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ABSTRACT

We develop an efficient method to model RF immunity of multiwire cable harnesses

and study differential P/N skew effects on channels, channel performance and specifically

on the eye diagrams at the SerDes receiver.

External radiation can induce unwanted signals in transmission lines. For example,

external radiation from an antenna induces common-mode currents on the outer surface

of cable shields. This common-mode signal makes its way through the shied due to its

imperfections, inducing the inner common mode. When twisted pairs inside the cable are

not balanced, inner commonmode is in turn converted to the differential mode, which might

compromise performance of sensitive electronics connected to the cable harness. In paper

I, we develop the equivalent circuit model and the methodology for prediction of the worst-

case envelope for differential mode signals induced in cable harnesses placed over a ground

plane. The cable harness consists of twisted wires which are slightly unbalanced within the

harness connector region. The induced signals are calculated using the transmission line

theory avoiding the need for any 3D calculations. The results are validated by experimental

measurements.

Differential P/N skew is one of the main performance-limiting issue for high-speed

SerDes links. The P/N skew is arrival time difference between two single-ended signals in

a differential pair. It is commonly caused by unmatched delays of P/N lines of a differential

pair but even for perfectly matched physical length cases, P/N skew can be caused by any

other asymmetry between P/N lines. In the printed circuit board, relative location of fiber

bundles with respect to conductors is random and results in uncontrolled P/N skew. In

papers II, III, we derive analytical equations for S-parameters as a function of the P/N skew

and frequency for weakly and strong coupled transmission lines. We also study the P/N

skew effect on SerDes performance by measurements.



vi

ACKNOWLEDGMENTS

First of all, I sincerely thank to my adviser Dr. Victor Khilkevich for his great

interest in my work and his assistance in the pursuit of these studies and the preparation of

this thesis. It would be impossible to finish my master program in electrical engineering

without him. I owe a deep gratitude to him.

I would like to thank Dr. James Drewniak for his teaching my courses. I am very

thankful for his encouragement in my studies and carrier.

My gratitude goes tomy committeemembers: Dr. David Pommerenke andAmendra

Koul for their input, valuable discussions and accessibility.

I wish to thank Amendra koul, Mike Sapozhnikov and Kartheek Nalla who were

involved in two of these projects. It was very interesting to interact with them.

I would like to thank all EMC lab faculty and students for all their help. I wish to

thank my dear friends especially students at EMC lab for enjoyable and great memories. It

has been great to know all of you during my time here at EMC lab.

Finally, I wish to thank to my family: my wife, Eleonora Chaladze, my son Lucas

Nozadze and my mother Eteri Lebanidze. It would be impossible to finish Mater program

in electrical engineering without their support.



vii

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ILLUSTRATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

SECTION

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. ELECTROMAGNETIC COMPATIBILITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. SIGNAL INTEGRITY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

PAPER

I. PREDICTIONOFWORST-CASERADIATION IMMUNITY INCABLEHAR-
NESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. DESCRIPTION OF CABLE BUNDLES AND SETUP . . . . . . . . . . . . . . . . . . . . . . . 6

3. CIRCUIT MODEL FOR RF IMMUNITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. OUTER COMMON MODE MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2. OUTER TO INNER COMMON MODE COUPLING MODEL . . . . . 12

3.3. INNER COMMON MODE TO DIFFERENTIAL MODE CON-
VERSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



viii

3.4. COMPLETE MODEL OF THE HARNESS . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4. PREDICTIONFOR INDUCEDDIFFERENTIALVOLTAGEANDVAL-
IDATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

II. EFFECTIVECHANNELBUDGETTECHNIQUEFORHIGH-SPEEDCHAN-
NELS DUE TO P/N SKEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2. TRANSMISSION LINE THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. CORRELATION EFFORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1. DIFFERENTIAL INSERTION LOSS DUE TO P/N SKEW .. . . . . . . . 26

3.2. DIFFERENTIAL TO COMMON MODE CONVERSION DUE
TO SKEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. THE P/N SKEW EFFECT ON EYE HEIGHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III. EFFECT OF TIME DELAY SKEW ON DIFFERENTIAL INSERTION LOSS
IN WEAK AND STRONG COUPLED PCB TRACES . . . . . . . . . . . . . . . . . . . . . . . . . 40

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2. TRANSMISSION LINE THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. CORRELATION WITH SIMULATIONS AND MEASUREMENTS. . . . . . . . 42

3.1. WEAK COUPLED DIFFERENTIAL PAIR . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2. STRONG COUPLED DIFFERENTIAL PAIR . . . . . . . . . . . . . . . . . . . . . . . . 45



ix

4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

SECTION

2. SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



x

LIST OF ILLUSTRATIONS

Figure Page

1.1. Elements of EMC modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

PAPER I

1. Model of shielded twisted pairs over metal table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. M Cross-section of cable harness connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Geometry of harness over metal table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. (a) Fields at the vertical segments of the harness. (b) Equivalent fields at the
vertical segments of the harness according to image theory. . . . . . . . . . . . . . . . . . . . . . . . 11

5. Setup for the transfer impedance measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6. Equivalent circuit model of outer to inner common mode coupling. . . . . . . . . . . . . . 13

7. Inner common mode current. Red lines represent different twisted pairs. . . . . . . . 14

8. Measurement setup of inner common mode to differential mode conversion. . . . . 14

9. Equivalent circuit for determined the inner mode conversion parameters. . . . . . . . 15

10. (Color online) Shorted end (inductive) behavior (a) Inductance: 4 nH Pair 1,7
(b) Inductance: 4 nH Pair 2,10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

11. Open end (capacitive) behavior (a) Capacitance: 0.3 pF Pair 1,7 (b) Capaci-
tance: 2 pF Pair 2,10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

12. Conversion parameters extracted from measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

13. Completed model for the harness RF immunity 1. Voltage sources, repre-
senting the vertically polarized electric field. 2. Radiation resistance of the
monopoles. 3. Outer common mode transmission line. 4. Current control
voltage source, representing outer to inner coupling. 5. Inner transmission
line. 6. Asymmetry capacitor and inductor for mode conversion. 7. Load
impedance of twisted pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

14. Setup for differential voltage measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

15. Instrument connection for differential voltage measurement. . . . . . . . . . . . . . . . . . . . . . 18

16. Measured differential voltage in the harness (different colors correspond to
different pairs) and the predicted worst-case envelope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xi

PAPER II

1. Schematic of coupled transmission line. 1-4 refers to single ended ports and
circled 1,2 refers to balanced ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2. (Color online) ADS circuit for simulating the insertion loss in the presence of
P/N skew in the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. (Color online) The insertion loss vs frequency, (a) material loss contribution
included in simulation results and (b) loss only due to the P/N skew. The P/N
skew swept from 0 to 30ps in step of 5ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. The insertion loss due to P/N skew vs frequency. The comparison between
simulation and analytical equation (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. The insertion loss due to P/N skew vs frequency for P/N skews swept from 0
to 30ps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6. The loss due to only skew vs P/N skew at 14GHz. Comparison between
simulations and analytical equation (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. a) ADS circuit for TDT simulation for finding skew in channel. b) the sim-
ulation circuit for the insertion loss in the presence of distributed P/N skew
created using lossy line in the channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8. TDT results of simulations shown in Figure 7 (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9. The insertion loss due to P/N skew. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10. Experimental setup for loss measurements in the presence of P/N skew. . . . . . . . . . 32

11. Measured loss vs frequency for different P/N skew introduced by different time
delay cables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12. The insertion loss due to only skew vs frequency. Comparison between
simulations and equation (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13. The loss vs frequency. Comparison between measurement vs analytical equa-
tion (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

14. The to common mode conversion due to skew vs frequency. . . . . . . . . . . . . . . . . . . . . . . 34

15. The to common mode conversion vs frequency. Comparison between mea-
surements and analytical equation (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

16. Schematic for eye diagram measurements for different value of skews in the
channel using SerDes IP in the lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

17. Measured eye height vs P/N skew.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



xii

18. Schematic for eye diagram measurements for different loss channels. . . . . . . . . . . . . 36

19. Loss added to 17dB channel shown in Figure 18 vs frequency.. . . . . . . . . . . . . . . . . . . . 37

20. Measured eye height vs P/N skew.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

PAPER III

1. Schematic of coupled transmission line. Circled 1,2 refers to mixed-mode
ports and 1-4 refers to single-ended ports. P/N lines form differential pair. . . . . . . 43

2. Schematic of simulated channels. TDS is introduced by placing single-ended
(SE) lines between differential lines (DL). Schematic applies to both striplines
and microstrips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3. a) Simulated differential IL vs frequency for several values of TDS in channel.
b) Simulated TDT voltages to calculate skew. Black solid line corresponds to
voltage measured on N line and dashed lines are measured on P line which is
skewed with respect to N line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Red and dotted pink lines show simulated and predicted (from (2)) additional
differential IL due to TDS vs frequency for several values of TDS in channel. . . . 46

5. a) Measured differential IL in 15" SLs with different values of TDS. b) Solid
lines show additional differential IL due to TDS obtained by subtracting almost
zero-skew IL shown in dotted black line in a), and dashed lines predictions
from (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. a) Simulated differential IL and b) additional differential IL (red lines) due to
TDS in 15" MSs with several strength of forward coupling and fixed tskew =
67ps. Solid blue line in b) shows predictions from (2) with tskew = 67ps. . . . . . . . . 48

7. a) Simulated differential IL and b) additional differential IL (red lines) due to
skew in 15"MSs with several values of TDS (tskew) and fixed forward coupling
22%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8. a) Simulated single-ended IL in 15" MS with zero skew and forward coupling
22% The dip is at frequency fcp = 6.5GHz. b) The additional differential IL
due to TDS obtained in simulations (red line) and predictions from (4) with
tuned coupling-skew factor α given in Table 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9. a) Red line shows measured single-ended IL (S21) in 15" MS with about 22%
forward coupling. Dashed black and solid blue lines show differential IL with
approximately 0ps and 67ps TDS, respectively. b) the additional differential
IL due to TDS obtained in measurements (red line) and predictions from (4)
with tuned coupling-skew factor α = 0.65 found from fitting to simulations
above (blue line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



xiii

LIST OF TABLES

Table Page

PAPER III

1. P/N skew in differential-paired SL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2. Coupling-skew factor α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



SECTION

1. INTRODUCTION

In this section, the introduction of Electromagnetic compatibility (EMC) and Signal

Integrity is presented.

1.1. ELECTROMAGNETIC COMPATIBILITY

Electromagnetic signals are the result of electrical currents. Whenever electric

power is used to drive equipment, an electromagnetic signal is emerged as well. These

signals can be used to transmit information from one point to another. Unintended elec-

tromagnetic signals are called electromagnetic noise. Electromagnetic Interference (EMI)

noise is defined as an unwanted electrical signal that produces undesirable effects in a

system. In modern vehicles, for instance, EMI will cause the popping noise heard in radio,

failure of controller which even can lead to hazardous accidents.

Electromagnetic compatibility (EMC) is the concept of enabling different electronics

devices to operate without mutual interference i.e. EMI, when devices are operated in close

proximity to each other Paul (2006). EMC is of increasing importance as the number

of wirelessly connected devices increase. System to avoid any failure to itself and other

devices three following criteria should be satisfied:

• System should not cause EMI with other devices.

• System is not susceptible to emission from other systems.

• System does not cause EMI with itself.
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Figure 1.1. Elements of EMC modeling.

Figure 1.1 Shows three elements of an EMC model: source produces the emission

and coupling path provides emission energy transferred from source to receiver. The

coupling paths can be categorized into two groups, and this gives two EMC problems:

radiated and conducted. Three ways should be applied to reduce radiated and conducted

interference:

• Suppress the emission at the source.

• Make the coupling path as ineffective as possible.

• Make the receptor immune to the emission.

In order to minimize system’s failures and meet global safety standard requirements,

it is critical for engineers to be able to do fast and accurate prediction of electromagnetic

coupling. In the part of this thesis (paper I), we will focus how to predict fast and accurately

electromagnetic voltage over the wires of cables harness due to the external radiations.

1.2. SIGNAL INTEGRITY

Signal integrity (SI) refers to the quality of the signal that needs to be maintained

for the receiver in an electronic design to deliver its intended goal Bogatin (2010); Hall

and Hec (2009). As the speed of the data signal increases a number of reasons lead to

the degradation of the high-speed signals. Signal integrity problem arises in high-speed

systems due to the interconnects. All SI problems are related to one of the following family:

• Quality of signal channel: which includes signal distortion due to reflections caused

by impedance mismatch in channel, insertion loss and asymmetry of channel.
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• Cross talk: which can happen due to the coupling with neighboring channels and can

be capacitive and inductive.

• Noise in power distribution network: which can cause voltage noise in signal nets.

• EMI: which can be from other components or systems.

These problems play a role in all interconnects, from the smallest on-chip wire to the

cables connecting racks of boards and everywhere in-between. As higher and higher data

rate technologies being developed, any small discontinuities and asymmetries have become

an increasingly large performance limiting issue in high-speed electrical systems. One of

the asymmetry is differential P/N skew which is arrival time difference between two single-

ended signals in a differential pair. In the part of this thesis (papers II, III), we study the

differential P/N skew effect on its characteristics (S-parameters) and Serializer/Deserializer

(SerDes) receiver performance. SerDes is a pair of functional blocks commonly used in

high speed communications to compensate for limited input/output. These blocks convert

data between serial data and parallel interfaces in each direction.
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PAPER

I. PREDICTION OF WORST-CASE RADIATION IMMUNITY IN CABLE
HARNESSES

David Nozadze1, Yuanzhuo Liu1, Victor Khilkevich1, Ruijie He1, Kaustav Ghosh1,

Sameer Arun Walunj1, Gary Hess2, and Steve Davidson2 1Missouri University of Science

and Technology Rolla, MO, USA
2UTC Aerospace Systems, Randolph, MA, USA

ABSTRACT

Radio frequency immunity standards (e.g., RTCA/DO-160G, RTCA/DO-160F)

require determining the differential voltage across shielded wires of cable harnesses placed

over the metal plate. Due to the external radiation from the antenna, commonmode currents

are induced on the shields of wires. Through the shield imperfections the outer common

mode is converted to the inner common mode of the harness, which in turn is converted

to the differential mode. The presented work proposes the equivalent circuit model and

methodology for prediction of the worst-case envelope for differential mode signals induced

in cable harnesses placed over a ground plane. The induced signals are calculated using the

circuit simulation avoiding the need for any 3D calculations. Experimental measurements

validate the results.

Keywords: Radiation Immunity, Shielding Effectiveness, EMI, Cable Harness, Differential

Voltage, Induced Signal Prediction



5

1. INTRODUCTION

Electronic systems found in aircrafts, cars, etc. must satisfy electromagnetic com-

patibility (EMC) requirements. Particularly, significant attention is paid to immunity testing

of systems to the external electromagnetic radiation.Oganezova et al. (2016); Shen et al.

(2014, 2015) The critical aspect is related to the ability of harness cables to pick up the elec-

tromagnetic radiation and to transfer it to the input of the system’s terminal. The prediction

of the radiated immunity is very useful for engineers to minimize system’s failure at the

design stage Caniggia and Maradei (2003); Huang and et al. (2018); Huang et al. (2017);

Orlandi (2003). Over the last decade, several equivalent circuit models were developed to

analyze cables immunity Antonini and Orlandi (2004); Caniggia andMaradei (2004, 2012);

Rachidi (2012); Wang et al. (2018a,b); Xie et al. (2011); Zhang et al. (2017). In Caniggia

and Maradei (2004) and Caniggia and Maradei (2012), authors propose equivalent circuit

models for two-wire shielded cables case. Both models of Caniggia andMaradei (2004) and

Caniggia andMaradei (2012), are based on multiconductor transmission line theory and the

separation of internal and external parts of the shield. The internal to external coupling is

considered by introducing several controlled sources. The model in Caniggia and Maradei

(2004) is capable of accurately reproducing the induced signals, but the implementation is

complicated andmight be not convenient for non-expert users. A simpler model is presented

in Caniggia and Maradei (2012), where the modelling in based on subdivision of the cables

in a cascade of lumped elements circuit cells. Instead of separation into internal and external

coupled transmission lines through controlled sources in Caniggia and Maradei (2012), the

cable is considered as three conductor transmission line above a reference ground. The

penetration of the energy through apertures of the braided shield is considered by properly

defined mutual inductance between wires and the shield. The drawback of this model is

that many electrically short cells are required to obtain accurate results.
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On the other hand, typical radio frequency immunity standards (e.g., RTCA/DO-

160G, RTCA/DO-160F) specify the compliance envelopes for the induced differential volt-

ages, which often makes the task of predicting the worst-case envelope for a practical system

design more important than the ability to accurately reproduce the time-domain waveforms.

In this paper, therefore, we present a simplified and computationally efficient model and a

detailed procedure for prediction of worst-case envelope of induced differential voltages in

cable harnesses excited by vertically polarized field. The paper is organized as follows. In

Section II the setup and the cable harness used for measurements is introduced. A model

and methodology for prediction of the worst case differential voltage in the cable harness is

presented in Section III. Section IV demonstrates the results of experimental measurements

and validation of the proposed model. Finally, the conclusions are given in Section V.

2. DESCRIPTION OF CABLE BUNDLES AND SETUP

Figure 1 illustrates a typical measurement setup for cable harness immunity where

a harness placed above a metal table is excited by a vertically polarized E-field.

In the setup used in the presented study the cable bundle is 2.1 m long and consists

of 15 21-AWG wires: one shielded twisted triple, two unshielded single wires and five

shielded twisted pairs. The bundle has 15-pin connectors at each end with the cross-section

schematically shown in Figure. 2. The cable harness is placed 5 cm above and 10 cm away

from the edge of the metal plate (table). The metal plate is located 90 cm above a metal floor

of the semi-anechoic chamber. Both connectors of harness are attached to vertical metal

supports with connector receptacles, thus electrically connecting (grounding) the harness

shield to the metal table. At one end of the harness the receptacle connector is connected

to a printed circuit board (PCB) allowing to change the loads of each wire in the harness.

At the other end of the cable harness a PCB with SMA connectors is attached for signal

measurement.
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Figure 1. Model of shielded twisted pairs over metal table.

Figure 2. M Cross-section of cable harness connector.
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The harness is illuminated by a hybrid (dipole + log-periodic) antenna located at 2

m distance from the table edge. The distance from antenna to the harness and the frequency

range of interest (above 100 MHz) puts the harness into the far-field zone of the antenna

and makes the radiated coupling dominant (as opposed to quasi-static electric or magnetic

coupling).

A log-periodic can be swept vertically and horizontally in a plane parallel to har-

nesses as described in Sec. 4. The induced signals are detected by measuring the trans-

mission coefficient between the antenna port and output of pairs using a vector network

analyzer (VNA) and a differential amplifier or a hybrid coupler (described in detail in Sec.

IV). It should be noted here that the setup does not exactly follow the standard (for example

the distance from the table to antenna is increased from 1 m to 2 m), as the main goal of the

study was to investigate feasibility of the proposed methodology, not to model a particular

standard setup exactly.

3. CIRCUIT MODEL FOR RF IMMUNITY

The physical processes leading to induction of the differential signal in the twisted

pairs of the harness can be described in the following way. The electromagnetic wave

created by the antenna (antenna mode) excites the outer common mode, i.e. the propagating

mode in the transmission line formed by the shield of the harness and the metal table. The

outer common mode, due to the imperfection of the harness shield, in turn excites the inner

common mode, i.e. the mode between the shield and the wires of the twisted pairs. Finally,

the inner common mode is converted (due to twisted pair asymmetries) into the differential

mode, which leads to a voltage difference between the connector pins at the ends of the

harness. Therefore, the ultimate goal of the presented model is to estimate the conversion

of the antenna mode to the inner differential mode.
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Figure 3. Geometry of harness over metal table.

3.1. OUTER COMMON MODE MODEL

The coupling of the antenna mode to the outer common mode can be approximately

analyzed as a coupling of electromagnetic wave to a structure in Figure 3.

Due to the symmetry created by the metal table, the structure in Figure 3 can be

approximately represented as a two-wire transmission line (a loop) of dimensions Lx2h

in free space illuminated by the external electromagnetic radiation. As demonstrated in

Wang et al. (2018a), the effect of the electromagnetic wave on the transmission line can be

described by equivalent voltage sources in each conductor of the transmission line. Since

only the vertical polarization of the wave is considered in this study, the coupling of the

waves happens only at the ends of the lines, i.e. at the vertical segments, connecting the

harness to the metal table. The value of the equivalent voltage sources modelling the

coupling is obtained by integrating the electric field along the distance between the wires of

the transmission line (i.e. from −h to h). Taking into account the fact that the distance 2h is

electrically small in the frequency range of interest, so the incident field is almost uniform

in the interval (−h,h) , the integration can be substituted by multiplication:

V1,2 =

∫ h

−h
Evertical

1,2 dz ≈ 2hEvertical
1,2 , (1)
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where V1,2 are equivalent voltage sources at the ends of the harness and Evertical
1,2 are

the values of the vertical component of the electric field at the ends. Since the shield of the

harness is grounded at the ends, the Ohmic impedance of the loads for the outer common

mode is nearly zero, however, the vertical segments themselves act as monopole antennas

(or dipoles, depending on whether or not the symmetry plane is taken into account) with

the active radiation impedance Balanis (2005); Li et al. (2015)

Rrad = 80π2
(
2h
λ

)2
. (2)

Therefore, the circuit model for the outer common mode consists of two voltage

sources (1) with impedances (2) connected by the transmission line of the length L and

characteristic impedance Li et al. (2015)

Z0 = 60 log
(
2h
r0

)
. (3)

where r0 is the radius of the outer shield of the harness. The loss of the outer mode

transmission line is relatively low and is due to the resistance of themetal shield and the table

(i.e. two conductors forming the transmission line). As the resistance of metal increases

proportional to the square root of frequency due to the skin-effect, the per-unit-length loss

in the outer transmission line is modeled as a
√

f function with the value of 0.1 dB/m at 1

GHz, which was determined empirically.

To calculate the field value at the ends of the harness, reflections from the chamber

floor are taken into account, which is illustrated by Figure 4

The total field therefore is

®E = | ®El |e− j kr1 + | ®Er |e− j kr2 , (4)
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Figure 4. (a) Fields at the vertical segments of the harness. (b) Equivalent fields at the
vertical segments of the harness according to image theory.

where ®El is the direct incident field, ®Er is the reflected incident field, and r1 and

r2 are the distances for the antenna and its image to the point of interest. The distances

r1 and r2 are measured from the tip of the antenna to the grounding points of the harness

supports (i.e. to the center of the vertical segments of the imaginary loop formed by the

harness over the metal table plane). The 5 mm thickness of the table plate was neglected

in the calculation, since it is comparable to the accuracy of the distance measurement. The

incident field components are calculated using the far-field approximation as

| ®El(r) | =

√
30PtGl(r)

r1,2
, (5)

where Pt is the transmitted power (which can be related to the input power Pin and

reflection coefficient of the antenna S11 as Pt = (1 − S112)Pin in the case of negligible

antenna loss) and Gl,r are the gains of antenna and its image in directions of the harness

ends calculated as

dBGl(r) = 20 log( f [MHz]) − AF[dB] − 29.79 − Rl(r)(φ, θ) . (6)
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where AFis the antenna factor in the main direction, and Rl(r) is the radiation pattern

of the antenna and its image in the direction of interest. The lowest frequency of interest

in the study was 100 MHz, resulting in the far-field distance (i.e. the minimum distance

between the antenna and the harness for (5) to be valid) of 48 cm as calculated by the

criterion λ/2π.

The incident field calculation formula (5) is approximated since it does not take

into account the diffraction of the electromagnetic waves on the table edge. The diffraction

effect was investigated using a full-wave simulation, showing that it is relatively week below

600 MHz (i.e. when the electrical distance from the table edge to the harness is electrically

small). Above 600 MHz the effect of edge diffraction cannot be neglected, making the

proposed model inaccurate.

3.2. OUTER TO INNER COMMON MODE COUPLING MODEL

The energy is transferred from the outer mode to the inner mode due to the resistance

of the shield and due to the shield leakage, which has inductive behavior. Both mechanisms

can be modelled as a transfer impedance

ZT = RS + jωLS . (7)

The active impedance of the shield RS is measured directly by the Ohm-meter at

low frequencies (the skin-effect is ignored as the reactive part of the transfer impedance

becomes dominating at relatively low frequencies), and the inductance LS -in the setup in

Figure 5 where a VNA is used to measure the transfer coefficient between the inductive

clamp on the shield of the harness and the inner common mode (or the single-ended mode

– the difference between these two transfer coefficients is small on practice) of a certain

twisted pair.
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Figure 5. Setup for the transfer impedance measurement.

Figure 6. Equivalent circuit model of outer to inner common mode coupling.

The circuit model corresponding to the measurements in Figure 5 is shown in Figure

6.

The voltage source in the model represents the VNA port, the current-controlled

voltage source models the coupling, and the current probe is used to calculate the outer

common mode current. The reactive part of the transfer impedance of the controlled

source is tuned to match the measured curve in the low-frequency, resonance-free region

as illustrated in Figure 7. It should be noted here that only the low-frequency part (i.e.

below the first resonance) of the Figure 7 is considered for the estimation of the frequency-

independent inductance LS. After the estimation of LS equation (7) is used as a model for

the transfer impedance in the entire frequency range of interest.

Finally, the transfer impedance is determined as Zt = 0.03 + j1.7510−9ω Ohm.
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Figure 7. Inner common mode current. Red lines represent different twisted pairs.

Figure 8. Measurement setup of inner common mode to differential mode conversion.

3.3. INNER COMMON MODE TO DIFFERENTIAL MODE CONVERSION

The inner commonmode is converted to the differentialmode due to the asymmetries

of the twisted pair and connectors and can be separated into capacitive and inductive

parts. Capacitive coupling corresponds to high voltage / low current condition in the pair,

and inductive coupling – the high current / low voltage condition. Depending on the

harness resonance type one or another mechanism dominated, that is why it is important to

characterize both types of coupling.

The equivalent conversion capacitances/inductances are estimated by measurement

for each pair. To do that, two ports of the VNA are connected to the wires of the pair and

the conversion reflection coefficient Scd11 measured for two conditions at the far end of the

pair – short and open (Figure 8). The measured curves are then matched by the equivalent

circuits containing asymmetry capacitors and inductors, represented in Figure 9.

Corresponding measured and simulated curves are shown in Figures 10 and 11.

Conversion parameters for all pairs in the harness are listed in Figure 12.
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Figure 9. Equivalent circuit for determined the inner mode conversion parameters.

Figure 10. (Color online) Shorted end (inductive) behavior (a) Inductance: 4 nH Pair 1,7
(b) Inductance: 4 nH Pair 2,10.

Figure 11. Open end (capacitive) behavior (a) Capacitance: 0.3 pF Pair 1,7 (b) Capacitance:
2 pF Pair 2,10.
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Figure 12. Conversion parameters extracted from measurement.

Finally, the characteristic impedance and the dielectric constant of the inner trans-

mission line is roughly estimated by performing the single-ended TDR measurement of the

twisted pair. An empirically determined value of 0.02 for the dielectric loss tangent was

used to account for the loss in the inner transmission lines.

3.4. COMPLETE MODEL OF THE HARNESS

The entire model is represented in Figure. 13. It should be noted here that the model

in Figure13 is unable to exactly predict the induced voltage. This happens for several rea-

sons: the parameter of the transmission lines (length, dielectric constant, loss, impedance)

are known only approximately, which creates large uncertainties for the positions of the res-

onances. The inner to outer coupling, as well as mode conversion, is modelled by lumped

elements, however in the actual harness the nature of these processes is distributed.

Nevertheless, despite this the model is useful for the worstcase differential voltage

prediction, as the next section demonstrates.
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Figure 13. Completed model for the harness RF immunity 1. Voltage sources, representing
the vertically polarized electric field. 2. Radiation resistance of the monopoles. 3. Outer
common mode transmission line. 4. Current control voltage source, representing outer to
inner coupling. 5. Inner transmission line. 6. Asymmetry capacitor and inductor for mode
conversion. 7. Load impedance of twisted pair.
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Figure 14. Setup for differential voltage measurements.

Figure 15. Instrument connection for differential voltage measurement.

4. PREDICTION FOR INDUCED DIFFERENTIAL VOLTAGE AND
VALIDATION

To validate the model, the following measurement was performed (Figures 14, 15).

The log-periodic antenna was placed at 2 m distance from the table edge and swept in

the vertical plane parallel to the edge relative to the harness center (vertical displacement:

0.15-0.9m in steps of 0.15 m relative to the table edge, horizontal displacement±0.5 in steps

of 0.15 m relative to the center of the harness). At one end all twisted pairs was shorted, and

at the other end the hybrid coupler was used to create the 50 Ohm single-ended / 100 Ohm

differential load for the pairs. The coupling coefficient between the antenna port and the

differential hybrid port was measured for all positions of antenna and for all twisted pairs.
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Figure 16. Measured differential voltage in the harness (different colors correspond to
different pairs) and the predicted worst-case envelope.

To obtain the worst-case envelope in the model in Figure 13, the antenna position is

swept as in the measurement, which changes the field strength at the ends of the harness as

described in Section III.A, i.e. for each antenna position on the sweep plane the distances

from the antenna tip to the points where the vertical supports were attached to the table

were calculated and the incident field was estimated according to (4), (5), (6).

Subsequently the EMF of the voltage sources in the model according to (1) For each

position of the antenna, the physical length of the inner transmission line was also swept

in the interval ±10% relative to the actual length to capture the potential resonances of the

harness. The resulting worst-case curve for pairs 1-2, 2-10, 11-12, and 3-13 (maximum

over four pairs) along with the measured results for each pair is given in Figure 16.

As can be seen, the model indeed produces the worst-case curve, i.e. the measured

voltages are always below the predicted envelope with the exception of the minor violation

at 130 MHz. At the same time, the margin to the prominent peaks at 340 and 540 MHz is

minimal (1-2 dB). A much larger margin to from the worst-case envelope to the pair 1-7

can be explained by significantly smaller asymmetries in that pair compared to others (see

Figure 12).
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5. SUMMARY AND CONCLUSIONS

A circuit model to predict the worst-case RF immunity envelope in multi-wire

harnesses is developed. The circuit model is simple for implementation, contains a minimal

number of elements and can be solved fast which is important as a multidimensional sweep

(2D antenna position and inner transmission line electrical length) is required to obtain

the worstcase envelope. The parameters of the model can be relatively easily measured

using standard techniques (current clamp, reflection coefficients, etc.). No 3D simulation

is used to estimate the incident field created by the antenna. Despite simplicity the model

is capable of predicting levels of major peaks of the induced differential voltage with small

margin (1-2 dB). At the present moment, the model is validated for the 50 Ohm load at

the measurement port. The validation of the high impedance case (which has important

practical significance) is a subject of ongoing investigation.
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ABSTRACT

It is understood very well that at 20 Gbps and beyond, P/N skew from fiber weave

effect in printed circuit board (PCB) has to be taken into account. Several studies have been

done to measure and quantify the effect of glass weave but very few have offered techniques

to budget for P/N skew. System companies need an effective way to capture glass weave

skew and budget for it in channel designs. Using transmission line theory, we analytically

calculate loss due to P/N skew, study the effect of P/N skew on eye performance for SerDes

IP and explore dependency of P/N skew on PCB materials. This paper studies effect on

S-parameters, SerDes eye performance due to skew that can help SI engineer to effectively

budget for P/N skew as part of channel link budget.

Keywords: skew; glass weave; high-speed digital signal; PCB material

1. INTRODUCTION

The P/N skewwhich is unintentially present within a pair has become a fundamental

performance limiting issue for high-speed serial-communication links. The most common

cause of skew is the asymmetry between P/N lines in channel connecting a transmitter to

a receiver. Even perfectly matched physical lengths do not guarantee zero skew. In the
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Figure 1. Schematic of coupled transmission line. 1-4 refers to single ended ports and
circled 1,2 refers to balanced ports.

printed circuit board (PCB), relative location of fiber bundles with respect to conductors is

random and results in uncontrolled P/N skew. The 56Gbps PAM4 signal has approximately

36ps UI and a few ps skew can be a concern. There have been several studies to measure and

quantify P/N skew but the techniques for budgeting P/N skew are missing Baek et al. (2017);

Loyer et al. (2007); McMorrow and Heard (2005); Miller et al. (2010); Pathmanathan et al.

(2013); Tian et al. (2014). Therefore, in this paper, the method to budget P/N skew as an

equivalent additional loss is developed and analytical equations for loss due to P/N skew is

derived using transmission line theory. Also, the equation for to common mode conversion

due to skew is derived. The dependence on material properties are studied. The analytical

predictions are validated by simulations in Agilent’s advanced design system (ADS) and

experimental measurements. The methodology presented in this paper is valid for channels

with a small forward coupling and is applied to striplines.

2. TRANSMISSION LINE THEORY

To study the effect of skew on S-parameters, a coupled transmission line (TL)

is considered (Figure 1). If time delays corresponding to signal propagations from bal-

anced port 1 to single-ended ports 2, 4 are defined as t1 = phase(Ssd21)/2π f and

t2 = phase(Ssd41)/2π f , respectively, then P/N skew tskew = t2 − t1. Here, Ssd21(Ssd41)

is a S-parameter from balanced port 1(1) to single-ended port 2(4) and f is the frequency.
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Using transmission line theory, the balanced S-parameters can be expressed in terms of

single-ended S-parameters and P/N skew tskew. The insertion loss is

Sdd21 = |S21 − S23| cos(π f tskew) (1)

Here, S21 and S23 are single-ended S-parameters. It is assumed that | S21 − S23 |≈|

S41− S43 |, which is true for channels with small forward couplings (far end crosstalk, e.g.

striplines). From Eq. 1 the insertion loss due to P/N skew can be extracted as follows

dB(Sdd21(tskew)) = dB(Sdd21) − dB(|S21 − S23|) = dB(cos(π f tskew)) (2)

The P/N skew introduces additional insertion loss, which has harmonic behavior as a

function of frequency.

In the same way, the to common mode conversion can be calculated in the presence

of P/N skew. The mode conversion is

Scd21 = |S21 − S23| sin(π f tskew) (3)

The P/N skew effects also the mode conversion. It enhances to common mode conversion

and the effect equals to zero when tskew = 0.

The equations (2,3) can be also used to predict value of the P/N skew in the channel.

From Eq. (2) it can be observed that when argument of cosine function is multiple of

π/2, the dip is expected in the insertion loss curve as a function of frequency. Thus, if

S-parameters are given and the first dip is at frequency fd1 then the P/N skew will be

tskew = 1/2 fd1 (4)



26

Similarly, the value of P/N skew can be predicted form Eq. (3). In mode conversion

S-parameters (Scd21), the dip happens at frequency corresponding to zero of sin function.

Thus, the P/N skew will be

tskew = 1/ fd2 (5)

where fd2 is the frequency atwhich the first dip happens in themode conversionS-parameters

as function of frequency. It should be noted that this is true only if the dip is happening due

to the P/N skew or due to the asymmetry that causes P/N skew.

3. CORRELATION EFFORTS

To validate theoretical predictions for additional insertion loss due to P/N skew

(Eq. (2)) and to common mode conversation (Eq. (3)), simulations and measurements are

performed.

3.1. DIFFERENTIAL INSERTION LOSS DUE TO P/N SKEW

Agilent’s advanced design system is used to do simulations and validate our theoret-

ical predictions. The simulations are done separately for two same length coupled striplines

using two different materials TU862HF and Meg6. The dielectric constant DK and the

dissipation factor DF for TU862HF and Meg6 are DK=4.237, DF=0.0144 and DK=3.65,

DF=0.0083, respectively. The values of DK, DF are given at 1GHz and follow Djordjevic-

Sarkar model Djordjević et al. (2001). The impedance of striplines is 100 Ohm. The time

delay element is added to introduce P/N skew in channel (Figure 2).

The time delay is swept from 0 to 30ps in step of 5ps. As seen in Figure 3(a), as

skew increases the insertion loss increases for both materials Meg6 and TU862HF, and

resonant dips move towards lower frequencies.

In order to see that the insertion loss due to skew is material independent when only

skew is added, zero-skew insertion losses are subtracted from non-zero skew losses and
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Figure 2. (Color online) ADS circuit for simulating the insertion loss in the presence of
P/N skew in the channel.

Figure 3. (Color online) The insertion loss vs frequency, (a) material loss contribution
included in simulation results and (b) loss only due to the P/N skew. The P/N skew swept
from 0 to 30ps in step of 5ps.

plotted in Figure 3(b). The insertion loss curves for Meg6 and TU862HF with the same

P/N skews overlap each other. This implies that the insertion loss due to the P/N skew is

material independent when only skew is added to the channel.

In order to see how well predictions from Eq. (2) correlates with simulation results

shown above, first correlations are done over entire frequency range up to 40GHz for

tskew=5ps and tskew=15ps. Figure 4 shows that analytical predictions fromEq. (2) correlates

well with simulation results for the insertion loss due to P/N skew.
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Figure 4. The insertion loss due to P/N skew vs frequency. The comparison between
simulation and analytical equation (2).

Figure 5. The insertion loss due to P/N skew vs frequency for P/N skews swept from 0 to
30ps.
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Figure 6. The loss due to only skew vs P/N skew at 14GHz. Comparison between
simulations and analytical equation (2).

Next, simulations are compared to predictions from Eq. (2) when frequency is set

to be fixed at 14GHz, but the skew is swept from 0 to 30ps in step of 5ps. Figure 5 shows

simulation results for the insertion loss due to P/N skew as a function of frequency and

values of P/N skews with corresponding insertion losses at 14GHz. As seen in Figure 6,

the insertion loss due to P/N skew calculated from analytical equation (2) correlates well

with simulation results.

In order to see that the correlation is a still good when the skew is distributed over

the coupled stripline channel and has some loss, lossy skew elements (single line stripline

elements) are distributed over channel (Figure 7). The TDT simulations is performed to find

the value of P/N skew in channel (Figure 7(a)). Figure 8 shows TDT results. The difference

between time delays of P and N lines from TDT at zero-crossing is tskew=14.85ps.
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Figure 7. a) ADS circuit for TDT simulation for finding skew in channel. b) the simulation
circuit for the insertion loss in the presence of distributed P/N skew created using lossy line
in the channel.

The simulation for finding the insertion loss due to P/N skew is performed (Figure

7(b)). The Figure 9 shows the results of simulation and analytical equation (2). The result of

analytical equation with tskew=14.85ps is little bit off to simulation and with tskew=14.65ps

curve fits to simulation well.

Thus, when the skew is distributed over channel and is presented with loss there is

around 0.2ps error in prediction.

Now, the theoretical prediction for the insertion loss due to skew is validated by

measurements. Around one foot long cables with different time delays are selected for

measurements shown in Figure 10 (a). There is one reference cable and other seven cables

used to increase P/N skew in channel. The time delay difference between cables num. 1 to

num. 7 are in steps of 5ps with 1ps margin. The timed delay of reference cable is within

1ps margin to cable num. 1. The schematic of S-parameters measurement setup is shown

in Figure 10(b). S-parameter measurements are done using VNA from 10 MHz to 40GHz.

The ports 2 and 4 are connected to channel made of TU862HF using cables from cable’s

group a which contains cables with skews less than 1ps. Other end of channel is connected

to VNA with one fixed reference cable and cable that is being changed from cable numbre
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Figure 8. TDT results of simulations shown in Figure 7 (a).

Figure 9. The insertion loss due to P/N skew.



32

Figure 10. Experimental setup for loss measurements in the presence of P/N skew.

1 to number 7 to change skew in channel. The measured S-parameters are shown in Figure

11. The top curve shown in Figure 11, corresponds to minimum P/N skew in channel

when cable number 1 is used. As expected and seen in simulations above, skew enhances

insertion loss and resonant dips moves towards lower frequencies. From measurements

(Figure 11) the insertion loss due to P/N skew is calculated at 14GHz by subtracting zero-

skew insertion loss from non-zero ones and compared with results of analytical equation

(2). The agreement as seen in Figure 12 is very good.

Next, the prediction from Eq. (1) is compared with measurement results of 10in

stripline. The measured insertion loss as function of frequency is shown in Figure 13. In

order to use Eq. (1) for prediction, it is required to know the value of P/N skew in this

stripline. The value of P/N skew can be extracted using Eq. (4). As seen in Figure (13), the

dip is at frequency fd ≈ 8.45GHz. Then, from Eq. (4) the P/N skew is about tskew ≈59.1ps.

From Eq. (1) using measured single-ended S-parameters and tskew, the insertion loss can

be predicted (Figure 13).

Figure 13 shows good correlation between measurements and prediction from ana-

lytical equation (1).
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Figure 11. Measured loss vs frequency for different P/N skew introduced by different time
delay cables.

Figure 12. The insertion loss due to only skew vs frequency. Comparison between
simulations and equation (2).
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Figure 13. The loss vs frequency. Comparison between measurement vs analytical equation
(1).

Figure 14. The to common mode conversion due to skew vs frequency.
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Figure 15. The to common mode conversion vs frequency. Comparison between measure-
ments and analytical equation (3).

3.2. DIFFERENTIAL TO COMMON MODE CONVERSION DUE TO SKEW

In this subsection, the prediction for the to common mode conversion is validated

by simulation and measurements. The simulation results presented in above subsection are

used and plotted (in Figure 14) the to common mode conversion as a function of frequency

for P/N skew 5ps and 15ps. Figure 14 shows the comparison between theoretical prediction

Eq. (3) and simulation results. As seen, curves overlap and the agreement is very good.

Next, the measurement result for to common mode conversion of 10in stripline

(used above) is compared with the theoretical prediction of Eq. (3). Figure 15 shows good

correlations between results of analytical equation (3) and measurement.

4. THE P/N SKEW EFFECT ON EYE HEIGHT

In this section, the effect of P/N skew on eye height is invesitgated. The NRZ SerDes

IP is used to evaluate skew effect. PRBS31 data is transmitted through 17dB loss channel

at 25 Gbps speed and received in the same SerDes (Figure 16).
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Figure 16. Schematic for eye diagram measurements for different value of skews in the
channel using SerDes IP in the lab.

Figure 17. Measured eye height vs P/N skew.

Figure 18. Schematic for eye diagram measurements for different loss channels.
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Figure 19. Loss added to 17dB channel shown in Figure 18 vs frequency.

Figure 20. Measured eye height vs P/N skew.
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The set of cables used above are used to change P/N skew in channel. The eye height

is measured at receiver of SerDes. Figure 17 shows measured eye height vs P/N skew. The

P/N skew was measued using oscilloscope. As seen in Figure 17, when the P/N skew is

larger than 19ps eye height starts to decrease significantly. The table (Figure 17) shows

values of differetnial insertion losses added to channel due to skew with corresponding

values of P/N skews.

Next, instead of varying P/N skew in channel, different losses are added to 17dB

channel and eye height is measured using same SerDes IP (Figure 18) to evaluate if the

effect of additional loss due to skew is equivalent to effect of loss due to material on eye

height.

The insertion losses of four different channels added to 17dB channel as a function

of frequency is shown in Figure 19. Using Eq. (2) effective P/N skew corresponding to

additional insertion losses can be calculated at frequcncy 12.5GHz.

The additional loss with corresponding effective P/N skews are given in a table

shown in Figure 19.

The eye height is measured when above channels are added to 17dB channel and

plotted vs effective skew (Figure 20). The results are compared with measured eye height

(from Figure 17) when real skew was added to channel. As seen in Figure 20, increase of

P/N skew or increase of material loss have similar effect on eye height degradation. Thus,

the skew and loss can be interchangeable and the presence of skew can be considered as an

additional insertion loss.

5. CONCLUSIONS

The methodology for budgeting the P/N skew as an additional insertion loss is

presented in this paper. The additional loss and to common mode conversion as function

of P/N skew and frequency is derived using transmission line theory. The approach is

valid when the channel consists of transmission lines with small forward couplings. The
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methodology is validated using simulations in ADS and S-parameter measurements using

VNA. In addition, using NRZ SerDes IP, the eye height degradation due the P/N skew and

material loss is studied. As a result, it is observed that increase of P/N skew or increase of

material loss have similar effect on eye height degradation.
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ABSTRACT

In this paper, effect of time delay skew (TDS) on differential insertion loss (IL) is

studied in both weak and strong forward coupling cases. It is showed that TDS impacts

differential IL and impact depends on amount of forward coupling. To predict additional

differential IL due to TDS, analytical formula is derived and heuristic formula is constructed

based on fitting to simulation results inweak and strong forward coupling cases, respectively.

The predictions are validated by simulations and measurements

Keywords: convection

1. INTRODUCTION

The rapid growth of data centers among other drivers has pushed the demand for

networks with increasingly higher data rates. When data rate increases, all factors in signal

channel which can effect signal quality must be considered. At high data rates larger than

10 Gbps, one of the main performance-limiting issue for high-speed SERDES links can be

the time delay skew (TDS). The time delay skew refers to arrival time difference between

two single-ended signals in a differential pair. It is commonly caused by unmatched delays

of P/N of a differential pair (Figure 1) but even for perfectly matched physical length cases,
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TDS can be caused by any asymmetry between P/N lines. One reason can be inhomogeneity

of printed circuit board (PCB). The inconsistency of the dielectric material comes from the

fact that the fiberglass and the epoxy resin that make up PCB have different dielectric

constants. The fabricator cannot guarantee the perfect placement of the fiberglass with

respect to the location of traces, and this can cause random effects on TDS generation.

There have been several studies to measure and quantify TDS but full methodology

to predict TDS effect on differential IL in both weak and strong coupling cases are missing

Baek et al. (2017); Loyer et al. (2007); Miller et al. (2010); Nalla et al. (2017); Nozadze

et al. (2017); Tian et al. (2014). In Ref. Farrahi and et al. (2015) authors studied the skew

effect on IL while neglecting forward coupling within transmission line (TL). Recently,

Ref. Dsilva and et al. (2017) included the forward coupling contribution to predict skew

effect on IL, assuming skew is introduced in the beginning of differential pair which is

not applicable to real PCB in which skew is distributed over channel. In this paper, to

predict effect of TDS on differential IL, analytical formula is derived and heuristic formula

is constructed based on fitting to simulation results in weak and strong forward coupling

cases, respectively. The predictions are validated by simulations and measurements.

2. TRANSMISSION LINE THEORY

In this section, impact of TDS on differential IL is studied using TL theory. To

do so, coupled TL shown in Figure 1 is considered. The time delay skew is defined as

tskew = t1 − t2 where t1 = phase(Ssd21)/2π f and t2 = phase(Ssd41)/2π f are time delays

corresponding to propagation of signal frommixed-mode port 1 to single-ended ports 2 and

4, respectively. Ssd21 and Ssd41 are S-parameters from mixed-mode port 1 to single-ended

ports 2 and 4, respectively and f is the frequency. Using TL theory, we can find relation

between TDS (tskew) and mixed-mode S-parameters. The differential IL can be expressed
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as Sdd21 = |S21 − S23 |cos(π f tskew),

Sdd21 = |S21 − S23 |cos(π f tskew) , (1)

where S21,S23 are single-ended S-parameters. In the derivation, it is assumed that |S21 −

S23 | ≈ |S41 − S43 |, which is true when differential-pair TL has a small forward coupling.

The additional differential IL due to TDS can be found from above equation by subtracting

zero-skew IL and has form

dB(Sdd21(tskew)) = dB(cos(π f tskew)) . (2)

From above equation it can be seen that TDS introduces additional differential IL and is

a periodic function of frequency. The equation (2) can be used to predict the TDS in

channel using measured S-parameters. From (2), it can be observed that when argument of

cosine function is multiple of π/2, there will be dip in differential IL (Sdd21) as function of

frequency. Thus, if the first dip in Sdd21 is observed at fd then calculated tskew is

tskew = 1/2 fd . (3)

This is true when dip is because of TDS.

3. CORRELATION WITH SIMULATIONS AND MEASUREMENTS

In this section, effect of TDS on differential IL in strong and weak coupled

differential-paired lines with 100 Ohm differential impedance are explored by simulations

in ADS and measurements.
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Figure 1. Schematic of coupled transmission line. Circled 1,2 refers to mixed-mode ports
and 1-4 refers to single-ended ports. P/N lines form differential pair.

3.1. WEAK COUPLED DIFFERENTIAL PAIR

In this subsection, effect of TDS on S-parameters is investigated in weak coupled

differential-pair lines, when coupling is less than 5%. As an example of such weak coupled

line, differential striplines (SL) are considered. The simulations are done for 15" differen-

tial SL. Because TDS is distributed over the channel in the real PCB, TDS is introduced

in simulation by segments of single-ended (SE) MSs on one line (P) of differential lines

(DL) for every inch of differential SL (Figure. 2). The differential impedance of stripline

is 100 Ohm and the impedance of single-ended stripline is 50 ohm. The dielectric con-

stant DK=3.65 and dissipation factor DF=0.0083 for differential stripline while DK=4 and

DF=0.02 for single-ended stripline. The values of DK, DF are given at 1GHz and follow

Djordjevic-Sarkar model

Figure 3 (a) shows the differential IL as function of frequency for several values

of TDS in channel. It has been observed that there are two important signature of TDS

(Figure 3 (a)): 1) The differential IL increases as TDS increases and 2) TDS induces dip in

the differential loss curve. The dip moves toward lower frequencies as the skew increases.

To find skew in channel, TDT simulation has been performed. Figure 3 shows result of

TDT simulation and time delay differences between P and N signal which are same as TDS
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Table 1. P/N skew in differential-paired SL.

TDS [ps]
from
TDT

from
(2)

13.2 12.7
19.6 18.9
25.9 25.1
31.9 31.4
38.2 37.4
45.4 44.6

Figure 2. Schematic of simulated channels. TDS is introduced by placing single-ended (SE)
lines between differential lines (DL). Schematic applies to both striplines and microstrips.

in two different cases. In addition, TDS can be predicted based on simulated results using

equation (3) in which fd can be extracted from Figure 3 (a). Table 1 shows comparison

between skew values found using TDT and from (3). As it is seen, predictions from (3)

agrees well with TDT simulation results and is within 1ps accuracy.

Next, differential IL due to TDS is found by subtracting zero-skew IL from non-zero

skew IL and plotted in Figure 4. In the same plot predictions from (2) are plotted in dashed

pink color. As seen prediction from (2) matches well with simulations results.

The differential IL has been measured in 15" SLs with different values of TDS

(Figure 5 (a)). As it is seen skew indeed induces dip in differential IL curve and dip moves

to lower frequencies as skew increases. Figure 5 (b) shows good correlations between
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Figure 3. a) Simulated differential IL vs frequency for several values of TDS in channel.
b) Simulated TDT voltages to calculate skew. Black solid line corresponds to voltage
measured on N line and dashed lines are measured on P line which is skewed with respect
to N line.

measurement and prediction (from (2)) results for additional differential IL due to TDS.

The additional differential IL due to TDS in measured results are found by subtracting

zero-skew IL from non zero-skew IL.

3.2. STRONG COUPLED DIFFERENTIAL PAIR

In this subsection, effect of TDS on differential IL is investigated in strong forward

coupling case. In order to have strong coupled differential pairs, differential microstrips

(MS) are considered in simulations. The simulations are done for 15" MSs. Because TDS

is distributed over the channel in the real PCB, TDS in simulation is distributed over the

channel in such a way that in every 1” of differential MS, a single-ended (SE)MSs are added

only on one line of diffreneial MS (Figure 2). Now, the prediction for effective differential

IL due to only TDS from (2) are compared with measurements results of 15in SLs for

several values of TDS.
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Figure 4. Red and dotted pink lines show simulated and predicted (from (2)) additional
differential IL due to TDS vs frequency for several values of TDS in channel.

In order to change forward coupling (33% to 2.8%) in MSs, the spacing between

differential traces are swept from 10 mils to 60 mils in step of 10. Figure 6 shows simulated

differential IL for several percentage of forward coupling when TDS in channel is around

67ps. The time delay skew in obtained by TDT simulations as it is done in previous

subsection for SLs, but in this case rise time of step signal is 400ps to get rid off coupling

effect and measure pure TDS. There can be observed two important effects of TDS on

differential IL: 1) unlike in weak coupled case the TDS effects differential IL at frequency

close to one at which dip is appearing in single-ended IL in strong coupled traces, e.g. in

MSs. This happens due to the fact that in the presence of TDS, the symmetry between P

and N lines which exists in channel with zero TDS is not preserved. This dip moves toward

lower frequencies and is getting smaller as coupling increasing at fixed TDS because for

larger forward coupling larger skew is needed to break the above mentioned symmetry, 2)

the dip that appears at frequency fd and is large in weak coupled case, it is smoothed out in

strong coupling case. Overall, the skew effect on differential IL is smaller in the presence

of forward coupling. As coupling becomes smaller the effect of TDS on differential IL
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Figure 5. a) Measured differential IL in 15" SLs with different values of TDS. b) Solid
lines show additional differential IL due to TDS obtained by subtracting almost zero-skew
IL shown in dotted black line in a), and dashed lines predictions from (2).

Table 2. Coupling-skew factor α.

TDS[ps] α

67 0.65
57 0.6
49 0.54
40 0.48
32 0.39
23 0.3
15 0.2

becomes closer to the one obtained from prediction (2). Next, coupling is fixed to be

22% and skew is swept in simulations. Figure 7 shows differential IL for several values of

skews obtained from TDT simulations. As skew increases the additional differential IL due

to TDS increases as expected (Fig. 7 (b)). In order to quantify analytically TDS effect on

differential IL the following heuristic formula is constructed

dB(Sdd21(tskew))=dB(1−α2sin2(π f (tcp+tskew)))/2 (4)
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Figure 6. a) Simulated differential IL and b) additional differential IL (red lines) due to
TDS in 15" MSs with several strength of forward coupling and fixed tskew = 67ps. Solid
blue line in b) shows predictions from (2) with tskew = 67ps.

Here, tcp = 1/4 fcp is the time associated with difference between time delays of even and

odd modes and equals to zero in the absence of forward coupling. fcp is the frequency

at which the first dip appears in single-ended IL (S21) due to the forward-coupling. The

coupling-skew factor α ≤ 1 depends on forward coupling and TDS (tskew). It approaches

to one in the limit of zero forward-coupling while it is zero for tskew = 0. In the limit of

zero forward-coupling (4) reduces to (2). As shown in Figure 8 predictions from (4) with

tcp=76ps and tuned α (Table 2) matches well with simulation results.

Next, S-parameter measurements are done for 15" MSs with TDS about 0ps and

67ps found using measured S-parameters and TDT simulations in ADSwith rise time 400ps

(Figure 9 (a)). The forward coupling is around 22%. As seen above, for 22% and 67ps TDS

the coupling-skew factor α = 0.65. Now, it is possible to predict the additional differential

IL due to TDS using (4) and compare with measured results with 67ps TDS. As seen in

Figure 9 (b), predictions from (4) matches well with measurements upto 13GHz.
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Figure 7. a) Simulated differential IL and b) additional differential IL (red lines) due to
skew in 15" MSs with several values of TDS (tskew) and fixed forward coupling 22%.

Figure 8. a) Simulated single-ended IL in 15" MS with zero skew and forward coupling
22% The dip is at frequency fcp = 6.5GHz. b) The additional differential IL due to TDS
obtained in simulations (red line) and predictions from (4) with tuned coupling-skew factor
α given in Table 2.
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Figure 9. a) Red line shows measured single-ended IL (S21) in 15" MS with about 22%
forward coupling. Dashed black and solid blue lines show differential ILwith approximately
0ps and 67ps TDS, respectively. b) the additional differential IL due to TDS obtained in
measurements (red line) and predictions from (4) with tuned coupling-skew factor α = 0.65
found from fitting to simulations above (blue line).

4. CONCLUSIONS

The effect of TDS on differential IL has been studied in the cases of weak/strong

forward coupling and has been shown that in both cases TDS increases differential IL.

Analytical formula has been derived to find the additional differential IL due to TDS when

forward coupling is weak. When forward coupling is large, increase of differential IL due

to TDS is much smaller than when forward coupling is small. The heuristic formula is

constructed to predict additional differential IL TDS for the case of large forward coupling

based on simulations. The predictions are validated with simulations and measurements.
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SECTION

2. SUMMARY AND CONCLUSIONS

In this thesis, reprints of three papers have been presented that studied radiation

immunity of cable harnesses and the effect of differential P/N skew on the channel and

SerDes receiver performance.

In paper I, we developed a simple model and a methodology to predict the worst

case envelope for differential signals induced in cable harnesses containingmultiple shielded

twisted pairs. The induced signals are calculated using the transmission line theory and

results are validated by experimentalmeasurements. Despite simplicity themodel is capable

of predicting levels of major peaks of the induced differential voltage with small margin

(1-2 dB).

Papers II, and III studied the effect of the differential P/N skew on channels char-

acteristics such as S-parameters. Analytical relations between the S-parameters and P/N

skew were derived. It was shown that in weak coupled transmission lines (e.g.stripline)

P/N skew increases channel insertion loss. Differential insertion loss increase in strongly

coupled lines, such as microstrip, is much less than in weakly coupled lines. Using NRZ

SerDes IP, the eye height degradation due the P/N skew and material loss is studied for

weakly coupled transmission lines. As a result, it is observed that increase of P/N skew or

increase of material loss have similar effect on eye height degradation.
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