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ABSTRACT 

Spatial resolution is an important factor of near-field probe, which represents the 

ability to distinguish two close radiation sources. Traditional definition of spatial 

resolution is the distance between peak point and -6dB point when measuring microstrip 

line. The definition has disadvantage and limitation. In this topic, spatial resolution for 

magnetic near-field probe is studied, and three dimensions of spatial resolution are put 

forward. An optimized measurement setup is presented to reflect spatial resolution of 

probe properly. Then, an example is given to show how spatial resolution affects field 

distribution in near-field measurement.  
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1. INTRODUCTION 

Recent modern digital and radio frequency systems evolve toward the direction of 

high integration, high performance, and compact size. However, High-speed digital 

circuits can generate high frequency noise due to their switching nature, and PCB designs 

are more and more vulnerable to signal integrity (SI) and electromagnetic compatibility 

(EMC) issues [1]-[3]. Near-field measurement is an effective method to locate radiation 

source, where near-field probes are usually used for near-field pattern acquisition over 

PCB, which in turn provides insights of trace routing, layout, component radiation 

properties etc. Based on measured near-field pattern, radiation source or ground current 

reconstruction have been widely studied [4]-[6]. Spatial resolution and sensitivity are two 

important factors for field probes. Besides field probe, the landing probe is generally 

employed for S-parameter and TDR measurement [7], [8]. The DUT for the landing 

probe is usually narrow traces. 

In first section, spatial resolution for magnetic near-field probe is studied, and 

three dimensions of spatial resolution are put forward. An optimized measurement setup 

is presented, which can reflect spatial resolution of probe properly. Then, an actual board 

is used to show the effect of spatial resolution in near-field measurement. In second 

section, a landing probe design is proposed in this paper based on pogo-pins. The 

designed probe works well up to 20 GHz, which is validated by measurement. 
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2. OVERVIEW 

Sensitivity and spatial resolution are two important factors of magnetic near-field 

probe. Sensitivity describes the ability to detect weak radiation source. Sensitivity 

improvement has been widely studied: use resonant structure to increase sensitivity at 

certain frequencies [9][10], or minimize the loss and use ultra low-noise amplifier to 

increase Signal to Noise ratio [11][12]. Spatial resolution represents the ability to 

distinguish two close radiation sources. However, spatial resolution is a special factor, as 

it depends not only on probe but also on DUT [13]. A common method to define spatial 

resolution ‘good’ or ‘bad’ is to measure output distribution over a microstrip line. A 

typical field distribution above the microstrip is shown in Figure 2.1. 

 

 

 

Figure 2.1 Hx field distribution along x-axis direction above microstrip 

 

 

In Figure 2.1, blue curve is Hx-field above microstrip 1mm, and red curve is the 

field above 0.5mm. Field strength is already normalized. Field distribution measured by a 
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magnetic probe which is able to detect horizontal field has similar shape as above curves. 

Typically, spatial resolution is defined as the distance between peak point and -6dB point 

[13]-[19]. This definition is straight forward. If the difference of field strength is less than 

6dB in a small area, than it can be assumed that there is only one radiation source, or 

multiple sources are not able to be distinguished. The distance between peak point and -

6dB point decreases with measurement height decreasing, so reduce measurement height 

is a good way to increase spatial resolution without redesigning near-field probe. Also, 

there are two dips of field distribution at both side of microstrip, and the distance between 

two dips decreases with measurement height reducing, which means this distance can 

also reflect spatial resolution. When resolution of different probe is measured, DUT and 

measurement height need to be fixed to make sure the values of spatial resolution are 

comparable. 

 

 

 

Figure 2.2 Hx field distribution above much wider microstrip 
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Another way to compare the spatial resolution between different probes is that 

using much wider microstrip, which is proposed in [13]. When high-frequency current is 

flowing through a microstrip line, considering skin effect, the current density is 

concentrated on both edges of microstrip. Simulated field distribution above wide 

microstrip is shown in Figure 2.2. 

 

 

 

Figure 2.3 Improve the spatial resolution with offset measurement 

 

 

A simplest method to design a magnetic probe with high spatial resolution is to 

reduce the loop size, but the smaller loop will lead to inferior sensitivity. A measurement 

method to improve the spatial resolution of a magnetic probe was proposed in [14]. The 

basic principle of this measurement method is shown in Figure 2.3. A microstrip line is 

placed on xy-plane, and a loop is placed above the microstrip. The loop surface is parallel 

with yz-plane. Firstly, the probe scans along x-axis, and then the same probe shifts 

upward 𝛥𝑧 distance and scans same DUT second time. The right-hand side of Figure 2.3 

is equivalent difference of magnetic fields between two scanning measurement. If the 

shift distance Δz is much smaller then loop height, then HΔS2 is much smaller then HΔS1 
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and can be ignored. Then a virtual probe which has a smaller loop size ΔS1  is 

accomplished by applying the subtraction. As we discussed before, spatial resolution is 

related to measurement height. This virtual probe has better resolution compare with 

original probe, as the loop structure is closer to DUT. 

As actual loop size is not decreased, good sensitivity and spatial resolution can be 

achieved by using this measurement method. However, this measurement method 

requires double measurement time. Besides, a stable environment must be kept and 

radiation from DUT must be constant in the process of measurement. To solve these 

problems, a space difference magnetic near-field probe is proposed in [15]. The basic 

structure is shown in Figure 2.4. 

 

 

 

Figure 2.4 Structure of space different probe which can improve spatial resolution 

 

 

This probe has two loop structures, one is one turn larger loop, the other is two 

turns loop. The loop size is optimized by simulation results, and probe has two output 

ports, which means the field information from these two loops is able to acquire by single 

measurement. According to simulation and measurement results, which are present in 
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[15], the distance between two dips is smaller after applying subtraction on two loops’ 

data, which means space difference probe has higher spatial resolution. 

Although the definition of spatial resolution is widely used, it still has limitation 

and disadvantages. Based on current definition, loop height which is related to 

measurement height is most important factor. Typical method of building high resolution 

probe is to reduce loop height and increase loop width to keep sufficient sensitivity. 

However, loop width also influences spatial resolution in measurement. In typical 

microstrip measurement, if coordinate system in Figure 2.3 is considered, H-field is 

constant along y-axis direction at certain height. In this situation, loop width doesn’t 

affect spatial resolution.  

In Section 3, the factors which affect spatial resolution and field distribution are 

discussed, and three dimensions of spatial resolution are put forward. Section 4 presents a 

better measurement setup to reflect spatial resolution. Then, an example is given to show 

how spatial resolution affect field distribution in near-field measurement. 
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3. SPATIAL RESOLUTION ANALYSIS 

In real measurement, spatial resolution is not only related with probe, but also 

with DUT. If we only consider probe itself, then the spatial resolution reflects the 

similarity between original field and field measurement by probe. If the probe has high 

spatial resolution, then near-field pattern which is measured by probe should be similar to 

real pattern in space. As there are three dimensions in space, we put forward three 

dimensions of spatial resolution. These three dimensions are independent of each other. 

3.1. FIRST DIMENSION OF SPATIAL RESOLUTION 

Based on current definition, loop height which is related to measurement height is 

most important factor. The first dimension of spatial resolution is determined by loop 

height. In order to analysis spatial resolution and figure out how spatial resolution affects 

field distribution, microstrip and probe model are built in HFSS. Besides, an analytical 

model is designed for following discussions. 

3.1.1. Microstrip Model. A HFSS 3D model of microstrip line is shown in 

Figure 3.1. The trace width is 16mil and thickness of dielectric is 8.9mil. Characteristic 

impedance is optimized to 50ohm. Two wave ports are added at both end of microstrip, 

and simulation results are shown in Figure 3.2. S11 and S21 results shows microstrip line 

is well designed. 

To analysis near magnetic field distribution, a numerical model of microstrip is 

introduced [19]. For narrow microstrip line and high frequency signal, the skin effect has 

to be considered. An equivalent model is built with two current I1 and I2. I3 and I4 are 

images of I1 and I2 based on imaging theory, as shown in Figure 3.3. 
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(a)                                                         (b) 

Figure 3.1 (a) 3D model of microstrip line (b) cross-section view 

 

 

  

  (a)                                                            (b) 

Figure 3.2 (a) S11 (b) S21 of microstrip strip 

 

 

The x-components of magnetic field is calculated by following equations: 

𝐻𝑥 = 𝐻𝑥1 + 𝐻𝑥2 − 𝐻𝑥3 − 𝐻𝑥4                                      (1) 

𝐻𝑥𝑖 = 𝐻𝑖 sin(𝛼𝑖)                                                  (2) 

𝐻𝑖 =
𝐼𝑖

2𝜋𝑟𝑖
                                                         (3) 

𝑟𝑖
2 = (𝑥 ± 𝑊 2⁄ )2 + ℎ𝑖

2                                         (4) 

sin(𝛼𝑖) =
ℎ𝑖

𝑟𝑖
                                                      (5) 
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Figure 3.3 Numerical model of microstrip 

 

 

The comparison of analytical and simulation results is shown in Figure 3.4. In 

HFSS, microstrip is from y=-20mm to y=20mm. The solution frequency is set to 1GHz, 

and Hx component is extracted at 1.61mm above microstrip at x, y=0mm location. There 

are little acceptable differences at the peak value and the locations of two dips, which 

means analytical result matches with simulation well. 

The equations (3) is used to calculate magnetic field around an infinitely long 

straight wire, and microstrip line can be treated as long straight wires with current 

sources, as the length of microstrip is much larger than the distance between microstrip 

and measurement point. Therefore, in a small region along the y-axis direction, Hx field 

strength is almost constant when x and z are not change. In typical near-field probe test 

setup, probe is placed above the center of microstrip, and loop surface is parallel with y-z 

plane. If Hx strength map on loop surface is plotted, the field information should be one 
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dimensional: Hx strength changes along z-axis direction and keeps constant along y-axis 

direction. Then it can be assumed that loop width doesn’t affect spatial resolution. 

 

 

 

Figure 3.4 Comparison between analytical and simulation model 

 

 

To verify the assumption, a numerical model of microstrip line with loop structure 

is introduced. The microstrip line model has been built in previous discussion, and a 

simple loop structure is added to the model, as shown in Figure 3.5. 

 

 

 

Figure 3.5 Schematic of analytical probe model 
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𝑙𝑤 and 𝑙ℎ are loop width and loop height values, separately. Voltage on loop can 

be calculated by following equations:  

∮ 𝐸 ∙ 𝑑𝑙 = −𝑗𝜔 ∬ 𝐵 ∙ 𝑑𝑠
𝑠𝑙

                                           (6) 

𝑉 = −𝑗𝜔𝜇 ∬ 𝐻𝑥 ∙ 𝑑𝑠
𝑠

                                               (7) 

As 𝐻𝑥 is coordinate dependent with 𝑥-axis and 𝑧-axis direction, independent with 

𝑦-axis direction, equation can be written as: 

𝑉 = −𝑗𝜔𝜇 ∫ ∫ 𝐻𝑥(𝑥, 𝑧)𝑑𝑦𝑑𝑧
𝑙𝑤 2⁄

−𝑙𝑤 2⁄

𝑧+𝑙ℎ

𝑧
                                   (8) 

Loop width is set to 0.5mm and 2mm, separately. Sweep 𝑥 value, and voltage 

distribution are shown in Figure 3.6. 

 

 

  

(a)                                                              (b) 

Figure 3.6 Comparison of voltage distribution between (a) different loop width and (b) 

different loop height 

 

 

In Figure 3.6, voltage values are normalized. It shows that the distance of dips and 

-6dB points don’t change, which means that ability of distinguish microstrip doesn’t 

deteriorate. This result verifies our assumption and it shows that loop width factor doesn’t 
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contribute to spatial resolution in typical measurement setup. The distance changes with 

loop height increasing, which is widely discussed in previous studies. 

3.1.2. Probe Model. In order to analyze spatial resolution of actual probe, a 

simple probe model is built in HFSS, as shown in Figure 3.7. 4 layers PCB is designed, 

top layer and bottom layer are ground, and signal trace is on second layer. Two array vias 

is set on both side of probe tip, which are used to isolate E-field coupling. The symmetric 

ground structure also can suppress common-mode current, which are caused from the 

electric field in the z-axis direction. Initial Loop size is 0.5mmx0.5mm. Stack up and 

dielectric thickness is shown in Figure 3.7 (b). The width of Stripline is optimized to 5mil, 

with 50ohm characteristic impedance. 

 

 

 

        (a)                                              (b) 

Figure 3.7 (a) Probe tip structure (b) stack-up information 

 

 

Simulation model is shown in Figure 3.8 (a). In HFSS, wave ports are added on 

both end of microstrip and top of probe. The Frequency response is almost 20dB/dec 

increasing from low frequency to 1GHz, shown in Figure 3.8 (b), and still increases up to 

5GHz, which means the probe can work up to 5GHz. 
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Simulation results are shown in Figure 3.9. Probe is placed above the microstrip 

and probe location is swept in x-axis direction from -5mm to 5mm. The solution 

frequency is set to 1GHz, which is within usable frequency of probe. The signal trace is 

on 2nd layer, which means probe is not symmetric, therefore the field distributions are not 

symmetric. Curves are shifted to keep the maximum value at x=0 location. It also shows 

that distance of dips doesn’t change with loop width increasing, which is consistent with 

analytical results.  

 

 

 

(a)                                                             (b) 

Figure 3.8 (a) HFSS model (b) frequency response of probe 

 

 

 

Figure 3.9 Comparison of simulation results between different loop width 
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3.2. SECOND DIMENSION OF SPATIAL RESOLUTION 

In previous discussion, spatial resolution doesn’t change with loop width 

increasing, in typical measurement setup. Hx field is constant along y-direction, and in Z-

direction, as Hx field strength is related to height, the difference on loop height causes the 

difference of voltage distribution on loop, which affects spatial resolution.  

To figure out the spatial resolution along y-axis direction, the loop is rotated 45 

degrees around z-axis direction. In this situation, Hx component is coordinate dependent 

with y-axis, as field strength changes along the direction of loop width. This new 

numerical model is shown in Figure 3.10. 

 

 

 

Figure 3.10 Numerical model after rotating 45 degrees 

 

 

Voltage on Loop can be calculated by following equations: 

𝐻𝑥
′ = 𝐻𝑥 cos 𝛼2                                                (9) 

𝑑𝑠 = 𝑑𝑥 sin 𝛼2⁄ 𝑑𝑧                                          (10) 

𝑉 = −𝑗𝜔𝜇 ∫ ∫ 𝐻𝑥(𝑥, 𝑧) cos 𝛼2 ∙ 𝑑𝑥 sin 𝛼2⁄ 𝑑𝑧
𝑙𝑤 2∙sin 𝛼2⁄

−𝑙𝑤 2∙sin 𝛼2⁄

𝑧+𝑙ℎ

𝑧
              (11) 
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The analytical results are shown in Figure 3.11. It shows that the distance of dips 

increases when a larger loop width is set. In simulation model, probe is also turned 45 

degrees, and the result is shown in Figure 3.12 The simulation results are consistent with 

analytical results.  

 

 

 

Figure 3.11 Comparison of analytical results between different loop width 

 

 

 

Figure 3.12 Comparison of simulation results between different loop width 
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After probe is rotated certain degrees, the field strength is different between left 

side and right side of loop, and then second dimension of spatial resolution which is 

determined by loop width is shown. Consider that there is a wide enough loop, which is 

even larger than the distance of two dips, then it is hard to see much different change of 

voltage when the probe is swept across the microstrip. This can be considered as an 

extreme condition of spatial resolution, and it is hard to distinguish microstrip in this 

situation. In actual measurement, probe may not be parallel with traces on DUT, and also, 

H-field strength along y-axis direction is not constant in most case. Loop width is able to 

impact the spatial resolution to further impact the resolution of field map. 

3.3. THIRD DIMENSION OF SPATIAL RESOLUTION 

Although the voltage is determined by H-field within whole loop region, it can be 

considered that the measured field is on same plane approximately, instead of three-

dimensional area. The height of measurement plane is determined by electrical center of 

probe, and the electrical center may not be at same location as geometrical center [20]. A 

diagram of electrical center and geometrical center is shown in Figure 3.13. 

The electrical center of the probe can be estimated by matching the simulated 

field distribution at different heights to the measured field distribution while the probe is 

scanning across the microstrip trace. The height which is the best match between 

simulation and measurement is an approximation of electrical height or measurement 

height. Although the probe which is shown in previous section is a simulation model, 

electrical center can be determined by matching the simulated field distribution at 

different heights to simulated voltage distribution on probe. Comparison results are 

shown in Figure 3.14. 
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Figure 3.13 Diagram of electrical center and geometrical center 

 

 

 

Figure 3.14 Tangential H-field strength across the trace at different heights (simulation 

and measurement) 

 

 

In Figure 3.14, the 1.98mm height simulated field distribution match the 

simulated voltage distribution best, as the distances of two dips are same in both data. 

Consequently, we conclude that the electrical height is 1.98mm while the geometrical 

center’s height is 1.88mm actually. 
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As the probe is asymmetric, the shape of voltage distribution is different with 

original field distribution. To compare with field distribution more clearly, we shift signal 

trace of probe to middle of the board, and keep the loop size and trace width same. 

Although characteristic impedance of transmission line is not 50ohm, the probe is still 

able to work up to 1GHz. Cross-section view and frequency response of probe are shown 

in Figure 3.15. 

The probe is placed above microstrip at same height and voltage distribution 

which crossing the trace is simulated. As shown in Figure 3.16, the curve of voltage 

match very well with original field. This is an interesting result, which shows that voltage 

measured by probe reflects the original field perfectly. It means that this field shape is 

determined by DUT only, and spatial resolution doesn’t affect shape of curve. The 

previous definition of spatial resolution is the distance between peak point and 6dB 

points, however, we are not sure that the distance is determined by character of probe, or 

only reflects the field distribution of DUT itself. 

 

 

 

(a)                                                                         (b) 

Figure 3.15 (a) Modified probe (b) frequency response 
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To explain this phenomenon, we modify the equation (7), which is used to 

calculate coupled voltage on loop. Voltage is proportional to ∬ 𝐻𝑥 ∙ 𝑑𝑠
𝑠

, when 

frequency and permeability are not changed. In this integral equation, if 𝑑𝑠  is not 

considered as infinity small and is replaced by Δ𝑠, assuming 𝐻𝑥 is constant in the area of 

Δ𝑠, then the equation can be written as: 

𝑉 ≈ −𝑗𝜔𝜇 ∑ ∑ 𝐻𝑥(𝑖,𝑗) ∙ Δ𝑠(𝑖,𝑗)
𝑛
𝑖=1

𝑚
𝑗=1                                       (12) 

The schematic of this calculation is shown in Figure 3.17. An approximate 

voltage is calculated by adding all 𝐻𝑥 ∙ Δ𝑠  in loop area. In previous section, two 

dimensions of spatial resolution are already introduced, which are related to loop height 

and loop width, respectively. If Hx field strength changes in both y and z-axis directions, 

as shown in Figure 3.17, and area of Δ𝑠 is fixed, then spatial resolution is related to 

amount of Δ𝑠 in both directions. This relationship between spatial resolution and loop 

size can be demonstrated by smoothing a one-dimensional array. Assume that there is 

one-dimensional random array, as shown in Table 3.1. 

 

 

 

Figure 3.16 Tangential H-field strength measured by probe and original field  
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Figure 3.17 Schematic of approximate voltage calculation 

 

 

Table 3.1 Original one-dimensional array 

Sequences Values Sequences Values 

1 65.04 6 52.51 

2 64.80 7 41.58 

3 51.78 8 46.11 

4 59.15 9 52.00 

5 56.37 … … 

 

 

Then, a new array is constructed by averaging 5 numbers’ value. The value of 1st 

number is equal to average value of 1st to 5th values in original array, and the value of 2nd 

number is the average value of 2nd to 6th values, and so on. New array is shown in Table 

3.2. 

Figures of initial array and modified array are shown in Figure 3.18. It shows that 

after averaging operation, the trend curve of this one-dimensional array become 
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‘smoothness’. However, some peaks or dips are lost, and the shape of curve is not sharp 

anymore.  

 

 

Table 3.2 New one-dimensional array after smoothing 

Sequences Values Sequences Values 

1 59.43 6 47.93 

2 56.92 7 46.50 

3 52.28 8 47.31 

4 51.14 9 46.83 

5 49.71 … … 

 

 

 

Figure 3.18 Smoothing on one-dimensional array 

 

 

The influence of loop size on spatial resolution is similar to averaging operation. 

If loop width or height is small enough, spatial resolution along width or height direction 

will be good enough and the field distribution measured by probe will reflect the actual 

field perfectly. With loop size increasing, more magnetic field is coupled into the loop. 

The magnetic field within the whole loop area is integrated as one voltage, therefore 

probe is not able to distinguish ripples of magnetic field strength in a small area. 
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The spatial resolution along y-axis and z-axis directions are determined by loop 

width and loop height, respectively. In Figure 3.16, Hx-field distribution is along x-axis 

direction, which is perpendicular to loop surface. As the probe is only one turn, and 

copper thickness is very thin and can be ignored, there is not ‘averaging operation’ along 

x-axis direction, which means spatial resolution along x-axis direction is extremely good. 

When probe is moving across microstrip trace, the voltage measured by probe is able to 

match with original field perfectly, as long as step length of scanning is small enough. 

Here we put forward third dimension of spatial resolution, which is determined by 

thickness of multiple turns of loop. In analytical model, another loop is added as the 

second turn of original loop. Total voltage is the sum of voltage on each loop: 

𝑉 = 𝑉1 + 𝑉2                                                     (13) 

Loop width and Loop height keep same value, and the analytical model is shown 

in Figure 3.19. 

 

 

 

Figure 3.19 Analytical model of two turns loop 
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Comparisons between one turn loop and two turns loop are shown in Figure 3.20. 

When the probe has multiple turns, 6dB points locations change and the distance between 

two dips increases. With the gap between two turns increasing, the distance between two 

dips also increases. It shows that spatial resolution is affected by multiple turns and the 

total thickness of all turns.  

 

 

 

(a)                                                                 (b) 

Figure 3.20 Comparison of analytical results between one turn and two turn loops: (a) 

Gap=0.5mm (b) Gap=1mm 

 

 

In simulation model, two turns loop is designed. A signal via is added to connect 

second layer trace and third layer trace. The loop size is still 0.5mmx0.5mm, and the 

simulation model of two turns probe is shown in Figure 3.21. 

Probe location is swept in x-axis direction from -5mm to 5mm. Probe is 0.5mm 

above DUT, instead of 1mm, to make the difference between field distributions more 

clearly. For convenience of comparison, the modified symmetry probe is used as 

reference. The comparison of field distribution between one turn symmetry probe and 

two turns probe are shown in Figure 3.22. 
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Figure 3.21 Structure of two turn loops in simulation model 

 

 

 

Figure 3.22 Voltage distribution simulated by 1 turn and 2 turns probe 

 

 

As the distance between two loops is only 14mil (dielectric thickness between 2nd 

layer and 3rd layer), there is a little difference between fields distribution of one turn and 

two turns loop. 

To make the difference clearer, we increase dielectric thickness between 2nd layer 

and 3rd layer, from 14mil to 30mil, and keep same values of loop size and trace width. 

The dielectric thickness of reference symmetry probe is also changed. Cross view of 

these probes is shown in Figure 3.23. 
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Comparison between 1 turn and 2 turns thicker probes are shown in Figure 3.24 

(a). As the probe is thicker and the distance between two turns increases, the difference of 

field distributions between single turn and 2 turns probe cannot be ignored. It proves that 

spatial resolution is related to thickness of all turns. In Figure 3.24 (b), it shows that even 

the probe is much thicker, spatial resolution is almost not influenced as long as the loop is 

only one turn. In actual probe design, if multiple turns structure is designed and total 

thickness of turns is larger than 30mil, based on simulation results, third dimension of 

spatial resolution which is related to loop turns need to be considered.  

 

 

 

Figure 3.23 Structure of modified wider probe 

 

 

 

(a)                                                      (b) 

Figure 3.24 (a) Simulated voltage distribution of 1 turn and 2 turns probe (b) results 

comparison between 1 turn and 1 turn thicker probe 
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4. OPTIMIZED MEASUREMENT SETUP OF SPATIAL RESOLUTION 

In previous sections, we discuss three dimensions of spatial resolution, which are 

determined by loop height along z-axis direction, loop width along y-axis direction, and 

total thickness of multiple turns along x-axis direction, respectively. Typical definition of 

spatial resolution is the distance between peak point and 6dB points, and in measurement 

setup, the probe is placed above microstrip trace, and loop surface is parallel with trace 

direction. However, one dimensional of spatial resolution which is determined by loop 

width is not able to be shown in this measurement, as Hx field is constant along loop 

width direction. In this section, a bend microstrip is designed as the DUT to replaced 

microstrip, as bend microstrip is able to generate varied Hx field along x, y and z-axis 

directions at the corner area.  

Simulation model is shown in Figure 4.1. Trace width is set to 14mil and 

characteristic impedance is optimized to 50ohm. Wave ports are added on both end of 

microstrip. Two perpendicular sheets are added above microstrip at corner area, which 

are used to add mesh to make H field accurate within interested area. 

 

 

 

Figure 4.1 Bend microstrip model 



 

 

27 

 

(a)                                                                 (b) 

Figure 4.2 Hx field distribution along x-axis (a) and y-axis (b) 

 

 

Hx field along x-axis and y-axis direction are shown in Figure 4.2 (a) and (b), 

respectively. Hx field is calculated at 1.7mm above bend microstrip. In Figure 4.2 (a), 

there is some ripples of Hx field strength when x is larger than 5mm, due to the bend 

microstrip structure and non-TEM mode at the corner. In Figure 4.2 (b), as center of 

microstrip trace is placed at y=0mm, Hx field strength decrease quickly along y-axis 

negative. 

As the mesh is dense enough, the field information within sheets can be used in 

analytical model. We calculate Hx field in y-z plane in HFSS and generate a matrix, 

which includes locations, and real part and image part of Hx field at each location. The 

step length in both y-axis and z-axis is set to 0.01mm. Similar to equation (), an 

approximate voltage on loop is calculated by adding all 𝐻𝑥 ∙ Δ𝑠 in loop area. The loop 

scans from y=-5mm to y=-5mm at certain height. Loop surface is parallel with y-z plane. 

Comparisons of Hx field distribution along y-axis direction between different loop sizes 

are shown in Figure 4.3. 
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Figure 4.3 Hx-field distribution along y-axis 

 

 

In analytical model, the bottom of loop is fixed at certain height, and the 

simulated height of original field is same as the height from 0.5x0.5mm loop center to 

DUT. In Figure 4.3, it shows that the location of dip moves along negative y-axis 

direction with loop size increasing, which means spatial resolution become worse. The 

horizonal distance between the dip of original field and the dip of field measured by loop 

can be treated as relative spatial resolution. When loop is infinite small, the distance 

approaches zero and spatial resolution is perfect. Effect of spatial resolution along y-axis 

and z-axis which are determined by loop width and loop height respectively can be 

shown in this setup. As the field measured by probe can be considered as the field at 

electrical height, the spatial resolution in z-axis direction doesn’t contribute to field 

distribution. However, electrical height is related to loop height, when the height from 

bottom of probe to DUT is fixed. So spatial resolution can be increased by reducing loop 

height. This improvement of spatial resolution is related to characteristic of DUT, instead 

of probe itself. 
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In HFSS, a bend microstrip with probe is built. The probe is placed above 

microstrip at certain height, and it moves from y=-5mm to y=5mm, shown in Figure 4.4.  

 

 

 

Figure 4.4 Simulation model of bend microstrip and probe 

 

 

 

Figure 4.5 Hx-field distribution along y-axis (original field and the field measured by 

probes) 
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Comparison between original field distribution and voltage distribution of probe 

is shown in Figure 4.5. It shows that the location of dip moves along negative y-axis 

direction with loop size increasing. As E-field is also coupled to probe at the corner area, 

the locations of dips are different compare with analytical model. 

To see the spatial resolution effect of multiple turns, we need to scan along x-axis 

direction at the corner or across the straight trace. This is similar to the setup which is 

shown in Figure 3.19. Therefore, three dimensions of spatial resolution can be shown by 

measuring twice under bend microstrip. 
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5. EFFECT OF SPATIAL RESOLUTION IN NEAR-FIELD MEASUREMENT 

To figure out the actual effect of spatial resolution in near-field measurement, an 

actual DUT is built in HFSS. The DUT is cut and imported from board file, as shown in 

Figure 5.1. The board has 8 layers. Layer 2, 4, 5 and 6 are ground layer, and Layer 3 and 

6 is used for signal line. In this part of board, 4 striplines are at layer 3, and connect to 

pads on bottom layer through signal vias. There are four 50-ohm resistors are soldered 

between signal pads and ground pads on bottom layer. Therefore, 4 striplines are 

terminated by 50-ohm resistors to reduce crosstalk coupled to others traces. 

In HFSS, 4 lumped elements are used on replace 50ohm, and 4 wave ports are 

added at the edge of each traces. 4 traces are all excited by 1 incident voltage with same 

phase, to simulate the real condition. 

 

 

 

Figure 5.1 Part of a board model with 4 resistors 
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The probe is placed above this DUT. The distance between the bottom of probe 

and DUT is 1mm. As spatial resolution in z-axis direction doesn’t contribute to field 

distribution, two probes which have different loop width are used for near-field scan. The 

scan area and probe model are shown in Figure 5.2. The scan area is from (0, -4) to (3, 4), 

and parallels with x-y plane. Hy-field component is measured in this setup. 

 

 

 

Figure 5.2 Scan area in simulated near-field measurement   

 

 

  

(a)                                                              (b) 

Figure 5.3 Simulated field distribution by different probes: (a) 0.5mm loop width (b) 

2mm loop width 
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Simulated results are shown in Figure 5.3. Figure 5.3 (a) is field distribution 

measured by 0.5mm loop width probe, and Figure 5.3 (b) is the field distribution 

measured by 2mm loop width probe. Voltages are normalized to 0dBm, and the scale are 

same in both plots. It is easier to distinguish 4 traces using the field distribution measured 

by 0.5mm probe, compare with 2mm probe. The field strength at the gap of two traces is 

lower and along positive x-axis direction, the field strength decreases when x value is 

smaller. The field distribution measured by 0.5mm probe closes to original field 

distribution of DUT, and it shows that in actual near-field measurement, spatial resolution 

does affect field distribution. These three dimensions of spatial resolution need to be 

considered in probe design. 
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6. SUMMARY 

In this section, typical definition of spatial resolution is introduced first. Although 

the definition is straight forward and easy to understand, it cannot reflect spatial 

resolution of probe properly. Therefore, the impacts of spatial resolution are studied by 

using analytical and HFSS model of microstrip strip and probe. Three dimensions of 

spatial resolution is presented and discussed. When loop surface is parallel with y-z plane 

and the probe is used to measure Hx field, the spatial resolution is determined by loop 

height, loop width and thickness of multiple turns in z-axis, y-axis and x-axis directions 

respectively, as shown in Figure 6.1. As the field measured by probe can be considered as 

the field at electrical height, the spatial resolution in z-axis direction of probe doesn’t 

contribute to field distribution. However, spatial resolution can be increased by reducing 

loop height, and this improvement of spatial resolution is related to characteristic of DUT, 

instead of probe itself. 

 

 

 

Figure 6.1 Three dimensions of spatial resolution  
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Moreover, a bend microstrip model is designed and used as DUT in spatial 

resolution measurement. As bend microstrip is able to generate varied Hx field along x, y 

and z-axis directions, three dimensions of spatial resolution can be shown by measuring 

along x-axis and y-axis directions under bend microstrip. 

In the end, an actual board is used to show the effect of spatial resolution in near-

field measurement. Two probes which have different loop width are used, and scan a 

certain area above DUT. The simulation results show than it is easier to distinguish 4 

traces using the field distribution measured by 0.5mm loop width probe, compare with 

2mm probe. In actual near-field measurement, spatial resolution affects field distribution, 

so in probe design, these three dimensions of spatial resolution need to be carefully 

considered based on different requirement. 
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ABSTRACT 

A landing probe design is proposed in this paper based on pogo-pins. Landing 

probes are usually used to obtain TDR and S-parameters of the device under test (DUT) 

so that the performance of the DUT can be evaluated. This design has two major 

advantages. First, it is durable. Second, it can be easily integrated into automated testing 

systems. The designed probe works well up to 20 GHz, which is validated by 

measurement. 

Keywords—Landing probes; Pogo-pin; Landing Pad; Signal Integrity (SI) 
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1. INTRODUCTION 

With the rapid advancement in electronic technologies, the trend of printed circuit 

board (PCB) and flex designs is moving toward higher and higher frequency and more 

and more compact form factor. This trend, though brings in various benefits for users, 

makes the PCB and flex designs more and more vulnerable to signal integrity (SI) [1]-[3] 

and electromagnetic compatibility (EMC) issues [4], [5]. 

To evaluate the PCB and flex design and debug SI and EMC related issues, 

measurements are conducted using probes including field probes such as electric field 

probes [6], [7], magnetic field probes [8] and landing probes [9]. Field probes are usually 

used for near-field pattern acquisition over PCB or flex, which in turn provides insights 

of trace routing, layout, component radiation properties etc. Field probes are widely 

studied and are not the focus of this paper. The landing probe is generally employed for 

S-parameter and TDR measurement [10], [11]. The device under test (DUT) for the 

landing probe is usually narrow traces. 

Conventionally, a landing probe is made of a coaxial cable with the inner 

conductor extended out and a pad attached to the out conductor at the tip of the coaxial 

cable. There are several drawbacks of this design. First, the tip is fragile and can be easily 

damaged. Second, it is difficult to land the probe tip evenly onto the DUT. Sometimes, 

this is due to the rotation of the probe tip; while at other times, it is caused by the 

deformation of the DUT surface. All these short-comings confine the usage of the 

conventional landing probe to only well-trained experimenters and refrain it from testing 

automation. 
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To resolve the disadvantages in the traditional landing probes, a new probe design 

utilizing the pogo-pin is proposed in this paper. In the new design, the probe tip is durable. 

Besides, the compression tolerance of a pogo-pin enables the new probe to be integrated 

into probing stations for automatic landing tests. This probe is demonstrated working 

well up to 20 GHz. 

The rest of the paper is organized as follows. In Section 2, the design method of 

the landing probe is introduced. In Section 3 measurement variation for the designed 

probe is presented. Section 4 concludes the paper. 
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2. DESIGN OF THE LANDING PROBE 

2.1. POGO-PIN 

Pogo pins showed excellent electric and mechanical performance when serving as 

the high-speed interconnects transferring electric signals from the probe to the DUT [12]. 

In this work, pogo-pins are used to replace the metal tips of a traditional landing probe.  

 

 

 

Figure 1 (a) Specification of a pogo-pin [13] (b) simplified 3D model of a pogo-pin (c) 

cross-sectional view of a pogo-pin [14] 

 

 

The specification of a pogo-pin used in this probe design is shown in Figure 1 (a). 

The body of the pogo-pin is gold plated. The insertion loss of the pogo-pin is about -1dB 

at 9.69GHz [13]. Figure 1 (b) shows the simplified 3D model in CST, which consists of 

solid structure. The geometrical dimensions follow the specification in Figure 1 (a). The 

spring structure inside the body of the pogo-pin is completely hidden by the above-

mentioned solid structure. The spring structure can be seen in Figure 1 (c). Due to the 
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skin effect, it is reasonable to assume the current flowing only on the outer surface of the 

pogo-pin at high frequency. 

2.2. PROBE 

The dimensions of the probe are shown in Figure 2 (a). The probe is based on 

coplanar waveguide with ground (CPWG) structure. The top layer is the signal layer. The 

second, third, and bottom layers are ground layers. A CPWG structure requires only two 

layers, the first signal layer and the second ground layer. However, a two-layer design is 

so thin that the probe may easily break. A four-layer design is employed instead only to 

enhance its mechanical strength. The third and fourth layers are not necessary to maintain 

the performance of the CWPG. Dielectric material is FR4. 

 

 

 

Figure 2 (a) Dimensions of the probe with pogo-pins (b) and stack-up information 

 

 

In this probe design, pogo-pins are fixed at the end of board (shown in Figure 2 

(b)) as the probe tip. One pogo-pin is fixed on the trace, and two pogo-pins are on both 

side ground planes. This ground-signal-ground (G-S-G) structure is used to relieve the 
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discontinuity effect of the transition from the probe to the DUT. The characteristic 

impedance of a transmission line is calculated as [15]: 

𝑍0 = √
𝑅+𝑗𝜔𝐿

𝐺+𝑗𝑤𝐶
                                                        (1) 

As the frequency increases, the values of 𝑗𝜔𝐿 and 𝑗𝜔C increase, while R and G 

are negligible within the frequencies of interest. The characteristic impedance is related 

to the radio of per-unit-length (p.u.l) inductance and p.u.l capacitance, approximately. 

The characteristic impedance of the CPWG trace is designed to be 50ohm. For the probe 

tip, 50 Ohm should be maintained for the pogo-pin structure. However, when the pogo-

pin structure is soldered onto the CPWG, the p.u.l capacitance increases for that region 

and thus the characteristic impedance decreases below 50 Ohm. For the pogo-pin tips 

which extend out of the end of the CPWG, usually the characteristic impedance is higher 

than 50 Ohm. Clearly, there is a fluctuation of the characteristic impedance around the 

probe tip. 

To reduce the effect of discontinuity, a tapering structure is introduced at the tip 

region. The trace width is gradually reduced from 16.5 mil to 12mil to decrease the p.u.l 

capacitance. The separation of pogo-pins has also been optimized.  To simulate the real 

condition where the probe lands on the DUT, the length of the pogo-pin tip decreases to 

half of its original length, which mimics the compression of the spring after landing. 

2.3. LANDING PROBE 

The structure of the landing board is similar to the probe. The trace width and gap 

are the same as the probe. The probe is supposed to land at one end of the landing board. 

The other end of the landing board is connected to a SMA connector. 



 

 

42 

 

Figure 3 A landing pad is added at the landing position 

 

 

The transition from the probe to the DUT is optimized, since the characteristic 

impedance mismatches at the transition. In more cases, landing pads are required. The 

design of the landing pads has a significant impact on the overall performance of the 

measurement system. The previous study showed that the optimized landing pad enabled 

good transition performance up to 90GHz [16]. Since the characteristic impedance of the 

pogo-pin tip is higher than 50ohm, the landing pads are used to reduce the characteristic 

impedance at the landing position. In this paper, a circular pad is added to trace of 

landing board at landing position, which is shown in Figure 3. The diameter of landing 

pad is larger than the width of trace, which reduces the effect of impedance discontinuity 

introduced by the pogo-pin tip. Diameter of pad is optimized to 20mil by full-wave 

simulations. 
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3. MEASUREMENT VALIDATION 

A probe and a landing board are fabricated as shown in Figure 4 (a) and (b), 

respectively. Pogo-pins are soldered at one side of the probe, and the tips are stretched 

out of the board. The landing board is built with different diameters of landing pad, 

which are 20mil, 22mil, and 24mil, respectively. 

 

 

 

Figure 4 (a) Fabricated Probe and (b) landing board 

 

 

 

Figure 5 Measurement setup: (a) diagram and (b) actual configuration 
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To characterize the frequency response of the fabricated probe, the measurement 

setup described in Figure 5 is used. Port 1 of vector network analyzer (VNA) is 

connected with the landing board. Port 2 is connected with the probe. The probe is fixed 

on a robot arm, which is a part of an automatic probing station. The robot arm can be 

controlled precisely to land the probe on landing board. To make sure the probe landing 

on the landing pad, the pad position is marked on the top overlay layer. 

 

 

 

Figure 6 Simulation vs. Measurement results: (a) S11 results (b) S21 results 

 

 

 

Figure 7 Measurement results with different pad diameters: (a) S11 results (b) S21 results 
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The simulation vs. measurement results are shown in Figure 6. The measurement 

S11 results is lower than -13dB when the frequency is below 20GHz. The insertion loss is 

large, about -12dB at 20GHz. This is due to the lossy material in use and the total length 

of the channel, around 160 mm. The measured S21 matches well with the simulation 

result. The measured S11 is about 10dB higher than the simulation result. The difference 

of S11 between simulation and measurement may be due to manufacturing technology, 

soldering accuracy and pogo-pin qualities. Since the tiny pogo-pins are soldered 

manually, the position of a pogo-pin may not be controlled precisely. The difference 

between simulation and measurement S11 result is acceptable. 

 

 

 

Figure 8 TDR results. The probe is connected with a short cable which is connected to 

instrument. 

 

 

To figure out the effect of the landing pad size on S11 and S21 results, landing 

boards are built with different diameters of landing pad: 20mil, 22mil and 24mil. Figure 7 

shows the S11 and S21 results with different diameters. The landing pad is used to 

compensate the drop of the p.u.l capacitance of the pogo-pins and thus to decrease the 

discontinuity effect at the transition position. The S21 results of different landing pads are 
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very close, since the insertion loss is dominated by the CPWG structure. When the 

frequency goes beyond 25GHz, the S11 and S21 results are much worse no matter which 

diameter of pad is used. The probe is resonant at high frequencies.  

To figure out the characteristic impedance of the transition part, TDR is measured. 

To distinguish the probe and the landing board on TDR results, cable, cable with probe 

and cable with probe and landing board are measured separately, as shown in Figure 8. 

Before the blue curve, it is the TDR results of the cable. Between the blue and the red 

curve, it is the TDR result of the cable and the designed probe. In TDR measurement, 

three landing boards with different diameters of landing pad are measured. The TDR 

result at 1.1ns indicates the transition. The transition works well except there is a small 

acceptable dip on characteristic impedance. The characteristic impedances of these 3 

landing boards are different. The TDR result shows the transition part is not influenced 

by diameter of the landing pad. Combining with the previous S-parameter results, it 

shows that the performance of the designed probe is not sensitive to the pad size. This is 

good for practical usage since the probe doesn’t set up any prerequisite for the DUT. 

When the probe lands on the DUT, pogo-pins are compressed and impedance 

discontinuity is further reduced. 
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4. CONCLUSION 

This paper discusses a landing probe that can be used in automatic probing 

measurements. The probe is based on CPWG structure and pogo-pins are employed to 

replace the traditional metal tips. A landing board is designed to validate the landing 

probe and to study the effects of the landing pad size on the transition. The measured S21 

correlates well with simulations. TDR measurement results show the transition part 

works well. The designed probe performs well up to 20 GHz. Besides, the performance 

of the designed probe is not sensitive to the pad size. 
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SECTION 

7. CONCLUSION 

In this topic, spatial resolution of magnetic near-field probe is studied in first part. 

The traditional definition of spatial resolution cannot reflect spatial resolution of probe 

properly. Therefore, the impacts of spatial resolution are studied by using analytical and 

HFSS model of microstrip and probe. Three dimensions of spatial resolution are 

presented and discussed. When loop surface is parallel with y-z plane and the probe is 

used to measure Hx field, the spatial resolution is determined by loop height, loop width 

and thickness of multiple turns in z-axis, y-axis and x-axis directions respectively. A 

bend microstrip DUT is designed to reflect spatial resolution of probe properly. Then, the 

effect of spatial resolution is shown in actual board simulation. In second part, a landing 

probe which can be used in automatic probing measurements is designed. Landing probe 

is another type of probe and it is generally employed for S-parameter and TDR 

measurement. The probe is based on CPWG structure and pogo-pins are employed to 

replace the traditional metal tips. The designed probe performs well up to 20 GHz. 
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