundles are aligned(left), not aligned (right) 
 

In the case of differential stripline, skew is dependent not only on the relative 

location of traces with respect to glass bundles but also the relative location of glass 

bundles from dielectric above the trace to the glass bundles in the dielectric below the 

trace. Worst case skew will be higher when the bundles are aligned as shown in fig.3.2  

(left) compared to when bundles are not aligned as in fig.3.2 (right).  

 

3.2. IMPACT OF GLASS WEAVE SKEW 

3.2.1. S-Parameters.  Due to the difference in wave velocities on different traces, 

signals arrive at the destination at different times. In a differential pair transmission line 

as shown in fig. 3.3, a phase difference between the S13 and S24 exists. 

 

 

Figure 3.3. Differential pair transmission line 
 

S-parameters can be expressed as either a combination of magnitude and phase or 

real and imaginary part. When S31& S42 are exactly out of phase, they can be expressed as 
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S31 = a + j b        (3) 

S42 = -a - j b        (4) 

  

Differential insertion loss, Sdd21 can be calculated from the single ended s-

parameters using the equation 3.  

 

Sdd21=0.5*(S31+S42-S32-S41)     (5) 

 

Sdd21 can be zero when S31 and S42 are exactly out of phase. Hence we see a big 

dip in Sdd21 [16] when there is a large skew between P & N signals. Single ended 

measured s-parameters of a test vehicle with high P & N skew is shown in fig. 3.4 

 

 

Figure 3.4. Measured single-ended and differential insertion loss of diff. pair with big 

skew 

 

Phase of S13 and S24 are plotted in fig. 3.5. It can be observed that the phase 

difference between S13 and S24 is nearly 180° in the frequency range 6 – 8 GHz and 17 – 

20 GHz, hence there is a big dip in differential insertion loss in those frequency ranges. In 

the frequency range 12 – 15 GHz, there is small phase difference between S13 and S24. As 

a result, the differential insertion loss is close to single ended insertion. Fig. 3.6 shows the 

zoomed in phase of S13 and S24 in the frequency range 3GHz-8GHz. 
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Figure 3.5. Measured single-ended phase – S13 & S24 

 

 

Figure 3.6. Measured single-ended phase – S13 & S24 (Zoomed in) 
 

3.2.2. Eye Diagram.  The eye of differential signal will be degraded significantly 

since the differential loss is increased because of a big dip. Eye diagram at transmitter 

and receiver are plotted in fig.3.7. 
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Figure 3.7. Eye of differential signal. At the transmitter (left), at receiver (right) 

 

Fig. 3.7 (left) shows the eye diagram of a differential signal at the transmitter 

whose data rate is 10 Gbps. After the signal passes through a channel whose loss is 9 dB 

@ 5GHz, the eye of differential signal at receiver is shown in fig. 3.7 (right). The eye 

height and eye width is reduced but it is due to the channel loss. Fig. 3.8 shows the eye 

diagram of differential signal at the receiver after passing through a channel with same 

loss but with an 80 ps skew contributed by glass weave. Skew between P & N has 

completely closed the eye. Hence it is very important to reduce the skew. 

 

Figure 3.8. Eye of differential signal at the receiver afterpassing through channel with big 

skew 
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4. REVIEW OF SKEW MITIGATION STRATEGIES 

Several strategies have been proposed by various studies performed earlier. A 

review of these strategies and their limitations is presented in this section. 

 

4.1. TRACE ROTATION 

Several studies [2], [3], [5], [7], [17], [19], [20] have indicated that the skew 

between differential pairs can be reduced by rotating the traces. From straight traces 

shown in fig. 4.1(left) it can be understood that the skew between diff. pair will be 

considerable since one of the trace is on glass bundle and the other is on resin. By 

rotating the traces by 10° with respect to glass bundle as shown in fig. 4.1(right), both the 

P and N traces pass through glass predominant and resin predominant regions thereby 

partially compensating the difference in velocities of signals travelling on P & N traces.  

 

               

Figure 4.1. Straight trace routing on woven glass (Left), 10° rotated trace (right) 
 

Maximum reduction in skew is claimed to be obtained when the traces are rotated 

at an angle of about 45°[2]. The difference in percentage of the glass and resin through 

which the traces traverse will be minimized when the traces are routed at about 45°. 

Rotating the traces by 45° cannot completely eliminate the skew. In fig. 4.2 (left) , P trace 

passes through resin region (highlighted by yellow rectangular regions)  where as N trace 

passes though glass region in which case skew will be observed. By visually inspecting 

P N 
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fig. 4.2 (right), it can be observed that both P & N traces goes through identical amount 

of glass and resin in which case much less skew will be observed .  

 

      

Figure 4.2. Traces rotated by 45°. P is on resin & N is on glass (left), P & N on equal 
amounts of resin and glass (right) 

 

Limitation of rotating the traces is that it takes more space than straight traces. 

Since the routing space on the PCB’s is limited, board sizes have to be increased so as to 

accommodate the rotated traces which eventually increases the cost. Another constraint 

on PCB designs is location of components and ASICs. In few cases it may not be 

possible to use rotated traces when the ASICs are located at same height on board layout 

as shown in fig. 4.3. Rotating the traces will also be difficult in back plane applications. 

This issue can be solved by rotating the panel instead of traces which is explained in the 

next sub section. 

 

  

Figure 4.3. ASICs  located on same vertical level on board layout 
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4.2. PANEL ROTATION 

In cases where the traces cannot be rotated like in backplane applications, the 

panel (PCB dielectric) itself can be rotated with respect to the trace as in fig 4.4. A larger 

PCB panel is needed as the corners of the rotated panel needs to cut off and discarded 

which will result in more material costs. Rotating the panels will increase the material 

cost significantly on large PCBs of sizes in the range of 15”-25” long. It is estimated that 

a mere 10° rotation of the panel will lead to 30% increase in cost to fabricate PCBs of 

size 18” X 24”. 

 

            

Figure 4.4. Rotated panel with respect to trace 
 

Rotating the laminate panel is an effective strategy for smaller size boards since 

the material wastage will be less. 

 

4.3. ZIG-ZAG ROUTING 

Zig-zag routing can be employed to minimize Skew [9]. This design is a slight 

modification of rotating the traces at angle with respect to glass bundle. Advantage of this 

strategy is that it can be used when two ASICs are located at the same height on the board 

layout as in fig.4.5. 

The obvious limitation of this strategy is the routing space. Moreover the length 

of the traces/links will be more when compared to straight traces thereby increasing the 

loss of the channel. As it is widely known that the eye of the signal degrades with 
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increase in data rates and with increase in loss at the Nyquist frequency, it is important to 

consider if the BER is in acceptable range with this increase in loss due to increased 

length of the channel by zig-zag routing.  There is an additional degradation in the eye 

due to multiple discontinuities.  

 

 

Figure 4.5. Zig-Zag routing between two ASICs 
 

4.4. USING SPREAD GLASS 

The local variations in the dielectric constants in the substrate can be reduced by 

reducing the gaps in the glass weave bundle which are filled with the epoxy material 

(resin) when the laminates are fabricated. Thickness of the glass bundles can also be 

reduced so as to reduce the effective DK difference between trace falling on glass bundle 

and the trace that falls on resin region. Square glass fabric is obtained after weaving 

which is spread by spreading companies (may be same as glass company). Spreading 

process reduces the thickness of glass and reduces the gaps between glass bundles. Cross-

section and top view of 1037 square and spread glass are shown in fig. 4.6 & fig 4.7. 

 

           

Figure 4.6. Cross–Section view of 1037 glass. Square glass (left), spread glass (right)  
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Figure 4.7. Top view of 1037 glass. Square glass (left), spread glass (right)  
 

Spread glass is being more widely adopted in the industry as it is shown to reduce 

skew at a mere 5% increase in cost. Super spread glass with ultra-thin glass bundles are 

also available but at a premium price. For low volume, high cost products like routers and 

servers it is common to use super spread glass. But for high volume products which are 

cost sensitive, it is not feasible to use super spread glass. This study will focus on the 

performance in terms of skew of spread glass and not on super spread glass. 

 

4.5. USING LOW DK GLASS 

Low DK glass has a lower dielectric constant (~ 4.5) compared to the standard 

glass (DK ~ 6). Reducing DK difference between glass and resin by using low DK glass 

is suggested to be one of the ways to reduce the skew [5], [9]. The dielectric constants of 

different materials are tabulated in table 4.1.  

 

Table 4.1. Dielectric constants of glass and resin 

Material Dielectric 

constant (dk) 

Standard Glass  ~ 6 

Low DK Glass  ~ 4.5 

Resin  ~ 3.5 

Ultra-Low DK glass  ~ 3.5 
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Several studies [2], [5], [11] reported that the worst case skew when straight 

traces are routed on E-glass can be as high as 15ps/inch. Moving to low DK glass 

increases cost of PCB by 25% but has an added advantage of lower dielectric loss. In this 

study, the performance of low DK glass in terms of skew is measured on the designed 

test vehicles. Low DK glass is evaluated to see if this strategy can be employed to offer a 

cost effective solution to reducing skew on 15”-20” long traces in this work. Although 

low DK glass has lower DK compared to standard glass, there is still a difference 

between DK’s of glass and resin. Few of the glass manufacturers offer ultra-low DK 

(~3.5) glass but at much higher cost. 

 

4.6. USING MULTI-PLY DIELECTRICS  

Intra-pair skew can be mitigated by using the averaging effect when multiple 

ply’s of glass fabrics are used when a dielectric is made. Stripline routed on single ply 

and dual ply fabric are shown in fig.4.8 (left) & fig. 4.8 (right).  

 

    

Figure 4.8. Stripline on 1-ply glass dielectric (left), 2-ply glass dielectric (right)  
 

Gaps in one ply may be covered partially/fully by the glass bundles of second ply 

as shown in fig 4.8 (right) thereby reducing the inhomogeneity. It can be observed that 

the glass fabric needs to be thinner for dual ply when compared to single ply to make a 

dielectric of particular thickness. The worst case skew occurs when all the four glass 

bundles line up in dual ply dielectric case which is highly unlikely.  
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5. MEASUREMENT OF GLASS WEAVE SKEW 

5.1. DESIGN OF TEST VEHICLES 

Test vehicles are designed to experimentally measure the skew on 1-ply spread 

glass, 2-ply spread glass, in fill and warp directions, standard glass and low DK glass. Six 

different test vehicles with three different trace pitches namely Pitch ‘A’, Pitch ‘B’, Pitch 

‘C’ are fabricated whose stack up is specified in fig. 5.1.   

 

 

Figure 5.1. Stack up of test vehicles 
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Each test vehicle is a 20-layer board with microstrip differential traces on top and 

bottom layers, stripline differential traces in inner layers. The microstrip traces are routed 

on only 1-ply spread glass whereas stripline differential pairs are routed on 1 ply as well 

as 2 ply spread glass. All the traces are straight traces (not rotated) routed in west-east 

direction on layers top, T03, T05, T07, T09 and in the north-south direction on layers 

T12, T14, T16, T18, bottom. The stack up is symmetrical about layer 10, 11. For 

example, T03, T18 are in 2-ply spread glass-X; T05, T16 are in 2-ply spread glass-Y; 

T07, T14 are in 1-ply spread glass-X; T09, T12 are in 1-ply spread glass-Y.  

Glass dimensions like glass bundle thickness, bundle width and gaps in the glass 

fabric vary with the glass style. These details are not specified in standards like IPC but, 

can be obtained from the glass manufacturer or laminate manufacturer. Table 5.1 shows 

the glass widths of 1-ply and 2-ply spread glass in warp and fill directions. It can be 

observed that the glass dimensions are different in warp and fill direction. The degree of 

spreading also contributes to the difference in glass dimensions in warp and fill direction. 

As the warp yarn are held tight, spreading is not very effective on warp when compared 

to fill direction. 

 

Table 5.1. Glass bundle widths in fill and warp directions (from laminate fabricator) 

Glass Style Warp 

Width 

(mils) 

Fill 

Width 

(mils) 

1-ply spread glass 14 16 

2-ply spread glass 11 17 

 

The thickness of each layer, dielectric constants, and loss tangents of each 

laminate is specified in the fig. 5.1. Dielectric fabricator usually specifies the effective 

DK, DF of the laminate from the DK of glass and resin as described in eq.1. On pitch ‘A’ 

test vehicles, the center to center distance of the traces in all layers is ‘A’ mils and the 

linewidths of the differential pairs are adjusted to give 100 ohm differential impedance on 

the specified stack up. The center to center distance between the traces is fixed to B mils 
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on pitch ‘B’ test vehicle and the trace widths are adjusted to give 100 ohm differential 

impedance similar to other boards.   

 

5.1.1. Footprint Via Optimization.  Top launch connectors like 2.4mm, 3.5 mm, 

2.92 mm, etc. take much more space than microprobes. Moreover, significant cost of 

connectors is involved since each differential pair needs 4 connectors. To address the 

problem of space constraints and connector costs, 1000um GSSG microprobe footprints 

are chosen for test vehicles. Differential traces routed along the west-east direction on 

layers Top, T03, T05, T07, and T09 can be seen on board layout as in fig. 5.2.  

 

            

Figure 5.2. Footprints on test vehicles. West-East direction (left), North-South direction 

(right)  
 

It is important to design the launch carefully in order to minimize the reflections 

and ensure the maximum transmission of energy into the transmission line. The fields 

near the probe launch are non-TEM mode due to the presence of discontinuities like vias. 

Hence full wave simulations for the probe footprint alone are performed in HFSS so as to 

minimize the return loss. The target return loss is -20 dB over a frequency range 10 MHz 

– 20 GHz.  When the return loss cannot be brought below -20 dB below 20 GHz, the 

target is relaxed to -20 dB up to 15 GHz and below -15 dB between 15 GHz and 20 GHz. 

Fig. 5.3 shows the HFSS models of microstrip and stripline (T03) probe launches. 

Additional space of 50 mil is added in both +Z and –Z directions so as not to disturb the 

fields. All the boundaries are defined as radiation boundary.  Discrete ports are used 
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between the probe landing pads and ground to excite the differential pair. A wave port is 

defined on the trace side. Adaptive meshing is performed at 20 GHz and the maximum δ 

between consecutive passes for adaptive solution is specified as 0.02.  

  

   

Figure 5.3. HFSS model of probe launch for microstrip (left), Stripline (right) 
 

The signal vias of striplines T03, T05, T07, and T09 are back drilled from the 

bottom leaving a 7 mil long via stub.  Back drilled vias for T03 is shown in fig. 5.4.  

 

 

Figure 5.4. Back drilled signal vias in probe launch for stripline T03 
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Optimized probing pad footprints are used on layout and controlled impedance 

differential traces are routed. Simulated return loss of the probe launch for microstrip 

(Top), T03, T05, T07, T09 are shown in fig. 5.5 – fig. 5.9.  

 

 

Figure 5.5. Return Loss – Probe launch for Top layer 
 

 

 

Figure 5.6. Return Loss – Probe launch for T03 stripline layer 
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Figure 5.7. Return Loss – Probe launch for T05 stripline layer 
 

 

Figure 5.8. Return Loss – Probe launch for T07 stripline layer 
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Figure 5.9. Return Loss – Probe launch for T09 stripline layer 
 

5.1.2. Routing Strategy.  Differential pairs routed on glass weave are shown in 

fig. 5.10. During the PCB fabrication, the location of the trace with reference to the glass 

bundle is statistical and it cannot be controlled. Several studies which were done in the 

past placed the traces on the board randomly. When done so, the probability of hitting the 

worst case skew is left to chance.  

 

  

Figure 5.10. Differential pair routing strategy 
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To increase the probability of hitting worst case skew, the traces are routed in 

such a way that relative distance of trace to the bundle is increased by an offset (d) of 2 

mils for every differential pair as shown in fig. 5.10. 

Each of the test vehicles has 180 traces which are 15 inch long in various layers. 

Fig. 5.11 shows the top side of the test vehicle.  

 

 

Figure 5.11. Top side of test vehicle 
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Footprints of 1000um GSSG probes can be seen on top side of the board. 

Differential pairs are routed in west-east direction on layers Top, T03, T05, T07, and T09 

which can be seen from the silk screen on top layer. The excess via stubs on T03, T05, 

T07 and T09 are back drilled from bottom. Bottom side of the test vehicle is shown in fig 

5.12. 

 

 

 Figure 5.12. Bottom side of test vehicle 
 

All the differential pairs in layers T12, T14, T16, T18 and bottom are routed in 

north to south direction which can be seen on the silk screen on bottom layer. The via 
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stubs are back drilled from top on layers T12, T14, T16, T18, Bottom. The probe 

footprints for these differential pairs can be seen on bottom layer in fig. 5.12. 

 

5.2. MEASUREMENT SETUP 

GTL4060 probing station from GigaTest labs is used to position the microprobes 

and the test vehicle. Agilent PNA E8363B (10MHz - 40GHz) is used to measure the s-

parameters of the differential traces. Low loss PNA grade cables are used to connect the 

microprobes to the PNA as shown in the fig. 5.13. Care has to be taken to make sure that 

PNA cables do not exert pressure on the probes. The probes are extremely sensitive and 

can break very easily. The probes are mounted on the probe positioners tightly and the 

test vehicle is held stable using the PCB fixture kit. A suction pump is used to make the 

PCB fixture kit stationary. The probe can be moved in X, Y, Z directions using the knobs 

on the probe positioners. The microprobes can be landed on the probing pads carefully 

using the knobs on the probe positioners by looking into the microscope. Close up picture 

of probe landing on the test vehicles is shown in fig. 5.14 (left), picture when viewed 

from microscope is shown in fig. 5.14 (right).  

Ground flaps are usually 50um lower in height than the signal pins. The probe can 

be tilted using a knob on the probe positioner in order to make the tips of signal pins in 

same vertical level and tips of ground flaps in same vertical level. The ground flaps touch 

the ground pads when moving the probe downwards before the signal pins touch signal 

pads. The probes have to be moved about 2-3 mils downwards after the signal pin makes 

a contact with the pads in order to get a good electrical contact.  

 Frequency range of the measurement is 10 MHz- 20GHz. It has been observed 

that 1000um GSSG probes are good only up to 15 GHz. Hence while post processing 

only data till 15 GHz is used. In order to measure up to a higher frequency range, 

footprints have to be changed to 750 um GSSG, 500um GSSG or 1000um GSG-GSG 

probes. Power level is set to -5 dBm, IF bandwidth is set to 5 KHz to reduce the 

measurement time.  Effect of PNA cables and the microprobes are calibrated out using 

SOLT calibration to move the reference plane to the end of the probes. Calibration is 

performed using CS3-1000 calibration substrate from GGB industries as shown in fig. 

5.15.  
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Figure 5.13. Measurement setup – PNA and Microprobe station 
 

                

Figure 5.14. Probe landing on DUT. Close up view (left), from microscope (right) 
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Figure 5.15. Probe calibration on CS3-1000 substrate. Short (top left), Open (top right), 
load (bottom left), thru (bottom right) 

 

Transient solution in ADS software from Keysight technologies is used to 

calculate TDT from the measured s-parameters. ADS circuit is shown in fig 5.16.   

 

 

Figure 5.16. ADS Circuit for TDT from S-Parameters 



 

 

29 

TDT13 is the voltage seen at port 3 when a step excitation is given at port 1 where 

as TDT24 is the voltage seen at port 4 when a step signal is given at port 2. TDT13, 

TDT24 is plotted in fig 5.17. Skew is defined as the difference in zero crossing times of 

TDT13 and TDT24. 

 

 

Figure 5.17. TDT from S-Parameters 
 

5.3. RESULTS AND DISCUSSION 

S-parameter measurements are taken on differential microstrip and stripline traces 

on pitch ‘A’, ‘B’, ‘C’ routed on glass X, Y in North-South, West-East directions. Skew 

per inch is obtained by dividing the skew calculated from TDT by 15 since the traces are 

15 inch long. The comparison of skew per inch between pitch ‘A’, ‘B’, ‘C’ routing in 

North-South, West-East directions is presented in this section. A comparison of skew on 

stripline between glass X, Y on 1-ply and 2-ply spread glass is also presented. Two 

boards with differential trace pitch ‘A’, one board with pitch ‘B’ and three boards with 

pitch ‘C’ were fabricated. Boards can be identified by the names B1, B2, B3 in the below 

plots. 



 

 

30 

5.3.1. Microstrip – Pitch A, B, C.  Comparison of pitch A, B, C differential 

routing in terms of skew per inch on microstrip traces in West-East, North-South 

directions are plotted in fig. 5.18 & 5.19. It can be observed from below plots that the 

skew per inch is considerably different on different routing directions. 

 

 

Figure 5.18. Skew on microstrip in West-East routing – Pitch A, B, C 
 

 

Figure 5.19. Skew on microstrip in North-South routing – Pitch A, B, C 
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5.3.2. Stripline – Pitch A, B, C.  Skew comparison of pitch A, B, C stripline 

routing on 1-ply, glass X in West-East and North-South routing is shown in fig. 5.20 & 

5.21. The measured worst case skew varies with the direction in which the traces are 

routed. 

 

 

Figure 5.20. Skew on stripline in West-East routing – Pitch A, B, C 
 

 

Figure 5.21. Skew on stripline in North-South routing – Pitch A, B, C 
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5.3.3. Stripline – Pitch A: Glass X vs. Y.  Comparison of skew on glass X and Y 

routed in West-East, North-South directions on 1-ply, 2-ply glass styles is plotted in fig. 

5.22 & 5.23. The maximum measured skew on glass Y is less than glass X. 

 

 

Figure 5.22. Skew on Pitch A, 1-ply glass style - Glass X vs Y 
 

 

Figure 5.23. Skew on Pitch A, 2-ply glass style - Glass X vs Y 
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5.3.4. Stripline – Pitch C: Glass X vs. Y.  Comparison of skew on glass X, Y in 

West-East, North-South direction on 1-ply and 2-ply glass is plotted in fig. 5.24 & fig. 

5.25. The maximum measured skew on glass Y is slightly less than glass X. 

 

 

Figure 5.24. Skew on Pitch C, 1-ply glass style - Glass X vs Y 
 

 

Figure 5.25. Skew on Pitch C, 2-ply glass style - Glass X vs Y 
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From measurement results shown in fig. 5.18 – 5.25, the worst case measured 

skew varies with glass material type, glass weave style, and the direction in which the 

traces are routed. In some cases, the maximum measured skew was 2ps/inch whereas in 

some other case, the maximum measured skew is below 0.5ps/inch. Hence by correct 

choice of glass style, glass material, direction of routing, glass weave skew can be 

bounded within 0.5ps/inch. The maximum skew measured on the boards is not the worst 

case skew as the bundle placement and trace locations with respect to the glass bundles 

cannot be controlled in fabrication. Therefore, simulation methodology along with 

measurement is necessary to make any solid conclusions.  
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6. FULL WAVE MODELING OF GLASS WEAVE 

Few studies [15] performed earlier have modelled the fiber weave as a thick glass 

sheet with rectangular holes punched in it and resin fills the hole/gaps in the glass sheet. 

In some studies [4], [13] glass weave is modelled as 1D cascading of transmission lines 

with different propagation constants and characteristic impedances. In this work a full 

wave model [7] which accurately describes the spread glass instead of square glass is 

developed. Since the focus of this study to accurately find the worst case skew, full wave 

modeling is chosen although it comes at the cost of increased simulation time and 

computational resources. 

 

6.1. MODELING STRIPLINE ON 1-PLY SPREAD GLASS 

Full wave modeling of glass weave is done in HFSS. The dimensions and relative 

locations of the glass and traces cannot be known unless looked at the board cross-

section. Hence the test vehicle is cut and pictures of PCB cross-section are obtained using 

SEM (Scanning Electron Microscope) as shown in fig. 6.1.  

 

 

Figure 6.1. Cross-Section of a stripline obtained using SEM 
 

The dimensions of the glass bundles, traces are calculated using Image tool in 

Matlab. The cross-section from SEM image is replicated in Ansys HFSS as in fig. 6.2 

(top) & 6.2 (bottom). The glass bundles are modelled as ellipse swept along a sine curve. 

The simulation model is 102.9 mil long with 6 glass bundles along its length and width.  
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Figure 6.2. Full wave model of stripline embedded in glass weave fabric. Top View 
(Top), Cross-section view (Bottom) 

 

Wave ports are used to excite the structure with TEM mode. The PCB cross-

section is not uniform as the dielectric is a composite of glass and resin. Since the port 

should see uniform cross-section to excite a TEM mode, the traces are extruded outside 

the glass bundle region by 10 mils as shown in fig. 6.2 (top). The extruded portion is later 

de-embedded in HFSS. Adaptive meshing is done at 20 GHz solution frequency with 

maximum delta between consecutive passes being 0.001. Meshing should be dense where 

the currents or fields change rapidly. Hence, meshing on trace, ports, and glass bundles is 

increased by specifying the maximum mesh size constraint. Max mesh size on trace is set 

to 1mil, on port is set to 2 mils and inside the glass bundles is set to 2 mils. Radiation 

boundary condition is used on all sides. To reduce the simulation time, HPC (High power 

computing) with 6 cores is used. 
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 To make sure that the S-Parameter accuracy is not lost when multiple S-Parameter 

blocks are cascaded, sanity check is performed to compare the S-Parameters from a 411.6 

mils long full wave model shown in fig. 6.3 to the S-parameters obtained from cascading 

four S-parameter blocks of 102.9 mils long model as shown in fig.6.4.  

 

 

Figure 6.3. Full wave model of 411 mil long stripline embedded in glass weave fabric.  
 

 

 

Figure 6.4. ADS circuit – Cascading (4 X 102.9 mil)  
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Return loss of full wave model and cascaded model are plotted in fig. 6.5 & 

insertion loss is plotted in fig 6.6. 

 

Figure 6.5. Return loss – Full wave vs Cascaded Model  
 

 

Figure 6.6. Insertion loss – Full wave vs Cascaded Model 
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Comparision of unwrapped phase of S13 and S24 between full wave model and 

cascaded model is shown in  fig. 6.7. 

 

 

Figure 6.7. Unwrapped Phase – Full wave vs Cascaded Model 
 

Insertion loss and unwrapped phase at one frequency (19.90 GHz) for full wave 

model and cascaded model is shown in table 6.1. The difference in magnitude is 0.001dB, 

0.1° degree in phase. Since the difference in cascaded model and full wave model is very 

less, the s-parameters of 102.9 mils model can be cascaded to get s-parameters of a 15 

inch long transmission line.  

 

Table 6.1 Insertion loss and unwrapped phase @ 19.9 GHz 
 

dB (S13) dB(S24) Unwrapped 

phase(S13) 

Unwrapped 

phase(S24) 

Full Wave 

Model 

-1.132 dB - 1.140 dB -517.659° -514.144° 

Cascaded 

Model 

-1.133 dB - 1.139 dB -517.725° -514.203° 
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6.2. VALIDATION OF SIMULATION MODEL 

In simulation, s-parameters of 15 inch long line are obtained by cascading several 

s-parameter blocks of a smaller full wave simulation model (102.9 mils long). The 

dielectric constant (DK) and loss tangent (DF) of glass and resin in the full wave 

simulation model are tuned to get a good correlation to the measurement. The tuned DK, 

DF values of glass and resin are tabulated in table 6.2. 

 

Table 6.2 DK, DF of Glass and Resin from Correlation 

Material DK DF 

Glass 6 0.0058 

Resin 3.65 0.02 

 

Unwrapped phase of S13, S24 are plotted in fig. 6.8 & fig. 6.9. Unwrapped Phase 

values of simulation and measurement at one frequency (19.68 GHz) are tabulated in 

table 6.3. 

 

 

Figure 6.8. Unwrapped Phase (S13)  – Simulation vs Measurement 
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Figure 6.9. Unwrapped Phase (S24)  – Simulation vs Measurement 
 

Table 6.3 Unwrapped phase comparison between simulation and measurement 

 

 

 

 

 

 

From table 6.3, the phase difference in S13 and S24 between simulation and 

measurement is only 0.3% of the phase of simulation. Hence it can be treated as good 

correlation between simulation and measurement in terms of phase. 

Magnitude comparison of S13, S24 between simulation and measurement are 

plotted in fig. 6.10 & 6.11. It can be observed that the maximum difference in dB 

between simulation and measurement is less than 1 dB. 

 
Unwrapped 

phase(S13) 

Unwrapped 

phase(S24) 

Simulation -18,705° -18,562° 

Measurement -18,680° -18,516° 
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Figure 6.10. Magnitude (S13)  – Simulation vs Measurement 
 

 

Figure 6.11. Magnitude (S24)  – Simulation vs Measurement 
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As mentioned earlier, skew is calculated as difference in zero crossing times of 

TDT. TDT between ports 1, 3 is defined as TDT13. TDT between ports 2, 4 is defined as 

TDT24. TDT comparison between simulation and measurement is plotted in fig. 6.12. 

   

 

Figure 6.12. TDT – Simulation vs Measurement 
 

Zero crossing time of TDT, skew of 15 inch trace, skew per inch are tabulated in 

table 6.4. The skew between simulation and measurement is matched within a margin of 

0.2 ps/inch. 

 

Table 6.4 TDT zero crossing times and skew – Simulation vs Measurement 

 
TDT24 (Zero 

Crossing) 

TDT13 (Zero 

Crossing) 

Skew (ps)  

(15 Inch) 

Skew per 

Inch (ps) 

Measured 2.733 ns 2.713 ns 20 1.281 

Simulated 2.735 ns 2.714 ns 21 1.407 
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6.3. RESULTS AND DISCUSSION 

6.3.1. Microstrip – Pitch A.  A differential microstrip model as shown in fig. 

6.13 is created similar to the stripline model and correlated DK, DF of glass and resin are 

used in this model. In simulation model, center to center distance between the traces is 

‘A’ mils and the trace width and spacing is adjusted to get 100 Ohm differential 

impedance for pitch A model.  

 

 

Figure 6.13. Full wave model of Microstrip 
 

Pitch of glass bundle is divided into 10 steps and is used as step size for sweeping 

the location of differential trace with respect to glass bundles to complete one cycle from 

n = 0 to n = 10. Trace center is aligned with the center of glass bundle for n = 0 & n = 10. 

These models are simulated in HFSS and s-parameters are extracted. Skew is calculated 

using the methodology explained previously. The skew vs trace location is plotted in fig. 

6.14. It is observed that the maximum simulated skew on pitch A is 4ps/inch whereas the 

maximum measured skew is 3ps/inch. 
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Figure 6.14. Microstrip – Pitch A – Skew vs trace location 
 

6.3.2. Stripline – Pitch A.  Similar to the trace sweep in microstrip case, the 

location of trace is shifted in 10 steps to complete one full cycle on pitch A stripline 

differential pair as shown in fig. 6.15.  

  

  

Figure 6.15. Stripline on 1-ply glass.  
 

Skew vs trace location for pitch A, B and C is plotted in fig. 6.16.  The worst case 

skew in 1-ply stripline case can be as high as 9ps/inch. Similar study can be performed 

using different glass materials and glass styles to quantify the worst case skew on them. 
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Figure 6.16. Skew vs location of trace – Pitch A 
 

It is observed in the SEM pictures that bundle dimensions like bundle widths, 

bundle gaps, bundle pitch vary statistically. From limited number of SEM images, 

nominal and deviation of glass dimensions of 1-ply glass is calculated and is tabulated in 

table 6.5. 

 

Table 6.5 Bundle dimensions from SEM in fill direction 

 

 

 

 

 

  

 

To evaluate the impact of the statistical variations on skew, simulation models 

with variations in glass dimensions have to be developed and studied. Due to many 

variables like glass thickness, width, thickness, trace thickness, trace pitch, dielectric 

height, etc., the number of variations can be very large. 

Parameter 

Dimensions from SEM 

Nominal 

(mils) 

Deviation 

(mils) 

Fill width 15.36 0.62 

Fill thickness 1.82 0.06 
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6.3.3. Methodology to Obtain the Worst Case Skew. As the relative location of 

traces with respect to glass bundles varies statistically, the probability to hit the worst 

case skew from limited measurements on test vehicles, a methodology using 

measurements and full wave simulations is employed. Methodology can be summarized 

in flow chart as shown in fig. 6.17 

 

 

Figure 6.17. Methodology to capture the worst case skew on a particular glass 
 

 The process can be repeated with different glass weave styles, direction of 

routing, glass materials like standard glass, low Dk glass, multiple ply dielectrics to 

obtain the worst case skew in each case and make design decisions based on the worst 

case skew numbers 
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7. CONCLUSION AND FUTURE WORK 

Mitigation of glass weave skew using a combination of low DK spread glass, 

laminate with multiple ply glass and routing direction is studied in this thesis. A 

measurement and simulation methodology to mitigate the worst case skew is presented in 

this work. Some conclusions from this work are 

 Worst case skew on microstrip differential pair can be as high as 4 ps/inch. 

 Worst case skew on stripline differential pair can be as high as 9ps/inch. 

 The worst case skew on microstrip and stripline differential pairs can be 

bounded to below 0.5 ps/inch by using a combination of low DK glass material, 

glass weave style, multi-ply dielectrics and the routing direction. 

 

The simulation methodology can be applied to quantify the reduction in the worst 

case skew on low DK glass when compared to standard glass. A more robust way of 

analyzing the effect of manufacturing variations on skew using design of experiments 

need to be developed.  
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