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ABSTRACT 

Medical image analysis has paved a way for research in the field of medical and 

biological image analysis through the applications of image processing. This study has 

special emphasis on nuclei segmentation from digitized histology images and pill 

segmentation. Cervical cancer is one of the most common malignant cancers affecting 

women. This can be cured if detected early. Histology image feature analysis is required 

to classify the squamous epithelium into Normal, CIN1, CIN2 and CIN3 grades of 

cervical intraepithelial neoplasia (CIN). The nuclei in the epithelium region provide the 

majority of information regarding the severity of the cancer. Segmentation of nuclei is 

therefore crucial. This paper provides two methods for nuclei segmentation. The first 

approach is clustering approach by quantization of the color content in the histology 

images uses k-means++ clustering. The second approach is deep-learning based nuclei 

segmentation method works by gathering localized information through the generation of 

superpixels and training convolutional neural network. 

The other part of the study covers segmentation of consumer-quality pill images. 

Misidentified and unidentified pills constitute a safety hazard for both patients and health 

professionals. An automatic pill identification technique is essential to address this 

challenge. This paper concentrates on segmenting the pill image, which is crucial step to 

identify a pill. A color image segmentation algorithm is proposed by generating 

superpixels using the Simple Linear Iterative Clustering (SLIC) algorithm and merging 

the superpixels by thresholding the region adjacency graphs. The algorithm manages to 

supersede the challenges due to various backgrounds and lighting conditions of 

consumer-quality pill images.  
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1. INTRODUCTION 

The reconstruction of medical images into a digital form has propelled the fields 

of medical and laboratory research and clinical practice [1]. Image processing for medical 

image applications, specifically nuclei segmentation from digitized histology images and 

pill segmentation, has numerous challenges to attain highly accurate segmentation results.  

In recent years, there have been a number of cervical cancer cases reported all 

over the world. This is the second most common cancer in women [2]. There is a cure for 

cervical cancer if it is detected early. The standard diagnostic process is the microscopic 

evaluation of histology images by a qualified pathologist [3]. The severity of cervical 

cancer increases as the immature atypical cells in the epithelium region increase. Based 

on this observation, the cancer affecting squamous epithelium is classified as Normal or 

three grades of cervical intraepithelial neoplasia (CIN): CIN1, CIN2, and CIN3 [4]–[6]. 

This can be clearly observed from Figure 1.1. Normal means there is no CIN, CIN1 

corresponds to mild dysplasia (abnormal change), CIN2 denotes moderate dysplasia, and 

CIN3 corresponds to severe dysplasia. 

 

 

Figure 1.1 Samples of different CIN grades (a) Normal, (b) CIN1, (c) CIN 2, (d) CIN 3 
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As the severity of the cancer increases, an increase in the number of immature 

atypical cells can be observed from the bottom (basal layer) to the top of the epithelium 

region. This can be observed from Figure 1.1. Atypical immature cells are denser in the 

bottom region of the epithelium for CIN 1 [see Figure 1.1(b)]. For CIN 2, two-thirds of 

the bottom region is affected by the atypical immature cells [see Figure 1.1(c)]. Finally, 

for CIN 3, the atypical immature cells are densely spread over the whole epithelium 

region [see Figure 1.1(d)]. 

 At present, cervical cancer tissue is analyzed manually. This is only done by 

pathologists with significant experience in their domain. These qualified pathologists are 

few in number, and it takes a considerable amount of time to observe the cancerous 

tissue. This calls for automatic histology image classification, which enables anyone with 

the images to easily verify whether the tissue is at a normal level or malignant. 

Feature extraction plays a pivotal role in classifying images. The presence of 

nuclei in the epithelium allows the required data to generate various features in order to 

classify the cervical images. Hence, the generation of nuclei masks through proper nuclei 

segmentation of the cervical images is crucial. The paper employs two different methods 

to segment nuclei. The first method uses color quantization with the help of K-means++ 

clustering. The other method is based on deep learning through the extraction of 

superpixels and training a convolution neural network with the obtained superpixel data. 

The paper also covers the challenge of real-world pill segmentation by superpixel 

merge. Misidentified or unidentified prescription pills are an increasing challenge for all 

caregivers, both families and professionals. Errors in pill identification may lead to 

serious or fatal adverse events. To respond to this challenge, a fast and reliable automated 

pill identification technique is needed. The first and most critical step in pill identification 

is segmentation of the pill from the background. The goals of segmentation are to 

eliminate both false detection of background area and false omission of pill area. 

Introduction of either type of error can cause errors in color or shape analysis and can 

lead to pill misidentification. The real-world consumer images used in this research 

provide significant segmentation challenges due to various backgrounds and lighting 

conditions. This paper proposes a color image segmentation algorithm which generates 

superpixels using the simple linear iterative clustering (SLIC) algorithm and merges the 
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superpixels by thresholding the region adjacency graphs. Post-processing steps are given 

to result in accurate pill segmentation. The segmentation accuracy is evaluated by 

comparing the consumer-quality pill image segmentation masks to the high quality 

reference pill image masks. 

The remainder of this thesis is organized as follows.  Section 2 presents a K-

means++ clustering approach for nuclei segmentation in digitized histology images.  

Section 3 presents a deep learning approach for nuclei segmentation.  Section 4 presents 

image processing techniques applied to pill segmentation.  Section 5 presents study 

conclusions. 
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2. NUCLEI SEGMENTATION USING K-MEANS++ CLUSTERING 

The proposed algorithm employs a color quantization approach for segmenting 

nuclei of histology images using a K-means++ clustering algorithm on the intensity of 

color pixels to reduce to four color intensity values. The flowchart in Figure 2.1 

summarizes the procedure. 

 

 

Figure 2.1 Overview of nuclei segmentation using color quantization with K-means++ 

clustering 

 

The dataset images used in this paper are provided by the National Library of 

Medicine (NLM) as part of the research on classification of cervical histology images 

into Normal, CIN1, CIN2, and CIN3. A 71-image set is considered to segment the nuclei,  

Obtain final nuclei mask

Apply Median filter and remove blobs 
with area < 12

Fill binary holes

Eliminate regions with red stains

Extract mask from red plane with least 
non-zero centeriod value

Apply K-means++ clustering on pixel 
intensities of image

Segmented squamous epithelium 
image
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analyze the segmentation accuracy, and compare the results with previously published 

nuclei masks. 

Color image quantization is the process of reducing a true color image into a 

number of distinct colors. This smaller set of colors represents the color properties of the 

original image.  There are various approaches such as uniform quantization, median-cut, 

octree, clustering and popularity algorithm are used to obtain the color quantized image. 

According to the requirements of the problem, one approach will be chosen as the best 

choice.  

There are four steps to the color image quantization process [7]: 

1. Obtain color statistics by sampling the original image. 

2. Chose a color map based on the obtained color statistics. 

3. Use color map as a reference map for the pixel color values. 

4. Draw the quantized image. 

Color quantization can be divided into two classes: uniform and nonuniform. In 

uniform color quantization, the color space is partitioned to equal sized regions. This 

approach may be quick at a cost of the quality of the image. In non-uniform color 

quantization, the color space is adaptively partitioned based upon the distribution of 

colors.  

Clustering is grouping data with similar properties, which is one of the classic 

problems in computational geometry and machine learning. K-means clustering is a way 

of choosing k centers from a given set of n data points to minimize the sum of squared 

distances φ between chosen centers and the data points. The K-means clustering 

algorithm is an unsupervised technique to group data into k clusters based on similarity in 

the data. K-means++ clustering is a modified form of the K-means algorithm in which 

seeds are initialized in a particular way such that it has better speed and accuracy 

compared to standard K-means. 

The paper uses K-means clustering to group the color intensity values of pixels 

present in the image into k clusters. The algorithm randomly initializes the cluster centers 

and searches the entire image to find the near color intensity values within a residual 

error value. For each and every iteration, new cluster centroids are formed, which is the 

median of color values present in the respective clusters. This process takes place until N 
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iterations, and finally a labeled image is generated with each cluster having the color 

intensity value of its respective centroid color value. 

Figure 2.2 shows a sample where a superpixel extracted from the histology image 

is processed with K-means color quantization to obtain 4 colors within 10 iterations. 

 

 

Figure 2.2 K-means++ color quantization on a superpixel 

 

As mentioned earlier 71 images provided by NLM are used in the segmentation 

and analysis. The segmentation process is explained in detail by working on one of the 

images in the dataset. Figure 2.3 shows a sample cervical histology image and the 

manually segmented epithelium is shown in Figure 2.4.  

 

 

 

Figure 2.3 Original image sample 
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K-means++ clustering is applied in the RGB plane on color pixel data of the 

epithelium-segmented image. The parameters for clustering are selected such that the 

color intensities of the original image are mapped to 4 unique color values with 10 

iterations. For the visualization of the clustered data shown in Figure 2.5, the pixel values 

of red plane are plotted against pixel values of grayscale image. The points in blue and 

red from the graph are the pixels of nuclei region. The pixel data is finally quantized such 

that the data points in each cluster are assigned the centroid value of the corresponding 

cluster.   

 

  

Figure 2.5 Graphical representation of cluster data 

Figure 2.4 Epithelium segmented image 
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The nuclei mask is obtained by thresholding the data points in the red plane with 

the least nonzero centroid value, that is the centroid value from the cluster in red from 

Figure 2.5. The resultant mask is shown in Figure 2.6.  

 

 

 

The red stains on some of the cervical tissue sample images are also detected as 

nuclei. The red regions are detected from the original image by assigning the range of 

upper and lower color boundaries. A mask is automatically created with the assigned 

boundary limits as shown in Figure 2.7. 

 

          

Figure 2.7 Red stains marked on image sample (left) and its respective mask (right) 

Figure 2.6 Nuclei mask as a result of thresholding the red plane 



9 

 

 The resultant red stain mask is complimented and AND operated with the 

obtained nuclei segmented binary image as shown in Figure 2.8 (left). 

 

     

 

The obtained mask is then modified to fill the holes, if any, in the objects. A 

morphological closing operation is then applied to merge any irregular openings in the  

 

 

Figure 2.9 Final nuclei mask of cervical image 

Figure 2.8 Nuclei mask without red stains (left) and segmented original image (right) 
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mask, objects with smaller area are eliminated by extracting the region properties, 

resulting in final nuclei mask as shown in Figure 2.9. 

The obtained mask is used to detect the contours around the nuclei which are then 

superimposed on the original image using green color boundary for better visualization as 

shown in Figure 2.10. 

 

 

Figure 2.10 Detected nuclei boundaries marked in green 

 

The color quantization technique using the K-means++ algorithm is applied on all 

images of the 71-image set from the database. The overall accuracy of nuclei 

segmentation was 93.67%, as shown in Table 2.1. 

 

Table 2.1 Nuclei segmentation results using color quantization technique 

Total no. of Nuclei TP FP FN 

75732 74468 1264 3450 

 

 The accuracy is calculated by manually obtaining the true positive (TP) (i.e., the 

number of nuclei successfully detected), false positive (FP) (i.e., the number of nuclei not 
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detected), and true negative (FN) (i.e., the value incorrectly indicating the absence of 

nuclei). Finally, the accuracy (μ) is given by [8] 

𝜇 =  
𝑇𝑃 − (𝐹𝑃 + 𝐹𝑁)

𝑇𝑃
. (1) 

To segment the nuclei with the highest accuracy, a deep learning-based approach 

is employed by analyzing localized features through generation of superpixels and 

training convolutional neural networks.  
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3. DEEP LEARNING-BASED NUCLEI SEGMENTATION USING 

CONVOLUTIONAL NEURAL NETWORKS 

Convolutional neural networks are inspired biologically with inputs from 

standard-sized digital image. These image arrays are made to convolve with the feature 

vectors defined as parameters to the convolutional neural network (CNN). The feature 

vectors are comprised of the weights that are modified for each iteration as the network 

learns from data used for training. 

The primary goal of this project is to segment the nuclei in the epithelium of 

cervical cancer histology images by considering localized features instead of features 

from the whole image. This localized information is used to classify whether the segment 

contains nuclei or background. The CNN’s use image vectors as inputs and learn 

different feature vectors, which ultimately solves the classification problem. 

In order to make use of localized information, small chunks of images are 

obtained from the original image using a superpixel extraction method. Superpixel 

algorithms are devised to group the redundant pixels into regions to form a rigid pattern. 

Put simply, they capture the image redundancy and group the pixels to form clusters 

called superpixels. 

 

3.1. PRE-PROCESSING 

Before extracting superpixels, the original image is preprocessed using a Gaussian 

smoothing filter, which is used to blur the input image. This helps in reducing the noise 

present in the background of the input. Its impulse response is the Gaussian function, 

which decays rapidly. It is necessary to select narrow windows to avoid the decaying of 

the function. This function divides the image into its respective windows and applies the 

cost function. The Gaussian function that is applied on the input image is as follows: 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒

−(
𝑥2+𝑦2

2𝜎2 )
. (2) 

This is a two-dimensional Gaussian function. For implementation of this function, 

a built-in MATLAB function is used, which is also a two-dimensional Gaussian filter that 

uses a two-dimensional Gaussian smoothing kernel. The standard deviation can be user-

defined, and if not defined, the default value is taken as two. The paper, the standard 
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deviation is taken as two. This filter is applied instead of a trimmed mean filter because 

the Gaussian filter takes 0.25 seconds whereas the trimmed mean filter takes 796.04 

seconds. When the outputs of the algorithms were compared, the output using the 

Gaussian filter gave a better result than the output obtained using the trimmed mean 

filter. The luminance plane from the CIE color space of the smoothed image is obtained, 

and superpixels are extracted from the image. 

 

3.2. SUPERPIXEL EXTRACTION 

A simple linear iterative clustering (SLIC) algorithm is used to extract superpixels 

rather than other state-of-the-art methods because it is faster, more memory efficient, has 

better adheres to boundaries, and improves segmentation performance.  

 A labeled matrix of equal size to the original image is obtained as an output from 

the SLIC function. An epithelium mask is then applied on the labeled matrix to get rid of 

the unwanted region. The resultant matrix is again relabeled. Each superpixel formed is 

made to have at least 6 to 10 pixels, as shown in Figure 3.1. 

 

 

Figure 3.1 Original image with superpixels 
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 The centroid of each superpixel is computed, and with respect to that centroid, 

patches of 16 x 16 x 3 image is formed as shown in Figure 3.2. A patch is said to be a 

part of the nuclei region if it has at least 0.1% of its area as nuclei. The nuclei region is 

given highest priority compared to the cytoplasm and background. The problem with 

generating 16 x 16 x 3 images from the superpixels at the edge of the image is solved by 

mirroring the image. 

 

 

 

Finally, 16 x 16 x 3 RGB input images are obtained from the superpixels of the 

original image. As more inputs are needed for deep learning, the original image is also 

rotated by 180 degrees and 16 x 16 images are extracted. 

 

3.3. DATA GENERATION 

 Data generation is done carefully to prepare both training and test image data 

sets. For our experiment, a total of 12 images, six images each from the 71-image dataset 

and 62-image dataset are considered for the purpose of training the network. The images 

for training are carefully chosen so that the network understands how to handle different 

kinds of images. On observing the images from both 71-set and 62-set of data, it is clear 

that there are three kinds of images: images with light nuclei and light cytoplasm, images 

with darker nuclei and moderate cytoplasm, and images with darker nuclei and thicker 

cytoplasm as shown in Figure 3.3. A pair of each type of image were selected from both 

the sets, in order to train the convolutional neural network. 

Figure 3.2 Generation of 16x16x3 RGB image from superpixel 
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Figure 3.3 Images with lighter nuclei (left), darker nuclei with lighter cytoplasm   

(center), darker nuclei with thicker cytoplasm (right)   

 

Classifying whether nuclei are present or not in the 16 x 16 x 3 patch is 

considered a binary classification problem. The target labels for each 16 x 16 x 3 patch is 

obtained from the binary nuclei masks that are already available in the database. Some of 

the portions of the nuclei masks are modified so that the target labels represent exact 

ground truth values. The extracted 16 x 16 x 3 patches are as shown in Figure 3.6. The 

label “0” denotes nuclei and the label “1” denotes background. A total of 377,012 patches 

are obtained using preprocessing steps as shown in Figure 3.4 Flowchart for generation of 

train data-setFigure 3.4 from 12 original images that comprise both nuclei and 

background. 

 

 

Figure 3.4 Flowchart for generation of train data-set 

Generate 16x16x3 RGB chunks

Obtain Superpixels

Ground truth nuclei mask
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The test data is generated by preprocessing the image as mentioned in Figure 3.5. 

The luminance plane is used to generate superpixels, and then 16 x 16 x 3 images are 

formed for each individual original image. 

 

 

Figure 3.5  Flowchart for generation of test data-set 

 

3.4. CONVOLUTIONAL NEURAL NETWORK 

As a pre-step to train CNN network, all the small patches of images are converted 

to the HSV color plane and then the V-plane (value plane) is extracted. Before selecting 

the V-plane, various color planes are observed manually and are also used to train the 

network. The V-plane and the L-plane (luminance plane) gave promising results. The V-

plane is considered for this experiment, as shown in Figure 3.6.  

Generate 16x16x3 RGB chunks

Obtain Superpixels

Apply Morphological operations

Fill binary holes

Extract Luminance layer

Contrast Enhancement

RGB to CIE lab color space conversion

Application of Gaussian Smoothing filter
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Figure 3.6 Samples of 16 x 16 x 3 RGB images and their 16 x 16 V-plane images 

 

In order to classify the presence of nuclei, the convolutional neural network is 

trained with the features that were generated by convolutional layers using raw pixel 

input data. The first stage was a shallow CNN with one convolutional layer and a 

following max pool layer. Two images were considered for a quick quality check was 

completed. A remarkable improvement in the validation accuracy was observed when a 

deep CNN network architecture was considered with multiple convolutional, max 

pooling, and dropout layers. The architecture from Figure 3.7 has three consecutive 

convolutional, max pooling, and dropout layers at the beginning of the network and three 

regular neural networks (dense layers) at the end of the network. This produced a 96% 

validation accuracy on two input images. Later, 10 more images were included to make 

the network learn to classify nuclei in different environments, as shown in Figure 3.3.  

Also the obtained data set of inputs and target labels are used to train CNN’s with 

different architectures and the following architecture (Figure 3.7) gave best results with 

higher validation accuracy on test images that were part of the training data. 
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Figure 3.7 CNN architecture 
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The train dataset is used to fit the CNN model. A 20% of the train dataset is used 

as a validation dataset, which is helpful to estimate the prediction error for best model 

selection. Categorical accuracy is computed between prediction and targets produced 

from the validation dataset. An adaptable learning rate ∈ (0.0001, 0.03) and momentum 

in the range ∈ (0.9, 0.999) are applied to the network while training for 2000 epochs. The 

architecture produced a validation accuracy of 90.52% at the end of the 2000th epoch as 

shown in the Table 3.1.  

 

Table 3.1 Training history 

Epoch Train_Loss Valid_Loss Valid_Accuracy Duration 

1 
0.405191 0.365318 0.847796 80.49975 

2 0.339616 0.336454 0.85873 80.4548 

3 0.327013 0.315634 0.866628 80.45272 

4 0.319594 0.307507 0.872228 80.4542 

5 0.314946 0.304915 0.872022 80.44572 

6 
0.31122 0.320003 0.863062 80.44613 

7 0.306248 0.31397 0.865538 80.45538 

… … … … … 

1995 
0.233639 0.233551 0.90525 80.40883 

1996 0.232405 0.23718 0.902701 80.42856 

1997 0.23113 0.233445 0.902878 80.42384 

1998 0.231225 0.231078 0.905015 80.42907 

1999 0.229122 0.230274 0.904292 80.43345 

2000 0.229737 0.232072 0.905265 80.44478 

 

From the Table 3.1, the error on the training set is denoted as training loss. 

Validation loss is the error as a result of running the validation set through the previously 

trained convolutional neural network. Figure 3.8 represents a drop in training and 

validation error as the number of epochs increase. This is a clear indication that the 

network is learning from the data that is given as an input to the network. 
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Figure 3.8 Train loss and validation loss vs number of epochs 

 

The tabular data is represented graphically in Figure 3.8 and Figure 3.9. The drop 

in error rate with a train/valid loss ratio of approximately 1 is a desirable result denoting 

successful training of the network without overfitting. 

 

 

Figure 3.9 Validation accuracy vs number of epochs 
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Figure 3.10 shows all the 32 x 3 x 3 convolutional feature vectors of the first layer 

obtained as a result of the trained network. Figure 3.11 represents the result of the 

convolution of the feature vectors with the 16 x 16 image producing a 32 x 14 x 14 

image. 

 

 

Figure 3.10 32 x 3 x 3 Convolutional filters in the first layer 

Figure 3.11 32 x 14 x 14 convolved output 
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The trained network model is saved along with the weights and filter coefficients. 

This saved model is loaded back to test on the remaining images of the 71-image dataset 

and the 62-image dataset to classify the image based on the presence of the nuclei. The 

location of every superpixel extracted from the original image is saved as a labelled 

image. The results of classification are mapped with the labeled image to finally obtain a 

binary nuclei mask from the corresponding original image. Figure 3.12 gives a visual 

outlook of the nuclei mask generated, and Figure 3.13 shows the nuclei boundaries 

marked in green obtained using its corresponding nuclei mask. 

 

 

Figure 3.12 Generated nuclei mask 
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Figure 3.13 Boundary generated from Figure 3.12 superimposed on the original image 

 

The deep learning algorithm is applied to both the 71-image dataset and the 62-

image dataset with overall segmentation accuracy of 94.81% and 92.93%, respectively. 

Finally, the overall segmentation accuracy of the combined set is 93.87%.  

The accuracy is calculated by manually recording the True Positive (TP) (i.e., the 

number of nuclei successfully detected), False Positive (FP) (i.e., the number of nuclei 

not detected), and False Negative (FN) (i.e., number of objects formed but are not 

nuclei). Finally, the accuracy (μ) is given by [8] 

𝜇 =  
𝑇𝑃 − (𝐹𝑃 + 𝐹𝑁)

𝑇𝑃
. (3) 
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Table 3.2 Nuclei segmentation results using the deep learning approach 

Data-set Total no. of 

Nuclei 

TP FP FN 𝜇 

71 set 75733 74353 1380 1565 96.04% 

62 set 33594 31896 1698 510 93.07% 

Combined 

set 

109327 106249 3078 2075 95.15% 

 

It is observed that if smaller size superpixels are considered, that is, the more the 

localization is done, the better the produced nuclei masks. Also, deeper CNN has shown 

remarkable classification results when compared to a shallow CNN. 
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4. REAL-WORLD PILL SEGMENTATION BASED ON SUPERPIXEL MERGE 

USING REGION ADJACENCY GRAPH 

According to the National Library of Medicine [9], unidentified and misidentified 

pills present a challenge to patients, family members, and health professionals. 

Misidentified pills constitute a safety hazard. In the United States, nine out of 10 people 

over age 65 take more than one prescription pill, which may increase the chance of pill 

misidentification. This can lead to adverse drug events (ADE). This situation calls for 

automatic pill identification, enabling anyone to easily verify whether a pill with different 

size, shape, imprint, or color is a generic equivalent to the drug he or she was already 

taking. In an era of increasing polypharmacy and widespread use of 7-day pill dispensers, 

rapid and accurate automatic pill identification has lifesaving potential.  

During the last decade, the improvement in computational power and digital 

camera technology has facilitated advances in machine vision research, yielding 

significant progress in automation of medical and industrial computer vision systems. 

Automatic identification of prescription drugs is now an increasingly important 

biomedical research topic.  

Large prescription drug databases are now available to researchers. These 

databases include the National Library of Medicine (NLM) Pillbox database [9], 

DailyMedPlus [10], WebMD [11], and Drugs.com [12]. These resources provide various 

features of a pill, where users can manually access information on pill size, color, shape, 

and imprint to allow pill identification [13]. However, identification by manual website 

access is error prone and time-consuming. There is a need for an automatic pill 

identification system that is fast, reliable and easy to use.  

Segmentation is the first and most critical step in the pill identification process. 

Segmentation isolates the pill from the background, enabling accurate analysis of the pill 

features. The images in Figure 4.1 are typical of pill images used in this project. These 

are examples of consumer-quality images provided by the NLM Pill Image Recognition 

Challenge 2016. Simple thresholding on the images in Figure 4.1 leads to significant 

segmentation errors, due to shadows and uneven lighting. These challenges are not 

present in the reference pill images shown in Figure 4.2 provided by the NLM challenge.   
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Figure 4.1 Consumer-quality pill images 

 

The main objective of the NLM Pill Image Recognition Challenge was to use 

computer vision algorithms to rank lower-quality consumer images of prescription pills 

after training with higher-quality reference images as shown in Figure 4.2.  These freely 

available high-quality digital images and associated data [14] were generated by NLM as 

part of the Computational Photography Project for Pill Identification. Although this 

challenge provided progress toward automatic pill identification, there is as yet (Fall 

2016) no reliable and accurate automatic pill identification technology available.   

The consumer-quality images, as shown in Figure 4.1, have issues such as low 

illumination, noisy background, and pill shadows, all of which pose great challenges in 

pill segmentation. When pill images include a noisy background, feature extraction 

algorithms can determine false features. Hence, there is a need to develop a segmentation 

algorithm to reduce these problems.  

The proposed clustering segmentation algorithm includes three important steps 

[15]. Initially, pre-processing is done to over-segment the pill images by obtaining 

superpixels based on the modified k-means clustering algorithm. Secondly, a region 
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Figure 4.2 Reference pill images 

 

adjacency graph is obtained from the over-segmented pill image to merge the regions 

within a certain threshold. Finally, various post-processing steps are applied to obtain the 

desired mask. 

The goal of this paper is to accurately segment consumer-quality pill images 

captured using commonly available digital cameras and smartphones. After successful 

segmentation of the pill, in future work, features like shape, imprint and color will be 

extracted. These features help to compare, correlate and rank the consumer- quality 

images using the high-quality reference images. 

 

4.1. METHODS 

The main objective of the paper is to segment consumer-quality pill images that 

are affected by background noise and shadows. Once the pill is isolated, feature 

extraction is more reliable. 

The proposed algorithm initially smoothens the image to reduce noise using a 

Gaussian smoothing filter. The simple linear iterative clustering (SLIC) algorithm [16] 

algorithm is then applied to generate superpixels. The resultant image is converted into a 

region adjacency graph and thresholded to merge the superpixels. A final binary mask is 
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obtained by thresholding color planes, applying an opening operation, filling holes, and 

applying a convex hull. A bounding box is applied to obtain only the segmented pill 

region. 

4.1.1. SLIC Superpixels.  The pre-segmentation of an image is a crucial step 

before applying region adjacency graphs. This step includes the generation of 

superpixels.   Superpixels are a group of pixels that share similar characteristics with their 

neighboring pixels.  They capture the image redundancy and subsequently reduce 

complexity in performing further image processing tasks.   There are various approaches 

to generate superpixels [17][18][19][20][16]. This paper uses the SLIC algorithm to 

generate superpixels because it is faster, more memory-efficient, and has better boundary 

adherence than its predecessors. A detailed step-by-step procedure of the SLIC algorithm 

is provided in Achanta et al. [16]. 

The pill image is initially pre-processed using a Gaussian smoothing filter with 

standard deviation 2. The SLIC algorithm, which generates superpixels based on k-means 

clustering [21], is applied. The search space in the SLIC algorithm is limited to a specific 

region around a cluster centroid. This reduces the number of distance calculations, which 

in turn reduces the complexity and run time. It also considers a weighted distance 

approach by combining both color and spatial proximity. These features allow the 

algorithm to outperform existing state-of-the-art superpixel methods.  The search is done 

for 10 iterations after initializing the cluster centroids. This generation of superpixels may 

be regarded as an over-segmentation process. 

The output is a labelled image, as the algorithm assigns a unique label for each 

superpixel. An average color value of all pixels in a superpixel is calculated and assigned 

to the respective superpixel, as shown in Figure 4.3. 

Formally, let 𝜇𝑅 denote the mean of a set of RGB color pixels 𝑝0, 𝑝1, 𝑝2, … , 𝑝𝑁 in 

region 𝑅, as given by Equation (1): 

𝜇𝑅 =  
1

𝑁
 ∑ 𝑝𝑖

𝑁

𝑖=0

 (4) 

where 𝑁 is the total number of pixels in that region. 
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Figure 4.3 Pill segmented with superpixels with compactness factor = 12 

 

4.1.2. Region Adjacency Graph.  A region adjacency graph [22] is created as a 

step towards the merging of superpixels. The initial pre-segmentation (that is, the initial 

generation of superpixels) is crucial to create an associated adjacency graph. There is no 

loss of visual information in the pre-segmentation process. Pixels are only merged if they 

belong to the same superpixel region.  

The over-segmented image is now considered as a graph. The centroid of each 

superpixel in the image is a node in the graph.  All nodes in the adjacent regions are 

joined to form an edge as shown in Figure 4.4. This collection of edges is called the 

region adjacency graph.  

The weight for the edge between two adjacent nodes [23] can be defined in 

various ways.  The superpixels can be merged using these edge weights. As each 

superpixel is of uniform average color, the edge weights are defined by the difference of 

average color between the adjacent superpixel regions. The regions connected with a  

 



30 

 

  

Figure 4.4 Labelled image (zoomed) with region adjacency 

 

lower edge weight have similar color features and were merged using a threshold value of 

29, determined empirically from a dataset of 30 random images from the provided 

consumer-quality images. The adjacent superpixel regions are merged if the edge weight 

is lower than the predetermined threshold value; if the edge weight is higher than the 

threshold value, the graph is cut as shown in Figure 4.5. 

 

Figure 4.5 Superpixels with graph cut (left) and merged regions with graph cut (right) 

(zoomed) 
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As a result, a fully connected region adjacency graph (RAG) is divided into 

disconnected regions with threshold-cuts, as shown in Figure 4.6.   The pixels of newly 

generated regions are assigned to the average color value of the merged regions. This 

substantially reduces segmentation complexity and results in easier generation of the pill 

mask. 

4.1.3. Post-processing.  The image resulting from merging superpixel regions by 

RAG thresholding is still affected by the shadows of the pill. The outer shadow needs to 

be merged with the background and the inner shadow should be merged with the object 

(pill). 

 

 

Figure 4.6 Superpixels merge using RAG 

 

When background color intensity is close to the pill color intensity, segmentation 

errors occur upon merging. To overcome this problem, a histogram of the image resulting 

after RAG thresholding is plotted, as shown in Figure 4.7. Since the background occupies 

most of the area in the image, the majority of the pixels share the same intensity level as 
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Figure 4.7 Histogram of image from Figure 4.6 

 

that observed in Figure 4.7.  The bin of the histogram with background pixels has the 

highest probability. All pixels sharing this most probable bin value are assigned to zero 

intensity. This overcomes the problem stated above.  

On analyzing the color intensity values of various pill images, the red and blue 

planes contribute the majority of intensity changes from pill to its shadow. After 

reviewing 30 random consumer-quality images (previously used to determine the 

threshold for region connecting), threshold cutoff values of 105 and 83 were chosen for 

red and blue planes, respectively. An OR operation is applied to masks from both planes 

to generate a single binary mask. 

A morphological opening (erosion followed by dilation) is then created to remove 

blobs of radius less than 9 pixels with a circular structuring element. Any holes in the 

mask are filled with a flood-fill operation. A final mask is generated by applying the 

convex hull operation on the filled mask as shown in Figure 4.8. 
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Figure 4.8 Binary mask of the pill 

 

A distinct boundary along the edges of the pill is shown in the overlay image for 

this mask, Figure 4.9. A bounding box is applied to this mask to obtain the pill region as 

shown in Figure 4.10. 

 

 

Figure 4.9 Boundary marked on the pill (zoomed) 



34 

 

 

  

 

4.2. EXPERIMENTAL RESULTS 

The proposed pill segmentation algorithm showed favorable accuracy results for 

the 5000 consumer-quality pill images provided by the NLM system.   Since the 

algorithm uses a color segmentation approach, some of the pills with color similar to 

background color were completely merged with the background, resulting in a complete 

black mask. This is the primary limitation of the proposed algorithm. 

The algorithm produced accurate segmentation results on the 2000 high-quality 

reference pill images as shown in Figure 4.12.  These images are chosen as the 

benchmark for comparing the segmentation results of consumer-quality pill images. 

The 5000 consumer-quality masked pill images were scored manually to analyze 

the accuracy of the segmentation with respect to segmentation of reference pill images.  

Results show accurate segmentation for 2243 pills, as shown in Figure 4.11 (left).  For 

1862 pills, some shadow is included along with the pill in the mask (Figure 4.11, center). 

The remaining pill images (17.9%) have false segmentation (Figure 4.11, right) due to the 

challenges mentioned above. In summary, the proposed algorithm produces acceptable 

segmentation accuracy for 82.1% of 5000 consumer-quality pills.  

 

 

Figure 4.11 Bounding-box of segmented consumer pill images 

Figure 4.10 Result of bounding-box 
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Figure 4.12 Bounding-box of segmented reference pill images 

 

The average time taken to run the algorithm (written in Python v2.7) on each pill 

image (of varying size with the largest being 2400 x 1600) on an Intel Core i5 2400 

processor with 8 GB DDR3 RAM and a 512 MB AMD RADEON HD 6350 graphics 

card is 683.95 seconds. In order to make the segmentation proceed faster, a scaling factor 

is introduced and applied to reduce and resize the input image. The number of 

superpixels and the disk size for morphological operation are also reduced as the input 

image is scaled-down. But there is a trade-off with the quality of the mask generated as 

lower scaling factors are considered, as shown in Figure 4.13. This is shown in Table 4.1. 

The quality of generated binary masks on average is provided in Table 4.1, corresponding 

to 2243 of 5000 consumer-quality pill images with accurate segmentation accuracy. 

 

   

Figure 4.13 Segmentation results with scale factor 1 (left), 0.4 (center), 0.1 (right) 

 

The quality of the binary mask produced from each of those images for a varying 

scale factor (𝑖 =  1.0, 0.9, 0.8, . . . , 0.1) is computed by Equation 5.    
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𝑄𝑖 =  (1 −  
|𝑝𝑖 −  𝑝1.0|

𝑝1.0
) ∗ 100 (5) 

where 𝑄𝑖 is the segmentation quality of the binary mask, 𝑝𝑖 is number of pixels in the 

object region of binary mask, and p1.0 is the number of pixels in the object region of 

binary mask for a scale factor of 1.0. The speed factor was calculated as the ratio of the 

average run-time to process each image at a particular scale factor to that of the run-time 

to process the pill image with a scale factor 1.0. To provide the best segmentation results 

at a faster rate, a scale factor of 0.4 is considered to be the optimum value upon reviewing 

all the image masks from the dataset. 

 

Table 4.1 Effect of scale factor on quality of binary mask and speed factor for individual 

pills 
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5. CONCLUSIONS 

The proposed method of nuclei segmentation through color quantization using K-

means++ clustering has shown remarkable segmentation results, but with a few 

limitations. The histology images with lighter nuclei presented some difficulties in 

detection and segmentation. Images with a thicker cell wall posed a challenge, as they 

were detected as a part of nuclei mask. 

The deep learning-based nuclei segmentation approach has shown improved 

segmentation results as compared to the formerly proposed method. Using deep learning, 

the full-size image is over-segmented by generating superpixels, which made the 

convolutional neural network (CNN) learn the localized features better in the training 

phase. The trained model is finally applied on the whole dataset, and the results prove 

that the deep-learning approach has outperformed the former color quantization 

approach. 

The proposed method of merging superpixel regions using a region adjacency 

graph threshold-cut approach successfully segments consumer-quality pills with few 

limitations.  Application of a resizing factor gave some promising results for algorithm 

speed, but with a trade-off in quality of mask. 

Although the process has eliminated the background noise and produced excellent 

results for most of the pills and capsules; the shadows caused by pill illumination is still a 

challenge for some pills. Pills with similar background color also pose a great challenge 

in boundary determination. Finding an adaptable solution that works for all 5000 pills is 

challenging. Further analysis needs to be done to achieve accurate segmentation for all 

the consumer-quality pills. 

This project was originally developed as an entry to the Pill Image Recognition 

Challenge conducted by the National Library of Medicine. The 5000 consumer-quality 

image datasets were accessed from the NLM database.  Future work corresponds to the 

extraction of various features that are crucial to match the given consumer-quality pill. 
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